summaryrefslogtreecommitdiffstats
path: root/contrib/python/black/blib2to3/pytree.py
diff options
context:
space:
mode:
authorrobot-piglet <[email protected]>2025-08-28 14:27:58 +0300
committerrobot-piglet <[email protected]>2025-08-28 14:57:06 +0300
commit81d828c32c8d5477cb2f0ce5da06a1a8d9392ca3 (patch)
tree3081d566f0d5158d76e9093261344f6406fd09f7 /contrib/python/black/blib2to3/pytree.py
parent77ea11423f959e51795cc3ef36a48d808b4ffb98 (diff)
Intermediate changes
commit_hash:d5b1af16dbe9030537a04c27eb410c88c2f496cd
Diffstat (limited to 'contrib/python/black/blib2to3/pytree.py')
-rw-r--r--contrib/python/black/blib2to3/pytree.py976
1 files changed, 976 insertions, 0 deletions
diff --git a/contrib/python/black/blib2to3/pytree.py b/contrib/python/black/blib2to3/pytree.py
new file mode 100644
index 00000000000..d57584685a2
--- /dev/null
+++ b/contrib/python/black/blib2to3/pytree.py
@@ -0,0 +1,976 @@
+# Copyright 2006 Google, Inc. All Rights Reserved.
+# Licensed to PSF under a Contributor Agreement.
+
+"""
+Python parse tree definitions.
+
+This is a very concrete parse tree; we need to keep every token and
+even the comments and whitespace between tokens.
+
+There's also a pattern matching implementation here.
+"""
+
+# mypy: allow-untyped-defs, allow-incomplete-defs
+
+from collections.abc import Iterable, Iterator
+from typing import Any, Optional, TypeVar, Union
+
+from blib2to3.pgen2.grammar import Grammar
+
+__author__ = "Guido van Rossum <[email protected]>"
+
+import sys
+from io import StringIO
+
+HUGE: int = 0x7FFFFFFF # maximum repeat count, default max
+
+_type_reprs: dict[int, Union[str, int]] = {}
+
+
+def type_repr(type_num: int) -> Union[str, int]:
+ global _type_reprs
+ if not _type_reprs:
+ from . import pygram
+
+ if not hasattr(pygram, "python_symbols"):
+ pygram.initialize(cache_dir=None)
+
+ # printing tokens is possible but not as useful
+ # from .pgen2 import token // token.__dict__.items():
+ for name in dir(pygram.python_symbols):
+ val = getattr(pygram.python_symbols, name)
+ if type(val) == int:
+ _type_reprs[val] = name
+ return _type_reprs.setdefault(type_num, type_num)
+
+
+_P = TypeVar("_P", bound="Base")
+
+NL = Union["Node", "Leaf"]
+Context = tuple[str, tuple[int, int]]
+RawNode = tuple[int, Optional[str], Optional[Context], Optional[list[NL]]]
+
+
+class Base:
+ """
+ Abstract base class for Node and Leaf.
+
+ This provides some default functionality and boilerplate using the
+ template pattern.
+
+ A node may be a subnode of at most one parent.
+ """
+
+ # Default values for instance variables
+ type: int # int: token number (< 256) or symbol number (>= 256)
+ parent: Optional["Node"] = None # Parent node pointer, or None
+ children: list[NL] # List of subnodes
+ was_changed: bool = False
+ was_checked: bool = False
+
+ def __new__(cls, *args, **kwds):
+ """Constructor that prevents Base from being instantiated."""
+ assert cls is not Base, "Cannot instantiate Base"
+ return object.__new__(cls)
+
+ def __eq__(self, other: Any) -> bool:
+ """
+ Compare two nodes for equality.
+
+ This calls the method _eq().
+ """
+ if self.__class__ is not other.__class__:
+ return NotImplemented
+ return self._eq(other)
+
+ @property
+ def prefix(self) -> str:
+ raise NotImplementedError
+
+ def _eq(self: _P, other: _P) -> bool:
+ """
+ Compare two nodes for equality.
+
+ This is called by __eq__ and __ne__. It is only called if the two nodes
+ have the same type. This must be implemented by the concrete subclass.
+ Nodes should be considered equal if they have the same structure,
+ ignoring the prefix string and other context information.
+ """
+ raise NotImplementedError
+
+ def __deepcopy__(self: _P, memo: Any) -> _P:
+ return self.clone()
+
+ def clone(self: _P) -> _P:
+ """
+ Return a cloned (deep) copy of self.
+
+ This must be implemented by the concrete subclass.
+ """
+ raise NotImplementedError
+
+ def post_order(self) -> Iterator[NL]:
+ """
+ Return a post-order iterator for the tree.
+
+ This must be implemented by the concrete subclass.
+ """
+ raise NotImplementedError
+
+ def pre_order(self) -> Iterator[NL]:
+ """
+ Return a pre-order iterator for the tree.
+
+ This must be implemented by the concrete subclass.
+ """
+ raise NotImplementedError
+
+ def replace(self, new: Union[NL, list[NL]]) -> None:
+ """Replace this node with a new one in the parent."""
+ assert self.parent is not None, str(self)
+ assert new is not None
+ if not isinstance(new, list):
+ new = [new]
+ l_children = []
+ found = False
+ for ch in self.parent.children:
+ if ch is self:
+ assert not found, (self.parent.children, self, new)
+ if new is not None:
+ l_children.extend(new)
+ found = True
+ else:
+ l_children.append(ch)
+ assert found, (self.children, self, new)
+ self.parent.children = l_children
+ self.parent.changed()
+ self.parent.invalidate_sibling_maps()
+ for x in new:
+ x.parent = self.parent
+ self.parent = None
+
+ def get_lineno(self) -> Optional[int]:
+ """Return the line number which generated the invocant node."""
+ node = self
+ while not isinstance(node, Leaf):
+ if not node.children:
+ return None
+ node = node.children[0]
+ return node.lineno
+
+ def changed(self) -> None:
+ if self.was_changed:
+ return
+ if self.parent:
+ self.parent.changed()
+ self.was_changed = True
+
+ def remove(self) -> Optional[int]:
+ """
+ Remove the node from the tree. Returns the position of the node in its
+ parent's children before it was removed.
+ """
+ if self.parent:
+ for i, node in enumerate(self.parent.children):
+ if node is self:
+ del self.parent.children[i]
+ self.parent.changed()
+ self.parent.invalidate_sibling_maps()
+ self.parent = None
+ return i
+ return None
+
+ @property
+ def next_sibling(self) -> Optional[NL]:
+ """
+ The node immediately following the invocant in their parent's children
+ list. If the invocant does not have a next sibling, it is None
+ """
+ if self.parent is None:
+ return None
+
+ if self.parent.next_sibling_map is None:
+ self.parent.update_sibling_maps()
+ assert self.parent.next_sibling_map is not None
+ return self.parent.next_sibling_map[id(self)]
+
+ @property
+ def prev_sibling(self) -> Optional[NL]:
+ """
+ The node immediately preceding the invocant in their parent's children
+ list. If the invocant does not have a previous sibling, it is None.
+ """
+ if self.parent is None:
+ return None
+
+ if self.parent.prev_sibling_map is None:
+ self.parent.update_sibling_maps()
+ assert self.parent.prev_sibling_map is not None
+ return self.parent.prev_sibling_map[id(self)]
+
+ def leaves(self) -> Iterator["Leaf"]:
+ for child in self.children:
+ yield from child.leaves()
+
+ def depth(self) -> int:
+ if self.parent is None:
+ return 0
+ return 1 + self.parent.depth()
+
+ def get_suffix(self) -> str:
+ """
+ Return the string immediately following the invocant node. This is
+ effectively equivalent to node.next_sibling.prefix
+ """
+ next_sib = self.next_sibling
+ if next_sib is None:
+ return ""
+ prefix = next_sib.prefix
+ return prefix
+
+
+class Node(Base):
+ """Concrete implementation for interior nodes."""
+
+ fixers_applied: Optional[list[Any]]
+ used_names: Optional[set[str]]
+
+ def __init__(
+ self,
+ type: int,
+ children: list[NL],
+ context: Optional[Any] = None,
+ prefix: Optional[str] = None,
+ fixers_applied: Optional[list[Any]] = None,
+ ) -> None:
+ """
+ Initializer.
+
+ Takes a type constant (a symbol number >= 256), a sequence of
+ child nodes, and an optional context keyword argument.
+
+ As a side effect, the parent pointers of the children are updated.
+ """
+ assert type >= 256, type
+ self.type = type
+ self.children = list(children)
+ for ch in self.children:
+ assert ch.parent is None, repr(ch)
+ ch.parent = self
+ self.invalidate_sibling_maps()
+ if prefix is not None:
+ self.prefix = prefix
+ if fixers_applied:
+ self.fixers_applied = fixers_applied[:]
+ else:
+ self.fixers_applied = None
+
+ def __repr__(self) -> str:
+ """Return a canonical string representation."""
+ assert self.type is not None
+ return "{}({}, {!r})".format(
+ self.__class__.__name__,
+ type_repr(self.type),
+ self.children,
+ )
+
+ def __str__(self) -> str:
+ """
+ Return a pretty string representation.
+
+ This reproduces the input source exactly.
+ """
+ return "".join(map(str, self.children))
+
+ def _eq(self, other: Base) -> bool:
+ """Compare two nodes for equality."""
+ return (self.type, self.children) == (other.type, other.children)
+
+ def clone(self) -> "Node":
+ assert self.type is not None
+ """Return a cloned (deep) copy of self."""
+ return Node(
+ self.type,
+ [ch.clone() for ch in self.children],
+ fixers_applied=self.fixers_applied,
+ )
+
+ def post_order(self) -> Iterator[NL]:
+ """Return a post-order iterator for the tree."""
+ for child in self.children:
+ yield from child.post_order()
+ yield self
+
+ def pre_order(self) -> Iterator[NL]:
+ """Return a pre-order iterator for the tree."""
+ yield self
+ for child in self.children:
+ yield from child.pre_order()
+
+ @property
+ def prefix(self) -> str:
+ """
+ The whitespace and comments preceding this node in the input.
+ """
+ if not self.children:
+ return ""
+ return self.children[0].prefix
+
+ @prefix.setter
+ def prefix(self, prefix: str) -> None:
+ if self.children:
+ self.children[0].prefix = prefix
+
+ def set_child(self, i: int, child: NL) -> None:
+ """
+ Equivalent to 'node.children[i] = child'. This method also sets the
+ child's parent attribute appropriately.
+ """
+ child.parent = self
+ self.children[i].parent = None
+ self.children[i] = child
+ self.changed()
+ self.invalidate_sibling_maps()
+
+ def insert_child(self, i: int, child: NL) -> None:
+ """
+ Equivalent to 'node.children.insert(i, child)'. This method also sets
+ the child's parent attribute appropriately.
+ """
+ child.parent = self
+ self.children.insert(i, child)
+ self.changed()
+ self.invalidate_sibling_maps()
+
+ def append_child(self, child: NL) -> None:
+ """
+ Equivalent to 'node.children.append(child)'. This method also sets the
+ child's parent attribute appropriately.
+ """
+ child.parent = self
+ self.children.append(child)
+ self.changed()
+ self.invalidate_sibling_maps()
+
+ def invalidate_sibling_maps(self) -> None:
+ self.prev_sibling_map: Optional[dict[int, Optional[NL]]] = None
+ self.next_sibling_map: Optional[dict[int, Optional[NL]]] = None
+
+ def update_sibling_maps(self) -> None:
+ _prev: dict[int, Optional[NL]] = {}
+ _next: dict[int, Optional[NL]] = {}
+ self.prev_sibling_map = _prev
+ self.next_sibling_map = _next
+ previous: Optional[NL] = None
+ for current in self.children:
+ _prev[id(current)] = previous
+ _next[id(previous)] = current
+ previous = current
+ _next[id(current)] = None
+
+
+class Leaf(Base):
+ """Concrete implementation for leaf nodes."""
+
+ # Default values for instance variables
+ value: str
+ fixers_applied: list[Any]
+ bracket_depth: int
+ # Changed later in brackets.py
+ opening_bracket: Optional["Leaf"] = None
+ used_names: Optional[set[str]]
+ _prefix = "" # Whitespace and comments preceding this token in the input
+ lineno: int = 0 # Line where this token starts in the input
+ column: int = 0 # Column where this token starts in the input
+ # If not None, this Leaf is created by converting a block of fmt off/skip
+ # code, and `fmt_pass_converted_first_leaf` points to the first Leaf in the
+ # converted code.
+ fmt_pass_converted_first_leaf: Optional["Leaf"] = None
+
+ def __init__(
+ self,
+ type: int,
+ value: str,
+ context: Optional[Context] = None,
+ prefix: Optional[str] = None,
+ fixers_applied: list[Any] = [],
+ opening_bracket: Optional["Leaf"] = None,
+ fmt_pass_converted_first_leaf: Optional["Leaf"] = None,
+ ) -> None:
+ """
+ Initializer.
+
+ Takes a type constant (a token number < 256), a string value, and an
+ optional context keyword argument.
+ """
+
+ assert 0 <= type < 256, type
+ if context is not None:
+ self._prefix, (self.lineno, self.column) = context
+ self.type = type
+ self.value = value
+ if prefix is not None:
+ self._prefix = prefix
+ self.fixers_applied: Optional[list[Any]] = fixers_applied[:]
+ self.children = []
+ self.opening_bracket = opening_bracket
+ self.fmt_pass_converted_first_leaf = fmt_pass_converted_first_leaf
+
+ def __repr__(self) -> str:
+ """Return a canonical string representation."""
+ from .pgen2.token import tok_name
+
+ assert self.type is not None
+ return "{}({}, {!r})".format(
+ self.__class__.__name__,
+ tok_name.get(self.type, self.type),
+ self.value,
+ )
+
+ def __str__(self) -> str:
+ """
+ Return a pretty string representation.
+
+ This reproduces the input source exactly.
+ """
+ return self._prefix + str(self.value)
+
+ def _eq(self, other: "Leaf") -> bool:
+ """Compare two nodes for equality."""
+ return (self.type, self.value) == (other.type, other.value)
+
+ def clone(self) -> "Leaf":
+ assert self.type is not None
+ """Return a cloned (deep) copy of self."""
+ return Leaf(
+ self.type,
+ self.value,
+ (self.prefix, (self.lineno, self.column)),
+ fixers_applied=self.fixers_applied,
+ )
+
+ def leaves(self) -> Iterator["Leaf"]:
+ yield self
+
+ def post_order(self) -> Iterator["Leaf"]:
+ """Return a post-order iterator for the tree."""
+ yield self
+
+ def pre_order(self) -> Iterator["Leaf"]:
+ """Return a pre-order iterator for the tree."""
+ yield self
+
+ @property
+ def prefix(self) -> str:
+ """
+ The whitespace and comments preceding this token in the input.
+ """
+ return self._prefix
+
+ @prefix.setter
+ def prefix(self, prefix: str) -> None:
+ self.changed()
+ self._prefix = prefix
+
+
+def convert(gr: Grammar, raw_node: RawNode) -> NL:
+ """
+ Convert raw node information to a Node or Leaf instance.
+
+ This is passed to the parser driver which calls it whenever a reduction of a
+ grammar rule produces a new complete node, so that the tree is build
+ strictly bottom-up.
+ """
+ type, value, context, children = raw_node
+ if children or type in gr.number2symbol:
+ # If there's exactly one child, return that child instead of
+ # creating a new node.
+ assert children is not None
+ if len(children) == 1:
+ return children[0]
+ return Node(type, children, context=context)
+ else:
+ return Leaf(type, value or "", context=context)
+
+
+_Results = dict[str, NL]
+
+
+class BasePattern:
+ """
+ A pattern is a tree matching pattern.
+
+ It looks for a specific node type (token or symbol), and
+ optionally for a specific content.
+
+ This is an abstract base class. There are three concrete
+ subclasses:
+
+ - LeafPattern matches a single leaf node;
+ - NodePattern matches a single node (usually non-leaf);
+ - WildcardPattern matches a sequence of nodes of variable length.
+ """
+
+ # Defaults for instance variables
+ type: Optional[int]
+ type = None # Node type (token if < 256, symbol if >= 256)
+ content: Any = None # Optional content matching pattern
+ name: Optional[str] = None # Optional name used to store match in results dict
+
+ def __new__(cls, *args, **kwds):
+ """Constructor that prevents BasePattern from being instantiated."""
+ assert cls is not BasePattern, "Cannot instantiate BasePattern"
+ return object.__new__(cls)
+
+ def __repr__(self) -> str:
+ assert self.type is not None
+ args = [type_repr(self.type), self.content, self.name]
+ while args and args[-1] is None:
+ del args[-1]
+ return "{}({})".format(self.__class__.__name__, ", ".join(map(repr, args)))
+
+ def _submatch(self, node, results=None) -> bool:
+ raise NotImplementedError
+
+ def optimize(self) -> "BasePattern":
+ """
+ A subclass can define this as a hook for optimizations.
+
+ Returns either self or another node with the same effect.
+ """
+ return self
+
+ def match(self, node: NL, results: Optional[_Results] = None) -> bool:
+ """
+ Does this pattern exactly match a node?
+
+ Returns True if it matches, False if not.
+
+ If results is not None, it must be a dict which will be
+ updated with the nodes matching named subpatterns.
+
+ Default implementation for non-wildcard patterns.
+ """
+ if self.type is not None and node.type != self.type:
+ return False
+ if self.content is not None:
+ r: Optional[_Results] = None
+ if results is not None:
+ r = {}
+ if not self._submatch(node, r):
+ return False
+ if r:
+ assert results is not None
+ results.update(r)
+ if results is not None and self.name:
+ results[self.name] = node
+ return True
+
+ def match_seq(self, nodes: list[NL], results: Optional[_Results] = None) -> bool:
+ """
+ Does this pattern exactly match a sequence of nodes?
+
+ Default implementation for non-wildcard patterns.
+ """
+ if len(nodes) != 1:
+ return False
+ return self.match(nodes[0], results)
+
+ def generate_matches(self, nodes: list[NL]) -> Iterator[tuple[int, _Results]]:
+ """
+ Generator yielding all matches for this pattern.
+
+ Default implementation for non-wildcard patterns.
+ """
+ r: _Results = {}
+ if nodes and self.match(nodes[0], r):
+ yield 1, r
+
+
+class LeafPattern(BasePattern):
+ def __init__(
+ self,
+ type: Optional[int] = None,
+ content: Optional[str] = None,
+ name: Optional[str] = None,
+ ) -> None:
+ """
+ Initializer. Takes optional type, content, and name.
+
+ The type, if given must be a token type (< 256). If not given,
+ this matches any *leaf* node; the content may still be required.
+
+ The content, if given, must be a string.
+
+ If a name is given, the matching node is stored in the results
+ dict under that key.
+ """
+ if type is not None:
+ assert 0 <= type < 256, type
+ if content is not None:
+ assert isinstance(content, str), repr(content)
+ self.type = type
+ self.content = content
+ self.name = name
+
+ def match(self, node: NL, results=None) -> bool:
+ """Override match() to insist on a leaf node."""
+ if not isinstance(node, Leaf):
+ return False
+ return BasePattern.match(self, node, results)
+
+ def _submatch(self, node, results=None):
+ """
+ Match the pattern's content to the node's children.
+
+ This assumes the node type matches and self.content is not None.
+
+ Returns True if it matches, False if not.
+
+ If results is not None, it must be a dict which will be
+ updated with the nodes matching named subpatterns.
+
+ When returning False, the results dict may still be updated.
+ """
+ return self.content == node.value
+
+
+class NodePattern(BasePattern):
+ wildcards: bool = False
+
+ def __init__(
+ self,
+ type: Optional[int] = None,
+ content: Optional[Iterable[str]] = None,
+ name: Optional[str] = None,
+ ) -> None:
+ """
+ Initializer. Takes optional type, content, and name.
+
+ The type, if given, must be a symbol type (>= 256). If the
+ type is None this matches *any* single node (leaf or not),
+ except if content is not None, in which it only matches
+ non-leaf nodes that also match the content pattern.
+
+ The content, if not None, must be a sequence of Patterns that
+ must match the node's children exactly. If the content is
+ given, the type must not be None.
+
+ If a name is given, the matching node is stored in the results
+ dict under that key.
+ """
+ if type is not None:
+ assert type >= 256, type
+ if content is not None:
+ assert not isinstance(content, str), repr(content)
+ newcontent = list(content)
+ for i, item in enumerate(newcontent):
+ assert isinstance(item, BasePattern), (i, item)
+ # I don't even think this code is used anywhere, but it does cause
+ # unreachable errors from mypy. This function's signature does look
+ # odd though *shrug*.
+ if isinstance(item, WildcardPattern): # type: ignore[unreachable]
+ self.wildcards = True # type: ignore[unreachable]
+ self.type = type
+ self.content = newcontent # TODO: this is unbound when content is None
+ self.name = name
+
+ def _submatch(self, node, results=None) -> bool:
+ """
+ Match the pattern's content to the node's children.
+
+ This assumes the node type matches and self.content is not None.
+
+ Returns True if it matches, False if not.
+
+ If results is not None, it must be a dict which will be
+ updated with the nodes matching named subpatterns.
+
+ When returning False, the results dict may still be updated.
+ """
+ if self.wildcards:
+ for c, r in generate_matches(self.content, node.children):
+ if c == len(node.children):
+ if results is not None:
+ results.update(r)
+ return True
+ return False
+ if len(self.content) != len(node.children):
+ return False
+ for subpattern, child in zip(self.content, node.children):
+ if not subpattern.match(child, results):
+ return False
+ return True
+
+
+class WildcardPattern(BasePattern):
+ """
+ A wildcard pattern can match zero or more nodes.
+
+ This has all the flexibility needed to implement patterns like:
+
+ .* .+ .? .{m,n}
+ (a b c | d e | f)
+ (...)* (...)+ (...)? (...){m,n}
+
+ except it always uses non-greedy matching.
+ """
+
+ min: int
+ max: int
+
+ def __init__(
+ self,
+ content: Optional[str] = None,
+ min: int = 0,
+ max: int = HUGE,
+ name: Optional[str] = None,
+ ) -> None:
+ """
+ Initializer.
+
+ Args:
+ content: optional sequence of subsequences of patterns;
+ if absent, matches one node;
+ if present, each subsequence is an alternative [*]
+ min: optional minimum number of times to match, default 0
+ max: optional maximum number of times to match, default HUGE
+ name: optional name assigned to this match
+
+ [*] Thus, if content is [[a, b, c], [d, e], [f, g, h]] this is
+ equivalent to (a b c | d e | f g h); if content is None,
+ this is equivalent to '.' in regular expression terms.
+ The min and max parameters work as follows:
+ min=0, max=maxint: .*
+ min=1, max=maxint: .+
+ min=0, max=1: .?
+ min=1, max=1: .
+ If content is not None, replace the dot with the parenthesized
+ list of alternatives, e.g. (a b c | d e | f g h)*
+ """
+ assert 0 <= min <= max <= HUGE, (min, max)
+ if content is not None:
+ f = lambda s: tuple(s)
+ wrapped_content = tuple(map(f, content)) # Protect against alterations
+ # Check sanity of alternatives
+ assert len(wrapped_content), repr(
+ wrapped_content
+ ) # Can't have zero alternatives
+ for alt in wrapped_content:
+ assert len(alt), repr(alt) # Can have empty alternatives
+ self.content = wrapped_content
+ self.min = min
+ self.max = max
+ self.name = name
+
+ def optimize(self) -> Any:
+ """Optimize certain stacked wildcard patterns."""
+ subpattern = None
+ if (
+ self.content is not None
+ and len(self.content) == 1
+ and len(self.content[0]) == 1
+ ):
+ subpattern = self.content[0][0]
+ if self.min == 1 and self.max == 1:
+ if self.content is None:
+ return NodePattern(name=self.name)
+ if subpattern is not None and self.name == subpattern.name:
+ return subpattern.optimize()
+ if (
+ self.min <= 1
+ and isinstance(subpattern, WildcardPattern)
+ and subpattern.min <= 1
+ and self.name == subpattern.name
+ ):
+ return WildcardPattern(
+ subpattern.content,
+ self.min * subpattern.min,
+ self.max * subpattern.max,
+ subpattern.name,
+ )
+ return self
+
+ def match(self, node, results=None) -> bool:
+ """Does this pattern exactly match a node?"""
+ return self.match_seq([node], results)
+
+ def match_seq(self, nodes, results=None) -> bool:
+ """Does this pattern exactly match a sequence of nodes?"""
+ for c, r in self.generate_matches(nodes):
+ if c == len(nodes):
+ if results is not None:
+ results.update(r)
+ if self.name:
+ results[self.name] = list(nodes)
+ return True
+ return False
+
+ def generate_matches(self, nodes) -> Iterator[tuple[int, _Results]]:
+ """
+ Generator yielding matches for a sequence of nodes.
+
+ Args:
+ nodes: sequence of nodes
+
+ Yields:
+ (count, results) tuples where:
+ count: the match comprises nodes[:count];
+ results: dict containing named submatches.
+ """
+ if self.content is None:
+ # Shortcut for special case (see __init__.__doc__)
+ for count in range(self.min, 1 + min(len(nodes), self.max)):
+ r = {}
+ if self.name:
+ r[self.name] = nodes[:count]
+ yield count, r
+ elif self.name == "bare_name":
+ yield self._bare_name_matches(nodes)
+ else:
+ # The reason for this is that hitting the recursion limit usually
+ # results in some ugly messages about how RuntimeErrors are being
+ # ignored. We only have to do this on CPython, though, because other
+ # implementations don't have this nasty bug in the first place.
+ if hasattr(sys, "getrefcount"):
+ save_stderr = sys.stderr
+ sys.stderr = StringIO()
+ try:
+ for count, r in self._recursive_matches(nodes, 0):
+ if self.name:
+ r[self.name] = nodes[:count]
+ yield count, r
+ except RuntimeError:
+ # We fall back to the iterative pattern matching scheme if the recursive
+ # scheme hits the recursion limit.
+ for count, r in self._iterative_matches(nodes):
+ if self.name:
+ r[self.name] = nodes[:count]
+ yield count, r
+ finally:
+ if hasattr(sys, "getrefcount"):
+ sys.stderr = save_stderr
+
+ def _iterative_matches(self, nodes) -> Iterator[tuple[int, _Results]]:
+ """Helper to iteratively yield the matches."""
+ nodelen = len(nodes)
+ if 0 >= self.min:
+ yield 0, {}
+
+ results = []
+ # generate matches that use just one alt from self.content
+ for alt in self.content:
+ for c, r in generate_matches(alt, nodes):
+ yield c, r
+ results.append((c, r))
+
+ # for each match, iterate down the nodes
+ while results:
+ new_results = []
+ for c0, r0 in results:
+ # stop if the entire set of nodes has been matched
+ if c0 < nodelen and c0 <= self.max:
+ for alt in self.content:
+ for c1, r1 in generate_matches(alt, nodes[c0:]):
+ if c1 > 0:
+ r = {}
+ r.update(r0)
+ r.update(r1)
+ yield c0 + c1, r
+ new_results.append((c0 + c1, r))
+ results = new_results
+
+ def _bare_name_matches(self, nodes) -> tuple[int, _Results]:
+ """Special optimized matcher for bare_name."""
+ count = 0
+ r = {} # type: _Results
+ done = False
+ max = len(nodes)
+ while not done and count < max:
+ done = True
+ for leaf in self.content:
+ if leaf[0].match(nodes[count], r):
+ count += 1
+ done = False
+ break
+ assert self.name is not None
+ r[self.name] = nodes[:count]
+ return count, r
+
+ def _recursive_matches(self, nodes, count) -> Iterator[tuple[int, _Results]]:
+ """Helper to recursively yield the matches."""
+ assert self.content is not None
+ if count >= self.min:
+ yield 0, {}
+ if count < self.max:
+ for alt in self.content:
+ for c0, r0 in generate_matches(alt, nodes):
+ for c1, r1 in self._recursive_matches(nodes[c0:], count + 1):
+ r = {}
+ r.update(r0)
+ r.update(r1)
+ yield c0 + c1, r
+
+
+class NegatedPattern(BasePattern):
+ def __init__(self, content: Optional[BasePattern] = None) -> None:
+ """
+ Initializer.
+
+ The argument is either a pattern or None. If it is None, this
+ only matches an empty sequence (effectively '$' in regex
+ lingo). If it is not None, this matches whenever the argument
+ pattern doesn't have any matches.
+ """
+ if content is not None:
+ assert isinstance(content, BasePattern), repr(content)
+ self.content = content
+
+ def match(self, node, results=None) -> bool:
+ # We never match a node in its entirety
+ return False
+
+ def match_seq(self, nodes, results=None) -> bool:
+ # We only match an empty sequence of nodes in its entirety
+ return len(nodes) == 0
+
+ def generate_matches(self, nodes: list[NL]) -> Iterator[tuple[int, _Results]]:
+ if self.content is None:
+ # Return a match if there is an empty sequence
+ if len(nodes) == 0:
+ yield 0, {}
+ else:
+ # Return a match if the argument pattern has no matches
+ for c, r in self.content.generate_matches(nodes):
+ return
+ yield 0, {}
+
+
+def generate_matches(
+ patterns: list[BasePattern], nodes: list[NL]
+) -> Iterator[tuple[int, _Results]]:
+ """
+ Generator yielding matches for a sequence of patterns and nodes.
+
+ Args:
+ patterns: a sequence of patterns
+ nodes: a sequence of nodes
+
+ Yields:
+ (count, results) tuples where:
+ count: the entire sequence of patterns matches nodes[:count];
+ results: dict containing named submatches.
+ """
+ if not patterns:
+ yield 0, {}
+ else:
+ p, rest = patterns[0], patterns[1:]
+ for c0, r0 in p.generate_matches(nodes):
+ if not rest:
+ yield c0, r0
+ else:
+ for c1, r1 in generate_matches(rest, nodes[c0:]):
+ r = {}
+ r.update(r0)
+ r.update(r1)
+ yield c0 + c1, r