aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/protobuf_old/src/google/protobuf/message.h
diff options
context:
space:
mode:
authorspreis <spreis@yandex-team.com>2024-03-29 14:18:43 +0300
committerspreis <spreis@yandex-team.com>2024-03-29 14:31:49 +0300
commitf39261a434c46274b5eaef0927ee3b2e0d95b41a (patch)
treee64c68742b1a7423d8b2809a5ca938f5ddbed2e2 /contrib/libs/protobuf_old/src/google/protobuf/message.h
parent9334caaba1f032fa294d74e7a74157e3fb263a3e (diff)
downloadydb-f39261a434c46274b5eaef0927ee3b2e0d95b41a.tar.gz
Re-enable separation of protobufs for Python 2 and Python 3
Это откат коммита https://a.yandex-team.ru/arcadia/commit/rXXXXXX И соответственно возврат коммитов https://a.yandex-team.ru/arcadia/commit/rXXXXXX и https://a.yandex-team.ru/arcadia/commit/rXXXXXX Починка причины отката влилась здесь: https://a.yandex-team.ru/arcadia/commit/rXXXXXX ae529e54d3ef7992b0e9f152373bc300061c1293
Diffstat (limited to 'contrib/libs/protobuf_old/src/google/protobuf/message.h')
-rw-r--r--contrib/libs/protobuf_old/src/google/protobuf/message.h1510
1 files changed, 1510 insertions, 0 deletions
diff --git a/contrib/libs/protobuf_old/src/google/protobuf/message.h b/contrib/libs/protobuf_old/src/google/protobuf/message.h
new file mode 100644
index 0000000000..a94688c248
--- /dev/null
+++ b/contrib/libs/protobuf_old/src/google/protobuf/message.h
@@ -0,0 +1,1510 @@
+// Protocol Buffers - Google's data interchange format
+// Copyright 2008 Google Inc. All rights reserved.
+// https://developers.google.com/protocol-buffers/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// Author: kenton@google.com (Kenton Varda)
+// Based on original Protocol Buffers design by
+// Sanjay Ghemawat, Jeff Dean, and others.
+//
+// Defines Message, the abstract interface implemented by non-lite
+// protocol message objects. Although it's possible to implement this
+// interface manually, most users will use the protocol compiler to
+// generate implementations.
+//
+// Example usage:
+//
+// Say you have a message defined as:
+//
+// message Foo {
+// optional string text = 1;
+// repeated int32 numbers = 2;
+// }
+//
+// Then, if you used the protocol compiler to generate a class from the above
+// definition, you could use it like so:
+//
+// TProtoStringType data; // Will store a serialized version of the message.
+//
+// {
+// // Create a message and serialize it.
+// Foo foo;
+// foo.set_text("Hello World!");
+// foo.add_numbers(1);
+// foo.add_numbers(5);
+// foo.add_numbers(42);
+//
+// foo.SerializeToString(&data);
+// }
+//
+// {
+// // Parse the serialized message and check that it contains the
+// // correct data.
+// Foo foo;
+// foo.ParseFromString(data);
+//
+// assert(foo.text() == "Hello World!");
+// assert(foo.numbers_size() == 3);
+// assert(foo.numbers(0) == 1);
+// assert(foo.numbers(1) == 5);
+// assert(foo.numbers(2) == 42);
+// }
+//
+// {
+// // Same as the last block, but do it dynamically via the Message
+// // reflection interface.
+// Message* foo = new Foo;
+// const Descriptor* descriptor = foo->GetDescriptor();
+//
+// // Get the descriptors for the fields we're interested in and verify
+// // their types.
+// const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
+// assert(text_field != nullptr);
+// assert(text_field->type() == FieldDescriptor::TYPE_STRING);
+// assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
+// const FieldDescriptor* numbers_field = descriptor->
+// FindFieldByName("numbers");
+// assert(numbers_field != nullptr);
+// assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
+// assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
+//
+// // Parse the message.
+// foo->ParseFromString(data);
+//
+// // Use the reflection interface to examine the contents.
+// const Reflection* reflection = foo->GetReflection();
+// assert(reflection->GetString(*foo, text_field) == "Hello World!");
+// assert(reflection->FieldSize(*foo, numbers_field) == 3);
+// assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1);
+// assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5);
+// assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42);
+//
+// delete foo;
+// }
+
+#ifndef GOOGLE_PROTOBUF_MESSAGE_H__
+#define GOOGLE_PROTOBUF_MESSAGE_H__
+
+#include <iosfwd>
+#include <string>
+#include <type_traits>
+#include <vector>
+
+#include <google/protobuf/stubs/casts.h>
+#include <google/protobuf/stubs/common.h>
+#include <google/protobuf/arena.h>
+#include <google/protobuf/descriptor.h>
+#include <google/protobuf/generated_message_reflection.h>
+#include <google/protobuf/generated_message_util.h>
+#include <google/protobuf/message_lite.h>
+#include <google/protobuf/port.h>
+
+#include <google/protobuf/json_util.h>
+#include <google/protobuf/messagext.h>
+
+#define GOOGLE_PROTOBUF_HAS_ONEOF
+#define GOOGLE_PROTOBUF_HAS_ARENAS
+
+#include <google/protobuf/port_def.inc>
+
+#ifdef SWIG
+#error "You cannot SWIG proto headers"
+#endif
+
+namespace google {
+namespace protobuf {
+
+// Defined in this file.
+class Message;
+class Reflection;
+class MessageFactory;
+
+// Defined in other files.
+class AssignDescriptorsHelper;
+class DynamicMessageFactory;
+class DynamicMessageReflectionHelper;
+class GeneratedMessageReflectionTestHelper;
+class MapKey;
+class MapValueConstRef;
+class MapValueRef;
+class MapIterator;
+class MapReflectionTester;
+
+namespace internal {
+struct DescriptorTable;
+class MapFieldBase;
+class SwapFieldHelper;
+class CachedSize;
+} // namespace internal
+class UnknownFieldSet; // unknown_field_set.h
+namespace io {
+class ZeroCopyInputStream; // zero_copy_stream.h
+class ZeroCopyOutputStream; // zero_copy_stream.h
+class CodedInputStream; // coded_stream.h
+class CodedOutputStream; // coded_stream.h
+} // namespace io
+namespace python {
+class MapReflectionFriend; // scalar_map_container.h
+class MessageReflectionFriend;
+} // namespace python
+namespace expr {
+class CelMapReflectionFriend; // field_backed_map_impl.cc
+}
+
+namespace internal {
+class MapFieldPrinterHelper; // text_format.cc
+}
+namespace util {
+class MessageDifferencer;
+}
+
+
+namespace internal {
+class ReflectionAccessor; // message.cc
+class ReflectionOps; // reflection_ops.h
+class MapKeySorter; // wire_format.cc
+class WireFormat; // wire_format.h
+class MapFieldReflectionTest; // map_test.cc
+} // namespace internal
+
+template <typename T>
+class RepeatedField; // repeated_field.h
+
+template <typename T>
+class RepeatedPtrField; // repeated_field.h
+
+// A container to hold message metadata.
+struct Metadata {
+ const Descriptor* descriptor;
+ const Reflection* reflection;
+};
+
+namespace internal {
+template <class To>
+inline To* GetPointerAtOffset(Message* message, arc_ui32 offset) {
+ return reinterpret_cast<To*>(reinterpret_cast<char*>(message) + offset);
+}
+
+template <class To>
+const To* GetConstPointerAtOffset(const Message* message, arc_ui32 offset) {
+ return reinterpret_cast<const To*>(reinterpret_cast<const char*>(message) +
+ offset);
+}
+
+template <class To>
+const To& GetConstRefAtOffset(const Message& message, arc_ui32 offset) {
+ return *GetConstPointerAtOffset<To>(&message, offset);
+}
+
+bool CreateUnknownEnumValues(const FieldDescriptor* field);
+} // namespace internal
+
+// Abstract interface for protocol messages.
+//
+// See also MessageLite, which contains most every-day operations. Message
+// adds descriptors and reflection on top of that.
+//
+// The methods of this class that are virtual but not pure-virtual have
+// default implementations based on reflection. Message classes which are
+// optimized for speed will want to override these with faster implementations,
+// but classes optimized for code size may be happy with keeping them. See
+// the optimize_for option in descriptor.proto.
+//
+// Users must not derive from this class. Only the protocol compiler and
+// the internal library are allowed to create subclasses.
+class PROTOBUF_EXPORT Message : public MessageLite {
+ public:
+ constexpr Message() {}
+
+ // Basic Operations ------------------------------------------------
+
+ // Construct a new instance of the same type. Ownership is passed to the
+ // caller. (This is also defined in MessageLite, but is defined again here
+ // for return-type covariance.)
+ Message* New() const { return New(nullptr); }
+
+ // Construct a new instance on the arena. Ownership is passed to the caller
+ // if arena is a nullptr.
+ Message* New(Arena* arena) const override = 0;
+
+ // Make this message into a copy of the given message. The given message
+ // must have the same descriptor, but need not necessarily be the same class.
+ // By default this is just implemented as "Clear(); MergeFrom(from);".
+ virtual void CopyFrom(const Message& from);
+
+ // Merge the fields from the given message into this message. Singular
+ // fields will be overwritten, if specified in from, except for embedded
+ // messages which will be merged. Repeated fields will be concatenated.
+ // The given message must be of the same type as this message (i.e. the
+ // exact same class).
+ virtual void MergeFrom(const Message& from);
+
+ // Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with
+ // a nice error message.
+ void CheckInitialized() const;
+
+ // Slowly build a list of all required fields that are not set.
+ // This is much, much slower than IsInitialized() as it is implemented
+ // purely via reflection. Generally, you should not call this unless you
+ // have already determined that an error exists by calling IsInitialized().
+ void FindInitializationErrors(std::vector<TProtoStringType>* errors) const;
+
+ // Like FindInitializationErrors, but joins all the strings, delimited by
+ // commas, and returns them.
+ TProtoStringType InitializationErrorString() const override;
+
+ // Clears all unknown fields from this message and all embedded messages.
+ // Normally, if unknown tag numbers are encountered when parsing a message,
+ // the tag and value are stored in the message's UnknownFieldSet and
+ // then written back out when the message is serialized. This allows servers
+ // which simply route messages to other servers to pass through messages
+ // that have new field definitions which they don't yet know about. However,
+ // this behavior can have security implications. To avoid it, call this
+ // method after parsing.
+ //
+ // See Reflection::GetUnknownFields() for more on unknown fields.
+ void DiscardUnknownFields();
+
+ // Computes (an estimate of) the total number of bytes currently used for
+ // storing the message in memory. The default implementation calls the
+ // Reflection object's SpaceUsed() method.
+ //
+ // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented
+ // using reflection (rather than the generated code implementation for
+ // ByteSize()). Like ByteSize(), its CPU time is linear in the number of
+ // fields defined for the proto.
+ virtual size_t SpaceUsedLong() const;
+
+ PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
+ int SpaceUsed() const { return internal::ToIntSize(SpaceUsedLong()); }
+
+ // Debugging & Testing----------------------------------------------
+
+ // Generates a human readable form of this message, useful for debugging
+ // and other purposes.
+ TProtoStringType DebugString() const;
+ // Like DebugString(), but with less whitespace.
+ TProtoStringType ShortDebugString() const;
+ // Like DebugString(), but do not escape UTF-8 byte sequences.
+ TProtoStringType Utf8DebugString() const;
+ // Convenience function useful in GDB. Prints DebugString() to stdout.
+ void PrintDebugString() const;
+
+ // Reflection-based methods ----------------------------------------
+ // These methods are pure-virtual in MessageLite, but Message provides
+ // reflection-based default implementations.
+
+ TProtoStringType GetTypeName() const override;
+ void Clear() override;
+
+ // Returns whether all required fields have been set. Note that required
+ // fields no longer exist starting in proto3.
+ bool IsInitialized() const override;
+
+ void CheckTypeAndMergeFrom(const MessageLite& other) override;
+ // Reflective parser
+ const char* _InternalParse(const char* ptr,
+ internal::ParseContext* ctx) override;
+ size_t ByteSizeLong() const override;
+ uint8_t* _InternalSerialize(uint8_t* target,
+ io::EpsCopyOutputStream* stream) const override;
+
+ // Yandex-specific
+ bool ParseFromArcadiaStream(IInputStream* input);
+ bool ParsePartialFromArcadiaStream(IInputStream* input);
+ bool SerializeToArcadiaStream(IOutputStream* output) const;
+ bool SerializePartialToArcadiaStream(IOutputStream* output) const;
+
+ virtual void PrintJSON(IOutputStream&) const;
+
+ io::TAsJSON<Message> AsJSON() const {
+ return io::TAsJSON<Message>(*this);
+ }
+
+ internal::TAsBinary AsBinary() const {
+ return internal::TAsBinary{*this};
+ }
+
+ internal::TAsStreamSeq AsStreamSeq() const {
+ return internal::TAsStreamSeq{*this};
+ }
+ // End of Yandex-specific
+
+ private:
+ // This is called only by the default implementation of ByteSize(), to
+ // update the cached size. If you override ByteSize(), you do not need
+ // to override this. If you do not override ByteSize(), you MUST override
+ // this; the default implementation will crash.
+ //
+ // The method is private because subclasses should never call it; only
+ // override it. Yes, C++ lets you do that. Crazy, huh?
+ virtual void SetCachedSize(int size) const;
+
+ public:
+ // Introspection ---------------------------------------------------
+
+
+ // Get a non-owning pointer to a Descriptor for this message's type. This
+ // describes what fields the message contains, the types of those fields, etc.
+ // This object remains property of the Message.
+ const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
+
+ // Get a non-owning pointer to the Reflection interface for this Message,
+ // which can be used to read and modify the fields of the Message dynamically
+ // (in other words, without knowing the message type at compile time). This
+ // object remains property of the Message.
+ const Reflection* GetReflection() const { return GetMetadata().reflection; }
+
+ protected:
+ // Get a struct containing the metadata for the Message, which is used in turn
+ // to implement GetDescriptor() and GetReflection() above.
+ virtual Metadata GetMetadata() const = 0;
+
+ struct ClassData {
+ // Note: The order of arguments (to, then from) is chosen so that the ABI
+ // of this function is the same as the CopyFrom method. That is, the
+ // hidden "this" parameter comes first.
+ void (*copy_to_from)(Message* to, const Message& from_msg);
+ void (*merge_to_from)(Message* to, const Message& from_msg);
+ };
+ // GetClassData() returns a pointer to a ClassData struct which
+ // exists in global memory and is unique to each subclass. This uniqueness
+ // property is used in order to quickly determine whether two messages are
+ // of the same type.
+ // TODO(jorg): change to pure virtual
+ virtual const ClassData* GetClassData() const { return nullptr; }
+
+ // CopyWithSizeCheck calls Clear() and then MergeFrom(), and in debug
+ // builds, checks that calling Clear() on the destination message doesn't
+ // alter the size of the source. It assumes the messages are known to be
+ // of the same type, and thus uses GetClassData().
+ static void CopyWithSizeCheck(Message* to, const Message& from);
+
+ inline explicit Message(Arena* arena, bool is_message_owned = false)
+ : MessageLite(arena, is_message_owned) {}
+ size_t ComputeUnknownFieldsSize(size_t total_size,
+ internal::CachedSize* cached_size) const;
+ size_t MaybeComputeUnknownFieldsSize(size_t total_size,
+ internal::CachedSize* cached_size) const;
+
+
+ protected:
+ static arc_ui64 GetInvariantPerBuild(arc_ui64 salt);
+
+ private:
+ GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
+};
+
+namespace internal {
+// Forward-declare interfaces used to implement RepeatedFieldRef.
+// These are protobuf internals that users shouldn't care about.
+class RepeatedFieldAccessor;
+} // namespace internal
+
+// Forward-declare RepeatedFieldRef templates. The second type parameter is
+// used for SFINAE tricks. Users should ignore it.
+template <typename T, typename Enable = void>
+class RepeatedFieldRef;
+
+template <typename T, typename Enable = void>
+class MutableRepeatedFieldRef;
+
+// This interface contains methods that can be used to dynamically access
+// and modify the fields of a protocol message. Their semantics are
+// similar to the accessors the protocol compiler generates.
+//
+// To get the Reflection for a given Message, call Message::GetReflection().
+//
+// This interface is separate from Message only for efficiency reasons;
+// the vast majority of implementations of Message will share the same
+// implementation of Reflection (GeneratedMessageReflection,
+// defined in generated_message.h), and all Messages of a particular class
+// should share the same Reflection object (though you should not rely on
+// the latter fact).
+//
+// There are several ways that these methods can be used incorrectly. For
+// example, any of the following conditions will lead to undefined
+// results (probably assertion failures):
+// - The FieldDescriptor is not a field of this message type.
+// - The method called is not appropriate for the field's type. For
+// each field type in FieldDescriptor::TYPE_*, there is only one
+// Get*() method, one Set*() method, and one Add*() method that is
+// valid for that type. It should be obvious which (except maybe
+// for TYPE_BYTES, which are represented using strings in C++).
+// - A Get*() or Set*() method for singular fields is called on a repeated
+// field.
+// - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
+// field.
+// - The Message object passed to any method is not of the right type for
+// this Reflection object (i.e. message.GetReflection() != reflection).
+//
+// You might wonder why there is not any abstract representation for a field
+// of arbitrary type. E.g., why isn't there just a "GetField()" method that
+// returns "const Field&", where "Field" is some class with accessors like
+// "GetInt32Value()". The problem is that someone would have to deal with
+// allocating these Field objects. For generated message classes, having to
+// allocate space for an additional object to wrap every field would at least
+// double the message's memory footprint, probably worse. Allocating the
+// objects on-demand, on the other hand, would be expensive and prone to
+// memory leaks. So, instead we ended up with this flat interface.
+class PROTOBUF_EXPORT Reflection final {
+ public:
+ // Get the UnknownFieldSet for the message. This contains fields which
+ // were seen when the Message was parsed but were not recognized according
+ // to the Message's definition.
+ const UnknownFieldSet& GetUnknownFields(const Message& message) const;
+ // Get a mutable pointer to the UnknownFieldSet for the message. This
+ // contains fields which were seen when the Message was parsed but were not
+ // recognized according to the Message's definition.
+ UnknownFieldSet* MutableUnknownFields(Message* message) const;
+
+ // Estimate the amount of memory used by the message object.
+ size_t SpaceUsedLong(const Message& message) const;
+
+ PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
+ int SpaceUsed(const Message& message) const {
+ return internal::ToIntSize(SpaceUsedLong(message));
+ }
+
+ // Check if the given non-repeated field is set.
+ bool HasField(const Message& message, const FieldDescriptor* field) const;
+
+ // Get the number of elements of a repeated field.
+ int FieldSize(const Message& message, const FieldDescriptor* field) const;
+
+ // Clear the value of a field, so that HasField() returns false or
+ // FieldSize() returns zero.
+ void ClearField(Message* message, const FieldDescriptor* field) const;
+
+ // Check if the oneof is set. Returns true if any field in oneof
+ // is set, false otherwise.
+ bool HasOneof(const Message& message,
+ const OneofDescriptor* oneof_descriptor) const;
+
+ void ClearOneof(Message* message,
+ const OneofDescriptor* oneof_descriptor) const;
+
+ // Returns the field descriptor if the oneof is set. nullptr otherwise.
+ const FieldDescriptor* GetOneofFieldDescriptor(
+ const Message& message, const OneofDescriptor* oneof_descriptor) const;
+
+ // Removes the last element of a repeated field.
+ // We don't provide a way to remove any element other than the last
+ // because it invites inefficient use, such as O(n^2) filtering loops
+ // that should have been O(n). If you want to remove an element other
+ // than the last, the best way to do it is to re-arrange the elements
+ // (using Swap()) so that the one you want removed is at the end, then
+ // call RemoveLast().
+ void RemoveLast(Message* message, const FieldDescriptor* field) const;
+ // Removes the last element of a repeated message field, and returns the
+ // pointer to the caller. Caller takes ownership of the returned pointer.
+ PROTOBUF_NODISCARD Message* ReleaseLast(Message* message,
+ const FieldDescriptor* field) const;
+
+ // Similar to ReleaseLast() without internal safety and ownershp checks. This
+ // method should only be used when the objects are on the same arena or paired
+ // with a call to `UnsafeArenaAddAllocatedMessage`.
+ Message* UnsafeArenaReleaseLast(Message* message,
+ const FieldDescriptor* field) const;
+
+ // Swap the complete contents of two messages.
+ void Swap(Message* message1, Message* message2) const;
+
+ // Swap fields listed in fields vector of two messages.
+ void SwapFields(Message* message1, Message* message2,
+ const std::vector<const FieldDescriptor*>& fields) const;
+
+ // Swap two elements of a repeated field.
+ void SwapElements(Message* message, const FieldDescriptor* field, int index1,
+ int index2) const;
+
+ // Swap without internal safety and ownership checks. This method should only
+ // be used when the objects are on the same arena.
+ void UnsafeArenaSwap(Message* lhs, Message* rhs) const;
+
+ // SwapFields without internal safety and ownership checks. This method should
+ // only be used when the objects are on the same arena.
+ void UnsafeArenaSwapFields(
+ Message* lhs, Message* rhs,
+ const std::vector<const FieldDescriptor*>& fields) const;
+
+ // List all fields of the message which are currently set, except for unknown
+ // fields, but including extension known to the parser (i.e. compiled in).
+ // Singular fields will only be listed if HasField(field) would return true
+ // and repeated fields will only be listed if FieldSize(field) would return
+ // non-zero. Fields (both normal fields and extension fields) will be listed
+ // ordered by field number.
+ // Use Reflection::GetUnknownFields() or message.unknown_fields() to also get
+ // access to fields/extensions unknown to the parser.
+ void ListFields(const Message& message,
+ std::vector<const FieldDescriptor*>* output) const;
+
+ // Singular field getters ------------------------------------------
+ // These get the value of a non-repeated field. They return the default
+ // value for fields that aren't set.
+
+ arc_i32 GetInt32(const Message& message, const FieldDescriptor* field) const;
+ arc_i64 GetInt64(const Message& message, const FieldDescriptor* field) const;
+ arc_ui32 GetUInt32(const Message& message,
+ const FieldDescriptor* field) const;
+ arc_ui64 GetUInt64(const Message& message,
+ const FieldDescriptor* field) const;
+ float GetFloat(const Message& message, const FieldDescriptor* field) const;
+ double GetDouble(const Message& message, const FieldDescriptor* field) const;
+ bool GetBool(const Message& message, const FieldDescriptor* field) const;
+ TProtoStringType GetString(const Message& message,
+ const FieldDescriptor* field) const;
+ const EnumValueDescriptor* GetEnum(const Message& message,
+ const FieldDescriptor* field) const;
+
+ // GetEnumValue() returns an enum field's value as an integer rather than
+ // an EnumValueDescriptor*. If the integer value does not correspond to a
+ // known value descriptor, a new value descriptor is created. (Such a value
+ // will only be present when the new unknown-enum-value semantics are enabled
+ // for a message.)
+ int GetEnumValue(const Message& message, const FieldDescriptor* field) const;
+
+ // See MutableMessage() for the meaning of the "factory" parameter.
+ const Message& GetMessage(const Message& message,
+ const FieldDescriptor* field,
+ MessageFactory* factory = nullptr) const;
+
+ // Get a string value without copying, if possible.
+ //
+ // GetString() necessarily returns a copy of the string. This can be
+ // inefficient when the TProtoStringType is already stored in a TProtoStringType object
+ // in the underlying message. GetStringReference() will return a reference to
+ // the underlying TProtoStringType in this case. Otherwise, it will copy the
+ // string into *scratch and return that.
+ //
+ // Note: It is perfectly reasonable and useful to write code like:
+ // str = reflection->GetStringReference(message, field, &str);
+ // This line would ensure that only one copy of the string is made
+ // regardless of the field's underlying representation. When initializing
+ // a newly-constructed string, though, it's just as fast and more
+ // readable to use code like:
+ // TProtoStringType str = reflection->GetString(message, field);
+ const TProtoStringType& GetStringReference(const Message& message,
+ const FieldDescriptor* field,
+ TProtoStringType* scratch) const;
+
+
+ // Singular field mutators -----------------------------------------
+ // These mutate the value of a non-repeated field.
+
+ void SetInt32(Message* message, const FieldDescriptor* field,
+ arc_i32 value) const;
+ void SetInt64(Message* message, const FieldDescriptor* field,
+ arc_i64 value) const;
+ void SetUInt32(Message* message, const FieldDescriptor* field,
+ arc_ui32 value) const;
+ void SetUInt64(Message* message, const FieldDescriptor* field,
+ arc_ui64 value) const;
+ void SetFloat(Message* message, const FieldDescriptor* field,
+ float value) const;
+ void SetDouble(Message* message, const FieldDescriptor* field,
+ double value) const;
+ void SetBool(Message* message, const FieldDescriptor* field,
+ bool value) const;
+ void SetString(Message* message, const FieldDescriptor* field,
+ TProtoStringType value) const;
+ void SetEnum(Message* message, const FieldDescriptor* field,
+ const EnumValueDescriptor* value) const;
+ // Set an enum field's value with an integer rather than EnumValueDescriptor.
+ // For proto3 this is just setting the enum field to the value specified, for
+ // proto2 it's more complicated. If value is a known enum value the field is
+ // set as usual. If the value is unknown then it is added to the unknown field
+ // set. Note this matches the behavior of parsing unknown enum values.
+ // If multiple calls with unknown values happen than they are all added to the
+ // unknown field set in order of the calls.
+ void SetEnumValue(Message* message, const FieldDescriptor* field,
+ int value) const;
+
+ // Get a mutable pointer to a field with a message type. If a MessageFactory
+ // is provided, it will be used to construct instances of the sub-message;
+ // otherwise, the default factory is used. If the field is an extension that
+ // does not live in the same pool as the containing message's descriptor (e.g.
+ // it lives in an overlay pool), then a MessageFactory must be provided.
+ // If you have no idea what that meant, then you probably don't need to worry
+ // about it (don't provide a MessageFactory). WARNING: If the
+ // FieldDescriptor is for a compiled-in extension, then
+ // factory->GetPrototype(field->message_type()) MUST return an instance of
+ // the compiled-in class for this type, NOT DynamicMessage.
+ Message* MutableMessage(Message* message, const FieldDescriptor* field,
+ MessageFactory* factory = nullptr) const;
+
+ // Replaces the message specified by 'field' with the already-allocated object
+ // sub_message, passing ownership to the message. If the field contained a
+ // message, that message is deleted. If sub_message is nullptr, the field is
+ // cleared.
+ void SetAllocatedMessage(Message* message, Message* sub_message,
+ const FieldDescriptor* field) const;
+
+ // Similar to `SetAllocatedMessage`, but omits all internal safety and
+ // ownership checks. This method should only be used when the objects are on
+ // the same arena or paired with a call to `UnsafeArenaReleaseMessage`.
+ void UnsafeArenaSetAllocatedMessage(Message* message, Message* sub_message,
+ const FieldDescriptor* field) const;
+
+ // Releases the message specified by 'field' and returns the pointer,
+ // ReleaseMessage() will return the message the message object if it exists.
+ // Otherwise, it may or may not return nullptr. In any case, if the return
+ // value is non-null, the caller takes ownership of the pointer.
+ // If the field existed (HasField() is true), then the returned pointer will
+ // be the same as the pointer returned by MutableMessage().
+ // This function has the same effect as ClearField().
+ PROTOBUF_NODISCARD Message* ReleaseMessage(
+ Message* message, const FieldDescriptor* field,
+ MessageFactory* factory = nullptr) const;
+
+ // Similar to `ReleaseMessage`, but omits all internal safety and ownership
+ // checks. This method should only be used when the objects are on the same
+ // arena or paired with a call to `UnsafeArenaSetAllocatedMessage`.
+ Message* UnsafeArenaReleaseMessage(Message* message,
+ const FieldDescriptor* field,
+ MessageFactory* factory = nullptr) const;
+
+
+ // Repeated field getters ------------------------------------------
+ // These get the value of one element of a repeated field.
+
+ arc_i32 GetRepeatedInt32(const Message& message, const FieldDescriptor* field,
+ int index) const;
+ arc_i64 GetRepeatedInt64(const Message& message, const FieldDescriptor* field,
+ int index) const;
+ arc_ui32 GetRepeatedUInt32(const Message& message,
+ const FieldDescriptor* field, int index) const;
+ arc_ui64 GetRepeatedUInt64(const Message& message,
+ const FieldDescriptor* field, int index) const;
+ float GetRepeatedFloat(const Message& message, const FieldDescriptor* field,
+ int index) const;
+ double GetRepeatedDouble(const Message& message, const FieldDescriptor* field,
+ int index) const;
+ bool GetRepeatedBool(const Message& message, const FieldDescriptor* field,
+ int index) const;
+ TProtoStringType GetRepeatedString(const Message& message,
+ const FieldDescriptor* field, int index) const;
+ const EnumValueDescriptor* GetRepeatedEnum(const Message& message,
+ const FieldDescriptor* field,
+ int index) const;
+ // GetRepeatedEnumValue() returns an enum field's value as an integer rather
+ // than an EnumValueDescriptor*. If the integer value does not correspond to a
+ // known value descriptor, a new value descriptor is created. (Such a value
+ // will only be present when the new unknown-enum-value semantics are enabled
+ // for a message.)
+ int GetRepeatedEnumValue(const Message& message, const FieldDescriptor* field,
+ int index) const;
+ const Message& GetRepeatedMessage(const Message& message,
+ const FieldDescriptor* field,
+ int index) const;
+
+ // See GetStringReference(), above.
+ const TProtoStringType& GetRepeatedStringReference(const Message& message,
+ const FieldDescriptor* field,
+ int index,
+ TProtoStringType* scratch) const;
+
+
+ // Repeated field mutators -----------------------------------------
+ // These mutate the value of one element of a repeated field.
+
+ void SetRepeatedInt32(Message* message, const FieldDescriptor* field,
+ int index, arc_i32 value) const;
+ void SetRepeatedInt64(Message* message, const FieldDescriptor* field,
+ int index, arc_i64 value) const;
+ void SetRepeatedUInt32(Message* message, const FieldDescriptor* field,
+ int index, arc_ui32 value) const;
+ void SetRepeatedUInt64(Message* message, const FieldDescriptor* field,
+ int index, arc_ui64 value) const;
+ void SetRepeatedFloat(Message* message, const FieldDescriptor* field,
+ int index, float value) const;
+ void SetRepeatedDouble(Message* message, const FieldDescriptor* field,
+ int index, double value) const;
+ void SetRepeatedBool(Message* message, const FieldDescriptor* field,
+ int index, bool value) const;
+ void SetRepeatedString(Message* message, const FieldDescriptor* field,
+ int index, TProtoStringType value) const;
+ void SetRepeatedEnum(Message* message, const FieldDescriptor* field,
+ int index, const EnumValueDescriptor* value) const;
+ // Set an enum field's value with an integer rather than EnumValueDescriptor.
+ // For proto3 this is just setting the enum field to the value specified, for
+ // proto2 it's more complicated. If value is a known enum value the field is
+ // set as usual. If the value is unknown then it is added to the unknown field
+ // set. Note this matches the behavior of parsing unknown enum values.
+ // If multiple calls with unknown values happen than they are all added to the
+ // unknown field set in order of the calls.
+ void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field,
+ int index, int value) const;
+ // Get a mutable pointer to an element of a repeated field with a message
+ // type.
+ Message* MutableRepeatedMessage(Message* message,
+ const FieldDescriptor* field,
+ int index) const;
+
+
+ // Repeated field adders -------------------------------------------
+ // These add an element to a repeated field.
+
+ void AddInt32(Message* message, const FieldDescriptor* field,
+ arc_i32 value) const;
+ void AddInt64(Message* message, const FieldDescriptor* field,
+ arc_i64 value) const;
+ void AddUInt32(Message* message, const FieldDescriptor* field,
+ arc_ui32 value) const;
+ void AddUInt64(Message* message, const FieldDescriptor* field,
+ arc_ui64 value) const;
+ void AddFloat(Message* message, const FieldDescriptor* field,
+ float value) const;
+ void AddDouble(Message* message, const FieldDescriptor* field,
+ double value) const;
+ void AddBool(Message* message, const FieldDescriptor* field,
+ bool value) const;
+ void AddString(Message* message, const FieldDescriptor* field,
+ TProtoStringType value) const;
+ void AddEnum(Message* message, const FieldDescriptor* field,
+ const EnumValueDescriptor* value) const;
+ // Add an integer value to a repeated enum field rather than
+ // EnumValueDescriptor. For proto3 this is just setting the enum field to the
+ // value specified, for proto2 it's more complicated. If value is a known enum
+ // value the field is set as usual. If the value is unknown then it is added
+ // to the unknown field set. Note this matches the behavior of parsing unknown
+ // enum values. If multiple calls with unknown values happen than they are all
+ // added to the unknown field set in order of the calls.
+ void AddEnumValue(Message* message, const FieldDescriptor* field,
+ int value) const;
+ // See MutableMessage() for comments on the "factory" parameter.
+ Message* AddMessage(Message* message, const FieldDescriptor* field,
+ MessageFactory* factory = nullptr) const;
+
+ // Appends an already-allocated object 'new_entry' to the repeated field
+ // specified by 'field' passing ownership to the message.
+ void AddAllocatedMessage(Message* message, const FieldDescriptor* field,
+ Message* new_entry) const;
+
+ // Similar to AddAllocatedMessage() without internal safety and ownership
+ // checks. This method should only be used when the objects are on the same
+ // arena or paired with a call to `UnsafeArenaReleaseLast`.
+ void UnsafeArenaAddAllocatedMessage(Message* message,
+ const FieldDescriptor* field,
+ Message* new_entry) const;
+
+
+ // Get a RepeatedFieldRef object that can be used to read the underlying
+ // repeated field. The type parameter T must be set according to the
+ // field's cpp type. The following table shows the mapping from cpp type
+ // to acceptable T.
+ //
+ // field->cpp_type() T
+ // CPPTYPE_INT32 arc_i32
+ // CPPTYPE_UINT32 arc_ui32
+ // CPPTYPE_INT64 arc_i64
+ // CPPTYPE_UINT64 arc_ui64
+ // CPPTYPE_DOUBLE double
+ // CPPTYPE_FLOAT float
+ // CPPTYPE_BOOL bool
+ // CPPTYPE_ENUM generated enum type or arc_i32
+ // CPPTYPE_STRING TProtoStringType
+ // CPPTYPE_MESSAGE generated message type or google::protobuf::Message
+ //
+ // A RepeatedFieldRef object can be copied and the resulted object will point
+ // to the same repeated field in the same message. The object can be used as
+ // long as the message is not destroyed.
+ //
+ // Note that to use this method users need to include the header file
+ // "reflection.h" (which defines the RepeatedFieldRef class templates).
+ template <typename T>
+ RepeatedFieldRef<T> GetRepeatedFieldRef(const Message& message,
+ const FieldDescriptor* field) const;
+
+ // Like GetRepeatedFieldRef() but return an object that can also be used
+ // manipulate the underlying repeated field.
+ template <typename T>
+ MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef(
+ Message* message, const FieldDescriptor* field) const;
+
+ // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field
+ // access. The following repeated field accessors will be removed in the
+ // future.
+ //
+ // Repeated field accessors -------------------------------------------------
+ // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
+ // access to the data in a RepeatedField. The methods below provide aggregate
+ // access by exposing the RepeatedField object itself with the Message.
+ // Applying these templates to inappropriate types will lead to an undefined
+ // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
+ // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
+ //
+ // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
+
+ // DEPRECATED. Please use GetRepeatedFieldRef().
+ //
+ // for T = Cord and all protobuf scalar types except enums.
+ template <typename T>
+ PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
+ const RepeatedField<T>& GetRepeatedField(const Message& msg,
+ const FieldDescriptor* d) const {
+ return GetRepeatedFieldInternal<T>(msg, d);
+ }
+
+ // DEPRECATED. Please use GetMutableRepeatedFieldRef().
+ //
+ // for T = Cord and all protobuf scalar types except enums.
+ template <typename T>
+ PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
+ RepeatedField<T>* MutableRepeatedField(Message* msg,
+ const FieldDescriptor* d) const {
+ return MutableRepeatedFieldInternal<T>(msg, d);
+ }
+
+ // DEPRECATED. Please use GetRepeatedFieldRef().
+ //
+ // for T = TProtoStringType, google::protobuf::internal::StringPieceField
+ // google::protobuf::Message & descendants.
+ template <typename T>
+ PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
+ const RepeatedPtrField<T>& GetRepeatedPtrField(
+ const Message& msg, const FieldDescriptor* d) const {
+ return GetRepeatedPtrFieldInternal<T>(msg, d);
+ }
+
+ // DEPRECATED. Please use GetMutableRepeatedFieldRef().
+ //
+ // for T = TProtoStringType, google::protobuf::internal::StringPieceField
+ // google::protobuf::Message & descendants.
+ template <typename T>
+ PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
+ RepeatedPtrField<T>* MutableRepeatedPtrField(Message* msg,
+ const FieldDescriptor* d) const {
+ return MutableRepeatedPtrFieldInternal<T>(msg, d);
+ }
+
+ // Extensions ----------------------------------------------------------------
+
+ // Try to find an extension of this message type by fully-qualified field
+ // name. Returns nullptr if no extension is known for this name or number.
+ const FieldDescriptor* FindKnownExtensionByName(
+ const TProtoStringType& name) const;
+
+ // Try to find an extension of this message type by field number.
+ // Returns nullptr if no extension is known for this name or number.
+ const FieldDescriptor* FindKnownExtensionByNumber(int number) const;
+
+ // Feature Flags -------------------------------------------------------------
+
+ // Does this message support storing arbitrary integer values in enum fields?
+ // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions
+ // take arbitrary integer values, and the legacy GetEnum() getter will
+ // dynamically create an EnumValueDescriptor for any integer value without
+ // one. If |false|, setting an unknown enum value via the integer-based
+ // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails).
+ //
+ // Generic code that uses reflection to handle messages with enum fields
+ // should check this flag before using the integer-based setter, and either
+ // downgrade to a compatible value or use the UnknownFieldSet if not. For
+ // example:
+ //
+ // int new_value = GetValueFromApplicationLogic();
+ // if (reflection->SupportsUnknownEnumValues()) {
+ // reflection->SetEnumValue(message, field, new_value);
+ // } else {
+ // if (field_descriptor->enum_type()->
+ // FindValueByNumber(new_value) != nullptr) {
+ // reflection->SetEnumValue(message, field, new_value);
+ // } else if (emit_unknown_enum_values) {
+ // reflection->MutableUnknownFields(message)->AddVarint(
+ // field->number(), new_value);
+ // } else {
+ // // convert value to a compatible/default value.
+ // new_value = CompatibleDowngrade(new_value);
+ // reflection->SetEnumValue(message, field, new_value);
+ // }
+ // }
+ bool SupportsUnknownEnumValues() const;
+
+ // Returns the MessageFactory associated with this message. This can be
+ // useful for determining if a message is a generated message or not, for
+ // example:
+ // if (message->GetReflection()->GetMessageFactory() ==
+ // google::protobuf::MessageFactory::generated_factory()) {
+ // // This is a generated message.
+ // }
+ // It can also be used to create more messages of this type, though
+ // Message::New() is an easier way to accomplish this.
+ MessageFactory* GetMessageFactory() const;
+
+ private:
+ template <typename T>
+ const RepeatedField<T>& GetRepeatedFieldInternal(
+ const Message& message, const FieldDescriptor* field) const;
+ template <typename T>
+ RepeatedField<T>* MutableRepeatedFieldInternal(
+ Message* message, const FieldDescriptor* field) const;
+ template <typename T>
+ const RepeatedPtrField<T>& GetRepeatedPtrFieldInternal(
+ const Message& message, const FieldDescriptor* field) const;
+ template <typename T>
+ RepeatedPtrField<T>* MutableRepeatedPtrFieldInternal(
+ Message* message, const FieldDescriptor* field) const;
+ // Obtain a pointer to a Repeated Field Structure and do some type checking:
+ // on field->cpp_type(),
+ // on field->field_option().ctype() (if ctype >= 0)
+ // of field->message_type() (if message_type != nullptr).
+ // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer).
+ void* MutableRawRepeatedField(Message* message, const FieldDescriptor* field,
+ FieldDescriptor::CppType, int ctype,
+ const Descriptor* message_type) const;
+
+ const void* GetRawRepeatedField(const Message& message,
+ const FieldDescriptor* field,
+ FieldDescriptor::CppType cpptype, int ctype,
+ const Descriptor* message_type) const;
+
+ // The following methods are used to implement (Mutable)RepeatedFieldRef.
+ // A Ref object will store a raw pointer to the repeated field data (obtained
+ // from RepeatedFieldData()) and a pointer to a Accessor (obtained from
+ // RepeatedFieldAccessor) which will be used to access the raw data.
+
+ // Returns a raw pointer to the repeated field
+ //
+ // "cpp_type" and "message_type" are deduced from the type parameter T passed
+ // to Get(Mutable)RepeatedFieldRef. If T is a generated message type,
+ // "message_type" should be set to its descriptor. Otherwise "message_type"
+ // should be set to nullptr. Implementations of this method should check
+ // whether "cpp_type"/"message_type" is consistent with the actual type of the
+ // field. We use 1 routine rather than 2 (const vs mutable) because it is
+ // protected and it doesn't change the message.
+ void* RepeatedFieldData(Message* message, const FieldDescriptor* field,
+ FieldDescriptor::CppType cpp_type,
+ const Descriptor* message_type) const;
+
+ // The returned pointer should point to a singleton instance which implements
+ // the RepeatedFieldAccessor interface.
+ const internal::RepeatedFieldAccessor* RepeatedFieldAccessor(
+ const FieldDescriptor* field) const;
+
+ // Lists all fields of the message which are currently set, except for unknown
+ // fields and stripped fields. See ListFields for details.
+ void ListFieldsOmitStripped(
+ const Message& message,
+ std::vector<const FieldDescriptor*>* output) const;
+
+ bool IsMessageStripped(const Descriptor* descriptor) const {
+ return schema_.IsMessageStripped(descriptor);
+ }
+
+ friend class TextFormat;
+
+ void ListFieldsMayFailOnStripped(
+ const Message& message, bool should_fail,
+ std::vector<const FieldDescriptor*>* output) const;
+
+ // Returns true if the message field is backed by a LazyField.
+ //
+ // A message field may be backed by a LazyField without the user annotation
+ // ([lazy = true]). While the user-annotated LazyField is lazily verified on
+ // first touch (i.e. failure on access rather than parsing if the LazyField is
+ // not initialized), the inferred LazyField is eagerly verified to avoid lazy
+ // parsing error at the cost of lower efficiency. When reflecting a message
+ // field, use this API instead of checking field->options().lazy().
+ bool IsLazyField(const FieldDescriptor* field) const {
+ return IsLazilyVerifiedLazyField(field) ||
+ IsEagerlyVerifiedLazyField(field);
+ }
+
+ // Returns true if the field is lazy extension. It is meant to allow python
+ // reparse lazy field until b/157559327 is fixed.
+ bool IsLazyExtension(const Message& message,
+ const FieldDescriptor* field) const;
+
+ bool IsLazilyVerifiedLazyField(const FieldDescriptor* field) const;
+ bool IsEagerlyVerifiedLazyField(const FieldDescriptor* field) const;
+
+ friend class FastReflectionMessageMutator;
+
+ const Descriptor* const descriptor_;
+ const internal::ReflectionSchema schema_;
+ const DescriptorPool* const descriptor_pool_;
+ MessageFactory* const message_factory_;
+
+ // Last non weak field index. This is an optimization when most weak fields
+ // are at the end of the containing message. If a message proto doesn't
+ // contain weak fields, then this field equals descriptor_->field_count().
+ int last_non_weak_field_index_;
+
+ template <typename T, typename Enable>
+ friend class RepeatedFieldRef;
+ template <typename T, typename Enable>
+ friend class MutableRepeatedFieldRef;
+ friend class ::PROTOBUF_NAMESPACE_ID::MessageLayoutInspector;
+ friend class ::PROTOBUF_NAMESPACE_ID::AssignDescriptorsHelper;
+ friend class DynamicMessageFactory;
+ friend class DynamicMessageReflectionHelper;
+ friend class GeneratedMessageReflectionTestHelper;
+ friend class python::MapReflectionFriend;
+ friend class python::MessageReflectionFriend;
+ friend class util::MessageDifferencer;
+#define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND
+ friend class expr::CelMapReflectionFriend;
+ friend class internal::MapFieldReflectionTest;
+ friend class internal::MapKeySorter;
+ friend class internal::WireFormat;
+ friend class internal::ReflectionOps;
+ friend class internal::SwapFieldHelper;
+ // Needed for implementing text format for map.
+ friend class internal::MapFieldPrinterHelper;
+
+ Reflection(const Descriptor* descriptor,
+ const internal::ReflectionSchema& schema,
+ const DescriptorPool* pool, MessageFactory* factory);
+
+ // Special version for specialized implementations of string. We can't
+ // call MutableRawRepeatedField directly here because we don't have access to
+ // FieldOptions::* which are defined in descriptor.pb.h. Including that
+ // file here is not possible because it would cause a circular include cycle.
+ // We use 1 routine rather than 2 (const vs mutable) because it is private
+ // and mutable a repeated string field doesn't change the message.
+ void* MutableRawRepeatedString(Message* message, const FieldDescriptor* field,
+ bool is_string) const;
+
+ friend class MapReflectionTester;
+ // Returns true if key is in map. Returns false if key is not in map field.
+ bool ContainsMapKey(const Message& message, const FieldDescriptor* field,
+ const MapKey& key) const;
+
+ // If key is in map field: Saves the value pointer to val and returns
+ // false. If key in not in map field: Insert the key into map, saves
+ // value pointer to val and returns true. Users are able to modify the
+ // map value by MapValueRef.
+ bool InsertOrLookupMapValue(Message* message, const FieldDescriptor* field,
+ const MapKey& key, MapValueRef* val) const;
+
+ // If key is in map field: Saves the value pointer to val and returns true.
+ // Returns false if key is not in map field. Users are NOT able to modify
+ // the value by MapValueConstRef.
+ bool LookupMapValue(const Message& message, const FieldDescriptor* field,
+ const MapKey& key, MapValueConstRef* val) const;
+ bool LookupMapValue(const Message&, const FieldDescriptor*, const MapKey&,
+ MapValueRef*) const = delete;
+
+ // Delete and returns true if key is in the map field. Returns false
+ // otherwise.
+ bool DeleteMapValue(Message* message, const FieldDescriptor* field,
+ const MapKey& key) const;
+
+ // Returns a MapIterator referring to the first element in the map field.
+ // If the map field is empty, this function returns the same as
+ // reflection::MapEnd. Mutation to the field may invalidate the iterator.
+ MapIterator MapBegin(Message* message, const FieldDescriptor* field) const;
+
+ // Returns a MapIterator referring to the theoretical element that would
+ // follow the last element in the map field. It does not point to any
+ // real element. Mutation to the field may invalidate the iterator.
+ MapIterator MapEnd(Message* message, const FieldDescriptor* field) const;
+
+ // Get the number of <key, value> pair of a map field. The result may be
+ // different from FieldSize which can have duplicate keys.
+ int MapSize(const Message& message, const FieldDescriptor* field) const;
+
+ // Help method for MapIterator.
+ friend class MapIterator;
+ friend class WireFormatForMapFieldTest;
+ internal::MapFieldBase* MutableMapData(Message* message,
+ const FieldDescriptor* field) const;
+
+ const internal::MapFieldBase* GetMapData(const Message& message,
+ const FieldDescriptor* field) const;
+
+ template <class T>
+ const T& GetRawNonOneof(const Message& message,
+ const FieldDescriptor* field) const;
+ template <class T>
+ T* MutableRawNonOneof(Message* message, const FieldDescriptor* field) const;
+
+ template <typename Type>
+ const Type& GetRaw(const Message& message,
+ const FieldDescriptor* field) const;
+ template <typename Type>
+ inline Type* MutableRaw(Message* message, const FieldDescriptor* field) const;
+ template <typename Type>
+ const Type& DefaultRaw(const FieldDescriptor* field) const;
+
+ const Message* GetDefaultMessageInstance(const FieldDescriptor* field) const;
+
+ inline const arc_ui32* GetHasBits(const Message& message) const;
+ inline arc_ui32* MutableHasBits(Message* message) const;
+ inline arc_ui32 GetOneofCase(const Message& message,
+ const OneofDescriptor* oneof_descriptor) const;
+ inline arc_ui32* MutableOneofCase(
+ Message* message, const OneofDescriptor* oneof_descriptor) const;
+ inline bool HasExtensionSet(const Message& /* message */) const {
+ return schema_.HasExtensionSet();
+ }
+ const internal::ExtensionSet& GetExtensionSet(const Message& message) const;
+ internal::ExtensionSet* MutableExtensionSet(Message* message) const;
+
+ inline const internal::InternalMetadata& GetInternalMetadata(
+ const Message& message) const;
+
+ internal::InternalMetadata* MutableInternalMetadata(Message* message) const;
+
+ inline bool IsInlined(const FieldDescriptor* field) const;
+
+ inline bool HasBit(const Message& message,
+ const FieldDescriptor* field) const;
+ inline void SetBit(Message* message, const FieldDescriptor* field) const;
+ inline void ClearBit(Message* message, const FieldDescriptor* field) const;
+ inline void SwapBit(Message* message1, Message* message2,
+ const FieldDescriptor* field) const;
+
+ inline const arc_ui32* GetInlinedStringDonatedArray(
+ const Message& message) const;
+ inline arc_ui32* MutableInlinedStringDonatedArray(Message* message) const;
+ inline bool IsInlinedStringDonated(const Message& message,
+ const FieldDescriptor* field) const;
+
+ // Shallow-swap fields listed in fields vector of two messages. It is the
+ // caller's responsibility to make sure shallow swap is safe.
+ void UnsafeShallowSwapFields(
+ Message* message1, Message* message2,
+ const std::vector<const FieldDescriptor*>& fields) const;
+
+ // This function only swaps the field. Should swap corresponding has_bit
+ // before or after using this function.
+ void SwapField(Message* message1, Message* message2,
+ const FieldDescriptor* field) const;
+
+ // Unsafe but shallow version of SwapField.
+ void UnsafeShallowSwapField(Message* message1, Message* message2,
+ const FieldDescriptor* field) const;
+
+ template <bool unsafe_shallow_swap>
+ void SwapFieldsImpl(Message* message1, Message* message2,
+ const std::vector<const FieldDescriptor*>& fields) const;
+
+ template <bool unsafe_shallow_swap>
+ void SwapOneofField(Message* lhs, Message* rhs,
+ const OneofDescriptor* oneof_descriptor) const;
+
+ inline bool HasOneofField(const Message& message,
+ const FieldDescriptor* field) const;
+ inline void SetOneofCase(Message* message,
+ const FieldDescriptor* field) const;
+ inline void ClearOneofField(Message* message,
+ const FieldDescriptor* field) const;
+
+ template <typename Type>
+ inline const Type& GetField(const Message& message,
+ const FieldDescriptor* field) const;
+ template <typename Type>
+ inline void SetField(Message* message, const FieldDescriptor* field,
+ const Type& value) const;
+ template <typename Type>
+ inline Type* MutableField(Message* message,
+ const FieldDescriptor* field) const;
+ template <typename Type>
+ inline const Type& GetRepeatedField(const Message& message,
+ const FieldDescriptor* field,
+ int index) const;
+ template <typename Type>
+ inline const Type& GetRepeatedPtrField(const Message& message,
+ const FieldDescriptor* field,
+ int index) const;
+ template <typename Type>
+ inline void SetRepeatedField(Message* message, const FieldDescriptor* field,
+ int index, Type value) const;
+ template <typename Type>
+ inline Type* MutableRepeatedField(Message* message,
+ const FieldDescriptor* field,
+ int index) const;
+ template <typename Type>
+ inline void AddField(Message* message, const FieldDescriptor* field,
+ const Type& value) const;
+ template <typename Type>
+ inline Type* AddField(Message* message, const FieldDescriptor* field) const;
+
+ int GetExtensionNumberOrDie(const Descriptor* type) const;
+
+ // Internal versions of EnumValue API perform no checking. Called after checks
+ // by public methods.
+ void SetEnumValueInternal(Message* message, const FieldDescriptor* field,
+ int value) const;
+ void SetRepeatedEnumValueInternal(Message* message,
+ const FieldDescriptor* field, int index,
+ int value) const;
+ void AddEnumValueInternal(Message* message, const FieldDescriptor* field,
+ int value) const;
+
+ friend inline // inline so nobody can call this function.
+ void
+ RegisterAllTypesInternal(const Metadata* file_level_metadata, int size);
+ friend inline const char* ParseLenDelim(int field_number,
+ const FieldDescriptor* field,
+ Message* msg,
+ const Reflection* reflection,
+ const char* ptr,
+ internal::ParseContext* ctx);
+ friend inline const char* ParsePackedField(const FieldDescriptor* field,
+ Message* msg,
+ const Reflection* reflection,
+ const char* ptr,
+ internal::ParseContext* ctx);
+
+ GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
+};
+
+// Abstract interface for a factory for message objects.
+class PROTOBUF_EXPORT MessageFactory {
+ public:
+ inline MessageFactory() {}
+ virtual ~MessageFactory();
+
+ // Given a Descriptor, gets or constructs the default (prototype) Message
+ // of that type. You can then call that message's New() method to construct
+ // a mutable message of that type.
+ //
+ // Calling this method twice with the same Descriptor returns the same
+ // object. The returned object remains property of the factory. Also, any
+ // objects created by calling the prototype's New() method share some data
+ // with the prototype, so these must be destroyed before the MessageFactory
+ // is destroyed.
+ //
+ // The given descriptor must outlive the returned message, and hence must
+ // outlive the MessageFactory.
+ //
+ // Some implementations do not support all types. GetPrototype() will
+ // return nullptr if the descriptor passed in is not supported.
+ //
+ // This method may or may not be thread-safe depending on the implementation.
+ // Each implementation should document its own degree thread-safety.
+ virtual const Message* GetPrototype(const Descriptor* type) = 0;
+
+ // Gets a MessageFactory which supports all generated, compiled-in messages.
+ // In other words, for any compiled-in type FooMessage, the following is true:
+ // MessageFactory::generated_factory()->GetPrototype(
+ // FooMessage::descriptor()) == FooMessage::default_instance()
+ // This factory supports all types which are found in
+ // DescriptorPool::generated_pool(). If given a descriptor from any other
+ // pool, GetPrototype() will return nullptr. (You can also check if a
+ // descriptor is for a generated message by checking if
+ // descriptor->file()->pool() == DescriptorPool::generated_pool().)
+ //
+ // This factory is 100% thread-safe; calling GetPrototype() does not modify
+ // any shared data.
+ //
+ // This factory is a singleton. The caller must not delete the object.
+ static MessageFactory* generated_factory();
+
+ // For internal use only: Registers a .proto file at static initialization
+ // time, to be placed in generated_factory. The first time GetPrototype()
+ // is called with a descriptor from this file, |register_messages| will be
+ // called, with the file name as the parameter. It must call
+ // InternalRegisterGeneratedMessage() (below) to register each message type
+ // in the file. This strange mechanism is necessary because descriptors are
+ // built lazily, so we can't register types by their descriptor until we
+ // know that the descriptor exists. |filename| must be a permanent string.
+ static void InternalRegisterGeneratedFile(
+ const google::protobuf::internal::DescriptorTable* table);
+
+ // For internal use only: Registers a message type. Called only by the
+ // functions which are registered with InternalRegisterGeneratedFile(),
+ // above.
+ static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
+ const Message* prototype);
+
+
+ private:
+ GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
+};
+
+#define DECLARE_GET_REPEATED_FIELD(TYPE) \
+ template <> \
+ PROTOBUF_EXPORT const RepeatedField<TYPE>& \
+ Reflection::GetRepeatedFieldInternal<TYPE>( \
+ const Message& message, const FieldDescriptor* field) const; \
+ \
+ template <> \
+ PROTOBUF_EXPORT RepeatedField<TYPE>* \
+ Reflection::MutableRepeatedFieldInternal<TYPE>( \
+ Message * message, const FieldDescriptor* field) const;
+
+DECLARE_GET_REPEATED_FIELD(arc_i32)
+DECLARE_GET_REPEATED_FIELD(arc_i64)
+DECLARE_GET_REPEATED_FIELD(arc_ui32)
+DECLARE_GET_REPEATED_FIELD(arc_ui64)
+DECLARE_GET_REPEATED_FIELD(float)
+DECLARE_GET_REPEATED_FIELD(double)
+DECLARE_GET_REPEATED_FIELD(bool)
+
+#undef DECLARE_GET_REPEATED_FIELD
+
+// Tries to downcast this message to a generated message type. Returns nullptr
+// if this class is not an instance of T. This works even if RTTI is disabled.
+//
+// This also has the effect of creating a strong reference to T that will
+// prevent the linker from stripping it out at link time. This can be important
+// if you are using a DynamicMessageFactory that delegates to the generated
+// factory.
+template <typename T>
+const T* DynamicCastToGenerated(const Message* from) {
+ // Compile-time assert that T is a generated type that has a
+ // default_instance() accessor, but avoid actually calling it.
+ const T& (*get_default_instance)() = &T::default_instance;
+ (void)get_default_instance;
+
+ // Compile-time assert that T is a subclass of google::protobuf::Message.
+ const Message* unused = static_cast<T*>(nullptr);
+ (void)unused;
+
+#if PROTOBUF_RTTI
+ return dynamic_cast<const T*>(from);
+#else
+ bool ok = from != nullptr &&
+ T::default_instance().GetReflection() == from->GetReflection();
+ return ok ? down_cast<const T*>(from) : nullptr;
+#endif
+}
+
+template <typename T>
+T* DynamicCastToGenerated(Message* from) {
+ const Message* message_const = from;
+ return const_cast<T*>(DynamicCastToGenerated<T>(message_const));
+}
+
+// Call this function to ensure that this message's reflection is linked into
+// the binary:
+//
+// google::protobuf::LinkMessageReflection<FooMessage>();
+//
+// This will ensure that the following lookup will succeed:
+//
+// DescriptorPool::generated_pool()->FindMessageTypeByName("FooMessage");
+//
+// As a side-effect, it will also guarantee that anything else from the same
+// .proto file will also be available for lookup in the generated pool.
+//
+// This function does not actually register the message, so it does not need
+// to be called before the lookup. However it does need to occur in a function
+// that cannot be stripped from the binary (ie. it must be reachable from main).
+//
+// Best practice is to call this function as close as possible to where the
+// reflection is actually needed. This function is very cheap to call, so you
+// should not need to worry about its runtime overhead except in the tightest
+// of loops (on x86-64 it compiles into two "mov" instructions).
+template <typename T>
+void LinkMessageReflection() {
+ internal::StrongReference(T::default_instance);
+}
+
+// =============================================================================
+// Implementation details for {Get,Mutable}RawRepeatedPtrField. We provide
+// specializations for <TProtoStringType>, <StringPieceField> and <Message> and
+// handle everything else with the default template which will match any type
+// having a method with signature "static const google::protobuf::Descriptor*
+// descriptor()". Such a type presumably is a descendant of google::protobuf::Message.
+
+template <>
+inline const RepeatedPtrField<TProtoStringType>&
+Reflection::GetRepeatedPtrFieldInternal<TProtoStringType>(
+ const Message& message, const FieldDescriptor* field) const {
+ return *static_cast<RepeatedPtrField<TProtoStringType>*>(
+ MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
+}
+
+template <>
+inline RepeatedPtrField<TProtoStringType>*
+Reflection::MutableRepeatedPtrFieldInternal<TProtoStringType>(
+ Message* message, const FieldDescriptor* field) const {
+ return static_cast<RepeatedPtrField<TProtoStringType>*>(
+ MutableRawRepeatedString(message, field, true));
+}
+
+
+// -----
+
+template <>
+inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrFieldInternal(
+ const Message& message, const FieldDescriptor* field) const {
+ return *static_cast<const RepeatedPtrField<Message>*>(GetRawRepeatedField(
+ message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
+}
+
+template <>
+inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrFieldInternal(
+ Message* message, const FieldDescriptor* field) const {
+ return static_cast<RepeatedPtrField<Message>*>(MutableRawRepeatedField(
+ message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
+}
+
+template <typename PB>
+inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrFieldInternal(
+ const Message& message, const FieldDescriptor* field) const {
+ return *static_cast<const RepeatedPtrField<PB>*>(
+ GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1,
+ PB::default_instance().GetDescriptor()));
+}
+
+template <typename PB>
+inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrFieldInternal(
+ Message* message, const FieldDescriptor* field) const {
+ return static_cast<RepeatedPtrField<PB>*>(
+ MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
+ -1, PB::default_instance().GetDescriptor()));
+}
+
+template <typename Type>
+const Type& Reflection::DefaultRaw(const FieldDescriptor* field) const {
+ return *reinterpret_cast<const Type*>(schema_.GetFieldDefault(field));
+}
+
+arc_ui32 Reflection::GetOneofCase(
+ const Message& message, const OneofDescriptor* oneof_descriptor) const {
+ GOOGLE_DCHECK(!oneof_descriptor->is_synthetic());
+ return internal::GetConstRefAtOffset<arc_ui32>(
+ message, schema_.GetOneofCaseOffset(oneof_descriptor));
+}
+
+bool Reflection::HasOneofField(const Message& message,
+ const FieldDescriptor* field) const {
+ return (GetOneofCase(message, field->containing_oneof()) ==
+ static_cast<arc_ui32>(field->number()));
+}
+
+template <typename Type>
+const Type& Reflection::GetRaw(const Message& message,
+ const FieldDescriptor* field) const {
+ GOOGLE_DCHECK(!schema_.InRealOneof(field) || HasOneofField(message, field))
+ << "Field = " << field->full_name();
+ return internal::GetConstRefAtOffset<Type>(message,
+ schema_.GetFieldOffset(field));
+}
+} // namespace protobuf
+} // namespace google
+
+#include <google/protobuf/port_undef.inc>
+
+#endif // GOOGLE_PROTOBUF_MESSAGE_H__