diff options
author | Alexander Smirnov <alex@ydb.tech> | 2024-10-03 14:09:02 +0000 |
---|---|---|
committer | Alexander Smirnov <alex@ydb.tech> | 2024-10-03 14:09:02 +0000 |
commit | 812d97f62befea9d9b47a410d28548ef9f274510 (patch) | |
tree | d52031e2d62a9e7e9c25c43bb564dce30368e780 /contrib/libs/simdjson/src/from_chars.cpp | |
parent | 1e9cd6bece572c59f55fdcf55c68b9c48e5aa6da (diff) | |
parent | d7525e0eec8e7242a5cedd5fbdaf3bdaaeea02c7 (diff) | |
download | ydb-812d97f62befea9d9b47a410d28548ef9f274510.tar.gz |
Merge branch 'rightlib' into mergelibs-241003-1407
Diffstat (limited to 'contrib/libs/simdjson/src/from_chars.cpp')
-rw-r--r-- | contrib/libs/simdjson/src/from_chars.cpp | 606 |
1 files changed, 606 insertions, 0 deletions
diff --git a/contrib/libs/simdjson/src/from_chars.cpp b/contrib/libs/simdjson/src/from_chars.cpp new file mode 100644 index 0000000000..34d62a3d7d --- /dev/null +++ b/contrib/libs/simdjson/src/from_chars.cpp @@ -0,0 +1,606 @@ +#ifndef SIMDJSON_SRC_FROM_CHARS_CPP +#define SIMDJSON_SRC_FROM_CHARS_CPP + +#include <base.h> + +#include <cstdint> +#include <cstring> +#include <limits> + +namespace simdjson { +namespace internal { + +/** + * The code in the internal::from_chars function is meant to handle the floating-point number parsing + * when we have more than 19 digits in the decimal mantissa. This should only be seen + * in adversarial scenarios: we do not expect production systems to even produce + * such floating-point numbers. + * + * The parser is based on work by Nigel Tao (at https://github.com/google/wuffs/) + * who credits Ken Thompson for the design (via a reference to the Go source + * code). See + * https://github.com/google/wuffs/blob/aa46859ea40c72516deffa1b146121952d6dfd3b/internal/cgen/base/floatconv-submodule-data.c + * https://github.com/google/wuffs/blob/46cd8105f47ca07ae2ba8e6a7818ef9c0df6c152/internal/cgen/base/floatconv-submodule-code.c + * It is probably not very fast but it is a fallback that should almost never be + * called in real life. Google Wuffs is published under APL 2.0. + **/ + +namespace { +constexpr uint32_t max_digits = 768; +constexpr int32_t decimal_point_range = 2047; +} // namespace + +struct adjusted_mantissa { + uint64_t mantissa; + int power2; + adjusted_mantissa() : mantissa(0), power2(0) {} +}; + +struct decimal { + uint32_t num_digits; + int32_t decimal_point; + bool negative; + bool truncated; + uint8_t digits[max_digits]; +}; + +template <typename T> struct binary_format { + static constexpr int mantissa_explicit_bits(); + static constexpr int minimum_exponent(); + static constexpr int infinite_power(); + static constexpr int sign_index(); +}; + +template <> constexpr int binary_format<double>::mantissa_explicit_bits() { + return 52; +} + +template <> constexpr int binary_format<double>::minimum_exponent() { + return -1023; +} +template <> constexpr int binary_format<double>::infinite_power() { + return 0x7FF; +} + +template <> constexpr int binary_format<double>::sign_index() { return 63; } + +bool is_integer(char c) noexcept { return (c >= '0' && c <= '9'); } + +// This should always succeed since it follows a call to parse_number. +decimal parse_decimal(const char *&p) noexcept { + decimal answer; + answer.num_digits = 0; + answer.decimal_point = 0; + answer.truncated = false; + answer.negative = (*p == '-'); + if ((*p == '-') || (*p == '+')) { + ++p; + } + + while (*p == '0') { + ++p; + } + while (is_integer(*p)) { + if (answer.num_digits < max_digits) { + answer.digits[answer.num_digits] = uint8_t(*p - '0'); + } + answer.num_digits++; + ++p; + } + if (*p == '.') { + ++p; + const char *first_after_period = p; + // if we have not yet encountered a zero, we have to skip it as well + if (answer.num_digits == 0) { + // skip zeros + while (*p == '0') { + ++p; + } + } + while (is_integer(*p)) { + if (answer.num_digits < max_digits) { + answer.digits[answer.num_digits] = uint8_t(*p - '0'); + } + answer.num_digits++; + ++p; + } + answer.decimal_point = int32_t(first_after_period - p); + } + if(answer.num_digits > 0) { + const char *preverse = p - 1; + int32_t trailing_zeros = 0; + while ((*preverse == '0') || (*preverse == '.')) { + if(*preverse == '0') { trailing_zeros++; }; + --preverse; + } + answer.decimal_point += int32_t(answer.num_digits); + answer.num_digits -= uint32_t(trailing_zeros); + } + if(answer.num_digits > max_digits ) { + answer.num_digits = max_digits; + answer.truncated = true; + } + if (('e' == *p) || ('E' == *p)) { + ++p; + bool neg_exp = false; + if ('-' == *p) { + neg_exp = true; + ++p; + } else if ('+' == *p) { + ++p; + } + int32_t exp_number = 0; // exponential part + while (is_integer(*p)) { + uint8_t digit = uint8_t(*p - '0'); + if (exp_number < 0x10000) { + exp_number = 10 * exp_number + digit; + } + ++p; + } + answer.decimal_point += (neg_exp ? -exp_number : exp_number); + } + return answer; +} + +// This should always succeed since it follows a call to parse_number. +// Will not read at or beyond the "end" pointer. +decimal parse_decimal(const char *&p, const char * end) noexcept { + decimal answer; + answer.num_digits = 0; + answer.decimal_point = 0; + answer.truncated = false; + if(p == end) { return answer; } // should never happen + answer.negative = (*p == '-'); + if ((*p == '-') || (*p == '+')) { + ++p; + } + + while ((p != end) && (*p == '0')) { + ++p; + } + while ((p != end) && is_integer(*p)) { + if (answer.num_digits < max_digits) { + answer.digits[answer.num_digits] = uint8_t(*p - '0'); + } + answer.num_digits++; + ++p; + } + if ((p != end) && (*p == '.')) { + ++p; + if(p == end) { return answer; } // should never happen + const char *first_after_period = p; + // if we have not yet encountered a zero, we have to skip it as well + if (answer.num_digits == 0) { + // skip zeros + while (*p == '0') { + ++p; + } + } + while ((p != end) && is_integer(*p)) { + if (answer.num_digits < max_digits) { + answer.digits[answer.num_digits] = uint8_t(*p - '0'); + } + answer.num_digits++; + ++p; + } + answer.decimal_point = int32_t(first_after_period - p); + } + if(answer.num_digits > 0) { + const char *preverse = p - 1; + int32_t trailing_zeros = 0; + while ((*preverse == '0') || (*preverse == '.')) { + if(*preverse == '0') { trailing_zeros++; }; + --preverse; + } + answer.decimal_point += int32_t(answer.num_digits); + answer.num_digits -= uint32_t(trailing_zeros); + } + if(answer.num_digits > max_digits ) { + answer.num_digits = max_digits; + answer.truncated = true; + } + if ((p != end) && (('e' == *p) || ('E' == *p))) { + ++p; + if(p == end) { return answer; } // should never happen + bool neg_exp = false; + if ('-' == *p) { + neg_exp = true; + ++p; + } else if ('+' == *p) { + ++p; + } + int32_t exp_number = 0; // exponential part + while ((p != end) && is_integer(*p)) { + uint8_t digit = uint8_t(*p - '0'); + if (exp_number < 0x10000) { + exp_number = 10 * exp_number + digit; + } + ++p; + } + answer.decimal_point += (neg_exp ? -exp_number : exp_number); + } + return answer; +} + +namespace { + +// remove all final zeroes +inline void trim(decimal &h) { + while ((h.num_digits > 0) && (h.digits[h.num_digits - 1] == 0)) { + h.num_digits--; + } +} + +uint32_t number_of_digits_decimal_left_shift(decimal &h, uint32_t shift) { + shift &= 63; + const static uint16_t number_of_digits_decimal_left_shift_table[65] = { + 0x0000, 0x0800, 0x0801, 0x0803, 0x1006, 0x1009, 0x100D, 0x1812, 0x1817, + 0x181D, 0x2024, 0x202B, 0x2033, 0x203C, 0x2846, 0x2850, 0x285B, 0x3067, + 0x3073, 0x3080, 0x388E, 0x389C, 0x38AB, 0x38BB, 0x40CC, 0x40DD, 0x40EF, + 0x4902, 0x4915, 0x4929, 0x513E, 0x5153, 0x5169, 0x5180, 0x5998, 0x59B0, + 0x59C9, 0x61E3, 0x61FD, 0x6218, 0x6A34, 0x6A50, 0x6A6D, 0x6A8B, 0x72AA, + 0x72C9, 0x72E9, 0x7B0A, 0x7B2B, 0x7B4D, 0x8370, 0x8393, 0x83B7, 0x83DC, + 0x8C02, 0x8C28, 0x8C4F, 0x9477, 0x949F, 0x94C8, 0x9CF2, 0x051C, 0x051C, + 0x051C, 0x051C, + }; + uint32_t x_a = number_of_digits_decimal_left_shift_table[shift]; + uint32_t x_b = number_of_digits_decimal_left_shift_table[shift + 1]; + uint32_t num_new_digits = x_a >> 11; + uint32_t pow5_a = 0x7FF & x_a; + uint32_t pow5_b = 0x7FF & x_b; + const static uint8_t + number_of_digits_decimal_left_shift_table_powers_of_5[0x051C] = { + 5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5, + 3, 9, 0, 6, 2, 5, 1, 9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8, + 2, 8, 1, 2, 5, 2, 4, 4, 1, 4, 0, 6, 2, 5, 1, 2, 2, 0, 7, 0, 3, 1, 2, + 5, 6, 1, 0, 3, 5, 1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2, 5, 1, + 5, 2, 5, 8, 7, 8, 9, 0, 6, 2, 5, 7, 6, 2, 9, 3, 9, 4, 5, 3, 1, 2, 5, + 3, 8, 1, 4, 6, 9, 7, 2, 6, 5, 6, 2, 5, 1, 9, 0, 7, 3, 4, 8, 6, 3, 2, + 8, 1, 2, 5, 9, 5, 3, 6, 7, 4, 3, 1, 6, 4, 0, 6, 2, 5, 4, 7, 6, 8, 3, + 7, 1, 5, 8, 2, 0, 3, 1, 2, 5, 2, 3, 8, 4, 1, 8, 5, 7, 9, 1, 0, 1, 5, + 6, 2, 5, 1, 1, 9, 2, 0, 9, 2, 8, 9, 5, 5, 0, 7, 8, 1, 2, 5, 5, 9, 6, + 0, 4, 6, 4, 4, 7, 7, 5, 3, 9, 0, 6, 2, 5, 2, 9, 8, 0, 2, 3, 2, 2, 3, + 8, 7, 6, 9, 5, 3, 1, 2, 5, 1, 4, 9, 0, 1, 1, 6, 1, 1, 9, 3, 8, 4, 7, + 6, 5, 6, 2, 5, 7, 4, 5, 0, 5, 8, 0, 5, 9, 6, 9, 2, 3, 8, 2, 8, 1, 2, + 5, 3, 7, 2, 5, 2, 9, 0, 2, 9, 8, 4, 6, 1, 9, 1, 4, 0, 6, 2, 5, 1, 8, + 6, 2, 6, 4, 5, 1, 4, 9, 2, 3, 0, 9, 5, 7, 0, 3, 1, 2, 5, 9, 3, 1, 3, + 2, 2, 5, 7, 4, 6, 1, 5, 4, 7, 8, 5, 1, 5, 6, 2, 5, 4, 6, 5, 6, 6, 1, + 2, 8, 7, 3, 0, 7, 7, 3, 9, 2, 5, 7, 8, 1, 2, 5, 2, 3, 2, 8, 3, 0, 6, + 4, 3, 6, 5, 3, 8, 6, 9, 6, 2, 8, 9, 0, 6, 2, 5, 1, 1, 6, 4, 1, 5, 3, + 2, 1, 8, 2, 6, 9, 3, 4, 8, 1, 4, 4, 5, 3, 1, 2, 5, 5, 8, 2, 0, 7, 6, + 6, 0, 9, 1, 3, 4, 6, 7, 4, 0, 7, 2, 2, 6, 5, 6, 2, 5, 2, 9, 1, 0, 3, + 8, 3, 0, 4, 5, 6, 7, 3, 3, 7, 0, 3, 6, 1, 3, 2, 8, 1, 2, 5, 1, 4, 5, + 5, 1, 9, 1, 5, 2, 2, 8, 3, 6, 6, 8, 5, 1, 8, 0, 6, 6, 4, 0, 6, 2, 5, + 7, 2, 7, 5, 9, 5, 7, 6, 1, 4, 1, 8, 3, 4, 2, 5, 9, 0, 3, 3, 2, 0, 3, + 1, 2, 5, 3, 6, 3, 7, 9, 7, 8, 8, 0, 7, 0, 9, 1, 7, 1, 2, 9, 5, 1, 6, + 6, 0, 1, 5, 6, 2, 5, 1, 8, 1, 8, 9, 8, 9, 4, 0, 3, 5, 4, 5, 8, 5, 6, + 4, 7, 5, 8, 3, 0, 0, 7, 8, 1, 2, 5, 9, 0, 9, 4, 9, 4, 7, 0, 1, 7, 7, + 2, 9, 2, 8, 2, 3, 7, 9, 1, 5, 0, 3, 9, 0, 6, 2, 5, 4, 5, 4, 7, 4, 7, + 3, 5, 0, 8, 8, 6, 4, 6, 4, 1, 1, 8, 9, 5, 7, 5, 1, 9, 5, 3, 1, 2, 5, + 2, 2, 7, 3, 7, 3, 6, 7, 5, 4, 4, 3, 2, 3, 2, 0, 5, 9, 4, 7, 8, 7, 5, + 9, 7, 6, 5, 6, 2, 5, 1, 1, 3, 6, 8, 6, 8, 3, 7, 7, 2, 1, 6, 1, 6, 0, + 2, 9, 7, 3, 9, 3, 7, 9, 8, 8, 2, 8, 1, 2, 5, 5, 6, 8, 4, 3, 4, 1, 8, + 8, 6, 0, 8, 0, 8, 0, 1, 4, 8, 6, 9, 6, 8, 9, 9, 4, 1, 4, 0, 6, 2, 5, + 2, 8, 4, 2, 1, 7, 0, 9, 4, 3, 0, 4, 0, 4, 0, 0, 7, 4, 3, 4, 8, 4, 4, + 9, 7, 0, 7, 0, 3, 1, 2, 5, 1, 4, 2, 1, 0, 8, 5, 4, 7, 1, 5, 2, 0, 2, + 0, 0, 3, 7, 1, 7, 4, 2, 2, 4, 8, 5, 3, 5, 1, 5, 6, 2, 5, 7, 1, 0, 5, + 4, 2, 7, 3, 5, 7, 6, 0, 1, 0, 0, 1, 8, 5, 8, 7, 1, 1, 2, 4, 2, 6, 7, + 5, 7, 8, 1, 2, 5, 3, 5, 5, 2, 7, 1, 3, 6, 7, 8, 8, 0, 0, 5, 0, 0, 9, + 2, 9, 3, 5, 5, 6, 2, 1, 3, 3, 7, 8, 9, 0, 6, 2, 5, 1, 7, 7, 6, 3, 5, + 6, 8, 3, 9, 4, 0, 0, 2, 5, 0, 4, 6, 4, 6, 7, 7, 8, 1, 0, 6, 6, 8, 9, + 4, 5, 3, 1, 2, 5, 8, 8, 8, 1, 7, 8, 4, 1, 9, 7, 0, 0, 1, 2, 5, 2, 3, + 2, 3, 3, 8, 9, 0, 5, 3, 3, 4, 4, 7, 2, 6, 5, 6, 2, 5, 4, 4, 4, 0, 8, + 9, 2, 0, 9, 8, 5, 0, 0, 6, 2, 6, 1, 6, 1, 6, 9, 4, 5, 2, 6, 6, 7, 2, + 3, 6, 3, 2, 8, 1, 2, 5, 2, 2, 2, 0, 4, 4, 6, 0, 4, 9, 2, 5, 0, 3, 1, + 3, 0, 8, 0, 8, 4, 7, 2, 6, 3, 3, 3, 6, 1, 8, 1, 6, 4, 0, 6, 2, 5, 1, + 1, 1, 0, 2, 2, 3, 0, 2, 4, 6, 2, 5, 1, 5, 6, 5, 4, 0, 4, 2, 3, 6, 3, + 1, 6, 6, 8, 0, 9, 0, 8, 2, 0, 3, 1, 2, 5, 5, 5, 5, 1, 1, 1, 5, 1, 2, + 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 1, 1, 8, 1, 5, 8, 3, 4, 0, 4, 5, 4, 1, + 0, 1, 5, 6, 2, 5, 2, 7, 7, 5, 5, 5, 7, 5, 6, 1, 5, 6, 2, 8, 9, 1, 3, + 5, 1, 0, 5, 9, 0, 7, 9, 1, 7, 0, 2, 2, 7, 0, 5, 0, 7, 8, 1, 2, 5, 1, + 3, 8, 7, 7, 7, 8, 7, 8, 0, 7, 8, 1, 4, 4, 5, 6, 7, 5, 5, 2, 9, 5, 3, + 9, 5, 8, 5, 1, 1, 3, 5, 2, 5, 3, 9, 0, 6, 2, 5, 6, 9, 3, 8, 8, 9, 3, + 9, 0, 3, 9, 0, 7, 2, 2, 8, 3, 7, 7, 6, 4, 7, 6, 9, 7, 9, 2, 5, 5, 6, + 7, 6, 2, 6, 9, 5, 3, 1, 2, 5, 3, 4, 6, 9, 4, 4, 6, 9, 5, 1, 9, 5, 3, + 6, 1, 4, 1, 8, 8, 8, 2, 3, 8, 4, 8, 9, 6, 2, 7, 8, 3, 8, 1, 3, 4, 7, + 6, 5, 6, 2, 5, 1, 7, 3, 4, 7, 2, 3, 4, 7, 5, 9, 7, 6, 8, 0, 7, 0, 9, + 4, 4, 1, 1, 9, 2, 4, 4, 8, 1, 3, 9, 1, 9, 0, 6, 7, 3, 8, 2, 8, 1, 2, + 5, 8, 6, 7, 3, 6, 1, 7, 3, 7, 9, 8, 8, 4, 0, 3, 5, 4, 7, 2, 0, 5, 9, + 6, 2, 2, 4, 0, 6, 9, 5, 9, 5, 3, 3, 6, 9, 1, 4, 0, 6, 2, 5, + }; + const uint8_t *pow5 = + &number_of_digits_decimal_left_shift_table_powers_of_5[pow5_a]; + uint32_t i = 0; + uint32_t n = pow5_b - pow5_a; + for (; i < n; i++) { + if (i >= h.num_digits) { + return num_new_digits - 1; + } else if (h.digits[i] == pow5[i]) { + continue; + } else if (h.digits[i] < pow5[i]) { + return num_new_digits - 1; + } else { + return num_new_digits; + } + } + return num_new_digits; +} + +} // end of anonymous namespace + +uint64_t round(decimal &h) { + if ((h.num_digits == 0) || (h.decimal_point < 0)) { + return 0; + } else if (h.decimal_point > 18) { + return UINT64_MAX; + } + // at this point, we know that h.decimal_point >= 0 + uint32_t dp = uint32_t(h.decimal_point); + uint64_t n = 0; + for (uint32_t i = 0; i < dp; i++) { + n = (10 * n) + ((i < h.num_digits) ? h.digits[i] : 0); + } + bool round_up = false; + if (dp < h.num_digits) { + round_up = h.digits[dp] >= 5; // normally, we round up + // but we may need to round to even! + if ((h.digits[dp] == 5) && (dp + 1 == h.num_digits)) { + round_up = h.truncated || ((dp > 0) && (1 & h.digits[dp - 1])); + } + } + if (round_up) { + n++; + } + return n; +} + +// computes h * 2^-shift +void decimal_left_shift(decimal &h, uint32_t shift) { + if (h.num_digits == 0) { + return; + } + uint32_t num_new_digits = number_of_digits_decimal_left_shift(h, shift); + int32_t read_index = int32_t(h.num_digits - 1); + uint32_t write_index = h.num_digits - 1 + num_new_digits; + uint64_t n = 0; + + while (read_index >= 0) { + n += uint64_t(h.digits[read_index]) << shift; + uint64_t quotient = n / 10; + uint64_t remainder = n - (10 * quotient); + if (write_index < max_digits) { + h.digits[write_index] = uint8_t(remainder); + } else if (remainder > 0) { + h.truncated = true; + } + n = quotient; + write_index--; + read_index--; + } + while (n > 0) { + uint64_t quotient = n / 10; + uint64_t remainder = n - (10 * quotient); + if (write_index < max_digits) { + h.digits[write_index] = uint8_t(remainder); + } else if (remainder > 0) { + h.truncated = true; + } + n = quotient; + write_index--; + } + h.num_digits += num_new_digits; + if (h.num_digits > max_digits) { + h.num_digits = max_digits; + } + h.decimal_point += int32_t(num_new_digits); + trim(h); +} + +// computes h * 2^shift +void decimal_right_shift(decimal &h, uint32_t shift) { + uint32_t read_index = 0; + uint32_t write_index = 0; + + uint64_t n = 0; + + while ((n >> shift) == 0) { + if (read_index < h.num_digits) { + n = (10 * n) + h.digits[read_index++]; + } else if (n == 0) { + return; + } else { + while ((n >> shift) == 0) { + n = 10 * n; + read_index++; + } + break; + } + } + h.decimal_point -= int32_t(read_index - 1); + if (h.decimal_point < -decimal_point_range) { // it is zero + h.num_digits = 0; + h.decimal_point = 0; + h.negative = false; + h.truncated = false; + return; + } + uint64_t mask = (uint64_t(1) << shift) - 1; + while (read_index < h.num_digits) { + uint8_t new_digit = uint8_t(n >> shift); + n = (10 * (n & mask)) + h.digits[read_index++]; + h.digits[write_index++] = new_digit; + } + while (n > 0) { + uint8_t new_digit = uint8_t(n >> shift); + n = 10 * (n & mask); + if (write_index < max_digits) { + h.digits[write_index++] = new_digit; + } else if (new_digit > 0) { + h.truncated = true; + } + } + h.num_digits = write_index; + trim(h); +} + +template <typename binary> adjusted_mantissa compute_float(decimal &d) { + adjusted_mantissa answer; + if (d.num_digits == 0) { + // should be zero + answer.power2 = 0; + answer.mantissa = 0; + return answer; + } + // At this point, going further, we can assume that d.num_digits > 0. + // We want to guard against excessive decimal point values because + // they can result in long running times. Indeed, we do + // shifts by at most 60 bits. We have that log(10**400)/log(2**60) ~= 22 + // which is fine, but log(10**299995)/log(2**60) ~= 16609 which is not + // fine (runs for a long time). + // + if(d.decimal_point < -324) { + // We have something smaller than 1e-324 which is always zero + // in binary64 and binary32. + // It should be zero. + answer.power2 = 0; + answer.mantissa = 0; + return answer; + } else if(d.decimal_point >= 310) { + // We have something at least as large as 0.1e310 which is + // always infinite. + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + return answer; + } + + static const uint32_t max_shift = 60; + static const uint32_t num_powers = 19; + static const uint8_t powers[19] = { + 0, 3, 6, 9, 13, 16, 19, 23, 26, 29, // + 33, 36, 39, 43, 46, 49, 53, 56, 59, // + }; + int32_t exp2 = 0; + while (d.decimal_point > 0) { + uint32_t n = uint32_t(d.decimal_point); + uint32_t shift = (n < num_powers) ? powers[n] : max_shift; + decimal_right_shift(d, shift); + if (d.decimal_point < -decimal_point_range) { + // should be zero + answer.power2 = 0; + answer.mantissa = 0; + return answer; + } + exp2 += int32_t(shift); + } + // We shift left toward [1/2 ... 1]. + while (d.decimal_point <= 0) { + uint32_t shift; + if (d.decimal_point == 0) { + if (d.digits[0] >= 5) { + break; + } + shift = (d.digits[0] < 2) ? 2 : 1; + } else { + uint32_t n = uint32_t(-d.decimal_point); + shift = (n < num_powers) ? powers[n] : max_shift; + } + decimal_left_shift(d, shift); + if (d.decimal_point > decimal_point_range) { + // we want to get infinity: + answer.power2 = 0xFF; + answer.mantissa = 0; + return answer; + } + exp2 -= int32_t(shift); + } + // We are now in the range [1/2 ... 1] but the binary format uses [1 ... 2]. + exp2--; + constexpr int32_t minimum_exponent = binary::minimum_exponent(); + while ((minimum_exponent + 1) > exp2) { + uint32_t n = uint32_t((minimum_exponent + 1) - exp2); + if (n > max_shift) { + n = max_shift; + } + decimal_right_shift(d, n); + exp2 += int32_t(n); + } + if ((exp2 - minimum_exponent) >= binary::infinite_power()) { + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + return answer; + } + + const int mantissa_size_in_bits = binary::mantissa_explicit_bits() + 1; + decimal_left_shift(d, mantissa_size_in_bits); + + uint64_t mantissa = round(d); + // It is possible that we have an overflow, in which case we need + // to shift back. + if (mantissa >= (uint64_t(1) << mantissa_size_in_bits)) { + decimal_right_shift(d, 1); + exp2 += 1; + mantissa = round(d); + if ((exp2 - minimum_exponent) >= binary::infinite_power()) { + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + return answer; + } + } + answer.power2 = exp2 - binary::minimum_exponent(); + if (mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) { + answer.power2--; + } + answer.mantissa = + mantissa & ((uint64_t(1) << binary::mantissa_explicit_bits()) - 1); + return answer; +} + +template <typename binary> +adjusted_mantissa parse_long_mantissa(const char *first) { + decimal d = parse_decimal(first); + return compute_float<binary>(d); +} + +template <typename binary> +adjusted_mantissa parse_long_mantissa(const char *first, const char *end) { + decimal d = parse_decimal(first, end); + return compute_float<binary>(d); +} + +double from_chars(const char *first) noexcept { + bool negative = first[0] == '-'; + if (negative) { + first++; + } + adjusted_mantissa am = parse_long_mantissa<binary_format<double>>(first); + uint64_t word = am.mantissa; + word |= uint64_t(am.power2) + << binary_format<double>::mantissa_explicit_bits(); + word = negative ? word | (uint64_t(1) << binary_format<double>::sign_index()) + : word; + double value; + std::memcpy(&value, &word, sizeof(double)); + return value; +} + + +double from_chars(const char *first, const char *end) noexcept { + bool negative = first[0] == '-'; + if (negative) { + first++; + } + adjusted_mantissa am = parse_long_mantissa<binary_format<double>>(first, end); + uint64_t word = am.mantissa; + word |= uint64_t(am.power2) + << binary_format<double>::mantissa_explicit_bits(); + word = negative ? word | (uint64_t(1) << binary_format<double>::sign_index()) + : word; + double value; + std::memcpy(&value, &word, sizeof(double)); + return value; +} + +} // internal +} // simdjson + +#endif // SIMDJSON_SRC_FROM_CHARS_CPP
\ No newline at end of file |