aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/snappy/snappy.cc
diff options
context:
space:
mode:
authorthegeorg <thegeorg@yandex-team.ru>2022-02-10 16:45:08 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:45:08 +0300
commit4e839db24a3bbc9f1c610c43d6faaaa99824dcca (patch)
tree506dac10f5df94fab310584ee51b24fc5a081c22 /contrib/libs/snappy/snappy.cc
parent2d37894b1b037cf24231090eda8589bbb44fb6fc (diff)
downloadydb-4e839db24a3bbc9f1c610c43d6faaaa99824dcca.tar.gz
Restoring authorship annotation for <thegeorg@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/snappy/snappy.cc')
-rw-r--r--contrib/libs/snappy/snappy.cc2024
1 files changed, 1012 insertions, 1012 deletions
diff --git a/contrib/libs/snappy/snappy.cc b/contrib/libs/snappy/snappy.cc
index 9351b0f21e..4491be6871 100644
--- a/contrib/libs/snappy/snappy.cc
+++ b/contrib/libs/snappy/snappy.cc
@@ -30,59 +30,59 @@
#include "snappy-internal.h"
#include "snappy-sinksource.h"
-#if !defined(SNAPPY_HAVE_SSSE3)
-// __SSSE3__ is defined by GCC and Clang. Visual Studio doesn't target SIMD
-// support between SSE2 and AVX (so SSSE3 instructions require AVX support), and
-// defines __AVX__ when AVX support is available.
-#if defined(__SSSE3__) || defined(__AVX__)
-#define SNAPPY_HAVE_SSSE3 1
-#else
-#define SNAPPY_HAVE_SSSE3 0
-#endif
-#endif // !defined(SNAPPY_HAVE_SSSE3)
-
-#if !defined(SNAPPY_HAVE_BMI2)
-// __BMI2__ is defined by GCC and Clang. Visual Studio doesn't target BMI2
-// specifically, but it does define __AVX2__ when AVX2 support is available.
-// Fortunately, AVX2 was introduced in Haswell, just like BMI2.
-//
-// BMI2 is not defined as a subset of AVX2 (unlike SSSE3 and AVX above). So,
-// GCC and Clang can build code with AVX2 enabled but BMI2 disabled, in which
-// case issuing BMI2 instructions results in a compiler error.
-#if defined(__BMI2__) || (defined(_MSC_VER) && defined(__AVX2__))
-#define SNAPPY_HAVE_BMI2 1
-#else
-#define SNAPPY_HAVE_BMI2 0
-#endif
-#endif // !defined(SNAPPY_HAVE_BMI2)
-
-#if SNAPPY_HAVE_SSSE3
-// Please do not replace with <x86intrin.h>. or with headers that assume more
-// advanced SSE versions without checking with all the OWNERS.
-#include <tmmintrin.h>
-#endif
-
-#if SNAPPY_HAVE_BMI2
-// Please do not replace with <x86intrin.h>. or with headers that assume more
-// advanced SSE versions without checking with all the OWNERS.
-#include <immintrin.h>
-#endif
-
+#if !defined(SNAPPY_HAVE_SSSE3)
+// __SSSE3__ is defined by GCC and Clang. Visual Studio doesn't target SIMD
+// support between SSE2 and AVX (so SSSE3 instructions require AVX support), and
+// defines __AVX__ when AVX support is available.
+#if defined(__SSSE3__) || defined(__AVX__)
+#define SNAPPY_HAVE_SSSE3 1
+#else
+#define SNAPPY_HAVE_SSSE3 0
+#endif
+#endif // !defined(SNAPPY_HAVE_SSSE3)
+
+#if !defined(SNAPPY_HAVE_BMI2)
+// __BMI2__ is defined by GCC and Clang. Visual Studio doesn't target BMI2
+// specifically, but it does define __AVX2__ when AVX2 support is available.
+// Fortunately, AVX2 was introduced in Haswell, just like BMI2.
+//
+// BMI2 is not defined as a subset of AVX2 (unlike SSSE3 and AVX above). So,
+// GCC and Clang can build code with AVX2 enabled but BMI2 disabled, in which
+// case issuing BMI2 instructions results in a compiler error.
+#if defined(__BMI2__) || (defined(_MSC_VER) && defined(__AVX2__))
+#define SNAPPY_HAVE_BMI2 1
+#else
+#define SNAPPY_HAVE_BMI2 0
+#endif
+#endif // !defined(SNAPPY_HAVE_BMI2)
+
+#if SNAPPY_HAVE_SSSE3
+// Please do not replace with <x86intrin.h>. or with headers that assume more
+// advanced SSE versions without checking with all the OWNERS.
+#include <tmmintrin.h>
+#endif
+
+#if SNAPPY_HAVE_BMI2
+// Please do not replace with <x86intrin.h>. or with headers that assume more
+// advanced SSE versions without checking with all the OWNERS.
+#include <immintrin.h>
+#endif
+
#include <stdio.h>
#include <algorithm>
-#include <string>
-#include <vector>
-#include <util/generic/string.h>
+#include <string>
+#include <vector>
+#include <util/generic/string.h>
namespace snappy {
-using internal::COPY_1_BYTE_OFFSET;
-using internal::COPY_2_BYTE_OFFSET;
-using internal::LITERAL;
-using internal::char_table;
-using internal::kMaximumTagLength;
-
+using internal::COPY_1_BYTE_OFFSET;
+using internal::COPY_2_BYTE_OFFSET;
+using internal::LITERAL;
+using internal::char_table;
+using internal::kMaximumTagLength;
+
// Any hash function will produce a valid compressed bitstream, but a good
// hash function reduces the number of collisions and thus yields better
// compression for compressible input, and more speed for incompressible
@@ -120,311 +120,311 @@ size_t MaxCompressedLength(size_t source_len) {
return 32 + source_len + source_len/6;
}
-namespace {
-
-void UnalignedCopy64(const void* src, void* dst) {
- char tmp[8];
- memcpy(tmp, src, 8);
- memcpy(dst, tmp, 8);
-}
-
-void UnalignedCopy128(const void* src, void* dst) {
- // memcpy gets vectorized when the appropriate compiler options are used.
- // For example, x86 compilers targeting SSE2+ will optimize to an SSE2 load
- // and store.
- char tmp[16];
- memcpy(tmp, src, 16);
- memcpy(dst, tmp, 16);
-}
-
-// Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) a byte at a time. Used
-// for handling COPY operations where the input and output regions may overlap.
-// For example, suppose:
-// src == "ab"
-// op == src + 2
-// op_limit == op + 20
-// After IncrementalCopySlow(src, op, op_limit), the result will have eleven
-// copies of "ab"
+namespace {
+
+void UnalignedCopy64(const void* src, void* dst) {
+ char tmp[8];
+ memcpy(tmp, src, 8);
+ memcpy(dst, tmp, 8);
+}
+
+void UnalignedCopy128(const void* src, void* dst) {
+ // memcpy gets vectorized when the appropriate compiler options are used.
+ // For example, x86 compilers targeting SSE2+ will optimize to an SSE2 load
+ // and store.
+ char tmp[16];
+ memcpy(tmp, src, 16);
+ memcpy(dst, tmp, 16);
+}
+
+// Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) a byte at a time. Used
+// for handling COPY operations where the input and output regions may overlap.
+// For example, suppose:
+// src == "ab"
+// op == src + 2
+// op_limit == op + 20
+// After IncrementalCopySlow(src, op, op_limit), the result will have eleven
+// copies of "ab"
// ababababababababababab
-// Note that this does not match the semantics of either memcpy() or memmove().
-inline char* IncrementalCopySlow(const char* src, char* op,
- char* const op_limit) {
- // TODO: Remove pragma when LLVM is aware this
- // function is only called in cold regions and when cold regions don't get
- // vectorized or unrolled.
-#ifdef __clang__
-#pragma clang loop unroll(disable)
-#endif
- while (op < op_limit) {
+// Note that this does not match the semantics of either memcpy() or memmove().
+inline char* IncrementalCopySlow(const char* src, char* op,
+ char* const op_limit) {
+ // TODO: Remove pragma when LLVM is aware this
+ // function is only called in cold regions and when cold regions don't get
+ // vectorized or unrolled.
+#ifdef __clang__
+#pragma clang loop unroll(disable)
+#endif
+ while (op < op_limit) {
*op++ = *src++;
- }
- return op_limit;
+ }
+ return op_limit;
}
-#if SNAPPY_HAVE_SSSE3
-
-// This is a table of shuffle control masks that can be used as the source
-// operand for PSHUFB to permute the contents of the destination XMM register
-// into a repeating byte pattern.
-alignas(16) const char pshufb_fill_patterns[7][16] = {
- {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
- {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1},
- {0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0},
- {0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3},
- {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0},
- {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3},
- {0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1},
-};
-
-#endif // SNAPPY_HAVE_SSSE3
-
-// Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) but faster than
-// IncrementalCopySlow. buf_limit is the address past the end of the writable
-// region of the buffer.
-inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
- char* const buf_limit) {
- // Terminology:
- //
- // slop = buf_limit - op
- // pat = op - src
- // len = limit - op
- assert(src < op);
- assert(op <= op_limit);
- assert(op_limit <= buf_limit);
- // NOTE: The compressor always emits 4 <= len <= 64. It is ok to assume that
- // to optimize this function but we have to also handle other cases in case
- // the input does not satisfy these conditions.
-
- size_t pattern_size = op - src;
- // The cases are split into different branches to allow the branch predictor,
- // FDO, and static prediction hints to work better. For each input we list the
- // ratio of invocations that match each condition.
- //
- // input slop < 16 pat < 8 len > 16
- // ------------------------------------------
- // html|html4|cp 0% 1.01% 27.73%
- // urls 0% 0.88% 14.79%
- // jpg 0% 64.29% 7.14%
- // pdf 0% 2.56% 58.06%
- // txt[1-4] 0% 0.23% 0.97%
- // pb 0% 0.96% 13.88%
- // bin 0.01% 22.27% 41.17%
- //
- // It is very rare that we don't have enough slop for doing block copies. It
- // is also rare that we need to expand a pattern. Small patterns are common
- // for incompressible formats and for those we are plenty fast already.
- // Lengths are normally not greater than 16 but they vary depending on the
- // input. In general if we always predict len <= 16 it would be an ok
- // prediction.
- //
- // In order to be fast we want a pattern >= 8 bytes and an unrolled loop
- // copying 2x 8 bytes at a time.
-
- // Handle the uncommon case where pattern is less than 8 bytes.
- if (SNAPPY_PREDICT_FALSE(pattern_size < 8)) {
-#if SNAPPY_HAVE_SSSE3
- // Load the first eight bytes into an 128-bit XMM register, then use PSHUFB
- // to permute the register's contents in-place into a repeating sequence of
- // the first "pattern_size" bytes.
- // For example, suppose:
- // src == "abc"
- // op == op + 3
- // After _mm_shuffle_epi8(), "pattern" will have five copies of "abc"
- // followed by one byte of slop: abcabcabcabcabca.
- //
- // The non-SSE fallback implementation suffers from store-forwarding stalls
- // because its loads and stores partly overlap. By expanding the pattern
- // in-place, we avoid the penalty.
- if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 16)) {
- const __m128i shuffle_mask = _mm_load_si128(
- reinterpret_cast<const __m128i*>(pshufb_fill_patterns)
- + pattern_size - 1);
- const __m128i pattern = _mm_shuffle_epi8(
- _mm_loadl_epi64(reinterpret_cast<const __m128i*>(src)), shuffle_mask);
- // Uninitialized bytes are masked out by the shuffle mask.
- // TODO: remove annotation and macro defs once MSan is fixed.
- SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(&pattern, sizeof(pattern));
- pattern_size *= 16 / pattern_size;
- char* op_end = std::min(op_limit, buf_limit - 15);
- while (op < op_end) {
- _mm_storeu_si128(reinterpret_cast<__m128i*>(op), pattern);
- op += pattern_size;
- }
- if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit;
- }
- return IncrementalCopySlow(src, op, op_limit);
-#else // !SNAPPY_HAVE_SSSE3
- // If plenty of buffer space remains, expand the pattern to at least 8
- // bytes. The way the following loop is written, we need 8 bytes of buffer
- // space if pattern_size >= 4, 11 bytes if pattern_size is 1 or 3, and 10
- // bytes if pattern_size is 2. Precisely encoding that is probably not
- // worthwhile; instead, invoke the slow path if we cannot write 11 bytes
- // (because 11 are required in the worst case).
- if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 11)) {
- while (pattern_size < 8) {
- UnalignedCopy64(src, op);
- op += pattern_size;
- pattern_size *= 2;
- }
- if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit;
- } else {
- return IncrementalCopySlow(src, op, op_limit);
- }
-#endif // SNAPPY_HAVE_SSSE3
- }
- assert(pattern_size >= 8);
-
- // Copy 2x 8 bytes at a time. Because op - src can be < 16, a single
- // UnalignedCopy128 might overwrite data in op. UnalignedCopy64 is safe
- // because expanding the pattern to at least 8 bytes guarantees that
- // op - src >= 8.
- //
- // Typically, the op_limit is the gating factor so try to simplify the loop
- // based on that.
- if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 16)) {
- // There is at least one, and at most four 16-byte blocks. Writing four
- // conditionals instead of a loop allows FDO to layout the code with respect
- // to the actual probabilities of each length.
- // TODO: Replace with loop with trip count hint.
- UnalignedCopy64(src, op);
- UnalignedCopy64(src + 8, op + 8);
-
- if (op + 16 < op_limit) {
- UnalignedCopy64(src + 16, op + 16);
- UnalignedCopy64(src + 24, op + 24);
- }
- if (op + 32 < op_limit) {
- UnalignedCopy64(src + 32, op + 32);
- UnalignedCopy64(src + 40, op + 40);
- }
- if (op + 48 < op_limit) {
- UnalignedCopy64(src + 48, op + 48);
- UnalignedCopy64(src + 56, op + 56);
- }
- return op_limit;
- }
-
- // Fall back to doing as much as we can with the available slop in the
- // buffer. This code path is relatively cold however so we save code size by
- // avoiding unrolling and vectorizing.
- //
- // TODO: Remove pragma when when cold regions don't get vectorized
- // or unrolled.
-#ifdef __clang__
-#pragma clang loop unroll(disable)
-#endif
- for (char *op_end = buf_limit - 16; op < op_end; op += 16, src += 16) {
+#if SNAPPY_HAVE_SSSE3
+
+// This is a table of shuffle control masks that can be used as the source
+// operand for PSHUFB to permute the contents of the destination XMM register
+// into a repeating byte pattern.
+alignas(16) const char pshufb_fill_patterns[7][16] = {
+ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
+ {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1},
+ {0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0},
+ {0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3},
+ {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0},
+ {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3},
+ {0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1},
+};
+
+#endif // SNAPPY_HAVE_SSSE3
+
+// Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) but faster than
+// IncrementalCopySlow. buf_limit is the address past the end of the writable
+// region of the buffer.
+inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
+ char* const buf_limit) {
+ // Terminology:
+ //
+ // slop = buf_limit - op
+ // pat = op - src
+ // len = limit - op
+ assert(src < op);
+ assert(op <= op_limit);
+ assert(op_limit <= buf_limit);
+ // NOTE: The compressor always emits 4 <= len <= 64. It is ok to assume that
+ // to optimize this function but we have to also handle other cases in case
+ // the input does not satisfy these conditions.
+
+ size_t pattern_size = op - src;
+ // The cases are split into different branches to allow the branch predictor,
+ // FDO, and static prediction hints to work better. For each input we list the
+ // ratio of invocations that match each condition.
+ //
+ // input slop < 16 pat < 8 len > 16
+ // ------------------------------------------
+ // html|html4|cp 0% 1.01% 27.73%
+ // urls 0% 0.88% 14.79%
+ // jpg 0% 64.29% 7.14%
+ // pdf 0% 2.56% 58.06%
+ // txt[1-4] 0% 0.23% 0.97%
+ // pb 0% 0.96% 13.88%
+ // bin 0.01% 22.27% 41.17%
+ //
+ // It is very rare that we don't have enough slop for doing block copies. It
+ // is also rare that we need to expand a pattern. Small patterns are common
+ // for incompressible formats and for those we are plenty fast already.
+ // Lengths are normally not greater than 16 but they vary depending on the
+ // input. In general if we always predict len <= 16 it would be an ok
+ // prediction.
+ //
+ // In order to be fast we want a pattern >= 8 bytes and an unrolled loop
+ // copying 2x 8 bytes at a time.
+
+ // Handle the uncommon case where pattern is less than 8 bytes.
+ if (SNAPPY_PREDICT_FALSE(pattern_size < 8)) {
+#if SNAPPY_HAVE_SSSE3
+ // Load the first eight bytes into an 128-bit XMM register, then use PSHUFB
+ // to permute the register's contents in-place into a repeating sequence of
+ // the first "pattern_size" bytes.
+ // For example, suppose:
+ // src == "abc"
+ // op == op + 3
+ // After _mm_shuffle_epi8(), "pattern" will have five copies of "abc"
+ // followed by one byte of slop: abcabcabcabcabca.
+ //
+ // The non-SSE fallback implementation suffers from store-forwarding stalls
+ // because its loads and stores partly overlap. By expanding the pattern
+ // in-place, we avoid the penalty.
+ if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 16)) {
+ const __m128i shuffle_mask = _mm_load_si128(
+ reinterpret_cast<const __m128i*>(pshufb_fill_patterns)
+ + pattern_size - 1);
+ const __m128i pattern = _mm_shuffle_epi8(
+ _mm_loadl_epi64(reinterpret_cast<const __m128i*>(src)), shuffle_mask);
+ // Uninitialized bytes are masked out by the shuffle mask.
+ // TODO: remove annotation and macro defs once MSan is fixed.
+ SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(&pattern, sizeof(pattern));
+ pattern_size *= 16 / pattern_size;
+ char* op_end = std::min(op_limit, buf_limit - 15);
+ while (op < op_end) {
+ _mm_storeu_si128(reinterpret_cast<__m128i*>(op), pattern);
+ op += pattern_size;
+ }
+ if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit;
+ }
+ return IncrementalCopySlow(src, op, op_limit);
+#else // !SNAPPY_HAVE_SSSE3
+ // If plenty of buffer space remains, expand the pattern to at least 8
+ // bytes. The way the following loop is written, we need 8 bytes of buffer
+ // space if pattern_size >= 4, 11 bytes if pattern_size is 1 or 3, and 10
+ // bytes if pattern_size is 2. Precisely encoding that is probably not
+ // worthwhile; instead, invoke the slow path if we cannot write 11 bytes
+ // (because 11 are required in the worst case).
+ if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 11)) {
+ while (pattern_size < 8) {
+ UnalignedCopy64(src, op);
+ op += pattern_size;
+ pattern_size *= 2;
+ }
+ if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit;
+ } else {
+ return IncrementalCopySlow(src, op, op_limit);
+ }
+#endif // SNAPPY_HAVE_SSSE3
+ }
+ assert(pattern_size >= 8);
+
+ // Copy 2x 8 bytes at a time. Because op - src can be < 16, a single
+ // UnalignedCopy128 might overwrite data in op. UnalignedCopy64 is safe
+ // because expanding the pattern to at least 8 bytes guarantees that
+ // op - src >= 8.
+ //
+ // Typically, the op_limit is the gating factor so try to simplify the loop
+ // based on that.
+ if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 16)) {
+ // There is at least one, and at most four 16-byte blocks. Writing four
+ // conditionals instead of a loop allows FDO to layout the code with respect
+ // to the actual probabilities of each length.
+ // TODO: Replace with loop with trip count hint.
UnalignedCopy64(src, op);
- UnalignedCopy64(src + 8, op + 8);
+ UnalignedCopy64(src + 8, op + 8);
+
+ if (op + 16 < op_limit) {
+ UnalignedCopy64(src + 16, op + 16);
+ UnalignedCopy64(src + 24, op + 24);
+ }
+ if (op + 32 < op_limit) {
+ UnalignedCopy64(src + 32, op + 32);
+ UnalignedCopy64(src + 40, op + 40);
+ }
+ if (op + 48 < op_limit) {
+ UnalignedCopy64(src + 48, op + 48);
+ UnalignedCopy64(src + 56, op + 56);
+ }
+ return op_limit;
}
- if (op >= op_limit)
- return op_limit;
-
- // We only take this branch if we didn't have enough slop and we can do a
- // single 8 byte copy.
- if (SNAPPY_PREDICT_FALSE(op <= buf_limit - 8)) {
+
+ // Fall back to doing as much as we can with the available slop in the
+ // buffer. This code path is relatively cold however so we save code size by
+ // avoiding unrolling and vectorizing.
+ //
+ // TODO: Remove pragma when when cold regions don't get vectorized
+ // or unrolled.
+#ifdef __clang__
+#pragma clang loop unroll(disable)
+#endif
+ for (char *op_end = buf_limit - 16; op < op_end; op += 16, src += 16) {
UnalignedCopy64(src, op);
+ UnalignedCopy64(src + 8, op + 8);
+ }
+ if (op >= op_limit)
+ return op_limit;
+
+ // We only take this branch if we didn't have enough slop and we can do a
+ // single 8 byte copy.
+ if (SNAPPY_PREDICT_FALSE(op <= buf_limit - 8)) {
+ UnalignedCopy64(src, op);
src += 8;
op += 8;
}
- return IncrementalCopySlow(src, op, op_limit);
+ return IncrementalCopySlow(src, op, op_limit);
}
-} // namespace
-
-template <bool allow_fast_path>
+} // namespace
+
+template <bool allow_fast_path>
static inline char* EmitLiteral(char* op,
const char* literal,
- int len) {
- // The vast majority of copies are below 16 bytes, for which a
- // call to memcpy is overkill. This fast path can sometimes
- // copy up to 15 bytes too much, but that is okay in the
- // main loop, since we have a bit to go on for both sides:
- //
- // - The input will always have kInputMarginBytes = 15 extra
- // available bytes, as long as we're in the main loop, and
- // if not, allow_fast_path = false.
- // - The output will always have 32 spare bytes (see
- // MaxCompressedLength).
- assert(len > 0); // Zero-length literals are disallowed
- int n = len - 1;
- if (allow_fast_path && len <= 16) {
- // Fits in tag byte
- *op++ = LITERAL | (n << 2);
-
- UnalignedCopy128(literal, op);
- return op + len;
- }
-
+ int len) {
+ // The vast majority of copies are below 16 bytes, for which a
+ // call to memcpy is overkill. This fast path can sometimes
+ // copy up to 15 bytes too much, but that is okay in the
+ // main loop, since we have a bit to go on for both sides:
+ //
+ // - The input will always have kInputMarginBytes = 15 extra
+ // available bytes, as long as we're in the main loop, and
+ // if not, allow_fast_path = false.
+ // - The output will always have 32 spare bytes (see
+ // MaxCompressedLength).
+ assert(len > 0); // Zero-length literals are disallowed
+ int n = len - 1;
+ if (allow_fast_path && len <= 16) {
+ // Fits in tag byte
+ *op++ = LITERAL | (n << 2);
+
+ UnalignedCopy128(literal, op);
+ return op + len;
+ }
+
if (n < 60) {
// Fits in tag byte
*op++ = LITERAL | (n << 2);
} else {
- int count = (Bits::Log2Floor(n) >> 3) + 1;
+ int count = (Bits::Log2Floor(n) >> 3) + 1;
assert(count >= 1);
assert(count <= 4);
- *op++ = LITERAL | ((59 + count) << 2);
- // Encode in upcoming bytes.
- // Write 4 bytes, though we may care about only 1 of them. The output buffer
- // is guaranteed to have at least 3 more spaces left as 'len >= 61' holds
- // here and there is a memcpy of size 'len' below.
- LittleEndian::Store32(op, n);
- op += count;
+ *op++ = LITERAL | ((59 + count) << 2);
+ // Encode in upcoming bytes.
+ // Write 4 bytes, though we may care about only 1 of them. The output buffer
+ // is guaranteed to have at least 3 more spaces left as 'len >= 61' holds
+ // here and there is a memcpy of size 'len' below.
+ LittleEndian::Store32(op, n);
+ op += count;
}
memcpy(op, literal, len);
return op + len;
}
-template <bool len_less_than_12>
-static inline char* EmitCopyAtMost64(char* op, size_t offset, size_t len) {
- assert(len <= 64);
- assert(len >= 4);
- assert(offset < 65536);
- assert(len_less_than_12 == (len < 12));
-
- if (len_less_than_12 && SNAPPY_PREDICT_TRUE(offset < 2048)) {
- // offset fits in 11 bits. The 3 highest go in the top of the first byte,
- // and the rest go in the second byte.
- *op++ = COPY_1_BYTE_OFFSET + ((len - 4) << 2) + ((offset >> 3) & 0xe0);
+template <bool len_less_than_12>
+static inline char* EmitCopyAtMost64(char* op, size_t offset, size_t len) {
+ assert(len <= 64);
+ assert(len >= 4);
+ assert(offset < 65536);
+ assert(len_less_than_12 == (len < 12));
+
+ if (len_less_than_12 && SNAPPY_PREDICT_TRUE(offset < 2048)) {
+ // offset fits in 11 bits. The 3 highest go in the top of the first byte,
+ // and the rest go in the second byte.
+ *op++ = COPY_1_BYTE_OFFSET + ((len - 4) << 2) + ((offset >> 3) & 0xe0);
*op++ = offset & 0xff;
} else {
- // Write 4 bytes, though we only care about 3 of them. The output buffer
- // is required to have some slack, so the extra byte won't overrun it.
- uint32 u = COPY_2_BYTE_OFFSET + ((len - 1) << 2) + (offset << 8);
- LittleEndian::Store32(op, u);
- op += 3;
+ // Write 4 bytes, though we only care about 3 of them. The output buffer
+ // is required to have some slack, so the extra byte won't overrun it.
+ uint32 u = COPY_2_BYTE_OFFSET + ((len - 1) << 2) + (offset << 8);
+ LittleEndian::Store32(op, u);
+ op += 3;
}
return op;
}
-template <bool len_less_than_12>
-static inline char* EmitCopy(char* op, size_t offset, size_t len) {
- assert(len_less_than_12 == (len < 12));
- if (len_less_than_12) {
- return EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len);
- } else {
- // A special case for len <= 64 might help, but so far measurements suggest
- // it's in the noise.
-
- // Emit 64 byte copies but make sure to keep at least four bytes reserved.
- while (SNAPPY_PREDICT_FALSE(len >= 68)) {
- op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 64);
- len -= 64;
- }
-
- // One or two copies will now finish the job.
- if (len > 64) {
- op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 60);
- len -= 60;
- }
-
- // Emit remainder.
- if (len < 12) {
- op = EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len);
- } else {
- op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, len);
- }
- return op;
+template <bool len_less_than_12>
+static inline char* EmitCopy(char* op, size_t offset, size_t len) {
+ assert(len_less_than_12 == (len < 12));
+ if (len_less_than_12) {
+ return EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len);
+ } else {
+ // A special case for len <= 64 might help, but so far measurements suggest
+ // it's in the noise.
+
+ // Emit 64 byte copies but make sure to keep at least four bytes reserved.
+ while (SNAPPY_PREDICT_FALSE(len >= 68)) {
+ op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 64);
+ len -= 64;
+ }
+
+ // One or two copies will now finish the job.
+ if (len > 64) {
+ op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 60);
+ len -= 60;
+ }
+
+ // Emit remainder.
+ if (len < 12) {
+ op = EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len);
+ } else {
+ op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, len);
+ }
+ return op;
}
}
@@ -439,45 +439,45 @@ bool GetUncompressedLength(const char* start, size_t n, size_t* result) {
}
}
-namespace {
-uint32 CalculateTableSize(uint32 input_size) {
- static_assert(
- kMaxHashTableSize >= kMinHashTableSize,
- "kMaxHashTableSize should be greater or equal to kMinHashTableSize.");
- if (input_size > kMaxHashTableSize) {
- return kMaxHashTableSize;
+namespace {
+uint32 CalculateTableSize(uint32 input_size) {
+ static_assert(
+ kMaxHashTableSize >= kMinHashTableSize,
+ "kMaxHashTableSize should be greater or equal to kMinHashTableSize.");
+ if (input_size > kMaxHashTableSize) {
+ return kMaxHashTableSize;
}
- if (input_size < kMinHashTableSize) {
- return kMinHashTableSize;
+ if (input_size < kMinHashTableSize) {
+ return kMinHashTableSize;
}
- // This is equivalent to Log2Ceiling(input_size), assuming input_size > 1.
- // 2 << Log2Floor(x - 1) is equivalent to 1 << (1 + Log2Floor(x - 1)).
- return 2u << Bits::Log2Floor(input_size - 1);
-}
-} // namespace
-
-namespace internal {
-WorkingMemory::WorkingMemory(size_t input_size) {
- const size_t max_fragment_size = std::min(input_size, kBlockSize);
- const size_t table_size = CalculateTableSize(max_fragment_size);
- size_ = table_size * sizeof(*table_) + max_fragment_size +
- MaxCompressedLength(max_fragment_size);
- mem_ = std::allocator<char>().allocate(size_);
- table_ = reinterpret_cast<uint16*>(mem_);
- input_ = mem_ + table_size * sizeof(*table_);
- output_ = input_ + max_fragment_size;
-}
-
-WorkingMemory::~WorkingMemory() {
- std::allocator<char>().deallocate(mem_, size_);
-}
-
-uint16* WorkingMemory::GetHashTable(size_t fragment_size,
- int* table_size) const {
- const size_t htsize = CalculateTableSize(fragment_size);
- memset(table_, 0, htsize * sizeof(*table_));
+ // This is equivalent to Log2Ceiling(input_size), assuming input_size > 1.
+ // 2 << Log2Floor(x - 1) is equivalent to 1 << (1 + Log2Floor(x - 1)).
+ return 2u << Bits::Log2Floor(input_size - 1);
+}
+} // namespace
+
+namespace internal {
+WorkingMemory::WorkingMemory(size_t input_size) {
+ const size_t max_fragment_size = std::min(input_size, kBlockSize);
+ const size_t table_size = CalculateTableSize(max_fragment_size);
+ size_ = table_size * sizeof(*table_) + max_fragment_size +
+ MaxCompressedLength(max_fragment_size);
+ mem_ = std::allocator<char>().allocate(size_);
+ table_ = reinterpret_cast<uint16*>(mem_);
+ input_ = mem_ + table_size * sizeof(*table_);
+ output_ = input_ + max_fragment_size;
+}
+
+WorkingMemory::~WorkingMemory() {
+ std::allocator<char>().deallocate(mem_, size_);
+}
+
+uint16* WorkingMemory::GetHashTable(size_t fragment_size,
+ int* table_size) const {
+ const size_t htsize = CalculateTableSize(fragment_size);
+ memset(table_, 0, htsize * sizeof(*table_));
*table_size = htsize;
- return table_;
+ return table_;
}
} // end namespace internal
@@ -503,8 +503,8 @@ static inline EightBytesReference GetEightBytesAt(const char* ptr) {
}
static inline uint32 GetUint32AtOffset(uint64 v, int offset) {
- assert(offset >= 0);
- assert(offset <= 4);
+ assert(offset >= 0);
+ assert(offset <= 4);
return v >> (LittleEndian::IsLittleEndian() ? 8 * offset : 32 - 8 * offset);
}
@@ -517,8 +517,8 @@ static inline EightBytesReference GetEightBytesAt(const char* ptr) {
}
static inline uint32 GetUint32AtOffset(const char* v, int offset) {
- assert(offset >= 0);
- assert(offset <= 4);
+ assert(offset >= 0);
+ assert(offset <= 4);
return UNALIGNED_LOAD32(v + offset);
}
@@ -543,10 +543,10 @@ char* CompressFragment(const char* input,
const int table_size) {
// "ip" is the input pointer, and "op" is the output pointer.
const char* ip = input;
- assert(input_size <= kBlockSize);
- assert((table_size & (table_size - 1)) == 0); // table must be power of two
+ assert(input_size <= kBlockSize);
+ assert((table_size & (table_size - 1)) == 0); // table must be power of two
const int shift = 32 - Bits::Log2Floor(table_size);
- assert(static_cast<int>(kuint32max >> shift) == table_size - 1);
+ assert(static_cast<int>(kuint32max >> shift) == table_size - 1);
const char* ip_end = input + input_size;
const char* base_ip = ip;
// Bytes in [next_emit, ip) will be emitted as literal bytes. Or
@@ -554,11 +554,11 @@ char* CompressFragment(const char* input,
const char* next_emit = ip;
const size_t kInputMarginBytes = 15;
- if (SNAPPY_PREDICT_TRUE(input_size >= kInputMarginBytes)) {
+ if (SNAPPY_PREDICT_TRUE(input_size >= kInputMarginBytes)) {
const char* ip_limit = input + input_size - kInputMarginBytes;
for (uint32 next_hash = Hash(++ip, shift); ; ) {
- assert(next_emit < ip);
+ assert(next_emit < ip);
// The body of this loop calls EmitLiteral once and then EmitCopy one or
// more times. (The exception is that when we're close to exhausting
// the input we goto emit_remainder.)
@@ -574,9 +574,9 @@ char* CompressFragment(const char* input,
//
// Heuristic match skipping: If 32 bytes are scanned with no matches
// found, start looking only at every other byte. If 32 more bytes are
- // scanned (or skipped), look at every third byte, etc.. When a match is
- // found, immediately go back to looking at every byte. This is a small
- // loss (~5% performance, ~0.1% density) for compressible data due to more
+ // scanned (or skipped), look at every third byte, etc.. When a match is
+ // found, immediately go back to looking at every byte. This is a small
+ // loss (~5% performance, ~0.1% density) for compressible data due to more
// bookkeeping, but for non-compressible data (such as JPEG) it's a huge
// win since the compressor quickly "realizes" the data is incompressible
// and doesn't bother looking for matches everywhere.
@@ -591,27 +591,27 @@ char* CompressFragment(const char* input,
do {
ip = next_ip;
uint32 hash = next_hash;
- assert(hash == Hash(ip, shift));
- uint32 bytes_between_hash_lookups = skip >> 5;
- skip += bytes_between_hash_lookups;
+ assert(hash == Hash(ip, shift));
+ uint32 bytes_between_hash_lookups = skip >> 5;
+ skip += bytes_between_hash_lookups;
next_ip = ip + bytes_between_hash_lookups;
- if (SNAPPY_PREDICT_FALSE(next_ip > ip_limit)) {
+ if (SNAPPY_PREDICT_FALSE(next_ip > ip_limit)) {
goto emit_remainder;
}
next_hash = Hash(next_ip, shift);
candidate = base_ip + table[hash];
- assert(candidate >= base_ip);
- assert(candidate < ip);
+ assert(candidate >= base_ip);
+ assert(candidate < ip);
table[hash] = ip - base_ip;
- } while (SNAPPY_PREDICT_TRUE(UNALIGNED_LOAD32(ip) !=
- UNALIGNED_LOAD32(candidate)));
+ } while (SNAPPY_PREDICT_TRUE(UNALIGNED_LOAD32(ip) !=
+ UNALIGNED_LOAD32(candidate)));
// Step 2: A 4-byte match has been found. We'll later see if more
// than 4 bytes match. But, prior to the match, input
// bytes [next_emit, ip) are unmatched. Emit them as "literal bytes."
- assert(next_emit + 16 <= ip_end);
- op = EmitLiteral</*allow_fast_path=*/true>(op, next_emit, ip - next_emit);
+ assert(next_emit + 16 <= ip_end);
+ op = EmitLiteral</*allow_fast_path=*/true>(op, next_emit, ip - next_emit);
// Step 3: Call EmitCopy, and then see if another EmitCopy could
// be our next move. Repeat until we find no match for the
@@ -628,25 +628,25 @@ char* CompressFragment(const char* input,
// We have a 4-byte match at ip, and no need to emit any
// "literal bytes" prior to ip.
const char* base = ip;
- std::pair<size_t, bool> p =
- FindMatchLength(candidate + 4, ip + 4, ip_end);
- size_t matched = 4 + p.first;
+ std::pair<size_t, bool> p =
+ FindMatchLength(candidate + 4, ip + 4, ip_end);
+ size_t matched = 4 + p.first;
ip += matched;
size_t offset = base - candidate;
- assert(0 == memcmp(base, candidate, matched));
- if (p.second) {
- op = EmitCopy</*len_less_than_12=*/true>(op, offset, matched);
- } else {
- op = EmitCopy</*len_less_than_12=*/false>(op, offset, matched);
- }
+ assert(0 == memcmp(base, candidate, matched));
+ if (p.second) {
+ op = EmitCopy</*len_less_than_12=*/true>(op, offset, matched);
+ } else {
+ op = EmitCopy</*len_less_than_12=*/false>(op, offset, matched);
+ }
next_emit = ip;
- if (SNAPPY_PREDICT_FALSE(ip >= ip_limit)) {
+ if (SNAPPY_PREDICT_FALSE(ip >= ip_limit)) {
goto emit_remainder;
}
- // We are now looking for a 4-byte match again. We read
- // table[Hash(ip, shift)] for that. To improve compression,
- // we also update table[Hash(ip - 1, shift)] and table[Hash(ip, shift)].
- input_bytes = GetEightBytesAt(ip - 1);
+ // We are now looking for a 4-byte match again. We read
+ // table[Hash(ip, shift)] for that. To improve compression,
+ // we also update table[Hash(ip - 1, shift)] and table[Hash(ip, shift)].
+ input_bytes = GetEightBytesAt(ip - 1);
uint32 prev_hash = HashBytes(GetUint32AtOffset(input_bytes, 0), shift);
table[prev_hash] = ip - base_ip - 1;
uint32 cur_hash = HashBytes(GetUint32AtOffset(input_bytes, 1), shift);
@@ -663,18 +663,18 @@ char* CompressFragment(const char* input,
emit_remainder:
// Emit the remaining bytes as a literal
if (next_emit < ip_end) {
- op = EmitLiteral</*allow_fast_path=*/false>(op, next_emit,
- ip_end - next_emit);
+ op = EmitLiteral</*allow_fast_path=*/false>(op, next_emit,
+ ip_end - next_emit);
}
return op;
}
} // end namespace internal
-// Called back at avery compression call to trace parameters and sizes.
-static inline void Report(const char *algorithm, size_t compressed_size,
- size_t uncompressed_size) {}
-
+// Called back at avery compression call to trace parameters and sizes.
+static inline void Report(const char *algorithm, size_t compressed_size,
+ size_t uncompressed_size) {}
+
// Signature of output types needed by decompression code.
// The decompression code is templatized on a type that obeys this
// signature so that we do not pay virtual function call overhead in
@@ -692,50 +692,50 @@ static inline void Report(const char *algorithm, size_t compressed_size,
// bool Append(const char* ip, size_t length);
// bool AppendFromSelf(uint32 offset, size_t length);
//
-// // The rules for how TryFastAppend differs from Append are somewhat
-// // convoluted:
+// // The rules for how TryFastAppend differs from Append are somewhat
+// // convoluted:
// //
-// // - TryFastAppend is allowed to decline (return false) at any
-// // time, for any reason -- just "return false" would be
-// // a perfectly legal implementation of TryFastAppend.
-// // The intention is for TryFastAppend to allow a fast path
-// // in the common case of a small append.
-// // - TryFastAppend is allowed to read up to <available> bytes
-// // from the input buffer, whereas Append is allowed to read
-// // <length>. However, if it returns true, it must leave
-// // at least five (kMaximumTagLength) bytes in the input buffer
-// // afterwards, so that there is always enough space to read the
-// // next tag without checking for a refill.
-// // - TryFastAppend must always return decline (return false)
-// // if <length> is 61 or more, as in this case the literal length is not
-// // decoded fully. In practice, this should not be a big problem,
-// // as it is unlikely that one would implement a fast path accepting
-// // this much data.
+// // - TryFastAppend is allowed to decline (return false) at any
+// // time, for any reason -- just "return false" would be
+// // a perfectly legal implementation of TryFastAppend.
+// // The intention is for TryFastAppend to allow a fast path
+// // in the common case of a small append.
+// // - TryFastAppend is allowed to read up to <available> bytes
+// // from the input buffer, whereas Append is allowed to read
+// // <length>. However, if it returns true, it must leave
+// // at least five (kMaximumTagLength) bytes in the input buffer
+// // afterwards, so that there is always enough space to read the
+// // next tag without checking for a refill.
+// // - TryFastAppend must always return decline (return false)
+// // if <length> is 61 or more, as in this case the literal length is not
+// // decoded fully. In practice, this should not be a big problem,
+// // as it is unlikely that one would implement a fast path accepting
+// // this much data.
// //
// bool TryFastAppend(const char* ip, size_t available, size_t length);
// };
-static inline uint32 ExtractLowBytes(uint32 v, int n) {
- assert(n >= 0);
- assert(n <= 4);
-#if SNAPPY_HAVE_BMI2
- return _bzhi_u32(v, 8 * n);
-#else
- // This needs to be wider than uint32 otherwise `mask << 32` will be
- // undefined.
- uint64 mask = 0xffffffff;
- return v & ~(mask << (8 * n));
-#endif
+static inline uint32 ExtractLowBytes(uint32 v, int n) {
+ assert(n >= 0);
+ assert(n <= 4);
+#if SNAPPY_HAVE_BMI2
+ return _bzhi_u32(v, 8 * n);
+#else
+ // This needs to be wider than uint32 otherwise `mask << 32` will be
+ // undefined.
+ uint64 mask = 0xffffffff;
+ return v & ~(mask << (8 * n));
+#endif
}
-static inline bool LeftShiftOverflows(uint8 value, uint32 shift) {
- assert(shift < 32);
- static const uint8 masks[] = {
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, //
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, //
- 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, //
- 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe};
- return (value & masks[shift]) != 0;
+static inline bool LeftShiftOverflows(uint8 value, uint32 shift) {
+ assert(shift < 32);
+ static const uint8 masks[] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, //
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, //
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, //
+ 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe};
+ return (value & masks[shift]) != 0;
}
// Helper class for decompression
@@ -746,7 +746,7 @@ class SnappyDecompressor {
const char* ip_limit_; // Points just past buffered bytes
uint32 peeked_; // Bytes peeked from reader (need to skip)
bool eof_; // Hit end of input without an error?
- char scratch_[kMaximumTagLength]; // See RefillTag().
+ char scratch_[kMaximumTagLength]; // See RefillTag().
// Ensure that all of the tag metadata for the next tag is available
// in [ip_..ip_limit_-1]. Also ensures that [ip,ip+4] is readable even
@@ -775,10 +775,10 @@ class SnappyDecompressor {
}
// Read the uncompressed length stored at the start of the compressed data.
- // On success, stores the length in *result and returns true.
+ // On success, stores the length in *result and returns true.
// On failure, returns false.
bool ReadUncompressedLength(uint32* result) {
- assert(ip_ == NULL); // Must not have read anything yet
+ assert(ip_ == NULL); // Must not have read anything yet
// Length is encoded in 1..5 bytes
*result = 0;
uint32 shift = 0;
@@ -789,9 +789,9 @@ class SnappyDecompressor {
if (n == 0) return false;
const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
reader_->Skip(1);
- uint32 val = c & 0x7f;
- if (LeftShiftOverflows(static_cast<uint8>(val), shift)) return false;
- *result |= val << shift;
+ uint32 val = c & 0x7f;
+ if (LeftShiftOverflows(static_cast<uint8>(val), shift)) return false;
+ *result |= val << shift;
if (c < 128) {
break;
}
@@ -803,33 +803,33 @@ class SnappyDecompressor {
// Process the next item found in the input.
// Returns true if successful, false on error or end of input.
template <class Writer>
-#if defined(__GNUC__) && defined(__x86_64__)
- __attribute__((aligned(32)))
-#endif
+#if defined(__GNUC__) && defined(__x86_64__)
+ __attribute__((aligned(32)))
+#endif
void DecompressAllTags(Writer* writer) {
- // In x86, pad the function body to start 16 bytes later. This function has
- // a couple of hotspots that are highly sensitive to alignment: we have
- // observed regressions by more than 20% in some metrics just by moving the
- // exact same code to a different position in the benchmark binary.
- //
- // Putting this code on a 32-byte-aligned boundary + 16 bytes makes us hit
- // the "lucky" case consistently. Unfortunately, this is a very brittle
- // workaround, and future differences in code generation may reintroduce
- // this regression. If you experience a big, difficult to explain, benchmark
- // performance regression here, first try removing this hack.
-#if defined(__GNUC__) && defined(__x86_64__)
- // Two 8-byte "NOP DWORD ptr [EAX + EAX*1 + 00000000H]" instructions.
- asm(".byte 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00");
- asm(".byte 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00");
-#endif
-
+ // In x86, pad the function body to start 16 bytes later. This function has
+ // a couple of hotspots that are highly sensitive to alignment: we have
+ // observed regressions by more than 20% in some metrics just by moving the
+ // exact same code to a different position in the benchmark binary.
+ //
+ // Putting this code on a 32-byte-aligned boundary + 16 bytes makes us hit
+ // the "lucky" case consistently. Unfortunately, this is a very brittle
+ // workaround, and future differences in code generation may reintroduce
+ // this regression. If you experience a big, difficult to explain, benchmark
+ // performance regression here, first try removing this hack.
+#if defined(__GNUC__) && defined(__x86_64__)
+ // Two 8-byte "NOP DWORD ptr [EAX + EAX*1 + 00000000H]" instructions.
+ asm(".byte 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00");
+ asm(".byte 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00");
+#endif
+
const char* ip = ip_;
// We could have put this refill fragment only at the beginning of the loop.
// However, duplicating it at the end of each branch gives the compiler more
// scope to optimize the <ip_limit_ - ip> expression based on the local
// context, which overall increases speed.
#define MAYBE_REFILL() \
- if (ip_limit_ - ip < kMaximumTagLength) { \
+ if (ip_limit_ - ip < kMaximumTagLength) { \
ip_ = ip; \
if (!RefillTag()) return; \
ip = ip_; \
@@ -839,34 +839,34 @@ class SnappyDecompressor {
for ( ;; ) {
const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip++));
- // Ratio of iterations that have LITERAL vs non-LITERAL for different
- // inputs.
- //
- // input LITERAL NON_LITERAL
- // -----------------------------------
- // html|html4|cp 23% 77%
- // urls 36% 64%
- // jpg 47% 53%
- // pdf 19% 81%
- // txt[1-4] 25% 75%
- // pb 24% 76%
- // bin 24% 76%
- if (SNAPPY_PREDICT_FALSE((c & 0x3) == LITERAL)) {
+ // Ratio of iterations that have LITERAL vs non-LITERAL for different
+ // inputs.
+ //
+ // input LITERAL NON_LITERAL
+ // -----------------------------------
+ // html|html4|cp 23% 77%
+ // urls 36% 64%
+ // jpg 47% 53%
+ // pdf 19% 81%
+ // txt[1-4] 25% 75%
+ // pb 24% 76%
+ // bin 24% 76%
+ if (SNAPPY_PREDICT_FALSE((c & 0x3) == LITERAL)) {
size_t literal_length = (c >> 2) + 1u;
if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length)) {
- assert(literal_length < 61);
+ assert(literal_length < 61);
ip += literal_length;
- // NOTE: There is no MAYBE_REFILL() here, as TryFastAppend()
- // will not return true unless there's already at least five spare
- // bytes in addition to the literal.
+ // NOTE: There is no MAYBE_REFILL() here, as TryFastAppend()
+ // will not return true unless there's already at least five spare
+ // bytes in addition to the literal.
continue;
}
- if (SNAPPY_PREDICT_FALSE(literal_length >= 61)) {
+ if (SNAPPY_PREDICT_FALSE(literal_length >= 61)) {
// Long literal.
const size_t literal_length_length = literal_length - 60;
literal_length =
- ExtractLowBytes(LittleEndian::Load32(ip), literal_length_length) +
- 1;
+ ExtractLowBytes(LittleEndian::Load32(ip), literal_length_length) +
+ 1;
ip += literal_length_length;
}
@@ -888,16 +888,16 @@ class SnappyDecompressor {
ip += literal_length;
MAYBE_REFILL();
} else {
- const size_t entry = char_table[c];
- const size_t trailer =
- ExtractLowBytes(LittleEndian::Load32(ip), entry >> 11);
- const size_t length = entry & 0xff;
+ const size_t entry = char_table[c];
+ const size_t trailer =
+ ExtractLowBytes(LittleEndian::Load32(ip), entry >> 11);
+ const size_t length = entry & 0xff;
ip += entry >> 11;
// copy_offset/256 is encoded in bits 8..10. By just fetching
// those bits, we get copy_offset (since the bit-field starts at
// bit 8).
- const size_t copy_offset = entry & 0x700;
+ const size_t copy_offset = entry & 0x700;
if (!writer->AppendFromSelf(copy_offset + trailer, length)) {
return;
}
@@ -917,17 +917,17 @@ bool SnappyDecompressor::RefillTag() {
size_t n;
ip = reader_->Peek(&n);
peeked_ = n;
- eof_ = (n == 0);
- if (eof_) return false;
+ eof_ = (n == 0);
+ if (eof_) return false;
ip_limit_ = ip + n;
}
// Read the tag character
- assert(ip < ip_limit_);
+ assert(ip < ip_limit_);
const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
const uint32 entry = char_table[c];
const uint32 needed = (entry >> 11) + 1; // +1 byte for 'c'
- assert(needed <= sizeof(scratch_));
+ assert(needed <= sizeof(scratch_));
// Read more bytes from reader if needed
uint32 nbuf = ip_limit_ - ip;
@@ -943,15 +943,15 @@ bool SnappyDecompressor::RefillTag() {
size_t length;
const char* src = reader_->Peek(&length);
if (length == 0) return false;
- uint32 to_add = std::min<uint32>(needed - nbuf, length);
+ uint32 to_add = std::min<uint32>(needed - nbuf, length);
memcpy(scratch_ + nbuf, src, to_add);
nbuf += to_add;
reader_->Skip(to_add);
}
- assert(nbuf == needed);
+ assert(nbuf == needed);
ip_ = scratch_;
ip_limit_ = scratch_ + needed;
- } else if (nbuf < kMaximumTagLength) {
+ } else if (nbuf < kMaximumTagLength) {
// Have enough bytes, but move into scratch_ so that we do not
// read past end of input
memmove(scratch_, ip, nbuf);
@@ -967,28 +967,28 @@ bool SnappyDecompressor::RefillTag() {
}
template <typename Writer>
-static bool InternalUncompress(Source* r, Writer* writer) {
+static bool InternalUncompress(Source* r, Writer* writer) {
// Read the uncompressed length from the front of the compressed input
SnappyDecompressor decompressor(r);
uint32 uncompressed_len = 0;
if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false;
-
- return InternalUncompressAllTags(&decompressor, writer, r->Available(),
- uncompressed_len);
+
+ return InternalUncompressAllTags(&decompressor, writer, r->Available(),
+ uncompressed_len);
}
template <typename Writer>
static bool InternalUncompressAllTags(SnappyDecompressor* decompressor,
Writer* writer,
- uint32 compressed_len,
- uint32 uncompressed_len) {
- Report("snappy_uncompress", compressed_len, uncompressed_len);
+ uint32 compressed_len,
+ uint32 uncompressed_len) {
+ Report("snappy_uncompress", compressed_len, uncompressed_len);
writer->SetExpectedLength(uncompressed_len);
// Process the entire input
decompressor->DecompressAllTags(writer);
- writer->Flush();
+ writer->Flush();
return (decompressor->eof() && writer->CheckLength());
}
@@ -1000,20 +1000,20 @@ bool GetUncompressedLength(Source* source, uint32* result) {
size_t Compress(Source* reader, Sink* writer) {
size_t written = 0;
size_t N = reader->Available();
- const size_t uncompressed_size = N;
+ const size_t uncompressed_size = N;
char ulength[Varint::kMax32];
char* p = Varint::Encode32(ulength, N);
writer->Append(ulength, p-ulength);
written += (p - ulength);
- internal::WorkingMemory wmem(N);
+ internal::WorkingMemory wmem(N);
while (N > 0) {
// Get next block to compress (without copying if possible)
size_t fragment_size;
const char* fragment = reader->Peek(&fragment_size);
- assert(fragment_size != 0); // premature end of input
- const size_t num_to_read = std::min(N, kBlockSize);
+ assert(fragment_size != 0); // premature end of input
+ const size_t num_to_read = std::min(N, kBlockSize);
size_t bytes_read = fragment_size;
size_t pending_advance = 0;
@@ -1022,22 +1022,22 @@ size_t Compress(Source* reader, Sink* writer) {
pending_advance = num_to_read;
fragment_size = num_to_read;
} else {
- char* scratch = wmem.GetScratchInput();
+ char* scratch = wmem.GetScratchInput();
memcpy(scratch, fragment, bytes_read);
reader->Skip(bytes_read);
while (bytes_read < num_to_read) {
fragment = reader->Peek(&fragment_size);
- size_t n = std::min<size_t>(fragment_size, num_to_read - bytes_read);
+ size_t n = std::min<size_t>(fragment_size, num_to_read - bytes_read);
memcpy(scratch + bytes_read, fragment, n);
bytes_read += n;
reader->Skip(n);
}
- assert(bytes_read == num_to_read);
+ assert(bytes_read == num_to_read);
fragment = scratch;
fragment_size = num_to_read;
}
- assert(fragment_size == num_to_read);
+ assert(fragment_size == num_to_read);
// Get encoding table for compression
int table_size;
@@ -1048,13 +1048,13 @@ size_t Compress(Source* reader, Sink* writer) {
// Need a scratch buffer for the output, in case the byte sink doesn't
// have room for us directly.
-
- // Since we encode kBlockSize regions followed by a region
- // which is <= kBlockSize in length, a previously allocated
- // scratch_output[] region is big enough for this iteration.
- char* dest = writer->GetAppendBuffer(max_output, wmem.GetScratchOutput());
- char* end = internal::CompressFragment(fragment, fragment_size, dest, table,
- table_size);
+
+ // Since we encode kBlockSize regions followed by a region
+ // which is <= kBlockSize in length, a previously allocated
+ // scratch_output[] region is big enough for this iteration.
+ char* dest = writer->GetAppendBuffer(max_output, wmem.GetScratchOutput());
+ char* end = internal::CompressFragment(fragment, fragment_size, dest, table,
+ table_size);
writer->Append(dest, end - dest);
written += (end - dest);
@@ -1062,204 +1062,204 @@ size_t Compress(Source* reader, Sink* writer) {
reader->Skip(pending_advance);
}
- Report("snappy_compress", written, uncompressed_size);
+ Report("snappy_compress", written, uncompressed_size);
return written;
}
// -----------------------------------------------------------------------
-// IOVec interfaces
-// -----------------------------------------------------------------------
-
-// A type that writes to an iovec.
-// Note that this is not a "ByteSink", but a type that matches the
-// Writer template argument to SnappyDecompressor::DecompressAllTags().
-class SnappyIOVecWriter {
- private:
- // output_iov_end_ is set to iov + count and used to determine when
- // the end of the iovs is reached.
- const struct iovec* output_iov_end_;
-
-#if !defined(NDEBUG)
- const struct iovec* output_iov_;
-#endif // !defined(NDEBUG)
-
- // Current iov that is being written into.
- const struct iovec* curr_iov_;
-
- // Pointer to current iov's write location.
- char* curr_iov_output_;
-
- // Remaining bytes to write into curr_iov_output.
- size_t curr_iov_remaining_;
-
- // Total bytes decompressed into output_iov_ so far.
- size_t total_written_;
-
- // Maximum number of bytes that will be decompressed into output_iov_.
- size_t output_limit_;
-
- static inline char* GetIOVecPointer(const struct iovec* iov, size_t offset) {
- return reinterpret_cast<char*>(iov->iov_base) + offset;
- }
-
- public:
- // Does not take ownership of iov. iov must be valid during the
- // entire lifetime of the SnappyIOVecWriter.
- inline SnappyIOVecWriter(const struct iovec* iov, size_t iov_count)
- : output_iov_end_(iov + iov_count),
-#if !defined(NDEBUG)
- output_iov_(iov),
-#endif // !defined(NDEBUG)
- curr_iov_(iov),
- curr_iov_output_(iov_count ? reinterpret_cast<char*>(iov->iov_base)
- : nullptr),
- curr_iov_remaining_(iov_count ? iov->iov_len : 0),
- total_written_(0),
- output_limit_(-1) {}
-
- inline void SetExpectedLength(size_t len) {
- output_limit_ = len;
- }
-
- inline bool CheckLength() const {
- return total_written_ == output_limit_;
- }
-
- inline bool Append(const char* ip, size_t len) {
- if (total_written_ + len > output_limit_) {
- return false;
- }
-
- return AppendNoCheck(ip, len);
- }
-
- inline bool AppendNoCheck(const char* ip, size_t len) {
- while (len > 0) {
- if (curr_iov_remaining_ == 0) {
- // This iovec is full. Go to the next one.
- if (curr_iov_ + 1 >= output_iov_end_) {
- return false;
- }
- ++curr_iov_;
- curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base);
- curr_iov_remaining_ = curr_iov_->iov_len;
- }
-
- const size_t to_write = std::min(len, curr_iov_remaining_);
- memcpy(curr_iov_output_, ip, to_write);
- curr_iov_output_ += to_write;
- curr_iov_remaining_ -= to_write;
- total_written_ += to_write;
- ip += to_write;
- len -= to_write;
- }
-
- return true;
- }
-
- inline bool TryFastAppend(const char* ip, size_t available, size_t len) {
- const size_t space_left = output_limit_ - total_written_;
- if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16 &&
- curr_iov_remaining_ >= 16) {
- // Fast path, used for the majority (about 95%) of invocations.
- UnalignedCopy128(ip, curr_iov_output_);
- curr_iov_output_ += len;
- curr_iov_remaining_ -= len;
- total_written_ += len;
- return true;
- }
-
- return false;
- }
-
- inline bool AppendFromSelf(size_t offset, size_t len) {
- // See SnappyArrayWriter::AppendFromSelf for an explanation of
- // the "offset - 1u" trick.
- if (offset - 1u >= total_written_) {
- return false;
- }
- const size_t space_left = output_limit_ - total_written_;
- if (len > space_left) {
- return false;
- }
-
- // Locate the iovec from which we need to start the copy.
- const iovec* from_iov = curr_iov_;
- size_t from_iov_offset = curr_iov_->iov_len - curr_iov_remaining_;
- while (offset > 0) {
- if (from_iov_offset >= offset) {
- from_iov_offset -= offset;
- break;
- }
-
- offset -= from_iov_offset;
- --from_iov;
-#if !defined(NDEBUG)
- assert(from_iov >= output_iov_);
-#endif // !defined(NDEBUG)
- from_iov_offset = from_iov->iov_len;
- }
-
- // Copy <len> bytes starting from the iovec pointed to by from_iov_index to
- // the current iovec.
- while (len > 0) {
- assert(from_iov <= curr_iov_);
- if (from_iov != curr_iov_) {
- const size_t to_copy =
- std::min(from_iov->iov_len - from_iov_offset, len);
- AppendNoCheck(GetIOVecPointer(from_iov, from_iov_offset), to_copy);
- len -= to_copy;
- if (len > 0) {
- ++from_iov;
- from_iov_offset = 0;
- }
- } else {
- size_t to_copy = curr_iov_remaining_;
- if (to_copy == 0) {
- // This iovec is full. Go to the next one.
- if (curr_iov_ + 1 >= output_iov_end_) {
- return false;
- }
- ++curr_iov_;
- curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base);
- curr_iov_remaining_ = curr_iov_->iov_len;
- continue;
- }
- if (to_copy > len) {
- to_copy = len;
- }
-
- IncrementalCopy(GetIOVecPointer(from_iov, from_iov_offset),
- curr_iov_output_, curr_iov_output_ + to_copy,
- curr_iov_output_ + curr_iov_remaining_);
- curr_iov_output_ += to_copy;
- curr_iov_remaining_ -= to_copy;
- from_iov_offset += to_copy;
- total_written_ += to_copy;
- len -= to_copy;
- }
- }
-
- return true;
- }
-
- inline void Flush() {}
-};
-
-bool RawUncompressToIOVec(const char* compressed, size_t compressed_length,
- const struct iovec* iov, size_t iov_cnt) {
- ByteArraySource reader(compressed, compressed_length);
- return RawUncompressToIOVec(&reader, iov, iov_cnt);
-}
-
-bool RawUncompressToIOVec(Source* compressed, const struct iovec* iov,
- size_t iov_cnt) {
- SnappyIOVecWriter output(iov, iov_cnt);
- return InternalUncompress(compressed, &output);
-}
-
-// -----------------------------------------------------------------------
+// IOVec interfaces
+// -----------------------------------------------------------------------
+
+// A type that writes to an iovec.
+// Note that this is not a "ByteSink", but a type that matches the
+// Writer template argument to SnappyDecompressor::DecompressAllTags().
+class SnappyIOVecWriter {
+ private:
+ // output_iov_end_ is set to iov + count and used to determine when
+ // the end of the iovs is reached.
+ const struct iovec* output_iov_end_;
+
+#if !defined(NDEBUG)
+ const struct iovec* output_iov_;
+#endif // !defined(NDEBUG)
+
+ // Current iov that is being written into.
+ const struct iovec* curr_iov_;
+
+ // Pointer to current iov's write location.
+ char* curr_iov_output_;
+
+ // Remaining bytes to write into curr_iov_output.
+ size_t curr_iov_remaining_;
+
+ // Total bytes decompressed into output_iov_ so far.
+ size_t total_written_;
+
+ // Maximum number of bytes that will be decompressed into output_iov_.
+ size_t output_limit_;
+
+ static inline char* GetIOVecPointer(const struct iovec* iov, size_t offset) {
+ return reinterpret_cast<char*>(iov->iov_base) + offset;
+ }
+
+ public:
+ // Does not take ownership of iov. iov must be valid during the
+ // entire lifetime of the SnappyIOVecWriter.
+ inline SnappyIOVecWriter(const struct iovec* iov, size_t iov_count)
+ : output_iov_end_(iov + iov_count),
+#if !defined(NDEBUG)
+ output_iov_(iov),
+#endif // !defined(NDEBUG)
+ curr_iov_(iov),
+ curr_iov_output_(iov_count ? reinterpret_cast<char*>(iov->iov_base)
+ : nullptr),
+ curr_iov_remaining_(iov_count ? iov->iov_len : 0),
+ total_written_(0),
+ output_limit_(-1) {}
+
+ inline void SetExpectedLength(size_t len) {
+ output_limit_ = len;
+ }
+
+ inline bool CheckLength() const {
+ return total_written_ == output_limit_;
+ }
+
+ inline bool Append(const char* ip, size_t len) {
+ if (total_written_ + len > output_limit_) {
+ return false;
+ }
+
+ return AppendNoCheck(ip, len);
+ }
+
+ inline bool AppendNoCheck(const char* ip, size_t len) {
+ while (len > 0) {
+ if (curr_iov_remaining_ == 0) {
+ // This iovec is full. Go to the next one.
+ if (curr_iov_ + 1 >= output_iov_end_) {
+ return false;
+ }
+ ++curr_iov_;
+ curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base);
+ curr_iov_remaining_ = curr_iov_->iov_len;
+ }
+
+ const size_t to_write = std::min(len, curr_iov_remaining_);
+ memcpy(curr_iov_output_, ip, to_write);
+ curr_iov_output_ += to_write;
+ curr_iov_remaining_ -= to_write;
+ total_written_ += to_write;
+ ip += to_write;
+ len -= to_write;
+ }
+
+ return true;
+ }
+
+ inline bool TryFastAppend(const char* ip, size_t available, size_t len) {
+ const size_t space_left = output_limit_ - total_written_;
+ if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16 &&
+ curr_iov_remaining_ >= 16) {
+ // Fast path, used for the majority (about 95%) of invocations.
+ UnalignedCopy128(ip, curr_iov_output_);
+ curr_iov_output_ += len;
+ curr_iov_remaining_ -= len;
+ total_written_ += len;
+ return true;
+ }
+
+ return false;
+ }
+
+ inline bool AppendFromSelf(size_t offset, size_t len) {
+ // See SnappyArrayWriter::AppendFromSelf for an explanation of
+ // the "offset - 1u" trick.
+ if (offset - 1u >= total_written_) {
+ return false;
+ }
+ const size_t space_left = output_limit_ - total_written_;
+ if (len > space_left) {
+ return false;
+ }
+
+ // Locate the iovec from which we need to start the copy.
+ const iovec* from_iov = curr_iov_;
+ size_t from_iov_offset = curr_iov_->iov_len - curr_iov_remaining_;
+ while (offset > 0) {
+ if (from_iov_offset >= offset) {
+ from_iov_offset -= offset;
+ break;
+ }
+
+ offset -= from_iov_offset;
+ --from_iov;
+#if !defined(NDEBUG)
+ assert(from_iov >= output_iov_);
+#endif // !defined(NDEBUG)
+ from_iov_offset = from_iov->iov_len;
+ }
+
+ // Copy <len> bytes starting from the iovec pointed to by from_iov_index to
+ // the current iovec.
+ while (len > 0) {
+ assert(from_iov <= curr_iov_);
+ if (from_iov != curr_iov_) {
+ const size_t to_copy =
+ std::min(from_iov->iov_len - from_iov_offset, len);
+ AppendNoCheck(GetIOVecPointer(from_iov, from_iov_offset), to_copy);
+ len -= to_copy;
+ if (len > 0) {
+ ++from_iov;
+ from_iov_offset = 0;
+ }
+ } else {
+ size_t to_copy = curr_iov_remaining_;
+ if (to_copy == 0) {
+ // This iovec is full. Go to the next one.
+ if (curr_iov_ + 1 >= output_iov_end_) {
+ return false;
+ }
+ ++curr_iov_;
+ curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base);
+ curr_iov_remaining_ = curr_iov_->iov_len;
+ continue;
+ }
+ if (to_copy > len) {
+ to_copy = len;
+ }
+
+ IncrementalCopy(GetIOVecPointer(from_iov, from_iov_offset),
+ curr_iov_output_, curr_iov_output_ + to_copy,
+ curr_iov_output_ + curr_iov_remaining_);
+ curr_iov_output_ += to_copy;
+ curr_iov_remaining_ -= to_copy;
+ from_iov_offset += to_copy;
+ total_written_ += to_copy;
+ len -= to_copy;
+ }
+ }
+
+ return true;
+ }
+
+ inline void Flush() {}
+};
+
+bool RawUncompressToIOVec(const char* compressed, size_t compressed_length,
+ const struct iovec* iov, size_t iov_cnt) {
+ ByteArraySource reader(compressed, compressed_length);
+ return RawUncompressToIOVec(&reader, iov, iov_cnt);
+}
+
+bool RawUncompressToIOVec(Source* compressed, const struct iovec* iov,
+ size_t iov_cnt) {
+ SnappyIOVecWriter output(iov, iov_cnt);
+ return InternalUncompress(compressed, &output);
+}
+
+// -----------------------------------------------------------------------
// Flat array interfaces
// -----------------------------------------------------------------------
@@ -1275,8 +1275,8 @@ class SnappyArrayWriter {
public:
inline explicit SnappyArrayWriter(char* dst)
: base_(dst),
- op_(dst),
- op_limit_(dst) {
+ op_(dst),
+ op_limit_(dst) {
}
inline void SetExpectedLength(size_t len) {
@@ -1301,9 +1301,9 @@ class SnappyArrayWriter {
inline bool TryFastAppend(const char* ip, size_t available, size_t len) {
char* op = op_;
const size_t space_left = op_limit_ - op;
- if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) {
+ if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) {
// Fast path, used for the majority (about 95%) of invocations.
- UnalignedCopy128(ip, op);
+ UnalignedCopy128(ip, op);
op_ = op + len;
return true;
} else {
@@ -1312,25 +1312,25 @@ class SnappyArrayWriter {
}
inline bool AppendFromSelf(size_t offset, size_t len) {
- char* const op_end = op_ + len;
-
- // Check if we try to append from before the start of the buffer.
- // Normally this would just be a check for "produced < offset",
- // but "produced <= offset - 1u" is equivalent for every case
- // except the one where offset==0, where the right side will wrap around
- // to a very big number. This is convenient, as offset==0 is another
- // invalid case that we also want to catch, so that we do not go
- // into an infinite loop.
- if (Produced() <= offset - 1u || op_end > op_limit_) return false;
- op_ = IncrementalCopy(op_ - offset, op_, op_end, op_limit_);
+ char* const op_end = op_ + len;
+
+ // Check if we try to append from before the start of the buffer.
+ // Normally this would just be a check for "produced < offset",
+ // but "produced <= offset - 1u" is equivalent for every case
+ // except the one where offset==0, where the right side will wrap around
+ // to a very big number. This is convenient, as offset==0 is another
+ // invalid case that we also want to catch, so that we do not go
+ // into an infinite loop.
+ if (Produced() <= offset - 1u || op_end > op_limit_) return false;
+ op_ = IncrementalCopy(op_ - offset, op_, op_end, op_limit_);
return true;
}
- inline size_t Produced() const {
- assert(op_ >= base_);
- return op_ - base_;
- }
- inline void Flush() {}
+ inline size_t Produced() const {
+ assert(op_ >= base_);
+ return op_ - base_;
+ }
+ inline void Flush() {}
};
bool RawUncompress(const char* compressed, size_t n, char* uncompressed) {
@@ -1340,37 +1340,37 @@ bool RawUncompress(const char* compressed, size_t n, char* uncompressed) {
bool RawUncompress(Source* compressed, char* uncompressed) {
SnappyArrayWriter output(uncompressed);
- return InternalUncompress(compressed, &output);
+ return InternalUncompress(compressed, &output);
}
-bool Uncompress(const char* compressed, size_t n, std::string* uncompressed) {
+bool Uncompress(const char* compressed, size_t n, std::string* uncompressed) {
size_t ulength;
if (!GetUncompressedLength(compressed, n, &ulength)) {
return false;
}
- // On 32-bit builds: max_size() < kuint32max. Check for that instead
- // of crashing (e.g., consider externally specified compressed data).
- if (ulength > uncompressed->max_size()) {
+ // On 32-bit builds: max_size() < kuint32max. Check for that instead
+ // of crashing (e.g., consider externally specified compressed data).
+ if (ulength > uncompressed->max_size()) {
return false;
}
STLStringResizeUninitialized(uncompressed, ulength);
return RawUncompress(compressed, n, string_as_array(uncompressed));
}
-bool Uncompress(const char* compressed, size_t n, TString* uncompressed) {
- size_t ulength;
- if (!GetUncompressedLength(compressed, n, &ulength)) {
- return false;
- }
- // On 32-bit builds: max_size() < kuint32max. Check for that instead
- // of crashing (e.g., consider externally specified compressed data).
- if (ulength > uncompressed->max_size()) {
- return false;
- }
- uncompressed->ReserveAndResize(ulength);
- return RawUncompress(compressed, n, uncompressed->begin());
-}
-
+bool Uncompress(const char* compressed, size_t n, TString* uncompressed) {
+ size_t ulength;
+ if (!GetUncompressedLength(compressed, n, &ulength)) {
+ return false;
+ }
+ // On 32-bit builds: max_size() < kuint32max. Check for that instead
+ // of crashing (e.g., consider externally specified compressed data).
+ if (ulength > uncompressed->max_size()) {
+ return false;
+ }
+ uncompressed->ReserveAndResize(ulength);
+ return RawUncompress(compressed, n, uncompressed->begin());
+}
+
// A Writer that drops everything on the floor and just does validation
class SnappyDecompressionValidator {
private:
@@ -1378,7 +1378,7 @@ class SnappyDecompressionValidator {
size_t produced_;
public:
- inline SnappyDecompressionValidator() : expected_(0), produced_(0) { }
+ inline SnappyDecompressionValidator() : expected_(0), produced_(0) { }
inline void SetExpectedLength(size_t len) {
expected_ = len;
}
@@ -1393,26 +1393,26 @@ class SnappyDecompressionValidator {
return false;
}
inline bool AppendFromSelf(size_t offset, size_t len) {
- // See SnappyArrayWriter::AppendFromSelf for an explanation of
- // the "offset - 1u" trick.
- if (produced_ <= offset - 1u) return false;
+ // See SnappyArrayWriter::AppendFromSelf for an explanation of
+ // the "offset - 1u" trick.
+ if (produced_ <= offset - 1u) return false;
produced_ += len;
return produced_ <= expected_;
}
- inline void Flush() {}
+ inline void Flush() {}
};
bool IsValidCompressedBuffer(const char* compressed, size_t n) {
ByteArraySource reader(compressed, n);
SnappyDecompressionValidator writer;
- return InternalUncompress(&reader, &writer);
-}
-
-bool IsValidCompressed(Source* compressed) {
- SnappyDecompressionValidator writer;
- return InternalUncompress(compressed, &writer);
+ return InternalUncompress(&reader, &writer);
}
+bool IsValidCompressed(Source* compressed) {
+ SnappyDecompressionValidator writer;
+ return InternalUncompress(compressed, &writer);
+}
+
void RawCompress(const char* input,
size_t input_length,
char* compressed,
@@ -1425,10 +1425,10 @@ void RawCompress(const char* input,
*compressed_length = (writer.CurrentDestination() - compressed);
}
-size_t Compress(const char* input, size_t input_length,
- std::string* compressed) {
+size_t Compress(const char* input, size_t input_length,
+ std::string* compressed) {
// Pre-grow the buffer to the max length of the compressed output
- STLStringResizeUninitialized(compressed, MaxCompressedLength(input_length));
+ STLStringResizeUninitialized(compressed, MaxCompressedLength(input_length));
size_t compressed_length;
RawCompress(input, input_length, string_as_array(compressed),
@@ -1437,252 +1437,252 @@ size_t Compress(const char* input, size_t input_length,
return compressed_length;
}
-size_t Compress(const char* input, size_t input_length,
- TString* compressed) {
- // Pre-grow the buffer to the max length of the compressed output
- compressed->ReserveAndResize(MaxCompressedLength(input_length));
-
- size_t compressed_length;
- RawCompress(input, input_length, compressed->begin(),
- &compressed_length);
- compressed->resize(compressed_length);
- return compressed_length;
-}
-
-// -----------------------------------------------------------------------
-// Sink interface
-// -----------------------------------------------------------------------
-
-// A type that decompresses into a Sink. The template parameter
-// Allocator must export one method "char* Allocate(int size);", which
-// allocates a buffer of "size" and appends that to the destination.
-template <typename Allocator>
-class SnappyScatteredWriter {
- Allocator allocator_;
-
- // We need random access into the data generated so far. Therefore
- // we keep track of all of the generated data as an array of blocks.
- // All of the blocks except the last have length kBlockSize.
- std::vector<char*> blocks_;
- size_t expected_;
-
- // Total size of all fully generated blocks so far
- size_t full_size_;
-
- // Pointer into current output block
- char* op_base_; // Base of output block
- char* op_ptr_; // Pointer to next unfilled byte in block
- char* op_limit_; // Pointer just past block
-
- inline size_t Size() const {
- return full_size_ + (op_ptr_ - op_base_);
- }
-
- bool SlowAppend(const char* ip, size_t len);
- bool SlowAppendFromSelf(size_t offset, size_t len);
-
- public:
- inline explicit SnappyScatteredWriter(const Allocator& allocator)
- : allocator_(allocator),
- full_size_(0),
- op_base_(NULL),
- op_ptr_(NULL),
- op_limit_(NULL) {
- }
-
- inline void SetExpectedLength(size_t len) {
- assert(blocks_.empty());
- expected_ = len;
- }
-
- inline bool CheckLength() const {
- return Size() == expected_;
- }
-
- // Return the number of bytes actually uncompressed so far
- inline size_t Produced() const {
- return Size();
- }
-
- inline bool Append(const char* ip, size_t len) {
- size_t avail = op_limit_ - op_ptr_;
- if (len <= avail) {
- // Fast path
- memcpy(op_ptr_, ip, len);
- op_ptr_ += len;
- return true;
- } else {
- return SlowAppend(ip, len);
- }
- }
-
- inline bool TryFastAppend(const char* ip, size_t available, size_t length) {
- char* op = op_ptr_;
- const int space_left = op_limit_ - op;
- if (length <= 16 && available >= 16 + kMaximumTagLength &&
- space_left >= 16) {
- // Fast path, used for the majority (about 95%) of invocations.
- UnalignedCopy128(ip, op);
- op_ptr_ = op + length;
- return true;
- } else {
- return false;
- }
- }
-
- inline bool AppendFromSelf(size_t offset, size_t len) {
- char* const op_end = op_ptr_ + len;
- // See SnappyArrayWriter::AppendFromSelf for an explanation of
- // the "offset - 1u" trick.
- if (SNAPPY_PREDICT_TRUE(offset - 1u < op_ptr_ - op_base_ &&
- op_end <= op_limit_)) {
- // Fast path: src and dst in current block.
- op_ptr_ = IncrementalCopy(op_ptr_ - offset, op_ptr_, op_end, op_limit_);
- return true;
- }
- return SlowAppendFromSelf(offset, len);
- }
-
- // Called at the end of the decompress. We ask the allocator
- // write all blocks to the sink.
- inline void Flush() { allocator_.Flush(Produced()); }
-};
-
-template<typename Allocator>
-bool SnappyScatteredWriter<Allocator>::SlowAppend(const char* ip, size_t len) {
- size_t avail = op_limit_ - op_ptr_;
- while (len > avail) {
- // Completely fill this block
- memcpy(op_ptr_, ip, avail);
- op_ptr_ += avail;
- assert(op_limit_ - op_ptr_ == 0);
- full_size_ += (op_ptr_ - op_base_);
- len -= avail;
- ip += avail;
-
- // Bounds check
- if (full_size_ + len > expected_) {
- return false;
- }
-
- // Make new block
- size_t bsize = std::min<size_t>(kBlockSize, expected_ - full_size_);
- op_base_ = allocator_.Allocate(bsize);
- op_ptr_ = op_base_;
- op_limit_ = op_base_ + bsize;
- blocks_.push_back(op_base_);
- avail = bsize;
- }
-
- memcpy(op_ptr_, ip, len);
- op_ptr_ += len;
- return true;
-}
-
-template<typename Allocator>
-bool SnappyScatteredWriter<Allocator>::SlowAppendFromSelf(size_t offset,
- size_t len) {
- // Overflow check
- // See SnappyArrayWriter::AppendFromSelf for an explanation of
- // the "offset - 1u" trick.
- const size_t cur = Size();
- if (offset - 1u >= cur) return false;
- if (expected_ - cur < len) return false;
-
- // Currently we shouldn't ever hit this path because Compress() chops the
- // input into blocks and does not create cross-block copies. However, it is
- // nice if we do not rely on that, since we can get better compression if we
- // allow cross-block copies and thus might want to change the compressor in
- // the future.
- size_t src = cur - offset;
- while (len-- > 0) {
- char c = blocks_[src >> kBlockLog][src & (kBlockSize-1)];
- Append(&c, 1);
- src++;
- }
- return true;
-}
-
-class SnappySinkAllocator {
- public:
- explicit SnappySinkAllocator(Sink* dest): dest_(dest) {}
- ~SnappySinkAllocator() {}
-
- char* Allocate(int size) {
- Datablock block(new char[size], size);
- blocks_.push_back(block);
- return block.data;
- }
-
- // We flush only at the end, because the writer wants
- // random access to the blocks and once we hand the
- // block over to the sink, we can't access it anymore.
- // Also we don't write more than has been actually written
- // to the blocks.
- void Flush(size_t size) {
- size_t size_written = 0;
- size_t block_size;
- for (int i = 0; i < blocks_.size(); ++i) {
- block_size = std::min<size_t>(blocks_[i].size, size - size_written);
- dest_->AppendAndTakeOwnership(blocks_[i].data, block_size,
- &SnappySinkAllocator::Deleter, NULL);
- size_written += block_size;
- }
- blocks_.clear();
- }
-
- private:
- struct Datablock {
- char* data;
- size_t size;
- Datablock(char* p, size_t s) : data(p), size(s) {}
- };
-
- static void Deleter(void* arg, const char* bytes, size_t size) {
- delete[] bytes;
- }
-
- Sink* dest_;
- std::vector<Datablock> blocks_;
-
- // Note: copying this object is allowed
-};
-
-size_t UncompressAsMuchAsPossible(Source* compressed, Sink* uncompressed) {
- SnappySinkAllocator allocator(uncompressed);
- SnappyScatteredWriter<SnappySinkAllocator> writer(allocator);
- InternalUncompress(compressed, &writer);
- return writer.Produced();
-}
-
-bool Uncompress(Source* compressed, Sink* uncompressed) {
- // Read the uncompressed length from the front of the compressed input
- SnappyDecompressor decompressor(compressed);
- uint32 uncompressed_len = 0;
- if (!decompressor.ReadUncompressedLength(&uncompressed_len)) {
- return false;
- }
-
- char c;
- size_t allocated_size;
- char* buf = uncompressed->GetAppendBufferVariable(
- 1, uncompressed_len, &c, 1, &allocated_size);
-
- const size_t compressed_len = compressed->Available();
- // If we can get a flat buffer, then use it, otherwise do block by block
- // uncompression
- if (allocated_size >= uncompressed_len) {
- SnappyArrayWriter writer(buf);
- bool result = InternalUncompressAllTags(&decompressor, &writer,
- compressed_len, uncompressed_len);
- uncompressed->Append(buf, writer.Produced());
- return result;
- } else {
- SnappySinkAllocator allocator(uncompressed);
- SnappyScatteredWriter<SnappySinkAllocator> writer(allocator);
- return InternalUncompressAllTags(&decompressor, &writer, compressed_len,
- uncompressed_len);
- }
-}
-
-} // namespace snappy
+size_t Compress(const char* input, size_t input_length,
+ TString* compressed) {
+ // Pre-grow the buffer to the max length of the compressed output
+ compressed->ReserveAndResize(MaxCompressedLength(input_length));
+
+ size_t compressed_length;
+ RawCompress(input, input_length, compressed->begin(),
+ &compressed_length);
+ compressed->resize(compressed_length);
+ return compressed_length;
+}
+
+// -----------------------------------------------------------------------
+// Sink interface
+// -----------------------------------------------------------------------
+
+// A type that decompresses into a Sink. The template parameter
+// Allocator must export one method "char* Allocate(int size);", which
+// allocates a buffer of "size" and appends that to the destination.
+template <typename Allocator>
+class SnappyScatteredWriter {
+ Allocator allocator_;
+
+ // We need random access into the data generated so far. Therefore
+ // we keep track of all of the generated data as an array of blocks.
+ // All of the blocks except the last have length kBlockSize.
+ std::vector<char*> blocks_;
+ size_t expected_;
+
+ // Total size of all fully generated blocks so far
+ size_t full_size_;
+
+ // Pointer into current output block
+ char* op_base_; // Base of output block
+ char* op_ptr_; // Pointer to next unfilled byte in block
+ char* op_limit_; // Pointer just past block
+
+ inline size_t Size() const {
+ return full_size_ + (op_ptr_ - op_base_);
+ }
+
+ bool SlowAppend(const char* ip, size_t len);
+ bool SlowAppendFromSelf(size_t offset, size_t len);
+
+ public:
+ inline explicit SnappyScatteredWriter(const Allocator& allocator)
+ : allocator_(allocator),
+ full_size_(0),
+ op_base_(NULL),
+ op_ptr_(NULL),
+ op_limit_(NULL) {
+ }
+
+ inline void SetExpectedLength(size_t len) {
+ assert(blocks_.empty());
+ expected_ = len;
+ }
+
+ inline bool CheckLength() const {
+ return Size() == expected_;
+ }
+
+ // Return the number of bytes actually uncompressed so far
+ inline size_t Produced() const {
+ return Size();
+ }
+
+ inline bool Append(const char* ip, size_t len) {
+ size_t avail = op_limit_ - op_ptr_;
+ if (len <= avail) {
+ // Fast path
+ memcpy(op_ptr_, ip, len);
+ op_ptr_ += len;
+ return true;
+ } else {
+ return SlowAppend(ip, len);
+ }
+ }
+
+ inline bool TryFastAppend(const char* ip, size_t available, size_t length) {
+ char* op = op_ptr_;
+ const int space_left = op_limit_ - op;
+ if (length <= 16 && available >= 16 + kMaximumTagLength &&
+ space_left >= 16) {
+ // Fast path, used for the majority (about 95%) of invocations.
+ UnalignedCopy128(ip, op);
+ op_ptr_ = op + length;
+ return true;
+ } else {
+ return false;
+ }
+ }
+
+ inline bool AppendFromSelf(size_t offset, size_t len) {
+ char* const op_end = op_ptr_ + len;
+ // See SnappyArrayWriter::AppendFromSelf for an explanation of
+ // the "offset - 1u" trick.
+ if (SNAPPY_PREDICT_TRUE(offset - 1u < op_ptr_ - op_base_ &&
+ op_end <= op_limit_)) {
+ // Fast path: src and dst in current block.
+ op_ptr_ = IncrementalCopy(op_ptr_ - offset, op_ptr_, op_end, op_limit_);
+ return true;
+ }
+ return SlowAppendFromSelf(offset, len);
+ }
+
+ // Called at the end of the decompress. We ask the allocator
+ // write all blocks to the sink.
+ inline void Flush() { allocator_.Flush(Produced()); }
+};
+
+template<typename Allocator>
+bool SnappyScatteredWriter<Allocator>::SlowAppend(const char* ip, size_t len) {
+ size_t avail = op_limit_ - op_ptr_;
+ while (len > avail) {
+ // Completely fill this block
+ memcpy(op_ptr_, ip, avail);
+ op_ptr_ += avail;
+ assert(op_limit_ - op_ptr_ == 0);
+ full_size_ += (op_ptr_ - op_base_);
+ len -= avail;
+ ip += avail;
+
+ // Bounds check
+ if (full_size_ + len > expected_) {
+ return false;
+ }
+
+ // Make new block
+ size_t bsize = std::min<size_t>(kBlockSize, expected_ - full_size_);
+ op_base_ = allocator_.Allocate(bsize);
+ op_ptr_ = op_base_;
+ op_limit_ = op_base_ + bsize;
+ blocks_.push_back(op_base_);
+ avail = bsize;
+ }
+
+ memcpy(op_ptr_, ip, len);
+ op_ptr_ += len;
+ return true;
+}
+
+template<typename Allocator>
+bool SnappyScatteredWriter<Allocator>::SlowAppendFromSelf(size_t offset,
+ size_t len) {
+ // Overflow check
+ // See SnappyArrayWriter::AppendFromSelf for an explanation of
+ // the "offset - 1u" trick.
+ const size_t cur = Size();
+ if (offset - 1u >= cur) return false;
+ if (expected_ - cur < len) return false;
+
+ // Currently we shouldn't ever hit this path because Compress() chops the
+ // input into blocks and does not create cross-block copies. However, it is
+ // nice if we do not rely on that, since we can get better compression if we
+ // allow cross-block copies and thus might want to change the compressor in
+ // the future.
+ size_t src = cur - offset;
+ while (len-- > 0) {
+ char c = blocks_[src >> kBlockLog][src & (kBlockSize-1)];
+ Append(&c, 1);
+ src++;
+ }
+ return true;
+}
+
+class SnappySinkAllocator {
+ public:
+ explicit SnappySinkAllocator(Sink* dest): dest_(dest) {}
+ ~SnappySinkAllocator() {}
+
+ char* Allocate(int size) {
+ Datablock block(new char[size], size);
+ blocks_.push_back(block);
+ return block.data;
+ }
+
+ // We flush only at the end, because the writer wants
+ // random access to the blocks and once we hand the
+ // block over to the sink, we can't access it anymore.
+ // Also we don't write more than has been actually written
+ // to the blocks.
+ void Flush(size_t size) {
+ size_t size_written = 0;
+ size_t block_size;
+ for (int i = 0; i < blocks_.size(); ++i) {
+ block_size = std::min<size_t>(blocks_[i].size, size - size_written);
+ dest_->AppendAndTakeOwnership(blocks_[i].data, block_size,
+ &SnappySinkAllocator::Deleter, NULL);
+ size_written += block_size;
+ }
+ blocks_.clear();
+ }
+
+ private:
+ struct Datablock {
+ char* data;
+ size_t size;
+ Datablock(char* p, size_t s) : data(p), size(s) {}
+ };
+
+ static void Deleter(void* arg, const char* bytes, size_t size) {
+ delete[] bytes;
+ }
+
+ Sink* dest_;
+ std::vector<Datablock> blocks_;
+
+ // Note: copying this object is allowed
+};
+
+size_t UncompressAsMuchAsPossible(Source* compressed, Sink* uncompressed) {
+ SnappySinkAllocator allocator(uncompressed);
+ SnappyScatteredWriter<SnappySinkAllocator> writer(allocator);
+ InternalUncompress(compressed, &writer);
+ return writer.Produced();
+}
+
+bool Uncompress(Source* compressed, Sink* uncompressed) {
+ // Read the uncompressed length from the front of the compressed input
+ SnappyDecompressor decompressor(compressed);
+ uint32 uncompressed_len = 0;
+ if (!decompressor.ReadUncompressedLength(&uncompressed_len)) {
+ return false;
+ }
+
+ char c;
+ size_t allocated_size;
+ char* buf = uncompressed->GetAppendBufferVariable(
+ 1, uncompressed_len, &c, 1, &allocated_size);
+
+ const size_t compressed_len = compressed->Available();
+ // If we can get a flat buffer, then use it, otherwise do block by block
+ // uncompression
+ if (allocated_size >= uncompressed_len) {
+ SnappyArrayWriter writer(buf);
+ bool result = InternalUncompressAllTags(&decompressor, &writer,
+ compressed_len, uncompressed_len);
+ uncompressed->Append(buf, writer.Produced());
+ return result;
+ } else {
+ SnappySinkAllocator allocator(uncompressed);
+ SnappyScatteredWriter<SnappySinkAllocator> writer(allocator);
+ return InternalUncompressAllTags(&decompressor, &writer, compressed_len,
+ uncompressed_len);
+ }
+}
+
+} // namespace snappy