diff options
author | thegeorg <thegeorg@yandex-team.ru> | 2022-02-10 16:45:08 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:45:08 +0300 |
commit | 4e839db24a3bbc9f1c610c43d6faaaa99824dcca (patch) | |
tree | 506dac10f5df94fab310584ee51b24fc5a081c22 /contrib/libs/snappy/snappy.cc | |
parent | 2d37894b1b037cf24231090eda8589bbb44fb6fc (diff) | |
download | ydb-4e839db24a3bbc9f1c610c43d6faaaa99824dcca.tar.gz |
Restoring authorship annotation for <thegeorg@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/snappy/snappy.cc')
-rw-r--r-- | contrib/libs/snappy/snappy.cc | 2024 |
1 files changed, 1012 insertions, 1012 deletions
diff --git a/contrib/libs/snappy/snappy.cc b/contrib/libs/snappy/snappy.cc index 9351b0f21e..4491be6871 100644 --- a/contrib/libs/snappy/snappy.cc +++ b/contrib/libs/snappy/snappy.cc @@ -30,59 +30,59 @@ #include "snappy-internal.h" #include "snappy-sinksource.h" -#if !defined(SNAPPY_HAVE_SSSE3) -// __SSSE3__ is defined by GCC and Clang. Visual Studio doesn't target SIMD -// support between SSE2 and AVX (so SSSE3 instructions require AVX support), and -// defines __AVX__ when AVX support is available. -#if defined(__SSSE3__) || defined(__AVX__) -#define SNAPPY_HAVE_SSSE3 1 -#else -#define SNAPPY_HAVE_SSSE3 0 -#endif -#endif // !defined(SNAPPY_HAVE_SSSE3) - -#if !defined(SNAPPY_HAVE_BMI2) -// __BMI2__ is defined by GCC and Clang. Visual Studio doesn't target BMI2 -// specifically, but it does define __AVX2__ when AVX2 support is available. -// Fortunately, AVX2 was introduced in Haswell, just like BMI2. -// -// BMI2 is not defined as a subset of AVX2 (unlike SSSE3 and AVX above). So, -// GCC and Clang can build code with AVX2 enabled but BMI2 disabled, in which -// case issuing BMI2 instructions results in a compiler error. -#if defined(__BMI2__) || (defined(_MSC_VER) && defined(__AVX2__)) -#define SNAPPY_HAVE_BMI2 1 -#else -#define SNAPPY_HAVE_BMI2 0 -#endif -#endif // !defined(SNAPPY_HAVE_BMI2) - -#if SNAPPY_HAVE_SSSE3 -// Please do not replace with <x86intrin.h>. or with headers that assume more -// advanced SSE versions without checking with all the OWNERS. -#include <tmmintrin.h> -#endif - -#if SNAPPY_HAVE_BMI2 -// Please do not replace with <x86intrin.h>. or with headers that assume more -// advanced SSE versions without checking with all the OWNERS. -#include <immintrin.h> -#endif - +#if !defined(SNAPPY_HAVE_SSSE3) +// __SSSE3__ is defined by GCC and Clang. Visual Studio doesn't target SIMD +// support between SSE2 and AVX (so SSSE3 instructions require AVX support), and +// defines __AVX__ when AVX support is available. +#if defined(__SSSE3__) || defined(__AVX__) +#define SNAPPY_HAVE_SSSE3 1 +#else +#define SNAPPY_HAVE_SSSE3 0 +#endif +#endif // !defined(SNAPPY_HAVE_SSSE3) + +#if !defined(SNAPPY_HAVE_BMI2) +// __BMI2__ is defined by GCC and Clang. Visual Studio doesn't target BMI2 +// specifically, but it does define __AVX2__ when AVX2 support is available. +// Fortunately, AVX2 was introduced in Haswell, just like BMI2. +// +// BMI2 is not defined as a subset of AVX2 (unlike SSSE3 and AVX above). So, +// GCC and Clang can build code with AVX2 enabled but BMI2 disabled, in which +// case issuing BMI2 instructions results in a compiler error. +#if defined(__BMI2__) || (defined(_MSC_VER) && defined(__AVX2__)) +#define SNAPPY_HAVE_BMI2 1 +#else +#define SNAPPY_HAVE_BMI2 0 +#endif +#endif // !defined(SNAPPY_HAVE_BMI2) + +#if SNAPPY_HAVE_SSSE3 +// Please do not replace with <x86intrin.h>. or with headers that assume more +// advanced SSE versions without checking with all the OWNERS. +#include <tmmintrin.h> +#endif + +#if SNAPPY_HAVE_BMI2 +// Please do not replace with <x86intrin.h>. or with headers that assume more +// advanced SSE versions without checking with all the OWNERS. +#include <immintrin.h> +#endif + #include <stdio.h> #include <algorithm> -#include <string> -#include <vector> -#include <util/generic/string.h> +#include <string> +#include <vector> +#include <util/generic/string.h> namespace snappy { -using internal::COPY_1_BYTE_OFFSET; -using internal::COPY_2_BYTE_OFFSET; -using internal::LITERAL; -using internal::char_table; -using internal::kMaximumTagLength; - +using internal::COPY_1_BYTE_OFFSET; +using internal::COPY_2_BYTE_OFFSET; +using internal::LITERAL; +using internal::char_table; +using internal::kMaximumTagLength; + // Any hash function will produce a valid compressed bitstream, but a good // hash function reduces the number of collisions and thus yields better // compression for compressible input, and more speed for incompressible @@ -120,311 +120,311 @@ size_t MaxCompressedLength(size_t source_len) { return 32 + source_len + source_len/6; } -namespace { - -void UnalignedCopy64(const void* src, void* dst) { - char tmp[8]; - memcpy(tmp, src, 8); - memcpy(dst, tmp, 8); -} - -void UnalignedCopy128(const void* src, void* dst) { - // memcpy gets vectorized when the appropriate compiler options are used. - // For example, x86 compilers targeting SSE2+ will optimize to an SSE2 load - // and store. - char tmp[16]; - memcpy(tmp, src, 16); - memcpy(dst, tmp, 16); -} - -// Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) a byte at a time. Used -// for handling COPY operations where the input and output regions may overlap. -// For example, suppose: -// src == "ab" -// op == src + 2 -// op_limit == op + 20 -// After IncrementalCopySlow(src, op, op_limit), the result will have eleven -// copies of "ab" +namespace { + +void UnalignedCopy64(const void* src, void* dst) { + char tmp[8]; + memcpy(tmp, src, 8); + memcpy(dst, tmp, 8); +} + +void UnalignedCopy128(const void* src, void* dst) { + // memcpy gets vectorized when the appropriate compiler options are used. + // For example, x86 compilers targeting SSE2+ will optimize to an SSE2 load + // and store. + char tmp[16]; + memcpy(tmp, src, 16); + memcpy(dst, tmp, 16); +} + +// Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) a byte at a time. Used +// for handling COPY operations where the input and output regions may overlap. +// For example, suppose: +// src == "ab" +// op == src + 2 +// op_limit == op + 20 +// After IncrementalCopySlow(src, op, op_limit), the result will have eleven +// copies of "ab" // ababababababababababab -// Note that this does not match the semantics of either memcpy() or memmove(). -inline char* IncrementalCopySlow(const char* src, char* op, - char* const op_limit) { - // TODO: Remove pragma when LLVM is aware this - // function is only called in cold regions and when cold regions don't get - // vectorized or unrolled. -#ifdef __clang__ -#pragma clang loop unroll(disable) -#endif - while (op < op_limit) { +// Note that this does not match the semantics of either memcpy() or memmove(). +inline char* IncrementalCopySlow(const char* src, char* op, + char* const op_limit) { + // TODO: Remove pragma when LLVM is aware this + // function is only called in cold regions and when cold regions don't get + // vectorized or unrolled. +#ifdef __clang__ +#pragma clang loop unroll(disable) +#endif + while (op < op_limit) { *op++ = *src++; - } - return op_limit; + } + return op_limit; } -#if SNAPPY_HAVE_SSSE3 - -// This is a table of shuffle control masks that can be used as the source -// operand for PSHUFB to permute the contents of the destination XMM register -// into a repeating byte pattern. -alignas(16) const char pshufb_fill_patterns[7][16] = { - {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, - {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}, - {0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0}, - {0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3}, - {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0}, - {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3}, - {0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1}, -}; - -#endif // SNAPPY_HAVE_SSSE3 - -// Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) but faster than -// IncrementalCopySlow. buf_limit is the address past the end of the writable -// region of the buffer. -inline char* IncrementalCopy(const char* src, char* op, char* const op_limit, - char* const buf_limit) { - // Terminology: - // - // slop = buf_limit - op - // pat = op - src - // len = limit - op - assert(src < op); - assert(op <= op_limit); - assert(op_limit <= buf_limit); - // NOTE: The compressor always emits 4 <= len <= 64. It is ok to assume that - // to optimize this function but we have to also handle other cases in case - // the input does not satisfy these conditions. - - size_t pattern_size = op - src; - // The cases are split into different branches to allow the branch predictor, - // FDO, and static prediction hints to work better. For each input we list the - // ratio of invocations that match each condition. - // - // input slop < 16 pat < 8 len > 16 - // ------------------------------------------ - // html|html4|cp 0% 1.01% 27.73% - // urls 0% 0.88% 14.79% - // jpg 0% 64.29% 7.14% - // pdf 0% 2.56% 58.06% - // txt[1-4] 0% 0.23% 0.97% - // pb 0% 0.96% 13.88% - // bin 0.01% 22.27% 41.17% - // - // It is very rare that we don't have enough slop for doing block copies. It - // is also rare that we need to expand a pattern. Small patterns are common - // for incompressible formats and for those we are plenty fast already. - // Lengths are normally not greater than 16 but they vary depending on the - // input. In general if we always predict len <= 16 it would be an ok - // prediction. - // - // In order to be fast we want a pattern >= 8 bytes and an unrolled loop - // copying 2x 8 bytes at a time. - - // Handle the uncommon case where pattern is less than 8 bytes. - if (SNAPPY_PREDICT_FALSE(pattern_size < 8)) { -#if SNAPPY_HAVE_SSSE3 - // Load the first eight bytes into an 128-bit XMM register, then use PSHUFB - // to permute the register's contents in-place into a repeating sequence of - // the first "pattern_size" bytes. - // For example, suppose: - // src == "abc" - // op == op + 3 - // After _mm_shuffle_epi8(), "pattern" will have five copies of "abc" - // followed by one byte of slop: abcabcabcabcabca. - // - // The non-SSE fallback implementation suffers from store-forwarding stalls - // because its loads and stores partly overlap. By expanding the pattern - // in-place, we avoid the penalty. - if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 16)) { - const __m128i shuffle_mask = _mm_load_si128( - reinterpret_cast<const __m128i*>(pshufb_fill_patterns) - + pattern_size - 1); - const __m128i pattern = _mm_shuffle_epi8( - _mm_loadl_epi64(reinterpret_cast<const __m128i*>(src)), shuffle_mask); - // Uninitialized bytes are masked out by the shuffle mask. - // TODO: remove annotation and macro defs once MSan is fixed. - SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(&pattern, sizeof(pattern)); - pattern_size *= 16 / pattern_size; - char* op_end = std::min(op_limit, buf_limit - 15); - while (op < op_end) { - _mm_storeu_si128(reinterpret_cast<__m128i*>(op), pattern); - op += pattern_size; - } - if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit; - } - return IncrementalCopySlow(src, op, op_limit); -#else // !SNAPPY_HAVE_SSSE3 - // If plenty of buffer space remains, expand the pattern to at least 8 - // bytes. The way the following loop is written, we need 8 bytes of buffer - // space if pattern_size >= 4, 11 bytes if pattern_size is 1 or 3, and 10 - // bytes if pattern_size is 2. Precisely encoding that is probably not - // worthwhile; instead, invoke the slow path if we cannot write 11 bytes - // (because 11 are required in the worst case). - if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 11)) { - while (pattern_size < 8) { - UnalignedCopy64(src, op); - op += pattern_size; - pattern_size *= 2; - } - if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit; - } else { - return IncrementalCopySlow(src, op, op_limit); - } -#endif // SNAPPY_HAVE_SSSE3 - } - assert(pattern_size >= 8); - - // Copy 2x 8 bytes at a time. Because op - src can be < 16, a single - // UnalignedCopy128 might overwrite data in op. UnalignedCopy64 is safe - // because expanding the pattern to at least 8 bytes guarantees that - // op - src >= 8. - // - // Typically, the op_limit is the gating factor so try to simplify the loop - // based on that. - if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 16)) { - // There is at least one, and at most four 16-byte blocks. Writing four - // conditionals instead of a loop allows FDO to layout the code with respect - // to the actual probabilities of each length. - // TODO: Replace with loop with trip count hint. - UnalignedCopy64(src, op); - UnalignedCopy64(src + 8, op + 8); - - if (op + 16 < op_limit) { - UnalignedCopy64(src + 16, op + 16); - UnalignedCopy64(src + 24, op + 24); - } - if (op + 32 < op_limit) { - UnalignedCopy64(src + 32, op + 32); - UnalignedCopy64(src + 40, op + 40); - } - if (op + 48 < op_limit) { - UnalignedCopy64(src + 48, op + 48); - UnalignedCopy64(src + 56, op + 56); - } - return op_limit; - } - - // Fall back to doing as much as we can with the available slop in the - // buffer. This code path is relatively cold however so we save code size by - // avoiding unrolling and vectorizing. - // - // TODO: Remove pragma when when cold regions don't get vectorized - // or unrolled. -#ifdef __clang__ -#pragma clang loop unroll(disable) -#endif - for (char *op_end = buf_limit - 16; op < op_end; op += 16, src += 16) { +#if SNAPPY_HAVE_SSSE3 + +// This is a table of shuffle control masks that can be used as the source +// operand for PSHUFB to permute the contents of the destination XMM register +// into a repeating byte pattern. +alignas(16) const char pshufb_fill_patterns[7][16] = { + {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}, + {0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0}, + {0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3}, + {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0}, + {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3}, + {0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1}, +}; + +#endif // SNAPPY_HAVE_SSSE3 + +// Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) but faster than +// IncrementalCopySlow. buf_limit is the address past the end of the writable +// region of the buffer. +inline char* IncrementalCopy(const char* src, char* op, char* const op_limit, + char* const buf_limit) { + // Terminology: + // + // slop = buf_limit - op + // pat = op - src + // len = limit - op + assert(src < op); + assert(op <= op_limit); + assert(op_limit <= buf_limit); + // NOTE: The compressor always emits 4 <= len <= 64. It is ok to assume that + // to optimize this function but we have to also handle other cases in case + // the input does not satisfy these conditions. + + size_t pattern_size = op - src; + // The cases are split into different branches to allow the branch predictor, + // FDO, and static prediction hints to work better. For each input we list the + // ratio of invocations that match each condition. + // + // input slop < 16 pat < 8 len > 16 + // ------------------------------------------ + // html|html4|cp 0% 1.01% 27.73% + // urls 0% 0.88% 14.79% + // jpg 0% 64.29% 7.14% + // pdf 0% 2.56% 58.06% + // txt[1-4] 0% 0.23% 0.97% + // pb 0% 0.96% 13.88% + // bin 0.01% 22.27% 41.17% + // + // It is very rare that we don't have enough slop for doing block copies. It + // is also rare that we need to expand a pattern. Small patterns are common + // for incompressible formats and for those we are plenty fast already. + // Lengths are normally not greater than 16 but they vary depending on the + // input. In general if we always predict len <= 16 it would be an ok + // prediction. + // + // In order to be fast we want a pattern >= 8 bytes and an unrolled loop + // copying 2x 8 bytes at a time. + + // Handle the uncommon case where pattern is less than 8 bytes. + if (SNAPPY_PREDICT_FALSE(pattern_size < 8)) { +#if SNAPPY_HAVE_SSSE3 + // Load the first eight bytes into an 128-bit XMM register, then use PSHUFB + // to permute the register's contents in-place into a repeating sequence of + // the first "pattern_size" bytes. + // For example, suppose: + // src == "abc" + // op == op + 3 + // After _mm_shuffle_epi8(), "pattern" will have five copies of "abc" + // followed by one byte of slop: abcabcabcabcabca. + // + // The non-SSE fallback implementation suffers from store-forwarding stalls + // because its loads and stores partly overlap. By expanding the pattern + // in-place, we avoid the penalty. + if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 16)) { + const __m128i shuffle_mask = _mm_load_si128( + reinterpret_cast<const __m128i*>(pshufb_fill_patterns) + + pattern_size - 1); + const __m128i pattern = _mm_shuffle_epi8( + _mm_loadl_epi64(reinterpret_cast<const __m128i*>(src)), shuffle_mask); + // Uninitialized bytes are masked out by the shuffle mask. + // TODO: remove annotation and macro defs once MSan is fixed. + SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(&pattern, sizeof(pattern)); + pattern_size *= 16 / pattern_size; + char* op_end = std::min(op_limit, buf_limit - 15); + while (op < op_end) { + _mm_storeu_si128(reinterpret_cast<__m128i*>(op), pattern); + op += pattern_size; + } + if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit; + } + return IncrementalCopySlow(src, op, op_limit); +#else // !SNAPPY_HAVE_SSSE3 + // If plenty of buffer space remains, expand the pattern to at least 8 + // bytes. The way the following loop is written, we need 8 bytes of buffer + // space if pattern_size >= 4, 11 bytes if pattern_size is 1 or 3, and 10 + // bytes if pattern_size is 2. Precisely encoding that is probably not + // worthwhile; instead, invoke the slow path if we cannot write 11 bytes + // (because 11 are required in the worst case). + if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 11)) { + while (pattern_size < 8) { + UnalignedCopy64(src, op); + op += pattern_size; + pattern_size *= 2; + } + if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit; + } else { + return IncrementalCopySlow(src, op, op_limit); + } +#endif // SNAPPY_HAVE_SSSE3 + } + assert(pattern_size >= 8); + + // Copy 2x 8 bytes at a time. Because op - src can be < 16, a single + // UnalignedCopy128 might overwrite data in op. UnalignedCopy64 is safe + // because expanding the pattern to at least 8 bytes guarantees that + // op - src >= 8. + // + // Typically, the op_limit is the gating factor so try to simplify the loop + // based on that. + if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 16)) { + // There is at least one, and at most four 16-byte blocks. Writing four + // conditionals instead of a loop allows FDO to layout the code with respect + // to the actual probabilities of each length. + // TODO: Replace with loop with trip count hint. UnalignedCopy64(src, op); - UnalignedCopy64(src + 8, op + 8); + UnalignedCopy64(src + 8, op + 8); + + if (op + 16 < op_limit) { + UnalignedCopy64(src + 16, op + 16); + UnalignedCopy64(src + 24, op + 24); + } + if (op + 32 < op_limit) { + UnalignedCopy64(src + 32, op + 32); + UnalignedCopy64(src + 40, op + 40); + } + if (op + 48 < op_limit) { + UnalignedCopy64(src + 48, op + 48); + UnalignedCopy64(src + 56, op + 56); + } + return op_limit; } - if (op >= op_limit) - return op_limit; - - // We only take this branch if we didn't have enough slop and we can do a - // single 8 byte copy. - if (SNAPPY_PREDICT_FALSE(op <= buf_limit - 8)) { + + // Fall back to doing as much as we can with the available slop in the + // buffer. This code path is relatively cold however so we save code size by + // avoiding unrolling and vectorizing. + // + // TODO: Remove pragma when when cold regions don't get vectorized + // or unrolled. +#ifdef __clang__ +#pragma clang loop unroll(disable) +#endif + for (char *op_end = buf_limit - 16; op < op_end; op += 16, src += 16) { UnalignedCopy64(src, op); + UnalignedCopy64(src + 8, op + 8); + } + if (op >= op_limit) + return op_limit; + + // We only take this branch if we didn't have enough slop and we can do a + // single 8 byte copy. + if (SNAPPY_PREDICT_FALSE(op <= buf_limit - 8)) { + UnalignedCopy64(src, op); src += 8; op += 8; } - return IncrementalCopySlow(src, op, op_limit); + return IncrementalCopySlow(src, op, op_limit); } -} // namespace - -template <bool allow_fast_path> +} // namespace + +template <bool allow_fast_path> static inline char* EmitLiteral(char* op, const char* literal, - int len) { - // The vast majority of copies are below 16 bytes, for which a - // call to memcpy is overkill. This fast path can sometimes - // copy up to 15 bytes too much, but that is okay in the - // main loop, since we have a bit to go on for both sides: - // - // - The input will always have kInputMarginBytes = 15 extra - // available bytes, as long as we're in the main loop, and - // if not, allow_fast_path = false. - // - The output will always have 32 spare bytes (see - // MaxCompressedLength). - assert(len > 0); // Zero-length literals are disallowed - int n = len - 1; - if (allow_fast_path && len <= 16) { - // Fits in tag byte - *op++ = LITERAL | (n << 2); - - UnalignedCopy128(literal, op); - return op + len; - } - + int len) { + // The vast majority of copies are below 16 bytes, for which a + // call to memcpy is overkill. This fast path can sometimes + // copy up to 15 bytes too much, but that is okay in the + // main loop, since we have a bit to go on for both sides: + // + // - The input will always have kInputMarginBytes = 15 extra + // available bytes, as long as we're in the main loop, and + // if not, allow_fast_path = false. + // - The output will always have 32 spare bytes (see + // MaxCompressedLength). + assert(len > 0); // Zero-length literals are disallowed + int n = len - 1; + if (allow_fast_path && len <= 16) { + // Fits in tag byte + *op++ = LITERAL | (n << 2); + + UnalignedCopy128(literal, op); + return op + len; + } + if (n < 60) { // Fits in tag byte *op++ = LITERAL | (n << 2); } else { - int count = (Bits::Log2Floor(n) >> 3) + 1; + int count = (Bits::Log2Floor(n) >> 3) + 1; assert(count >= 1); assert(count <= 4); - *op++ = LITERAL | ((59 + count) << 2); - // Encode in upcoming bytes. - // Write 4 bytes, though we may care about only 1 of them. The output buffer - // is guaranteed to have at least 3 more spaces left as 'len >= 61' holds - // here and there is a memcpy of size 'len' below. - LittleEndian::Store32(op, n); - op += count; + *op++ = LITERAL | ((59 + count) << 2); + // Encode in upcoming bytes. + // Write 4 bytes, though we may care about only 1 of them. The output buffer + // is guaranteed to have at least 3 more spaces left as 'len >= 61' holds + // here and there is a memcpy of size 'len' below. + LittleEndian::Store32(op, n); + op += count; } memcpy(op, literal, len); return op + len; } -template <bool len_less_than_12> -static inline char* EmitCopyAtMost64(char* op, size_t offset, size_t len) { - assert(len <= 64); - assert(len >= 4); - assert(offset < 65536); - assert(len_less_than_12 == (len < 12)); - - if (len_less_than_12 && SNAPPY_PREDICT_TRUE(offset < 2048)) { - // offset fits in 11 bits. The 3 highest go in the top of the first byte, - // and the rest go in the second byte. - *op++ = COPY_1_BYTE_OFFSET + ((len - 4) << 2) + ((offset >> 3) & 0xe0); +template <bool len_less_than_12> +static inline char* EmitCopyAtMost64(char* op, size_t offset, size_t len) { + assert(len <= 64); + assert(len >= 4); + assert(offset < 65536); + assert(len_less_than_12 == (len < 12)); + + if (len_less_than_12 && SNAPPY_PREDICT_TRUE(offset < 2048)) { + // offset fits in 11 bits. The 3 highest go in the top of the first byte, + // and the rest go in the second byte. + *op++ = COPY_1_BYTE_OFFSET + ((len - 4) << 2) + ((offset >> 3) & 0xe0); *op++ = offset & 0xff; } else { - // Write 4 bytes, though we only care about 3 of them. The output buffer - // is required to have some slack, so the extra byte won't overrun it. - uint32 u = COPY_2_BYTE_OFFSET + ((len - 1) << 2) + (offset << 8); - LittleEndian::Store32(op, u); - op += 3; + // Write 4 bytes, though we only care about 3 of them. The output buffer + // is required to have some slack, so the extra byte won't overrun it. + uint32 u = COPY_2_BYTE_OFFSET + ((len - 1) << 2) + (offset << 8); + LittleEndian::Store32(op, u); + op += 3; } return op; } -template <bool len_less_than_12> -static inline char* EmitCopy(char* op, size_t offset, size_t len) { - assert(len_less_than_12 == (len < 12)); - if (len_less_than_12) { - return EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len); - } else { - // A special case for len <= 64 might help, but so far measurements suggest - // it's in the noise. - - // Emit 64 byte copies but make sure to keep at least four bytes reserved. - while (SNAPPY_PREDICT_FALSE(len >= 68)) { - op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 64); - len -= 64; - } - - // One or two copies will now finish the job. - if (len > 64) { - op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 60); - len -= 60; - } - - // Emit remainder. - if (len < 12) { - op = EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len); - } else { - op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, len); - } - return op; +template <bool len_less_than_12> +static inline char* EmitCopy(char* op, size_t offset, size_t len) { + assert(len_less_than_12 == (len < 12)); + if (len_less_than_12) { + return EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len); + } else { + // A special case for len <= 64 might help, but so far measurements suggest + // it's in the noise. + + // Emit 64 byte copies but make sure to keep at least four bytes reserved. + while (SNAPPY_PREDICT_FALSE(len >= 68)) { + op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 64); + len -= 64; + } + + // One or two copies will now finish the job. + if (len > 64) { + op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 60); + len -= 60; + } + + // Emit remainder. + if (len < 12) { + op = EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len); + } else { + op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, len); + } + return op; } } @@ -439,45 +439,45 @@ bool GetUncompressedLength(const char* start, size_t n, size_t* result) { } } -namespace { -uint32 CalculateTableSize(uint32 input_size) { - static_assert( - kMaxHashTableSize >= kMinHashTableSize, - "kMaxHashTableSize should be greater or equal to kMinHashTableSize."); - if (input_size > kMaxHashTableSize) { - return kMaxHashTableSize; +namespace { +uint32 CalculateTableSize(uint32 input_size) { + static_assert( + kMaxHashTableSize >= kMinHashTableSize, + "kMaxHashTableSize should be greater or equal to kMinHashTableSize."); + if (input_size > kMaxHashTableSize) { + return kMaxHashTableSize; } - if (input_size < kMinHashTableSize) { - return kMinHashTableSize; + if (input_size < kMinHashTableSize) { + return kMinHashTableSize; } - // This is equivalent to Log2Ceiling(input_size), assuming input_size > 1. - // 2 << Log2Floor(x - 1) is equivalent to 1 << (1 + Log2Floor(x - 1)). - return 2u << Bits::Log2Floor(input_size - 1); -} -} // namespace - -namespace internal { -WorkingMemory::WorkingMemory(size_t input_size) { - const size_t max_fragment_size = std::min(input_size, kBlockSize); - const size_t table_size = CalculateTableSize(max_fragment_size); - size_ = table_size * sizeof(*table_) + max_fragment_size + - MaxCompressedLength(max_fragment_size); - mem_ = std::allocator<char>().allocate(size_); - table_ = reinterpret_cast<uint16*>(mem_); - input_ = mem_ + table_size * sizeof(*table_); - output_ = input_ + max_fragment_size; -} - -WorkingMemory::~WorkingMemory() { - std::allocator<char>().deallocate(mem_, size_); -} - -uint16* WorkingMemory::GetHashTable(size_t fragment_size, - int* table_size) const { - const size_t htsize = CalculateTableSize(fragment_size); - memset(table_, 0, htsize * sizeof(*table_)); + // This is equivalent to Log2Ceiling(input_size), assuming input_size > 1. + // 2 << Log2Floor(x - 1) is equivalent to 1 << (1 + Log2Floor(x - 1)). + return 2u << Bits::Log2Floor(input_size - 1); +} +} // namespace + +namespace internal { +WorkingMemory::WorkingMemory(size_t input_size) { + const size_t max_fragment_size = std::min(input_size, kBlockSize); + const size_t table_size = CalculateTableSize(max_fragment_size); + size_ = table_size * sizeof(*table_) + max_fragment_size + + MaxCompressedLength(max_fragment_size); + mem_ = std::allocator<char>().allocate(size_); + table_ = reinterpret_cast<uint16*>(mem_); + input_ = mem_ + table_size * sizeof(*table_); + output_ = input_ + max_fragment_size; +} + +WorkingMemory::~WorkingMemory() { + std::allocator<char>().deallocate(mem_, size_); +} + +uint16* WorkingMemory::GetHashTable(size_t fragment_size, + int* table_size) const { + const size_t htsize = CalculateTableSize(fragment_size); + memset(table_, 0, htsize * sizeof(*table_)); *table_size = htsize; - return table_; + return table_; } } // end namespace internal @@ -503,8 +503,8 @@ static inline EightBytesReference GetEightBytesAt(const char* ptr) { } static inline uint32 GetUint32AtOffset(uint64 v, int offset) { - assert(offset >= 0); - assert(offset <= 4); + assert(offset >= 0); + assert(offset <= 4); return v >> (LittleEndian::IsLittleEndian() ? 8 * offset : 32 - 8 * offset); } @@ -517,8 +517,8 @@ static inline EightBytesReference GetEightBytesAt(const char* ptr) { } static inline uint32 GetUint32AtOffset(const char* v, int offset) { - assert(offset >= 0); - assert(offset <= 4); + assert(offset >= 0); + assert(offset <= 4); return UNALIGNED_LOAD32(v + offset); } @@ -543,10 +543,10 @@ char* CompressFragment(const char* input, const int table_size) { // "ip" is the input pointer, and "op" is the output pointer. const char* ip = input; - assert(input_size <= kBlockSize); - assert((table_size & (table_size - 1)) == 0); // table must be power of two + assert(input_size <= kBlockSize); + assert((table_size & (table_size - 1)) == 0); // table must be power of two const int shift = 32 - Bits::Log2Floor(table_size); - assert(static_cast<int>(kuint32max >> shift) == table_size - 1); + assert(static_cast<int>(kuint32max >> shift) == table_size - 1); const char* ip_end = input + input_size; const char* base_ip = ip; // Bytes in [next_emit, ip) will be emitted as literal bytes. Or @@ -554,11 +554,11 @@ char* CompressFragment(const char* input, const char* next_emit = ip; const size_t kInputMarginBytes = 15; - if (SNAPPY_PREDICT_TRUE(input_size >= kInputMarginBytes)) { + if (SNAPPY_PREDICT_TRUE(input_size >= kInputMarginBytes)) { const char* ip_limit = input + input_size - kInputMarginBytes; for (uint32 next_hash = Hash(++ip, shift); ; ) { - assert(next_emit < ip); + assert(next_emit < ip); // The body of this loop calls EmitLiteral once and then EmitCopy one or // more times. (The exception is that when we're close to exhausting // the input we goto emit_remainder.) @@ -574,9 +574,9 @@ char* CompressFragment(const char* input, // // Heuristic match skipping: If 32 bytes are scanned with no matches // found, start looking only at every other byte. If 32 more bytes are - // scanned (or skipped), look at every third byte, etc.. When a match is - // found, immediately go back to looking at every byte. This is a small - // loss (~5% performance, ~0.1% density) for compressible data due to more + // scanned (or skipped), look at every third byte, etc.. When a match is + // found, immediately go back to looking at every byte. This is a small + // loss (~5% performance, ~0.1% density) for compressible data due to more // bookkeeping, but for non-compressible data (such as JPEG) it's a huge // win since the compressor quickly "realizes" the data is incompressible // and doesn't bother looking for matches everywhere. @@ -591,27 +591,27 @@ char* CompressFragment(const char* input, do { ip = next_ip; uint32 hash = next_hash; - assert(hash == Hash(ip, shift)); - uint32 bytes_between_hash_lookups = skip >> 5; - skip += bytes_between_hash_lookups; + assert(hash == Hash(ip, shift)); + uint32 bytes_between_hash_lookups = skip >> 5; + skip += bytes_between_hash_lookups; next_ip = ip + bytes_between_hash_lookups; - if (SNAPPY_PREDICT_FALSE(next_ip > ip_limit)) { + if (SNAPPY_PREDICT_FALSE(next_ip > ip_limit)) { goto emit_remainder; } next_hash = Hash(next_ip, shift); candidate = base_ip + table[hash]; - assert(candidate >= base_ip); - assert(candidate < ip); + assert(candidate >= base_ip); + assert(candidate < ip); table[hash] = ip - base_ip; - } while (SNAPPY_PREDICT_TRUE(UNALIGNED_LOAD32(ip) != - UNALIGNED_LOAD32(candidate))); + } while (SNAPPY_PREDICT_TRUE(UNALIGNED_LOAD32(ip) != + UNALIGNED_LOAD32(candidate))); // Step 2: A 4-byte match has been found. We'll later see if more // than 4 bytes match. But, prior to the match, input // bytes [next_emit, ip) are unmatched. Emit them as "literal bytes." - assert(next_emit + 16 <= ip_end); - op = EmitLiteral</*allow_fast_path=*/true>(op, next_emit, ip - next_emit); + assert(next_emit + 16 <= ip_end); + op = EmitLiteral</*allow_fast_path=*/true>(op, next_emit, ip - next_emit); // Step 3: Call EmitCopy, and then see if another EmitCopy could // be our next move. Repeat until we find no match for the @@ -628,25 +628,25 @@ char* CompressFragment(const char* input, // We have a 4-byte match at ip, and no need to emit any // "literal bytes" prior to ip. const char* base = ip; - std::pair<size_t, bool> p = - FindMatchLength(candidate + 4, ip + 4, ip_end); - size_t matched = 4 + p.first; + std::pair<size_t, bool> p = + FindMatchLength(candidate + 4, ip + 4, ip_end); + size_t matched = 4 + p.first; ip += matched; size_t offset = base - candidate; - assert(0 == memcmp(base, candidate, matched)); - if (p.second) { - op = EmitCopy</*len_less_than_12=*/true>(op, offset, matched); - } else { - op = EmitCopy</*len_less_than_12=*/false>(op, offset, matched); - } + assert(0 == memcmp(base, candidate, matched)); + if (p.second) { + op = EmitCopy</*len_less_than_12=*/true>(op, offset, matched); + } else { + op = EmitCopy</*len_less_than_12=*/false>(op, offset, matched); + } next_emit = ip; - if (SNAPPY_PREDICT_FALSE(ip >= ip_limit)) { + if (SNAPPY_PREDICT_FALSE(ip >= ip_limit)) { goto emit_remainder; } - // We are now looking for a 4-byte match again. We read - // table[Hash(ip, shift)] for that. To improve compression, - // we also update table[Hash(ip - 1, shift)] and table[Hash(ip, shift)]. - input_bytes = GetEightBytesAt(ip - 1); + // We are now looking for a 4-byte match again. We read + // table[Hash(ip, shift)] for that. To improve compression, + // we also update table[Hash(ip - 1, shift)] and table[Hash(ip, shift)]. + input_bytes = GetEightBytesAt(ip - 1); uint32 prev_hash = HashBytes(GetUint32AtOffset(input_bytes, 0), shift); table[prev_hash] = ip - base_ip - 1; uint32 cur_hash = HashBytes(GetUint32AtOffset(input_bytes, 1), shift); @@ -663,18 +663,18 @@ char* CompressFragment(const char* input, emit_remainder: // Emit the remaining bytes as a literal if (next_emit < ip_end) { - op = EmitLiteral</*allow_fast_path=*/false>(op, next_emit, - ip_end - next_emit); + op = EmitLiteral</*allow_fast_path=*/false>(op, next_emit, + ip_end - next_emit); } return op; } } // end namespace internal -// Called back at avery compression call to trace parameters and sizes. -static inline void Report(const char *algorithm, size_t compressed_size, - size_t uncompressed_size) {} - +// Called back at avery compression call to trace parameters and sizes. +static inline void Report(const char *algorithm, size_t compressed_size, + size_t uncompressed_size) {} + // Signature of output types needed by decompression code. // The decompression code is templatized on a type that obeys this // signature so that we do not pay virtual function call overhead in @@ -692,50 +692,50 @@ static inline void Report(const char *algorithm, size_t compressed_size, // bool Append(const char* ip, size_t length); // bool AppendFromSelf(uint32 offset, size_t length); // -// // The rules for how TryFastAppend differs from Append are somewhat -// // convoluted: +// // The rules for how TryFastAppend differs from Append are somewhat +// // convoluted: // // -// // - TryFastAppend is allowed to decline (return false) at any -// // time, for any reason -- just "return false" would be -// // a perfectly legal implementation of TryFastAppend. -// // The intention is for TryFastAppend to allow a fast path -// // in the common case of a small append. -// // - TryFastAppend is allowed to read up to <available> bytes -// // from the input buffer, whereas Append is allowed to read -// // <length>. However, if it returns true, it must leave -// // at least five (kMaximumTagLength) bytes in the input buffer -// // afterwards, so that there is always enough space to read the -// // next tag without checking for a refill. -// // - TryFastAppend must always return decline (return false) -// // if <length> is 61 or more, as in this case the literal length is not -// // decoded fully. In practice, this should not be a big problem, -// // as it is unlikely that one would implement a fast path accepting -// // this much data. +// // - TryFastAppend is allowed to decline (return false) at any +// // time, for any reason -- just "return false" would be +// // a perfectly legal implementation of TryFastAppend. +// // The intention is for TryFastAppend to allow a fast path +// // in the common case of a small append. +// // - TryFastAppend is allowed to read up to <available> bytes +// // from the input buffer, whereas Append is allowed to read +// // <length>. However, if it returns true, it must leave +// // at least five (kMaximumTagLength) bytes in the input buffer +// // afterwards, so that there is always enough space to read the +// // next tag without checking for a refill. +// // - TryFastAppend must always return decline (return false) +// // if <length> is 61 or more, as in this case the literal length is not +// // decoded fully. In practice, this should not be a big problem, +// // as it is unlikely that one would implement a fast path accepting +// // this much data. // // // bool TryFastAppend(const char* ip, size_t available, size_t length); // }; -static inline uint32 ExtractLowBytes(uint32 v, int n) { - assert(n >= 0); - assert(n <= 4); -#if SNAPPY_HAVE_BMI2 - return _bzhi_u32(v, 8 * n); -#else - // This needs to be wider than uint32 otherwise `mask << 32` will be - // undefined. - uint64 mask = 0xffffffff; - return v & ~(mask << (8 * n)); -#endif +static inline uint32 ExtractLowBytes(uint32 v, int n) { + assert(n >= 0); + assert(n <= 4); +#if SNAPPY_HAVE_BMI2 + return _bzhi_u32(v, 8 * n); +#else + // This needs to be wider than uint32 otherwise `mask << 32` will be + // undefined. + uint64 mask = 0xffffffff; + return v & ~(mask << (8 * n)); +#endif } -static inline bool LeftShiftOverflows(uint8 value, uint32 shift) { - assert(shift < 32); - static const uint8 masks[] = { - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // - 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe}; - return (value & masks[shift]) != 0; +static inline bool LeftShiftOverflows(uint8 value, uint32 shift) { + assert(shift < 32); + static const uint8 masks[] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // + 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe}; + return (value & masks[shift]) != 0; } // Helper class for decompression @@ -746,7 +746,7 @@ class SnappyDecompressor { const char* ip_limit_; // Points just past buffered bytes uint32 peeked_; // Bytes peeked from reader (need to skip) bool eof_; // Hit end of input without an error? - char scratch_[kMaximumTagLength]; // See RefillTag(). + char scratch_[kMaximumTagLength]; // See RefillTag(). // Ensure that all of the tag metadata for the next tag is available // in [ip_..ip_limit_-1]. Also ensures that [ip,ip+4] is readable even @@ -775,10 +775,10 @@ class SnappyDecompressor { } // Read the uncompressed length stored at the start of the compressed data. - // On success, stores the length in *result and returns true. + // On success, stores the length in *result and returns true. // On failure, returns false. bool ReadUncompressedLength(uint32* result) { - assert(ip_ == NULL); // Must not have read anything yet + assert(ip_ == NULL); // Must not have read anything yet // Length is encoded in 1..5 bytes *result = 0; uint32 shift = 0; @@ -789,9 +789,9 @@ class SnappyDecompressor { if (n == 0) return false; const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip)); reader_->Skip(1); - uint32 val = c & 0x7f; - if (LeftShiftOverflows(static_cast<uint8>(val), shift)) return false; - *result |= val << shift; + uint32 val = c & 0x7f; + if (LeftShiftOverflows(static_cast<uint8>(val), shift)) return false; + *result |= val << shift; if (c < 128) { break; } @@ -803,33 +803,33 @@ class SnappyDecompressor { // Process the next item found in the input. // Returns true if successful, false on error or end of input. template <class Writer> -#if defined(__GNUC__) && defined(__x86_64__) - __attribute__((aligned(32))) -#endif +#if defined(__GNUC__) && defined(__x86_64__) + __attribute__((aligned(32))) +#endif void DecompressAllTags(Writer* writer) { - // In x86, pad the function body to start 16 bytes later. This function has - // a couple of hotspots that are highly sensitive to alignment: we have - // observed regressions by more than 20% in some metrics just by moving the - // exact same code to a different position in the benchmark binary. - // - // Putting this code on a 32-byte-aligned boundary + 16 bytes makes us hit - // the "lucky" case consistently. Unfortunately, this is a very brittle - // workaround, and future differences in code generation may reintroduce - // this regression. If you experience a big, difficult to explain, benchmark - // performance regression here, first try removing this hack. -#if defined(__GNUC__) && defined(__x86_64__) - // Two 8-byte "NOP DWORD ptr [EAX + EAX*1 + 00000000H]" instructions. - asm(".byte 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00"); - asm(".byte 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00"); -#endif - + // In x86, pad the function body to start 16 bytes later. This function has + // a couple of hotspots that are highly sensitive to alignment: we have + // observed regressions by more than 20% in some metrics just by moving the + // exact same code to a different position in the benchmark binary. + // + // Putting this code on a 32-byte-aligned boundary + 16 bytes makes us hit + // the "lucky" case consistently. Unfortunately, this is a very brittle + // workaround, and future differences in code generation may reintroduce + // this regression. If you experience a big, difficult to explain, benchmark + // performance regression here, first try removing this hack. +#if defined(__GNUC__) && defined(__x86_64__) + // Two 8-byte "NOP DWORD ptr [EAX + EAX*1 + 00000000H]" instructions. + asm(".byte 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00"); + asm(".byte 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00"); +#endif + const char* ip = ip_; // We could have put this refill fragment only at the beginning of the loop. // However, duplicating it at the end of each branch gives the compiler more // scope to optimize the <ip_limit_ - ip> expression based on the local // context, which overall increases speed. #define MAYBE_REFILL() \ - if (ip_limit_ - ip < kMaximumTagLength) { \ + if (ip_limit_ - ip < kMaximumTagLength) { \ ip_ = ip; \ if (!RefillTag()) return; \ ip = ip_; \ @@ -839,34 +839,34 @@ class SnappyDecompressor { for ( ;; ) { const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip++)); - // Ratio of iterations that have LITERAL vs non-LITERAL for different - // inputs. - // - // input LITERAL NON_LITERAL - // ----------------------------------- - // html|html4|cp 23% 77% - // urls 36% 64% - // jpg 47% 53% - // pdf 19% 81% - // txt[1-4] 25% 75% - // pb 24% 76% - // bin 24% 76% - if (SNAPPY_PREDICT_FALSE((c & 0x3) == LITERAL)) { + // Ratio of iterations that have LITERAL vs non-LITERAL for different + // inputs. + // + // input LITERAL NON_LITERAL + // ----------------------------------- + // html|html4|cp 23% 77% + // urls 36% 64% + // jpg 47% 53% + // pdf 19% 81% + // txt[1-4] 25% 75% + // pb 24% 76% + // bin 24% 76% + if (SNAPPY_PREDICT_FALSE((c & 0x3) == LITERAL)) { size_t literal_length = (c >> 2) + 1u; if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length)) { - assert(literal_length < 61); + assert(literal_length < 61); ip += literal_length; - // NOTE: There is no MAYBE_REFILL() here, as TryFastAppend() - // will not return true unless there's already at least five spare - // bytes in addition to the literal. + // NOTE: There is no MAYBE_REFILL() here, as TryFastAppend() + // will not return true unless there's already at least five spare + // bytes in addition to the literal. continue; } - if (SNAPPY_PREDICT_FALSE(literal_length >= 61)) { + if (SNAPPY_PREDICT_FALSE(literal_length >= 61)) { // Long literal. const size_t literal_length_length = literal_length - 60; literal_length = - ExtractLowBytes(LittleEndian::Load32(ip), literal_length_length) + - 1; + ExtractLowBytes(LittleEndian::Load32(ip), literal_length_length) + + 1; ip += literal_length_length; } @@ -888,16 +888,16 @@ class SnappyDecompressor { ip += literal_length; MAYBE_REFILL(); } else { - const size_t entry = char_table[c]; - const size_t trailer = - ExtractLowBytes(LittleEndian::Load32(ip), entry >> 11); - const size_t length = entry & 0xff; + const size_t entry = char_table[c]; + const size_t trailer = + ExtractLowBytes(LittleEndian::Load32(ip), entry >> 11); + const size_t length = entry & 0xff; ip += entry >> 11; // copy_offset/256 is encoded in bits 8..10. By just fetching // those bits, we get copy_offset (since the bit-field starts at // bit 8). - const size_t copy_offset = entry & 0x700; + const size_t copy_offset = entry & 0x700; if (!writer->AppendFromSelf(copy_offset + trailer, length)) { return; } @@ -917,17 +917,17 @@ bool SnappyDecompressor::RefillTag() { size_t n; ip = reader_->Peek(&n); peeked_ = n; - eof_ = (n == 0); - if (eof_) return false; + eof_ = (n == 0); + if (eof_) return false; ip_limit_ = ip + n; } // Read the tag character - assert(ip < ip_limit_); + assert(ip < ip_limit_); const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip)); const uint32 entry = char_table[c]; const uint32 needed = (entry >> 11) + 1; // +1 byte for 'c' - assert(needed <= sizeof(scratch_)); + assert(needed <= sizeof(scratch_)); // Read more bytes from reader if needed uint32 nbuf = ip_limit_ - ip; @@ -943,15 +943,15 @@ bool SnappyDecompressor::RefillTag() { size_t length; const char* src = reader_->Peek(&length); if (length == 0) return false; - uint32 to_add = std::min<uint32>(needed - nbuf, length); + uint32 to_add = std::min<uint32>(needed - nbuf, length); memcpy(scratch_ + nbuf, src, to_add); nbuf += to_add; reader_->Skip(to_add); } - assert(nbuf == needed); + assert(nbuf == needed); ip_ = scratch_; ip_limit_ = scratch_ + needed; - } else if (nbuf < kMaximumTagLength) { + } else if (nbuf < kMaximumTagLength) { // Have enough bytes, but move into scratch_ so that we do not // read past end of input memmove(scratch_, ip, nbuf); @@ -967,28 +967,28 @@ bool SnappyDecompressor::RefillTag() { } template <typename Writer> -static bool InternalUncompress(Source* r, Writer* writer) { +static bool InternalUncompress(Source* r, Writer* writer) { // Read the uncompressed length from the front of the compressed input SnappyDecompressor decompressor(r); uint32 uncompressed_len = 0; if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false; - - return InternalUncompressAllTags(&decompressor, writer, r->Available(), - uncompressed_len); + + return InternalUncompressAllTags(&decompressor, writer, r->Available(), + uncompressed_len); } template <typename Writer> static bool InternalUncompressAllTags(SnappyDecompressor* decompressor, Writer* writer, - uint32 compressed_len, - uint32 uncompressed_len) { - Report("snappy_uncompress", compressed_len, uncompressed_len); + uint32 compressed_len, + uint32 uncompressed_len) { + Report("snappy_uncompress", compressed_len, uncompressed_len); writer->SetExpectedLength(uncompressed_len); // Process the entire input decompressor->DecompressAllTags(writer); - writer->Flush(); + writer->Flush(); return (decompressor->eof() && writer->CheckLength()); } @@ -1000,20 +1000,20 @@ bool GetUncompressedLength(Source* source, uint32* result) { size_t Compress(Source* reader, Sink* writer) { size_t written = 0; size_t N = reader->Available(); - const size_t uncompressed_size = N; + const size_t uncompressed_size = N; char ulength[Varint::kMax32]; char* p = Varint::Encode32(ulength, N); writer->Append(ulength, p-ulength); written += (p - ulength); - internal::WorkingMemory wmem(N); + internal::WorkingMemory wmem(N); while (N > 0) { // Get next block to compress (without copying if possible) size_t fragment_size; const char* fragment = reader->Peek(&fragment_size); - assert(fragment_size != 0); // premature end of input - const size_t num_to_read = std::min(N, kBlockSize); + assert(fragment_size != 0); // premature end of input + const size_t num_to_read = std::min(N, kBlockSize); size_t bytes_read = fragment_size; size_t pending_advance = 0; @@ -1022,22 +1022,22 @@ size_t Compress(Source* reader, Sink* writer) { pending_advance = num_to_read; fragment_size = num_to_read; } else { - char* scratch = wmem.GetScratchInput(); + char* scratch = wmem.GetScratchInput(); memcpy(scratch, fragment, bytes_read); reader->Skip(bytes_read); while (bytes_read < num_to_read) { fragment = reader->Peek(&fragment_size); - size_t n = std::min<size_t>(fragment_size, num_to_read - bytes_read); + size_t n = std::min<size_t>(fragment_size, num_to_read - bytes_read); memcpy(scratch + bytes_read, fragment, n); bytes_read += n; reader->Skip(n); } - assert(bytes_read == num_to_read); + assert(bytes_read == num_to_read); fragment = scratch; fragment_size = num_to_read; } - assert(fragment_size == num_to_read); + assert(fragment_size == num_to_read); // Get encoding table for compression int table_size; @@ -1048,13 +1048,13 @@ size_t Compress(Source* reader, Sink* writer) { // Need a scratch buffer for the output, in case the byte sink doesn't // have room for us directly. - - // Since we encode kBlockSize regions followed by a region - // which is <= kBlockSize in length, a previously allocated - // scratch_output[] region is big enough for this iteration. - char* dest = writer->GetAppendBuffer(max_output, wmem.GetScratchOutput()); - char* end = internal::CompressFragment(fragment, fragment_size, dest, table, - table_size); + + // Since we encode kBlockSize regions followed by a region + // which is <= kBlockSize in length, a previously allocated + // scratch_output[] region is big enough for this iteration. + char* dest = writer->GetAppendBuffer(max_output, wmem.GetScratchOutput()); + char* end = internal::CompressFragment(fragment, fragment_size, dest, table, + table_size); writer->Append(dest, end - dest); written += (end - dest); @@ -1062,204 +1062,204 @@ size_t Compress(Source* reader, Sink* writer) { reader->Skip(pending_advance); } - Report("snappy_compress", written, uncompressed_size); + Report("snappy_compress", written, uncompressed_size); return written; } // ----------------------------------------------------------------------- -// IOVec interfaces -// ----------------------------------------------------------------------- - -// A type that writes to an iovec. -// Note that this is not a "ByteSink", but a type that matches the -// Writer template argument to SnappyDecompressor::DecompressAllTags(). -class SnappyIOVecWriter { - private: - // output_iov_end_ is set to iov + count and used to determine when - // the end of the iovs is reached. - const struct iovec* output_iov_end_; - -#if !defined(NDEBUG) - const struct iovec* output_iov_; -#endif // !defined(NDEBUG) - - // Current iov that is being written into. - const struct iovec* curr_iov_; - - // Pointer to current iov's write location. - char* curr_iov_output_; - - // Remaining bytes to write into curr_iov_output. - size_t curr_iov_remaining_; - - // Total bytes decompressed into output_iov_ so far. - size_t total_written_; - - // Maximum number of bytes that will be decompressed into output_iov_. - size_t output_limit_; - - static inline char* GetIOVecPointer(const struct iovec* iov, size_t offset) { - return reinterpret_cast<char*>(iov->iov_base) + offset; - } - - public: - // Does not take ownership of iov. iov must be valid during the - // entire lifetime of the SnappyIOVecWriter. - inline SnappyIOVecWriter(const struct iovec* iov, size_t iov_count) - : output_iov_end_(iov + iov_count), -#if !defined(NDEBUG) - output_iov_(iov), -#endif // !defined(NDEBUG) - curr_iov_(iov), - curr_iov_output_(iov_count ? reinterpret_cast<char*>(iov->iov_base) - : nullptr), - curr_iov_remaining_(iov_count ? iov->iov_len : 0), - total_written_(0), - output_limit_(-1) {} - - inline void SetExpectedLength(size_t len) { - output_limit_ = len; - } - - inline bool CheckLength() const { - return total_written_ == output_limit_; - } - - inline bool Append(const char* ip, size_t len) { - if (total_written_ + len > output_limit_) { - return false; - } - - return AppendNoCheck(ip, len); - } - - inline bool AppendNoCheck(const char* ip, size_t len) { - while (len > 0) { - if (curr_iov_remaining_ == 0) { - // This iovec is full. Go to the next one. - if (curr_iov_ + 1 >= output_iov_end_) { - return false; - } - ++curr_iov_; - curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base); - curr_iov_remaining_ = curr_iov_->iov_len; - } - - const size_t to_write = std::min(len, curr_iov_remaining_); - memcpy(curr_iov_output_, ip, to_write); - curr_iov_output_ += to_write; - curr_iov_remaining_ -= to_write; - total_written_ += to_write; - ip += to_write; - len -= to_write; - } - - return true; - } - - inline bool TryFastAppend(const char* ip, size_t available, size_t len) { - const size_t space_left = output_limit_ - total_written_; - if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16 && - curr_iov_remaining_ >= 16) { - // Fast path, used for the majority (about 95%) of invocations. - UnalignedCopy128(ip, curr_iov_output_); - curr_iov_output_ += len; - curr_iov_remaining_ -= len; - total_written_ += len; - return true; - } - - return false; - } - - inline bool AppendFromSelf(size_t offset, size_t len) { - // See SnappyArrayWriter::AppendFromSelf for an explanation of - // the "offset - 1u" trick. - if (offset - 1u >= total_written_) { - return false; - } - const size_t space_left = output_limit_ - total_written_; - if (len > space_left) { - return false; - } - - // Locate the iovec from which we need to start the copy. - const iovec* from_iov = curr_iov_; - size_t from_iov_offset = curr_iov_->iov_len - curr_iov_remaining_; - while (offset > 0) { - if (from_iov_offset >= offset) { - from_iov_offset -= offset; - break; - } - - offset -= from_iov_offset; - --from_iov; -#if !defined(NDEBUG) - assert(from_iov >= output_iov_); -#endif // !defined(NDEBUG) - from_iov_offset = from_iov->iov_len; - } - - // Copy <len> bytes starting from the iovec pointed to by from_iov_index to - // the current iovec. - while (len > 0) { - assert(from_iov <= curr_iov_); - if (from_iov != curr_iov_) { - const size_t to_copy = - std::min(from_iov->iov_len - from_iov_offset, len); - AppendNoCheck(GetIOVecPointer(from_iov, from_iov_offset), to_copy); - len -= to_copy; - if (len > 0) { - ++from_iov; - from_iov_offset = 0; - } - } else { - size_t to_copy = curr_iov_remaining_; - if (to_copy == 0) { - // This iovec is full. Go to the next one. - if (curr_iov_ + 1 >= output_iov_end_) { - return false; - } - ++curr_iov_; - curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base); - curr_iov_remaining_ = curr_iov_->iov_len; - continue; - } - if (to_copy > len) { - to_copy = len; - } - - IncrementalCopy(GetIOVecPointer(from_iov, from_iov_offset), - curr_iov_output_, curr_iov_output_ + to_copy, - curr_iov_output_ + curr_iov_remaining_); - curr_iov_output_ += to_copy; - curr_iov_remaining_ -= to_copy; - from_iov_offset += to_copy; - total_written_ += to_copy; - len -= to_copy; - } - } - - return true; - } - - inline void Flush() {} -}; - -bool RawUncompressToIOVec(const char* compressed, size_t compressed_length, - const struct iovec* iov, size_t iov_cnt) { - ByteArraySource reader(compressed, compressed_length); - return RawUncompressToIOVec(&reader, iov, iov_cnt); -} - -bool RawUncompressToIOVec(Source* compressed, const struct iovec* iov, - size_t iov_cnt) { - SnappyIOVecWriter output(iov, iov_cnt); - return InternalUncompress(compressed, &output); -} - -// ----------------------------------------------------------------------- +// IOVec interfaces +// ----------------------------------------------------------------------- + +// A type that writes to an iovec. +// Note that this is not a "ByteSink", but a type that matches the +// Writer template argument to SnappyDecompressor::DecompressAllTags(). +class SnappyIOVecWriter { + private: + // output_iov_end_ is set to iov + count and used to determine when + // the end of the iovs is reached. + const struct iovec* output_iov_end_; + +#if !defined(NDEBUG) + const struct iovec* output_iov_; +#endif // !defined(NDEBUG) + + // Current iov that is being written into. + const struct iovec* curr_iov_; + + // Pointer to current iov's write location. + char* curr_iov_output_; + + // Remaining bytes to write into curr_iov_output. + size_t curr_iov_remaining_; + + // Total bytes decompressed into output_iov_ so far. + size_t total_written_; + + // Maximum number of bytes that will be decompressed into output_iov_. + size_t output_limit_; + + static inline char* GetIOVecPointer(const struct iovec* iov, size_t offset) { + return reinterpret_cast<char*>(iov->iov_base) + offset; + } + + public: + // Does not take ownership of iov. iov must be valid during the + // entire lifetime of the SnappyIOVecWriter. + inline SnappyIOVecWriter(const struct iovec* iov, size_t iov_count) + : output_iov_end_(iov + iov_count), +#if !defined(NDEBUG) + output_iov_(iov), +#endif // !defined(NDEBUG) + curr_iov_(iov), + curr_iov_output_(iov_count ? reinterpret_cast<char*>(iov->iov_base) + : nullptr), + curr_iov_remaining_(iov_count ? iov->iov_len : 0), + total_written_(0), + output_limit_(-1) {} + + inline void SetExpectedLength(size_t len) { + output_limit_ = len; + } + + inline bool CheckLength() const { + return total_written_ == output_limit_; + } + + inline bool Append(const char* ip, size_t len) { + if (total_written_ + len > output_limit_) { + return false; + } + + return AppendNoCheck(ip, len); + } + + inline bool AppendNoCheck(const char* ip, size_t len) { + while (len > 0) { + if (curr_iov_remaining_ == 0) { + // This iovec is full. Go to the next one. + if (curr_iov_ + 1 >= output_iov_end_) { + return false; + } + ++curr_iov_; + curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base); + curr_iov_remaining_ = curr_iov_->iov_len; + } + + const size_t to_write = std::min(len, curr_iov_remaining_); + memcpy(curr_iov_output_, ip, to_write); + curr_iov_output_ += to_write; + curr_iov_remaining_ -= to_write; + total_written_ += to_write; + ip += to_write; + len -= to_write; + } + + return true; + } + + inline bool TryFastAppend(const char* ip, size_t available, size_t len) { + const size_t space_left = output_limit_ - total_written_; + if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16 && + curr_iov_remaining_ >= 16) { + // Fast path, used for the majority (about 95%) of invocations. + UnalignedCopy128(ip, curr_iov_output_); + curr_iov_output_ += len; + curr_iov_remaining_ -= len; + total_written_ += len; + return true; + } + + return false; + } + + inline bool AppendFromSelf(size_t offset, size_t len) { + // See SnappyArrayWriter::AppendFromSelf for an explanation of + // the "offset - 1u" trick. + if (offset - 1u >= total_written_) { + return false; + } + const size_t space_left = output_limit_ - total_written_; + if (len > space_left) { + return false; + } + + // Locate the iovec from which we need to start the copy. + const iovec* from_iov = curr_iov_; + size_t from_iov_offset = curr_iov_->iov_len - curr_iov_remaining_; + while (offset > 0) { + if (from_iov_offset >= offset) { + from_iov_offset -= offset; + break; + } + + offset -= from_iov_offset; + --from_iov; +#if !defined(NDEBUG) + assert(from_iov >= output_iov_); +#endif // !defined(NDEBUG) + from_iov_offset = from_iov->iov_len; + } + + // Copy <len> bytes starting from the iovec pointed to by from_iov_index to + // the current iovec. + while (len > 0) { + assert(from_iov <= curr_iov_); + if (from_iov != curr_iov_) { + const size_t to_copy = + std::min(from_iov->iov_len - from_iov_offset, len); + AppendNoCheck(GetIOVecPointer(from_iov, from_iov_offset), to_copy); + len -= to_copy; + if (len > 0) { + ++from_iov; + from_iov_offset = 0; + } + } else { + size_t to_copy = curr_iov_remaining_; + if (to_copy == 0) { + // This iovec is full. Go to the next one. + if (curr_iov_ + 1 >= output_iov_end_) { + return false; + } + ++curr_iov_; + curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base); + curr_iov_remaining_ = curr_iov_->iov_len; + continue; + } + if (to_copy > len) { + to_copy = len; + } + + IncrementalCopy(GetIOVecPointer(from_iov, from_iov_offset), + curr_iov_output_, curr_iov_output_ + to_copy, + curr_iov_output_ + curr_iov_remaining_); + curr_iov_output_ += to_copy; + curr_iov_remaining_ -= to_copy; + from_iov_offset += to_copy; + total_written_ += to_copy; + len -= to_copy; + } + } + + return true; + } + + inline void Flush() {} +}; + +bool RawUncompressToIOVec(const char* compressed, size_t compressed_length, + const struct iovec* iov, size_t iov_cnt) { + ByteArraySource reader(compressed, compressed_length); + return RawUncompressToIOVec(&reader, iov, iov_cnt); +} + +bool RawUncompressToIOVec(Source* compressed, const struct iovec* iov, + size_t iov_cnt) { + SnappyIOVecWriter output(iov, iov_cnt); + return InternalUncompress(compressed, &output); +} + +// ----------------------------------------------------------------------- // Flat array interfaces // ----------------------------------------------------------------------- @@ -1275,8 +1275,8 @@ class SnappyArrayWriter { public: inline explicit SnappyArrayWriter(char* dst) : base_(dst), - op_(dst), - op_limit_(dst) { + op_(dst), + op_limit_(dst) { } inline void SetExpectedLength(size_t len) { @@ -1301,9 +1301,9 @@ class SnappyArrayWriter { inline bool TryFastAppend(const char* ip, size_t available, size_t len) { char* op = op_; const size_t space_left = op_limit_ - op; - if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) { + if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) { // Fast path, used for the majority (about 95%) of invocations. - UnalignedCopy128(ip, op); + UnalignedCopy128(ip, op); op_ = op + len; return true; } else { @@ -1312,25 +1312,25 @@ class SnappyArrayWriter { } inline bool AppendFromSelf(size_t offset, size_t len) { - char* const op_end = op_ + len; - - // Check if we try to append from before the start of the buffer. - // Normally this would just be a check for "produced < offset", - // but "produced <= offset - 1u" is equivalent for every case - // except the one where offset==0, where the right side will wrap around - // to a very big number. This is convenient, as offset==0 is another - // invalid case that we also want to catch, so that we do not go - // into an infinite loop. - if (Produced() <= offset - 1u || op_end > op_limit_) return false; - op_ = IncrementalCopy(op_ - offset, op_, op_end, op_limit_); + char* const op_end = op_ + len; + + // Check if we try to append from before the start of the buffer. + // Normally this would just be a check for "produced < offset", + // but "produced <= offset - 1u" is equivalent for every case + // except the one where offset==0, where the right side will wrap around + // to a very big number. This is convenient, as offset==0 is another + // invalid case that we also want to catch, so that we do not go + // into an infinite loop. + if (Produced() <= offset - 1u || op_end > op_limit_) return false; + op_ = IncrementalCopy(op_ - offset, op_, op_end, op_limit_); return true; } - inline size_t Produced() const { - assert(op_ >= base_); - return op_ - base_; - } - inline void Flush() {} + inline size_t Produced() const { + assert(op_ >= base_); + return op_ - base_; + } + inline void Flush() {} }; bool RawUncompress(const char* compressed, size_t n, char* uncompressed) { @@ -1340,37 +1340,37 @@ bool RawUncompress(const char* compressed, size_t n, char* uncompressed) { bool RawUncompress(Source* compressed, char* uncompressed) { SnappyArrayWriter output(uncompressed); - return InternalUncompress(compressed, &output); + return InternalUncompress(compressed, &output); } -bool Uncompress(const char* compressed, size_t n, std::string* uncompressed) { +bool Uncompress(const char* compressed, size_t n, std::string* uncompressed) { size_t ulength; if (!GetUncompressedLength(compressed, n, &ulength)) { return false; } - // On 32-bit builds: max_size() < kuint32max. Check for that instead - // of crashing (e.g., consider externally specified compressed data). - if (ulength > uncompressed->max_size()) { + // On 32-bit builds: max_size() < kuint32max. Check for that instead + // of crashing (e.g., consider externally specified compressed data). + if (ulength > uncompressed->max_size()) { return false; } STLStringResizeUninitialized(uncompressed, ulength); return RawUncompress(compressed, n, string_as_array(uncompressed)); } -bool Uncompress(const char* compressed, size_t n, TString* uncompressed) { - size_t ulength; - if (!GetUncompressedLength(compressed, n, &ulength)) { - return false; - } - // On 32-bit builds: max_size() < kuint32max. Check for that instead - // of crashing (e.g., consider externally specified compressed data). - if (ulength > uncompressed->max_size()) { - return false; - } - uncompressed->ReserveAndResize(ulength); - return RawUncompress(compressed, n, uncompressed->begin()); -} - +bool Uncompress(const char* compressed, size_t n, TString* uncompressed) { + size_t ulength; + if (!GetUncompressedLength(compressed, n, &ulength)) { + return false; + } + // On 32-bit builds: max_size() < kuint32max. Check for that instead + // of crashing (e.g., consider externally specified compressed data). + if (ulength > uncompressed->max_size()) { + return false; + } + uncompressed->ReserveAndResize(ulength); + return RawUncompress(compressed, n, uncompressed->begin()); +} + // A Writer that drops everything on the floor and just does validation class SnappyDecompressionValidator { private: @@ -1378,7 +1378,7 @@ class SnappyDecompressionValidator { size_t produced_; public: - inline SnappyDecompressionValidator() : expected_(0), produced_(0) { } + inline SnappyDecompressionValidator() : expected_(0), produced_(0) { } inline void SetExpectedLength(size_t len) { expected_ = len; } @@ -1393,26 +1393,26 @@ class SnappyDecompressionValidator { return false; } inline bool AppendFromSelf(size_t offset, size_t len) { - // See SnappyArrayWriter::AppendFromSelf for an explanation of - // the "offset - 1u" trick. - if (produced_ <= offset - 1u) return false; + // See SnappyArrayWriter::AppendFromSelf for an explanation of + // the "offset - 1u" trick. + if (produced_ <= offset - 1u) return false; produced_ += len; return produced_ <= expected_; } - inline void Flush() {} + inline void Flush() {} }; bool IsValidCompressedBuffer(const char* compressed, size_t n) { ByteArraySource reader(compressed, n); SnappyDecompressionValidator writer; - return InternalUncompress(&reader, &writer); -} - -bool IsValidCompressed(Source* compressed) { - SnappyDecompressionValidator writer; - return InternalUncompress(compressed, &writer); + return InternalUncompress(&reader, &writer); } +bool IsValidCompressed(Source* compressed) { + SnappyDecompressionValidator writer; + return InternalUncompress(compressed, &writer); +} + void RawCompress(const char* input, size_t input_length, char* compressed, @@ -1425,10 +1425,10 @@ void RawCompress(const char* input, *compressed_length = (writer.CurrentDestination() - compressed); } -size_t Compress(const char* input, size_t input_length, - std::string* compressed) { +size_t Compress(const char* input, size_t input_length, + std::string* compressed) { // Pre-grow the buffer to the max length of the compressed output - STLStringResizeUninitialized(compressed, MaxCompressedLength(input_length)); + STLStringResizeUninitialized(compressed, MaxCompressedLength(input_length)); size_t compressed_length; RawCompress(input, input_length, string_as_array(compressed), @@ -1437,252 +1437,252 @@ size_t Compress(const char* input, size_t input_length, return compressed_length; } -size_t Compress(const char* input, size_t input_length, - TString* compressed) { - // Pre-grow the buffer to the max length of the compressed output - compressed->ReserveAndResize(MaxCompressedLength(input_length)); - - size_t compressed_length; - RawCompress(input, input_length, compressed->begin(), - &compressed_length); - compressed->resize(compressed_length); - return compressed_length; -} - -// ----------------------------------------------------------------------- -// Sink interface -// ----------------------------------------------------------------------- - -// A type that decompresses into a Sink. The template parameter -// Allocator must export one method "char* Allocate(int size);", which -// allocates a buffer of "size" and appends that to the destination. -template <typename Allocator> -class SnappyScatteredWriter { - Allocator allocator_; - - // We need random access into the data generated so far. Therefore - // we keep track of all of the generated data as an array of blocks. - // All of the blocks except the last have length kBlockSize. - std::vector<char*> blocks_; - size_t expected_; - - // Total size of all fully generated blocks so far - size_t full_size_; - - // Pointer into current output block - char* op_base_; // Base of output block - char* op_ptr_; // Pointer to next unfilled byte in block - char* op_limit_; // Pointer just past block - - inline size_t Size() const { - return full_size_ + (op_ptr_ - op_base_); - } - - bool SlowAppend(const char* ip, size_t len); - bool SlowAppendFromSelf(size_t offset, size_t len); - - public: - inline explicit SnappyScatteredWriter(const Allocator& allocator) - : allocator_(allocator), - full_size_(0), - op_base_(NULL), - op_ptr_(NULL), - op_limit_(NULL) { - } - - inline void SetExpectedLength(size_t len) { - assert(blocks_.empty()); - expected_ = len; - } - - inline bool CheckLength() const { - return Size() == expected_; - } - - // Return the number of bytes actually uncompressed so far - inline size_t Produced() const { - return Size(); - } - - inline bool Append(const char* ip, size_t len) { - size_t avail = op_limit_ - op_ptr_; - if (len <= avail) { - // Fast path - memcpy(op_ptr_, ip, len); - op_ptr_ += len; - return true; - } else { - return SlowAppend(ip, len); - } - } - - inline bool TryFastAppend(const char* ip, size_t available, size_t length) { - char* op = op_ptr_; - const int space_left = op_limit_ - op; - if (length <= 16 && available >= 16 + kMaximumTagLength && - space_left >= 16) { - // Fast path, used for the majority (about 95%) of invocations. - UnalignedCopy128(ip, op); - op_ptr_ = op + length; - return true; - } else { - return false; - } - } - - inline bool AppendFromSelf(size_t offset, size_t len) { - char* const op_end = op_ptr_ + len; - // See SnappyArrayWriter::AppendFromSelf for an explanation of - // the "offset - 1u" trick. - if (SNAPPY_PREDICT_TRUE(offset - 1u < op_ptr_ - op_base_ && - op_end <= op_limit_)) { - // Fast path: src and dst in current block. - op_ptr_ = IncrementalCopy(op_ptr_ - offset, op_ptr_, op_end, op_limit_); - return true; - } - return SlowAppendFromSelf(offset, len); - } - - // Called at the end of the decompress. We ask the allocator - // write all blocks to the sink. - inline void Flush() { allocator_.Flush(Produced()); } -}; - -template<typename Allocator> -bool SnappyScatteredWriter<Allocator>::SlowAppend(const char* ip, size_t len) { - size_t avail = op_limit_ - op_ptr_; - while (len > avail) { - // Completely fill this block - memcpy(op_ptr_, ip, avail); - op_ptr_ += avail; - assert(op_limit_ - op_ptr_ == 0); - full_size_ += (op_ptr_ - op_base_); - len -= avail; - ip += avail; - - // Bounds check - if (full_size_ + len > expected_) { - return false; - } - - // Make new block - size_t bsize = std::min<size_t>(kBlockSize, expected_ - full_size_); - op_base_ = allocator_.Allocate(bsize); - op_ptr_ = op_base_; - op_limit_ = op_base_ + bsize; - blocks_.push_back(op_base_); - avail = bsize; - } - - memcpy(op_ptr_, ip, len); - op_ptr_ += len; - return true; -} - -template<typename Allocator> -bool SnappyScatteredWriter<Allocator>::SlowAppendFromSelf(size_t offset, - size_t len) { - // Overflow check - // See SnappyArrayWriter::AppendFromSelf for an explanation of - // the "offset - 1u" trick. - const size_t cur = Size(); - if (offset - 1u >= cur) return false; - if (expected_ - cur < len) return false; - - // Currently we shouldn't ever hit this path because Compress() chops the - // input into blocks and does not create cross-block copies. However, it is - // nice if we do not rely on that, since we can get better compression if we - // allow cross-block copies and thus might want to change the compressor in - // the future. - size_t src = cur - offset; - while (len-- > 0) { - char c = blocks_[src >> kBlockLog][src & (kBlockSize-1)]; - Append(&c, 1); - src++; - } - return true; -} - -class SnappySinkAllocator { - public: - explicit SnappySinkAllocator(Sink* dest): dest_(dest) {} - ~SnappySinkAllocator() {} - - char* Allocate(int size) { - Datablock block(new char[size], size); - blocks_.push_back(block); - return block.data; - } - - // We flush only at the end, because the writer wants - // random access to the blocks and once we hand the - // block over to the sink, we can't access it anymore. - // Also we don't write more than has been actually written - // to the blocks. - void Flush(size_t size) { - size_t size_written = 0; - size_t block_size; - for (int i = 0; i < blocks_.size(); ++i) { - block_size = std::min<size_t>(blocks_[i].size, size - size_written); - dest_->AppendAndTakeOwnership(blocks_[i].data, block_size, - &SnappySinkAllocator::Deleter, NULL); - size_written += block_size; - } - blocks_.clear(); - } - - private: - struct Datablock { - char* data; - size_t size; - Datablock(char* p, size_t s) : data(p), size(s) {} - }; - - static void Deleter(void* arg, const char* bytes, size_t size) { - delete[] bytes; - } - - Sink* dest_; - std::vector<Datablock> blocks_; - - // Note: copying this object is allowed -}; - -size_t UncompressAsMuchAsPossible(Source* compressed, Sink* uncompressed) { - SnappySinkAllocator allocator(uncompressed); - SnappyScatteredWriter<SnappySinkAllocator> writer(allocator); - InternalUncompress(compressed, &writer); - return writer.Produced(); -} - -bool Uncompress(Source* compressed, Sink* uncompressed) { - // Read the uncompressed length from the front of the compressed input - SnappyDecompressor decompressor(compressed); - uint32 uncompressed_len = 0; - if (!decompressor.ReadUncompressedLength(&uncompressed_len)) { - return false; - } - - char c; - size_t allocated_size; - char* buf = uncompressed->GetAppendBufferVariable( - 1, uncompressed_len, &c, 1, &allocated_size); - - const size_t compressed_len = compressed->Available(); - // If we can get a flat buffer, then use it, otherwise do block by block - // uncompression - if (allocated_size >= uncompressed_len) { - SnappyArrayWriter writer(buf); - bool result = InternalUncompressAllTags(&decompressor, &writer, - compressed_len, uncompressed_len); - uncompressed->Append(buf, writer.Produced()); - return result; - } else { - SnappySinkAllocator allocator(uncompressed); - SnappyScatteredWriter<SnappySinkAllocator> writer(allocator); - return InternalUncompressAllTags(&decompressor, &writer, compressed_len, - uncompressed_len); - } -} - -} // namespace snappy +size_t Compress(const char* input, size_t input_length, + TString* compressed) { + // Pre-grow the buffer to the max length of the compressed output + compressed->ReserveAndResize(MaxCompressedLength(input_length)); + + size_t compressed_length; + RawCompress(input, input_length, compressed->begin(), + &compressed_length); + compressed->resize(compressed_length); + return compressed_length; +} + +// ----------------------------------------------------------------------- +// Sink interface +// ----------------------------------------------------------------------- + +// A type that decompresses into a Sink. The template parameter +// Allocator must export one method "char* Allocate(int size);", which +// allocates a buffer of "size" and appends that to the destination. +template <typename Allocator> +class SnappyScatteredWriter { + Allocator allocator_; + + // We need random access into the data generated so far. Therefore + // we keep track of all of the generated data as an array of blocks. + // All of the blocks except the last have length kBlockSize. + std::vector<char*> blocks_; + size_t expected_; + + // Total size of all fully generated blocks so far + size_t full_size_; + + // Pointer into current output block + char* op_base_; // Base of output block + char* op_ptr_; // Pointer to next unfilled byte in block + char* op_limit_; // Pointer just past block + + inline size_t Size() const { + return full_size_ + (op_ptr_ - op_base_); + } + + bool SlowAppend(const char* ip, size_t len); + bool SlowAppendFromSelf(size_t offset, size_t len); + + public: + inline explicit SnappyScatteredWriter(const Allocator& allocator) + : allocator_(allocator), + full_size_(0), + op_base_(NULL), + op_ptr_(NULL), + op_limit_(NULL) { + } + + inline void SetExpectedLength(size_t len) { + assert(blocks_.empty()); + expected_ = len; + } + + inline bool CheckLength() const { + return Size() == expected_; + } + + // Return the number of bytes actually uncompressed so far + inline size_t Produced() const { + return Size(); + } + + inline bool Append(const char* ip, size_t len) { + size_t avail = op_limit_ - op_ptr_; + if (len <= avail) { + // Fast path + memcpy(op_ptr_, ip, len); + op_ptr_ += len; + return true; + } else { + return SlowAppend(ip, len); + } + } + + inline bool TryFastAppend(const char* ip, size_t available, size_t length) { + char* op = op_ptr_; + const int space_left = op_limit_ - op; + if (length <= 16 && available >= 16 + kMaximumTagLength && + space_left >= 16) { + // Fast path, used for the majority (about 95%) of invocations. + UnalignedCopy128(ip, op); + op_ptr_ = op + length; + return true; + } else { + return false; + } + } + + inline bool AppendFromSelf(size_t offset, size_t len) { + char* const op_end = op_ptr_ + len; + // See SnappyArrayWriter::AppendFromSelf for an explanation of + // the "offset - 1u" trick. + if (SNAPPY_PREDICT_TRUE(offset - 1u < op_ptr_ - op_base_ && + op_end <= op_limit_)) { + // Fast path: src and dst in current block. + op_ptr_ = IncrementalCopy(op_ptr_ - offset, op_ptr_, op_end, op_limit_); + return true; + } + return SlowAppendFromSelf(offset, len); + } + + // Called at the end of the decompress. We ask the allocator + // write all blocks to the sink. + inline void Flush() { allocator_.Flush(Produced()); } +}; + +template<typename Allocator> +bool SnappyScatteredWriter<Allocator>::SlowAppend(const char* ip, size_t len) { + size_t avail = op_limit_ - op_ptr_; + while (len > avail) { + // Completely fill this block + memcpy(op_ptr_, ip, avail); + op_ptr_ += avail; + assert(op_limit_ - op_ptr_ == 0); + full_size_ += (op_ptr_ - op_base_); + len -= avail; + ip += avail; + + // Bounds check + if (full_size_ + len > expected_) { + return false; + } + + // Make new block + size_t bsize = std::min<size_t>(kBlockSize, expected_ - full_size_); + op_base_ = allocator_.Allocate(bsize); + op_ptr_ = op_base_; + op_limit_ = op_base_ + bsize; + blocks_.push_back(op_base_); + avail = bsize; + } + + memcpy(op_ptr_, ip, len); + op_ptr_ += len; + return true; +} + +template<typename Allocator> +bool SnappyScatteredWriter<Allocator>::SlowAppendFromSelf(size_t offset, + size_t len) { + // Overflow check + // See SnappyArrayWriter::AppendFromSelf for an explanation of + // the "offset - 1u" trick. + const size_t cur = Size(); + if (offset - 1u >= cur) return false; + if (expected_ - cur < len) return false; + + // Currently we shouldn't ever hit this path because Compress() chops the + // input into blocks and does not create cross-block copies. However, it is + // nice if we do not rely on that, since we can get better compression if we + // allow cross-block copies and thus might want to change the compressor in + // the future. + size_t src = cur - offset; + while (len-- > 0) { + char c = blocks_[src >> kBlockLog][src & (kBlockSize-1)]; + Append(&c, 1); + src++; + } + return true; +} + +class SnappySinkAllocator { + public: + explicit SnappySinkAllocator(Sink* dest): dest_(dest) {} + ~SnappySinkAllocator() {} + + char* Allocate(int size) { + Datablock block(new char[size], size); + blocks_.push_back(block); + return block.data; + } + + // We flush only at the end, because the writer wants + // random access to the blocks and once we hand the + // block over to the sink, we can't access it anymore. + // Also we don't write more than has been actually written + // to the blocks. + void Flush(size_t size) { + size_t size_written = 0; + size_t block_size; + for (int i = 0; i < blocks_.size(); ++i) { + block_size = std::min<size_t>(blocks_[i].size, size - size_written); + dest_->AppendAndTakeOwnership(blocks_[i].data, block_size, + &SnappySinkAllocator::Deleter, NULL); + size_written += block_size; + } + blocks_.clear(); + } + + private: + struct Datablock { + char* data; + size_t size; + Datablock(char* p, size_t s) : data(p), size(s) {} + }; + + static void Deleter(void* arg, const char* bytes, size_t size) { + delete[] bytes; + } + + Sink* dest_; + std::vector<Datablock> blocks_; + + // Note: copying this object is allowed +}; + +size_t UncompressAsMuchAsPossible(Source* compressed, Sink* uncompressed) { + SnappySinkAllocator allocator(uncompressed); + SnappyScatteredWriter<SnappySinkAllocator> writer(allocator); + InternalUncompress(compressed, &writer); + return writer.Produced(); +} + +bool Uncompress(Source* compressed, Sink* uncompressed) { + // Read the uncompressed length from the front of the compressed input + SnappyDecompressor decompressor(compressed); + uint32 uncompressed_len = 0; + if (!decompressor.ReadUncompressedLength(&uncompressed_len)) { + return false; + } + + char c; + size_t allocated_size; + char* buf = uncompressed->GetAppendBufferVariable( + 1, uncompressed_len, &c, 1, &allocated_size); + + const size_t compressed_len = compressed->Available(); + // If we can get a flat buffer, then use it, otherwise do block by block + // uncompression + if (allocated_size >= uncompressed_len) { + SnappyArrayWriter writer(buf); + bool result = InternalUncompressAllTags(&decompressor, &writer, + compressed_len, uncompressed_len); + uncompressed->Append(buf, writer.Produced()); + return result; + } else { + SnappySinkAllocator allocator(uncompressed); + SnappyScatteredWriter<SnappySinkAllocator> writer(allocator); + return InternalUncompressAllTags(&decompressor, &writer, compressed_len, + uncompressed_len); + } +} + +} // namespace snappy |