aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/decorator
diff options
context:
space:
mode:
authornkozlovskiy <nmk@ydb.tech>2023-09-29 12:24:06 +0300
committernkozlovskiy <nmk@ydb.tech>2023-09-29 12:41:34 +0300
commite0e3e1717e3d33762ce61950504f9637a6e669ed (patch)
treebca3ff6939b10ed60c3d5c12439963a1146b9711 /contrib/python/decorator
parent38f2c5852db84c7b4d83adfcb009eb61541d1ccd (diff)
downloadydb-e0e3e1717e3d33762ce61950504f9637a6e669ed.tar.gz
add ydb deps
Diffstat (limited to 'contrib/python/decorator')
-rw-r--r--contrib/python/decorator/py2/.dist-info/METADATA131
-rw-r--r--contrib/python/decorator/py2/.dist-info/top_level.txt1
-rw-r--r--contrib/python/decorator/py2/LICENSE.txt26
-rw-r--r--contrib/python/decorator/py2/README.rst98
-rw-r--r--contrib/python/decorator/py2/decorator.py454
-rw-r--r--contrib/python/decorator/py2/tests/__init__.py0
-rw-r--r--contrib/python/decorator/py2/tests/documentation.py1897
-rw-r--r--contrib/python/decorator/py2/tests/test.py480
-rw-r--r--contrib/python/decorator/py2/tests/ya.make19
-rw-r--r--contrib/python/decorator/py2/ya.make26
-rw-r--r--contrib/python/decorator/py3/.dist-info/METADATA131
-rw-r--r--contrib/python/decorator/py3/.dist-info/top_level.txt1
-rw-r--r--contrib/python/decorator/py3/LICENSE.txt26
-rw-r--r--contrib/python/decorator/py3/README.rst98
-rw-r--r--contrib/python/decorator/py3/decorator.py454
-rw-r--r--contrib/python/decorator/py3/tests/__init__.py0
-rw-r--r--contrib/python/decorator/py3/tests/documentation.py1897
-rw-r--r--contrib/python/decorator/py3/tests/test.py480
-rw-r--r--contrib/python/decorator/py3/tests/ya.make19
-rw-r--r--contrib/python/decorator/py3/ya.make26
-rw-r--r--contrib/python/decorator/ya.make18
21 files changed, 6282 insertions, 0 deletions
diff --git a/contrib/python/decorator/py2/.dist-info/METADATA b/contrib/python/decorator/py2/.dist-info/METADATA
new file mode 100644
index 0000000000..fd12277a01
--- /dev/null
+++ b/contrib/python/decorator/py2/.dist-info/METADATA
@@ -0,0 +1,131 @@
+Metadata-Version: 2.1
+Name: decorator
+Version: 4.4.2
+Summary: Decorators for Humans
+Home-page: https://github.com/micheles/decorator
+Author: Michele Simionato
+Author-email: michele.simionato@gmail.com
+License: new BSD License
+Keywords: decorators generic utility
+Platform: All
+Classifier: Development Status :: 5 - Production/Stable
+Classifier: Intended Audience :: Developers
+Classifier: License :: OSI Approved :: BSD License
+Classifier: Natural Language :: English
+Classifier: Operating System :: OS Independent
+Classifier: Programming Language :: Python
+Classifier: Programming Language :: Python :: 2
+Classifier: Programming Language :: Python :: 2.6
+Classifier: Programming Language :: Python :: 2.7
+Classifier: Programming Language :: Python :: 3
+Classifier: Programming Language :: Python :: 3.2
+Classifier: Programming Language :: Python :: 3.3
+Classifier: Programming Language :: Python :: 3.4
+Classifier: Programming Language :: Python :: 3.5
+Classifier: Programming Language :: Python :: 3.6
+Classifier: Programming Language :: Python :: 3.7
+Classifier: Programming Language :: Python :: Implementation :: CPython
+Classifier: Topic :: Software Development :: Libraries
+Classifier: Topic :: Utilities
+Requires-Python: >=2.6, !=3.0.*, !=3.1.*
+
+Decorators for Humans
+=====================
+
+The goal of the decorator module is to make it easy to define
+signature-preserving function decorators and decorator factories.
+It also includes an implementation of multiple dispatch and other niceties
+(please check the docs). It is released under a two-clauses
+BSD license, i.e. basically you can do whatever you want with it but I am not
+responsible.
+
+Installation
+-------------
+
+If you are lazy, just perform
+
+ ``$ pip install decorator``
+
+which will install just the module on your system.
+
+If you prefer to install the full distribution from source, including
+the documentation, clone the `GitHub repo`_ or download the tarball_, unpack it and run
+
+ ``$ pip install .``
+
+in the main directory, possibly as superuser.
+
+.. _tarball: https://pypi.org/project/decorator/#files
+.. _GitHub repo: https://github.com/micheles/decorator
+
+Testing
+--------
+
+If you have the source code installation you can run the tests with
+
+ `$ python src/tests/test.py -v`
+
+or (if you have setuptools installed)
+
+ `$ python setup.py test`
+
+Notice that you may run into trouble if in your system there
+is an older version of the decorator module; in such a case remove the
+old version. It is safe even to copy the module `decorator.py` over
+an existing one, since we kept backward-compatibility for a long time.
+
+Repository
+---------------
+
+The project is hosted on GitHub. You can look at the source here:
+
+ https://github.com/micheles/decorator
+
+Documentation
+---------------
+
+The documentation has been moved to https://github.com/micheles/decorator/blob/master/docs/documentation.md
+
+From there you can get a PDF version by simply using the print
+functionality of your browser.
+
+Here is the documentation for previous versions of the module:
+
+https://github.com/micheles/decorator/blob/4.3.2/docs/tests.documentation.rst
+https://github.com/micheles/decorator/blob/4.2.1/docs/tests.documentation.rst
+https://github.com/micheles/decorator/blob/4.1.2/docs/tests.documentation.rst
+https://github.com/micheles/decorator/blob/4.0.0/documentation.rst
+https://github.com/micheles/decorator/blob/3.4.2/documentation.rst
+
+For the impatient
+-----------------
+
+Here is an example of how to define a family of decorators tracing slow
+operations:
+
+.. code-block:: python
+
+ from decorator import decorator
+
+ @decorator
+ def warn_slow(func, timelimit=60, *args, **kw):
+ t0 = time.time()
+ result = func(*args, **kw)
+ dt = time.time() - t0
+ if dt > timelimit:
+ logging.warn('%s took %d seconds', func.__name__, dt)
+ else:
+ logging.info('%s took %d seconds', func.__name__, dt)
+ return result
+
+ @warn_slow # warn if it takes more than 1 minute
+ def preprocess_input_files(inputdir, tempdir):
+ ...
+
+ @warn_slow(timelimit=600) # warn if it takes more than 10 minutes
+ def run_calculation(tempdir, outdir):
+ ...
+
+Enjoy!
+
+
diff --git a/contrib/python/decorator/py2/.dist-info/top_level.txt b/contrib/python/decorator/py2/.dist-info/top_level.txt
new file mode 100644
index 0000000000..3fe18a4d1c
--- /dev/null
+++ b/contrib/python/decorator/py2/.dist-info/top_level.txt
@@ -0,0 +1 @@
+decorator
diff --git a/contrib/python/decorator/py2/LICENSE.txt b/contrib/python/decorator/py2/LICENSE.txt
new file mode 100644
index 0000000000..b0ade0487e
--- /dev/null
+++ b/contrib/python/decorator/py2/LICENSE.txt
@@ -0,0 +1,26 @@
+Copyright (c) 2005-2018, Michele Simionato
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are
+met:
+
+ Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ Redistributions in bytecode form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in
+ the documentation and/or other materials provided with the
+ distribution.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
+TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
+USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+DAMAGE.
diff --git a/contrib/python/decorator/py2/README.rst b/contrib/python/decorator/py2/README.rst
new file mode 100644
index 0000000000..f56161c74a
--- /dev/null
+++ b/contrib/python/decorator/py2/README.rst
@@ -0,0 +1,98 @@
+Decorators for Humans
+=====================
+
+The goal of the decorator module is to make it easy to define
+signature-preserving function decorators and decorator factories.
+It also includes an implementation of multiple dispatch and other niceties
+(please check the docs). It is released under a two-clauses
+BSD license, i.e. basically you can do whatever you want with it but I am not
+responsible.
+
+Installation
+-------------
+
+If you are lazy, just perform
+
+ ``$ pip install decorator``
+
+which will install just the module on your system.
+
+If you prefer to install the full distribution from source, including
+the documentation, clone the `GitHub repo`_ or download the tarball_, unpack it and run
+
+ ``$ pip install .``
+
+in the main directory, possibly as superuser.
+
+.. _tarball: https://pypi.org/project/decorator/#files
+.. _GitHub repo: https://github.com/micheles/decorator
+
+Testing
+--------
+
+If you have the source code installation you can run the tests with
+
+ `$ python src/tests/test.py -v`
+
+or (if you have setuptools installed)
+
+ `$ python setup.py test`
+
+Notice that you may run into trouble if in your system there
+is an older version of the decorator module; in such a case remove the
+old version. It is safe even to copy the module `decorator.py` over
+an existing one, since we kept backward-compatibility for a long time.
+
+Repository
+---------------
+
+The project is hosted on GitHub. You can look at the source here:
+
+ https://github.com/micheles/decorator
+
+Documentation
+---------------
+
+The documentation has been moved to https://github.com/micheles/decorator/blob/master/docs/documentation.md
+
+From there you can get a PDF version by simply using the print
+functionality of your browser.
+
+Here is the documentation for previous versions of the module:
+
+https://github.com/micheles/decorator/blob/4.3.2/docs/tests.documentation.rst
+https://github.com/micheles/decorator/blob/4.2.1/docs/tests.documentation.rst
+https://github.com/micheles/decorator/blob/4.1.2/docs/tests.documentation.rst
+https://github.com/micheles/decorator/blob/4.0.0/documentation.rst
+https://github.com/micheles/decorator/blob/3.4.2/documentation.rst
+
+For the impatient
+-----------------
+
+Here is an example of how to define a family of decorators tracing slow
+operations:
+
+.. code-block:: python
+
+ from decorator import decorator
+
+ @decorator
+ def warn_slow(func, timelimit=60, *args, **kw):
+ t0 = time.time()
+ result = func(*args, **kw)
+ dt = time.time() - t0
+ if dt > timelimit:
+ logging.warn('%s took %d seconds', func.__name__, dt)
+ else:
+ logging.info('%s took %d seconds', func.__name__, dt)
+ return result
+
+ @warn_slow # warn if it takes more than 1 minute
+ def preprocess_input_files(inputdir, tempdir):
+ ...
+
+ @warn_slow(timelimit=600) # warn if it takes more than 10 minutes
+ def run_calculation(tempdir, outdir):
+ ...
+
+Enjoy!
diff --git a/contrib/python/decorator/py2/decorator.py b/contrib/python/decorator/py2/decorator.py
new file mode 100644
index 0000000000..b1f8b567e9
--- /dev/null
+++ b/contrib/python/decorator/py2/decorator.py
@@ -0,0 +1,454 @@
+# ######################### LICENSE ############################ #
+
+# Copyright (c) 2005-2018, Michele Simionato
+# All rights reserved.
+
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are
+# met:
+
+# Redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer.
+# Redistributions in bytecode form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in
+# the documentation and/or other materials provided with the
+# distribution.
+
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+# HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
+# TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
+# USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+# DAMAGE.
+
+"""
+Decorator module, see http://pypi.python.org/pypi/decorator
+for the documentation.
+"""
+from __future__ import print_function
+
+import re
+import sys
+import inspect
+import operator
+import itertools
+import collections
+
+__version__ = '4.4.2'
+
+if sys.version_info >= (3,):
+ from inspect import getfullargspec
+
+ def get_init(cls):
+ return cls.__init__
+else:
+ FullArgSpec = collections.namedtuple(
+ 'FullArgSpec', 'args varargs varkw defaults '
+ 'kwonlyargs kwonlydefaults annotations')
+
+ def getfullargspec(f):
+ "A quick and dirty replacement for getfullargspec for Python 2.X"
+ return FullArgSpec._make(inspect.getargspec(f) + ([], None, {}))
+
+ def get_init(cls):
+ return cls.__init__.__func__
+
+try:
+ iscoroutinefunction = inspect.iscoroutinefunction
+except AttributeError:
+ # let's assume there are no coroutine functions in old Python
+ def iscoroutinefunction(f):
+ return False
+try:
+ from inspect import isgeneratorfunction
+except ImportError:
+ # assume no generator function in old Python versions
+ def isgeneratorfunction(caller):
+ return False
+
+
+DEF = re.compile(r'\s*def\s*([_\w][_\w\d]*)\s*\(')
+
+
+# basic functionality
+class FunctionMaker(object):
+ """
+ An object with the ability to create functions with a given signature.
+ It has attributes name, doc, module, signature, defaults, dict and
+ methods update and make.
+ """
+
+ # Atomic get-and-increment provided by the GIL
+ _compile_count = itertools.count()
+
+ # make pylint happy
+ args = varargs = varkw = defaults = kwonlyargs = kwonlydefaults = ()
+
+ def __init__(self, func=None, name=None, signature=None,
+ defaults=None, doc=None, module=None, funcdict=None):
+ self.shortsignature = signature
+ if func:
+ # func can be a class or a callable, but not an instance method
+ self.name = func.__name__
+ if self.name == '<lambda>': # small hack for lambda functions
+ self.name = '_lambda_'
+ self.doc = func.__doc__
+ self.module = func.__module__
+ if inspect.isfunction(func):
+ argspec = getfullargspec(func)
+ self.annotations = getattr(func, '__annotations__', {})
+ for a in ('args', 'varargs', 'varkw', 'defaults', 'kwonlyargs',
+ 'kwonlydefaults'):
+ setattr(self, a, getattr(argspec, a))
+ for i, arg in enumerate(self.args):
+ setattr(self, 'arg%d' % i, arg)
+ allargs = list(self.args)
+ allshortargs = list(self.args)
+ if self.varargs:
+ allargs.append('*' + self.varargs)
+ allshortargs.append('*' + self.varargs)
+ elif self.kwonlyargs:
+ allargs.append('*') # single star syntax
+ for a in self.kwonlyargs:
+ allargs.append('%s=None' % a)
+ allshortargs.append('%s=%s' % (a, a))
+ if self.varkw:
+ allargs.append('**' + self.varkw)
+ allshortargs.append('**' + self.varkw)
+ self.signature = ', '.join(allargs)
+ self.shortsignature = ', '.join(allshortargs)
+ self.dict = func.__dict__.copy()
+ # func=None happens when decorating a caller
+ if name:
+ self.name = name
+ if signature is not None:
+ self.signature = signature
+ if defaults:
+ self.defaults = defaults
+ if doc:
+ self.doc = doc
+ if module:
+ self.module = module
+ if funcdict:
+ self.dict = funcdict
+ # check existence required attributes
+ assert hasattr(self, 'name')
+ if not hasattr(self, 'signature'):
+ raise TypeError('You are decorating a non function: %s' % func)
+
+ def update(self, func, **kw):
+ "Update the signature of func with the data in self"
+ func.__name__ = self.name
+ func.__doc__ = getattr(self, 'doc', None)
+ func.__dict__ = getattr(self, 'dict', {})
+ func.__defaults__ = self.defaults
+ func.__kwdefaults__ = self.kwonlydefaults or None
+ func.__annotations__ = getattr(self, 'annotations', None)
+ try:
+ frame = sys._getframe(3)
+ except AttributeError: # for IronPython and similar implementations
+ callermodule = '?'
+ else:
+ callermodule = frame.f_globals.get('__name__', '?')
+ func.__module__ = getattr(self, 'module', callermodule)
+ func.__dict__.update(kw)
+
+ def make(self, src_templ, evaldict=None, addsource=False, **attrs):
+ "Make a new function from a given template and update the signature"
+ src = src_templ % vars(self) # expand name and signature
+ evaldict = evaldict or {}
+ mo = DEF.search(src)
+ if mo is None:
+ raise SyntaxError('not a valid function template\n%s' % src)
+ name = mo.group(1) # extract the function name
+ names = set([name] + [arg.strip(' *') for arg in
+ self.shortsignature.split(',')])
+ for n in names:
+ if n in ('_func_', '_call_'):
+ raise NameError('%s is overridden in\n%s' % (n, src))
+
+ if not src.endswith('\n'): # add a newline for old Pythons
+ src += '\n'
+
+ # Ensure each generated function has a unique filename for profilers
+ # (such as cProfile) that depend on the tuple of (<filename>,
+ # <definition line>, <function name>) being unique.
+ filename = '<decorator-gen-%d>' % next(self._compile_count)
+ try:
+ code = compile(src, filename, 'single')
+ exec(code, evaldict)
+ except Exception:
+ print('Error in generated code:', file=sys.stderr)
+ print(src, file=sys.stderr)
+ raise
+ func = evaldict[name]
+ if addsource:
+ attrs['__source__'] = src
+ self.update(func, **attrs)
+ return func
+
+ @classmethod
+ def create(cls, obj, body, evaldict, defaults=None,
+ doc=None, module=None, addsource=True, **attrs):
+ """
+ Create a function from the strings name, signature and body.
+ evaldict is the evaluation dictionary. If addsource is true an
+ attribute __source__ is added to the result. The attributes attrs
+ are added, if any.
+ """
+ if isinstance(obj, str): # "name(signature)"
+ name, rest = obj.strip().split('(', 1)
+ signature = rest[:-1] # strip a right parens
+ func = None
+ else: # a function
+ name = None
+ signature = None
+ func = obj
+ self = cls(func, name, signature, defaults, doc, module)
+ ibody = '\n'.join(' ' + line for line in body.splitlines())
+ caller = evaldict.get('_call_') # when called from `decorate`
+ if caller and iscoroutinefunction(caller):
+ body = ('async def %(name)s(%(signature)s):\n' + ibody).replace(
+ 'return', 'return await')
+ else:
+ body = 'def %(name)s(%(signature)s):\n' + ibody
+ return self.make(body, evaldict, addsource, **attrs)
+
+
+def decorate(func, caller, extras=()):
+ """
+ decorate(func, caller) decorates a function using a caller.
+ If the caller is a generator function, the resulting function
+ will be a generator function.
+ """
+ evaldict = dict(_call_=caller, _func_=func)
+ es = ''
+ for i, extra in enumerate(extras):
+ ex = '_e%d_' % i
+ evaldict[ex] = extra
+ es += ex + ', '
+
+ if '3.5' <= sys.version < '3.6':
+ # with Python 3.5 isgeneratorfunction returns True for all coroutines
+ # however we know that it is NOT possible to have a generator
+ # coroutine in python 3.5: PEP525 was not there yet
+ generatorcaller = isgeneratorfunction(
+ caller) and not iscoroutinefunction(caller)
+ else:
+ generatorcaller = isgeneratorfunction(caller)
+ if generatorcaller:
+ fun = FunctionMaker.create(
+ func, "for res in _call_(_func_, %s%%(shortsignature)s):\n"
+ " yield res" % es, evaldict, __wrapped__=func)
+ else:
+ fun = FunctionMaker.create(
+ func, "return _call_(_func_, %s%%(shortsignature)s)" % es,
+ evaldict, __wrapped__=func)
+ if hasattr(func, '__qualname__'):
+ fun.__qualname__ = func.__qualname__
+ return fun
+
+
+def decorator(caller, _func=None):
+ """decorator(caller) converts a caller function into a decorator"""
+ if _func is not None: # return a decorated function
+ # this is obsolete behavior; you should use decorate instead
+ return decorate(_func, caller)
+ # else return a decorator function
+ defaultargs, defaults = '', ()
+ if inspect.isclass(caller):
+ name = caller.__name__.lower()
+ doc = 'decorator(%s) converts functions/generators into ' \
+ 'factories of %s objects' % (caller.__name__, caller.__name__)
+ elif inspect.isfunction(caller):
+ if caller.__name__ == '<lambda>':
+ name = '_lambda_'
+ else:
+ name = caller.__name__
+ doc = caller.__doc__
+ nargs = caller.__code__.co_argcount
+ ndefs = len(caller.__defaults__ or ())
+ defaultargs = ', '.join(caller.__code__.co_varnames[nargs-ndefs:nargs])
+ if defaultargs:
+ defaultargs += ','
+ defaults = caller.__defaults__
+ else: # assume caller is an object with a __call__ method
+ name = caller.__class__.__name__.lower()
+ doc = caller.__call__.__doc__
+ evaldict = dict(_call=caller, _decorate_=decorate)
+ dec = FunctionMaker.create(
+ '%s(func, %s)' % (name, defaultargs),
+ 'if func is None: return lambda func: _decorate_(func, _call, (%s))\n'
+ 'return _decorate_(func, _call, (%s))' % (defaultargs, defaultargs),
+ evaldict, doc=doc, module=caller.__module__, __wrapped__=caller)
+ if defaults:
+ dec.__defaults__ = (None,) + defaults
+ return dec
+
+
+# ####################### contextmanager ####################### #
+
+try: # Python >= 3.2
+ from contextlib import _GeneratorContextManager
+except ImportError: # Python >= 2.5
+ from contextlib import GeneratorContextManager as _GeneratorContextManager
+
+
+class ContextManager(_GeneratorContextManager):
+ def __call__(self, func):
+ """Context manager decorator"""
+ return FunctionMaker.create(
+ func, "with _self_: return _func_(%(shortsignature)s)",
+ dict(_self_=self, _func_=func), __wrapped__=func)
+
+
+init = getfullargspec(_GeneratorContextManager.__init__)
+n_args = len(init.args)
+if n_args == 2 and not init.varargs: # (self, genobj) Python 2.7
+ def __init__(self, g, *a, **k):
+ return _GeneratorContextManager.__init__(self, g(*a, **k))
+ ContextManager.__init__ = __init__
+elif n_args == 2 and init.varargs: # (self, gen, *a, **k) Python 3.4
+ pass
+elif n_args == 4: # (self, gen, args, kwds) Python 3.5
+ def __init__(self, g, *a, **k):
+ return _GeneratorContextManager.__init__(self, g, a, k)
+ ContextManager.__init__ = __init__
+
+_contextmanager = decorator(ContextManager)
+
+
+def contextmanager(func):
+ # Enable Pylint config: contextmanager-decorators=decorator.contextmanager
+ return _contextmanager(func)
+
+
+# ############################ dispatch_on ############################ #
+
+def append(a, vancestors):
+ """
+ Append ``a`` to the list of the virtual ancestors, unless it is already
+ included.
+ """
+ add = True
+ for j, va in enumerate(vancestors):
+ if issubclass(va, a):
+ add = False
+ break
+ if issubclass(a, va):
+ vancestors[j] = a
+ add = False
+ if add:
+ vancestors.append(a)
+
+
+# inspired from simplegeneric by P.J. Eby and functools.singledispatch
+def dispatch_on(*dispatch_args):
+ """
+ Factory of decorators turning a function into a generic function
+ dispatching on the given arguments.
+ """
+ assert dispatch_args, 'No dispatch args passed'
+ dispatch_str = '(%s,)' % ', '.join(dispatch_args)
+
+ def check(arguments, wrong=operator.ne, msg=''):
+ """Make sure one passes the expected number of arguments"""
+ if wrong(len(arguments), len(dispatch_args)):
+ raise TypeError('Expected %d arguments, got %d%s' %
+ (len(dispatch_args), len(arguments), msg))
+
+ def gen_func_dec(func):
+ """Decorator turning a function into a generic function"""
+
+ # first check the dispatch arguments
+ argset = set(getfullargspec(func).args)
+ if not set(dispatch_args) <= argset:
+ raise NameError('Unknown dispatch arguments %s' % dispatch_str)
+
+ typemap = {}
+
+ def vancestors(*types):
+ """
+ Get a list of sets of virtual ancestors for the given types
+ """
+ check(types)
+ ras = [[] for _ in range(len(dispatch_args))]
+ for types_ in typemap:
+ for t, type_, ra in zip(types, types_, ras):
+ if issubclass(t, type_) and type_ not in t.mro():
+ append(type_, ra)
+ return [set(ra) for ra in ras]
+
+ def ancestors(*types):
+ """
+ Get a list of virtual MROs, one for each type
+ """
+ check(types)
+ lists = []
+ for t, vas in zip(types, vancestors(*types)):
+ n_vas = len(vas)
+ if n_vas > 1:
+ raise RuntimeError(
+ 'Ambiguous dispatch for %s: %s' % (t, vas))
+ elif n_vas == 1:
+ va, = vas
+ mro = type('t', (t, va), {}).mro()[1:]
+ else:
+ mro = t.mro()
+ lists.append(mro[:-1]) # discard t and object
+ return lists
+
+ def register(*types):
+ """
+ Decorator to register an implementation for the given types
+ """
+ check(types)
+
+ def dec(f):
+ check(getfullargspec(f).args, operator.lt, ' in ' + f.__name__)
+ typemap[types] = f
+ return f
+ return dec
+
+ def dispatch_info(*types):
+ """
+ An utility to introspect the dispatch algorithm
+ """
+ check(types)
+ lst = []
+ for anc in itertools.product(*ancestors(*types)):
+ lst.append(tuple(a.__name__ for a in anc))
+ return lst
+
+ def _dispatch(dispatch_args, *args, **kw):
+ types = tuple(type(arg) for arg in dispatch_args)
+ try: # fast path
+ f = typemap[types]
+ except KeyError:
+ pass
+ else:
+ return f(*args, **kw)
+ combinations = itertools.product(*ancestors(*types))
+ next(combinations) # the first one has been already tried
+ for types_ in combinations:
+ f = typemap.get(types_)
+ if f is not None:
+ return f(*args, **kw)
+
+ # else call the default implementation
+ return func(*args, **kw)
+
+ return FunctionMaker.create(
+ func, 'return _f_(%s, %%(shortsignature)s)' % dispatch_str,
+ dict(_f_=_dispatch), register=register, default=func,
+ typemap=typemap, vancestors=vancestors, ancestors=ancestors,
+ dispatch_info=dispatch_info, __wrapped__=func)
+
+ gen_func_dec.__name__ = 'dispatch_on' + dispatch_str
+ return gen_func_dec
diff --git a/contrib/python/decorator/py2/tests/__init__.py b/contrib/python/decorator/py2/tests/__init__.py
new file mode 100644
index 0000000000..e69de29bb2
--- /dev/null
+++ b/contrib/python/decorator/py2/tests/__init__.py
diff --git a/contrib/python/decorator/py2/tests/documentation.py b/contrib/python/decorator/py2/tests/documentation.py
new file mode 100644
index 0000000000..46a932aa77
--- /dev/null
+++ b/contrib/python/decorator/py2/tests/documentation.py
@@ -0,0 +1,1897 @@
+from __future__ import print_function
+import sys
+import threading
+import time
+import functools
+import itertools
+import collections
+try:
+ import collections.abc as c
+except ImportError:
+ c = collections
+ collections.abc = collections
+from decorator import (decorator, decorate, FunctionMaker, contextmanager,
+ dispatch_on, __version__)
+
+doc = r"""Decorators for Humans
+----------------------------------
+
+|Author | Michele Simionato|
+|---|---|
+|E-mail | michele.simionato@gmail.com|
+|Version| $VERSION ($DATE)|
+|Supports| Python 2.6, 2.7, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8|
+|Download page| http://pypi.python.org/pypi/decorator/$VERSION|
+|Installation| ``pip install decorator``|
+|License | BSD license|
+
+Introduction
+-----------------------------------------
+
+The ``decorator`` module is over ten years old, but still alive and
+kicking. It is used by several frameworks (IPython, scipy, authkit,
+pylons, pycuda, sugar, ...) and has been stable for a *long*
+time. It is your best option if you want to preserve the signature of
+decorated functions in a consistent way across Python
+releases. Version 4 is fully compatible with the past, except for
+one thing: support for Python 2.4 and 2.5 has been dropped. That
+decision made it possible to use a single code base both for Python
+2.X and Python 3.X. This is a *huge* bonus, since I could remove over
+2,000 lines of duplicated documentation/doctests. Having to maintain
+separate docs for Python 2 and Python 3 effectively stopped any
+development on the module for several years. Moreover, it is now
+trivial to distribute the module as an universal
+ [wheel](http://pythonwheels.com) since 2to3 is no more
+required. Since Python 2.5 has been released ages ago (in 2006), I felt that
+it was reasonable to drop the support for it. If you need to support
+ancient versions of Python, stick with the decorator module version
+3.4.2. The current version supports all Python releases from 2.6 up.
+
+What's New in version 4
+-----------------------
+
+- **New documentation**
+ There is now a single manual for all Python versions, so I took the
+ opportunity to overhaul the documentation and to move it to readthedocs.org.
+ Even if you are a long-time user, you may want to revisit the docs, since
+ several examples have been improved.
+
+- **Packaging improvements**
+ The code is now also available in wheel format. Integration with
+ setuptools has improved and you can run the tests with the command
+ ``python setup.py test`` too.
+
+- **Code changes**
+ A new utility function ``decorate(func, caller)`` has been added.
+ It does the same job that was performed by the older
+ ``decorator(caller, func)``. The old functionality is now deprecated
+ and no longer documented, but still available for now.
+
+- **Multiple dispatch**
+ The decorator module now includes an implementation of generic
+ functions (sometimes called "multiple dispatch functions").
+ The API is designed to mimic ``functools.singledispatch`` (added
+ in Python 3.4), but the implementation is much simpler.
+ Moreover, all decorators involved preserve the signature of the
+ decorated functions. For now, this exists mostly to demonstrate
+ the power of the module. In the future it could be enhanced/optimized.
+ In any case, it is very short and compact (less then 100 lines), so you
+ can extract it for your own use. Take it as food for thought.
+
+- **Python 3.5 coroutines**
+ From version 4.1 it is possible to decorate coroutines, i.e. functions
+ defined with the `async def` syntax, and to maintain the
+ `inspect.iscoroutinefunction` check working for the decorated function.
+
+- **Decorator factories**
+ From version 4.2 there is facility to define factories of decorators in
+ a simple way, a feature requested by the users since a long time.
+
+Usefulness of decorators
+------------------------------------------------
+
+Python decorators are an interesting example of why syntactic sugar
+matters. In principle, their introduction in Python 2.4 changed
+nothing, since they did not provide any new functionality which was not
+already present in the language. In practice, their introduction has
+significantly changed the way we structure our programs in Python. I
+believe the change is for the best, and that decorators are a great
+idea since:
+
+* decorators help reducing boilerplate code;
+* decorators help separation of concerns;
+* decorators enhance readability and maintenability;
+* decorators are explicit.
+
+Still, as of now, writing custom decorators correctly requires
+some experience and it is not as easy as it could be. For instance,
+typical implementations of decorators involve nested functions, and
+we all know that flat is better than nested.
+
+The aim of the ``decorator`` module it to simplify the usage of
+decorators for the average programmer, and to popularize decorators by
+showing various non-trivial examples. Of course, as all techniques,
+decorators can be abused (I have seen that) and you should not try to
+solve every problem with a decorator, just because you can.
+
+You may find the source code for all the examples
+discussed here in the ``documentation.py`` file, which contains
+the documentation you are reading in the form of doctests.
+
+Definitions
+------------------------------------
+
+Technically speaking, any Python object which can be called with one argument
+can be used as a decorator. However, this definition is somewhat too large
+to be really useful. It is more convenient to split the generic class of
+decorators in two subclasses:
+
+1. **signature-preserving decorators**, callable objects which accept
+ a function as input and return a function as output, *with the
+ same signature*
+
+2. **signature-changing** decorators, i.e. decorators
+ which change the signature of their input function, or decorators
+ that return non-callable objects
+
+Signature-changing decorators have their use: for instance, the
+builtin classes ``staticmethod`` and ``classmethod`` are in this
+group. They take functions and return descriptor objects which
+are neither functions, nor callables.
+
+Still, signature-preserving decorators are more common, and easier
+to reason about. In particular, they can be composed together,
+whereas other decorators generally cannot.
+
+Writing signature-preserving decorators from scratch is not that
+obvious, especially if one wants to define proper decorators that
+can accept functions with any signature. A simple example will clarify
+the issue.
+
+Statement of the problem
+------------------------------
+
+A very common use case for decorators is the memoization of functions.
+A ``memoize`` decorator works by caching
+the result of the function call in a dictionary, so that the next time
+the function is called with the same input parameters the result is retrieved
+from the cache and not recomputed.
+
+There are many implementations of ``memoize`` in
+http://www.python.org/moin/PythonDecoratorLibrary,
+but they do not preserve the signature. In recent versions of
+Python you can find a sophisticated ``lru_cache`` decorator
+in the standard library's ``functools``. Here I am just
+interested in giving an example.
+
+Consider the following simple implementation (note that it is
+generally impossible to *correctly* memoize something
+that depends on non-hashable arguments):
+
+$$memoize_uw
+
+Here I used the functools.update_wrapper_ utility, which was added
+in Python 2.5 to simplify the writing of decorators.
+(Previously, you needed to manually copy the function attributes
+``__name__``, ``__doc__``, ``__module__``, and ``__dict__``
+to the decorated function by hand).
+
+Here is an example of usage:
+
+$$f1
+
+This works insofar as the decorator accepts functions with generic signatures.
+Unfortunately, it is *not* a signature-preserving decorator, since
+``memoize_uw`` generally returns a function with a *different signature*
+from the original.
+
+Consider for instance the following case:
+
+$$f1
+
+Here, the original function takes a single argument named ``x``,
+but the decorated function takes any number of arguments and
+keyword arguments:
+
+```python
+>>> from decorator import getfullargspec
+>>> print(getfullargspec(f1))
+FullArgSpec(args=[], varargs='args', varkw='kw', defaults=None, kwonlyargs=[], kwonlydefaults=None, annotations={})
+
+```
+
+This means that introspection tools (like ``pydoc``) will give false
+information about the signature of ``f1`` -- unless you are using
+Python 3.5. This is pretty bad: ``pydoc`` will tell you that the
+function accepts the generic signature ``*args, **kw``, but
+calling the function with more than one argument raises an error:
+
+```python
+>>> f1(0, 1) # doctest: +IGNORE_EXCEPTION_DETAIL
+Traceback (most recent call last):
+ ...
+TypeError: f1() takes exactly 1 positional argument (2 given)
+
+```
+
+Notice that ``inspect.getfullargspec``
+will give the wrong signature, even in the latest Python, i.e. version 3.6
+at the time of writing.
+
+The solution
+-----------------------------------------
+
+The solution is to provide a generic factory of generators, which
+hides the complexity of making signature-preserving decorators
+from the application programmer. The ``decorate`` function in
+the ``decorator`` module is such a factory:
+
+```python
+>>> from decorator import decorate
+
+```
+
+``decorate`` takes two arguments:
+
+1. a caller function describing the functionality of the decorator, and
+
+2. a function to be decorated.
+
+The caller function must have signature ``(f, *args, **kw)``, and it
+must call the original function ``f`` with arguments ``args`` and ``kw``,
+implementing the wanted capability (in this case, memoization):
+
+$$_memoize
+
+Now, you can define your decorator as follows:
+
+$$memoize
+
+The difference from the nested function approach of ``memoize_uw``
+is that the decorator module forces you to lift the inner function
+to the outer level. Moreover, you are forced to explicitly pass the
+function you want to decorate; there are no closures.
+
+Here is a test of usage:
+
+```python
+>>> @memoize
+... def heavy_computation():
+... time.sleep(2)
+... return "done"
+
+>>> print(heavy_computation()) # the first time it will take 2 seconds
+done
+
+>>> print(heavy_computation()) # the second time it will be instantaneous
+done
+
+```
+
+The signature of ``heavy_computation`` is the one you would expect:
+
+```python
+>>> print(getfullargspec(heavy_computation))
+FullArgSpec(args=[], varargs=None, varkw=None, defaults=None, kwonlyargs=[], kwonlydefaults=None, annotations={})
+
+```
+
+A ``trace`` decorator
+------------------------------------------------------
+
+Here is an example of how to define a simple ``trace`` decorator,
+which prints a message whenever the traced function is called:
+
+$$_trace
+
+$$trace
+
+Here is an example of usage:
+
+```python
+>>> @trace
+... def f1(x):
+... pass
+
+```
+
+It is immediate to verify that ``f1`` works...
+
+```python
+>>> f1(0)
+calling f1 with args (0,), {}
+
+```
+
+...and it that it has the correct signature:
+
+```python
+>>> print(getfullargspec(f1))
+FullArgSpec(args=['x'], varargs=None, varkw=None, defaults=None, kwonlyargs=[], kwonlydefaults=None, annotations={})
+
+```
+
+The decorator works with functions of any signature:
+
+```python
+>>> @trace
+... def f(x, y=1, z=2, *args, **kw):
+... pass
+
+>>> f(0, 3)
+calling f with args (0, 3, 2), {}
+
+>>> print(getfullargspec(f))
+FullArgSpec(args=['x', 'y', 'z'], varargs='args', varkw='kw', defaults=(1, 2), kwonlyargs=[], kwonlydefaults=None, annotations={})
+
+```
+$FUNCTION_ANNOTATIONS
+
+``decorator.decorator``
+---------------------------------------------
+
+It can become tedious to write a caller function (like the above
+``_trace`` example) and then a trivial wrapper
+(``def trace(f): return decorate(f, _trace)``) every time.
+Not to worry! The ``decorator`` module provides an easy shortcut
+to convert the caller function into a signature-preserving decorator.
+
+It is the ``decorator`` function:
+
+```python
+>>> from decorator import decorator
+>>> print(decorator.__doc__)
+decorator(caller) converts a caller function into a decorator
+
+```
+The ``decorator`` function can be used as a signature-changing
+decorator, just like ``classmethod`` and ``staticmethod``.
+But ``classmethod`` and ``staticmethod`` return generic
+objects which are not callable. Instead, ``decorator`` returns
+signature-preserving decorators (i.e. functions with a single argument).
+
+For instance, you can write:
+
+```python
+>>> @decorator
+... def trace(f, *args, **kw):
+... kwstr = ', '.join('%r: %r' % (k, kw[k]) for k in sorted(kw))
+... print("calling %s with args %s, {%s}" % (f.__name__, args, kwstr))
+... return f(*args, **kw)
+
+```
+
+And ``trace`` is now a decorator!
+
+```python
+>>> trace # doctest: +ELLIPSIS
+<function trace at 0x...>
+
+```
+
+Here is an example of usage:
+
+```python
+>>> @trace
+... def func(): pass
+
+>>> func()
+calling func with args (), {}
+
+```
+
+The `decorator` function can also be used to define factories of decorators,
+i.e. functions returning decorators. In general you can just write something
+like this:
+
+```python
+def decfactory(param1, param2, ...):
+ def caller(f, *args, **kw):
+ return somefunc(f, param1, param2, .., *args, **kw)
+ return decorator(caller)
+```
+
+This is fully general but requires an additional level of nesting. For this
+reason since version 4.2 there is a facility to build
+decorator factories by using a single caller with default arguments i.e.
+writing something like this:
+
+```python
+def caller(f, param1=default1, param2=default2, ..., *args, **kw):
+ return somefunc(f, param1, param2, *args, **kw)
+decfactory = decorator(caller)
+```
+
+Notice that this simplified approach *only works with default arguments*,
+i.e. `param1`, `param2` etc must have known defaults. Thanks to this
+restriction, there exists an unique default decorator, i.e. the member
+of the family which uses the default values for all parameters. Such
+decorator can be written as ``decfactory()`` with no parameters specified;
+moreover, as a shortcut, it is also possible to elide the parenthesis,
+a feature much requested by the users. For years I have been opposite
+to this feature request, since having explicit parenthesis to me is more clear
+and less magic; however once this feature entered in decorators of
+the Python standard library (I am referring to the [dataclass decorator](
+https://www.python.org/dev/peps/pep-0557/)) I finally gave up.
+
+The example below will show how it works in practice.
+
+Decorator factories
+-------------------------------------------
+
+Sometimes one has to deal with blocking resources, such as ``stdin``.
+Sometimes it is better to receive a "busy" message than just blocking
+everything.
+This can be accomplished with a suitable family of decorators (decorator
+factory), parameterize by a string, the busy message:
+
+$$blocking
+
+Functions decorated with ``blocking`` will return a busy message if
+the resource is unavailable, and the intended result if the resource is
+available. For instance:
+
+```python
+>>> @blocking(msg="Please wait ...")
+... def read_data():
+... time.sleep(3) # simulate a blocking resource
+... return "some data"
+
+>>> print(read_data()) # data is not available yet
+Please wait ...
+
+>>> time.sleep(1)
+>>> print(read_data()) # data is not available yet
+Please wait ...
+
+>>> time.sleep(1)
+>>> print(read_data()) # data is not available yet
+Please wait ...
+
+>>> time.sleep(1.1) # after 3.1 seconds, data is available
+>>> print(read_data())
+some data
+
+```
+
+Decorator factories are most useful to framework builders. Here is an example
+that gives an idea of how you could manage permissions in a framework:
+
+$$Action
+
+where ``restricted`` is a decorator factory defined as follows
+
+$$restricted
+
+Notice that if you forget to use the keyword argument notation, i.e. if you
+write ``restricted(User)`` instead of ``restricted(user_class=User)`` you
+will get an error
+
+```python
+TypeError: You are decorating a non function: <class '__main__.User'>
+
+```
+
+Be careful!
+
+``decorator(cls)``
+--------------------------------------------
+
+The ``decorator`` facility can also produce a decorator starting
+from a class with the signature of a caller. In such a case the
+produced generator is able to convert functions into factories
+to create instances of that class.
+
+As an example, here is a decorator which can convert a
+blocking function into an asynchronous function. When
+the function is called, it is executed in a separate thread.
+
+(This is similar to the approach used in the ``concurrent.futures`` package.
+But I don't recommend that you implement futures this way; this is just an
+example.)
+
+$$Future
+
+The decorated function returns a ``Future`` object. It has a ``.result()``
+method which blocks until the underlying thread finishes and returns
+the final result.
+
+Here is the minimalistic usage:
+
+```python
+>>> @decorator(Future)
+... def long_running(x):
+... time.sleep(.5)
+... return x
+
+>>> fut1 = long_running(1)
+>>> fut2 = long_running(2)
+>>> fut1.result() + fut2.result()
+3
+
+```
+
+contextmanager
+-------------------------------------
+
+Python's standard library has the ``contextmanager`` decorator,
+which converts a generator function into a ``GeneratorContextManager``
+factory. For instance, if you write this...
+
+```python
+>>> from contextlib import contextmanager
+>>> @contextmanager
+... def before_after(before, after):
+... print(before)
+... yield
+... print(after)
+
+```
+
+...then ``before_after`` is a factory function that returns
+``GeneratorContextManager`` objects, which provide the
+use of the ``with`` statement:
+
+```python
+>>> with before_after('BEFORE', 'AFTER'):
+... print('hello')
+BEFORE
+hello
+AFTER
+
+```
+
+Basically, it is as if the content of the ``with`` block was executed
+in the place of the ``yield`` expression in the generator function.
+
+In Python 3.2, ``GeneratorContextManager`` objects were enhanced with
+a ``__call__`` method, so that they can be used as decorators, like so:
+
+```python
+>>> ba = before_after('BEFORE', 'AFTER')
+>>>
+>>> @ba # doctest: +SKIP
+... def hello():
+... print('hello')
+...
+>>> hello() # doctest: +SKIP
+BEFORE
+hello
+AFTER
+
+```
+
+The ``ba`` decorator basically inserts a ``with ba:`` block
+inside the function.
+
+However, there are two issues:
+
+1. ``GeneratorContextManager`` objects are only callable in Python 3.2,
+ so the previous example breaks in older versions of Python.
+ (You can solve this by installing ``contextlib2``, which backports
+ the Python 3 functionality to Python 2.)
+
+2. ``GeneratorContextManager`` objects do not preserve the signature of
+ the decorated functions. The decorated ``hello`` function above will
+ have the generic signature ``hello(*args, **kwargs)``, but fails if
+ called with more than zero arguments.
+
+For these reasons, the `decorator` module, starting from release 3.4, offers a
+``decorator.contextmanager`` decorator that solves both problems,
+*and* works in all supported Python versions. Its usage is identical,
+and factories decorated with ``decorator.contextmanager`` will return
+instances of ``ContextManager``, a subclass of the standard library's
+``contextlib.GeneratorContextManager`` class. The subclass includes
+an improved ``__call__`` method, which acts as a signature-preserving
+decorator.
+
+The ``FunctionMaker`` class
+---------------------------------------------------------------
+
+You may wonder how the functionality of the ``decorator`` module
+is implemented. The basic building block is
+a ``FunctionMaker`` class. It generates on-the-fly functions
+with a given name and signature from a function template
+passed as a string.
+
+If you're just writing ordinary decorators, then you probably won't
+need to use ``FunctionMaker`` directly. But in some circumstances, it
+can be handy. You will see an example shortly--in
+the implementation of a cool decorator utility (``decorator_apply``).
+
+``FunctionMaker`` provides the ``.create`` classmethod, which
+accepts the *name*, *signature*, and *body* of the function
+you want to generate, as well as the execution environment
+where the function is generated by ``exec``.
+
+Here's an example:
+
+```python
+>>> def f(*args, **kw): # a function with a generic signature
+... print(args, kw)
+
+>>> f1 = FunctionMaker.create('f1(a, b)', 'f(a, b)', dict(f=f))
+>>> f1(1,2)
+(1, 2) {}
+
+```
+
+It is important to notice that the function body is interpolated
+before being executed; **be careful** with the ``%`` sign!
+
+``FunctionMaker.create`` also accepts keyword arguments.
+The keyword arguments are attached to the generated function.
+This is useful if you want to set some function attributes
+(e.g., the docstring ``__doc__``).
+
+For debugging/introspection purposes, it may be useful to see
+the source code of the generated function. To do this, just
+pass ``addsource=True``, and the generated function will get
+a ``__source__`` attribute:
+
+```python
+>>> f1 = FunctionMaker.create(
+... 'f1(a, b)', 'f(a, b)', dict(f=f), addsource=True)
+>>> print(f1.__source__)
+def f1(a, b):
+ f(a, b)
+<BLANKLINE>
+
+```
+
+The first argument to ``FunctionMaker.create`` can be a string (as above),
+or a function. This is the most common usage, since you typically decorate
+pre-existing functions.
+
+If you're writing a framework, however, you may want to use
+``FunctionMaker.create`` directly, rather than ``decorator``, because it gives
+you direct access to the body of the generated function.
+
+For instance, suppose you want to instrument the ``__init__`` methods of a
+set of classes, by preserving their signature.
+(This use case is not made up. This is done by SQAlchemy, and other frameworks,
+too.)
+Here is what happens:
+
+- If first argument of ``FunctionMaker.create`` is a function,
+ an instance of ``FunctionMaker`` is created with the attributes
+ ``args``, ``varargs``, ``keywords``, and ``defaults``.
+ (These mirror the return values of the standard library's
+ ``inspect.getfullargspec``.)
+
+- For each item in ``args`` (a list of strings of the names of all required
+ arguments), an attribute ``arg0``, ``arg1``, ..., ``argN`` is also generated.
+
+- Finally, there is a ``signature`` attribute, which is a string with the
+ signature of the original function.
+
+**NOTE:** You should not pass signature strings with default arguments
+(e.g., something like ``'f1(a, b=None)'``). Just pass ``'f1(a, b)'``,
+followed by a tuple of defaults:
+
+```python
+>>> f1 = FunctionMaker.create(
+... 'f1(a, b)', 'f(a, b)', dict(f=f), addsource=True, defaults=(None,))
+>>> print(getfullargspec(f1))
+FullArgSpec(args=['a', 'b'], varargs=None, varkw=None, defaults=(None,), kwonlyargs=[], kwonlydefaults=None, annotations={})
+
+```
+
+Getting the source code
+---------------------------------------------------
+
+Internally, ``FunctionMaker.create`` uses ``exec`` to generate the
+decorated function. Therefore ``inspect.getsource`` will not work for
+decorated functions. In IPython, this means that the usual ``??`` trick
+will give you the (right on the spot) message ``Dynamically generated
+function. No source code available``.
+
+In the past, I considered this acceptable, since ``inspect.getsource``
+does not really work with "regular" decorators. In those cases,
+``inspect.getsource`` gives you the wrapper source code, which is probably
+not what you want:
+
+$$identity_dec
+$$example
+
+```python
+>>> import inspect
+>>> print(inspect.getsource(example))
+ def wrapper(*args, **kw):
+ return func(*args, **kw)
+<BLANKLINE>
+
+```
+
+(See bug report [1764286](http://bugs.python.org/issue1764286)
+for an explanation of what is happening).
+Unfortunately the bug still exists in all versions of Python < 3.5.
+
+However, there is a workaround. The decorated function has the ``__wrapped__``
+attribute, pointing to the original function. The simplest way to get the
+source code is to call ``inspect.getsource`` on the undecorated function:
+
+```python
+>>> print(inspect.getsource(factorial.__wrapped__))
+@tail_recursive
+def factorial(n, acc=1):
+ "The good old factorial"
+ if n == 0:
+ return acc
+ return factorial(n-1, n*acc)
+<BLANKLINE>
+
+```
+
+Dealing with third-party decorators
+-----------------------------------------------------------------
+
+Sometimes on the net you find some cool decorator that you would
+like to include in your code. However, more often than not, the cool
+decorator is not signature-preserving. What you need is an easy way to
+upgrade third party decorators to signature-preserving decorators...
+*without* having to rewrite them in terms of ``decorator``.
+
+You can use a ``FunctionMaker`` to implement that functionality as follows:
+
+$$decorator_apply
+
+``decorator_apply`` sets the generated function's ``__wrapped__`` attribute
+to the original function, so you can get the right source code.
+If you are using a Python later than 3.2, you should also set the
+``__qualname__`` attribute to preserve the qualified name of the original
+function.
+
+Notice that I am not providing this functionality in the ``decorator``
+module directly, since I think it is best to rewrite the decorator instead
+of adding another level of indirection. However, practicality
+beats purity, so you can add ``decorator_apply`` to your toolbox and
+use it if you need to.
+
+To give a good example for ``decorator_apply``, I will show a pretty slick
+decorator that converts a tail-recursive function into an iterative function.
+I have shamelessly stolen the core concept from Kay Schluehr's recipe
+in the Python Cookbook,
+http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/496691.
+
+$$TailRecursive
+
+Here the decorator is implemented as a class returning callable
+objects.
+
+$$tail_recursive
+
+Here is how you apply the upgraded decorator to the good old factorial:
+
+$$factorial
+
+```python
+>>> print(factorial(4))
+24
+
+```
+
+This decorator is pretty impressive, and should give you some food for
+thought! ;)
+
+Notice that there is no recursion limit now; you can easily compute
+``factorial(1001)`` (or larger) without filling the stack frame.
+
+Notice also that the decorator will *not* work on functions which
+are not tail recursive, such as the following:
+
+$$fact
+
+**Reminder:** A function is *tail recursive* if it does either of the
+following:
+
+- returns a value without making a recursive call; or,
+- returns directly the result of a recursive call.
+
+Python 3.5 coroutines
+-----------------------
+
+I am personally not using Python 3.5 coroutines yet, because at work we are
+still maintaining compatibility with Python 2.7. However, some users requested
+support for coroutines and since version 4.1 the decorator module has it.
+You should consider the support experimental and kindly report issues if
+you find any.
+
+Here I will give a single example of usage. Suppose you want to log the moment
+a coroutine starts and the moment it stops for debugging purposes. You could
+write code like the following:
+
+```python
+import time
+import logging
+from asyncio import get_event_loop, sleep, wait
+from decorator import decorator
+
+ @decorator
+async def log_start_stop(coro, *args, **kwargs):
+ logging.info('Starting %s%s', coro.__name__, args)
+ t0 = time.time()
+ await coro(*args, **kwargs)
+ dt = time.time() - t0
+ logging.info('Ending %s%s after %d seconds', coro.__name__, args, dt)
+
+@log_start_stop
+async def make_task(n):
+ for i in range(n):
+ await sleep(1)
+
+if __name__ == '__main__':
+ logging.basicConfig(level=logging.INFO)
+ tasks = [make_task(3), make_task(2), make_task(1)]
+ get_event_loop().run_until_complete(wait(tasks))
+```
+
+and you will get an output like this:
+
+```bash
+INFO:root:Starting make_task(1,)
+INFO:root:Starting make_task(3,)
+INFO:root:Starting make_task(2,)
+INFO:root:Ending make_task(1,) after 1 seconds
+INFO:root:Ending make_task(2,) after 2 seconds
+INFO:root:Ending make_task(3,) after 3 seconds
+```
+
+This may be handy if you have trouble understanding what it going on
+with a particularly complex chain of coroutines. With a single line you
+can decorate the troubling coroutine function, understand what happens, fix the
+issue and then remove the decorator (or keep it if continuous monitoring
+of the coroutines makes sense). Notice that
+``inspect.iscoroutinefunction(make_task)``
+will return the right answer (i.e. ``True``).
+
+It is also possible to define decorators converting coroutine functions
+into regular functions, such as the following:
+
+```python
+@decorator
+def coro_to_func(coro, *args, **kw):
+ "Convert a coroutine into a function"
+ return get_event_loop().run_until_complete(coro(*args, **kw))
+```
+
+Notice the diffence: the caller in ``log_start_stop`` was a coroutine
+function and the associate decorator was converting coroutines->coroutines;
+the caller in ``coro_to_func`` is a regular function and converts
+coroutines -> functions.
+
+Multiple dispatch
+-------------------------------------------
+
+There has been talk of implementing multiple dispatch functions
+(i.e. "generic functions") in Python for over ten years. Last year,
+something concrete was done for the first time. As of Python 3.4,
+we have the decorator ``functools.singledispatch`` to implement generic
+functions!
+
+As its name implies, it is limited to *single dispatch*; in other words,
+it is able to dispatch on the first argument of the function only.
+
+The ``decorator`` module provides the decorator factory ``dispatch_on``,
+which can be used to implement generic functions dispatching on *any* argument.
+Moreover, it can manage dispatching on more than one argument.
+(And, of course, it is signature-preserving.)
+
+Here is a concrete example (from a real-life use case) where it is desiderable
+to dispatch on the second argument.
+
+Suppose you have an ``XMLWriter`` class, which is instantiated
+with some configuration parameters, and has the ``.write`` method which
+serializes objects to XML:
+
+$$XMLWriter
+
+Here, you want to dispatch on the *second* argument; the first is already
+taken by ``self``. The ``dispatch_on`` decorator factory allows you to specify
+the dispatch argument simply by passing its name as a string. (Note
+that if you misspell the name you will get an error.)
+
+The decorated function `write` is turned into a generic function (
+`write` is a function at the idea it is decorated; it will be turned
+into a method later, at class instantiation time),
+and it is called if there are no more specialized implementations.
+
+Usually, default functions should raise a ``NotImplementedError``, thus
+forcing people to register some implementation.
+You can perform the registration with a decorator:
+
+$$writefloat
+
+Now ``XMLWriter`` can serialize floats:
+
+```python
+>>> writer = XMLWriter()
+>>> writer.write(2.3)
+'<float>2.3</float>'
+
+```
+
+I could give a down-to-earth example of situations in which it is desiderable
+to dispatch on more than one argument--for instance, I once implemented
+a database-access library where the first dispatching argument was the
+the database driver, and the second was the database record--but here
+I will follow tradition, and show the time-honored Rock-Paper-Scissors example:
+
+$$Rock
+$$Paper
+$$Scissors
+
+I have added an ordinal to the Rock-Paper-Scissors classes to simplify
+the implementation. The idea is to define a generic function (``win(a,
+b)``) of two arguments corresponding to the *moves* of the first and
+second players. The *moves* are instances of the classes
+Rock, Paper, and Scissors:
+
+- Paper wins over Rock
+- Scissors wins over Paper
+- Rock wins over Scissors
+
+The function will return +1 for a win, -1 for a loss, and 0 for parity.
+There are 9 combinations, but combinations with the same ordinal
+(i.e. the same class) return 0. Moreover, by exchanging the order of the
+arguments, the sign of the result changes. Therefore, it is sufficient to
+directly specify only 3 implementations:
+
+$$win
+$$winRockPaper
+$$winPaperScissors
+$$winRockScissors
+
+Here is the result:
+
+```python
+>>> win(Paper(), Rock())
+1
+>>> win(Scissors(), Paper())
+1
+>>> win(Rock(), Scissors())
+1
+>>> win(Paper(), Paper())
+0
+>>> win(Rock(), Rock())
+0
+>>> win(Scissors(), Scissors())
+0
+>>> win(Rock(), Paper())
+-1
+>>> win(Paper(), Scissors())
+-1
+>>> win(Scissors(), Rock())
+-1
+
+```
+
+The point of generic functions is that they play well with subclassing.
+For instance, suppose we define a ``StrongRock``, which does not lose against
+Paper:
+
+$$StrongRock
+$$winStrongRockPaper
+
+Then you do not need to define other implementations; they are
+inherited from the parent:
+
+```python
+>>> win(StrongRock(), Scissors())
+1
+
+```
+
+You can introspect the precedence used by the dispath algorithm by
+calling ``.dispatch_info(*types)``:
+
+```python
+>>> win.dispatch_info(StrongRock, Scissors)
+[('StrongRock', 'Scissors'), ('Rock', 'Scissors')]
+
+```
+
+Since there is no direct implementation for (``StrongRock``, ``Scissors``),
+the dispatcher will look at the implementation for (``Rock``, ``Scissors``)
+which is available. Internally, the algorithm is doing a cross
+product of the class precedence lists (or *Method Resolution Orders*,
+[MRO](http://www.python.org/2.3/mro.html) for short) of ``StrongRock``
+ and ``Scissors``, respectively.
+
+Generic functions and virtual ancestors
+-------------------------------------------------
+
+In Python, generic functions are complicated by the existence of
+"virtual ancestors": superclasses which are not in the class hierarchy.
+
+Consider this class:
+
+$$WithLength
+
+This class defines a ``__len__`` method, and is therefore
+considered to be a subclass of the abstract base class
+``collections.abc.Sized`` (``collections.Sized`` on Python 2):
+
+```python
+>>> issubclass(WithLength, collections.abc.Sized)
+True
+
+```
+
+However, ``collections.abc.Sized`` is not in the MRO_ of ``WithLength``; it
+is not a true ancestor. Any implementation of generic functions (even
+with single dispatch) must go through some contorsion to take into
+account the virtual ancestors.
+
+In particular, if we define a generic function...
+
+$$get_length
+
+...implemented on all classes with a length...
+
+$$get_length_sized
+
+...then ``get_length`` must be defined on ``WithLength`` instances...
+
+```python
+>>> get_length(WithLength())
+0
+
+```
+
+...even if ``collections.abc.Sized`` is not a true ancestor of ``WithLength``.
+
+Of course, this is a contrived example--you could just use the
+builtin ``len``--but you should get the idea.
+
+Since in Python it is possible to consider any instance of ``ABCMeta``
+as a virtual ancestor of any other class (it is enough to register it
+as ``ancestor.register(cls)``), any implementation of generic functions
+must be aware of the registration mechanism.
+
+For example, suppose you are using a third-party set-like class, like
+the following:
+
+$$SomeSet
+
+Here, the author of ``SomeSet`` made a mistake by inheriting from
+``collections.abc.Sized`` (instead of ``collections.abc.Set``).
+
+This is not a problem. You can register *a posteriori*
+``collections.abc.Set`` as a virtual ancestor of ``SomeSet``:
+
+```python
+>>> _ = collections.abc.Set.register(SomeSet)
+>>> issubclass(SomeSet, collections.abc.Set)
+True
+
+```
+
+Now, let's define an implementation of ``get_length`` specific to set:
+
+$$get_length_set
+
+The current implementation (and ``functools.singledispatch`` too)
+is able to discern that a ``Set`` is a ``Sized`` object, by looking at
+the class registry, so it uses the more specific implementation for ``Set``:
+
+```python
+>>> get_length(SomeSet()) # NB: the implementation for Sized would give 0
+1
+
+```
+
+Sometimes it is not clear how to dispatch. For instance, consider a
+class ``C`` registered both as ``collections.abc.Iterable`` and
+``collections.abc.Sized``, and defines a generic function ``g`` with
+implementations for both ``collections.abc.Iterable`` *and*
+``collections.abc.Sized``:
+
+$$singledispatch_example1
+
+It is impossible to decide which implementation to use, since the ancestors
+are independent. The following function will raise a ``RuntimeError``
+when called. This is consistent with the "refuse the temptation to guess"
+philosophy. ``functools.singledispatch`` would raise a similar error.
+
+It would be easy to rely on the order of registration to decide the
+precedence order. This is reasonable, but also fragile:
+
+- if, during some refactoring, you change the registration order by mistake,
+ a different implementation could be taken;
+- if implementations of the generic functions are distributed across modules,
+ and you change the import order, a different implementation could be taken.
+
+So the ``decorator`` module prefers to raise an error in the face of ambiguity.
+This is the same approach taken by the standard library.
+
+However, it should be noted that the *dispatch algorithm* used by the decorator
+module is different from the one used by the standard library, so in certain
+cases you will get different answers. The difference is that
+``functools.singledispatch`` tries to insert the virtual ancestors *before* the
+base classes, whereas ``decorator.dispatch_on`` tries to insert them *after*
+the base classes.
+
+Here's an example that shows the difference:
+
+$$singledispatch_example2
+
+If you play with this example and replace the ``singledispatch`` definition
+with ``functools.singledispatch``, the assertion will break: ``g`` will return
+``"container"`` instead of ``"s"``, because ``functools.singledispatch``
+will insert the ``Container`` class right before ``S``.
+
+Notice that here I am not making any bold claim such as "the standard
+library algorithm is wrong and my algorithm is right" or viceversa. It
+just point out that there are some subtle differences. The only way to
+understand what is really happening here is to scratch your head by
+looking at the implementations. I will just notice that
+``.dispatch_info`` is quite essential to see the class precedence
+list used by algorithm:
+
+```python
+>>> g, V = singledispatch_example2()
+>>> g.dispatch_info(V)
+[('V',), ('Sized',), ('S',), ('Container',)]
+
+```
+
+The current implementation does not implement any kind of cooperation
+between implementations. In other words, nothing is akin either to
+call-next-method in Lisp, or to ``super`` in Python.
+
+Finally, let me notice that the decorator module implementation does
+not use any cache, whereas the ``singledispatch`` implementation does.
+
+Caveats and limitations
+-------------------------------------------
+
+One thing you should be aware of, is the performance penalty of decorators.
+The worse case is shown by the following example:
+
+```bash
+ $ cat performance.sh
+ python3 -m timeit -s "
+ from decorator import decorator
+
+ @decorator
+ def do_nothing(func, *args, **kw):
+ return func(*args, **kw)
+
+ @do_nothing
+ def f():
+ pass
+ " "f()"
+
+ python3 -m timeit -s "
+ def f():
+ pass
+ " "f()"
+
+```
+On my laptop, using the ``do_nothing`` decorator instead of the
+plain function is five times slower:
+
+```bash
+ $ bash performance.sh
+ 1000000 loops, best of 3: 1.39 usec per loop
+ 1000000 loops, best of 3: 0.278 usec per loop
+```
+Of course, a real life function probably does something more useful
+than the function ``f`` here, so the real life performance penalty
+*could* be negligible. As always, the only way to know if there is a
+penalty in your specific use case is to measure it.
+
+More importantly, you should be aware that decorators will make your
+tracebacks longer and more difficult to understand.
+
+Consider this example:
+
+```python
+>>> @trace
+... def f():
+... 1/0
+
+```
+
+Calling ``f()`` gives you a ``ZeroDivisionError``.
+But since the function is decorated, the traceback is longer:
+
+```python
+>>> f() # doctest: +ELLIPSIS
+Traceback (most recent call last):
+ ...
+ File "<string>", line 2, in f
+ File "<doctest __main__[22]>", line 4, in trace
+ return f(*args, **kw)
+ File "<doctest __main__[51]>", line 3, in f
+ 1/0
+ZeroDivisionError: ...
+
+```
+
+You see here the inner call to the decorator ``trace``, which calls
+``f(*args, **kw)``, and a reference to ``File "<string>", line 2, in f``.
+
+This latter reference is due to the fact that, internally, the decorator
+module uses ``exec`` to generate the decorated function. Notice that
+``exec`` is *not* responsible for the performance penalty, since is the
+called *only once* (at function decoration time); it is *not* called
+each time the decorated function is called.
+
+Presently, there is no clean way to avoid ``exec``. A clean solution
+would require changing the CPython implementation, by
+adding a hook to functions (to allow changing their signature directly).
+
+Even in Python 3.5, it is impossible to change the
+function signature directly. Thus, the ``decorator`` module is
+still useful! As a matter of fact, this is the main reason why I still
+maintain the module and release new versions.
+
+It should be noted that in Python 3.5, a *lot* of improvements have
+been made: you can decorate a function with
+``func_tools.update_wrapper``, and ``pydoc`` will see the correct
+signature. Unfortunately, the function will still have an incorrect
+signature internally, as you can see by using
+``inspect.getfullargspec``; so, all documentation tools using
+``inspect.getfullargspec`` - which has been rightly deprecated -
+will see the wrong signature.
+
+In the present implementation, decorators generated by ``decorator``
+can only be used on user-defined Python functions or methods.
+They cannot be used on generic callable objects or built-in functions,
+due to limitations of the standard library's ``inspect`` module, especially
+for Python 2. In Python 3.5, many such limitations have been removed, but
+I still think that it is cleaner and safer to decorate only functions and
+coroutines. If you want to decorate things like classmethods/staticmethods
+and general callables - which I will never support in the decorator module -
+I suggest you to look at the [wrapt](https://wrapt.readthedocs.io/en/latest/)
+project by Graeme Dumpleton.
+
+There is a strange quirk when decorating functions with keyword
+arguments, if one of the arguments has the same name used in the
+caller function for the first argument. The quirk was reported by
+David Goldstein.
+
+Here is an example where it is manifest:
+
+```python
+>>> @memoize
+... def getkeys(**kw):
+... return kw.keys()
+
+>>> getkeys(func='a') # doctest: +ELLIPSIS
+Traceback (most recent call last):
+ ...
+TypeError: _memoize() got multiple values for ... 'func'
+
+```
+
+The error message looks really strange... until you realize that
+the caller function `_memoize` uses `func` as first argument,
+so there is a confusion between the positional argument and the
+keywork arguments.
+
+The solution is to change the name of the first argument in `_memoize`,
+or to change the implementation like so:
+
+```python
+
+def _memoize(*all_args, **kw):
+ func = all_args[0]
+ args = all_args[1:]
+ if kw: # frozenset is used to ensure hashability
+ key = args, frozenset(kw.items())
+ else:
+ key = args
+ cache = func.cache # attribute added by memoize
+ if key not in cache:
+ cache[key] = func(*args, **kw)
+ return cache[key]
+```
+
+This avoids the need to name the first argument, so the problem
+simply disappears. This is a technique that you should keep in mind
+when writing decorators for functions with keyword arguments. Also,
+notice that lately I have come to believe that decorating functions with
+keyword arguments is not such a good idea, and you may want not to do
+that.
+
+On a similar note, there is a restriction on argument names. For instance,
+if you name an argument ``_call_`` or ``_func_``, you will get a ``NameError``:
+
+```python
+>>> @trace
+... def f(_func_): print(f)
+...
+Traceback (most recent call last):
+ ...
+NameError: _func_ is overridden in
+def f(_func_):
+ return _call_(_func_, _func_)
+
+```
+
+Finally, the implementation is such that the decorated function makes
+a (shallow) copy of the original function dictionary:
+
+```python
+>>> def f(): pass # the original function
+>>> f.attr1 = "something" # setting an attribute
+>>> f.attr2 = "something else" # setting another attribute
+
+>>> traced_f = trace(f) # the decorated function
+
+>>> traced_f.attr1
+'something'
+>>> traced_f.attr2 = "something different" # setting attr
+>>> f.attr2 # the original attribute did not change
+'something else'
+
+```
+
+LICENSE (2-clause BSD)
+---------------------------------------------
+
+Copyright (c) 2005-2020, Michele Simionato
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are
+met:
+
+ Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ Redistributions in bytecode form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in
+ the documentation and/or other materials provided with the
+ distribution.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
+TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
+USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+DAMAGE.
+
+If you use this software and you are happy with it, consider sending me a
+note, just to gratify my ego. On the other hand, if you use this software and
+you are unhappy with it, send me a patch!
+"""
+
+function_annotations = """Function annotations
+---------------------------------------------
+
+Python 3 introduced the concept of [function annotations](
+http://www.python.org/dev/peps/pep-3107/): the ability
+to annotate the signature of a function with additional information,
+stored in a dictionary named ``__annotations__``. The ``decorator`` module
+(starting from release 3.3) will understand and preserve these annotations.
+
+Here is an example:
+
+```python
+>>> @trace
+... def f(x: 'the first argument', y: 'default argument'=1, z=2,
+... *args: 'varargs', **kw: 'kwargs'):
+... pass
+
+```
+
+In order to introspect functions with annotations, one needs the
+utility ``inspect.getfullargspec`` (introduced in Python 3, then
+deprecated in Python 3.5, then undeprecated in Python 3.6):
+
+```python
+>>> from inspect import getfullargspec
+>>> argspec = getfullargspec(f)
+>>> argspec.args
+['x', 'y', 'z']
+>>> argspec.varargs
+'args'
+>>> argspec.varkw
+'kw'
+>>> argspec.defaults
+(1, 2)
+>>> argspec.kwonlyargs
+[]
+>>> argspec.kwonlydefaults
+
+```
+
+You can check that the ``__annotations__`` dictionary is preserved:
+
+```python
+>>> f.__annotations__ is f.__wrapped__.__annotations__
+True
+
+```
+
+Here ``f.__wrapped__`` is the original undecorated function.
+This attribute exists for consistency with the behavior of
+``functools.update_wrapper``.
+
+Another attribute copied from the original function is ``__qualname__``,
+the qualified name. This attribute was introduced in Python 3.3.
+"""
+
+if sys.version_info < (3,):
+ function_annotations = ''
+
+today = time.strftime('%Y-%m-%d')
+
+__doc__ = (doc.replace('$VERSION', __version__).replace('$DATE', today)
+ .replace('$FUNCTION_ANNOTATIONS', function_annotations))
+
+
+def decorator_apply(dec, func):
+ """
+ Decorate a function by preserving the signature even if dec
+ is not a signature-preserving decorator.
+ """
+ return FunctionMaker.create(
+ func, 'return decfunc(%(signature)s)',
+ dict(decfunc=dec(func)), __wrapped__=func)
+
+
+def _trace(f, *args, **kw):
+ kwstr = ', '.join('%r: %r' % (k, kw[k]) for k in sorted(kw))
+ print("calling %s with args %s, {%s}" % (f.__name__, args, kwstr))
+ return f(*args, **kw)
+
+
+def trace(f):
+ return decorate(f, _trace)
+
+
+class Future(threading.Thread):
+ """
+ A class converting blocking functions into asynchronous
+ functions by using threads.
+ """
+ def __init__(self, func, *args, **kw):
+ try:
+ counter = func.counter
+ except AttributeError: # instantiate the counter at the first call
+ counter = func.counter = itertools.count(1)
+ name = '%s-%s' % (func.__name__, next(counter))
+
+ def func_wrapper():
+ self._result = func(*args, **kw)
+ super(Future, self).__init__(target=func_wrapper, name=name)
+ self.start()
+
+ def result(self):
+ self.join()
+ return self._result
+
+
+def identity_dec(func):
+ def wrapper(*args, **kw):
+ return func(*args, **kw)
+ return wrapper
+
+
+@identity_dec
+def example():
+ pass
+
+
+def memoize_uw(func):
+ func.cache = {}
+
+ def memoize(*args, **kw):
+ if kw: # frozenset is used to ensure hashability
+ key = args, frozenset(kw.items())
+ else:
+ key = args
+ if key not in func.cache:
+ func.cache[key] = func(*args, **kw)
+ return func.cache[key]
+ return functools.update_wrapper(memoize, func)
+
+
+@memoize_uw
+def f1(x):
+ "Simulate some long computation"
+ time.sleep(1)
+ return x
+
+
+def _memoize(func, *args, **kw):
+ if kw: # frozenset is used to ensure hashability
+ key = args, frozenset(kw.items())
+ else:
+ key = args
+ cache = func.cache # attribute added by memoize
+ if key not in cache:
+ cache[key] = func(*args, **kw)
+ return cache[key]
+
+
+def memoize(f):
+ """
+ A simple memoize implementation. It works by adding a .cache dictionary
+ to the decorated function. The cache will grow indefinitely, so it is
+ your responsibility to clear it, if needed.
+ """
+ f.cache = {}
+ return decorate(f, _memoize)
+
+
+@decorator
+def blocking(f, msg='blocking', *args, **kw):
+ if not hasattr(f, "thread"): # no thread running
+ def set_result():
+ f.result = f(*args, **kw)
+ f.thread = threading.Thread(None, set_result)
+ f.thread.start()
+ return msg
+ elif f.thread.is_alive():
+ return msg
+ else: # the thread is ended, return the stored result
+ del f.thread
+ return f.result
+
+
+class User(object):
+ "Will just be able to see a page"
+
+
+class PowerUser(User):
+ "Will be able to add new pages too"
+
+
+class Admin(PowerUser):
+ "Will be able to delete pages too"
+
+
+class PermissionError(Exception):
+ """
+ >>> a = Action()
+ >>> a.user = User()
+ >>> a.view() # ok
+ >>> a.insert() # doctest: +IGNORE_EXCEPTION_DETAIL
+ Traceback (most recent call last):
+ ...
+ PermissionError: User does not have the permission to run insert!
+ """
+
+
+@decorator
+def restricted(func, user_class=User, *args, **kw):
+ "Restrict access to a given class of users"
+ self = args[0]
+ if isinstance(self.user, user_class):
+ return func(*args, **kw)
+ else:
+ raise PermissionError(
+ '%s does not have the permission to run %s!'
+ % (self.user, func.__name__))
+
+
+class Action(object):
+ @restricted(user_class=User)
+ def view(self):
+ "Any user can view objects"
+
+ @restricted(user_class=PowerUser)
+ def insert(self):
+ "Only power users can insert objects"
+
+ @restricted(user_class=Admin)
+ def delete(self):
+ "Only the admin can delete objects"
+
+
+class TailRecursive(object):
+ """
+ tail_recursive decorator based on Kay Schluehr's recipe
+ http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/496691
+ with improvements by me and George Sakkis.
+ """
+
+ def __init__(self, func):
+ self.func = func
+ self.firstcall = True
+ self.CONTINUE = object() # sentinel
+
+ def __call__(self, *args, **kwd):
+ CONTINUE = self.CONTINUE
+ if self.firstcall:
+ func = self.func
+ self.firstcall = False
+ try:
+ while True:
+ result = func(*args, **kwd)
+ if result is CONTINUE: # update arguments
+ args, kwd = self.argskwd
+ else: # last call
+ return result
+ finally:
+ self.firstcall = True
+ else: # return the arguments of the tail call
+ self.argskwd = args, kwd
+ return CONTINUE
+
+
+def tail_recursive(func):
+ return decorator_apply(TailRecursive, func)
+
+
+@tail_recursive
+def factorial(n, acc=1):
+ "The good old factorial"
+ if n == 0:
+ return acc
+ return factorial(n-1, n*acc)
+
+
+def fact(n): # this is not tail-recursive
+ if n == 0:
+ return 1
+ return n * fact(n-1)
+
+
+def a_test_for_pylons():
+ """
+ In version 3.1.0 decorator(caller) returned a nameless partial
+ object, thus breaking Pylons. That must not happen again.
+
+ >>> decorator(_memoize).__name__
+ '_memoize'
+
+ Here is another bug of version 3.1.1 missing the docstring:
+
+ >>> factorial.__doc__
+ 'The good old factorial'
+ """
+
+
+if sys.version_info >= (3,): # tests for signatures specific to Python 3
+
+ def test_kwonlydefaults():
+ """
+ >>> @trace
+ ... def f(arg, defarg=1, *args, kwonly=2): pass
+ ...
+ >>> f.__kwdefaults__
+ {'kwonly': 2}
+ """
+
+ def test_kwonlyargs():
+ """
+ >>> @trace
+ ... def func(a, b, *args, y=2, z=3, **kwargs):
+ ... return y, z
+ ...
+ >>> func('a', 'b', 'c', 'd', 'e', y='y', z='z', cat='dog')
+ calling func with args ('a', 'b', 'c', 'd', 'e'), {'cat': 'dog', 'y': 'y', 'z': 'z'}
+ ('y', 'z')
+ """
+
+ def test_kwonly_no_args():
+ """# this was broken with decorator 3.3.3
+ >>> @trace
+ ... def f(**kw): pass
+ ...
+ >>> f()
+ calling f with args (), {}
+ """
+
+ def test_kwonly_star_notation():
+ """
+ >>> @trace
+ ... def f(*, a=1, **kw): pass
+ ...
+ >>> import inspect
+ >>> inspect.getfullargspec(f)
+ FullArgSpec(args=[], varargs=None, varkw='kw', defaults=None, kwonlyargs=['a'], kwonlydefaults={'a': 1}, annotations={})
+ """
+
+
+@contextmanager
+def before_after(before, after):
+ print(before)
+ yield
+ print(after)
+
+
+ba = before_after('BEFORE', 'AFTER') # ContextManager instance
+
+
+@ba
+def hello(user):
+ """
+ >>> ba.__class__.__name__
+ 'ContextManager'
+ >>> hello('michele')
+ BEFORE
+ hello michele
+ AFTER
+ """
+ print('hello %s' % user)
+
+
+# ####################### multiple dispatch ############################ #
+
+
+class XMLWriter(object):
+ def __init__(self, **config):
+ self.cfg = config
+
+ @dispatch_on('obj')
+ def write(self, obj):
+ raise NotImplementedError(type(obj))
+
+
+@XMLWriter.write.register(float)
+def writefloat(self, obj):
+ return '<float>%s</float>' % obj
+
+
+class Rock(object):
+ ordinal = 0
+
+
+class Paper(object):
+ ordinal = 1
+
+
+class Scissors(object):
+ ordinal = 2
+
+
+class StrongRock(Rock):
+ pass
+
+
+@dispatch_on('a', 'b')
+def win(a, b):
+ if a.ordinal == b.ordinal:
+ return 0
+ elif a.ordinal > b.ordinal:
+ return -win(b, a)
+ raise NotImplementedError((type(a), type(b)))
+
+
+@win.register(Rock, Paper)
+def winRockPaper(a, b):
+ return -1
+
+
+@win.register(Rock, Scissors)
+def winRockScissors(a, b):
+ return 1
+
+
+@win.register(Paper, Scissors)
+def winPaperScissors(a, b):
+ return -1
+
+
+@win.register(StrongRock, Paper)
+def winStrongRockPaper(a, b):
+ return 0
+
+
+class WithLength(object):
+ def __len__(self):
+ return 0
+
+
+class SomeSet(collections.abc.Sized):
+ # methods that make SomeSet set-like
+ # not shown ...
+ def __len__(self):
+ return 0
+
+
+@dispatch_on('obj')
+def get_length(obj):
+ raise NotImplementedError(type(obj))
+
+
+@get_length.register(collections.abc.Sized)
+def get_length_sized(obj):
+ return len(obj)
+
+
+@get_length.register(collections.abc.Set)
+def get_length_set(obj):
+ return 1
+
+
+class C(object):
+ "Registered as Sized and Iterable"
+
+
+collections.abc.Sized.register(C)
+collections.abc.Iterable.register(C)
+
+
+def singledispatch_example1():
+ singledispatch = dispatch_on('obj')
+
+ @singledispatch
+ def g(obj):
+ raise NotImplementedError(type(g))
+
+ @g.register(collections.abc.Sized)
+ def g_sized(object):
+ return "sized"
+
+ @g.register(collections.abc.Iterable)
+ def g_iterable(object):
+ return "iterable"
+
+ g(C()) # RuntimeError: Ambiguous dispatch: Iterable or Sized?
+
+
+def singledispatch_example2():
+ # adapted from functools.singledispatch test case
+ singledispatch = dispatch_on('arg')
+
+ class S(object):
+ pass
+
+ class V(c.Sized, S):
+ def __len__(self):
+ return 0
+
+ @singledispatch
+ def g(arg):
+ return "base"
+
+ @g.register(S)
+ def g_s(arg):
+ return "s"
+
+ @g.register(c.Container)
+ def g_container(arg):
+ return "container"
+
+ v = V()
+ assert g(v) == "s"
+ c.Container.register(V) # add c.Container to the virtual mro of V
+ assert g(v) == "s" # since the virtual mro is V, Sized, S, Container
+ return g, V
+
+
+@decorator
+def warn_slow(func, duration=0, *args, **kwargs):
+ t0 = time.time()
+ res = func(*args, **kwargs)
+ dt = time.time() - t0
+ if dt >= duration:
+ print('%s is slow' % func.__name__)
+ return res
+
+
+@warn_slow() # with parens
+def operation1():
+ """
+ >>> operation1()
+ operation1 is slow
+ """
+ time.sleep(.1)
+
+
+@warn_slow # without parens
+def operation2():
+ """
+ >>> operation2()
+ operation2 is slow
+ """
+ time.sleep(.1)
+
+
+if __name__ == '__main__':
+ import doctest
+ doctest.testmod()
diff --git a/contrib/python/decorator/py2/tests/test.py b/contrib/python/decorator/py2/tests/test.py
new file mode 100644
index 0000000000..7ddfaf45b9
--- /dev/null
+++ b/contrib/python/decorator/py2/tests/test.py
@@ -0,0 +1,480 @@
+from __future__ import absolute_import
+import sys
+import doctest
+import unittest
+import decimal
+import inspect
+import functools
+import collections
+from collections import defaultdict
+try:
+ c = collections.abc
+except AttributeError:
+ c = collections
+from decorator import dispatch_on, contextmanager, decorator
+try:
+ from . import documentation as doc
+except (ImportError, ValueError, SystemError): # depending on the py-version
+ import documentation as doc
+
+
+@contextmanager
+def assertRaises(etype):
+ """This works in Python 2.6 too"""
+ try:
+ yield
+ except etype:
+ pass
+ else:
+ raise Exception('Expected %s' % etype.__name__)
+
+
+if sys.version_info >= (3, 5):
+ exec('''from asyncio import get_event_loop
+
+@decorator
+async def before_after(coro, *args, **kwargs):
+ return "<before>" + (await coro(*args, **kwargs)) + "<after>"
+
+@decorator
+def coro_to_func(coro, *args, **kw):
+ return get_event_loop().run_until_complete(coro(*args, **kw))
+
+class CoroutineTestCase(unittest.TestCase):
+ def test_before_after(self):
+ @before_after
+ async def coro(x):
+ return x
+ self.assertTrue(inspect.iscoroutinefunction(coro))
+ out = get_event_loop().run_until_complete(coro('x'))
+ self.assertEqual(out, '<before>x<after>')
+
+ def test_coro_to_func(self):
+ @coro_to_func
+ async def coro(x):
+ return x
+ self.assertFalse(inspect.iscoroutinefunction(coro))
+ self.assertEqual(coro('x'), 'x')
+''')
+
+
+def gen123():
+ yield 1
+ yield 2
+ yield 3
+
+
+class GeneratorCallerTestCase(unittest.TestCase):
+ def test_gen123(self):
+ @decorator
+ def square(func, *args, **kw):
+ for x in gen123():
+ yield x * x
+ new = square(gen123)
+ self.assertTrue(inspect.isgeneratorfunction(new))
+ self.assertEqual(list(new()), [1, 4, 9])
+
+
+class DocumentationTestCase(unittest.TestCase):
+ def test(self):
+ err = doctest.testmod(doc)[0]
+ self.assertEqual(err, 0)
+
+ def test_singledispatch1(self):
+ if hasattr(functools, 'singledispatch'):
+ with assertRaises(RuntimeError):
+ doc.singledispatch_example1()
+
+ def test_singledispatch2(self):
+ if hasattr(functools, 'singledispatch'):
+ doc.singledispatch_example2()
+
+
+class ExtraTestCase(unittest.TestCase):
+ def test_qualname(self):
+ if sys.version_info >= (3, 3):
+ self.assertEqual(doc.hello.__qualname__, 'hello')
+ else:
+ with assertRaises(AttributeError):
+ doc.hello.__qualname__
+
+ def test_signature(self):
+ if hasattr(inspect, 'signature'):
+ sig = inspect.signature(doc.f1)
+ self.assertEqual(str(sig), '(x)')
+
+ def test_unique_filenames(self):
+ @decorator
+ def d1(f, *args, **kwargs):
+ return f(*args, **kwargs)
+
+ @decorator
+ def d2(f, *args, **kwargs):
+ return f(*args, **kwargs)
+
+ @d1
+ def f1(x, y, z):
+ pass
+
+ @d2
+ def f2(x, y, z):
+ pass
+
+ f1_orig = f1
+
+ @d1
+ def f1(x, y, z):
+ pass
+ self.assertNotEqual(d1.__code__.co_filename, d2.__code__.co_filename)
+ self.assertNotEqual(f1.__code__.co_filename, f2.__code__.co_filename)
+ self.assertNotEqual(f1_orig.__code__.co_filename,
+ f1.__code__.co_filename)
+
+ def test_no_first_arg(self):
+ @decorator
+ def example(*args, **kw):
+ return args[0](*args[1:], **kw)
+
+ @example
+ def func(**kw):
+ return kw
+
+ # there is no confusion when passing args as a keyword argument
+ self.assertEqual(func(args='a'), {'args': 'a'})
+
+ def test_decorator_factory(self):
+ # similar to what IPython is doing in traitlets.config.application
+ @decorator
+ def catch_config_error(method, app, *args, **kwargs):
+ return method(app)
+ catch_config_error(lambda app: None)
+
+ def test_add1(self):
+ # similar to what IPython is doing in traitlets.config.application
+ @decorator
+ def add(func, const=1, *args, **kwargs):
+ return const + func(*args, **kwargs)
+
+ def f(x):
+ return x
+ self.assertEqual(add(f, 2)(0), 2)
+
+
+# ################### test dispatch_on ############################# #
+# adapted from test_functools in Python 3.5
+singledispatch = dispatch_on('obj')
+
+
+class TestSingleDispatch(unittest.TestCase):
+ def test_simple_overloads(self):
+ @singledispatch
+ def g(obj):
+ return "base"
+
+ @g.register(int)
+ def g_int(i):
+ return "integer"
+
+ self.assertEqual(g("str"), "base")
+ self.assertEqual(g(1), "integer")
+ self.assertEqual(g([1, 2, 3]), "base")
+
+ def test_mro(self):
+ @singledispatch
+ def g(obj):
+ return "base"
+
+ class A(object):
+ pass
+
+ class C(A):
+ pass
+
+ class B(A):
+ pass
+
+ class D(C, B):
+ pass
+
+ @g.register(A)
+ def g_A(a):
+ return "A"
+
+ @g.register(B)
+ def g_B(b):
+ return "B"
+
+ self.assertEqual(g(A()), "A")
+ self.assertEqual(g(B()), "B")
+ self.assertEqual(g(C()), "A")
+ self.assertEqual(g(D()), "B")
+
+ def test_register_decorator(self):
+ @singledispatch
+ def g(obj):
+ return "base"
+
+ @g.register(int)
+ def g_int(i):
+ return "int %s" % (i,)
+ self.assertEqual(g(""), "base")
+ self.assertEqual(g(12), "int 12")
+
+ def test_register_error(self):
+ @singledispatch
+ def g(obj):
+ return "base"
+
+ with assertRaises(TypeError):
+ # wrong number of arguments
+ @g.register(int)
+ def g_int():
+ return "int"
+
+ def test_wrapping_attributes(self):
+ @singledispatch
+ def g(obj):
+ "Simple test"
+ return "Test"
+ self.assertEqual(g.__name__, "g")
+ if sys.flags.optimize < 2:
+ self.assertEqual(g.__doc__, "Simple test")
+
+ def test_c_classes(self):
+ @singledispatch
+ def g(obj):
+ return "base"
+
+ @g.register(decimal.DecimalException)
+ def _(obj):
+ return obj.args
+ subn = decimal.Subnormal("Exponent < Emin")
+ rnd = decimal.Rounded("Number got rounded")
+ self.assertEqual(g(subn), ("Exponent < Emin",))
+ self.assertEqual(g(rnd), ("Number got rounded",))
+
+ @g.register(decimal.Subnormal)
+ def _g(obj):
+ return "Too small to care."
+ self.assertEqual(g(subn), "Too small to care.")
+ self.assertEqual(g(rnd), ("Number got rounded",))
+
+ def test_register_abc(self):
+ d = {"a": "b"}
+ l = [1, 2, 3]
+ s = set([object(), None])
+ f = frozenset(s)
+ t = (1, 2, 3)
+
+ @singledispatch
+ def g(obj):
+ return "base"
+
+ self.assertEqual(g(d), "base")
+ self.assertEqual(g(l), "base")
+ self.assertEqual(g(s), "base")
+ self.assertEqual(g(f), "base")
+ self.assertEqual(g(t), "base")
+
+ g.register(c.Sized)(lambda obj: "sized")
+ self.assertEqual(g(d), "sized")
+ self.assertEqual(g(l), "sized")
+ self.assertEqual(g(s), "sized")
+ self.assertEqual(g(f), "sized")
+ self.assertEqual(g(t), "sized")
+
+ g.register(c.MutableMapping)(lambda obj: "mutablemapping")
+ self.assertEqual(g(d), "mutablemapping")
+ self.assertEqual(g(l), "sized")
+ self.assertEqual(g(s), "sized")
+ self.assertEqual(g(f), "sized")
+ self.assertEqual(g(t), "sized")
+
+ if hasattr(c, 'ChainMap'):
+ g.register(c.ChainMap)(lambda obj: "chainmap")
+ # irrelevant ABCs registered
+ self.assertEqual(g(d), "mutablemapping")
+ self.assertEqual(g(l), "sized")
+ self.assertEqual(g(s), "sized")
+ self.assertEqual(g(f), "sized")
+ self.assertEqual(g(t), "sized")
+
+ g.register(c.MutableSequence)(lambda obj: "mutablesequence")
+ self.assertEqual(g(d), "mutablemapping")
+ self.assertEqual(g(l), "mutablesequence")
+ self.assertEqual(g(s), "sized")
+ self.assertEqual(g(f), "sized")
+ self.assertEqual(g(t), "sized")
+
+ g.register(c.MutableSet)(lambda obj: "mutableset")
+ self.assertEqual(g(d), "mutablemapping")
+ self.assertEqual(g(l), "mutablesequence")
+ self.assertEqual(g(s), "mutableset")
+ self.assertEqual(g(f), "sized")
+ self.assertEqual(g(t), "sized")
+
+ g.register(c.Mapping)(lambda obj: "mapping")
+ self.assertEqual(g(d), "mutablemapping") # not specific enough
+ self.assertEqual(g(l), "mutablesequence")
+ self.assertEqual(g(s), "mutableset")
+ self.assertEqual(g(f), "sized")
+ self.assertEqual(g(t), "sized")
+
+ g.register(c.Sequence)(lambda obj: "sequence")
+ self.assertEqual(g(d), "mutablemapping")
+ self.assertEqual(g(l), "mutablesequence")
+ self.assertEqual(g(s), "mutableset")
+ self.assertEqual(g(f), "sized")
+ self.assertEqual(g(t), "sequence")
+
+ g.register(c.Set)(lambda obj: "set")
+ self.assertEqual(g(d), "mutablemapping")
+ self.assertEqual(g(l), "mutablesequence")
+ self.assertEqual(g(s), "mutableset")
+ self.assertEqual(g(f), "set")
+ self.assertEqual(g(t), "sequence")
+
+ g.register(dict)(lambda obj: "dict")
+ self.assertEqual(g(d), "dict")
+ self.assertEqual(g(l), "mutablesequence")
+ self.assertEqual(g(s), "mutableset")
+ self.assertEqual(g(f), "set")
+ self.assertEqual(g(t), "sequence")
+
+ g.register(list)(lambda obj: "list")
+ self.assertEqual(g(d), "dict")
+ self.assertEqual(g(l), "list")
+ self.assertEqual(g(s), "mutableset")
+ self.assertEqual(g(f), "set")
+ self.assertEqual(g(t), "sequence")
+
+ g.register(set)(lambda obj: "concrete-set")
+ self.assertEqual(g(d), "dict")
+ self.assertEqual(g(l), "list")
+ self.assertEqual(g(s), "concrete-set")
+ self.assertEqual(g(f), "set")
+ self.assertEqual(g(t), "sequence")
+
+ g.register(frozenset)(lambda obj: "frozen-set")
+ self.assertEqual(g(d), "dict")
+ self.assertEqual(g(l), "list")
+ self.assertEqual(g(s), "concrete-set")
+ self.assertEqual(g(f), "frozen-set")
+ self.assertEqual(g(t), "sequence")
+
+ g.register(tuple)(lambda obj: "tuple")
+ self.assertEqual(g(d), "dict")
+ self.assertEqual(g(l), "list")
+ self.assertEqual(g(s), "concrete-set")
+ self.assertEqual(g(f), "frozen-set")
+ self.assertEqual(g(t), "tuple")
+
+ def test_mro_conflicts(self):
+ @singledispatch
+ def g(obj):
+ return "base"
+
+ class O(c.Sized):
+ def __len__(self):
+ return 0
+ o = O()
+ self.assertEqual(g(o), "base")
+ g.register(c.Iterable)(lambda arg: "iterable")
+ g.register(c.Container)(lambda arg: "container")
+ g.register(c.Sized)(lambda arg: "sized")
+ g.register(c.Set)(lambda arg: "set")
+ self.assertEqual(g(o), "sized")
+ c.Iterable.register(O)
+ self.assertEqual(g(o), "sized")
+ c.Container.register(O)
+ with assertRaises(RuntimeError): # was "sized" because in mro
+ self.assertEqual(g(o), "sized")
+ c.Set.register(O)
+ self.assertEqual(g(o), "set")
+
+ class P(object):
+ pass
+ p = P()
+ self.assertEqual(g(p), "base")
+ c.Iterable.register(P)
+ self.assertEqual(g(p), "iterable")
+ c.Container.register(P)
+
+ with assertRaises(RuntimeError):
+ self.assertEqual(g(p), "iterable")
+
+ class Q(c.Sized):
+ def __len__(self):
+ return 0
+ q = Q()
+ self.assertEqual(g(q), "sized")
+ c.Iterable.register(Q)
+ self.assertEqual(g(q), "sized")
+ c.Set.register(Q)
+ self.assertEqual(g(q), "set")
+ # because c.Set is a subclass of c.Sized and c.Iterable
+
+ @singledispatch
+ def h(obj):
+ return "base"
+
+ @h.register(c.Sized)
+ def h_sized(arg):
+ return "sized"
+
+ @h.register(c.Container)
+ def h_container(arg):
+ return "container"
+ # Even though Sized and Container are explicit bases of MutableMapping,
+ # this ABC is implicitly registered on defaultdict which makes all of
+ # MutableMapping's bases implicit as well from defaultdict's
+ # perspective.
+ with assertRaises(RuntimeError):
+ self.assertEqual(h(defaultdict(lambda: 0)), "sized")
+
+ class R(defaultdict):
+ pass
+ c.MutableSequence.register(R)
+
+ @singledispatch
+ def i(obj):
+ return "base"
+
+ @i.register(c.MutableMapping)
+ def i_mapping(arg):
+ return "mapping"
+
+ @i.register(c.MutableSequence)
+ def i_sequence(arg):
+ return "sequence"
+ r = R()
+ with assertRaises(RuntimeError): # was no error
+ self.assertEqual(i(r), "sequence")
+
+ class S(object):
+ pass
+
+ class T(S, c.Sized):
+ def __len__(self):
+ return 0
+ t = T()
+ self.assertEqual(h(t), "sized")
+ c.Container.register(T)
+ self.assertEqual(h(t), "sized") # because it's explicitly in the MRO
+
+ class U(object):
+ def __len__(self):
+ return 0
+ u = U()
+ self.assertEqual(h(u), "sized")
+ # implicit Sized subclass inferred
+ # from the existence of __len__()
+
+ c.Container.register(U)
+ # There is no preference for registered versus inferred ABCs.
+ with assertRaises(RuntimeError):
+ h(u)
+
+
+if __name__ == '__main__':
+ unittest.main()
diff --git a/contrib/python/decorator/py2/tests/ya.make b/contrib/python/decorator/py2/tests/ya.make
new file mode 100644
index 0000000000..17111c31a7
--- /dev/null
+++ b/contrib/python/decorator/py2/tests/ya.make
@@ -0,0 +1,19 @@
+PY2TEST()
+
+PEERDIR(
+ contrib/python/decorator
+)
+
+PY_SRCS(
+ TOP_LEVEL
+ documentation.py
+)
+
+TEST_SRCS(
+ #documentation.py
+ test.py
+)
+
+NO_LINT()
+
+END()
diff --git a/contrib/python/decorator/py2/ya.make b/contrib/python/decorator/py2/ya.make
new file mode 100644
index 0000000000..69d2592df3
--- /dev/null
+++ b/contrib/python/decorator/py2/ya.make
@@ -0,0 +1,26 @@
+# Generated by devtools/yamaker (pypi).
+
+PY2_LIBRARY()
+
+VERSION(4.4.2)
+
+LICENSE(BSD-3-Clause)
+
+NO_LINT()
+
+PY_SRCS(
+ TOP_LEVEL
+ decorator.py
+)
+
+RESOURCE_FILES(
+ PREFIX contrib/python/decorator/py2/
+ .dist-info/METADATA
+ .dist-info/top_level.txt
+)
+
+END()
+
+RECURSE_FOR_TESTS(
+ tests
+)
diff --git a/contrib/python/decorator/py3/.dist-info/METADATA b/contrib/python/decorator/py3/.dist-info/METADATA
new file mode 100644
index 0000000000..fd12277a01
--- /dev/null
+++ b/contrib/python/decorator/py3/.dist-info/METADATA
@@ -0,0 +1,131 @@
+Metadata-Version: 2.1
+Name: decorator
+Version: 4.4.2
+Summary: Decorators for Humans
+Home-page: https://github.com/micheles/decorator
+Author: Michele Simionato
+Author-email: michele.simionato@gmail.com
+License: new BSD License
+Keywords: decorators generic utility
+Platform: All
+Classifier: Development Status :: 5 - Production/Stable
+Classifier: Intended Audience :: Developers
+Classifier: License :: OSI Approved :: BSD License
+Classifier: Natural Language :: English
+Classifier: Operating System :: OS Independent
+Classifier: Programming Language :: Python
+Classifier: Programming Language :: Python :: 2
+Classifier: Programming Language :: Python :: 2.6
+Classifier: Programming Language :: Python :: 2.7
+Classifier: Programming Language :: Python :: 3
+Classifier: Programming Language :: Python :: 3.2
+Classifier: Programming Language :: Python :: 3.3
+Classifier: Programming Language :: Python :: 3.4
+Classifier: Programming Language :: Python :: 3.5
+Classifier: Programming Language :: Python :: 3.6
+Classifier: Programming Language :: Python :: 3.7
+Classifier: Programming Language :: Python :: Implementation :: CPython
+Classifier: Topic :: Software Development :: Libraries
+Classifier: Topic :: Utilities
+Requires-Python: >=2.6, !=3.0.*, !=3.1.*
+
+Decorators for Humans
+=====================
+
+The goal of the decorator module is to make it easy to define
+signature-preserving function decorators and decorator factories.
+It also includes an implementation of multiple dispatch and other niceties
+(please check the docs). It is released under a two-clauses
+BSD license, i.e. basically you can do whatever you want with it but I am not
+responsible.
+
+Installation
+-------------
+
+If you are lazy, just perform
+
+ ``$ pip install decorator``
+
+which will install just the module on your system.
+
+If you prefer to install the full distribution from source, including
+the documentation, clone the `GitHub repo`_ or download the tarball_, unpack it and run
+
+ ``$ pip install .``
+
+in the main directory, possibly as superuser.
+
+.. _tarball: https://pypi.org/project/decorator/#files
+.. _GitHub repo: https://github.com/micheles/decorator
+
+Testing
+--------
+
+If you have the source code installation you can run the tests with
+
+ `$ python src/tests/test.py -v`
+
+or (if you have setuptools installed)
+
+ `$ python setup.py test`
+
+Notice that you may run into trouble if in your system there
+is an older version of the decorator module; in such a case remove the
+old version. It is safe even to copy the module `decorator.py` over
+an existing one, since we kept backward-compatibility for a long time.
+
+Repository
+---------------
+
+The project is hosted on GitHub. You can look at the source here:
+
+ https://github.com/micheles/decorator
+
+Documentation
+---------------
+
+The documentation has been moved to https://github.com/micheles/decorator/blob/master/docs/documentation.md
+
+From there you can get a PDF version by simply using the print
+functionality of your browser.
+
+Here is the documentation for previous versions of the module:
+
+https://github.com/micheles/decorator/blob/4.3.2/docs/tests.documentation.rst
+https://github.com/micheles/decorator/blob/4.2.1/docs/tests.documentation.rst
+https://github.com/micheles/decorator/blob/4.1.2/docs/tests.documentation.rst
+https://github.com/micheles/decorator/blob/4.0.0/documentation.rst
+https://github.com/micheles/decorator/blob/3.4.2/documentation.rst
+
+For the impatient
+-----------------
+
+Here is an example of how to define a family of decorators tracing slow
+operations:
+
+.. code-block:: python
+
+ from decorator import decorator
+
+ @decorator
+ def warn_slow(func, timelimit=60, *args, **kw):
+ t0 = time.time()
+ result = func(*args, **kw)
+ dt = time.time() - t0
+ if dt > timelimit:
+ logging.warn('%s took %d seconds', func.__name__, dt)
+ else:
+ logging.info('%s took %d seconds', func.__name__, dt)
+ return result
+
+ @warn_slow # warn if it takes more than 1 minute
+ def preprocess_input_files(inputdir, tempdir):
+ ...
+
+ @warn_slow(timelimit=600) # warn if it takes more than 10 minutes
+ def run_calculation(tempdir, outdir):
+ ...
+
+Enjoy!
+
+
diff --git a/contrib/python/decorator/py3/.dist-info/top_level.txt b/contrib/python/decorator/py3/.dist-info/top_level.txt
new file mode 100644
index 0000000000..3fe18a4d1c
--- /dev/null
+++ b/contrib/python/decorator/py3/.dist-info/top_level.txt
@@ -0,0 +1 @@
+decorator
diff --git a/contrib/python/decorator/py3/LICENSE.txt b/contrib/python/decorator/py3/LICENSE.txt
new file mode 100644
index 0000000000..b0ade0487e
--- /dev/null
+++ b/contrib/python/decorator/py3/LICENSE.txt
@@ -0,0 +1,26 @@
+Copyright (c) 2005-2018, Michele Simionato
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are
+met:
+
+ Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ Redistributions in bytecode form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in
+ the documentation and/or other materials provided with the
+ distribution.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
+TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
+USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+DAMAGE.
diff --git a/contrib/python/decorator/py3/README.rst b/contrib/python/decorator/py3/README.rst
new file mode 100644
index 0000000000..f56161c74a
--- /dev/null
+++ b/contrib/python/decorator/py3/README.rst
@@ -0,0 +1,98 @@
+Decorators for Humans
+=====================
+
+The goal of the decorator module is to make it easy to define
+signature-preserving function decorators and decorator factories.
+It also includes an implementation of multiple dispatch and other niceties
+(please check the docs). It is released under a two-clauses
+BSD license, i.e. basically you can do whatever you want with it but I am not
+responsible.
+
+Installation
+-------------
+
+If you are lazy, just perform
+
+ ``$ pip install decorator``
+
+which will install just the module on your system.
+
+If you prefer to install the full distribution from source, including
+the documentation, clone the `GitHub repo`_ or download the tarball_, unpack it and run
+
+ ``$ pip install .``
+
+in the main directory, possibly as superuser.
+
+.. _tarball: https://pypi.org/project/decorator/#files
+.. _GitHub repo: https://github.com/micheles/decorator
+
+Testing
+--------
+
+If you have the source code installation you can run the tests with
+
+ `$ python src/tests/test.py -v`
+
+or (if you have setuptools installed)
+
+ `$ python setup.py test`
+
+Notice that you may run into trouble if in your system there
+is an older version of the decorator module; in such a case remove the
+old version. It is safe even to copy the module `decorator.py` over
+an existing one, since we kept backward-compatibility for a long time.
+
+Repository
+---------------
+
+The project is hosted on GitHub. You can look at the source here:
+
+ https://github.com/micheles/decorator
+
+Documentation
+---------------
+
+The documentation has been moved to https://github.com/micheles/decorator/blob/master/docs/documentation.md
+
+From there you can get a PDF version by simply using the print
+functionality of your browser.
+
+Here is the documentation for previous versions of the module:
+
+https://github.com/micheles/decorator/blob/4.3.2/docs/tests.documentation.rst
+https://github.com/micheles/decorator/blob/4.2.1/docs/tests.documentation.rst
+https://github.com/micheles/decorator/blob/4.1.2/docs/tests.documentation.rst
+https://github.com/micheles/decorator/blob/4.0.0/documentation.rst
+https://github.com/micheles/decorator/blob/3.4.2/documentation.rst
+
+For the impatient
+-----------------
+
+Here is an example of how to define a family of decorators tracing slow
+operations:
+
+.. code-block:: python
+
+ from decorator import decorator
+
+ @decorator
+ def warn_slow(func, timelimit=60, *args, **kw):
+ t0 = time.time()
+ result = func(*args, **kw)
+ dt = time.time() - t0
+ if dt > timelimit:
+ logging.warn('%s took %d seconds', func.__name__, dt)
+ else:
+ logging.info('%s took %d seconds', func.__name__, dt)
+ return result
+
+ @warn_slow # warn if it takes more than 1 minute
+ def preprocess_input_files(inputdir, tempdir):
+ ...
+
+ @warn_slow(timelimit=600) # warn if it takes more than 10 minutes
+ def run_calculation(tempdir, outdir):
+ ...
+
+Enjoy!
diff --git a/contrib/python/decorator/py3/decorator.py b/contrib/python/decorator/py3/decorator.py
new file mode 100644
index 0000000000..b1f8b567e9
--- /dev/null
+++ b/contrib/python/decorator/py3/decorator.py
@@ -0,0 +1,454 @@
+# ######################### LICENSE ############################ #
+
+# Copyright (c) 2005-2018, Michele Simionato
+# All rights reserved.
+
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are
+# met:
+
+# Redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer.
+# Redistributions in bytecode form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in
+# the documentation and/or other materials provided with the
+# distribution.
+
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+# HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
+# TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
+# USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+# DAMAGE.
+
+"""
+Decorator module, see http://pypi.python.org/pypi/decorator
+for the documentation.
+"""
+from __future__ import print_function
+
+import re
+import sys
+import inspect
+import operator
+import itertools
+import collections
+
+__version__ = '4.4.2'
+
+if sys.version_info >= (3,):
+ from inspect import getfullargspec
+
+ def get_init(cls):
+ return cls.__init__
+else:
+ FullArgSpec = collections.namedtuple(
+ 'FullArgSpec', 'args varargs varkw defaults '
+ 'kwonlyargs kwonlydefaults annotations')
+
+ def getfullargspec(f):
+ "A quick and dirty replacement for getfullargspec for Python 2.X"
+ return FullArgSpec._make(inspect.getargspec(f) + ([], None, {}))
+
+ def get_init(cls):
+ return cls.__init__.__func__
+
+try:
+ iscoroutinefunction = inspect.iscoroutinefunction
+except AttributeError:
+ # let's assume there are no coroutine functions in old Python
+ def iscoroutinefunction(f):
+ return False
+try:
+ from inspect import isgeneratorfunction
+except ImportError:
+ # assume no generator function in old Python versions
+ def isgeneratorfunction(caller):
+ return False
+
+
+DEF = re.compile(r'\s*def\s*([_\w][_\w\d]*)\s*\(')
+
+
+# basic functionality
+class FunctionMaker(object):
+ """
+ An object with the ability to create functions with a given signature.
+ It has attributes name, doc, module, signature, defaults, dict and
+ methods update and make.
+ """
+
+ # Atomic get-and-increment provided by the GIL
+ _compile_count = itertools.count()
+
+ # make pylint happy
+ args = varargs = varkw = defaults = kwonlyargs = kwonlydefaults = ()
+
+ def __init__(self, func=None, name=None, signature=None,
+ defaults=None, doc=None, module=None, funcdict=None):
+ self.shortsignature = signature
+ if func:
+ # func can be a class or a callable, but not an instance method
+ self.name = func.__name__
+ if self.name == '<lambda>': # small hack for lambda functions
+ self.name = '_lambda_'
+ self.doc = func.__doc__
+ self.module = func.__module__
+ if inspect.isfunction(func):
+ argspec = getfullargspec(func)
+ self.annotations = getattr(func, '__annotations__', {})
+ for a in ('args', 'varargs', 'varkw', 'defaults', 'kwonlyargs',
+ 'kwonlydefaults'):
+ setattr(self, a, getattr(argspec, a))
+ for i, arg in enumerate(self.args):
+ setattr(self, 'arg%d' % i, arg)
+ allargs = list(self.args)
+ allshortargs = list(self.args)
+ if self.varargs:
+ allargs.append('*' + self.varargs)
+ allshortargs.append('*' + self.varargs)
+ elif self.kwonlyargs:
+ allargs.append('*') # single star syntax
+ for a in self.kwonlyargs:
+ allargs.append('%s=None' % a)
+ allshortargs.append('%s=%s' % (a, a))
+ if self.varkw:
+ allargs.append('**' + self.varkw)
+ allshortargs.append('**' + self.varkw)
+ self.signature = ', '.join(allargs)
+ self.shortsignature = ', '.join(allshortargs)
+ self.dict = func.__dict__.copy()
+ # func=None happens when decorating a caller
+ if name:
+ self.name = name
+ if signature is not None:
+ self.signature = signature
+ if defaults:
+ self.defaults = defaults
+ if doc:
+ self.doc = doc
+ if module:
+ self.module = module
+ if funcdict:
+ self.dict = funcdict
+ # check existence required attributes
+ assert hasattr(self, 'name')
+ if not hasattr(self, 'signature'):
+ raise TypeError('You are decorating a non function: %s' % func)
+
+ def update(self, func, **kw):
+ "Update the signature of func with the data in self"
+ func.__name__ = self.name
+ func.__doc__ = getattr(self, 'doc', None)
+ func.__dict__ = getattr(self, 'dict', {})
+ func.__defaults__ = self.defaults
+ func.__kwdefaults__ = self.kwonlydefaults or None
+ func.__annotations__ = getattr(self, 'annotations', None)
+ try:
+ frame = sys._getframe(3)
+ except AttributeError: # for IronPython and similar implementations
+ callermodule = '?'
+ else:
+ callermodule = frame.f_globals.get('__name__', '?')
+ func.__module__ = getattr(self, 'module', callermodule)
+ func.__dict__.update(kw)
+
+ def make(self, src_templ, evaldict=None, addsource=False, **attrs):
+ "Make a new function from a given template and update the signature"
+ src = src_templ % vars(self) # expand name and signature
+ evaldict = evaldict or {}
+ mo = DEF.search(src)
+ if mo is None:
+ raise SyntaxError('not a valid function template\n%s' % src)
+ name = mo.group(1) # extract the function name
+ names = set([name] + [arg.strip(' *') for arg in
+ self.shortsignature.split(',')])
+ for n in names:
+ if n in ('_func_', '_call_'):
+ raise NameError('%s is overridden in\n%s' % (n, src))
+
+ if not src.endswith('\n'): # add a newline for old Pythons
+ src += '\n'
+
+ # Ensure each generated function has a unique filename for profilers
+ # (such as cProfile) that depend on the tuple of (<filename>,
+ # <definition line>, <function name>) being unique.
+ filename = '<decorator-gen-%d>' % next(self._compile_count)
+ try:
+ code = compile(src, filename, 'single')
+ exec(code, evaldict)
+ except Exception:
+ print('Error in generated code:', file=sys.stderr)
+ print(src, file=sys.stderr)
+ raise
+ func = evaldict[name]
+ if addsource:
+ attrs['__source__'] = src
+ self.update(func, **attrs)
+ return func
+
+ @classmethod
+ def create(cls, obj, body, evaldict, defaults=None,
+ doc=None, module=None, addsource=True, **attrs):
+ """
+ Create a function from the strings name, signature and body.
+ evaldict is the evaluation dictionary. If addsource is true an
+ attribute __source__ is added to the result. The attributes attrs
+ are added, if any.
+ """
+ if isinstance(obj, str): # "name(signature)"
+ name, rest = obj.strip().split('(', 1)
+ signature = rest[:-1] # strip a right parens
+ func = None
+ else: # a function
+ name = None
+ signature = None
+ func = obj
+ self = cls(func, name, signature, defaults, doc, module)
+ ibody = '\n'.join(' ' + line for line in body.splitlines())
+ caller = evaldict.get('_call_') # when called from `decorate`
+ if caller and iscoroutinefunction(caller):
+ body = ('async def %(name)s(%(signature)s):\n' + ibody).replace(
+ 'return', 'return await')
+ else:
+ body = 'def %(name)s(%(signature)s):\n' + ibody
+ return self.make(body, evaldict, addsource, **attrs)
+
+
+def decorate(func, caller, extras=()):
+ """
+ decorate(func, caller) decorates a function using a caller.
+ If the caller is a generator function, the resulting function
+ will be a generator function.
+ """
+ evaldict = dict(_call_=caller, _func_=func)
+ es = ''
+ for i, extra in enumerate(extras):
+ ex = '_e%d_' % i
+ evaldict[ex] = extra
+ es += ex + ', '
+
+ if '3.5' <= sys.version < '3.6':
+ # with Python 3.5 isgeneratorfunction returns True for all coroutines
+ # however we know that it is NOT possible to have a generator
+ # coroutine in python 3.5: PEP525 was not there yet
+ generatorcaller = isgeneratorfunction(
+ caller) and not iscoroutinefunction(caller)
+ else:
+ generatorcaller = isgeneratorfunction(caller)
+ if generatorcaller:
+ fun = FunctionMaker.create(
+ func, "for res in _call_(_func_, %s%%(shortsignature)s):\n"
+ " yield res" % es, evaldict, __wrapped__=func)
+ else:
+ fun = FunctionMaker.create(
+ func, "return _call_(_func_, %s%%(shortsignature)s)" % es,
+ evaldict, __wrapped__=func)
+ if hasattr(func, '__qualname__'):
+ fun.__qualname__ = func.__qualname__
+ return fun
+
+
+def decorator(caller, _func=None):
+ """decorator(caller) converts a caller function into a decorator"""
+ if _func is not None: # return a decorated function
+ # this is obsolete behavior; you should use decorate instead
+ return decorate(_func, caller)
+ # else return a decorator function
+ defaultargs, defaults = '', ()
+ if inspect.isclass(caller):
+ name = caller.__name__.lower()
+ doc = 'decorator(%s) converts functions/generators into ' \
+ 'factories of %s objects' % (caller.__name__, caller.__name__)
+ elif inspect.isfunction(caller):
+ if caller.__name__ == '<lambda>':
+ name = '_lambda_'
+ else:
+ name = caller.__name__
+ doc = caller.__doc__
+ nargs = caller.__code__.co_argcount
+ ndefs = len(caller.__defaults__ or ())
+ defaultargs = ', '.join(caller.__code__.co_varnames[nargs-ndefs:nargs])
+ if defaultargs:
+ defaultargs += ','
+ defaults = caller.__defaults__
+ else: # assume caller is an object with a __call__ method
+ name = caller.__class__.__name__.lower()
+ doc = caller.__call__.__doc__
+ evaldict = dict(_call=caller, _decorate_=decorate)
+ dec = FunctionMaker.create(
+ '%s(func, %s)' % (name, defaultargs),
+ 'if func is None: return lambda func: _decorate_(func, _call, (%s))\n'
+ 'return _decorate_(func, _call, (%s))' % (defaultargs, defaultargs),
+ evaldict, doc=doc, module=caller.__module__, __wrapped__=caller)
+ if defaults:
+ dec.__defaults__ = (None,) + defaults
+ return dec
+
+
+# ####################### contextmanager ####################### #
+
+try: # Python >= 3.2
+ from contextlib import _GeneratorContextManager
+except ImportError: # Python >= 2.5
+ from contextlib import GeneratorContextManager as _GeneratorContextManager
+
+
+class ContextManager(_GeneratorContextManager):
+ def __call__(self, func):
+ """Context manager decorator"""
+ return FunctionMaker.create(
+ func, "with _self_: return _func_(%(shortsignature)s)",
+ dict(_self_=self, _func_=func), __wrapped__=func)
+
+
+init = getfullargspec(_GeneratorContextManager.__init__)
+n_args = len(init.args)
+if n_args == 2 and not init.varargs: # (self, genobj) Python 2.7
+ def __init__(self, g, *a, **k):
+ return _GeneratorContextManager.__init__(self, g(*a, **k))
+ ContextManager.__init__ = __init__
+elif n_args == 2 and init.varargs: # (self, gen, *a, **k) Python 3.4
+ pass
+elif n_args == 4: # (self, gen, args, kwds) Python 3.5
+ def __init__(self, g, *a, **k):
+ return _GeneratorContextManager.__init__(self, g, a, k)
+ ContextManager.__init__ = __init__
+
+_contextmanager = decorator(ContextManager)
+
+
+def contextmanager(func):
+ # Enable Pylint config: contextmanager-decorators=decorator.contextmanager
+ return _contextmanager(func)
+
+
+# ############################ dispatch_on ############################ #
+
+def append(a, vancestors):
+ """
+ Append ``a`` to the list of the virtual ancestors, unless it is already
+ included.
+ """
+ add = True
+ for j, va in enumerate(vancestors):
+ if issubclass(va, a):
+ add = False
+ break
+ if issubclass(a, va):
+ vancestors[j] = a
+ add = False
+ if add:
+ vancestors.append(a)
+
+
+# inspired from simplegeneric by P.J. Eby and functools.singledispatch
+def dispatch_on(*dispatch_args):
+ """
+ Factory of decorators turning a function into a generic function
+ dispatching on the given arguments.
+ """
+ assert dispatch_args, 'No dispatch args passed'
+ dispatch_str = '(%s,)' % ', '.join(dispatch_args)
+
+ def check(arguments, wrong=operator.ne, msg=''):
+ """Make sure one passes the expected number of arguments"""
+ if wrong(len(arguments), len(dispatch_args)):
+ raise TypeError('Expected %d arguments, got %d%s' %
+ (len(dispatch_args), len(arguments), msg))
+
+ def gen_func_dec(func):
+ """Decorator turning a function into a generic function"""
+
+ # first check the dispatch arguments
+ argset = set(getfullargspec(func).args)
+ if not set(dispatch_args) <= argset:
+ raise NameError('Unknown dispatch arguments %s' % dispatch_str)
+
+ typemap = {}
+
+ def vancestors(*types):
+ """
+ Get a list of sets of virtual ancestors for the given types
+ """
+ check(types)
+ ras = [[] for _ in range(len(dispatch_args))]
+ for types_ in typemap:
+ for t, type_, ra in zip(types, types_, ras):
+ if issubclass(t, type_) and type_ not in t.mro():
+ append(type_, ra)
+ return [set(ra) for ra in ras]
+
+ def ancestors(*types):
+ """
+ Get a list of virtual MROs, one for each type
+ """
+ check(types)
+ lists = []
+ for t, vas in zip(types, vancestors(*types)):
+ n_vas = len(vas)
+ if n_vas > 1:
+ raise RuntimeError(
+ 'Ambiguous dispatch for %s: %s' % (t, vas))
+ elif n_vas == 1:
+ va, = vas
+ mro = type('t', (t, va), {}).mro()[1:]
+ else:
+ mro = t.mro()
+ lists.append(mro[:-1]) # discard t and object
+ return lists
+
+ def register(*types):
+ """
+ Decorator to register an implementation for the given types
+ """
+ check(types)
+
+ def dec(f):
+ check(getfullargspec(f).args, operator.lt, ' in ' + f.__name__)
+ typemap[types] = f
+ return f
+ return dec
+
+ def dispatch_info(*types):
+ """
+ An utility to introspect the dispatch algorithm
+ """
+ check(types)
+ lst = []
+ for anc in itertools.product(*ancestors(*types)):
+ lst.append(tuple(a.__name__ for a in anc))
+ return lst
+
+ def _dispatch(dispatch_args, *args, **kw):
+ types = tuple(type(arg) for arg in dispatch_args)
+ try: # fast path
+ f = typemap[types]
+ except KeyError:
+ pass
+ else:
+ return f(*args, **kw)
+ combinations = itertools.product(*ancestors(*types))
+ next(combinations) # the first one has been already tried
+ for types_ in combinations:
+ f = typemap.get(types_)
+ if f is not None:
+ return f(*args, **kw)
+
+ # else call the default implementation
+ return func(*args, **kw)
+
+ return FunctionMaker.create(
+ func, 'return _f_(%s, %%(shortsignature)s)' % dispatch_str,
+ dict(_f_=_dispatch), register=register, default=func,
+ typemap=typemap, vancestors=vancestors, ancestors=ancestors,
+ dispatch_info=dispatch_info, __wrapped__=func)
+
+ gen_func_dec.__name__ = 'dispatch_on' + dispatch_str
+ return gen_func_dec
diff --git a/contrib/python/decorator/py3/tests/__init__.py b/contrib/python/decorator/py3/tests/__init__.py
new file mode 100644
index 0000000000..e69de29bb2
--- /dev/null
+++ b/contrib/python/decorator/py3/tests/__init__.py
diff --git a/contrib/python/decorator/py3/tests/documentation.py b/contrib/python/decorator/py3/tests/documentation.py
new file mode 100644
index 0000000000..46a932aa77
--- /dev/null
+++ b/contrib/python/decorator/py3/tests/documentation.py
@@ -0,0 +1,1897 @@
+from __future__ import print_function
+import sys
+import threading
+import time
+import functools
+import itertools
+import collections
+try:
+ import collections.abc as c
+except ImportError:
+ c = collections
+ collections.abc = collections
+from decorator import (decorator, decorate, FunctionMaker, contextmanager,
+ dispatch_on, __version__)
+
+doc = r"""Decorators for Humans
+----------------------------------
+
+|Author | Michele Simionato|
+|---|---|
+|E-mail | michele.simionato@gmail.com|
+|Version| $VERSION ($DATE)|
+|Supports| Python 2.6, 2.7, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8|
+|Download page| http://pypi.python.org/pypi/decorator/$VERSION|
+|Installation| ``pip install decorator``|
+|License | BSD license|
+
+Introduction
+-----------------------------------------
+
+The ``decorator`` module is over ten years old, but still alive and
+kicking. It is used by several frameworks (IPython, scipy, authkit,
+pylons, pycuda, sugar, ...) and has been stable for a *long*
+time. It is your best option if you want to preserve the signature of
+decorated functions in a consistent way across Python
+releases. Version 4 is fully compatible with the past, except for
+one thing: support for Python 2.4 and 2.5 has been dropped. That
+decision made it possible to use a single code base both for Python
+2.X and Python 3.X. This is a *huge* bonus, since I could remove over
+2,000 lines of duplicated documentation/doctests. Having to maintain
+separate docs for Python 2 and Python 3 effectively stopped any
+development on the module for several years. Moreover, it is now
+trivial to distribute the module as an universal
+ [wheel](http://pythonwheels.com) since 2to3 is no more
+required. Since Python 2.5 has been released ages ago (in 2006), I felt that
+it was reasonable to drop the support for it. If you need to support
+ancient versions of Python, stick with the decorator module version
+3.4.2. The current version supports all Python releases from 2.6 up.
+
+What's New in version 4
+-----------------------
+
+- **New documentation**
+ There is now a single manual for all Python versions, so I took the
+ opportunity to overhaul the documentation and to move it to readthedocs.org.
+ Even if you are a long-time user, you may want to revisit the docs, since
+ several examples have been improved.
+
+- **Packaging improvements**
+ The code is now also available in wheel format. Integration with
+ setuptools has improved and you can run the tests with the command
+ ``python setup.py test`` too.
+
+- **Code changes**
+ A new utility function ``decorate(func, caller)`` has been added.
+ It does the same job that was performed by the older
+ ``decorator(caller, func)``. The old functionality is now deprecated
+ and no longer documented, but still available for now.
+
+- **Multiple dispatch**
+ The decorator module now includes an implementation of generic
+ functions (sometimes called "multiple dispatch functions").
+ The API is designed to mimic ``functools.singledispatch`` (added
+ in Python 3.4), but the implementation is much simpler.
+ Moreover, all decorators involved preserve the signature of the
+ decorated functions. For now, this exists mostly to demonstrate
+ the power of the module. In the future it could be enhanced/optimized.
+ In any case, it is very short and compact (less then 100 lines), so you
+ can extract it for your own use. Take it as food for thought.
+
+- **Python 3.5 coroutines**
+ From version 4.1 it is possible to decorate coroutines, i.e. functions
+ defined with the `async def` syntax, and to maintain the
+ `inspect.iscoroutinefunction` check working for the decorated function.
+
+- **Decorator factories**
+ From version 4.2 there is facility to define factories of decorators in
+ a simple way, a feature requested by the users since a long time.
+
+Usefulness of decorators
+------------------------------------------------
+
+Python decorators are an interesting example of why syntactic sugar
+matters. In principle, their introduction in Python 2.4 changed
+nothing, since they did not provide any new functionality which was not
+already present in the language. In practice, their introduction has
+significantly changed the way we structure our programs in Python. I
+believe the change is for the best, and that decorators are a great
+idea since:
+
+* decorators help reducing boilerplate code;
+* decorators help separation of concerns;
+* decorators enhance readability and maintenability;
+* decorators are explicit.
+
+Still, as of now, writing custom decorators correctly requires
+some experience and it is not as easy as it could be. For instance,
+typical implementations of decorators involve nested functions, and
+we all know that flat is better than nested.
+
+The aim of the ``decorator`` module it to simplify the usage of
+decorators for the average programmer, and to popularize decorators by
+showing various non-trivial examples. Of course, as all techniques,
+decorators can be abused (I have seen that) and you should not try to
+solve every problem with a decorator, just because you can.
+
+You may find the source code for all the examples
+discussed here in the ``documentation.py`` file, which contains
+the documentation you are reading in the form of doctests.
+
+Definitions
+------------------------------------
+
+Technically speaking, any Python object which can be called with one argument
+can be used as a decorator. However, this definition is somewhat too large
+to be really useful. It is more convenient to split the generic class of
+decorators in two subclasses:
+
+1. **signature-preserving decorators**, callable objects which accept
+ a function as input and return a function as output, *with the
+ same signature*
+
+2. **signature-changing** decorators, i.e. decorators
+ which change the signature of their input function, or decorators
+ that return non-callable objects
+
+Signature-changing decorators have their use: for instance, the
+builtin classes ``staticmethod`` and ``classmethod`` are in this
+group. They take functions and return descriptor objects which
+are neither functions, nor callables.
+
+Still, signature-preserving decorators are more common, and easier
+to reason about. In particular, they can be composed together,
+whereas other decorators generally cannot.
+
+Writing signature-preserving decorators from scratch is not that
+obvious, especially if one wants to define proper decorators that
+can accept functions with any signature. A simple example will clarify
+the issue.
+
+Statement of the problem
+------------------------------
+
+A very common use case for decorators is the memoization of functions.
+A ``memoize`` decorator works by caching
+the result of the function call in a dictionary, so that the next time
+the function is called with the same input parameters the result is retrieved
+from the cache and not recomputed.
+
+There are many implementations of ``memoize`` in
+http://www.python.org/moin/PythonDecoratorLibrary,
+but they do not preserve the signature. In recent versions of
+Python you can find a sophisticated ``lru_cache`` decorator
+in the standard library's ``functools``. Here I am just
+interested in giving an example.
+
+Consider the following simple implementation (note that it is
+generally impossible to *correctly* memoize something
+that depends on non-hashable arguments):
+
+$$memoize_uw
+
+Here I used the functools.update_wrapper_ utility, which was added
+in Python 2.5 to simplify the writing of decorators.
+(Previously, you needed to manually copy the function attributes
+``__name__``, ``__doc__``, ``__module__``, and ``__dict__``
+to the decorated function by hand).
+
+Here is an example of usage:
+
+$$f1
+
+This works insofar as the decorator accepts functions with generic signatures.
+Unfortunately, it is *not* a signature-preserving decorator, since
+``memoize_uw`` generally returns a function with a *different signature*
+from the original.
+
+Consider for instance the following case:
+
+$$f1
+
+Here, the original function takes a single argument named ``x``,
+but the decorated function takes any number of arguments and
+keyword arguments:
+
+```python
+>>> from decorator import getfullargspec
+>>> print(getfullargspec(f1))
+FullArgSpec(args=[], varargs='args', varkw='kw', defaults=None, kwonlyargs=[], kwonlydefaults=None, annotations={})
+
+```
+
+This means that introspection tools (like ``pydoc``) will give false
+information about the signature of ``f1`` -- unless you are using
+Python 3.5. This is pretty bad: ``pydoc`` will tell you that the
+function accepts the generic signature ``*args, **kw``, but
+calling the function with more than one argument raises an error:
+
+```python
+>>> f1(0, 1) # doctest: +IGNORE_EXCEPTION_DETAIL
+Traceback (most recent call last):
+ ...
+TypeError: f1() takes exactly 1 positional argument (2 given)
+
+```
+
+Notice that ``inspect.getfullargspec``
+will give the wrong signature, even in the latest Python, i.e. version 3.6
+at the time of writing.
+
+The solution
+-----------------------------------------
+
+The solution is to provide a generic factory of generators, which
+hides the complexity of making signature-preserving decorators
+from the application programmer. The ``decorate`` function in
+the ``decorator`` module is such a factory:
+
+```python
+>>> from decorator import decorate
+
+```
+
+``decorate`` takes two arguments:
+
+1. a caller function describing the functionality of the decorator, and
+
+2. a function to be decorated.
+
+The caller function must have signature ``(f, *args, **kw)``, and it
+must call the original function ``f`` with arguments ``args`` and ``kw``,
+implementing the wanted capability (in this case, memoization):
+
+$$_memoize
+
+Now, you can define your decorator as follows:
+
+$$memoize
+
+The difference from the nested function approach of ``memoize_uw``
+is that the decorator module forces you to lift the inner function
+to the outer level. Moreover, you are forced to explicitly pass the
+function you want to decorate; there are no closures.
+
+Here is a test of usage:
+
+```python
+>>> @memoize
+... def heavy_computation():
+... time.sleep(2)
+... return "done"
+
+>>> print(heavy_computation()) # the first time it will take 2 seconds
+done
+
+>>> print(heavy_computation()) # the second time it will be instantaneous
+done
+
+```
+
+The signature of ``heavy_computation`` is the one you would expect:
+
+```python
+>>> print(getfullargspec(heavy_computation))
+FullArgSpec(args=[], varargs=None, varkw=None, defaults=None, kwonlyargs=[], kwonlydefaults=None, annotations={})
+
+```
+
+A ``trace`` decorator
+------------------------------------------------------
+
+Here is an example of how to define a simple ``trace`` decorator,
+which prints a message whenever the traced function is called:
+
+$$_trace
+
+$$trace
+
+Here is an example of usage:
+
+```python
+>>> @trace
+... def f1(x):
+... pass
+
+```
+
+It is immediate to verify that ``f1`` works...
+
+```python
+>>> f1(0)
+calling f1 with args (0,), {}
+
+```
+
+...and it that it has the correct signature:
+
+```python
+>>> print(getfullargspec(f1))
+FullArgSpec(args=['x'], varargs=None, varkw=None, defaults=None, kwonlyargs=[], kwonlydefaults=None, annotations={})
+
+```
+
+The decorator works with functions of any signature:
+
+```python
+>>> @trace
+... def f(x, y=1, z=2, *args, **kw):
+... pass
+
+>>> f(0, 3)
+calling f with args (0, 3, 2), {}
+
+>>> print(getfullargspec(f))
+FullArgSpec(args=['x', 'y', 'z'], varargs='args', varkw='kw', defaults=(1, 2), kwonlyargs=[], kwonlydefaults=None, annotations={})
+
+```
+$FUNCTION_ANNOTATIONS
+
+``decorator.decorator``
+---------------------------------------------
+
+It can become tedious to write a caller function (like the above
+``_trace`` example) and then a trivial wrapper
+(``def trace(f): return decorate(f, _trace)``) every time.
+Not to worry! The ``decorator`` module provides an easy shortcut
+to convert the caller function into a signature-preserving decorator.
+
+It is the ``decorator`` function:
+
+```python
+>>> from decorator import decorator
+>>> print(decorator.__doc__)
+decorator(caller) converts a caller function into a decorator
+
+```
+The ``decorator`` function can be used as a signature-changing
+decorator, just like ``classmethod`` and ``staticmethod``.
+But ``classmethod`` and ``staticmethod`` return generic
+objects which are not callable. Instead, ``decorator`` returns
+signature-preserving decorators (i.e. functions with a single argument).
+
+For instance, you can write:
+
+```python
+>>> @decorator
+... def trace(f, *args, **kw):
+... kwstr = ', '.join('%r: %r' % (k, kw[k]) for k in sorted(kw))
+... print("calling %s with args %s, {%s}" % (f.__name__, args, kwstr))
+... return f(*args, **kw)
+
+```
+
+And ``trace`` is now a decorator!
+
+```python
+>>> trace # doctest: +ELLIPSIS
+<function trace at 0x...>
+
+```
+
+Here is an example of usage:
+
+```python
+>>> @trace
+... def func(): pass
+
+>>> func()
+calling func with args (), {}
+
+```
+
+The `decorator` function can also be used to define factories of decorators,
+i.e. functions returning decorators. In general you can just write something
+like this:
+
+```python
+def decfactory(param1, param2, ...):
+ def caller(f, *args, **kw):
+ return somefunc(f, param1, param2, .., *args, **kw)
+ return decorator(caller)
+```
+
+This is fully general but requires an additional level of nesting. For this
+reason since version 4.2 there is a facility to build
+decorator factories by using a single caller with default arguments i.e.
+writing something like this:
+
+```python
+def caller(f, param1=default1, param2=default2, ..., *args, **kw):
+ return somefunc(f, param1, param2, *args, **kw)
+decfactory = decorator(caller)
+```
+
+Notice that this simplified approach *only works with default arguments*,
+i.e. `param1`, `param2` etc must have known defaults. Thanks to this
+restriction, there exists an unique default decorator, i.e. the member
+of the family which uses the default values for all parameters. Such
+decorator can be written as ``decfactory()`` with no parameters specified;
+moreover, as a shortcut, it is also possible to elide the parenthesis,
+a feature much requested by the users. For years I have been opposite
+to this feature request, since having explicit parenthesis to me is more clear
+and less magic; however once this feature entered in decorators of
+the Python standard library (I am referring to the [dataclass decorator](
+https://www.python.org/dev/peps/pep-0557/)) I finally gave up.
+
+The example below will show how it works in practice.
+
+Decorator factories
+-------------------------------------------
+
+Sometimes one has to deal with blocking resources, such as ``stdin``.
+Sometimes it is better to receive a "busy" message than just blocking
+everything.
+This can be accomplished with a suitable family of decorators (decorator
+factory), parameterize by a string, the busy message:
+
+$$blocking
+
+Functions decorated with ``blocking`` will return a busy message if
+the resource is unavailable, and the intended result if the resource is
+available. For instance:
+
+```python
+>>> @blocking(msg="Please wait ...")
+... def read_data():
+... time.sleep(3) # simulate a blocking resource
+... return "some data"
+
+>>> print(read_data()) # data is not available yet
+Please wait ...
+
+>>> time.sleep(1)
+>>> print(read_data()) # data is not available yet
+Please wait ...
+
+>>> time.sleep(1)
+>>> print(read_data()) # data is not available yet
+Please wait ...
+
+>>> time.sleep(1.1) # after 3.1 seconds, data is available
+>>> print(read_data())
+some data
+
+```
+
+Decorator factories are most useful to framework builders. Here is an example
+that gives an idea of how you could manage permissions in a framework:
+
+$$Action
+
+where ``restricted`` is a decorator factory defined as follows
+
+$$restricted
+
+Notice that if you forget to use the keyword argument notation, i.e. if you
+write ``restricted(User)`` instead of ``restricted(user_class=User)`` you
+will get an error
+
+```python
+TypeError: You are decorating a non function: <class '__main__.User'>
+
+```
+
+Be careful!
+
+``decorator(cls)``
+--------------------------------------------
+
+The ``decorator`` facility can also produce a decorator starting
+from a class with the signature of a caller. In such a case the
+produced generator is able to convert functions into factories
+to create instances of that class.
+
+As an example, here is a decorator which can convert a
+blocking function into an asynchronous function. When
+the function is called, it is executed in a separate thread.
+
+(This is similar to the approach used in the ``concurrent.futures`` package.
+But I don't recommend that you implement futures this way; this is just an
+example.)
+
+$$Future
+
+The decorated function returns a ``Future`` object. It has a ``.result()``
+method which blocks until the underlying thread finishes and returns
+the final result.
+
+Here is the minimalistic usage:
+
+```python
+>>> @decorator(Future)
+... def long_running(x):
+... time.sleep(.5)
+... return x
+
+>>> fut1 = long_running(1)
+>>> fut2 = long_running(2)
+>>> fut1.result() + fut2.result()
+3
+
+```
+
+contextmanager
+-------------------------------------
+
+Python's standard library has the ``contextmanager`` decorator,
+which converts a generator function into a ``GeneratorContextManager``
+factory. For instance, if you write this...
+
+```python
+>>> from contextlib import contextmanager
+>>> @contextmanager
+... def before_after(before, after):
+... print(before)
+... yield
+... print(after)
+
+```
+
+...then ``before_after`` is a factory function that returns
+``GeneratorContextManager`` objects, which provide the
+use of the ``with`` statement:
+
+```python
+>>> with before_after('BEFORE', 'AFTER'):
+... print('hello')
+BEFORE
+hello
+AFTER
+
+```
+
+Basically, it is as if the content of the ``with`` block was executed
+in the place of the ``yield`` expression in the generator function.
+
+In Python 3.2, ``GeneratorContextManager`` objects were enhanced with
+a ``__call__`` method, so that they can be used as decorators, like so:
+
+```python
+>>> ba = before_after('BEFORE', 'AFTER')
+>>>
+>>> @ba # doctest: +SKIP
+... def hello():
+... print('hello')
+...
+>>> hello() # doctest: +SKIP
+BEFORE
+hello
+AFTER
+
+```
+
+The ``ba`` decorator basically inserts a ``with ba:`` block
+inside the function.
+
+However, there are two issues:
+
+1. ``GeneratorContextManager`` objects are only callable in Python 3.2,
+ so the previous example breaks in older versions of Python.
+ (You can solve this by installing ``contextlib2``, which backports
+ the Python 3 functionality to Python 2.)
+
+2. ``GeneratorContextManager`` objects do not preserve the signature of
+ the decorated functions. The decorated ``hello`` function above will
+ have the generic signature ``hello(*args, **kwargs)``, but fails if
+ called with more than zero arguments.
+
+For these reasons, the `decorator` module, starting from release 3.4, offers a
+``decorator.contextmanager`` decorator that solves both problems,
+*and* works in all supported Python versions. Its usage is identical,
+and factories decorated with ``decorator.contextmanager`` will return
+instances of ``ContextManager``, a subclass of the standard library's
+``contextlib.GeneratorContextManager`` class. The subclass includes
+an improved ``__call__`` method, which acts as a signature-preserving
+decorator.
+
+The ``FunctionMaker`` class
+---------------------------------------------------------------
+
+You may wonder how the functionality of the ``decorator`` module
+is implemented. The basic building block is
+a ``FunctionMaker`` class. It generates on-the-fly functions
+with a given name and signature from a function template
+passed as a string.
+
+If you're just writing ordinary decorators, then you probably won't
+need to use ``FunctionMaker`` directly. But in some circumstances, it
+can be handy. You will see an example shortly--in
+the implementation of a cool decorator utility (``decorator_apply``).
+
+``FunctionMaker`` provides the ``.create`` classmethod, which
+accepts the *name*, *signature*, and *body* of the function
+you want to generate, as well as the execution environment
+where the function is generated by ``exec``.
+
+Here's an example:
+
+```python
+>>> def f(*args, **kw): # a function with a generic signature
+... print(args, kw)
+
+>>> f1 = FunctionMaker.create('f1(a, b)', 'f(a, b)', dict(f=f))
+>>> f1(1,2)
+(1, 2) {}
+
+```
+
+It is important to notice that the function body is interpolated
+before being executed; **be careful** with the ``%`` sign!
+
+``FunctionMaker.create`` also accepts keyword arguments.
+The keyword arguments are attached to the generated function.
+This is useful if you want to set some function attributes
+(e.g., the docstring ``__doc__``).
+
+For debugging/introspection purposes, it may be useful to see
+the source code of the generated function. To do this, just
+pass ``addsource=True``, and the generated function will get
+a ``__source__`` attribute:
+
+```python
+>>> f1 = FunctionMaker.create(
+... 'f1(a, b)', 'f(a, b)', dict(f=f), addsource=True)
+>>> print(f1.__source__)
+def f1(a, b):
+ f(a, b)
+<BLANKLINE>
+
+```
+
+The first argument to ``FunctionMaker.create`` can be a string (as above),
+or a function. This is the most common usage, since you typically decorate
+pre-existing functions.
+
+If you're writing a framework, however, you may want to use
+``FunctionMaker.create`` directly, rather than ``decorator``, because it gives
+you direct access to the body of the generated function.
+
+For instance, suppose you want to instrument the ``__init__`` methods of a
+set of classes, by preserving their signature.
+(This use case is not made up. This is done by SQAlchemy, and other frameworks,
+too.)
+Here is what happens:
+
+- If first argument of ``FunctionMaker.create`` is a function,
+ an instance of ``FunctionMaker`` is created with the attributes
+ ``args``, ``varargs``, ``keywords``, and ``defaults``.
+ (These mirror the return values of the standard library's
+ ``inspect.getfullargspec``.)
+
+- For each item in ``args`` (a list of strings of the names of all required
+ arguments), an attribute ``arg0``, ``arg1``, ..., ``argN`` is also generated.
+
+- Finally, there is a ``signature`` attribute, which is a string with the
+ signature of the original function.
+
+**NOTE:** You should not pass signature strings with default arguments
+(e.g., something like ``'f1(a, b=None)'``). Just pass ``'f1(a, b)'``,
+followed by a tuple of defaults:
+
+```python
+>>> f1 = FunctionMaker.create(
+... 'f1(a, b)', 'f(a, b)', dict(f=f), addsource=True, defaults=(None,))
+>>> print(getfullargspec(f1))
+FullArgSpec(args=['a', 'b'], varargs=None, varkw=None, defaults=(None,), kwonlyargs=[], kwonlydefaults=None, annotations={})
+
+```
+
+Getting the source code
+---------------------------------------------------
+
+Internally, ``FunctionMaker.create`` uses ``exec`` to generate the
+decorated function. Therefore ``inspect.getsource`` will not work for
+decorated functions. In IPython, this means that the usual ``??`` trick
+will give you the (right on the spot) message ``Dynamically generated
+function. No source code available``.
+
+In the past, I considered this acceptable, since ``inspect.getsource``
+does not really work with "regular" decorators. In those cases,
+``inspect.getsource`` gives you the wrapper source code, which is probably
+not what you want:
+
+$$identity_dec
+$$example
+
+```python
+>>> import inspect
+>>> print(inspect.getsource(example))
+ def wrapper(*args, **kw):
+ return func(*args, **kw)
+<BLANKLINE>
+
+```
+
+(See bug report [1764286](http://bugs.python.org/issue1764286)
+for an explanation of what is happening).
+Unfortunately the bug still exists in all versions of Python < 3.5.
+
+However, there is a workaround. The decorated function has the ``__wrapped__``
+attribute, pointing to the original function. The simplest way to get the
+source code is to call ``inspect.getsource`` on the undecorated function:
+
+```python
+>>> print(inspect.getsource(factorial.__wrapped__))
+@tail_recursive
+def factorial(n, acc=1):
+ "The good old factorial"
+ if n == 0:
+ return acc
+ return factorial(n-1, n*acc)
+<BLANKLINE>
+
+```
+
+Dealing with third-party decorators
+-----------------------------------------------------------------
+
+Sometimes on the net you find some cool decorator that you would
+like to include in your code. However, more often than not, the cool
+decorator is not signature-preserving. What you need is an easy way to
+upgrade third party decorators to signature-preserving decorators...
+*without* having to rewrite them in terms of ``decorator``.
+
+You can use a ``FunctionMaker`` to implement that functionality as follows:
+
+$$decorator_apply
+
+``decorator_apply`` sets the generated function's ``__wrapped__`` attribute
+to the original function, so you can get the right source code.
+If you are using a Python later than 3.2, you should also set the
+``__qualname__`` attribute to preserve the qualified name of the original
+function.
+
+Notice that I am not providing this functionality in the ``decorator``
+module directly, since I think it is best to rewrite the decorator instead
+of adding another level of indirection. However, practicality
+beats purity, so you can add ``decorator_apply`` to your toolbox and
+use it if you need to.
+
+To give a good example for ``decorator_apply``, I will show a pretty slick
+decorator that converts a tail-recursive function into an iterative function.
+I have shamelessly stolen the core concept from Kay Schluehr's recipe
+in the Python Cookbook,
+http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/496691.
+
+$$TailRecursive
+
+Here the decorator is implemented as a class returning callable
+objects.
+
+$$tail_recursive
+
+Here is how you apply the upgraded decorator to the good old factorial:
+
+$$factorial
+
+```python
+>>> print(factorial(4))
+24
+
+```
+
+This decorator is pretty impressive, and should give you some food for
+thought! ;)
+
+Notice that there is no recursion limit now; you can easily compute
+``factorial(1001)`` (or larger) without filling the stack frame.
+
+Notice also that the decorator will *not* work on functions which
+are not tail recursive, such as the following:
+
+$$fact
+
+**Reminder:** A function is *tail recursive* if it does either of the
+following:
+
+- returns a value without making a recursive call; or,
+- returns directly the result of a recursive call.
+
+Python 3.5 coroutines
+-----------------------
+
+I am personally not using Python 3.5 coroutines yet, because at work we are
+still maintaining compatibility with Python 2.7. However, some users requested
+support for coroutines and since version 4.1 the decorator module has it.
+You should consider the support experimental and kindly report issues if
+you find any.
+
+Here I will give a single example of usage. Suppose you want to log the moment
+a coroutine starts and the moment it stops for debugging purposes. You could
+write code like the following:
+
+```python
+import time
+import logging
+from asyncio import get_event_loop, sleep, wait
+from decorator import decorator
+
+ @decorator
+async def log_start_stop(coro, *args, **kwargs):
+ logging.info('Starting %s%s', coro.__name__, args)
+ t0 = time.time()
+ await coro(*args, **kwargs)
+ dt = time.time() - t0
+ logging.info('Ending %s%s after %d seconds', coro.__name__, args, dt)
+
+@log_start_stop
+async def make_task(n):
+ for i in range(n):
+ await sleep(1)
+
+if __name__ == '__main__':
+ logging.basicConfig(level=logging.INFO)
+ tasks = [make_task(3), make_task(2), make_task(1)]
+ get_event_loop().run_until_complete(wait(tasks))
+```
+
+and you will get an output like this:
+
+```bash
+INFO:root:Starting make_task(1,)
+INFO:root:Starting make_task(3,)
+INFO:root:Starting make_task(2,)
+INFO:root:Ending make_task(1,) after 1 seconds
+INFO:root:Ending make_task(2,) after 2 seconds
+INFO:root:Ending make_task(3,) after 3 seconds
+```
+
+This may be handy if you have trouble understanding what it going on
+with a particularly complex chain of coroutines. With a single line you
+can decorate the troubling coroutine function, understand what happens, fix the
+issue and then remove the decorator (or keep it if continuous monitoring
+of the coroutines makes sense). Notice that
+``inspect.iscoroutinefunction(make_task)``
+will return the right answer (i.e. ``True``).
+
+It is also possible to define decorators converting coroutine functions
+into regular functions, such as the following:
+
+```python
+@decorator
+def coro_to_func(coro, *args, **kw):
+ "Convert a coroutine into a function"
+ return get_event_loop().run_until_complete(coro(*args, **kw))
+```
+
+Notice the diffence: the caller in ``log_start_stop`` was a coroutine
+function and the associate decorator was converting coroutines->coroutines;
+the caller in ``coro_to_func`` is a regular function and converts
+coroutines -> functions.
+
+Multiple dispatch
+-------------------------------------------
+
+There has been talk of implementing multiple dispatch functions
+(i.e. "generic functions") in Python for over ten years. Last year,
+something concrete was done for the first time. As of Python 3.4,
+we have the decorator ``functools.singledispatch`` to implement generic
+functions!
+
+As its name implies, it is limited to *single dispatch*; in other words,
+it is able to dispatch on the first argument of the function only.
+
+The ``decorator`` module provides the decorator factory ``dispatch_on``,
+which can be used to implement generic functions dispatching on *any* argument.
+Moreover, it can manage dispatching on more than one argument.
+(And, of course, it is signature-preserving.)
+
+Here is a concrete example (from a real-life use case) where it is desiderable
+to dispatch on the second argument.
+
+Suppose you have an ``XMLWriter`` class, which is instantiated
+with some configuration parameters, and has the ``.write`` method which
+serializes objects to XML:
+
+$$XMLWriter
+
+Here, you want to dispatch on the *second* argument; the first is already
+taken by ``self``. The ``dispatch_on`` decorator factory allows you to specify
+the dispatch argument simply by passing its name as a string. (Note
+that if you misspell the name you will get an error.)
+
+The decorated function `write` is turned into a generic function (
+`write` is a function at the idea it is decorated; it will be turned
+into a method later, at class instantiation time),
+and it is called if there are no more specialized implementations.
+
+Usually, default functions should raise a ``NotImplementedError``, thus
+forcing people to register some implementation.
+You can perform the registration with a decorator:
+
+$$writefloat
+
+Now ``XMLWriter`` can serialize floats:
+
+```python
+>>> writer = XMLWriter()
+>>> writer.write(2.3)
+'<float>2.3</float>'
+
+```
+
+I could give a down-to-earth example of situations in which it is desiderable
+to dispatch on more than one argument--for instance, I once implemented
+a database-access library where the first dispatching argument was the
+the database driver, and the second was the database record--but here
+I will follow tradition, and show the time-honored Rock-Paper-Scissors example:
+
+$$Rock
+$$Paper
+$$Scissors
+
+I have added an ordinal to the Rock-Paper-Scissors classes to simplify
+the implementation. The idea is to define a generic function (``win(a,
+b)``) of two arguments corresponding to the *moves* of the first and
+second players. The *moves* are instances of the classes
+Rock, Paper, and Scissors:
+
+- Paper wins over Rock
+- Scissors wins over Paper
+- Rock wins over Scissors
+
+The function will return +1 for a win, -1 for a loss, and 0 for parity.
+There are 9 combinations, but combinations with the same ordinal
+(i.e. the same class) return 0. Moreover, by exchanging the order of the
+arguments, the sign of the result changes. Therefore, it is sufficient to
+directly specify only 3 implementations:
+
+$$win
+$$winRockPaper
+$$winPaperScissors
+$$winRockScissors
+
+Here is the result:
+
+```python
+>>> win(Paper(), Rock())
+1
+>>> win(Scissors(), Paper())
+1
+>>> win(Rock(), Scissors())
+1
+>>> win(Paper(), Paper())
+0
+>>> win(Rock(), Rock())
+0
+>>> win(Scissors(), Scissors())
+0
+>>> win(Rock(), Paper())
+-1
+>>> win(Paper(), Scissors())
+-1
+>>> win(Scissors(), Rock())
+-1
+
+```
+
+The point of generic functions is that they play well with subclassing.
+For instance, suppose we define a ``StrongRock``, which does not lose against
+Paper:
+
+$$StrongRock
+$$winStrongRockPaper
+
+Then you do not need to define other implementations; they are
+inherited from the parent:
+
+```python
+>>> win(StrongRock(), Scissors())
+1
+
+```
+
+You can introspect the precedence used by the dispath algorithm by
+calling ``.dispatch_info(*types)``:
+
+```python
+>>> win.dispatch_info(StrongRock, Scissors)
+[('StrongRock', 'Scissors'), ('Rock', 'Scissors')]
+
+```
+
+Since there is no direct implementation for (``StrongRock``, ``Scissors``),
+the dispatcher will look at the implementation for (``Rock``, ``Scissors``)
+which is available. Internally, the algorithm is doing a cross
+product of the class precedence lists (or *Method Resolution Orders*,
+[MRO](http://www.python.org/2.3/mro.html) for short) of ``StrongRock``
+ and ``Scissors``, respectively.
+
+Generic functions and virtual ancestors
+-------------------------------------------------
+
+In Python, generic functions are complicated by the existence of
+"virtual ancestors": superclasses which are not in the class hierarchy.
+
+Consider this class:
+
+$$WithLength
+
+This class defines a ``__len__`` method, and is therefore
+considered to be a subclass of the abstract base class
+``collections.abc.Sized`` (``collections.Sized`` on Python 2):
+
+```python
+>>> issubclass(WithLength, collections.abc.Sized)
+True
+
+```
+
+However, ``collections.abc.Sized`` is not in the MRO_ of ``WithLength``; it
+is not a true ancestor. Any implementation of generic functions (even
+with single dispatch) must go through some contorsion to take into
+account the virtual ancestors.
+
+In particular, if we define a generic function...
+
+$$get_length
+
+...implemented on all classes with a length...
+
+$$get_length_sized
+
+...then ``get_length`` must be defined on ``WithLength`` instances...
+
+```python
+>>> get_length(WithLength())
+0
+
+```
+
+...even if ``collections.abc.Sized`` is not a true ancestor of ``WithLength``.
+
+Of course, this is a contrived example--you could just use the
+builtin ``len``--but you should get the idea.
+
+Since in Python it is possible to consider any instance of ``ABCMeta``
+as a virtual ancestor of any other class (it is enough to register it
+as ``ancestor.register(cls)``), any implementation of generic functions
+must be aware of the registration mechanism.
+
+For example, suppose you are using a third-party set-like class, like
+the following:
+
+$$SomeSet
+
+Here, the author of ``SomeSet`` made a mistake by inheriting from
+``collections.abc.Sized`` (instead of ``collections.abc.Set``).
+
+This is not a problem. You can register *a posteriori*
+``collections.abc.Set`` as a virtual ancestor of ``SomeSet``:
+
+```python
+>>> _ = collections.abc.Set.register(SomeSet)
+>>> issubclass(SomeSet, collections.abc.Set)
+True
+
+```
+
+Now, let's define an implementation of ``get_length`` specific to set:
+
+$$get_length_set
+
+The current implementation (and ``functools.singledispatch`` too)
+is able to discern that a ``Set`` is a ``Sized`` object, by looking at
+the class registry, so it uses the more specific implementation for ``Set``:
+
+```python
+>>> get_length(SomeSet()) # NB: the implementation for Sized would give 0
+1
+
+```
+
+Sometimes it is not clear how to dispatch. For instance, consider a
+class ``C`` registered both as ``collections.abc.Iterable`` and
+``collections.abc.Sized``, and defines a generic function ``g`` with
+implementations for both ``collections.abc.Iterable`` *and*
+``collections.abc.Sized``:
+
+$$singledispatch_example1
+
+It is impossible to decide which implementation to use, since the ancestors
+are independent. The following function will raise a ``RuntimeError``
+when called. This is consistent with the "refuse the temptation to guess"
+philosophy. ``functools.singledispatch`` would raise a similar error.
+
+It would be easy to rely on the order of registration to decide the
+precedence order. This is reasonable, but also fragile:
+
+- if, during some refactoring, you change the registration order by mistake,
+ a different implementation could be taken;
+- if implementations of the generic functions are distributed across modules,
+ and you change the import order, a different implementation could be taken.
+
+So the ``decorator`` module prefers to raise an error in the face of ambiguity.
+This is the same approach taken by the standard library.
+
+However, it should be noted that the *dispatch algorithm* used by the decorator
+module is different from the one used by the standard library, so in certain
+cases you will get different answers. The difference is that
+``functools.singledispatch`` tries to insert the virtual ancestors *before* the
+base classes, whereas ``decorator.dispatch_on`` tries to insert them *after*
+the base classes.
+
+Here's an example that shows the difference:
+
+$$singledispatch_example2
+
+If you play with this example and replace the ``singledispatch`` definition
+with ``functools.singledispatch``, the assertion will break: ``g`` will return
+``"container"`` instead of ``"s"``, because ``functools.singledispatch``
+will insert the ``Container`` class right before ``S``.
+
+Notice that here I am not making any bold claim such as "the standard
+library algorithm is wrong and my algorithm is right" or viceversa. It
+just point out that there are some subtle differences. The only way to
+understand what is really happening here is to scratch your head by
+looking at the implementations. I will just notice that
+``.dispatch_info`` is quite essential to see the class precedence
+list used by algorithm:
+
+```python
+>>> g, V = singledispatch_example2()
+>>> g.dispatch_info(V)
+[('V',), ('Sized',), ('S',), ('Container',)]
+
+```
+
+The current implementation does not implement any kind of cooperation
+between implementations. In other words, nothing is akin either to
+call-next-method in Lisp, or to ``super`` in Python.
+
+Finally, let me notice that the decorator module implementation does
+not use any cache, whereas the ``singledispatch`` implementation does.
+
+Caveats and limitations
+-------------------------------------------
+
+One thing you should be aware of, is the performance penalty of decorators.
+The worse case is shown by the following example:
+
+```bash
+ $ cat performance.sh
+ python3 -m timeit -s "
+ from decorator import decorator
+
+ @decorator
+ def do_nothing(func, *args, **kw):
+ return func(*args, **kw)
+
+ @do_nothing
+ def f():
+ pass
+ " "f()"
+
+ python3 -m timeit -s "
+ def f():
+ pass
+ " "f()"
+
+```
+On my laptop, using the ``do_nothing`` decorator instead of the
+plain function is five times slower:
+
+```bash
+ $ bash performance.sh
+ 1000000 loops, best of 3: 1.39 usec per loop
+ 1000000 loops, best of 3: 0.278 usec per loop
+```
+Of course, a real life function probably does something more useful
+than the function ``f`` here, so the real life performance penalty
+*could* be negligible. As always, the only way to know if there is a
+penalty in your specific use case is to measure it.
+
+More importantly, you should be aware that decorators will make your
+tracebacks longer and more difficult to understand.
+
+Consider this example:
+
+```python
+>>> @trace
+... def f():
+... 1/0
+
+```
+
+Calling ``f()`` gives you a ``ZeroDivisionError``.
+But since the function is decorated, the traceback is longer:
+
+```python
+>>> f() # doctest: +ELLIPSIS
+Traceback (most recent call last):
+ ...
+ File "<string>", line 2, in f
+ File "<doctest __main__[22]>", line 4, in trace
+ return f(*args, **kw)
+ File "<doctest __main__[51]>", line 3, in f
+ 1/0
+ZeroDivisionError: ...
+
+```
+
+You see here the inner call to the decorator ``trace``, which calls
+``f(*args, **kw)``, and a reference to ``File "<string>", line 2, in f``.
+
+This latter reference is due to the fact that, internally, the decorator
+module uses ``exec`` to generate the decorated function. Notice that
+``exec`` is *not* responsible for the performance penalty, since is the
+called *only once* (at function decoration time); it is *not* called
+each time the decorated function is called.
+
+Presently, there is no clean way to avoid ``exec``. A clean solution
+would require changing the CPython implementation, by
+adding a hook to functions (to allow changing their signature directly).
+
+Even in Python 3.5, it is impossible to change the
+function signature directly. Thus, the ``decorator`` module is
+still useful! As a matter of fact, this is the main reason why I still
+maintain the module and release new versions.
+
+It should be noted that in Python 3.5, a *lot* of improvements have
+been made: you can decorate a function with
+``func_tools.update_wrapper``, and ``pydoc`` will see the correct
+signature. Unfortunately, the function will still have an incorrect
+signature internally, as you can see by using
+``inspect.getfullargspec``; so, all documentation tools using
+``inspect.getfullargspec`` - which has been rightly deprecated -
+will see the wrong signature.
+
+In the present implementation, decorators generated by ``decorator``
+can only be used on user-defined Python functions or methods.
+They cannot be used on generic callable objects or built-in functions,
+due to limitations of the standard library's ``inspect`` module, especially
+for Python 2. In Python 3.5, many such limitations have been removed, but
+I still think that it is cleaner and safer to decorate only functions and
+coroutines. If you want to decorate things like classmethods/staticmethods
+and general callables - which I will never support in the decorator module -
+I suggest you to look at the [wrapt](https://wrapt.readthedocs.io/en/latest/)
+project by Graeme Dumpleton.
+
+There is a strange quirk when decorating functions with keyword
+arguments, if one of the arguments has the same name used in the
+caller function for the first argument. The quirk was reported by
+David Goldstein.
+
+Here is an example where it is manifest:
+
+```python
+>>> @memoize
+... def getkeys(**kw):
+... return kw.keys()
+
+>>> getkeys(func='a') # doctest: +ELLIPSIS
+Traceback (most recent call last):
+ ...
+TypeError: _memoize() got multiple values for ... 'func'
+
+```
+
+The error message looks really strange... until you realize that
+the caller function `_memoize` uses `func` as first argument,
+so there is a confusion between the positional argument and the
+keywork arguments.
+
+The solution is to change the name of the first argument in `_memoize`,
+or to change the implementation like so:
+
+```python
+
+def _memoize(*all_args, **kw):
+ func = all_args[0]
+ args = all_args[1:]
+ if kw: # frozenset is used to ensure hashability
+ key = args, frozenset(kw.items())
+ else:
+ key = args
+ cache = func.cache # attribute added by memoize
+ if key not in cache:
+ cache[key] = func(*args, **kw)
+ return cache[key]
+```
+
+This avoids the need to name the first argument, so the problem
+simply disappears. This is a technique that you should keep in mind
+when writing decorators for functions with keyword arguments. Also,
+notice that lately I have come to believe that decorating functions with
+keyword arguments is not such a good idea, and you may want not to do
+that.
+
+On a similar note, there is a restriction on argument names. For instance,
+if you name an argument ``_call_`` or ``_func_``, you will get a ``NameError``:
+
+```python
+>>> @trace
+... def f(_func_): print(f)
+...
+Traceback (most recent call last):
+ ...
+NameError: _func_ is overridden in
+def f(_func_):
+ return _call_(_func_, _func_)
+
+```
+
+Finally, the implementation is such that the decorated function makes
+a (shallow) copy of the original function dictionary:
+
+```python
+>>> def f(): pass # the original function
+>>> f.attr1 = "something" # setting an attribute
+>>> f.attr2 = "something else" # setting another attribute
+
+>>> traced_f = trace(f) # the decorated function
+
+>>> traced_f.attr1
+'something'
+>>> traced_f.attr2 = "something different" # setting attr
+>>> f.attr2 # the original attribute did not change
+'something else'
+
+```
+
+LICENSE (2-clause BSD)
+---------------------------------------------
+
+Copyright (c) 2005-2020, Michele Simionato
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are
+met:
+
+ Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ Redistributions in bytecode form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in
+ the documentation and/or other materials provided with the
+ distribution.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
+OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
+TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
+USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
+DAMAGE.
+
+If you use this software and you are happy with it, consider sending me a
+note, just to gratify my ego. On the other hand, if you use this software and
+you are unhappy with it, send me a patch!
+"""
+
+function_annotations = """Function annotations
+---------------------------------------------
+
+Python 3 introduced the concept of [function annotations](
+http://www.python.org/dev/peps/pep-3107/): the ability
+to annotate the signature of a function with additional information,
+stored in a dictionary named ``__annotations__``. The ``decorator`` module
+(starting from release 3.3) will understand and preserve these annotations.
+
+Here is an example:
+
+```python
+>>> @trace
+... def f(x: 'the first argument', y: 'default argument'=1, z=2,
+... *args: 'varargs', **kw: 'kwargs'):
+... pass
+
+```
+
+In order to introspect functions with annotations, one needs the
+utility ``inspect.getfullargspec`` (introduced in Python 3, then
+deprecated in Python 3.5, then undeprecated in Python 3.6):
+
+```python
+>>> from inspect import getfullargspec
+>>> argspec = getfullargspec(f)
+>>> argspec.args
+['x', 'y', 'z']
+>>> argspec.varargs
+'args'
+>>> argspec.varkw
+'kw'
+>>> argspec.defaults
+(1, 2)
+>>> argspec.kwonlyargs
+[]
+>>> argspec.kwonlydefaults
+
+```
+
+You can check that the ``__annotations__`` dictionary is preserved:
+
+```python
+>>> f.__annotations__ is f.__wrapped__.__annotations__
+True
+
+```
+
+Here ``f.__wrapped__`` is the original undecorated function.
+This attribute exists for consistency with the behavior of
+``functools.update_wrapper``.
+
+Another attribute copied from the original function is ``__qualname__``,
+the qualified name. This attribute was introduced in Python 3.3.
+"""
+
+if sys.version_info < (3,):
+ function_annotations = ''
+
+today = time.strftime('%Y-%m-%d')
+
+__doc__ = (doc.replace('$VERSION', __version__).replace('$DATE', today)
+ .replace('$FUNCTION_ANNOTATIONS', function_annotations))
+
+
+def decorator_apply(dec, func):
+ """
+ Decorate a function by preserving the signature even if dec
+ is not a signature-preserving decorator.
+ """
+ return FunctionMaker.create(
+ func, 'return decfunc(%(signature)s)',
+ dict(decfunc=dec(func)), __wrapped__=func)
+
+
+def _trace(f, *args, **kw):
+ kwstr = ', '.join('%r: %r' % (k, kw[k]) for k in sorted(kw))
+ print("calling %s with args %s, {%s}" % (f.__name__, args, kwstr))
+ return f(*args, **kw)
+
+
+def trace(f):
+ return decorate(f, _trace)
+
+
+class Future(threading.Thread):
+ """
+ A class converting blocking functions into asynchronous
+ functions by using threads.
+ """
+ def __init__(self, func, *args, **kw):
+ try:
+ counter = func.counter
+ except AttributeError: # instantiate the counter at the first call
+ counter = func.counter = itertools.count(1)
+ name = '%s-%s' % (func.__name__, next(counter))
+
+ def func_wrapper():
+ self._result = func(*args, **kw)
+ super(Future, self).__init__(target=func_wrapper, name=name)
+ self.start()
+
+ def result(self):
+ self.join()
+ return self._result
+
+
+def identity_dec(func):
+ def wrapper(*args, **kw):
+ return func(*args, **kw)
+ return wrapper
+
+
+@identity_dec
+def example():
+ pass
+
+
+def memoize_uw(func):
+ func.cache = {}
+
+ def memoize(*args, **kw):
+ if kw: # frozenset is used to ensure hashability
+ key = args, frozenset(kw.items())
+ else:
+ key = args
+ if key not in func.cache:
+ func.cache[key] = func(*args, **kw)
+ return func.cache[key]
+ return functools.update_wrapper(memoize, func)
+
+
+@memoize_uw
+def f1(x):
+ "Simulate some long computation"
+ time.sleep(1)
+ return x
+
+
+def _memoize(func, *args, **kw):
+ if kw: # frozenset is used to ensure hashability
+ key = args, frozenset(kw.items())
+ else:
+ key = args
+ cache = func.cache # attribute added by memoize
+ if key not in cache:
+ cache[key] = func(*args, **kw)
+ return cache[key]
+
+
+def memoize(f):
+ """
+ A simple memoize implementation. It works by adding a .cache dictionary
+ to the decorated function. The cache will grow indefinitely, so it is
+ your responsibility to clear it, if needed.
+ """
+ f.cache = {}
+ return decorate(f, _memoize)
+
+
+@decorator
+def blocking(f, msg='blocking', *args, **kw):
+ if not hasattr(f, "thread"): # no thread running
+ def set_result():
+ f.result = f(*args, **kw)
+ f.thread = threading.Thread(None, set_result)
+ f.thread.start()
+ return msg
+ elif f.thread.is_alive():
+ return msg
+ else: # the thread is ended, return the stored result
+ del f.thread
+ return f.result
+
+
+class User(object):
+ "Will just be able to see a page"
+
+
+class PowerUser(User):
+ "Will be able to add new pages too"
+
+
+class Admin(PowerUser):
+ "Will be able to delete pages too"
+
+
+class PermissionError(Exception):
+ """
+ >>> a = Action()
+ >>> a.user = User()
+ >>> a.view() # ok
+ >>> a.insert() # doctest: +IGNORE_EXCEPTION_DETAIL
+ Traceback (most recent call last):
+ ...
+ PermissionError: User does not have the permission to run insert!
+ """
+
+
+@decorator
+def restricted(func, user_class=User, *args, **kw):
+ "Restrict access to a given class of users"
+ self = args[0]
+ if isinstance(self.user, user_class):
+ return func(*args, **kw)
+ else:
+ raise PermissionError(
+ '%s does not have the permission to run %s!'
+ % (self.user, func.__name__))
+
+
+class Action(object):
+ @restricted(user_class=User)
+ def view(self):
+ "Any user can view objects"
+
+ @restricted(user_class=PowerUser)
+ def insert(self):
+ "Only power users can insert objects"
+
+ @restricted(user_class=Admin)
+ def delete(self):
+ "Only the admin can delete objects"
+
+
+class TailRecursive(object):
+ """
+ tail_recursive decorator based on Kay Schluehr's recipe
+ http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/496691
+ with improvements by me and George Sakkis.
+ """
+
+ def __init__(self, func):
+ self.func = func
+ self.firstcall = True
+ self.CONTINUE = object() # sentinel
+
+ def __call__(self, *args, **kwd):
+ CONTINUE = self.CONTINUE
+ if self.firstcall:
+ func = self.func
+ self.firstcall = False
+ try:
+ while True:
+ result = func(*args, **kwd)
+ if result is CONTINUE: # update arguments
+ args, kwd = self.argskwd
+ else: # last call
+ return result
+ finally:
+ self.firstcall = True
+ else: # return the arguments of the tail call
+ self.argskwd = args, kwd
+ return CONTINUE
+
+
+def tail_recursive(func):
+ return decorator_apply(TailRecursive, func)
+
+
+@tail_recursive
+def factorial(n, acc=1):
+ "The good old factorial"
+ if n == 0:
+ return acc
+ return factorial(n-1, n*acc)
+
+
+def fact(n): # this is not tail-recursive
+ if n == 0:
+ return 1
+ return n * fact(n-1)
+
+
+def a_test_for_pylons():
+ """
+ In version 3.1.0 decorator(caller) returned a nameless partial
+ object, thus breaking Pylons. That must not happen again.
+
+ >>> decorator(_memoize).__name__
+ '_memoize'
+
+ Here is another bug of version 3.1.1 missing the docstring:
+
+ >>> factorial.__doc__
+ 'The good old factorial'
+ """
+
+
+if sys.version_info >= (3,): # tests for signatures specific to Python 3
+
+ def test_kwonlydefaults():
+ """
+ >>> @trace
+ ... def f(arg, defarg=1, *args, kwonly=2): pass
+ ...
+ >>> f.__kwdefaults__
+ {'kwonly': 2}
+ """
+
+ def test_kwonlyargs():
+ """
+ >>> @trace
+ ... def func(a, b, *args, y=2, z=3, **kwargs):
+ ... return y, z
+ ...
+ >>> func('a', 'b', 'c', 'd', 'e', y='y', z='z', cat='dog')
+ calling func with args ('a', 'b', 'c', 'd', 'e'), {'cat': 'dog', 'y': 'y', 'z': 'z'}
+ ('y', 'z')
+ """
+
+ def test_kwonly_no_args():
+ """# this was broken with decorator 3.3.3
+ >>> @trace
+ ... def f(**kw): pass
+ ...
+ >>> f()
+ calling f with args (), {}
+ """
+
+ def test_kwonly_star_notation():
+ """
+ >>> @trace
+ ... def f(*, a=1, **kw): pass
+ ...
+ >>> import inspect
+ >>> inspect.getfullargspec(f)
+ FullArgSpec(args=[], varargs=None, varkw='kw', defaults=None, kwonlyargs=['a'], kwonlydefaults={'a': 1}, annotations={})
+ """
+
+
+@contextmanager
+def before_after(before, after):
+ print(before)
+ yield
+ print(after)
+
+
+ba = before_after('BEFORE', 'AFTER') # ContextManager instance
+
+
+@ba
+def hello(user):
+ """
+ >>> ba.__class__.__name__
+ 'ContextManager'
+ >>> hello('michele')
+ BEFORE
+ hello michele
+ AFTER
+ """
+ print('hello %s' % user)
+
+
+# ####################### multiple dispatch ############################ #
+
+
+class XMLWriter(object):
+ def __init__(self, **config):
+ self.cfg = config
+
+ @dispatch_on('obj')
+ def write(self, obj):
+ raise NotImplementedError(type(obj))
+
+
+@XMLWriter.write.register(float)
+def writefloat(self, obj):
+ return '<float>%s</float>' % obj
+
+
+class Rock(object):
+ ordinal = 0
+
+
+class Paper(object):
+ ordinal = 1
+
+
+class Scissors(object):
+ ordinal = 2
+
+
+class StrongRock(Rock):
+ pass
+
+
+@dispatch_on('a', 'b')
+def win(a, b):
+ if a.ordinal == b.ordinal:
+ return 0
+ elif a.ordinal > b.ordinal:
+ return -win(b, a)
+ raise NotImplementedError((type(a), type(b)))
+
+
+@win.register(Rock, Paper)
+def winRockPaper(a, b):
+ return -1
+
+
+@win.register(Rock, Scissors)
+def winRockScissors(a, b):
+ return 1
+
+
+@win.register(Paper, Scissors)
+def winPaperScissors(a, b):
+ return -1
+
+
+@win.register(StrongRock, Paper)
+def winStrongRockPaper(a, b):
+ return 0
+
+
+class WithLength(object):
+ def __len__(self):
+ return 0
+
+
+class SomeSet(collections.abc.Sized):
+ # methods that make SomeSet set-like
+ # not shown ...
+ def __len__(self):
+ return 0
+
+
+@dispatch_on('obj')
+def get_length(obj):
+ raise NotImplementedError(type(obj))
+
+
+@get_length.register(collections.abc.Sized)
+def get_length_sized(obj):
+ return len(obj)
+
+
+@get_length.register(collections.abc.Set)
+def get_length_set(obj):
+ return 1
+
+
+class C(object):
+ "Registered as Sized and Iterable"
+
+
+collections.abc.Sized.register(C)
+collections.abc.Iterable.register(C)
+
+
+def singledispatch_example1():
+ singledispatch = dispatch_on('obj')
+
+ @singledispatch
+ def g(obj):
+ raise NotImplementedError(type(g))
+
+ @g.register(collections.abc.Sized)
+ def g_sized(object):
+ return "sized"
+
+ @g.register(collections.abc.Iterable)
+ def g_iterable(object):
+ return "iterable"
+
+ g(C()) # RuntimeError: Ambiguous dispatch: Iterable or Sized?
+
+
+def singledispatch_example2():
+ # adapted from functools.singledispatch test case
+ singledispatch = dispatch_on('arg')
+
+ class S(object):
+ pass
+
+ class V(c.Sized, S):
+ def __len__(self):
+ return 0
+
+ @singledispatch
+ def g(arg):
+ return "base"
+
+ @g.register(S)
+ def g_s(arg):
+ return "s"
+
+ @g.register(c.Container)
+ def g_container(arg):
+ return "container"
+
+ v = V()
+ assert g(v) == "s"
+ c.Container.register(V) # add c.Container to the virtual mro of V
+ assert g(v) == "s" # since the virtual mro is V, Sized, S, Container
+ return g, V
+
+
+@decorator
+def warn_slow(func, duration=0, *args, **kwargs):
+ t0 = time.time()
+ res = func(*args, **kwargs)
+ dt = time.time() - t0
+ if dt >= duration:
+ print('%s is slow' % func.__name__)
+ return res
+
+
+@warn_slow() # with parens
+def operation1():
+ """
+ >>> operation1()
+ operation1 is slow
+ """
+ time.sleep(.1)
+
+
+@warn_slow # without parens
+def operation2():
+ """
+ >>> operation2()
+ operation2 is slow
+ """
+ time.sleep(.1)
+
+
+if __name__ == '__main__':
+ import doctest
+ doctest.testmod()
diff --git a/contrib/python/decorator/py3/tests/test.py b/contrib/python/decorator/py3/tests/test.py
new file mode 100644
index 0000000000..7ddfaf45b9
--- /dev/null
+++ b/contrib/python/decorator/py3/tests/test.py
@@ -0,0 +1,480 @@
+from __future__ import absolute_import
+import sys
+import doctest
+import unittest
+import decimal
+import inspect
+import functools
+import collections
+from collections import defaultdict
+try:
+ c = collections.abc
+except AttributeError:
+ c = collections
+from decorator import dispatch_on, contextmanager, decorator
+try:
+ from . import documentation as doc
+except (ImportError, ValueError, SystemError): # depending on the py-version
+ import documentation as doc
+
+
+@contextmanager
+def assertRaises(etype):
+ """This works in Python 2.6 too"""
+ try:
+ yield
+ except etype:
+ pass
+ else:
+ raise Exception('Expected %s' % etype.__name__)
+
+
+if sys.version_info >= (3, 5):
+ exec('''from asyncio import get_event_loop
+
+@decorator
+async def before_after(coro, *args, **kwargs):
+ return "<before>" + (await coro(*args, **kwargs)) + "<after>"
+
+@decorator
+def coro_to_func(coro, *args, **kw):
+ return get_event_loop().run_until_complete(coro(*args, **kw))
+
+class CoroutineTestCase(unittest.TestCase):
+ def test_before_after(self):
+ @before_after
+ async def coro(x):
+ return x
+ self.assertTrue(inspect.iscoroutinefunction(coro))
+ out = get_event_loop().run_until_complete(coro('x'))
+ self.assertEqual(out, '<before>x<after>')
+
+ def test_coro_to_func(self):
+ @coro_to_func
+ async def coro(x):
+ return x
+ self.assertFalse(inspect.iscoroutinefunction(coro))
+ self.assertEqual(coro('x'), 'x')
+''')
+
+
+def gen123():
+ yield 1
+ yield 2
+ yield 3
+
+
+class GeneratorCallerTestCase(unittest.TestCase):
+ def test_gen123(self):
+ @decorator
+ def square(func, *args, **kw):
+ for x in gen123():
+ yield x * x
+ new = square(gen123)
+ self.assertTrue(inspect.isgeneratorfunction(new))
+ self.assertEqual(list(new()), [1, 4, 9])
+
+
+class DocumentationTestCase(unittest.TestCase):
+ def test(self):
+ err = doctest.testmod(doc)[0]
+ self.assertEqual(err, 0)
+
+ def test_singledispatch1(self):
+ if hasattr(functools, 'singledispatch'):
+ with assertRaises(RuntimeError):
+ doc.singledispatch_example1()
+
+ def test_singledispatch2(self):
+ if hasattr(functools, 'singledispatch'):
+ doc.singledispatch_example2()
+
+
+class ExtraTestCase(unittest.TestCase):
+ def test_qualname(self):
+ if sys.version_info >= (3, 3):
+ self.assertEqual(doc.hello.__qualname__, 'hello')
+ else:
+ with assertRaises(AttributeError):
+ doc.hello.__qualname__
+
+ def test_signature(self):
+ if hasattr(inspect, 'signature'):
+ sig = inspect.signature(doc.f1)
+ self.assertEqual(str(sig), '(x)')
+
+ def test_unique_filenames(self):
+ @decorator
+ def d1(f, *args, **kwargs):
+ return f(*args, **kwargs)
+
+ @decorator
+ def d2(f, *args, **kwargs):
+ return f(*args, **kwargs)
+
+ @d1
+ def f1(x, y, z):
+ pass
+
+ @d2
+ def f2(x, y, z):
+ pass
+
+ f1_orig = f1
+
+ @d1
+ def f1(x, y, z):
+ pass
+ self.assertNotEqual(d1.__code__.co_filename, d2.__code__.co_filename)
+ self.assertNotEqual(f1.__code__.co_filename, f2.__code__.co_filename)
+ self.assertNotEqual(f1_orig.__code__.co_filename,
+ f1.__code__.co_filename)
+
+ def test_no_first_arg(self):
+ @decorator
+ def example(*args, **kw):
+ return args[0](*args[1:], **kw)
+
+ @example
+ def func(**kw):
+ return kw
+
+ # there is no confusion when passing args as a keyword argument
+ self.assertEqual(func(args='a'), {'args': 'a'})
+
+ def test_decorator_factory(self):
+ # similar to what IPython is doing in traitlets.config.application
+ @decorator
+ def catch_config_error(method, app, *args, **kwargs):
+ return method(app)
+ catch_config_error(lambda app: None)
+
+ def test_add1(self):
+ # similar to what IPython is doing in traitlets.config.application
+ @decorator
+ def add(func, const=1, *args, **kwargs):
+ return const + func(*args, **kwargs)
+
+ def f(x):
+ return x
+ self.assertEqual(add(f, 2)(0), 2)
+
+
+# ################### test dispatch_on ############################# #
+# adapted from test_functools in Python 3.5
+singledispatch = dispatch_on('obj')
+
+
+class TestSingleDispatch(unittest.TestCase):
+ def test_simple_overloads(self):
+ @singledispatch
+ def g(obj):
+ return "base"
+
+ @g.register(int)
+ def g_int(i):
+ return "integer"
+
+ self.assertEqual(g("str"), "base")
+ self.assertEqual(g(1), "integer")
+ self.assertEqual(g([1, 2, 3]), "base")
+
+ def test_mro(self):
+ @singledispatch
+ def g(obj):
+ return "base"
+
+ class A(object):
+ pass
+
+ class C(A):
+ pass
+
+ class B(A):
+ pass
+
+ class D(C, B):
+ pass
+
+ @g.register(A)
+ def g_A(a):
+ return "A"
+
+ @g.register(B)
+ def g_B(b):
+ return "B"
+
+ self.assertEqual(g(A()), "A")
+ self.assertEqual(g(B()), "B")
+ self.assertEqual(g(C()), "A")
+ self.assertEqual(g(D()), "B")
+
+ def test_register_decorator(self):
+ @singledispatch
+ def g(obj):
+ return "base"
+
+ @g.register(int)
+ def g_int(i):
+ return "int %s" % (i,)
+ self.assertEqual(g(""), "base")
+ self.assertEqual(g(12), "int 12")
+
+ def test_register_error(self):
+ @singledispatch
+ def g(obj):
+ return "base"
+
+ with assertRaises(TypeError):
+ # wrong number of arguments
+ @g.register(int)
+ def g_int():
+ return "int"
+
+ def test_wrapping_attributes(self):
+ @singledispatch
+ def g(obj):
+ "Simple test"
+ return "Test"
+ self.assertEqual(g.__name__, "g")
+ if sys.flags.optimize < 2:
+ self.assertEqual(g.__doc__, "Simple test")
+
+ def test_c_classes(self):
+ @singledispatch
+ def g(obj):
+ return "base"
+
+ @g.register(decimal.DecimalException)
+ def _(obj):
+ return obj.args
+ subn = decimal.Subnormal("Exponent < Emin")
+ rnd = decimal.Rounded("Number got rounded")
+ self.assertEqual(g(subn), ("Exponent < Emin",))
+ self.assertEqual(g(rnd), ("Number got rounded",))
+
+ @g.register(decimal.Subnormal)
+ def _g(obj):
+ return "Too small to care."
+ self.assertEqual(g(subn), "Too small to care.")
+ self.assertEqual(g(rnd), ("Number got rounded",))
+
+ def test_register_abc(self):
+ d = {"a": "b"}
+ l = [1, 2, 3]
+ s = set([object(), None])
+ f = frozenset(s)
+ t = (1, 2, 3)
+
+ @singledispatch
+ def g(obj):
+ return "base"
+
+ self.assertEqual(g(d), "base")
+ self.assertEqual(g(l), "base")
+ self.assertEqual(g(s), "base")
+ self.assertEqual(g(f), "base")
+ self.assertEqual(g(t), "base")
+
+ g.register(c.Sized)(lambda obj: "sized")
+ self.assertEqual(g(d), "sized")
+ self.assertEqual(g(l), "sized")
+ self.assertEqual(g(s), "sized")
+ self.assertEqual(g(f), "sized")
+ self.assertEqual(g(t), "sized")
+
+ g.register(c.MutableMapping)(lambda obj: "mutablemapping")
+ self.assertEqual(g(d), "mutablemapping")
+ self.assertEqual(g(l), "sized")
+ self.assertEqual(g(s), "sized")
+ self.assertEqual(g(f), "sized")
+ self.assertEqual(g(t), "sized")
+
+ if hasattr(c, 'ChainMap'):
+ g.register(c.ChainMap)(lambda obj: "chainmap")
+ # irrelevant ABCs registered
+ self.assertEqual(g(d), "mutablemapping")
+ self.assertEqual(g(l), "sized")
+ self.assertEqual(g(s), "sized")
+ self.assertEqual(g(f), "sized")
+ self.assertEqual(g(t), "sized")
+
+ g.register(c.MutableSequence)(lambda obj: "mutablesequence")
+ self.assertEqual(g(d), "mutablemapping")
+ self.assertEqual(g(l), "mutablesequence")
+ self.assertEqual(g(s), "sized")
+ self.assertEqual(g(f), "sized")
+ self.assertEqual(g(t), "sized")
+
+ g.register(c.MutableSet)(lambda obj: "mutableset")
+ self.assertEqual(g(d), "mutablemapping")
+ self.assertEqual(g(l), "mutablesequence")
+ self.assertEqual(g(s), "mutableset")
+ self.assertEqual(g(f), "sized")
+ self.assertEqual(g(t), "sized")
+
+ g.register(c.Mapping)(lambda obj: "mapping")
+ self.assertEqual(g(d), "mutablemapping") # not specific enough
+ self.assertEqual(g(l), "mutablesequence")
+ self.assertEqual(g(s), "mutableset")
+ self.assertEqual(g(f), "sized")
+ self.assertEqual(g(t), "sized")
+
+ g.register(c.Sequence)(lambda obj: "sequence")
+ self.assertEqual(g(d), "mutablemapping")
+ self.assertEqual(g(l), "mutablesequence")
+ self.assertEqual(g(s), "mutableset")
+ self.assertEqual(g(f), "sized")
+ self.assertEqual(g(t), "sequence")
+
+ g.register(c.Set)(lambda obj: "set")
+ self.assertEqual(g(d), "mutablemapping")
+ self.assertEqual(g(l), "mutablesequence")
+ self.assertEqual(g(s), "mutableset")
+ self.assertEqual(g(f), "set")
+ self.assertEqual(g(t), "sequence")
+
+ g.register(dict)(lambda obj: "dict")
+ self.assertEqual(g(d), "dict")
+ self.assertEqual(g(l), "mutablesequence")
+ self.assertEqual(g(s), "mutableset")
+ self.assertEqual(g(f), "set")
+ self.assertEqual(g(t), "sequence")
+
+ g.register(list)(lambda obj: "list")
+ self.assertEqual(g(d), "dict")
+ self.assertEqual(g(l), "list")
+ self.assertEqual(g(s), "mutableset")
+ self.assertEqual(g(f), "set")
+ self.assertEqual(g(t), "sequence")
+
+ g.register(set)(lambda obj: "concrete-set")
+ self.assertEqual(g(d), "dict")
+ self.assertEqual(g(l), "list")
+ self.assertEqual(g(s), "concrete-set")
+ self.assertEqual(g(f), "set")
+ self.assertEqual(g(t), "sequence")
+
+ g.register(frozenset)(lambda obj: "frozen-set")
+ self.assertEqual(g(d), "dict")
+ self.assertEqual(g(l), "list")
+ self.assertEqual(g(s), "concrete-set")
+ self.assertEqual(g(f), "frozen-set")
+ self.assertEqual(g(t), "sequence")
+
+ g.register(tuple)(lambda obj: "tuple")
+ self.assertEqual(g(d), "dict")
+ self.assertEqual(g(l), "list")
+ self.assertEqual(g(s), "concrete-set")
+ self.assertEqual(g(f), "frozen-set")
+ self.assertEqual(g(t), "tuple")
+
+ def test_mro_conflicts(self):
+ @singledispatch
+ def g(obj):
+ return "base"
+
+ class O(c.Sized):
+ def __len__(self):
+ return 0
+ o = O()
+ self.assertEqual(g(o), "base")
+ g.register(c.Iterable)(lambda arg: "iterable")
+ g.register(c.Container)(lambda arg: "container")
+ g.register(c.Sized)(lambda arg: "sized")
+ g.register(c.Set)(lambda arg: "set")
+ self.assertEqual(g(o), "sized")
+ c.Iterable.register(O)
+ self.assertEqual(g(o), "sized")
+ c.Container.register(O)
+ with assertRaises(RuntimeError): # was "sized" because in mro
+ self.assertEqual(g(o), "sized")
+ c.Set.register(O)
+ self.assertEqual(g(o), "set")
+
+ class P(object):
+ pass
+ p = P()
+ self.assertEqual(g(p), "base")
+ c.Iterable.register(P)
+ self.assertEqual(g(p), "iterable")
+ c.Container.register(P)
+
+ with assertRaises(RuntimeError):
+ self.assertEqual(g(p), "iterable")
+
+ class Q(c.Sized):
+ def __len__(self):
+ return 0
+ q = Q()
+ self.assertEqual(g(q), "sized")
+ c.Iterable.register(Q)
+ self.assertEqual(g(q), "sized")
+ c.Set.register(Q)
+ self.assertEqual(g(q), "set")
+ # because c.Set is a subclass of c.Sized and c.Iterable
+
+ @singledispatch
+ def h(obj):
+ return "base"
+
+ @h.register(c.Sized)
+ def h_sized(arg):
+ return "sized"
+
+ @h.register(c.Container)
+ def h_container(arg):
+ return "container"
+ # Even though Sized and Container are explicit bases of MutableMapping,
+ # this ABC is implicitly registered on defaultdict which makes all of
+ # MutableMapping's bases implicit as well from defaultdict's
+ # perspective.
+ with assertRaises(RuntimeError):
+ self.assertEqual(h(defaultdict(lambda: 0)), "sized")
+
+ class R(defaultdict):
+ pass
+ c.MutableSequence.register(R)
+
+ @singledispatch
+ def i(obj):
+ return "base"
+
+ @i.register(c.MutableMapping)
+ def i_mapping(arg):
+ return "mapping"
+
+ @i.register(c.MutableSequence)
+ def i_sequence(arg):
+ return "sequence"
+ r = R()
+ with assertRaises(RuntimeError): # was no error
+ self.assertEqual(i(r), "sequence")
+
+ class S(object):
+ pass
+
+ class T(S, c.Sized):
+ def __len__(self):
+ return 0
+ t = T()
+ self.assertEqual(h(t), "sized")
+ c.Container.register(T)
+ self.assertEqual(h(t), "sized") # because it's explicitly in the MRO
+
+ class U(object):
+ def __len__(self):
+ return 0
+ u = U()
+ self.assertEqual(h(u), "sized")
+ # implicit Sized subclass inferred
+ # from the existence of __len__()
+
+ c.Container.register(U)
+ # There is no preference for registered versus inferred ABCs.
+ with assertRaises(RuntimeError):
+ h(u)
+
+
+if __name__ == '__main__':
+ unittest.main()
diff --git a/contrib/python/decorator/py3/tests/ya.make b/contrib/python/decorator/py3/tests/ya.make
new file mode 100644
index 0000000000..173334b4b5
--- /dev/null
+++ b/contrib/python/decorator/py3/tests/ya.make
@@ -0,0 +1,19 @@
+PY3TEST()
+
+PEERDIR(
+ contrib/python/decorator
+)
+
+PY_SRCS(
+ TOP_LEVEL
+ documentation.py
+)
+
+TEST_SRCS(
+ #documentation.py
+ test.py
+)
+
+NO_LINT()
+
+END()
diff --git a/contrib/python/decorator/py3/ya.make b/contrib/python/decorator/py3/ya.make
new file mode 100644
index 0000000000..e6b2b2bdeb
--- /dev/null
+++ b/contrib/python/decorator/py3/ya.make
@@ -0,0 +1,26 @@
+# Generated by devtools/yamaker (pypi).
+
+PY3_LIBRARY()
+
+VERSION(4.4.2)
+
+LICENSE(BSD-3-Clause)
+
+NO_LINT()
+
+PY_SRCS(
+ TOP_LEVEL
+ decorator.py
+)
+
+RESOURCE_FILES(
+ PREFIX contrib/python/decorator/py3/
+ .dist-info/METADATA
+ .dist-info/top_level.txt
+)
+
+END()
+
+RECURSE_FOR_TESTS(
+ tests
+)
diff --git a/contrib/python/decorator/ya.make b/contrib/python/decorator/ya.make
new file mode 100644
index 0000000000..7431bc5c75
--- /dev/null
+++ b/contrib/python/decorator/ya.make
@@ -0,0 +1,18 @@
+PY23_LIBRARY()
+
+LICENSE(Service-Py23-Proxy)
+
+IF (PYTHON2)
+ PEERDIR(contrib/python/decorator/py2)
+ELSE()
+ PEERDIR(contrib/python/decorator/py3)
+ENDIF()
+
+NO_LINT()
+
+END()
+
+RECURSE(
+ py2
+ py3
+)