diff options
author | thegeorg <thegeorg@yandex-team.com> | 2023-10-03 11:19:48 +0300 |
---|---|---|
committer | thegeorg <thegeorg@yandex-team.com> | 2023-10-03 11:43:28 +0300 |
commit | cda0c13f23f6b169fb0a49dc504b40a0aaecea09 (patch) | |
tree | 26476e92e5af2c856e017afb1df8f8dff42495bf /contrib/libs/pcre2/src/sljit/sljitLir.h | |
parent | 4854116da9c5e3c95bb8440f2ea997c54b6e1a61 (diff) | |
download | ydb-cda0c13f23f6b169fb0a49dc504b40a0aaecea09.tar.gz |
Move contrib/tools/jdk to build/platform/java/jdk/testing
Diffstat (limited to 'contrib/libs/pcre2/src/sljit/sljitLir.h')
-rw-r--r-- | contrib/libs/pcre2/src/sljit/sljitLir.h | 1823 |
1 files changed, 1823 insertions, 0 deletions
diff --git a/contrib/libs/pcre2/src/sljit/sljitLir.h b/contrib/libs/pcre2/src/sljit/sljitLir.h new file mode 100644 index 0000000000..a666a2643f --- /dev/null +++ b/contrib/libs/pcre2/src/sljit/sljitLir.h @@ -0,0 +1,1823 @@ +/* + * Stack-less Just-In-Time compiler + * + * Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, are + * permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this list of + * conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, this list + * of conditions and the following disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT + * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED + * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR + * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN + * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef SLJIT_LIR_H_ +#define SLJIT_LIR_H_ + +/* + ------------------------------------------------------------------------ + Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC) + ------------------------------------------------------------------------ + + Short description + Advantages: + - The execution can be continued from any LIR instruction. In other + words, it is possible to jump to any label from anywhere, even from + a code fragment, which is compiled later, as long as the compiling + context is the same. See sljit_emit_enter for more details. + - Supports self modifying code: target of any jump and call + instructions and some constant values can be dynamically modified + during runtime. See SLJIT_REWRITABLE_JUMP. + - although it is not suggested to do it frequently + - can be used for inline caching: save an important value once + in the instruction stream + - A fixed stack space can be allocated for local variables + - The compiler is thread-safe + - The compiler is highly configurable through preprocessor macros. + You can disable unneeded features (multithreading in single + threaded applications), and you can use your own system functions + (including memory allocators). See sljitConfig.h. + Disadvantages: + - The compiler is more like a platform independent assembler, so + there is no built-in variable management. Registers and stack must + be managed manually (the name of the compiler refers to this). + In practice: + - This approach is very effective for interpreters + - One of the saved registers typically points to a stack interface + - It can jump to any exception handler anytime (even if it belongs + to another function) + - Hot paths can be modified during runtime reflecting the changes + of the fastest execution path of the dynamic language + - SLJIT supports complex memory addressing modes + - mainly position and context independent code (except some cases) + + For valgrind users: + - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code" +*/ + +#if (defined SLJIT_HAVE_CONFIG_PRE && SLJIT_HAVE_CONFIG_PRE) +#error #include "sljitConfigPre.h" +#endif /* SLJIT_HAVE_CONFIG_PRE */ + +#include "sljitConfig.h" + +/* The following header file defines useful macros for fine tuning +SLJIT based code generators. They are listed in the beginning +of sljitConfigInternal.h */ + +#include "sljitConfigInternal.h" + +#if (defined SLJIT_HAVE_CONFIG_POST && SLJIT_HAVE_CONFIG_POST) +#error #include "sljitConfigPost.h" +#endif /* SLJIT_HAVE_CONFIG_POST */ + +#ifdef __cplusplus +extern "C" { +#endif + +/* Version numbers. */ +#define SLJIT_MAJOR_VERSION 0 +#define SLJIT_MINOR_VERSION 95 + +/* --------------------------------------------------------------------- */ +/* Error codes */ +/* --------------------------------------------------------------------- */ + +/* Indicates no error. */ +#define SLJIT_SUCCESS 0 +/* After the call of sljit_generate_code(), the error code of the compiler + is set to this value to avoid further code generation. + The complier should be freed after sljit_generate_code(). */ +#define SLJIT_ERR_COMPILED 1 +/* Cannot allocate non-executable memory. */ +#define SLJIT_ERR_ALLOC_FAILED 2 +/* Cannot allocate executable memory. + Only sljit_generate_code() returns with this error code. */ +#define SLJIT_ERR_EX_ALLOC_FAILED 3 +/* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */ +#define SLJIT_ERR_UNSUPPORTED 4 +/* An ivalid argument is passed to any SLJIT function. */ +#define SLJIT_ERR_BAD_ARGUMENT 5 + +/* --------------------------------------------------------------------- */ +/* Registers */ +/* --------------------------------------------------------------------- */ + +/* + Scratch (R) registers: registers which may not preserve their values + across function calls. + + Saved (S) registers: registers which preserve their values across + function calls. + + The scratch and saved register sets overlap. The last scratch register + is the first saved register, the one before the last is the second saved + register, and so on. + + If an architecture provides two scratch and three saved registers, + its scratch and saved register sets are the following: + + R0 | | R0 is always a scratch register + R1 | | R1 is always a scratch register + [R2] | S2 | R2 and S2 represent the same physical register + [R3] | S1 | R3 and S1 represent the same physical register + [R4] | S0 | R4 and S0 represent the same physical register + + Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and + SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture. + + Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 12 + and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 6. However, 6 registers + are virtual on x86-32. See below. + + The purpose of this definition is convenience: saved registers can + be used as extra scratch registers. For example four registers can + be specified as scratch registers and the fifth one as saved register + on the CPU above and any user code which requires four scratch + registers can run unmodified. The SLJIT compiler automatically saves + the content of the two extra scratch register on the stack. Scratch + registers can also be preserved by saving their value on the stack + but this needs to be done manually. + + Note: To emphasize that registers assigned to R2-R4 are saved + registers, they are enclosed by square brackets. + + Note: sljit_emit_enter and sljit_set_context defines whether a register + is S or R register. E.g: when 3 scratches and 1 saved is mapped + by sljit_emit_enter, the allowed register set will be: R0-R2 and + S0. Although S2 is mapped to the same position as R2, it does not + available in the current configuration. Furthermore the S1 register + is not available at all. +*/ + +/* Scratch registers. */ +#define SLJIT_R0 1 +#define SLJIT_R1 2 +#define SLJIT_R2 3 +/* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they + are allocated on the stack). These registers are called virtual + and cannot be used for memory addressing (cannot be part of + any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such + limitation on other CPUs. See sljit_get_register_index(). */ +#define SLJIT_R3 4 +#define SLJIT_R4 5 +#define SLJIT_R5 6 +#define SLJIT_R6 7 +#define SLJIT_R7 8 +#define SLJIT_R8 9 +#define SLJIT_R9 10 +/* All R registers provided by the architecture can be accessed by SLJIT_R(i) + The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */ +#define SLJIT_R(i) (1 + (i)) + +/* Saved registers. */ +#define SLJIT_S0 (SLJIT_NUMBER_OF_REGISTERS) +#define SLJIT_S1 (SLJIT_NUMBER_OF_REGISTERS - 1) +#define SLJIT_S2 (SLJIT_NUMBER_OF_REGISTERS - 2) +/* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they + are allocated on the stack). These registers are called virtual + and cannot be used for memory addressing (cannot be part of + any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such + limitation on other CPUs. See sljit_get_register_index(). */ +#define SLJIT_S3 (SLJIT_NUMBER_OF_REGISTERS - 3) +#define SLJIT_S4 (SLJIT_NUMBER_OF_REGISTERS - 4) +#define SLJIT_S5 (SLJIT_NUMBER_OF_REGISTERS - 5) +#define SLJIT_S6 (SLJIT_NUMBER_OF_REGISTERS - 6) +#define SLJIT_S7 (SLJIT_NUMBER_OF_REGISTERS - 7) +#define SLJIT_S8 (SLJIT_NUMBER_OF_REGISTERS - 8) +#define SLJIT_S9 (SLJIT_NUMBER_OF_REGISTERS - 9) +/* All S registers provided by the architecture can be accessed by SLJIT_S(i) + The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */ +#define SLJIT_S(i) (SLJIT_NUMBER_OF_REGISTERS - (i)) + +/* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */ +#define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1) + +/* The SLJIT_SP provides direct access to the linear stack space allocated by + sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP). + The immediate offset is extended by the relative stack offset automatically. + The sljit_get_local_base can be used to obtain the real address of a value. */ +#define SLJIT_SP (SLJIT_NUMBER_OF_REGISTERS + 1) + +/* Return with machine word. */ + +#define SLJIT_RETURN_REG SLJIT_R0 + +/* --------------------------------------------------------------------- */ +/* Floating point registers */ +/* --------------------------------------------------------------------- */ + +/* Each floating point register can store a 32 or a 64 bit precision + value. The FR and FS register sets are overlap in the same way as R + and S register sets. See above. */ + +/* Floating point scratch registers. */ +#define SLJIT_FR0 1 +#define SLJIT_FR1 2 +#define SLJIT_FR2 3 +#define SLJIT_FR3 4 +#define SLJIT_FR4 5 +#define SLJIT_FR5 6 +/* All FR registers provided by the architecture can be accessed by SLJIT_FR(i) + The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */ +#define SLJIT_FR(i) (1 + (i)) + +/* Floating point saved registers. */ +#define SLJIT_FS0 (SLJIT_NUMBER_OF_FLOAT_REGISTERS) +#define SLJIT_FS1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1) +#define SLJIT_FS2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2) +#define SLJIT_FS3 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3) +#define SLJIT_FS4 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4) +#define SLJIT_FS5 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5) +/* All S registers provided by the architecture can be accessed by SLJIT_FS(i) + The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */ +#define SLJIT_FS(i) (SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i)) + +/* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */ +#define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1) + +/* Return with floating point arg. */ + +#define SLJIT_RETURN_FREG SLJIT_FR0 + +/* --------------------------------------------------------------------- */ +/* Argument type definitions */ +/* --------------------------------------------------------------------- */ + +/* The following argument type definitions are used by sljit_emit_enter, + sljit_set_context, sljit_emit_call, and sljit_emit_icall functions. + + As for sljit_emit_call and sljit_emit_icall, the first integer argument + must be placed into SLJIT_R0, the second one into SLJIT_R1, and so on. + Similarly the first floating point argument must be placed into SLJIT_FR0, + the second one into SLJIT_FR1, and so on. + + As for sljit_emit_enter, the integer arguments can be stored in scratch + or saved registers. The first integer argument without _R postfix is + stored in SLJIT_S0, the next one in SLJIT_S1, and so on. The integer + arguments with _R postfix are placed into scratch registers. The index + of the scratch register is the count of the previous integer arguments + starting from SLJIT_R0. The floating point arguments are always placed + into SLJIT_FR0, SLJIT_FR1, and so on. + + Note: if a function is called by sljit_emit_call/sljit_emit_icall and + an argument is stored in a scratch register by sljit_emit_enter, + that argument uses the same scratch register index for both + integer and floating point arguments. + + Example function definition: + sljit_f32 SLJIT_FUNC example_c_callback(void *arg_a, + sljit_f64 arg_b, sljit_u32 arg_c, sljit_f32 arg_d); + + Argument type definition: + SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_F32) + | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_P, 1) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F64, 2) + | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_32, 3) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F32, 4) + + Short form of argument type definition: + SLJIT_ARGS4(32, P, F64, 32, F32) + + Argument passing: + arg_a must be placed in SLJIT_R0 + arg_c must be placed in SLJIT_R1 + arg_b must be placed in SLJIT_FR0 + arg_d must be placed in SLJIT_FR1 + + Examples for argument processing by sljit_emit_enter: + SLJIT_ARGS4(VOID, P, 32_R, F32, W) + Arguments are placed into: SLJIT_S0, SLJIT_R1, SLJIT_FR0, SLJIT_S1 + + SLJIT_ARGS4(VOID, W, W_R, W, W_R) + Arguments are placed into: SLJIT_S0, SLJIT_R1, SLJIT_S1, SLJIT_R3 + + SLJIT_ARGS4(VOID, F64, W, F32, W_R) + Arguments are placed into: SLJIT_FR0, SLJIT_S0, SLJIT_FR1, SLJIT_R1 + + Note: it is recommended to pass the scratch arguments first + followed by the saved arguments: + + SLJIT_ARGS4(VOID, W_R, W_R, W, W) + Arguments are placed into: SLJIT_R0, SLJIT_R1, SLJIT_S0, SLJIT_S1 +*/ + +/* The following flag is only allowed for the integer arguments of + sljit_emit_enter. When the flag is set, the integer argument is + stored in a scratch register instead of a saved register. */ +#define SLJIT_ARG_TYPE_SCRATCH_REG 0x8 + +/* Void result, can only be used by SLJIT_ARG_RETURN. */ +#define SLJIT_ARG_TYPE_VOID 0 +/* Machine word sized integer argument or result. */ +#define SLJIT_ARG_TYPE_W 1 +#define SLJIT_ARG_TYPE_W_R (SLJIT_ARG_TYPE_W | SLJIT_ARG_TYPE_SCRATCH_REG) +/* 32 bit integer argument or result. */ +#define SLJIT_ARG_TYPE_32 2 +#define SLJIT_ARG_TYPE_32_R (SLJIT_ARG_TYPE_32 | SLJIT_ARG_TYPE_SCRATCH_REG) +/* Pointer sized integer argument or result. */ +#define SLJIT_ARG_TYPE_P 3 +#define SLJIT_ARG_TYPE_P_R (SLJIT_ARG_TYPE_P | SLJIT_ARG_TYPE_SCRATCH_REG) +/* 64 bit floating point argument or result. */ +#define SLJIT_ARG_TYPE_F64 4 +/* 32 bit floating point argument or result. */ +#define SLJIT_ARG_TYPE_F32 5 + +#define SLJIT_ARG_SHIFT 4 +#define SLJIT_ARG_RETURN(type) (type) +#define SLJIT_ARG_VALUE(type, idx) ((type) << ((idx) * SLJIT_ARG_SHIFT)) + +/* Simplified argument list definitions. + + The following definition: + SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_W) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F32, 1) + + can be shortened to: + SLJIT_ARGS1(W, F32) +*/ + +#define SLJIT_ARG_TO_TYPE(type) SLJIT_ARG_TYPE_ ## type + +#define SLJIT_ARGS0(ret) \ + SLJIT_ARG_RETURN(SLJIT_ARG_TO_TYPE(ret)) + +#define SLJIT_ARGS1(ret, arg1) \ + (SLJIT_ARGS0(ret) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg1), 1)) + +#define SLJIT_ARGS2(ret, arg1, arg2) \ + (SLJIT_ARGS1(ret, arg1) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg2), 2)) + +#define SLJIT_ARGS3(ret, arg1, arg2, arg3) \ + (SLJIT_ARGS2(ret, arg1, arg2) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg3), 3)) + +#define SLJIT_ARGS4(ret, arg1, arg2, arg3, arg4) \ + (SLJIT_ARGS3(ret, arg1, arg2, arg3) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg4), 4)) + +/* --------------------------------------------------------------------- */ +/* Main structures and functions */ +/* --------------------------------------------------------------------- */ + +/* + The following structures are private, and can be changed in the + future. Keeping them here allows code inlining. +*/ + +struct sljit_memory_fragment { + struct sljit_memory_fragment *next; + sljit_uw used_size; + /* Must be aligned to sljit_sw. */ + sljit_u8 memory[1]; +}; + +struct sljit_label { + struct sljit_label *next; + sljit_uw addr; + /* The maximum size difference. */ + sljit_uw size; +}; + +struct sljit_jump { + struct sljit_jump *next; + sljit_uw addr; + /* Architecture dependent flags. */ + sljit_uw flags; + union { + sljit_uw target; + struct sljit_label *label; + } u; +}; + +struct sljit_put_label { + struct sljit_put_label *next; + struct sljit_label *label; + sljit_uw addr; + sljit_uw flags; +}; + +struct sljit_const { + struct sljit_const *next; + sljit_uw addr; +}; + +struct sljit_compiler { + sljit_s32 error; + sljit_s32 options; + + struct sljit_label *labels; + struct sljit_jump *jumps; + struct sljit_put_label *put_labels; + struct sljit_const *consts; + struct sljit_label *last_label; + struct sljit_jump *last_jump; + struct sljit_const *last_const; + struct sljit_put_label *last_put_label; + + void *allocator_data; + void *exec_allocator_data; + struct sljit_memory_fragment *buf; + struct sljit_memory_fragment *abuf; + + /* Available scratch registers. */ + sljit_s32 scratches; + /* Available saved registers. */ + sljit_s32 saveds; + /* Available float scratch registers. */ + sljit_s32 fscratches; + /* Available float saved registers. */ + sljit_s32 fsaveds; + /* Local stack size. */ + sljit_s32 local_size; + /* Maximum code size. */ + sljit_uw size; + /* Relative offset of the executable mapping from the writable mapping. */ + sljit_sw executable_offset; + /* Executable size for statistical purposes. */ + sljit_uw executable_size; + +#if (defined SLJIT_HAS_STATUS_FLAGS_STATE && SLJIT_HAS_STATUS_FLAGS_STATE) + sljit_s32 status_flags_state; +#endif + +#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) + sljit_s32 args_size; +#endif + +#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) + sljit_s32 mode32; +#endif + +#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) + /* Constant pool handling. */ + sljit_uw *cpool; + sljit_u8 *cpool_unique; + sljit_uw cpool_diff; + sljit_uw cpool_fill; + /* Other members. */ + /* Contains pointer, "ldr pc, [...]" pairs. */ + sljit_uw patches; +#endif + +#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7) + /* Temporary fields. */ + sljit_uw shift_imm; +#endif /* SLJIT_CONFIG_ARM_V5 || SLJIT_CONFIG_ARM_V7 */ + +#if (defined SLJIT_CONFIG_ARM_32 && SLJIT_CONFIG_ARM_32) && (defined __SOFTFP__) + sljit_uw args_size; +#endif + +#if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC) + sljit_u32 imm; +#endif + +#if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS) + sljit_s32 delay_slot; + sljit_s32 cache_arg; + sljit_sw cache_argw; +#endif + +#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) + sljit_uw args_size; +#endif + +#if (defined SLJIT_CONFIG_RISCV && SLJIT_CONFIG_RISCV) + sljit_s32 cache_arg; + sljit_sw cache_argw; +#endif + +#if (defined SLJIT_CONFIG_S390X && SLJIT_CONFIG_S390X) + /* Need to allocate register save area to make calls. */ + sljit_s32 mode; +#endif + +#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) + FILE* verbose; +#endif + +#if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \ + || (defined SLJIT_DEBUG && SLJIT_DEBUG) + /* Flags specified by the last arithmetic instruction. + It contains the type of the variable flag. */ + sljit_s32 last_flags; + /* Return value type set by entry functions. */ + sljit_s32 last_return; + /* Local size passed to entry functions. */ + sljit_s32 logical_local_size; +#endif + +#if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \ + || (defined SLJIT_DEBUG && SLJIT_DEBUG) \ + || (defined SLJIT_VERBOSE && SLJIT_VERBOSE) + /* Trust arguments when an API function is called. + Used internally for calling API functions. */ + sljit_s32 skip_checks; +#endif +}; + +/* --------------------------------------------------------------------- */ +/* Main functions */ +/* --------------------------------------------------------------------- */ + +/* Creates an SLJIT compiler. The allocator_data is required by some + custom memory managers. This pointer is passed to SLJIT_MALLOC + and SLJIT_FREE macros. Most allocators (including the default + one) ignores this value, and it is recommended to pass NULL + as a dummy value for allocator_data. The exec_allocator_data + has the same purpose but this one is passed to SLJIT_MALLOC_EXEC / + SLJIT_MALLOC_FREE functions. + + Returns NULL if failed. */ +SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data, void *exec_allocator_data); + +/* Frees everything except the compiled machine code. */ +SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler); + +/* Returns the current error code. If an error occurres, future calls + which uses the same compiler argument returns early with the same + error code. Thus there is no need for checking the error after every + call, it is enough to do it after the code is compiled. Removing + these checks increases the performance of the compiling process. */ +static SLJIT_INLINE sljit_s32 sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; } + +/* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except + if an error was detected before. After the error code is set + the compiler behaves as if the allocation failure happened + during an SLJIT function call. This can greatly simplify error + checking, since it is enough to check the compiler status + after the code is compiled. */ +SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler); + +/* + Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit, + and <= 128 bytes on 64 bit architectures. The memory area is owned by the + compiler, and freed by sljit_free_compiler. The returned pointer is + sizeof(sljit_sw) aligned. Excellent for allocating small blocks during + compiling, and no need to worry about freeing them. The size is enough + to contain at most 16 pointers. If the size is outside of the range, + the function will return with NULL. However, this return value does not + indicate that there is no more memory (does not set the current error code + of the compiler to out-of-memory status). +*/ +SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_s32 size); + +#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) +/* Passing NULL disables verbose. */ +SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose); +#endif + +/* + Create executable code from the instruction stream. This is the final step + of the code generation so no more instructions can be emitted after this call. +*/ + +SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler); + +/* Free executable code. */ + +SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code, void *exec_allocator_data); + +/* + When the protected executable allocator is used the JIT code is mapped + twice. The first mapping has read/write and the second mapping has read/exec + permissions. This function returns with the relative offset of the executable + mapping using the writable mapping as the base after the machine code is + successfully generated. The returned value is always 0 for the normal executable + allocator, since it uses only one mapping with read/write/exec permissions. + Dynamic code modifications requires this value. + + Before a successful code generation, this function returns with 0. +*/ +static SLJIT_INLINE sljit_sw sljit_get_executable_offset(struct sljit_compiler *compiler) { return compiler->executable_offset; } + +/* + The executable memory consumption of the generated code can be retrieved by + this function. The returned value can be used for statistical purposes. + + Before a successful code generation, this function returns with 0. +*/ +static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; } + +/* Returns with non-zero if the feature or limitation type passed as its + argument is present on the current CPU. The return value is one, if a + feature is fully supported, and it is two, if partially supported. + + Some features (e.g. floating point operations) require hardware (CPU) + support while others (e.g. move with update) are emulated if not available. + However, even when a feature is emulated, specialized code paths may be + faster than the emulation. Some limitations are emulated as well so their + general case is supported but it has extra performance costs. */ + +/* [Not emulated] Floating-point support is available. */ +#define SLJIT_HAS_FPU 0 +/* [Limitation] Some registers are virtual registers. */ +#define SLJIT_HAS_VIRTUAL_REGISTERS 1 +/* [Emulated] Has zero register (setting a memory location to zero is efficient). */ +#define SLJIT_HAS_ZERO_REGISTER 2 +/* [Emulated] Count leading zero is supported. */ +#define SLJIT_HAS_CLZ 3 +/* [Emulated] Count trailing zero is supported. */ +#define SLJIT_HAS_CTZ 4 +/* [Emulated] Rotate left/right is supported. */ +#define SLJIT_HAS_ROT 5 +/* [Emulated] Conditional move is supported. */ +#define SLJIT_HAS_CMOV 6 +/* [Emulated] Prefetch instruction is available (emulated as a nop). */ +#define SLJIT_HAS_PREFETCH 7 + +#if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86) +/* [Not emulated] SSE2 support is available on x86. */ +#define SLJIT_HAS_SSE2 100 +#endif + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type); + +/* If type is between SLJIT_ORDERED_EQUAL and SLJIT_ORDERED_LESS_EQUAL, + sljit_cmp_info returns one, if the cpu supports the passed floating + point comparison type. + + If type is SLJIT_UNORDERED or SLJIT_ORDERED, sljit_cmp_info returns + one, if the cpu supports checking the unordered comparison result + regardless of the comparison type passed to the comparison instruction. + The returned value is always one, if there is at least one type between + SLJIT_ORDERED_EQUAL and SLJIT_ORDERED_LESS_EQUAL where sljit_cmp_info + returns with a zero value. + + Otherwise it returns zero. */ +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_cmp_info(sljit_s32 type); + +/* The following functions generate machine code. If there is no + error, they return with SLJIT_SUCCESS, otherwise they return + with an error code. */ + +/* + The executable code is a function from the viewpoint of the C + language. The function calls must obey to the ABI (Application + Binary Interface) of the platform, which specify the purpose of + machine registers and stack handling among other things. The + sljit_emit_enter function emits the necessary instructions for + setting up a new context for the executable code. This is often + called as function prologue. Furthermore the options argument + can be used to pass configuration options to the compiler. The + available options are listed before sljit_emit_enter. + + The function argument list is specified by the SLJIT_ARGSx + (SLJIT_ARGS0 .. SLJIT_ARGS4) macros. Currently maximum four + arguments are supported. See the description of SLJIT_ARGSx + macros about argument passing. Furthermore the register set + used by the function must be declared as well. The number of + scratch and saved registers available to the function must + be passed to sljit_emit_enter. Only R registers between R0 + and "scratches" argument can be used later. E.g. if "scratches" + is set to two, the scratch register set will be limited to + SLJIT_R0 and SLJIT_R1. The S registers and the floating point + registers ("fscratches" and "fsaveds") are specified in a + similar manner. The sljit_emit_enter is also capable of + allocating a stack space for local data. The "local_size" + argument contains the size in bytes of this local area, and + it can be accessed using SLJIT_MEM1(SLJIT_SP). The memory + area between SLJIT_SP (inclusive) and SLJIT_SP + local_size + (exclusive) can be modified freely until the function returns. + The stack space is not initialized to zero. + + Note: the following conditions must met: + 0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS + 0 <= saveds <= SLJIT_NUMBER_OF_SAVED_REGISTERS + scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS + 0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS + 0 <= fsaveds <= SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS + + Note: the compiler can use saved registers as scratch registers, + but the opposite is not supported + + Note: every call of sljit_emit_enter and sljit_set_context + overwrites the previous context. +*/ + +/* Saved registers between SLJIT_S0 and SLJIT_S(n - 1) (inclusive) + are not saved / restored on function enter / return. Instead, + these registers can be used to pass / return data (such as + global / local context pointers) across function calls. The + value of n must be between 1 and 3. This option is only + supported by SLJIT_ENTER_REG_ARG calling convention. */ +#define SLJIT_ENTER_KEEP(n) (n) + +/* The compiled function uses an SLJIT specific register argument + calling convention. This is a lightweight function call type where + both the caller and the called functions must be compiled by + SLJIT. The type argument of the call must be SLJIT_CALL_REG_ARG + and all arguments must be stored in scratch registers. */ +#define SLJIT_ENTER_REG_ARG 0x00000004 + +/* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */ +#define SLJIT_MAX_LOCAL_SIZE 65536 + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler, + sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds, + sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size); + +/* The SLJIT compiler has a current context (which contains the local + stack space size, number of used registers, etc.) which is initialized + by sljit_emit_enter. Several functions (such as sljit_emit_return) + requires this context to be able to generate the appropriate code. + However, some code fragments (compiled separately) may have no + normal entry point so their context is unknown for the compiler. + + The sljit_set_context and sljit_emit_enter have the same arguments, + but sljit_set_context does not generate any machine code. + + Note: every call of sljit_emit_enter and sljit_set_context overwrites + the previous context. */ + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler, + sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds, + sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size); + +/* Return to the caller function. The sljit_emit_return_void function + does not return with any value. The sljit_emit_return function returns + with a single value loaded from its source operand. The load operation + can be between SLJIT_MOV and SLJIT_MOV_P (see sljit_emit_op1) and + SLJIT_MOV_F32/SLJIT_MOV_F64 (see sljit_emit_fop1) depending on the + return value specified by sljit_emit_enter/sljit_set_context. */ + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_void(struct sljit_compiler *compiler); + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op, + sljit_s32 src, sljit_sw srcw); + +/* Restores the saved registers and free the stack area, then the execution + continues from the address specified by the source operand. This + operation is similar to sljit_emit_return, but it ignores the return + address. The code where the exection continues should use the same context + as the caller function (see sljit_set_context). A word (pointer) value + can be passed in the SLJIT_RETURN_REG register. This function can be used + to jump to exception handlers. */ + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_to(struct sljit_compiler *compiler, + sljit_s32 src, sljit_sw srcw); + +/* Generating entry and exit points for fast call functions (see SLJIT_FAST_CALL). + Both sljit_emit_fast_enter and SLJIT_FAST_RETURN operations preserve the + values of all registers and stack frame. The return address is stored in the + dst argument of sljit_emit_fast_enter, and this return address can be passed + to SLJIT_FAST_RETURN to continue the execution after the fast call. + + Fast calls are cheap operations (usually only a single call instruction is + emitted) but they do not preserve any registers. However the callee function + can freely use / update any registers and the local area which can be + efficiently exploited by various optimizations. Registers can be saved + and restored manually if needed. + + Although returning to different address by SLJIT_FAST_RETURN is possible, + this address usually cannot be predicted by the return address predictor of + modern CPUs which may reduce performance. Furthermore certain security + enhancement technologies such as Intel Control-flow Enforcement Technology + (CET) may disallow returning to a different address. + + Flags: - (does not modify flags). */ + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw); + +/* + Source and destination operands for arithmetical instructions + imm - a simple immediate value (cannot be used as a destination) + reg - any of the available registers (immediate argument must be 0) + [imm] - absolute memory address + [reg+imm] - indirect memory address + [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3) + useful for accessing arrays (fully supported by both x86 and + ARM architectures, and cheap operation on others) +*/ + +/* + IMPORTANT NOTE: memory accesses MUST be naturally aligned unless + SLJIT_UNALIGNED macro is defined and its value is 1. + + length | alignment + ---------+----------- + byte | 1 byte (any physical_address is accepted) + half | 2 byte (physical_address & 0x1 == 0) + int | 4 byte (physical_address & 0x3 == 0) + word | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1 + | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1 + pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte + | on 64 bit machines) + + Note: Different architectures have different addressing limitations. + A single instruction is enough for the following addressing + modes. Other adrressing modes are emulated by instruction + sequences. This information could help to improve those code + generators which focuses only a few architectures. + + x86: [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32) + [reg+(reg<<imm)] is supported + [imm], -2^32+1 <= imm <= 2^32-1 is supported + Write-back is not supported + arm: [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed + bytes, any halfs or floating point values) + [reg+(reg<<imm)] is supported + Write-back is supported + arm-t2: [reg+imm], -255 <= imm <= 4095 + [reg+(reg<<imm)] is supported + Write back is supported only for [reg+imm], where -255 <= imm <= 255 + arm64: [reg+imm], -256 <= imm <= 255, 0 <= aligned imm <= 4095 * alignment + [reg+(reg<<imm)] is supported + Write back is supported only for [reg+imm], where -256 <= imm <= 255 + ppc: [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit + signed load on 64 bit requires immediates divisible by 4. + [reg+imm] is not supported for signed 8 bit values. + [reg+reg] is supported + Write-back is supported except for one instruction: 32 bit signed + load with [reg+imm] addressing mode on 64 bit. + mips: [reg+imm], -65536 <= imm <= 65535 + Write-back is not supported + riscv: [reg+imm], -2048 <= imm <= 2047 + Write-back is not supported + s390x: [reg+imm], -2^19 <= imm < 2^19 + [reg+reg] is supported + Write-back is not supported +*/ + +/* Macros for specifying operand types. */ +#define SLJIT_MEM 0x80 +#define SLJIT_MEM0() (SLJIT_MEM) +#define SLJIT_MEM1(r1) (SLJIT_MEM | (r1)) +#define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 8)) +#define SLJIT_IMM 0x40 +#define SLJIT_REG_PAIR(r1, r2) ((r1) | ((r2) << 8)) + +/* Sets 32 bit operation mode on 64 bit CPUs. This option is ignored on + 32 bit CPUs. When this option is set for an arithmetic operation, only + the lower 32 bits of the input registers are used, and the CPU status + flags are set according to the 32 bit result. Although the higher 32 bit + of the input and the result registers are not defined by SLJIT, it might + be defined by the CPU architecture (e.g. MIPS). To satisfy these CPU + requirements all source registers must be the result of those operations + where this option was also set. Memory loads read 32 bit values rather + than 64 bit ones. In other words 32 bit and 64 bit operations cannot be + mixed. The only exception is SLJIT_MOV32 which source register can hold + any 32 or 64 bit value, and it is converted to a 32 bit compatible format + first. When the source and destination registers are the same, this + conversion is free (no instructions are emitted) on most CPUs. A 32 bit + value can also be converted to a 64 bit value by SLJIT_MOV_S32 + (sign extension) or SLJIT_MOV_U32 (zero extension). + + As for floating-point operations, this option sets 32 bit single + precision mode. Similar to the integer operations, all register arguments + must be the result of those operations where this option was also set. + + Note: memory addressing always uses 64 bit values on 64 bit systems so + the result of a 32 bit operation must not be used with SLJIT_MEMx + macros. + + This option is part of the instruction name, so there is no need to + manually set it. E.g: + + SLJIT_ADD32 == (SLJIT_ADD | SLJIT_32) */ +#define SLJIT_32 0x100 + +/* Many CPUs (x86, ARM, PPC) have status flag bits which can be set according + to the result of an operation. Other CPUs (MIPS) do not have status + flag bits, and results must be stored in registers. To cover both + architecture types efficiently only two flags are defined by SLJIT: + + * Zero (equal) flag: it is set if the result is zero + * Variable flag: its value is defined by the arithmetic operation + + SLJIT instructions can set any or both of these flags. The value of + these flags is undefined if the instruction does not specify their + value. The description of each instruction contains the list of + allowed flag types. + + Note: the logical or operation can be used to set flags. + + Example: SLJIT_ADD can set the Z, OVERFLOW, CARRY flags hence + + sljit_op2(..., SLJIT_ADD, ...) + Both the zero and variable flags are undefined so they can + have any value after the operation is completed. + + sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...) + Sets the zero flag if the result is zero, clears it otherwise. + The variable flag is undefined. + + sljit_op2(..., SLJIT_ADD | SLJIT_SET_OVERFLOW, ...) + Sets the variable flag if an integer overflow occurs, clears + it otherwise. The zero flag is undefined. + + sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z | SLJIT_SET_CARRY, ...) + Sets the zero flag if the result is zero, clears it otherwise. + Sets the variable flag if unsigned overflow (carry) occurs, + clears it otherwise. + + Certain instructions (e.g. SLJIT_MOV) does not modify flags, so + status flags are unchanged. + + Example: + + sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...) + sljit_op1(..., SLJIT_MOV, ...) + Zero flag is set according to the result of SLJIT_ADD. + + sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...) + sljit_op2(..., SLJIT_ADD, ...) + Zero flag has unknown value. + + These flags can be used for code optimization. E.g. a fast loop can be + implemented by decreasing a counter register and set the zero flag + using a single instruction. The zero register can be used by a + conditional jump to restart the loop. A single comparison can set a + zero and less flags to check if a value is less, equal, or greater + than another value. + + Motivation: although some CPUs can set a large number of flag bits, + usually their values are ignored or only a few of them are used. Emulating + a large number of flags on systems without a flag register is complicated + so SLJIT instructions must specify the flag they want to use and only + that flag is computed. The last arithmetic instruction can be repeated if + multiple flags need to be checked. +*/ + +/* Set Zero status flag. */ +#define SLJIT_SET_Z 0x0200 +/* Set the variable status flag if condition is true. + See comparison types (e.g. SLJIT_SET_LESS, SLJIT_SET_F_EQUAL). */ +#define SLJIT_SET(condition) ((condition) << 10) + +/* Starting index of opcodes for sljit_emit_op0. */ +#define SLJIT_OP0_BASE 0 + +/* Flags: - (does not modify flags) + Note: breakpoint instruction is not supported by all architectures (e.g. ppc) + It falls back to SLJIT_NOP in those cases. */ +#define SLJIT_BREAKPOINT (SLJIT_OP0_BASE + 0) +/* Flags: - (does not modify flags) + Note: may or may not cause an extra cycle wait + it can even decrease the runtime in a few cases. */ +#define SLJIT_NOP (SLJIT_OP0_BASE + 1) +/* Flags: - (may destroy flags) + Unsigned multiplication of SLJIT_R0 and SLJIT_R1. + Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */ +#define SLJIT_LMUL_UW (SLJIT_OP0_BASE + 2) +/* Flags: - (may destroy flags) + Signed multiplication of SLJIT_R0 and SLJIT_R1. + Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */ +#define SLJIT_LMUL_SW (SLJIT_OP0_BASE + 3) +/* Flags: - (may destroy flags) + Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1. + The result is placed into SLJIT_R0 and the remainder into SLJIT_R1. + Note: if SLJIT_R1 is 0, the behaviour is undefined. */ +#define SLJIT_DIVMOD_UW (SLJIT_OP0_BASE + 4) +#define SLJIT_DIVMOD_U32 (SLJIT_DIVMOD_UW | SLJIT_32) +/* Flags: - (may destroy flags) + Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1. + The result is placed into SLJIT_R0 and the remainder into SLJIT_R1. + Note: if SLJIT_R1 is 0, the behaviour is undefined. + Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00), + the behaviour is undefined. */ +#define SLJIT_DIVMOD_SW (SLJIT_OP0_BASE + 5) +#define SLJIT_DIVMOD_S32 (SLJIT_DIVMOD_SW | SLJIT_32) +/* Flags: - (may destroy flags) + Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1. + The result is placed into SLJIT_R0. SLJIT_R1 preserves its value. + Note: if SLJIT_R1 is 0, the behaviour is undefined. */ +#define SLJIT_DIV_UW (SLJIT_OP0_BASE + 6) +#define SLJIT_DIV_U32 (SLJIT_DIV_UW | SLJIT_32) +/* Flags: - (may destroy flags) + Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1. + The result is placed into SLJIT_R0. SLJIT_R1 preserves its value. + Note: if SLJIT_R1 is 0, the behaviour is undefined. + Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00), + the behaviour is undefined. */ +#define SLJIT_DIV_SW (SLJIT_OP0_BASE + 7) +#define SLJIT_DIV_S32 (SLJIT_DIV_SW | SLJIT_32) +/* Flags: - (does not modify flags) + ENDBR32 instruction for x86-32 and ENDBR64 instruction for x86-64 + when Intel Control-flow Enforcement Technology (CET) is enabled. + No instructions are emitted for other architectures. */ +#define SLJIT_ENDBR (SLJIT_OP0_BASE + 8) +/* Flags: - (may destroy flags) + Skip stack frames before return when Intel Control-flow + Enforcement Technology (CET) is enabled. No instructions + are emitted for other architectures. */ +#define SLJIT_SKIP_FRAMES_BEFORE_RETURN (SLJIT_OP0_BASE + 9) + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op); + +/* Starting index of opcodes for sljit_emit_op1. */ +#define SLJIT_OP1_BASE 32 + +/* The MOV instruction transfers data from source to destination. + + MOV instruction suffixes: + + U8 - unsigned 8 bit data transfer + S8 - signed 8 bit data transfer + U16 - unsigned 16 bit data transfer + S16 - signed 16 bit data transfer + U32 - unsigned int (32 bit) data transfer + S32 - signed int (32 bit) data transfer + P - pointer (sljit_p) data transfer +*/ + +/* Flags: - (does not modify flags) */ +#define SLJIT_MOV (SLJIT_OP1_BASE + 0) +/* Flags: - (does not modify flags) */ +#define SLJIT_MOV_U8 (SLJIT_OP1_BASE + 1) +#define SLJIT_MOV32_U8 (SLJIT_MOV_U8 | SLJIT_32) +/* Flags: - (does not modify flags) */ +#define SLJIT_MOV_S8 (SLJIT_OP1_BASE + 2) +#define SLJIT_MOV32_S8 (SLJIT_MOV_S8 | SLJIT_32) +/* Flags: - (does not modify flags) */ +#define SLJIT_MOV_U16 (SLJIT_OP1_BASE + 3) +#define SLJIT_MOV32_U16 (SLJIT_MOV_U16 | SLJIT_32) +/* Flags: - (does not modify flags) */ +#define SLJIT_MOV_S16 (SLJIT_OP1_BASE + 4) +#define SLJIT_MOV32_S16 (SLJIT_MOV_S16 | SLJIT_32) +/* Flags: - (does not modify flags) + Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */ +#define SLJIT_MOV_U32 (SLJIT_OP1_BASE + 5) +/* Flags: - (does not modify flags) + Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */ +#define SLJIT_MOV_S32 (SLJIT_OP1_BASE + 6) +/* Flags: - (does not modify flags) */ +#define SLJIT_MOV32 (SLJIT_OP1_BASE + 7) +/* Flags: - (does not modify flags) + Note: loads a pointer sized data, useful on x32 mode (a 64 bit mode + on x86-64 which uses 32 bit pointers) or similar compiling modes */ +#define SLJIT_MOV_P (SLJIT_OP1_BASE + 8) +/* Flags: Z + Note: immediate source argument is not supported */ +#define SLJIT_NOT (SLJIT_OP1_BASE + 9) +#define SLJIT_NOT32 (SLJIT_NOT | SLJIT_32) +/* Count leading zeroes + Flags: - (may destroy flags) + Note: immediate source argument is not supported */ +#define SLJIT_CLZ (SLJIT_OP1_BASE + 10) +#define SLJIT_CLZ32 (SLJIT_CLZ | SLJIT_32) +/* Count trailing zeroes + Flags: - (may destroy flags) + Note: immediate source argument is not supported */ +#define SLJIT_CTZ (SLJIT_OP1_BASE + 11) +#define SLJIT_CTZ32 (SLJIT_CTZ | SLJIT_32) + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op, + sljit_s32 dst, sljit_sw dstw, + sljit_s32 src, sljit_sw srcw); + +/* Starting index of opcodes for sljit_emit_op2. */ +#define SLJIT_OP2_BASE 96 + +/* Flags: Z | OVERFLOW | CARRY */ +#define SLJIT_ADD (SLJIT_OP2_BASE + 0) +#define SLJIT_ADD32 (SLJIT_ADD | SLJIT_32) +/* Flags: CARRY */ +#define SLJIT_ADDC (SLJIT_OP2_BASE + 1) +#define SLJIT_ADDC32 (SLJIT_ADDC | SLJIT_32) +/* Flags: Z | LESS | GREATER_EQUAL | GREATER | LESS_EQUAL + SIG_LESS | SIG_GREATER_EQUAL | SIG_GREATER + SIG_LESS_EQUAL | OVERFLOW | CARRY */ +#define SLJIT_SUB (SLJIT_OP2_BASE + 2) +#define SLJIT_SUB32 (SLJIT_SUB | SLJIT_32) +/* Flags: CARRY */ +#define SLJIT_SUBC (SLJIT_OP2_BASE + 3) +#define SLJIT_SUBC32 (SLJIT_SUBC | SLJIT_32) +/* Note: integer mul + Flags: OVERFLOW */ +#define SLJIT_MUL (SLJIT_OP2_BASE + 4) +#define SLJIT_MUL32 (SLJIT_MUL | SLJIT_32) +/* Flags: Z */ +#define SLJIT_AND (SLJIT_OP2_BASE + 5) +#define SLJIT_AND32 (SLJIT_AND | SLJIT_32) +/* Flags: Z */ +#define SLJIT_OR (SLJIT_OP2_BASE + 6) +#define SLJIT_OR32 (SLJIT_OR | SLJIT_32) +/* Flags: Z */ +#define SLJIT_XOR (SLJIT_OP2_BASE + 7) +#define SLJIT_XOR32 (SLJIT_XOR | SLJIT_32) +/* Flags: Z + Let bit_length be the length of the shift operation: 32 or 64. + If src2 is immediate, src2w is masked by (bit_length - 1). + Otherwise, if the content of src2 is outside the range from 0 + to bit_length - 1, the result is undefined. */ +#define SLJIT_SHL (SLJIT_OP2_BASE + 8) +#define SLJIT_SHL32 (SLJIT_SHL | SLJIT_32) +/* Flags: Z + Same as SLJIT_SHL, except the the second operand is + always masked by the length of the shift operation. */ +#define SLJIT_MSHL (SLJIT_OP2_BASE + 9) +#define SLJIT_MSHL32 (SLJIT_MSHL | SLJIT_32) +/* Flags: Z + Let bit_length be the length of the shift operation: 32 or 64. + If src2 is immediate, src2w is masked by (bit_length - 1). + Otherwise, if the content of src2 is outside the range from 0 + to bit_length - 1, the result is undefined. */ +#define SLJIT_LSHR (SLJIT_OP2_BASE + 10) +#define SLJIT_LSHR32 (SLJIT_LSHR | SLJIT_32) +/* Flags: Z + Same as SLJIT_LSHR, except the the second operand is + always masked by the length of the shift operation. */ +#define SLJIT_MLSHR (SLJIT_OP2_BASE + 11) +#define SLJIT_MLSHR32 (SLJIT_MLSHR | SLJIT_32) +/* Flags: Z + Let bit_length be the length of the shift operation: 32 or 64. + If src2 is immediate, src2w is masked by (bit_length - 1). + Otherwise, if the content of src2 is outside the range from 0 + to bit_length - 1, the result is undefined. */ +#define SLJIT_ASHR (SLJIT_OP2_BASE + 12) +#define SLJIT_ASHR32 (SLJIT_ASHR | SLJIT_32) +/* Flags: Z + Same as SLJIT_ASHR, except the the second operand is + always masked by the length of the shift operation. */ +#define SLJIT_MASHR (SLJIT_OP2_BASE + 13) +#define SLJIT_MASHR32 (SLJIT_MASHR | SLJIT_32) +/* Flags: - (may destroy flags) + Let bit_length be the length of the rotate operation: 32 or 64. + The second operand is always masked by (bit_length - 1). */ +#define SLJIT_ROTL (SLJIT_OP2_BASE + 14) +#define SLJIT_ROTL32 (SLJIT_ROTL | SLJIT_32) +/* Flags: - (may destroy flags) + Let bit_length be the length of the rotate operation: 32 or 64. + The second operand is always masked by (bit_length - 1). */ +#define SLJIT_ROTR (SLJIT_OP2_BASE + 15) +#define SLJIT_ROTR32 (SLJIT_ROTR | SLJIT_32) + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op, + sljit_s32 dst, sljit_sw dstw, + sljit_s32 src1, sljit_sw src1w, + sljit_s32 src2, sljit_sw src2w); + +/* The sljit_emit_op2u function is the same as sljit_emit_op2 + except the result is discarded. */ + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2u(struct sljit_compiler *compiler, sljit_s32 op, + sljit_s32 src1, sljit_sw src1w, + sljit_s32 src2, sljit_sw src2w); + +/* Emit a left or right shift operation, where the bits shifted + in comes from a separate source operand. All operands are + interpreted as unsigned integers. + + In the followings the value_mask variable is 31 for 32 bit + operations and word_size - 1 otherwise. + + op must be one of the following operations: + SLJIT_SHL or SLJIT_SHL32: + src_dst <<= src2 + src_dst |= ((src1 >> 1) >> (src2 ^ value_mask)) + SLJIT_MSHL or SLJIT_MSHL32: + src2 &= value_mask + perform the SLJIT_SHL or SLJIT_SHL32 operation + SLJIT_LSHR or SLJIT_LSHR32: + src_dst >>= src2 + src_dst |= ((src1 << 1) << (src2 ^ value_mask)) + SLJIT_MLSHR or SLJIT_MLSHR32: + src2 &= value_mask + perform the SLJIT_LSHR or SLJIT_LSHR32 operation + + op can be combined (or'ed) with SLJIT_SHIFT_INTO_NON_ZERO + + src_dst must be a register which content is updated after + the operation is completed + src1 / src1w contains the bits which shifted into src_dst + src2 / src2w contains the shift amount + + Note: a rotate operation can be performed if src_dst and + src1 are set to the same register + + Flags: - (may destroy flags) */ + +/* The src2 contains a non-zero value. Improves the generated + code on certain architectures, which provides a small + performance improvement. */ +#define SLJIT_SHIFT_INTO_NON_ZERO 0x200 + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_shift_into(struct sljit_compiler *compiler, sljit_s32 op, + sljit_s32 src_dst, + sljit_s32 src1, sljit_sw src1w, + sljit_s32 src2, sljit_sw src2w); + +/* Starting index of opcodes for sljit_emit_op2. */ +#define SLJIT_OP_SRC_BASE 128 + +/* Note: src cannot be an immedate value + Flags: - (does not modify flags) */ +#define SLJIT_FAST_RETURN (SLJIT_OP_SRC_BASE + 0) +/* Skip stack frames before fast return. + Note: src cannot be an immedate value + Flags: may destroy flags. */ +#define SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN (SLJIT_OP_SRC_BASE + 1) +/* Prefetch value into the level 1 data cache + Note: if the target CPU does not support data prefetch, + no instructions are emitted. + Note: this instruction never fails, even if the memory address is invalid. + Flags: - (does not modify flags) */ +#define SLJIT_PREFETCH_L1 (SLJIT_OP_SRC_BASE + 2) +/* Prefetch value into the level 2 data cache + Note: same as SLJIT_PREFETCH_L1 if the target CPU + does not support this instruction form. + Note: this instruction never fails, even if the memory address is invalid. + Flags: - (does not modify flags) */ +#define SLJIT_PREFETCH_L2 (SLJIT_OP_SRC_BASE + 3) +/* Prefetch value into the level 3 data cache + Note: same as SLJIT_PREFETCH_L2 if the target CPU + does not support this instruction form. + Note: this instruction never fails, even if the memory address is invalid. + Flags: - (does not modify flags) */ +#define SLJIT_PREFETCH_L3 (SLJIT_OP_SRC_BASE + 4) +/* Prefetch a value which is only used once (and can be discarded afterwards) + Note: same as SLJIT_PREFETCH_L1 if the target CPU + does not support this instruction form. + Note: this instruction never fails, even if the memory address is invalid. + Flags: - (does not modify flags) */ +#define SLJIT_PREFETCH_ONCE (SLJIT_OP_SRC_BASE + 5) + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_src(struct sljit_compiler *compiler, sljit_s32 op, + sljit_s32 src, sljit_sw srcw); + +/* Starting index of opcodes for sljit_emit_fop1. */ +#define SLJIT_FOP1_BASE 160 + +/* Flags: - (does not modify flags) */ +#define SLJIT_MOV_F64 (SLJIT_FOP1_BASE + 0) +#define SLJIT_MOV_F32 (SLJIT_MOV_F64 | SLJIT_32) +/* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE] + SRC/DST TYPE can be: F64, F32, S32, SW + Rounding mode when the destination is SW or S32: round towards zero. */ +/* Flags: - (may destroy flags) */ +#define SLJIT_CONV_F64_FROM_F32 (SLJIT_FOP1_BASE + 1) +#define SLJIT_CONV_F32_FROM_F64 (SLJIT_CONV_F64_FROM_F32 | SLJIT_32) +/* Flags: - (may destroy flags) */ +#define SLJIT_CONV_SW_FROM_F64 (SLJIT_FOP1_BASE + 2) +#define SLJIT_CONV_SW_FROM_F32 (SLJIT_CONV_SW_FROM_F64 | SLJIT_32) +/* Flags: - (may destroy flags) */ +#define SLJIT_CONV_S32_FROM_F64 (SLJIT_FOP1_BASE + 3) +#define SLJIT_CONV_S32_FROM_F32 (SLJIT_CONV_S32_FROM_F64 | SLJIT_32) +/* Flags: - (may destroy flags) */ +#define SLJIT_CONV_F64_FROM_SW (SLJIT_FOP1_BASE + 4) +#define SLJIT_CONV_F32_FROM_SW (SLJIT_CONV_F64_FROM_SW | SLJIT_32) +/* Flags: - (may destroy flags) */ +#define SLJIT_CONV_F64_FROM_S32 (SLJIT_FOP1_BASE + 5) +#define SLJIT_CONV_F32_FROM_S32 (SLJIT_CONV_F64_FROM_S32 | SLJIT_32) +/* Note: dst is the left and src is the right operand for SLJIT_CMP_F32/64. + Flags: EQUAL_F | LESS_F | GREATER_EQUAL_F | GREATER_F | LESS_EQUAL_F */ +#define SLJIT_CMP_F64 (SLJIT_FOP1_BASE + 6) +#define SLJIT_CMP_F32 (SLJIT_CMP_F64 | SLJIT_32) +/* Flags: - (may destroy flags) */ +#define SLJIT_NEG_F64 (SLJIT_FOP1_BASE + 7) +#define SLJIT_NEG_F32 (SLJIT_NEG_F64 | SLJIT_32) +/* Flags: - (may destroy flags) */ +#define SLJIT_ABS_F64 (SLJIT_FOP1_BASE + 8) +#define SLJIT_ABS_F32 (SLJIT_ABS_F64 | SLJIT_32) + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op, + sljit_s32 dst, sljit_sw dstw, + sljit_s32 src, sljit_sw srcw); + +/* Starting index of opcodes for sljit_emit_fop2. */ +#define SLJIT_FOP2_BASE 192 + +/* Flags: - (may destroy flags) */ +#define SLJIT_ADD_F64 (SLJIT_FOP2_BASE + 0) +#define SLJIT_ADD_F32 (SLJIT_ADD_F64 | SLJIT_32) +/* Flags: - (may destroy flags) */ +#define SLJIT_SUB_F64 (SLJIT_FOP2_BASE + 1) +#define SLJIT_SUB_F32 (SLJIT_SUB_F64 | SLJIT_32) +/* Flags: - (may destroy flags) */ +#define SLJIT_MUL_F64 (SLJIT_FOP2_BASE + 2) +#define SLJIT_MUL_F32 (SLJIT_MUL_F64 | SLJIT_32) +/* Flags: - (may destroy flags) */ +#define SLJIT_DIV_F64 (SLJIT_FOP2_BASE + 3) +#define SLJIT_DIV_F32 (SLJIT_DIV_F64 | SLJIT_32) + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op, + sljit_s32 dst, sljit_sw dstw, + sljit_s32 src1, sljit_sw src1w, + sljit_s32 src2, sljit_sw src2w); + +/* Label and jump instructions. */ + +SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler); + +/* Invert (negate) conditional type: xor (^) with 0x1 */ + +/* Integer comparison types. */ +#define SLJIT_EQUAL 0 +#define SLJIT_ZERO SLJIT_EQUAL +#define SLJIT_NOT_EQUAL 1 +#define SLJIT_NOT_ZERO SLJIT_NOT_EQUAL + +#define SLJIT_LESS 2 +#define SLJIT_SET_LESS SLJIT_SET(SLJIT_LESS) +#define SLJIT_GREATER_EQUAL 3 +#define SLJIT_SET_GREATER_EQUAL SLJIT_SET(SLJIT_GREATER_EQUAL) +#define SLJIT_GREATER 4 +#define SLJIT_SET_GREATER SLJIT_SET(SLJIT_GREATER) +#define SLJIT_LESS_EQUAL 5 +#define SLJIT_SET_LESS_EQUAL SLJIT_SET(SLJIT_LESS_EQUAL) +#define SLJIT_SIG_LESS 6 +#define SLJIT_SET_SIG_LESS SLJIT_SET(SLJIT_SIG_LESS) +#define SLJIT_SIG_GREATER_EQUAL 7 +#define SLJIT_SET_SIG_GREATER_EQUAL SLJIT_SET(SLJIT_SIG_GREATER_EQUAL) +#define SLJIT_SIG_GREATER 8 +#define SLJIT_SET_SIG_GREATER SLJIT_SET(SLJIT_SIG_GREATER) +#define SLJIT_SIG_LESS_EQUAL 9 +#define SLJIT_SET_SIG_LESS_EQUAL SLJIT_SET(SLJIT_SIG_LESS_EQUAL) + +#define SLJIT_OVERFLOW 10 +#define SLJIT_SET_OVERFLOW SLJIT_SET(SLJIT_OVERFLOW) +#define SLJIT_NOT_OVERFLOW 11 + +/* Unlike other flags, sljit_emit_jump may destroy the carry flag. */ +#define SLJIT_CARRY 12 +#define SLJIT_SET_CARRY SLJIT_SET(SLJIT_CARRY) +#define SLJIT_NOT_CARRY 13 + +/* Basic floating point comparison types. + + Note: when the comparison result is unordered, their behaviour is unspecified. */ + +#define SLJIT_F_EQUAL 14 +#define SLJIT_SET_F_EQUAL SLJIT_SET(SLJIT_F_EQUAL) +#define SLJIT_F_NOT_EQUAL 15 +#define SLJIT_SET_F_NOT_EQUAL SLJIT_SET(SLJIT_F_NOT_EQUAL) +#define SLJIT_F_LESS 16 +#define SLJIT_SET_F_LESS SLJIT_SET(SLJIT_F_LESS) +#define SLJIT_F_GREATER_EQUAL 17 +#define SLJIT_SET_F_GREATER_EQUAL SLJIT_SET(SLJIT_F_GREATER_EQUAL) +#define SLJIT_F_GREATER 18 +#define SLJIT_SET_F_GREATER SLJIT_SET(SLJIT_F_GREATER) +#define SLJIT_F_LESS_EQUAL 19 +#define SLJIT_SET_F_LESS_EQUAL SLJIT_SET(SLJIT_F_LESS_EQUAL) + +/* Jumps when either argument contains a NaN value. */ +#define SLJIT_UNORDERED 20 +#define SLJIT_SET_UNORDERED SLJIT_SET(SLJIT_UNORDERED) +/* Jumps when neither argument contains a NaN value. */ +#define SLJIT_ORDERED 21 +#define SLJIT_SET_ORDERED SLJIT_SET(SLJIT_ORDERED) + +/* Ordered / unordered floating point comparison types. + + Note: each comparison type has an ordered and unordered form. Some + architectures supports only either of them (see: sljit_cmp_info). */ + +#define SLJIT_ORDERED_EQUAL 22 +#define SLJIT_SET_ORDERED_EQUAL SLJIT_SET(SLJIT_ORDERED_EQUAL) +#define SLJIT_UNORDERED_OR_NOT_EQUAL 23 +#define SLJIT_SET_UNORDERED_OR_NOT_EQUAL SLJIT_SET(SLJIT_UNORDERED_OR_NOT_EQUAL) +#define SLJIT_ORDERED_LESS 24 +#define SLJIT_SET_ORDERED_LESS SLJIT_SET(SLJIT_ORDERED_LESS) +#define SLJIT_UNORDERED_OR_GREATER_EQUAL 25 +#define SLJIT_SET_UNORDERED_OR_GREATER_EQUAL SLJIT_SET(SLJIT_UNORDERED_OR_GREATER_EQUAL) +#define SLJIT_ORDERED_GREATER 26 +#define SLJIT_SET_ORDERED_GREATER SLJIT_SET(SLJIT_ORDERED_GREATER) +#define SLJIT_UNORDERED_OR_LESS_EQUAL 27 +#define SLJIT_SET_UNORDERED_OR_LESS_EQUAL SLJIT_SET(SLJIT_UNORDERED_OR_LESS_EQUAL) + +#define SLJIT_UNORDERED_OR_EQUAL 28 +#define SLJIT_SET_UNORDERED_OR_EQUAL SLJIT_SET(SLJIT_UNORDERED_OR_EQUAL) +#define SLJIT_ORDERED_NOT_EQUAL 29 +#define SLJIT_SET_ORDERED_NOT_EQUAL SLJIT_SET(SLJIT_ORDERED_NOT_EQUAL) +#define SLJIT_UNORDERED_OR_LESS 30 +#define SLJIT_SET_UNORDERED_OR_LESS SLJIT_SET(SLJIT_UNORDERED_OR_LESS) +#define SLJIT_ORDERED_GREATER_EQUAL 31 +#define SLJIT_SET_ORDERED_GREATER_EQUAL SLJIT_SET(SLJIT_ORDERED_GREATER_EQUAL) +#define SLJIT_UNORDERED_OR_GREATER 32 +#define SLJIT_SET_UNORDERED_OR_GREATER SLJIT_SET(SLJIT_UNORDERED_OR_GREATER) +#define SLJIT_ORDERED_LESS_EQUAL 33 +#define SLJIT_SET_ORDERED_LESS_EQUAL SLJIT_SET(SLJIT_ORDERED_LESS_EQUAL) + +/* Unconditional jump types. */ +#define SLJIT_JUMP 34 +/* Fast calling method. See sljit_emit_fast_enter / SLJIT_FAST_RETURN. */ +#define SLJIT_FAST_CALL 35 +/* Default C calling convention. */ +#define SLJIT_CALL 36 +/* Called function must be compiled by SLJIT. + See SLJIT_ENTER_REG_ARG option. */ +#define SLJIT_CALL_REG_ARG 37 + +/* The target can be changed during runtime (see: sljit_set_jump_addr). */ +#define SLJIT_REWRITABLE_JUMP 0x1000 +/* When this flag is passed, the execution of the current function ends and + the called function returns to the caller of the current function. The + stack usage is reduced before the call, but it is not necessarily reduced + to zero. In the latter case the compiler needs to allocate space for some + arguments and the return address must be stored on the stack as well. */ +#define SLJIT_CALL_RETURN 0x2000 + +/* Emit a jump instruction. The destination is not set, only the type of the jump. + type must be between SLJIT_EQUAL and SLJIT_FAST_CALL + type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP + + Flags: does not modify flags. */ +SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type); + +/* Emit a C compiler (ABI) compatible function call. + type must be SLJIT_CALL or SLJIT_CALL_REG_ARG + type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP and/or SLJIT_CALL_RETURN + arg_types can be specified by SLJIT_ARGSx (SLJIT_ARG_RETURN / SLJIT_ARG_VALUE) macros + + Flags: destroy all flags. */ +SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types); + +/* Basic arithmetic comparison. In most architectures it is implemented as + a compare operation followed by a sljit_emit_jump. However some + architectures (i.e: ARM64 or MIPS) may employ special optimizations + here. It is suggested to use this comparison form when appropriate. + type must be between SLJIT_EQUAL and SLJIT_SIG_LESS_EQUAL + type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP + + Flags: may destroy flags. */ +SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type, + sljit_s32 src1, sljit_sw src1w, + sljit_s32 src2, sljit_sw src2w); + +/* Basic floating point comparison. In most architectures it is implemented as + a SLJIT_CMP_F32/64 operation (setting appropriate flags) followed by a + sljit_emit_jump. However some architectures (i.e: MIPS) may employ + special optimizations here. It is suggested to use this comparison form + when appropriate. + type must be between SLJIT_F_EQUAL and SLJIT_ORDERED_LESS_EQUAL + type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP + Flags: destroy flags. + Note: when an operand is NaN the behaviour depends on the comparison type. */ +SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_s32 type, + sljit_s32 src1, sljit_sw src1w, + sljit_s32 src2, sljit_sw src2w); + +/* Set the destination of the jump to this label. */ +SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label); +/* Set the destination address of the jump to this label. */ +SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target); + +/* Emit an indirect jump or fast call. + Direct form: set src to SLJIT_IMM() and srcw to the address + Indirect form: any other valid addressing mode + type must be between SLJIT_JUMP and SLJIT_FAST_CALL + + Flags: does not modify flags. */ +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw); + +/* Emit a C compiler (ABI) compatible function call. + Direct form: set src to SLJIT_IMM() and srcw to the address + Indirect form: any other valid addressing mode + type must be SLJIT_CALL or SLJIT_CALL_REG_ARG + type can be combined (or'ed) with SLJIT_CALL_RETURN + arg_types can be specified by SLJIT_ARGSx (SLJIT_ARG_RETURN / SLJIT_ARG_VALUE) macros + + Flags: destroy all flags. */ +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types, sljit_s32 src, sljit_sw srcw); + +/* Perform an operation using the conditional flags as the second argument. + Type must always be between SLJIT_EQUAL and SLJIT_ORDERED_LESS_EQUAL. + The value represented by the type is 1, if the condition represented + by the type is fulfilled, and 0 otherwise. + + When op is SLJIT_MOV or SLJIT_MOV32: + Set dst to the value represented by the type (0 or 1). + Flags: - (does not modify flags) + When op is SLJIT_AND, SLJIT_AND32, SLJIT_OR, SLJIT_OR32, SLJIT_XOR, or SLJIT_XOR32 + Performs the binary operation using dst as the first, and the value + represented by type as the second argument. Result is written into dst. + Flags: Z (may destroy flags) */ +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op, + sljit_s32 dst, sljit_sw dstw, + sljit_s32 type); + +/* Emit a conditional mov instruction which moves source to destination, + if the condition is satisfied. Unlike other arithmetic operations this + instruction does not support memory access. + + type must be between SLJIT_EQUAL and SLJIT_ORDERED_LESS_EQUAL + type can be combined (or'ed) with SLJIT_32 + dst_reg must be a valid register + src must be a valid register or immediate (SLJIT_IMM) + + Flags: - (does not modify flags) */ +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type, + sljit_s32 dst_reg, + sljit_s32 src, sljit_sw srcw); + +/* The following flags are used by sljit_emit_mem(), sljit_emit_mem_update(), + sljit_emit_fmem(), and sljit_emit_fmem_update(). */ + +/* Memory load operation. This is the default. */ +#define SLJIT_MEM_LOAD 0x000000 +/* Memory store operation. */ +#define SLJIT_MEM_STORE 0x000200 + +/* The following flags are used by sljit_emit_mem() and sljit_emit_fmem(). */ + +/* Load or stora data from an unaligned (byte aligned) address. */ +#define SLJIT_MEM_UNALIGNED 0x000400 +/* Load or stora data from a 16 bit aligned address. */ +#define SLJIT_MEM_UNALIGNED_16 0x000800 +/* Load or stora data from a 32 bit aligned address. */ +#define SLJIT_MEM_UNALIGNED_32 0x001000 + +/* The following flags are used by sljit_emit_mem_update(), + and sljit_emit_fmem_update(). */ + +/* Base register is updated before the memory access (default). */ +#define SLJIT_MEM_PRE 0x000000 +/* Base register is updated after the memory access. */ +#define SLJIT_MEM_POST 0x000400 + +/* When SLJIT_MEM_SUPP is passed, no instructions are emitted. + Instead the function returns with SLJIT_SUCCESS if the instruction + form is supported and SLJIT_ERR_UNSUPPORTED otherwise. This flag + allows runtime checking of available instruction forms. */ +#define SLJIT_MEM_SUPP 0x000800 + +/* The sljit_emit_mem emits instructions for various memory operations: + + When SLJIT_MEM_UNALIGNED / SLJIT_MEM_UNALIGNED_16 / + SLJIT_MEM_UNALIGNED_32 is set in type argument: + Emit instructions for unaligned memory loads or stores. When + SLJIT_UNALIGNED is not defined, the only way to access unaligned + memory data is using sljit_emit_mem. Otherwise all operations (e.g. + sljit_emit_op1/2, or sljit_emit_fop1/2) supports unaligned access. + In general, the performance of unaligned memory accesses are often + lower than aligned and should be avoided. + + When a pair of registers is passed in reg argument: + Emit instructions for moving data between a register pair and + memory. The register pair can be specified by the SLJIT_REG_PAIR + macro. The first register is loaded from or stored into the + location specified by the mem/memw arguments, and the end address + of this operation is the starting address of the data transfer + between the second register and memory. The type argument must + be SLJIT_MOV. The SLJIT_MEM_UNALIGNED* options are allowed for + this operation. + + type must be between SLJIT_MOV and SLJIT_MOV_P and can be + combined (or'ed) with SLJIT_MEM_* flags + reg is a register or register pair, which is the source or + destination of the operation + mem must be a memory operand + + Flags: - (does not modify flags) */ +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type, + sljit_s32 reg, + sljit_s32 mem, sljit_sw memw); + +/* Emit a single memory load or store with update instruction. + When the requested instruction form is not supported by the CPU, + it returns with SLJIT_ERR_UNSUPPORTED instead of emulating the + instruction. This allows specializing tight loops based on + the supported instruction forms (see SLJIT_MEM_SUPP flag). + Absolute address (SLJIT_MEM0) forms are never supported + and the base (first) register specified by the mem argument + must not be SLJIT_SP and must also be different from the + register specified by the reg argument. + + type must be between SLJIT_MOV and SLJIT_MOV_P and can be + combined (or'ed) with SLJIT_MEM_* flags + reg is the source or destination register of the operation + mem must be a memory operand + + Flags: - (does not modify flags) */ + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem_update(struct sljit_compiler *compiler, sljit_s32 type, + sljit_s32 reg, + sljit_s32 mem, sljit_sw memw); + +/* Same as sljit_emit_mem except the followings: + + Loading or storing a pair of registers is not supported. + + type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be + combined (or'ed) with SLJIT_MEM_* flags. + freg is the source or destination floating point register + of the operation + mem must be a memory operand + + Flags: - (does not modify flags) */ + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem(struct sljit_compiler *compiler, sljit_s32 type, + sljit_s32 freg, + sljit_s32 mem, sljit_sw memw); + +/* Same as sljit_emit_mem_update except the followings: + + type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be + combined (or'ed) with SLJIT_MEM_* flags + freg is the source or destination floating point register + of the operation + mem must be a memory operand + + Flags: - (does not modify flags) */ + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem_update(struct sljit_compiler *compiler, sljit_s32 type, + sljit_s32 freg, + sljit_s32 mem, sljit_sw memw); + +/* Copies the base address of SLJIT_SP + offset to dst. The offset can + represent the starting address of a value in the local data (stack). + The offset is not limited by the local data limits, it can be any value. + For example if an array of bytes are stored on the stack from + offset 0x40, and R0 contains the offset of an array item plus 0x120, + this item can be changed by two SLJIT instructions: + + sljit_get_local_base(compiler, SLJIT_R1, 0, 0x40 - 0x120); + sljit_emit_op1(compiler, SLJIT_MOV_U8, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_IMM, 0x5); + + Flags: - (may destroy flags) */ +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset); + +/* Store a value that can be changed runtime (see: sljit_get_const_addr / sljit_set_const) + Flags: - (does not modify flags) */ +SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value); + +/* Store the value of a label (see: sljit_set_put_label) + Flags: - (does not modify flags) */ +SLJIT_API_FUNC_ATTRIBUTE struct sljit_put_label* sljit_emit_put_label(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw); + +/* Set the value stored by put_label to this label. */ +SLJIT_API_FUNC_ATTRIBUTE void sljit_set_put_label(struct sljit_put_label *put_label, struct sljit_label *label); + +/* After the code generation the address for label, jump and const instructions + are computed. Since these structures are freed by sljit_free_compiler, the + addresses must be preserved by the user program elsewere. */ +static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; } +static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; } +static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; } + +/* Only the address and executable offset are required to perform dynamic + code modifications. See sljit_get_executable_offset function. */ +SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset); +SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset); + +/* --------------------------------------------------------------------- */ +/* CPU specific functions */ +/* --------------------------------------------------------------------- */ + +/* The following function is a helper function for sljit_emit_op_custom. + It returns with the real machine register index ( >=0 ) of any SLJIT_R, + SLJIT_S and SLJIT_SP registers. + + Note: it returns with -1 for virtual registers (only on x86-32). */ + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg); + +/* The following function is a helper function for sljit_emit_op_custom. + It returns with the real machine register ( >= 0 ) index of any SLJIT_FR, + and SLJIT_FS register. + + Note: the index is always an even number on ARM-32, MIPS. */ + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg); + +/* Any instruction can be inserted into the instruction stream by + sljit_emit_op_custom. It has a similar purpose as inline assembly. + The size parameter must match to the instruction size of the target + architecture: + + x86: 0 < size <= 15. The instruction argument can be byte aligned. + Thumb2: if size == 2, the instruction argument must be 2 byte aligned. + if size == 4, the instruction argument must be 4 byte aligned. + Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */ + +SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler, + void *instruction, sljit_u32 size); + +/* Flags were set by a 32 bit operation. */ +#define SLJIT_CURRENT_FLAGS_32 SLJIT_32 + +/* Flags were set by an ADD or ADDC operations. */ +#define SLJIT_CURRENT_FLAGS_ADD 0x01 +/* Flags were set by a SUB, SUBC, or NEG operation. */ +#define SLJIT_CURRENT_FLAGS_SUB 0x02 + +/* Flags were set by sljit_emit_op2u with SLJIT_SUB opcode. + Must be combined with SLJIT_CURRENT_FLAGS_SUB. */ +#define SLJIT_CURRENT_FLAGS_COMPARE 0x04 + +/* Define the currently available CPU status flags. It is usually used after + an sljit_emit_label or sljit_emit_op_custom operations to define which CPU + status flags are available. + + The current_flags must be a valid combination of SLJIT_SET_* and + SLJIT_CURRENT_FLAGS_* constants. */ + +SLJIT_API_FUNC_ATTRIBUTE void sljit_set_current_flags(struct sljit_compiler *compiler, + sljit_s32 current_flags); + +/* --------------------------------------------------------------------- */ +/* Miscellaneous utility functions */ +/* --------------------------------------------------------------------- */ + +/* Get the human readable name of the platform. Can be useful on platforms + like ARM, where ARM and Thumb2 functions can be mixed, and it is useful + to know the type of the code generator. */ +SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void); + +/* Portable helper function to get an offset of a member. */ +#define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10) + +#if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) + +/* The sljit_stack structure and its manipulation functions provides + an implementation for a top-down stack. The stack top is stored + in the end field of the sljit_stack structure and the stack goes + down to the min_start field, so the memory region reserved for + this stack is between min_start (inclusive) and end (exclusive) + fields. However the application can only use the region between + start (inclusive) and end (exclusive) fields. The sljit_stack_resize + function can be used to extend this region up to min_start. + + This feature uses the "address space reserve" feature of modern + operating systems. Instead of allocating a large memory block + applications can allocate a small memory region and extend it + later without moving the content of the memory area. Therefore + after a successful resize by sljit_stack_resize all pointers into + this region are still valid. + + Note: + this structure may not be supported by all operating systems. + end and max_limit fields are aligned to PAGE_SIZE bytes (usually + 4 Kbyte or more). + stack should grow in larger steps, e.g. 4Kbyte, 16Kbyte or more. */ + +struct sljit_stack { + /* User data, anything can be stored here. + Initialized to the same value as the end field. */ + sljit_u8 *top; +/* These members are read only. */ + /* End address of the stack */ + sljit_u8 *end; + /* Current start address of the stack. */ + sljit_u8 *start; + /* Lowest start address of the stack. */ + sljit_u8 *min_start; +}; + +/* Allocates a new stack. Returns NULL if unsuccessful. + Note: see sljit_create_compiler for the explanation of allocator_data. */ +SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_FUNC sljit_allocate_stack(sljit_uw start_size, sljit_uw max_size, void *allocator_data); +SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_free_stack(struct sljit_stack *stack, void *allocator_data); + +/* Can be used to increase (extend) or decrease (shrink) the stack + memory area. Returns with new_start if successful and NULL otherwise. + It always fails if new_start is less than min_start or greater or equal + than end fields. The fields of the stack are not changed if the returned + value is NULL (the current memory content is never lost). */ +SLJIT_API_FUNC_ATTRIBUTE sljit_u8 *SLJIT_FUNC sljit_stack_resize(struct sljit_stack *stack, sljit_u8 *new_start); + +#endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */ + +#if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) + +/* Get the entry address of a given function (signed, unsigned result). */ +#define SLJIT_FUNC_ADDR(func_name) ((sljit_sw)func_name) +#define SLJIT_FUNC_UADDR(func_name) ((sljit_uw)func_name) + +#else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */ + +/* All JIT related code should be placed in the same context (library, binary, etc.). */ + +/* Get the entry address of a given function (signed, unsigned result). */ +#define SLJIT_FUNC_ADDR(func_name) (*(sljit_sw*)(void*)func_name) +#define SLJIT_FUNC_UADDR(func_name) (*(sljit_uw*)(void*)func_name) + +/* For powerpc64, the function pointers point to a context descriptor. */ +struct sljit_function_context { + sljit_uw addr; + sljit_uw r2; + sljit_uw r11; +}; + +/* Fill the context arguments using the addr and the function. + If func_ptr is NULL, it will not be set to the address of context + If addr is NULL, the function address also comes from the func pointer. */ +SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_uw addr, void* func); + +#endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */ + +#if (defined SLJIT_EXECUTABLE_ALLOCATOR && SLJIT_EXECUTABLE_ALLOCATOR) +/* Free unused executable memory. The allocator keeps some free memory + around to reduce the number of OS executable memory allocations. + This improves performance since these calls are costly. However + it is sometimes desired to free all unused memory regions, e.g. + before the application terminates. */ +SLJIT_API_FUNC_ATTRIBUTE void sljit_free_unused_memory_exec(void); +#endif + +#ifdef __cplusplus +} /* extern "C" */ +#endif + +#endif /* SLJIT_LIR_H_ */ |