diff options
author | Anton Samokhvalov <pg83@yandex.ru> | 2022-02-10 16:45:17 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:45:17 +0300 |
commit | d3a398281c6fd1d3672036cb2d63f842d2cb28c5 (patch) | |
tree | dd4bd3ca0f36b817e96812825ffaf10d645803f2 /contrib/libs/snappy/snappy.cc | |
parent | 72cb13b4aff9bc9cf22e49251bc8fd143f82538f (diff) | |
download | ydb-d3a398281c6fd1d3672036cb2d63f842d2cb28c5.tar.gz |
Restoring authorship annotation for Anton Samokhvalov <pg83@yandex.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/libs/snappy/snappy.cc')
-rw-r--r-- | contrib/libs/snappy/snappy.cc | 1374 |
1 files changed, 687 insertions, 687 deletions
diff --git a/contrib/libs/snappy/snappy.cc b/contrib/libs/snappy/snappy.cc index 27e491c043..9351b0f21e 100644 --- a/contrib/libs/snappy/snappy.cc +++ b/contrib/libs/snappy/snappy.cc @@ -1,35 +1,35 @@ -// Copyright 2005 Google Inc. All Rights Reserved. -// -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// * Redistributions in binary form must reproduce the above -// copyright notice, this list of conditions and the following disclaimer -// in the documentation and/or other materials provided with the -// distribution. -// * Neither the name of Google Inc. nor the names of its -// contributors may be used to endorse or promote products derived from -// this software without specific prior written permission. -// -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -#include "snappy.h" -#include "snappy-internal.h" -#include "snappy-sinksource.h" - +// Copyright 2005 Google Inc. All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "snappy.h" +#include "snappy-internal.h" +#include "snappy-sinksource.h" + #if !defined(SNAPPY_HAVE_SSSE3) // __SSSE3__ is defined by GCC and Clang. Visual Studio doesn't target SIMD // support between SSE2 and AVX (so SSSE3 instructions require AVX support), and @@ -68,60 +68,60 @@ #include <immintrin.h> #endif -#include <stdio.h> - -#include <algorithm> +#include <stdio.h> + +#include <algorithm> #include <string> #include <vector> #include <util/generic/string.h> - -namespace snappy { - + +namespace snappy { + using internal::COPY_1_BYTE_OFFSET; using internal::COPY_2_BYTE_OFFSET; using internal::LITERAL; using internal::char_table; using internal::kMaximumTagLength; -// Any hash function will produce a valid compressed bitstream, but a good -// hash function reduces the number of collisions and thus yields better -// compression for compressible input, and more speed for incompressible -// input. Of course, it doesn't hurt if the hash function is reasonably fast -// either, as it gets called a lot. -static inline uint32 HashBytes(uint32 bytes, int shift) { - uint32 kMul = 0x1e35a7bd; - return (bytes * kMul) >> shift; -} -static inline uint32 Hash(const char* p, int shift) { - return HashBytes(UNALIGNED_LOAD32(p), shift); -} - -size_t MaxCompressedLength(size_t source_len) { - // Compressed data can be defined as: - // compressed := item* literal* - // item := literal* copy - // - // The trailing literal sequence has a space blowup of at most 62/60 - // since a literal of length 60 needs one tag byte + one extra byte - // for length information. - // - // Item blowup is trickier to measure. Suppose the "copy" op copies - // 4 bytes of data. Because of a special check in the encoding code, - // we produce a 4-byte copy only if the offset is < 65536. Therefore - // the copy op takes 3 bytes to encode, and this type of item leads - // to at most the 62/60 blowup for representing literals. - // - // Suppose the "copy" op copies 5 bytes of data. If the offset is big - // enough, it will take 5 bytes to encode the copy op. Therefore the - // worst case here is a one-byte literal followed by a five-byte copy. - // I.e., 6 bytes of input turn into 7 bytes of "compressed" data. - // - // This last factor dominates the blowup, so the final estimate is: - return 32 + source_len + source_len/6; -} - +// Any hash function will produce a valid compressed bitstream, but a good +// hash function reduces the number of collisions and thus yields better +// compression for compressible input, and more speed for incompressible +// input. Of course, it doesn't hurt if the hash function is reasonably fast +// either, as it gets called a lot. +static inline uint32 HashBytes(uint32 bytes, int shift) { + uint32 kMul = 0x1e35a7bd; + return (bytes * kMul) >> shift; +} +static inline uint32 Hash(const char* p, int shift) { + return HashBytes(UNALIGNED_LOAD32(p), shift); +} + +size_t MaxCompressedLength(size_t source_len) { + // Compressed data can be defined as: + // compressed := item* literal* + // item := literal* copy + // + // The trailing literal sequence has a space blowup of at most 62/60 + // since a literal of length 60 needs one tag byte + one extra byte + // for length information. + // + // Item blowup is trickier to measure. Suppose the "copy" op copies + // 4 bytes of data. Because of a special check in the encoding code, + // we produce a 4-byte copy only if the offset is < 65536. Therefore + // the copy op takes 3 bytes to encode, and this type of item leads + // to at most the 62/60 blowup for representing literals. + // + // Suppose the "copy" op copies 5 bytes of data. If the offset is big + // enough, it will take 5 bytes to encode the copy op. Therefore the + // worst case here is a one-byte literal followed by a five-byte copy. + // I.e., 6 bytes of input turn into 7 bytes of "compressed" data. + // + // This last factor dominates the blowup, so the final estimate is: + return 32 + source_len + source_len/6; +} + namespace { - + void UnalignedCopy64(const void* src, void* dst) { char tmp[8]; memcpy(tmp, src, 8); @@ -145,7 +145,7 @@ void UnalignedCopy128(const void* src, void* dst) { // op_limit == op + 20 // After IncrementalCopySlow(src, op, op_limit), the result will have eleven // copies of "ab" -// ababababababababababab +// ababababababababababab // Note that this does not match the semantics of either memcpy() or memmove(). inline char* IncrementalCopySlow(const char* src, char* op, char* const op_limit) { @@ -156,13 +156,13 @@ inline char* IncrementalCopySlow(const char* src, char* op, #pragma clang loop unroll(disable) #endif while (op < op_limit) { - *op++ = *src++; + *op++ = *src++; } return op_limit; -} - +} + #if SNAPPY_HAVE_SSSE3 - + // This is a table of shuffle control masks that can be used as the source // operand for PSHUFB to permute the contents of the destination XMM register // into a repeating byte pattern. @@ -175,9 +175,9 @@ alignas(16) const char pshufb_fill_patterns[7][16] = { {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3}, {0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1}, }; - + #endif // SNAPPY_HAVE_SSSE3 - + // Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) but faster than // IncrementalCopySlow. buf_limit is the address past the end of the writable // region of the buffer. @@ -194,7 +194,7 @@ inline char* IncrementalCopy(const char* src, char* op, char* const op_limit, // NOTE: The compressor always emits 4 <= len <= 64. It is ok to assume that // to optimize this function but we have to also handle other cases in case // the input does not satisfy these conditions. - + size_t pattern_size = op - src; // The cases are split into different branches to allow the branch predictor, // FDO, and static prediction hints to work better. For each input we list the @@ -286,7 +286,7 @@ inline char* IncrementalCopy(const char* src, char* op, char* const op_limit, // conditionals instead of a loop allows FDO to layout the code with respect // to the actual probabilities of each length. // TODO: Replace with loop with trip count hint. - UnalignedCopy64(src, op); + UnalignedCopy64(src, op); UnalignedCopy64(src + 8, op + 8); if (op + 16 < op_limit) { @@ -302,7 +302,7 @@ inline char* IncrementalCopy(const char* src, char* op, char* const op_limit, UnalignedCopy64(src + 56, op + 56); } return op_limit; - } + } // Fall back to doing as much as we can with the available slop in the // buffer. This code path is relatively cold however so we save code size by @@ -314,7 +314,7 @@ inline char* IncrementalCopy(const char* src, char* op, char* const op_limit, #pragma clang loop unroll(disable) #endif for (char *op_end = buf_limit - 16; op < op_end; op += 16, src += 16) { - UnalignedCopy64(src, op); + UnalignedCopy64(src, op); UnalignedCopy64(src + 8, op + 8); } if (op >= op_limit) @@ -324,17 +324,17 @@ inline char* IncrementalCopy(const char* src, char* op, char* const op_limit, // single 8 byte copy. if (SNAPPY_PREDICT_FALSE(op <= buf_limit - 8)) { UnalignedCopy64(src, op); - src += 8; - op += 8; - } + src += 8; + op += 8; + } return IncrementalCopySlow(src, op, op_limit); -} - +} + } // namespace template <bool allow_fast_path> -static inline char* EmitLiteral(char* op, - const char* literal, +static inline char* EmitLiteral(char* op, + const char* literal, int len) { // The vast majority of copies are below 16 bytes, for which a // call to memcpy is overkill. This fast path can sometimes @@ -356,13 +356,13 @@ static inline char* EmitLiteral(char* op, return op + len; } - if (n < 60) { - // Fits in tag byte - *op++ = LITERAL | (n << 2); - } else { + if (n < 60) { + // Fits in tag byte + *op++ = LITERAL | (n << 2); + } else { int count = (Bits::Log2Floor(n) >> 3) + 1; - assert(count >= 1); - assert(count <= 4); + assert(count >= 1); + assert(count <= 4); *op++ = LITERAL | ((59 + count) << 2); // Encode in upcoming bytes. // Write 4 bytes, though we may care about only 1 of them. The output buffer @@ -370,33 +370,33 @@ static inline char* EmitLiteral(char* op, // here and there is a memcpy of size 'len' below. LittleEndian::Store32(op, n); op += count; - } - memcpy(op, literal, len); - return op + len; -} - + } + memcpy(op, literal, len); + return op + len; +} + template <bool len_less_than_12> static inline char* EmitCopyAtMost64(char* op, size_t offset, size_t len) { assert(len <= 64); assert(len >= 4); assert(offset < 65536); assert(len_less_than_12 == (len < 12)); - + if (len_less_than_12 && SNAPPY_PREDICT_TRUE(offset < 2048)) { // offset fits in 11 bits. The 3 highest go in the top of the first byte, // and the rest go in the second byte. *op++ = COPY_1_BYTE_OFFSET + ((len - 4) << 2) + ((offset >> 3) & 0xe0); - *op++ = offset & 0xff; - } else { + *op++ = offset & 0xff; + } else { // Write 4 bytes, though we only care about 3 of them. The output buffer // is required to have some slack, so the extra byte won't overrun it. uint32 u = COPY_2_BYTE_OFFSET + ((len - 1) << 2) + (offset << 8); LittleEndian::Store32(op, u); op += 3; - } - return op; -} - + } + return op; +} + template <bool len_less_than_12> static inline char* EmitCopy(char* op, size_t offset, size_t len) { assert(len_less_than_12 == (len < 12)); @@ -405,7 +405,7 @@ static inline char* EmitCopy(char* op, size_t offset, size_t len) { } else { // A special case for len <= 64 might help, but so far measurements suggest // it's in the noise. - + // Emit 64 byte copies but make sure to keep at least four bytes reserved. while (SNAPPY_PREDICT_FALSE(len >= 68)) { op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 64); @@ -425,20 +425,20 @@ static inline char* EmitCopy(char* op, size_t offset, size_t len) { op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, len); } return op; - } -} - -bool GetUncompressedLength(const char* start, size_t n, size_t* result) { - uint32 v = 0; - const char* limit = start + n; - if (Varint::Parse32WithLimit(start, limit, &v) != NULL) { - *result = v; - return true; - } else { - return false; - } -} - + } +} + +bool GetUncompressedLength(const char* start, size_t n, size_t* result) { + uint32 v = 0; + const char* limit = start + n; + if (Varint::Parse32WithLimit(start, limit, &v) != NULL) { + *result = v; + return true; + } else { + return false; + } +} + namespace { uint32 CalculateTableSize(uint32 input_size) { static_assert( @@ -446,16 +446,16 @@ uint32 CalculateTableSize(uint32 input_size) { "kMaxHashTableSize should be greater or equal to kMinHashTableSize."); if (input_size > kMaxHashTableSize) { return kMaxHashTableSize; - } + } if (input_size < kMinHashTableSize) { return kMinHashTableSize; - } + } // This is equivalent to Log2Ceiling(input_size), assuming input_size > 1. // 2 << Log2Floor(x - 1) is equivalent to 1 << (1 + Log2Floor(x - 1)). return 2u << Bits::Log2Floor(input_size - 1); } } // namespace - + namespace internal { WorkingMemory::WorkingMemory(size_t input_size) { const size_t max_fragment_size = std::min(input_size, kBlockSize); @@ -476,225 +476,225 @@ uint16* WorkingMemory::GetHashTable(size_t fragment_size, int* table_size) const { const size_t htsize = CalculateTableSize(fragment_size); memset(table_, 0, htsize * sizeof(*table_)); - *table_size = htsize; + *table_size = htsize; return table_; -} -} // end namespace internal - -// For 0 <= offset <= 4, GetUint32AtOffset(GetEightBytesAt(p), offset) will -// equal UNALIGNED_LOAD32(p + offset). Motivation: On x86-64 hardware we have -// empirically found that overlapping loads such as -// UNALIGNED_LOAD32(p) ... UNALIGNED_LOAD32(p+1) ... UNALIGNED_LOAD32(p+2) -// are slower than UNALIGNED_LOAD64(p) followed by shifts and casts to uint32. -// -// We have different versions for 64- and 32-bit; ideally we would avoid the -// two functions and just inline the UNALIGNED_LOAD64 call into -// GetUint32AtOffset, but GCC (at least not as of 4.6) is seemingly not clever -// enough to avoid loading the value multiple times then. For 64-bit, the load -// is done when GetEightBytesAt() is called, whereas for 32-bit, the load is -// done at GetUint32AtOffset() time. - -#ifdef ARCH_K8 - -typedef uint64 EightBytesReference; - -static inline EightBytesReference GetEightBytesAt(const char* ptr) { - return UNALIGNED_LOAD64(ptr); -} - -static inline uint32 GetUint32AtOffset(uint64 v, int offset) { +} +} // end namespace internal + +// For 0 <= offset <= 4, GetUint32AtOffset(GetEightBytesAt(p), offset) will +// equal UNALIGNED_LOAD32(p + offset). Motivation: On x86-64 hardware we have +// empirically found that overlapping loads such as +// UNALIGNED_LOAD32(p) ... UNALIGNED_LOAD32(p+1) ... UNALIGNED_LOAD32(p+2) +// are slower than UNALIGNED_LOAD64(p) followed by shifts and casts to uint32. +// +// We have different versions for 64- and 32-bit; ideally we would avoid the +// two functions and just inline the UNALIGNED_LOAD64 call into +// GetUint32AtOffset, but GCC (at least not as of 4.6) is seemingly not clever +// enough to avoid loading the value multiple times then. For 64-bit, the load +// is done when GetEightBytesAt() is called, whereas for 32-bit, the load is +// done at GetUint32AtOffset() time. + +#ifdef ARCH_K8 + +typedef uint64 EightBytesReference; + +static inline EightBytesReference GetEightBytesAt(const char* ptr) { + return UNALIGNED_LOAD64(ptr); +} + +static inline uint32 GetUint32AtOffset(uint64 v, int offset) { assert(offset >= 0); assert(offset <= 4); - return v >> (LittleEndian::IsLittleEndian() ? 8 * offset : 32 - 8 * offset); -} - -#else - -typedef const char* EightBytesReference; - -static inline EightBytesReference GetEightBytesAt(const char* ptr) { - return ptr; -} - -static inline uint32 GetUint32AtOffset(const char* v, int offset) { + return v >> (LittleEndian::IsLittleEndian() ? 8 * offset : 32 - 8 * offset); +} + +#else + +typedef const char* EightBytesReference; + +static inline EightBytesReference GetEightBytesAt(const char* ptr) { + return ptr; +} + +static inline uint32 GetUint32AtOffset(const char* v, int offset) { assert(offset >= 0); assert(offset <= 4); - return UNALIGNED_LOAD32(v + offset); -} - -#endif - -// Flat array compression that does not emit the "uncompressed length" -// prefix. Compresses "input" string to the "*op" buffer. -// -// REQUIRES: "input" is at most "kBlockSize" bytes long. -// REQUIRES: "op" points to an array of memory that is at least -// "MaxCompressedLength(input.size())" in size. -// REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero. -// REQUIRES: "table_size" is a power of two -// -// Returns an "end" pointer into "op" buffer. -// "end - op" is the compressed size of "input". -namespace internal { -char* CompressFragment(const char* input, - size_t input_size, - char* op, - uint16* table, - const int table_size) { - // "ip" is the input pointer, and "op" is the output pointer. - const char* ip = input; + return UNALIGNED_LOAD32(v + offset); +} + +#endif + +// Flat array compression that does not emit the "uncompressed length" +// prefix. Compresses "input" string to the "*op" buffer. +// +// REQUIRES: "input" is at most "kBlockSize" bytes long. +// REQUIRES: "op" points to an array of memory that is at least +// "MaxCompressedLength(input.size())" in size. +// REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero. +// REQUIRES: "table_size" is a power of two +// +// Returns an "end" pointer into "op" buffer. +// "end - op" is the compressed size of "input". +namespace internal { +char* CompressFragment(const char* input, + size_t input_size, + char* op, + uint16* table, + const int table_size) { + // "ip" is the input pointer, and "op" is the output pointer. + const char* ip = input; assert(input_size <= kBlockSize); assert((table_size & (table_size - 1)) == 0); // table must be power of two - const int shift = 32 - Bits::Log2Floor(table_size); + const int shift = 32 - Bits::Log2Floor(table_size); assert(static_cast<int>(kuint32max >> shift) == table_size - 1); - const char* ip_end = input + input_size; - const char* base_ip = ip; - // Bytes in [next_emit, ip) will be emitted as literal bytes. Or - // [next_emit, ip_end) after the main loop. - const char* next_emit = ip; - - const size_t kInputMarginBytes = 15; + const char* ip_end = input + input_size; + const char* base_ip = ip; + // Bytes in [next_emit, ip) will be emitted as literal bytes. Or + // [next_emit, ip_end) after the main loop. + const char* next_emit = ip; + + const size_t kInputMarginBytes = 15; if (SNAPPY_PREDICT_TRUE(input_size >= kInputMarginBytes)) { - const char* ip_limit = input + input_size - kInputMarginBytes; - - for (uint32 next_hash = Hash(++ip, shift); ; ) { + const char* ip_limit = input + input_size - kInputMarginBytes; + + for (uint32 next_hash = Hash(++ip, shift); ; ) { assert(next_emit < ip); - // The body of this loop calls EmitLiteral once and then EmitCopy one or - // more times. (The exception is that when we're close to exhausting - // the input we goto emit_remainder.) - // - // In the first iteration of this loop we're just starting, so - // there's nothing to copy, so calling EmitLiteral once is - // necessary. And we only start a new iteration when the - // current iteration has determined that a call to EmitLiteral will - // precede the next call to EmitCopy (if any). - // - // Step 1: Scan forward in the input looking for a 4-byte-long match. - // If we get close to exhausting the input then goto emit_remainder. - // - // Heuristic match skipping: If 32 bytes are scanned with no matches - // found, start looking only at every other byte. If 32 more bytes are + // The body of this loop calls EmitLiteral once and then EmitCopy one or + // more times. (The exception is that when we're close to exhausting + // the input we goto emit_remainder.) + // + // In the first iteration of this loop we're just starting, so + // there's nothing to copy, so calling EmitLiteral once is + // necessary. And we only start a new iteration when the + // current iteration has determined that a call to EmitLiteral will + // precede the next call to EmitCopy (if any). + // + // Step 1: Scan forward in the input looking for a 4-byte-long match. + // If we get close to exhausting the input then goto emit_remainder. + // + // Heuristic match skipping: If 32 bytes are scanned with no matches + // found, start looking only at every other byte. If 32 more bytes are // scanned (or skipped), look at every third byte, etc.. When a match is // found, immediately go back to looking at every byte. This is a small // loss (~5% performance, ~0.1% density) for compressible data due to more - // bookkeeping, but for non-compressible data (such as JPEG) it's a huge - // win since the compressor quickly "realizes" the data is incompressible - // and doesn't bother looking for matches everywhere. - // - // The "skip" variable keeps track of how many bytes there are since the - // last match; dividing it by 32 (ie. right-shifting by five) gives the - // number of bytes to move ahead for each iteration. - uint32 skip = 32; - - const char* next_ip = ip; - const char* candidate; - do { - ip = next_ip; - uint32 hash = next_hash; + // bookkeeping, but for non-compressible data (such as JPEG) it's a huge + // win since the compressor quickly "realizes" the data is incompressible + // and doesn't bother looking for matches everywhere. + // + // The "skip" variable keeps track of how many bytes there are since the + // last match; dividing it by 32 (ie. right-shifting by five) gives the + // number of bytes to move ahead for each iteration. + uint32 skip = 32; + + const char* next_ip = ip; + const char* candidate; + do { + ip = next_ip; + uint32 hash = next_hash; assert(hash == Hash(ip, shift)); uint32 bytes_between_hash_lookups = skip >> 5; skip += bytes_between_hash_lookups; - next_ip = ip + bytes_between_hash_lookups; + next_ip = ip + bytes_between_hash_lookups; if (SNAPPY_PREDICT_FALSE(next_ip > ip_limit)) { - goto emit_remainder; - } - next_hash = Hash(next_ip, shift); - candidate = base_ip + table[hash]; + goto emit_remainder; + } + next_hash = Hash(next_ip, shift); + candidate = base_ip + table[hash]; assert(candidate >= base_ip); assert(candidate < ip); - - table[hash] = ip - base_ip; + + table[hash] = ip - base_ip; } while (SNAPPY_PREDICT_TRUE(UNALIGNED_LOAD32(ip) != UNALIGNED_LOAD32(candidate))); - - // Step 2: A 4-byte match has been found. We'll later see if more - // than 4 bytes match. But, prior to the match, input - // bytes [next_emit, ip) are unmatched. Emit them as "literal bytes." + + // Step 2: A 4-byte match has been found. We'll later see if more + // than 4 bytes match. But, prior to the match, input + // bytes [next_emit, ip) are unmatched. Emit them as "literal bytes." assert(next_emit + 16 <= ip_end); op = EmitLiteral</*allow_fast_path=*/true>(op, next_emit, ip - next_emit); - - // Step 3: Call EmitCopy, and then see if another EmitCopy could - // be our next move. Repeat until we find no match for the - // input immediately after what was consumed by the last EmitCopy call. - // - // If we exit this loop normally then we need to call EmitLiteral next, - // though we don't yet know how big the literal will be. We handle that - // by proceeding to the next iteration of the main loop. We also can exit - // this loop via goto if we get close to exhausting the input. - EightBytesReference input_bytes; - uint32 candidate_bytes = 0; - - do { - // We have a 4-byte match at ip, and no need to emit any - // "literal bytes" prior to ip. - const char* base = ip; + + // Step 3: Call EmitCopy, and then see if another EmitCopy could + // be our next move. Repeat until we find no match for the + // input immediately after what was consumed by the last EmitCopy call. + // + // If we exit this loop normally then we need to call EmitLiteral next, + // though we don't yet know how big the literal will be. We handle that + // by proceeding to the next iteration of the main loop. We also can exit + // this loop via goto if we get close to exhausting the input. + EightBytesReference input_bytes; + uint32 candidate_bytes = 0; + + do { + // We have a 4-byte match at ip, and no need to emit any + // "literal bytes" prior to ip. + const char* base = ip; std::pair<size_t, bool> p = FindMatchLength(candidate + 4, ip + 4, ip_end); size_t matched = 4 + p.first; - ip += matched; - size_t offset = base - candidate; + ip += matched; + size_t offset = base - candidate; assert(0 == memcmp(base, candidate, matched)); if (p.second) { op = EmitCopy</*len_less_than_12=*/true>(op, offset, matched); } else { op = EmitCopy</*len_less_than_12=*/false>(op, offset, matched); } - next_emit = ip; + next_emit = ip; if (SNAPPY_PREDICT_FALSE(ip >= ip_limit)) { - goto emit_remainder; - } + goto emit_remainder; + } // We are now looking for a 4-byte match again. We read // table[Hash(ip, shift)] for that. To improve compression, // we also update table[Hash(ip - 1, shift)] and table[Hash(ip, shift)]. input_bytes = GetEightBytesAt(ip - 1); - uint32 prev_hash = HashBytes(GetUint32AtOffset(input_bytes, 0), shift); - table[prev_hash] = ip - base_ip - 1; - uint32 cur_hash = HashBytes(GetUint32AtOffset(input_bytes, 1), shift); - candidate = base_ip + table[cur_hash]; - candidate_bytes = UNALIGNED_LOAD32(candidate); - table[cur_hash] = ip - base_ip; - } while (GetUint32AtOffset(input_bytes, 1) == candidate_bytes); - - next_hash = HashBytes(GetUint32AtOffset(input_bytes, 2), shift); - ++ip; - } - } - - emit_remainder: - // Emit the remaining bytes as a literal - if (next_emit < ip_end) { + uint32 prev_hash = HashBytes(GetUint32AtOffset(input_bytes, 0), shift); + table[prev_hash] = ip - base_ip - 1; + uint32 cur_hash = HashBytes(GetUint32AtOffset(input_bytes, 1), shift); + candidate = base_ip + table[cur_hash]; + candidate_bytes = UNALIGNED_LOAD32(candidate); + table[cur_hash] = ip - base_ip; + } while (GetUint32AtOffset(input_bytes, 1) == candidate_bytes); + + next_hash = HashBytes(GetUint32AtOffset(input_bytes, 2), shift); + ++ip; + } + } + + emit_remainder: + // Emit the remaining bytes as a literal + if (next_emit < ip_end) { op = EmitLiteral</*allow_fast_path=*/false>(op, next_emit, ip_end - next_emit); - } - - return op; -} -} // end namespace internal - + } + + return op; +} +} // end namespace internal + // Called back at avery compression call to trace parameters and sizes. static inline void Report(const char *algorithm, size_t compressed_size, size_t uncompressed_size) {} -// Signature of output types needed by decompression code. -// The decompression code is templatized on a type that obeys this -// signature so that we do not pay virtual function call overhead in -// the middle of a tight decompression loop. -// -// class DecompressionWriter { -// public: -// // Called before decompression -// void SetExpectedLength(size_t length); -// -// // Called after decompression -// bool CheckLength() const; -// -// // Called repeatedly during decompression -// bool Append(const char* ip, size_t length); -// bool AppendFromSelf(uint32 offset, size_t length); -// +// Signature of output types needed by decompression code. +// The decompression code is templatized on a type that obeys this +// signature so that we do not pay virtual function call overhead in +// the middle of a tight decompression loop. +// +// class DecompressionWriter { +// public: +// // Called before decompression +// void SetExpectedLength(size_t length); +// +// // Called after decompression +// bool CheckLength() const; +// +// // Called repeatedly during decompression +// bool Append(const char* ip, size_t length); +// bool AppendFromSelf(uint32 offset, size_t length); +// // // The rules for how TryFastAppend differs from Append are somewhat // // convoluted: -// // +// // // // - TryFastAppend is allowed to decline (return false) at any // // time, for any reason -- just "return false" would be // // a perfectly legal implementation of TryFastAppend. @@ -711,10 +711,10 @@ static inline void Report(const char *algorithm, size_t compressed_size, // // decoded fully. In practice, this should not be a big problem, // // as it is unlikely that one would implement a fast path accepting // // this much data. -// // -// bool TryFastAppend(const char* ip, size_t available, size_t length); -// }; - +// // +// bool TryFastAppend(const char* ip, size_t available, size_t length); +// }; + static inline uint32 ExtractLowBytes(uint32 v, int n) { assert(n >= 0); assert(n <= 4); @@ -726,8 +726,8 @@ static inline uint32 ExtractLowBytes(uint32 v, int n) { uint64 mask = 0xffffffff; return v & ~(mask << (8 * n)); #endif -} - +} + static inline bool LeftShiftOverflows(uint8 value, uint32 shift) { assert(shift < 32); static const uint8 masks[] = { @@ -736,77 +736,77 @@ static inline bool LeftShiftOverflows(uint8 value, uint32 shift) { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe}; return (value & masks[shift]) != 0; -} - -// Helper class for decompression -class SnappyDecompressor { - private: - Source* reader_; // Underlying source of bytes to decompress - const char* ip_; // Points to next buffered byte - const char* ip_limit_; // Points just past buffered bytes - uint32 peeked_; // Bytes peeked from reader (need to skip) - bool eof_; // Hit end of input without an error? +} + +// Helper class for decompression +class SnappyDecompressor { + private: + Source* reader_; // Underlying source of bytes to decompress + const char* ip_; // Points to next buffered byte + const char* ip_limit_; // Points just past buffered bytes + uint32 peeked_; // Bytes peeked from reader (need to skip) + bool eof_; // Hit end of input without an error? char scratch_[kMaximumTagLength]; // See RefillTag(). - - // Ensure that all of the tag metadata for the next tag is available - // in [ip_..ip_limit_-1]. Also ensures that [ip,ip+4] is readable even - // if (ip_limit_ - ip_ < 5). - // - // Returns true on success, false on error or end of input. - bool RefillTag(); - - public: - explicit SnappyDecompressor(Source* reader) - : reader_(reader), - ip_(NULL), - ip_limit_(NULL), - peeked_(0), - eof_(false) { - } - - ~SnappyDecompressor() { - // Advance past any bytes we peeked at from the reader - reader_->Skip(peeked_); - } - - // Returns true iff we have hit the end of the input without an error. - bool eof() const { - return eof_; - } - - // Read the uncompressed length stored at the start of the compressed data. + + // Ensure that all of the tag metadata for the next tag is available + // in [ip_..ip_limit_-1]. Also ensures that [ip,ip+4] is readable even + // if (ip_limit_ - ip_ < 5). + // + // Returns true on success, false on error or end of input. + bool RefillTag(); + + public: + explicit SnappyDecompressor(Source* reader) + : reader_(reader), + ip_(NULL), + ip_limit_(NULL), + peeked_(0), + eof_(false) { + } + + ~SnappyDecompressor() { + // Advance past any bytes we peeked at from the reader + reader_->Skip(peeked_); + } + + // Returns true iff we have hit the end of the input without an error. + bool eof() const { + return eof_; + } + + // Read the uncompressed length stored at the start of the compressed data. // On success, stores the length in *result and returns true. - // On failure, returns false. - bool ReadUncompressedLength(uint32* result) { + // On failure, returns false. + bool ReadUncompressedLength(uint32* result) { assert(ip_ == NULL); // Must not have read anything yet - // Length is encoded in 1..5 bytes - *result = 0; - uint32 shift = 0; - while (true) { - if (shift >= 32) return false; - size_t n; - const char* ip = reader_->Peek(&n); - if (n == 0) return false; - const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip)); - reader_->Skip(1); + // Length is encoded in 1..5 bytes + *result = 0; + uint32 shift = 0; + while (true) { + if (shift >= 32) return false; + size_t n; + const char* ip = reader_->Peek(&n); + if (n == 0) return false; + const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip)); + reader_->Skip(1); uint32 val = c & 0x7f; if (LeftShiftOverflows(static_cast<uint8>(val), shift)) return false; *result |= val << shift; - if (c < 128) { - break; - } - shift += 7; - } - return true; - } - - // Process the next item found in the input. - // Returns true if successful, false on error or end of input. - template <class Writer> + if (c < 128) { + break; + } + shift += 7; + } + return true; + } + + // Process the next item found in the input. + // Returns true if successful, false on error or end of input. + template <class Writer> #if defined(__GNUC__) && defined(__x86_64__) __attribute__((aligned(32))) #endif - void DecompressAllTags(Writer* writer) { + void DecompressAllTags(Writer* writer) { // In x86, pad the function body to start 16 bytes later. This function has // a couple of hotspots that are highly sensitive to alignment: we have // observed regressions by more than 20% in some metrics just by moving the @@ -823,22 +823,22 @@ class SnappyDecompressor { asm(".byte 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00"); #endif - const char* ip = ip_; - // We could have put this refill fragment only at the beginning of the loop. - // However, duplicating it at the end of each branch gives the compiler more - // scope to optimize the <ip_limit_ - ip> expression based on the local - // context, which overall increases speed. - #define MAYBE_REFILL() \ + const char* ip = ip_; + // We could have put this refill fragment only at the beginning of the loop. + // However, duplicating it at the end of each branch gives the compiler more + // scope to optimize the <ip_limit_ - ip> expression based on the local + // context, which overall increases speed. + #define MAYBE_REFILL() \ if (ip_limit_ - ip < kMaximumTagLength) { \ - ip_ = ip; \ - if (!RefillTag()) return; \ - ip = ip_; \ - } - - MAYBE_REFILL(); - for ( ;; ) { - const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip++)); - + ip_ = ip; \ + if (!RefillTag()) return; \ + ip = ip_; \ + } + + MAYBE_REFILL(); + for ( ;; ) { + const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip++)); + // Ratio of iterations that have LITERAL vs non-LITERAL for different // inputs. // @@ -852,202 +852,202 @@ class SnappyDecompressor { // pb 24% 76% // bin 24% 76% if (SNAPPY_PREDICT_FALSE((c & 0x3) == LITERAL)) { - size_t literal_length = (c >> 2) + 1u; - if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length)) { + size_t literal_length = (c >> 2) + 1u; + if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length)) { assert(literal_length < 61); - ip += literal_length; + ip += literal_length; // NOTE: There is no MAYBE_REFILL() here, as TryFastAppend() // will not return true unless there's already at least five spare // bytes in addition to the literal. - continue; - } + continue; + } if (SNAPPY_PREDICT_FALSE(literal_length >= 61)) { - // Long literal. - const size_t literal_length_length = literal_length - 60; - literal_length = + // Long literal. + const size_t literal_length_length = literal_length - 60; + literal_length = ExtractLowBytes(LittleEndian::Load32(ip), literal_length_length) + 1; - ip += literal_length_length; - } - - size_t avail = ip_limit_ - ip; - while (avail < literal_length) { - if (!writer->Append(ip, avail)) return; - literal_length -= avail; - reader_->Skip(peeked_); - size_t n; - ip = reader_->Peek(&n); - avail = n; - peeked_ = avail; - if (avail == 0) return; // Premature end of input - ip_limit_ = ip + avail; - } - if (!writer->Append(ip, literal_length)) { - return; - } - ip += literal_length; - MAYBE_REFILL(); - } else { + ip += literal_length_length; + } + + size_t avail = ip_limit_ - ip; + while (avail < literal_length) { + if (!writer->Append(ip, avail)) return; + literal_length -= avail; + reader_->Skip(peeked_); + size_t n; + ip = reader_->Peek(&n); + avail = n; + peeked_ = avail; + if (avail == 0) return; // Premature end of input + ip_limit_ = ip + avail; + } + if (!writer->Append(ip, literal_length)) { + return; + } + ip += literal_length; + MAYBE_REFILL(); + } else { const size_t entry = char_table[c]; const size_t trailer = ExtractLowBytes(LittleEndian::Load32(ip), entry >> 11); const size_t length = entry & 0xff; - ip += entry >> 11; - - // copy_offset/256 is encoded in bits 8..10. By just fetching - // those bits, we get copy_offset (since the bit-field starts at - // bit 8). + ip += entry >> 11; + + // copy_offset/256 is encoded in bits 8..10. By just fetching + // those bits, we get copy_offset (since the bit-field starts at + // bit 8). const size_t copy_offset = entry & 0x700; - if (!writer->AppendFromSelf(copy_offset + trailer, length)) { - return; - } - MAYBE_REFILL(); - } - } - -#undef MAYBE_REFILL - } -}; - -bool SnappyDecompressor::RefillTag() { - const char* ip = ip_; - if (ip == ip_limit_) { - // Fetch a new fragment from the reader - reader_->Skip(peeked_); // All peeked bytes are used up - size_t n; - ip = reader_->Peek(&n); - peeked_ = n; + if (!writer->AppendFromSelf(copy_offset + trailer, length)) { + return; + } + MAYBE_REFILL(); + } + } + +#undef MAYBE_REFILL + } +}; + +bool SnappyDecompressor::RefillTag() { + const char* ip = ip_; + if (ip == ip_limit_) { + // Fetch a new fragment from the reader + reader_->Skip(peeked_); // All peeked bytes are used up + size_t n; + ip = reader_->Peek(&n); + peeked_ = n; eof_ = (n == 0); if (eof_) return false; - ip_limit_ = ip + n; - } - - // Read the tag character + ip_limit_ = ip + n; + } + + // Read the tag character assert(ip < ip_limit_); - const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip)); - const uint32 entry = char_table[c]; - const uint32 needed = (entry >> 11) + 1; // +1 byte for 'c' + const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip)); + const uint32 entry = char_table[c]; + const uint32 needed = (entry >> 11) + 1; // +1 byte for 'c' assert(needed <= sizeof(scratch_)); - - // Read more bytes from reader if needed - uint32 nbuf = ip_limit_ - ip; - if (nbuf < needed) { - // Stitch together bytes from ip and reader to form the word - // contents. We store the needed bytes in "scratch_". They - // will be consumed immediately by the caller since we do not - // read more than we need. - memmove(scratch_, ip, nbuf); - reader_->Skip(peeked_); // All peeked bytes are used up - peeked_ = 0; - while (nbuf < needed) { - size_t length; - const char* src = reader_->Peek(&length); - if (length == 0) return false; + + // Read more bytes from reader if needed + uint32 nbuf = ip_limit_ - ip; + if (nbuf < needed) { + // Stitch together bytes from ip and reader to form the word + // contents. We store the needed bytes in "scratch_". They + // will be consumed immediately by the caller since we do not + // read more than we need. + memmove(scratch_, ip, nbuf); + reader_->Skip(peeked_); // All peeked bytes are used up + peeked_ = 0; + while (nbuf < needed) { + size_t length; + const char* src = reader_->Peek(&length); + if (length == 0) return false; uint32 to_add = std::min<uint32>(needed - nbuf, length); - memcpy(scratch_ + nbuf, src, to_add); - nbuf += to_add; - reader_->Skip(to_add); - } + memcpy(scratch_ + nbuf, src, to_add); + nbuf += to_add; + reader_->Skip(to_add); + } assert(nbuf == needed); - ip_ = scratch_; - ip_limit_ = scratch_ + needed; + ip_ = scratch_; + ip_limit_ = scratch_ + needed; } else if (nbuf < kMaximumTagLength) { - // Have enough bytes, but move into scratch_ so that we do not - // read past end of input - memmove(scratch_, ip, nbuf); - reader_->Skip(peeked_); // All peeked bytes are used up - peeked_ = 0; - ip_ = scratch_; - ip_limit_ = scratch_ + nbuf; - } else { - // Pass pointer to buffer returned by reader_. - ip_ = ip; - } - return true; -} - -template <typename Writer> + // Have enough bytes, but move into scratch_ so that we do not + // read past end of input + memmove(scratch_, ip, nbuf); + reader_->Skip(peeked_); // All peeked bytes are used up + peeked_ = 0; + ip_ = scratch_; + ip_limit_ = scratch_ + nbuf; + } else { + // Pass pointer to buffer returned by reader_. + ip_ = ip; + } + return true; +} + +template <typename Writer> static bool InternalUncompress(Source* r, Writer* writer) { - // Read the uncompressed length from the front of the compressed input - SnappyDecompressor decompressor(r); - uint32 uncompressed_len = 0; - if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false; + // Read the uncompressed length from the front of the compressed input + SnappyDecompressor decompressor(r); + uint32 uncompressed_len = 0; + if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false; return InternalUncompressAllTags(&decompressor, writer, r->Available(), uncompressed_len); -} - -template <typename Writer> -static bool InternalUncompressAllTags(SnappyDecompressor* decompressor, - Writer* writer, +} + +template <typename Writer> +static bool InternalUncompressAllTags(SnappyDecompressor* decompressor, + Writer* writer, uint32 compressed_len, uint32 uncompressed_len) { Report("snappy_uncompress", compressed_len, uncompressed_len); - - writer->SetExpectedLength(uncompressed_len); - - // Process the entire input - decompressor->DecompressAllTags(writer); + + writer->SetExpectedLength(uncompressed_len); + + // Process the entire input + decompressor->DecompressAllTags(writer); writer->Flush(); - return (decompressor->eof() && writer->CheckLength()); -} - -bool GetUncompressedLength(Source* source, uint32* result) { - SnappyDecompressor decompressor(source); - return decompressor.ReadUncompressedLength(result); -} - -size_t Compress(Source* reader, Sink* writer) { - size_t written = 0; - size_t N = reader->Available(); + return (decompressor->eof() && writer->CheckLength()); +} + +bool GetUncompressedLength(Source* source, uint32* result) { + SnappyDecompressor decompressor(source); + return decompressor.ReadUncompressedLength(result); +} + +size_t Compress(Source* reader, Sink* writer) { + size_t written = 0; + size_t N = reader->Available(); const size_t uncompressed_size = N; - char ulength[Varint::kMax32]; - char* p = Varint::Encode32(ulength, N); - writer->Append(ulength, p-ulength); - written += (p - ulength); - + char ulength[Varint::kMax32]; + char* p = Varint::Encode32(ulength, N); + writer->Append(ulength, p-ulength); + written += (p - ulength); + internal::WorkingMemory wmem(N); - - while (N > 0) { - // Get next block to compress (without copying if possible) - size_t fragment_size; - const char* fragment = reader->Peek(&fragment_size); + + while (N > 0) { + // Get next block to compress (without copying if possible) + size_t fragment_size; + const char* fragment = reader->Peek(&fragment_size); assert(fragment_size != 0); // premature end of input const size_t num_to_read = std::min(N, kBlockSize); - size_t bytes_read = fragment_size; - - size_t pending_advance = 0; - if (bytes_read >= num_to_read) { - // Buffer returned by reader is large enough - pending_advance = num_to_read; - fragment_size = num_to_read; - } else { + size_t bytes_read = fragment_size; + + size_t pending_advance = 0; + if (bytes_read >= num_to_read) { + // Buffer returned by reader is large enough + pending_advance = num_to_read; + fragment_size = num_to_read; + } else { char* scratch = wmem.GetScratchInput(); - memcpy(scratch, fragment, bytes_read); - reader->Skip(bytes_read); - - while (bytes_read < num_to_read) { - fragment = reader->Peek(&fragment_size); + memcpy(scratch, fragment, bytes_read); + reader->Skip(bytes_read); + + while (bytes_read < num_to_read) { + fragment = reader->Peek(&fragment_size); size_t n = std::min<size_t>(fragment_size, num_to_read - bytes_read); - memcpy(scratch + bytes_read, fragment, n); - bytes_read += n; - reader->Skip(n); - } + memcpy(scratch + bytes_read, fragment, n); + bytes_read += n; + reader->Skip(n); + } assert(bytes_read == num_to_read); - fragment = scratch; - fragment_size = num_to_read; - } + fragment = scratch; + fragment_size = num_to_read; + } assert(fragment_size == num_to_read); - - // Get encoding table for compression - int table_size; - uint16* table = wmem.GetHashTable(num_to_read, &table_size); - - // Compress input_fragment and append to dest - const int max_output = MaxCompressedLength(num_to_read); - - // Need a scratch buffer for the output, in case the byte sink doesn't - // have room for us directly. + + // Get encoding table for compression + int table_size; + uint16* table = wmem.GetHashTable(num_to_read, &table_size); + + // Compress input_fragment and append to dest + const int max_output = MaxCompressedLength(num_to_read); + + // Need a scratch buffer for the output, in case the byte sink doesn't + // have room for us directly. // Since we encode kBlockSize regions followed by a region // which is <= kBlockSize in length, a previously allocated @@ -1055,19 +1055,19 @@ size_t Compress(Source* reader, Sink* writer) { char* dest = writer->GetAppendBuffer(max_output, wmem.GetScratchOutput()); char* end = internal::CompressFragment(fragment, fragment_size, dest, table, table_size); - writer->Append(dest, end - dest); - written += (end - dest); - - N -= num_to_read; - reader->Skip(pending_advance); - } - + writer->Append(dest, end - dest); + written += (end - dest); + + N -= num_to_read; + reader->Skip(pending_advance); + } + Report("snappy_compress", written, uncompressed_size); - - return written; -} - -// ----------------------------------------------------------------------- + + return written; +} + +// ----------------------------------------------------------------------- // IOVec interfaces // ----------------------------------------------------------------------- @@ -1260,60 +1260,60 @@ bool RawUncompressToIOVec(Source* compressed, const struct iovec* iov, } // ----------------------------------------------------------------------- -// Flat array interfaces -// ----------------------------------------------------------------------- - -// A type that writes to a flat array. -// Note that this is not a "ByteSink", but a type that matches the -// Writer template argument to SnappyDecompressor::DecompressAllTags(). -class SnappyArrayWriter { - private: - char* base_; - char* op_; - char* op_limit_; - - public: - inline explicit SnappyArrayWriter(char* dst) - : base_(dst), +// Flat array interfaces +// ----------------------------------------------------------------------- + +// A type that writes to a flat array. +// Note that this is not a "ByteSink", but a type that matches the +// Writer template argument to SnappyDecompressor::DecompressAllTags(). +class SnappyArrayWriter { + private: + char* base_; + char* op_; + char* op_limit_; + + public: + inline explicit SnappyArrayWriter(char* dst) + : base_(dst), op_(dst), op_limit_(dst) { - } - - inline void SetExpectedLength(size_t len) { - op_limit_ = op_ + len; - } - - inline bool CheckLength() const { - return op_ == op_limit_; - } - - inline bool Append(const char* ip, size_t len) { - char* op = op_; - const size_t space_left = op_limit_ - op; - if (space_left < len) { - return false; - } - memcpy(op, ip, len); - op_ = op + len; - return true; - } - - inline bool TryFastAppend(const char* ip, size_t available, size_t len) { - char* op = op_; - const size_t space_left = op_limit_ - op; + } + + inline void SetExpectedLength(size_t len) { + op_limit_ = op_ + len; + } + + inline bool CheckLength() const { + return op_ == op_limit_; + } + + inline bool Append(const char* ip, size_t len) { + char* op = op_; + const size_t space_left = op_limit_ - op; + if (space_left < len) { + return false; + } + memcpy(op, ip, len); + op_ = op + len; + return true; + } + + inline bool TryFastAppend(const char* ip, size_t available, size_t len) { + char* op = op_; + const size_t space_left = op_limit_ - op; if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) { - // Fast path, used for the majority (about 95%) of invocations. + // Fast path, used for the majority (about 95%) of invocations. UnalignedCopy128(ip, op); - op_ = op + len; - return true; - } else { - return false; - } - } - - inline bool AppendFromSelf(size_t offset, size_t len) { + op_ = op + len; + return true; + } else { + return false; + } + } + + inline bool AppendFromSelf(size_t offset, size_t len) { char* const op_end = op_ + len; - + // Check if we try to append from before the start of the buffer. // Normally this would just be a check for "produced < offset", // but "produced <= offset - 1u" is equivalent for every case @@ -1323,40 +1323,40 @@ class SnappyArrayWriter { // into an infinite loop. if (Produced() <= offset - 1u || op_end > op_limit_) return false; op_ = IncrementalCopy(op_ - offset, op_, op_end, op_limit_); - - return true; - } + + return true; + } inline size_t Produced() const { assert(op_ >= base_); return op_ - base_; } inline void Flush() {} -}; - -bool RawUncompress(const char* compressed, size_t n, char* uncompressed) { - ByteArraySource reader(compressed, n); - return RawUncompress(&reader, uncompressed); -} - -bool RawUncompress(Source* compressed, char* uncompressed) { - SnappyArrayWriter output(uncompressed); +}; + +bool RawUncompress(const char* compressed, size_t n, char* uncompressed) { + ByteArraySource reader(compressed, n); + return RawUncompress(&reader, uncompressed); +} + +bool RawUncompress(Source* compressed, char* uncompressed) { + SnappyArrayWriter output(uncompressed); return InternalUncompress(compressed, &output); -} - +} + bool Uncompress(const char* compressed, size_t n, std::string* uncompressed) { - size_t ulength; - if (!GetUncompressedLength(compressed, n, &ulength)) { - return false; - } + size_t ulength; + if (!GetUncompressedLength(compressed, n, &ulength)) { + return false; + } // On 32-bit builds: max_size() < kuint32max. Check for that instead // of crashing (e.g., consider externally specified compressed data). if (ulength > uncompressed->max_size()) { - return false; - } - STLStringResizeUninitialized(uncompressed, ulength); - return RawUncompress(compressed, n, string_as_array(uncompressed)); -} - + return false; + } + STLStringResizeUninitialized(uncompressed, ulength); + return RawUncompress(compressed, n, string_as_array(uncompressed)); +} + bool Uncompress(const char* compressed, size_t n, TString* uncompressed) { size_t ulength; if (!GetUncompressedLength(compressed, n, &ulength)) { @@ -1371,72 +1371,72 @@ bool Uncompress(const char* compressed, size_t n, TString* uncompressed) { return RawUncompress(compressed, n, uncompressed->begin()); } -// A Writer that drops everything on the floor and just does validation -class SnappyDecompressionValidator { - private: - size_t expected_; - size_t produced_; - - public: +// A Writer that drops everything on the floor and just does validation +class SnappyDecompressionValidator { + private: + size_t expected_; + size_t produced_; + + public: inline SnappyDecompressionValidator() : expected_(0), produced_(0) { } - inline void SetExpectedLength(size_t len) { - expected_ = len; - } - inline bool CheckLength() const { - return expected_ == produced_; - } - inline bool Append(const char* ip, size_t len) { - produced_ += len; - return produced_ <= expected_; - } - inline bool TryFastAppend(const char* ip, size_t available, size_t length) { - return false; - } - inline bool AppendFromSelf(size_t offset, size_t len) { + inline void SetExpectedLength(size_t len) { + expected_ = len; + } + inline bool CheckLength() const { + return expected_ == produced_; + } + inline bool Append(const char* ip, size_t len) { + produced_ += len; + return produced_ <= expected_; + } + inline bool TryFastAppend(const char* ip, size_t available, size_t length) { + return false; + } + inline bool AppendFromSelf(size_t offset, size_t len) { // See SnappyArrayWriter::AppendFromSelf for an explanation of // the "offset - 1u" trick. if (produced_ <= offset - 1u) return false; - produced_ += len; - return produced_ <= expected_; - } + produced_ += len; + return produced_ <= expected_; + } inline void Flush() {} -}; - -bool IsValidCompressedBuffer(const char* compressed, size_t n) { - ByteArraySource reader(compressed, n); - SnappyDecompressionValidator writer; +}; + +bool IsValidCompressedBuffer(const char* compressed, size_t n) { + ByteArraySource reader(compressed, n); + SnappyDecompressionValidator writer; return InternalUncompress(&reader, &writer); -} - +} + bool IsValidCompressed(Source* compressed) { SnappyDecompressionValidator writer; return InternalUncompress(compressed, &writer); } -void RawCompress(const char* input, - size_t input_length, - char* compressed, - size_t* compressed_length) { - ByteArraySource reader(input, input_length); - UncheckedByteArraySink writer(compressed); - Compress(&reader, &writer); - - // Compute how many bytes were added - *compressed_length = (writer.CurrentDestination() - compressed); -} - +void RawCompress(const char* input, + size_t input_length, + char* compressed, + size_t* compressed_length) { + ByteArraySource reader(input, input_length); + UncheckedByteArraySink writer(compressed); + Compress(&reader, &writer); + + // Compute how many bytes were added + *compressed_length = (writer.CurrentDestination() - compressed); +} + size_t Compress(const char* input, size_t input_length, std::string* compressed) { - // Pre-grow the buffer to the max length of the compressed output + // Pre-grow the buffer to the max length of the compressed output STLStringResizeUninitialized(compressed, MaxCompressedLength(input_length)); - - size_t compressed_length; - RawCompress(input, input_length, string_as_array(compressed), - &compressed_length); - compressed->resize(compressed_length); - return compressed_length; -} - + + size_t compressed_length; + RawCompress(input, input_length, string_as_array(compressed), + &compressed_length); + compressed->resize(compressed_length); + return compressed_length; +} + size_t Compress(const char* input, size_t input_length, TString* compressed) { // Pre-grow the buffer to the max length of the compressed output @@ -1452,14 +1452,14 @@ size_t Compress(const char* input, size_t input_length, // ----------------------------------------------------------------------- // Sink interface // ----------------------------------------------------------------------- - + // A type that decompresses into a Sink. The template parameter // Allocator must export one method "char* Allocate(int size);", which // allocates a buffer of "size" and appends that to the destination. template <typename Allocator> class SnappyScatteredWriter { Allocator allocator_; - + // We need random access into the data generated so far. Therefore // we keep track of all of the generated data as an array of blocks. // All of the blocks except the last have length kBlockSize. |