aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/pcre2/src/sljit/sljitLir.h
diff options
context:
space:
mode:
authorthegeorg <thegeorg@yandex-team.com>2023-10-03 11:19:48 +0300
committerthegeorg <thegeorg@yandex-team.com>2023-10-03 11:43:28 +0300
commitcda0c13f23f6b169fb0a49dc504b40a0aaecea09 (patch)
tree26476e92e5af2c856e017afb1df8f8dff42495bf /contrib/libs/pcre2/src/sljit/sljitLir.h
parent4854116da9c5e3c95bb8440f2ea997c54b6e1a61 (diff)
downloadydb-cda0c13f23f6b169fb0a49dc504b40a0aaecea09.tar.gz
Move contrib/tools/jdk to build/platform/java/jdk/testing
Diffstat (limited to 'contrib/libs/pcre2/src/sljit/sljitLir.h')
-rw-r--r--contrib/libs/pcre2/src/sljit/sljitLir.h1823
1 files changed, 1823 insertions, 0 deletions
diff --git a/contrib/libs/pcre2/src/sljit/sljitLir.h b/contrib/libs/pcre2/src/sljit/sljitLir.h
new file mode 100644
index 0000000000..a666a2643f
--- /dev/null
+++ b/contrib/libs/pcre2/src/sljit/sljitLir.h
@@ -0,0 +1,1823 @@
+/*
+ * Stack-less Just-In-Time compiler
+ *
+ * Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without modification, are
+ * permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice, this list of
+ * conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright notice, this list
+ * of conditions and the following disclaimer in the documentation and/or other materials
+ * provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
+ * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
+ * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+ * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef SLJIT_LIR_H_
+#define SLJIT_LIR_H_
+
+/*
+ ------------------------------------------------------------------------
+ Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
+ ------------------------------------------------------------------------
+
+ Short description
+ Advantages:
+ - The execution can be continued from any LIR instruction. In other
+ words, it is possible to jump to any label from anywhere, even from
+ a code fragment, which is compiled later, as long as the compiling
+ context is the same. See sljit_emit_enter for more details.
+ - Supports self modifying code: target of any jump and call
+ instructions and some constant values can be dynamically modified
+ during runtime. See SLJIT_REWRITABLE_JUMP.
+ - although it is not suggested to do it frequently
+ - can be used for inline caching: save an important value once
+ in the instruction stream
+ - A fixed stack space can be allocated for local variables
+ - The compiler is thread-safe
+ - The compiler is highly configurable through preprocessor macros.
+ You can disable unneeded features (multithreading in single
+ threaded applications), and you can use your own system functions
+ (including memory allocators). See sljitConfig.h.
+ Disadvantages:
+ - The compiler is more like a platform independent assembler, so
+ there is no built-in variable management. Registers and stack must
+ be managed manually (the name of the compiler refers to this).
+ In practice:
+ - This approach is very effective for interpreters
+ - One of the saved registers typically points to a stack interface
+ - It can jump to any exception handler anytime (even if it belongs
+ to another function)
+ - Hot paths can be modified during runtime reflecting the changes
+ of the fastest execution path of the dynamic language
+ - SLJIT supports complex memory addressing modes
+ - mainly position and context independent code (except some cases)
+
+ For valgrind users:
+ - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
+*/
+
+#if (defined SLJIT_HAVE_CONFIG_PRE && SLJIT_HAVE_CONFIG_PRE)
+#error #include "sljitConfigPre.h"
+#endif /* SLJIT_HAVE_CONFIG_PRE */
+
+#include "sljitConfig.h"
+
+/* The following header file defines useful macros for fine tuning
+SLJIT based code generators. They are listed in the beginning
+of sljitConfigInternal.h */
+
+#include "sljitConfigInternal.h"
+
+#if (defined SLJIT_HAVE_CONFIG_POST && SLJIT_HAVE_CONFIG_POST)
+#error #include "sljitConfigPost.h"
+#endif /* SLJIT_HAVE_CONFIG_POST */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Version numbers. */
+#define SLJIT_MAJOR_VERSION 0
+#define SLJIT_MINOR_VERSION 95
+
+/* --------------------------------------------------------------------- */
+/* Error codes */
+/* --------------------------------------------------------------------- */
+
+/* Indicates no error. */
+#define SLJIT_SUCCESS 0
+/* After the call of sljit_generate_code(), the error code of the compiler
+ is set to this value to avoid further code generation.
+ The complier should be freed after sljit_generate_code(). */
+#define SLJIT_ERR_COMPILED 1
+/* Cannot allocate non-executable memory. */
+#define SLJIT_ERR_ALLOC_FAILED 2
+/* Cannot allocate executable memory.
+ Only sljit_generate_code() returns with this error code. */
+#define SLJIT_ERR_EX_ALLOC_FAILED 3
+/* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
+#define SLJIT_ERR_UNSUPPORTED 4
+/* An ivalid argument is passed to any SLJIT function. */
+#define SLJIT_ERR_BAD_ARGUMENT 5
+
+/* --------------------------------------------------------------------- */
+/* Registers */
+/* --------------------------------------------------------------------- */
+
+/*
+ Scratch (R) registers: registers which may not preserve their values
+ across function calls.
+
+ Saved (S) registers: registers which preserve their values across
+ function calls.
+
+ The scratch and saved register sets overlap. The last scratch register
+ is the first saved register, the one before the last is the second saved
+ register, and so on.
+
+ If an architecture provides two scratch and three saved registers,
+ its scratch and saved register sets are the following:
+
+ R0 | | R0 is always a scratch register
+ R1 | | R1 is always a scratch register
+ [R2] | S2 | R2 and S2 represent the same physical register
+ [R3] | S1 | R3 and S1 represent the same physical register
+ [R4] | S0 | R4 and S0 represent the same physical register
+
+ Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
+ SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
+
+ Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 12
+ and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 6. However, 6 registers
+ are virtual on x86-32. See below.
+
+ The purpose of this definition is convenience: saved registers can
+ be used as extra scratch registers. For example four registers can
+ be specified as scratch registers and the fifth one as saved register
+ on the CPU above and any user code which requires four scratch
+ registers can run unmodified. The SLJIT compiler automatically saves
+ the content of the two extra scratch register on the stack. Scratch
+ registers can also be preserved by saving their value on the stack
+ but this needs to be done manually.
+
+ Note: To emphasize that registers assigned to R2-R4 are saved
+ registers, they are enclosed by square brackets.
+
+ Note: sljit_emit_enter and sljit_set_context defines whether a register
+ is S or R register. E.g: when 3 scratches and 1 saved is mapped
+ by sljit_emit_enter, the allowed register set will be: R0-R2 and
+ S0. Although S2 is mapped to the same position as R2, it does not
+ available in the current configuration. Furthermore the S1 register
+ is not available at all.
+*/
+
+/* Scratch registers. */
+#define SLJIT_R0 1
+#define SLJIT_R1 2
+#define SLJIT_R2 3
+/* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
+ are allocated on the stack). These registers are called virtual
+ and cannot be used for memory addressing (cannot be part of
+ any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
+ limitation on other CPUs. See sljit_get_register_index(). */
+#define SLJIT_R3 4
+#define SLJIT_R4 5
+#define SLJIT_R5 6
+#define SLJIT_R6 7
+#define SLJIT_R7 8
+#define SLJIT_R8 9
+#define SLJIT_R9 10
+/* All R registers provided by the architecture can be accessed by SLJIT_R(i)
+ The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
+#define SLJIT_R(i) (1 + (i))
+
+/* Saved registers. */
+#define SLJIT_S0 (SLJIT_NUMBER_OF_REGISTERS)
+#define SLJIT_S1 (SLJIT_NUMBER_OF_REGISTERS - 1)
+#define SLJIT_S2 (SLJIT_NUMBER_OF_REGISTERS - 2)
+/* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
+ are allocated on the stack). These registers are called virtual
+ and cannot be used for memory addressing (cannot be part of
+ any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
+ limitation on other CPUs. See sljit_get_register_index(). */
+#define SLJIT_S3 (SLJIT_NUMBER_OF_REGISTERS - 3)
+#define SLJIT_S4 (SLJIT_NUMBER_OF_REGISTERS - 4)
+#define SLJIT_S5 (SLJIT_NUMBER_OF_REGISTERS - 5)
+#define SLJIT_S6 (SLJIT_NUMBER_OF_REGISTERS - 6)
+#define SLJIT_S7 (SLJIT_NUMBER_OF_REGISTERS - 7)
+#define SLJIT_S8 (SLJIT_NUMBER_OF_REGISTERS - 8)
+#define SLJIT_S9 (SLJIT_NUMBER_OF_REGISTERS - 9)
+/* All S registers provided by the architecture can be accessed by SLJIT_S(i)
+ The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
+#define SLJIT_S(i) (SLJIT_NUMBER_OF_REGISTERS - (i))
+
+/* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
+#define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
+
+/* The SLJIT_SP provides direct access to the linear stack space allocated by
+ sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
+ The immediate offset is extended by the relative stack offset automatically.
+ The sljit_get_local_base can be used to obtain the real address of a value. */
+#define SLJIT_SP (SLJIT_NUMBER_OF_REGISTERS + 1)
+
+/* Return with machine word. */
+
+#define SLJIT_RETURN_REG SLJIT_R0
+
+/* --------------------------------------------------------------------- */
+/* Floating point registers */
+/* --------------------------------------------------------------------- */
+
+/* Each floating point register can store a 32 or a 64 bit precision
+ value. The FR and FS register sets are overlap in the same way as R
+ and S register sets. See above. */
+
+/* Floating point scratch registers. */
+#define SLJIT_FR0 1
+#define SLJIT_FR1 2
+#define SLJIT_FR2 3
+#define SLJIT_FR3 4
+#define SLJIT_FR4 5
+#define SLJIT_FR5 6
+/* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
+ The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
+#define SLJIT_FR(i) (1 + (i))
+
+/* Floating point saved registers. */
+#define SLJIT_FS0 (SLJIT_NUMBER_OF_FLOAT_REGISTERS)
+#define SLJIT_FS1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
+#define SLJIT_FS2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
+#define SLJIT_FS3 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
+#define SLJIT_FS4 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
+#define SLJIT_FS5 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
+/* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
+ The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
+#define SLJIT_FS(i) (SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
+
+/* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
+#define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
+
+/* Return with floating point arg. */
+
+#define SLJIT_RETURN_FREG SLJIT_FR0
+
+/* --------------------------------------------------------------------- */
+/* Argument type definitions */
+/* --------------------------------------------------------------------- */
+
+/* The following argument type definitions are used by sljit_emit_enter,
+ sljit_set_context, sljit_emit_call, and sljit_emit_icall functions.
+
+ As for sljit_emit_call and sljit_emit_icall, the first integer argument
+ must be placed into SLJIT_R0, the second one into SLJIT_R1, and so on.
+ Similarly the first floating point argument must be placed into SLJIT_FR0,
+ the second one into SLJIT_FR1, and so on.
+
+ As for sljit_emit_enter, the integer arguments can be stored in scratch
+ or saved registers. The first integer argument without _R postfix is
+ stored in SLJIT_S0, the next one in SLJIT_S1, and so on. The integer
+ arguments with _R postfix are placed into scratch registers. The index
+ of the scratch register is the count of the previous integer arguments
+ starting from SLJIT_R0. The floating point arguments are always placed
+ into SLJIT_FR0, SLJIT_FR1, and so on.
+
+ Note: if a function is called by sljit_emit_call/sljit_emit_icall and
+ an argument is stored in a scratch register by sljit_emit_enter,
+ that argument uses the same scratch register index for both
+ integer and floating point arguments.
+
+ Example function definition:
+ sljit_f32 SLJIT_FUNC example_c_callback(void *arg_a,
+ sljit_f64 arg_b, sljit_u32 arg_c, sljit_f32 arg_d);
+
+ Argument type definition:
+ SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_F32)
+ | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_P, 1) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F64, 2)
+ | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_32, 3) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F32, 4)
+
+ Short form of argument type definition:
+ SLJIT_ARGS4(32, P, F64, 32, F32)
+
+ Argument passing:
+ arg_a must be placed in SLJIT_R0
+ arg_c must be placed in SLJIT_R1
+ arg_b must be placed in SLJIT_FR0
+ arg_d must be placed in SLJIT_FR1
+
+ Examples for argument processing by sljit_emit_enter:
+ SLJIT_ARGS4(VOID, P, 32_R, F32, W)
+ Arguments are placed into: SLJIT_S0, SLJIT_R1, SLJIT_FR0, SLJIT_S1
+
+ SLJIT_ARGS4(VOID, W, W_R, W, W_R)
+ Arguments are placed into: SLJIT_S0, SLJIT_R1, SLJIT_S1, SLJIT_R3
+
+ SLJIT_ARGS4(VOID, F64, W, F32, W_R)
+ Arguments are placed into: SLJIT_FR0, SLJIT_S0, SLJIT_FR1, SLJIT_R1
+
+ Note: it is recommended to pass the scratch arguments first
+ followed by the saved arguments:
+
+ SLJIT_ARGS4(VOID, W_R, W_R, W, W)
+ Arguments are placed into: SLJIT_R0, SLJIT_R1, SLJIT_S0, SLJIT_S1
+*/
+
+/* The following flag is only allowed for the integer arguments of
+ sljit_emit_enter. When the flag is set, the integer argument is
+ stored in a scratch register instead of a saved register. */
+#define SLJIT_ARG_TYPE_SCRATCH_REG 0x8
+
+/* Void result, can only be used by SLJIT_ARG_RETURN. */
+#define SLJIT_ARG_TYPE_VOID 0
+/* Machine word sized integer argument or result. */
+#define SLJIT_ARG_TYPE_W 1
+#define SLJIT_ARG_TYPE_W_R (SLJIT_ARG_TYPE_W | SLJIT_ARG_TYPE_SCRATCH_REG)
+/* 32 bit integer argument or result. */
+#define SLJIT_ARG_TYPE_32 2
+#define SLJIT_ARG_TYPE_32_R (SLJIT_ARG_TYPE_32 | SLJIT_ARG_TYPE_SCRATCH_REG)
+/* Pointer sized integer argument or result. */
+#define SLJIT_ARG_TYPE_P 3
+#define SLJIT_ARG_TYPE_P_R (SLJIT_ARG_TYPE_P | SLJIT_ARG_TYPE_SCRATCH_REG)
+/* 64 bit floating point argument or result. */
+#define SLJIT_ARG_TYPE_F64 4
+/* 32 bit floating point argument or result. */
+#define SLJIT_ARG_TYPE_F32 5
+
+#define SLJIT_ARG_SHIFT 4
+#define SLJIT_ARG_RETURN(type) (type)
+#define SLJIT_ARG_VALUE(type, idx) ((type) << ((idx) * SLJIT_ARG_SHIFT))
+
+/* Simplified argument list definitions.
+
+ The following definition:
+ SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_W) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F32, 1)
+
+ can be shortened to:
+ SLJIT_ARGS1(W, F32)
+*/
+
+#define SLJIT_ARG_TO_TYPE(type) SLJIT_ARG_TYPE_ ## type
+
+#define SLJIT_ARGS0(ret) \
+ SLJIT_ARG_RETURN(SLJIT_ARG_TO_TYPE(ret))
+
+#define SLJIT_ARGS1(ret, arg1) \
+ (SLJIT_ARGS0(ret) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg1), 1))
+
+#define SLJIT_ARGS2(ret, arg1, arg2) \
+ (SLJIT_ARGS1(ret, arg1) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg2), 2))
+
+#define SLJIT_ARGS3(ret, arg1, arg2, arg3) \
+ (SLJIT_ARGS2(ret, arg1, arg2) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg3), 3))
+
+#define SLJIT_ARGS4(ret, arg1, arg2, arg3, arg4) \
+ (SLJIT_ARGS3(ret, arg1, arg2, arg3) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg4), 4))
+
+/* --------------------------------------------------------------------- */
+/* Main structures and functions */
+/* --------------------------------------------------------------------- */
+
+/*
+ The following structures are private, and can be changed in the
+ future. Keeping them here allows code inlining.
+*/
+
+struct sljit_memory_fragment {
+ struct sljit_memory_fragment *next;
+ sljit_uw used_size;
+ /* Must be aligned to sljit_sw. */
+ sljit_u8 memory[1];
+};
+
+struct sljit_label {
+ struct sljit_label *next;
+ sljit_uw addr;
+ /* The maximum size difference. */
+ sljit_uw size;
+};
+
+struct sljit_jump {
+ struct sljit_jump *next;
+ sljit_uw addr;
+ /* Architecture dependent flags. */
+ sljit_uw flags;
+ union {
+ sljit_uw target;
+ struct sljit_label *label;
+ } u;
+};
+
+struct sljit_put_label {
+ struct sljit_put_label *next;
+ struct sljit_label *label;
+ sljit_uw addr;
+ sljit_uw flags;
+};
+
+struct sljit_const {
+ struct sljit_const *next;
+ sljit_uw addr;
+};
+
+struct sljit_compiler {
+ sljit_s32 error;
+ sljit_s32 options;
+
+ struct sljit_label *labels;
+ struct sljit_jump *jumps;
+ struct sljit_put_label *put_labels;
+ struct sljit_const *consts;
+ struct sljit_label *last_label;
+ struct sljit_jump *last_jump;
+ struct sljit_const *last_const;
+ struct sljit_put_label *last_put_label;
+
+ void *allocator_data;
+ void *exec_allocator_data;
+ struct sljit_memory_fragment *buf;
+ struct sljit_memory_fragment *abuf;
+
+ /* Available scratch registers. */
+ sljit_s32 scratches;
+ /* Available saved registers. */
+ sljit_s32 saveds;
+ /* Available float scratch registers. */
+ sljit_s32 fscratches;
+ /* Available float saved registers. */
+ sljit_s32 fsaveds;
+ /* Local stack size. */
+ sljit_s32 local_size;
+ /* Maximum code size. */
+ sljit_uw size;
+ /* Relative offset of the executable mapping from the writable mapping. */
+ sljit_sw executable_offset;
+ /* Executable size for statistical purposes. */
+ sljit_uw executable_size;
+
+#if (defined SLJIT_HAS_STATUS_FLAGS_STATE && SLJIT_HAS_STATUS_FLAGS_STATE)
+ sljit_s32 status_flags_state;
+#endif
+
+#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
+ sljit_s32 args_size;
+#endif
+
+#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
+ sljit_s32 mode32;
+#endif
+
+#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
+ /* Constant pool handling. */
+ sljit_uw *cpool;
+ sljit_u8 *cpool_unique;
+ sljit_uw cpool_diff;
+ sljit_uw cpool_fill;
+ /* Other members. */
+ /* Contains pointer, "ldr pc, [...]" pairs. */
+ sljit_uw patches;
+#endif
+
+#if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
+ /* Temporary fields. */
+ sljit_uw shift_imm;
+#endif /* SLJIT_CONFIG_ARM_V5 || SLJIT_CONFIG_ARM_V7 */
+
+#if (defined SLJIT_CONFIG_ARM_32 && SLJIT_CONFIG_ARM_32) && (defined __SOFTFP__)
+ sljit_uw args_size;
+#endif
+
+#if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
+ sljit_u32 imm;
+#endif
+
+#if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
+ sljit_s32 delay_slot;
+ sljit_s32 cache_arg;
+ sljit_sw cache_argw;
+#endif
+
+#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
+ sljit_uw args_size;
+#endif
+
+#if (defined SLJIT_CONFIG_RISCV && SLJIT_CONFIG_RISCV)
+ sljit_s32 cache_arg;
+ sljit_sw cache_argw;
+#endif
+
+#if (defined SLJIT_CONFIG_S390X && SLJIT_CONFIG_S390X)
+ /* Need to allocate register save area to make calls. */
+ sljit_s32 mode;
+#endif
+
+#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
+ FILE* verbose;
+#endif
+
+#if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
+ || (defined SLJIT_DEBUG && SLJIT_DEBUG)
+ /* Flags specified by the last arithmetic instruction.
+ It contains the type of the variable flag. */
+ sljit_s32 last_flags;
+ /* Return value type set by entry functions. */
+ sljit_s32 last_return;
+ /* Local size passed to entry functions. */
+ sljit_s32 logical_local_size;
+#endif
+
+#if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
+ || (defined SLJIT_DEBUG && SLJIT_DEBUG) \
+ || (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
+ /* Trust arguments when an API function is called.
+ Used internally for calling API functions. */
+ sljit_s32 skip_checks;
+#endif
+};
+
+/* --------------------------------------------------------------------- */
+/* Main functions */
+/* --------------------------------------------------------------------- */
+
+/* Creates an SLJIT compiler. The allocator_data is required by some
+ custom memory managers. This pointer is passed to SLJIT_MALLOC
+ and SLJIT_FREE macros. Most allocators (including the default
+ one) ignores this value, and it is recommended to pass NULL
+ as a dummy value for allocator_data. The exec_allocator_data
+ has the same purpose but this one is passed to SLJIT_MALLOC_EXEC /
+ SLJIT_MALLOC_FREE functions.
+
+ Returns NULL if failed. */
+SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data, void *exec_allocator_data);
+
+/* Frees everything except the compiled machine code. */
+SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
+
+/* Returns the current error code. If an error occurres, future calls
+ which uses the same compiler argument returns early with the same
+ error code. Thus there is no need for checking the error after every
+ call, it is enough to do it after the code is compiled. Removing
+ these checks increases the performance of the compiling process. */
+static SLJIT_INLINE sljit_s32 sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
+
+/* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
+ if an error was detected before. After the error code is set
+ the compiler behaves as if the allocation failure happened
+ during an SLJIT function call. This can greatly simplify error
+ checking, since it is enough to check the compiler status
+ after the code is compiled. */
+SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
+
+/*
+ Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
+ and <= 128 bytes on 64 bit architectures. The memory area is owned by the
+ compiler, and freed by sljit_free_compiler. The returned pointer is
+ sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
+ compiling, and no need to worry about freeing them. The size is enough
+ to contain at most 16 pointers. If the size is outside of the range,
+ the function will return with NULL. However, this return value does not
+ indicate that there is no more memory (does not set the current error code
+ of the compiler to out-of-memory status).
+*/
+SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_s32 size);
+
+#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
+/* Passing NULL disables verbose. */
+SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
+#endif
+
+/*
+ Create executable code from the instruction stream. This is the final step
+ of the code generation so no more instructions can be emitted after this call.
+*/
+
+SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
+
+/* Free executable code. */
+
+SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code, void *exec_allocator_data);
+
+/*
+ When the protected executable allocator is used the JIT code is mapped
+ twice. The first mapping has read/write and the second mapping has read/exec
+ permissions. This function returns with the relative offset of the executable
+ mapping using the writable mapping as the base after the machine code is
+ successfully generated. The returned value is always 0 for the normal executable
+ allocator, since it uses only one mapping with read/write/exec permissions.
+ Dynamic code modifications requires this value.
+
+ Before a successful code generation, this function returns with 0.
+*/
+static SLJIT_INLINE sljit_sw sljit_get_executable_offset(struct sljit_compiler *compiler) { return compiler->executable_offset; }
+
+/*
+ The executable memory consumption of the generated code can be retrieved by
+ this function. The returned value can be used for statistical purposes.
+
+ Before a successful code generation, this function returns with 0.
+*/
+static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
+
+/* Returns with non-zero if the feature or limitation type passed as its
+ argument is present on the current CPU. The return value is one, if a
+ feature is fully supported, and it is two, if partially supported.
+
+ Some features (e.g. floating point operations) require hardware (CPU)
+ support while others (e.g. move with update) are emulated if not available.
+ However, even when a feature is emulated, specialized code paths may be
+ faster than the emulation. Some limitations are emulated as well so their
+ general case is supported but it has extra performance costs. */
+
+/* [Not emulated] Floating-point support is available. */
+#define SLJIT_HAS_FPU 0
+/* [Limitation] Some registers are virtual registers. */
+#define SLJIT_HAS_VIRTUAL_REGISTERS 1
+/* [Emulated] Has zero register (setting a memory location to zero is efficient). */
+#define SLJIT_HAS_ZERO_REGISTER 2
+/* [Emulated] Count leading zero is supported. */
+#define SLJIT_HAS_CLZ 3
+/* [Emulated] Count trailing zero is supported. */
+#define SLJIT_HAS_CTZ 4
+/* [Emulated] Rotate left/right is supported. */
+#define SLJIT_HAS_ROT 5
+/* [Emulated] Conditional move is supported. */
+#define SLJIT_HAS_CMOV 6
+/* [Emulated] Prefetch instruction is available (emulated as a nop). */
+#define SLJIT_HAS_PREFETCH 7
+
+#if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
+/* [Not emulated] SSE2 support is available on x86. */
+#define SLJIT_HAS_SSE2 100
+#endif
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type);
+
+/* If type is between SLJIT_ORDERED_EQUAL and SLJIT_ORDERED_LESS_EQUAL,
+ sljit_cmp_info returns one, if the cpu supports the passed floating
+ point comparison type.
+
+ If type is SLJIT_UNORDERED or SLJIT_ORDERED, sljit_cmp_info returns
+ one, if the cpu supports checking the unordered comparison result
+ regardless of the comparison type passed to the comparison instruction.
+ The returned value is always one, if there is at least one type between
+ SLJIT_ORDERED_EQUAL and SLJIT_ORDERED_LESS_EQUAL where sljit_cmp_info
+ returns with a zero value.
+
+ Otherwise it returns zero. */
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_cmp_info(sljit_s32 type);
+
+/* The following functions generate machine code. If there is no
+ error, they return with SLJIT_SUCCESS, otherwise they return
+ with an error code. */
+
+/*
+ The executable code is a function from the viewpoint of the C
+ language. The function calls must obey to the ABI (Application
+ Binary Interface) of the platform, which specify the purpose of
+ machine registers and stack handling among other things. The
+ sljit_emit_enter function emits the necessary instructions for
+ setting up a new context for the executable code. This is often
+ called as function prologue. Furthermore the options argument
+ can be used to pass configuration options to the compiler. The
+ available options are listed before sljit_emit_enter.
+
+ The function argument list is specified by the SLJIT_ARGSx
+ (SLJIT_ARGS0 .. SLJIT_ARGS4) macros. Currently maximum four
+ arguments are supported. See the description of SLJIT_ARGSx
+ macros about argument passing. Furthermore the register set
+ used by the function must be declared as well. The number of
+ scratch and saved registers available to the function must
+ be passed to sljit_emit_enter. Only R registers between R0
+ and "scratches" argument can be used later. E.g. if "scratches"
+ is set to two, the scratch register set will be limited to
+ SLJIT_R0 and SLJIT_R1. The S registers and the floating point
+ registers ("fscratches" and "fsaveds") are specified in a
+ similar manner. The sljit_emit_enter is also capable of
+ allocating a stack space for local data. The "local_size"
+ argument contains the size in bytes of this local area, and
+ it can be accessed using SLJIT_MEM1(SLJIT_SP). The memory
+ area between SLJIT_SP (inclusive) and SLJIT_SP + local_size
+ (exclusive) can be modified freely until the function returns.
+ The stack space is not initialized to zero.
+
+ Note: the following conditions must met:
+ 0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
+ 0 <= saveds <= SLJIT_NUMBER_OF_SAVED_REGISTERS
+ scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
+ 0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
+ 0 <= fsaveds <= SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS
+ fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
+
+ Note: the compiler can use saved registers as scratch registers,
+ but the opposite is not supported
+
+ Note: every call of sljit_emit_enter and sljit_set_context
+ overwrites the previous context.
+*/
+
+/* Saved registers between SLJIT_S0 and SLJIT_S(n - 1) (inclusive)
+ are not saved / restored on function enter / return. Instead,
+ these registers can be used to pass / return data (such as
+ global / local context pointers) across function calls. The
+ value of n must be between 1 and 3. This option is only
+ supported by SLJIT_ENTER_REG_ARG calling convention. */
+#define SLJIT_ENTER_KEEP(n) (n)
+
+/* The compiled function uses an SLJIT specific register argument
+ calling convention. This is a lightweight function call type where
+ both the caller and the called functions must be compiled by
+ SLJIT. The type argument of the call must be SLJIT_CALL_REG_ARG
+ and all arguments must be stored in scratch registers. */
+#define SLJIT_ENTER_REG_ARG 0x00000004
+
+/* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
+#define SLJIT_MAX_LOCAL_SIZE 65536
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
+ sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
+ sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
+
+/* The SLJIT compiler has a current context (which contains the local
+ stack space size, number of used registers, etc.) which is initialized
+ by sljit_emit_enter. Several functions (such as sljit_emit_return)
+ requires this context to be able to generate the appropriate code.
+ However, some code fragments (compiled separately) may have no
+ normal entry point so their context is unknown for the compiler.
+
+ The sljit_set_context and sljit_emit_enter have the same arguments,
+ but sljit_set_context does not generate any machine code.
+
+ Note: every call of sljit_emit_enter and sljit_set_context overwrites
+ the previous context. */
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
+ sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
+ sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
+
+/* Return to the caller function. The sljit_emit_return_void function
+ does not return with any value. The sljit_emit_return function returns
+ with a single value loaded from its source operand. The load operation
+ can be between SLJIT_MOV and SLJIT_MOV_P (see sljit_emit_op1) and
+ SLJIT_MOV_F32/SLJIT_MOV_F64 (see sljit_emit_fop1) depending on the
+ return value specified by sljit_emit_enter/sljit_set_context. */
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_void(struct sljit_compiler *compiler);
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op,
+ sljit_s32 src, sljit_sw srcw);
+
+/* Restores the saved registers and free the stack area, then the execution
+ continues from the address specified by the source operand. This
+ operation is similar to sljit_emit_return, but it ignores the return
+ address. The code where the exection continues should use the same context
+ as the caller function (see sljit_set_context). A word (pointer) value
+ can be passed in the SLJIT_RETURN_REG register. This function can be used
+ to jump to exception handlers. */
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_to(struct sljit_compiler *compiler,
+ sljit_s32 src, sljit_sw srcw);
+
+/* Generating entry and exit points for fast call functions (see SLJIT_FAST_CALL).
+ Both sljit_emit_fast_enter and SLJIT_FAST_RETURN operations preserve the
+ values of all registers and stack frame. The return address is stored in the
+ dst argument of sljit_emit_fast_enter, and this return address can be passed
+ to SLJIT_FAST_RETURN to continue the execution after the fast call.
+
+ Fast calls are cheap operations (usually only a single call instruction is
+ emitted) but they do not preserve any registers. However the callee function
+ can freely use / update any registers and the local area which can be
+ efficiently exploited by various optimizations. Registers can be saved
+ and restored manually if needed.
+
+ Although returning to different address by SLJIT_FAST_RETURN is possible,
+ this address usually cannot be predicted by the return address predictor of
+ modern CPUs which may reduce performance. Furthermore certain security
+ enhancement technologies such as Intel Control-flow Enforcement Technology
+ (CET) may disallow returning to a different address.
+
+ Flags: - (does not modify flags). */
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
+
+/*
+ Source and destination operands for arithmetical instructions
+ imm - a simple immediate value (cannot be used as a destination)
+ reg - any of the available registers (immediate argument must be 0)
+ [imm] - absolute memory address
+ [reg+imm] - indirect memory address
+ [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
+ useful for accessing arrays (fully supported by both x86 and
+ ARM architectures, and cheap operation on others)
+*/
+
+/*
+ IMPORTANT NOTE: memory accesses MUST be naturally aligned unless
+ SLJIT_UNALIGNED macro is defined and its value is 1.
+
+ length | alignment
+ ---------+-----------
+ byte | 1 byte (any physical_address is accepted)
+ half | 2 byte (physical_address & 0x1 == 0)
+ int | 4 byte (physical_address & 0x3 == 0)
+ word | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
+ | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
+ pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
+ | on 64 bit machines)
+
+ Note: Different architectures have different addressing limitations.
+ A single instruction is enough for the following addressing
+ modes. Other adrressing modes are emulated by instruction
+ sequences. This information could help to improve those code
+ generators which focuses only a few architectures.
+
+ x86: [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
+ [reg+(reg<<imm)] is supported
+ [imm], -2^32+1 <= imm <= 2^32-1 is supported
+ Write-back is not supported
+ arm: [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
+ bytes, any halfs or floating point values)
+ [reg+(reg<<imm)] is supported
+ Write-back is supported
+ arm-t2: [reg+imm], -255 <= imm <= 4095
+ [reg+(reg<<imm)] is supported
+ Write back is supported only for [reg+imm], where -255 <= imm <= 255
+ arm64: [reg+imm], -256 <= imm <= 255, 0 <= aligned imm <= 4095 * alignment
+ [reg+(reg<<imm)] is supported
+ Write back is supported only for [reg+imm], where -256 <= imm <= 255
+ ppc: [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
+ signed load on 64 bit requires immediates divisible by 4.
+ [reg+imm] is not supported for signed 8 bit values.
+ [reg+reg] is supported
+ Write-back is supported except for one instruction: 32 bit signed
+ load with [reg+imm] addressing mode on 64 bit.
+ mips: [reg+imm], -65536 <= imm <= 65535
+ Write-back is not supported
+ riscv: [reg+imm], -2048 <= imm <= 2047
+ Write-back is not supported
+ s390x: [reg+imm], -2^19 <= imm < 2^19
+ [reg+reg] is supported
+ Write-back is not supported
+*/
+
+/* Macros for specifying operand types. */
+#define SLJIT_MEM 0x80
+#define SLJIT_MEM0() (SLJIT_MEM)
+#define SLJIT_MEM1(r1) (SLJIT_MEM | (r1))
+#define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 8))
+#define SLJIT_IMM 0x40
+#define SLJIT_REG_PAIR(r1, r2) ((r1) | ((r2) << 8))
+
+/* Sets 32 bit operation mode on 64 bit CPUs. This option is ignored on
+ 32 bit CPUs. When this option is set for an arithmetic operation, only
+ the lower 32 bits of the input registers are used, and the CPU status
+ flags are set according to the 32 bit result. Although the higher 32 bit
+ of the input and the result registers are not defined by SLJIT, it might
+ be defined by the CPU architecture (e.g. MIPS). To satisfy these CPU
+ requirements all source registers must be the result of those operations
+ where this option was also set. Memory loads read 32 bit values rather
+ than 64 bit ones. In other words 32 bit and 64 bit operations cannot be
+ mixed. The only exception is SLJIT_MOV32 which source register can hold
+ any 32 or 64 bit value, and it is converted to a 32 bit compatible format
+ first. When the source and destination registers are the same, this
+ conversion is free (no instructions are emitted) on most CPUs. A 32 bit
+ value can also be converted to a 64 bit value by SLJIT_MOV_S32
+ (sign extension) or SLJIT_MOV_U32 (zero extension).
+
+ As for floating-point operations, this option sets 32 bit single
+ precision mode. Similar to the integer operations, all register arguments
+ must be the result of those operations where this option was also set.
+
+ Note: memory addressing always uses 64 bit values on 64 bit systems so
+ the result of a 32 bit operation must not be used with SLJIT_MEMx
+ macros.
+
+ This option is part of the instruction name, so there is no need to
+ manually set it. E.g:
+
+ SLJIT_ADD32 == (SLJIT_ADD | SLJIT_32) */
+#define SLJIT_32 0x100
+
+/* Many CPUs (x86, ARM, PPC) have status flag bits which can be set according
+ to the result of an operation. Other CPUs (MIPS) do not have status
+ flag bits, and results must be stored in registers. To cover both
+ architecture types efficiently only two flags are defined by SLJIT:
+
+ * Zero (equal) flag: it is set if the result is zero
+ * Variable flag: its value is defined by the arithmetic operation
+
+ SLJIT instructions can set any or both of these flags. The value of
+ these flags is undefined if the instruction does not specify their
+ value. The description of each instruction contains the list of
+ allowed flag types.
+
+ Note: the logical or operation can be used to set flags.
+
+ Example: SLJIT_ADD can set the Z, OVERFLOW, CARRY flags hence
+
+ sljit_op2(..., SLJIT_ADD, ...)
+ Both the zero and variable flags are undefined so they can
+ have any value after the operation is completed.
+
+ sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
+ Sets the zero flag if the result is zero, clears it otherwise.
+ The variable flag is undefined.
+
+ sljit_op2(..., SLJIT_ADD | SLJIT_SET_OVERFLOW, ...)
+ Sets the variable flag if an integer overflow occurs, clears
+ it otherwise. The zero flag is undefined.
+
+ sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z | SLJIT_SET_CARRY, ...)
+ Sets the zero flag if the result is zero, clears it otherwise.
+ Sets the variable flag if unsigned overflow (carry) occurs,
+ clears it otherwise.
+
+ Certain instructions (e.g. SLJIT_MOV) does not modify flags, so
+ status flags are unchanged.
+
+ Example:
+
+ sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
+ sljit_op1(..., SLJIT_MOV, ...)
+ Zero flag is set according to the result of SLJIT_ADD.
+
+ sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
+ sljit_op2(..., SLJIT_ADD, ...)
+ Zero flag has unknown value.
+
+ These flags can be used for code optimization. E.g. a fast loop can be
+ implemented by decreasing a counter register and set the zero flag
+ using a single instruction. The zero register can be used by a
+ conditional jump to restart the loop. A single comparison can set a
+ zero and less flags to check if a value is less, equal, or greater
+ than another value.
+
+ Motivation: although some CPUs can set a large number of flag bits,
+ usually their values are ignored or only a few of them are used. Emulating
+ a large number of flags on systems without a flag register is complicated
+ so SLJIT instructions must specify the flag they want to use and only
+ that flag is computed. The last arithmetic instruction can be repeated if
+ multiple flags need to be checked.
+*/
+
+/* Set Zero status flag. */
+#define SLJIT_SET_Z 0x0200
+/* Set the variable status flag if condition is true.
+ See comparison types (e.g. SLJIT_SET_LESS, SLJIT_SET_F_EQUAL). */
+#define SLJIT_SET(condition) ((condition) << 10)
+
+/* Starting index of opcodes for sljit_emit_op0. */
+#define SLJIT_OP0_BASE 0
+
+/* Flags: - (does not modify flags)
+ Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
+ It falls back to SLJIT_NOP in those cases. */
+#define SLJIT_BREAKPOINT (SLJIT_OP0_BASE + 0)
+/* Flags: - (does not modify flags)
+ Note: may or may not cause an extra cycle wait
+ it can even decrease the runtime in a few cases. */
+#define SLJIT_NOP (SLJIT_OP0_BASE + 1)
+/* Flags: - (may destroy flags)
+ Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
+ Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
+#define SLJIT_LMUL_UW (SLJIT_OP0_BASE + 2)
+/* Flags: - (may destroy flags)
+ Signed multiplication of SLJIT_R0 and SLJIT_R1.
+ Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
+#define SLJIT_LMUL_SW (SLJIT_OP0_BASE + 3)
+/* Flags: - (may destroy flags)
+ Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
+ The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
+ Note: if SLJIT_R1 is 0, the behaviour is undefined. */
+#define SLJIT_DIVMOD_UW (SLJIT_OP0_BASE + 4)
+#define SLJIT_DIVMOD_U32 (SLJIT_DIVMOD_UW | SLJIT_32)
+/* Flags: - (may destroy flags)
+ Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
+ The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
+ Note: if SLJIT_R1 is 0, the behaviour is undefined.
+ Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
+ the behaviour is undefined. */
+#define SLJIT_DIVMOD_SW (SLJIT_OP0_BASE + 5)
+#define SLJIT_DIVMOD_S32 (SLJIT_DIVMOD_SW | SLJIT_32)
+/* Flags: - (may destroy flags)
+ Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
+ The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
+ Note: if SLJIT_R1 is 0, the behaviour is undefined. */
+#define SLJIT_DIV_UW (SLJIT_OP0_BASE + 6)
+#define SLJIT_DIV_U32 (SLJIT_DIV_UW | SLJIT_32)
+/* Flags: - (may destroy flags)
+ Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
+ The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
+ Note: if SLJIT_R1 is 0, the behaviour is undefined.
+ Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
+ the behaviour is undefined. */
+#define SLJIT_DIV_SW (SLJIT_OP0_BASE + 7)
+#define SLJIT_DIV_S32 (SLJIT_DIV_SW | SLJIT_32)
+/* Flags: - (does not modify flags)
+ ENDBR32 instruction for x86-32 and ENDBR64 instruction for x86-64
+ when Intel Control-flow Enforcement Technology (CET) is enabled.
+ No instructions are emitted for other architectures. */
+#define SLJIT_ENDBR (SLJIT_OP0_BASE + 8)
+/* Flags: - (may destroy flags)
+ Skip stack frames before return when Intel Control-flow
+ Enforcement Technology (CET) is enabled. No instructions
+ are emitted for other architectures. */
+#define SLJIT_SKIP_FRAMES_BEFORE_RETURN (SLJIT_OP0_BASE + 9)
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op);
+
+/* Starting index of opcodes for sljit_emit_op1. */
+#define SLJIT_OP1_BASE 32
+
+/* The MOV instruction transfers data from source to destination.
+
+ MOV instruction suffixes:
+
+ U8 - unsigned 8 bit data transfer
+ S8 - signed 8 bit data transfer
+ U16 - unsigned 16 bit data transfer
+ S16 - signed 16 bit data transfer
+ U32 - unsigned int (32 bit) data transfer
+ S32 - signed int (32 bit) data transfer
+ P - pointer (sljit_p) data transfer
+*/
+
+/* Flags: - (does not modify flags) */
+#define SLJIT_MOV (SLJIT_OP1_BASE + 0)
+/* Flags: - (does not modify flags) */
+#define SLJIT_MOV_U8 (SLJIT_OP1_BASE + 1)
+#define SLJIT_MOV32_U8 (SLJIT_MOV_U8 | SLJIT_32)
+/* Flags: - (does not modify flags) */
+#define SLJIT_MOV_S8 (SLJIT_OP1_BASE + 2)
+#define SLJIT_MOV32_S8 (SLJIT_MOV_S8 | SLJIT_32)
+/* Flags: - (does not modify flags) */
+#define SLJIT_MOV_U16 (SLJIT_OP1_BASE + 3)
+#define SLJIT_MOV32_U16 (SLJIT_MOV_U16 | SLJIT_32)
+/* Flags: - (does not modify flags) */
+#define SLJIT_MOV_S16 (SLJIT_OP1_BASE + 4)
+#define SLJIT_MOV32_S16 (SLJIT_MOV_S16 | SLJIT_32)
+/* Flags: - (does not modify flags)
+ Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
+#define SLJIT_MOV_U32 (SLJIT_OP1_BASE + 5)
+/* Flags: - (does not modify flags)
+ Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
+#define SLJIT_MOV_S32 (SLJIT_OP1_BASE + 6)
+/* Flags: - (does not modify flags) */
+#define SLJIT_MOV32 (SLJIT_OP1_BASE + 7)
+/* Flags: - (does not modify flags)
+ Note: loads a pointer sized data, useful on x32 mode (a 64 bit mode
+ on x86-64 which uses 32 bit pointers) or similar compiling modes */
+#define SLJIT_MOV_P (SLJIT_OP1_BASE + 8)
+/* Flags: Z
+ Note: immediate source argument is not supported */
+#define SLJIT_NOT (SLJIT_OP1_BASE + 9)
+#define SLJIT_NOT32 (SLJIT_NOT | SLJIT_32)
+/* Count leading zeroes
+ Flags: - (may destroy flags)
+ Note: immediate source argument is not supported */
+#define SLJIT_CLZ (SLJIT_OP1_BASE + 10)
+#define SLJIT_CLZ32 (SLJIT_CLZ | SLJIT_32)
+/* Count trailing zeroes
+ Flags: - (may destroy flags)
+ Note: immediate source argument is not supported */
+#define SLJIT_CTZ (SLJIT_OP1_BASE + 11)
+#define SLJIT_CTZ32 (SLJIT_CTZ | SLJIT_32)
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
+ sljit_s32 dst, sljit_sw dstw,
+ sljit_s32 src, sljit_sw srcw);
+
+/* Starting index of opcodes for sljit_emit_op2. */
+#define SLJIT_OP2_BASE 96
+
+/* Flags: Z | OVERFLOW | CARRY */
+#define SLJIT_ADD (SLJIT_OP2_BASE + 0)
+#define SLJIT_ADD32 (SLJIT_ADD | SLJIT_32)
+/* Flags: CARRY */
+#define SLJIT_ADDC (SLJIT_OP2_BASE + 1)
+#define SLJIT_ADDC32 (SLJIT_ADDC | SLJIT_32)
+/* Flags: Z | LESS | GREATER_EQUAL | GREATER | LESS_EQUAL
+ SIG_LESS | SIG_GREATER_EQUAL | SIG_GREATER
+ SIG_LESS_EQUAL | OVERFLOW | CARRY */
+#define SLJIT_SUB (SLJIT_OP2_BASE + 2)
+#define SLJIT_SUB32 (SLJIT_SUB | SLJIT_32)
+/* Flags: CARRY */
+#define SLJIT_SUBC (SLJIT_OP2_BASE + 3)
+#define SLJIT_SUBC32 (SLJIT_SUBC | SLJIT_32)
+/* Note: integer mul
+ Flags: OVERFLOW */
+#define SLJIT_MUL (SLJIT_OP2_BASE + 4)
+#define SLJIT_MUL32 (SLJIT_MUL | SLJIT_32)
+/* Flags: Z */
+#define SLJIT_AND (SLJIT_OP2_BASE + 5)
+#define SLJIT_AND32 (SLJIT_AND | SLJIT_32)
+/* Flags: Z */
+#define SLJIT_OR (SLJIT_OP2_BASE + 6)
+#define SLJIT_OR32 (SLJIT_OR | SLJIT_32)
+/* Flags: Z */
+#define SLJIT_XOR (SLJIT_OP2_BASE + 7)
+#define SLJIT_XOR32 (SLJIT_XOR | SLJIT_32)
+/* Flags: Z
+ Let bit_length be the length of the shift operation: 32 or 64.
+ If src2 is immediate, src2w is masked by (bit_length - 1).
+ Otherwise, if the content of src2 is outside the range from 0
+ to bit_length - 1, the result is undefined. */
+#define SLJIT_SHL (SLJIT_OP2_BASE + 8)
+#define SLJIT_SHL32 (SLJIT_SHL | SLJIT_32)
+/* Flags: Z
+ Same as SLJIT_SHL, except the the second operand is
+ always masked by the length of the shift operation. */
+#define SLJIT_MSHL (SLJIT_OP2_BASE + 9)
+#define SLJIT_MSHL32 (SLJIT_MSHL | SLJIT_32)
+/* Flags: Z
+ Let bit_length be the length of the shift operation: 32 or 64.
+ If src2 is immediate, src2w is masked by (bit_length - 1).
+ Otherwise, if the content of src2 is outside the range from 0
+ to bit_length - 1, the result is undefined. */
+#define SLJIT_LSHR (SLJIT_OP2_BASE + 10)
+#define SLJIT_LSHR32 (SLJIT_LSHR | SLJIT_32)
+/* Flags: Z
+ Same as SLJIT_LSHR, except the the second operand is
+ always masked by the length of the shift operation. */
+#define SLJIT_MLSHR (SLJIT_OP2_BASE + 11)
+#define SLJIT_MLSHR32 (SLJIT_MLSHR | SLJIT_32)
+/* Flags: Z
+ Let bit_length be the length of the shift operation: 32 or 64.
+ If src2 is immediate, src2w is masked by (bit_length - 1).
+ Otherwise, if the content of src2 is outside the range from 0
+ to bit_length - 1, the result is undefined. */
+#define SLJIT_ASHR (SLJIT_OP2_BASE + 12)
+#define SLJIT_ASHR32 (SLJIT_ASHR | SLJIT_32)
+/* Flags: Z
+ Same as SLJIT_ASHR, except the the second operand is
+ always masked by the length of the shift operation. */
+#define SLJIT_MASHR (SLJIT_OP2_BASE + 13)
+#define SLJIT_MASHR32 (SLJIT_MASHR | SLJIT_32)
+/* Flags: - (may destroy flags)
+ Let bit_length be the length of the rotate operation: 32 or 64.
+ The second operand is always masked by (bit_length - 1). */
+#define SLJIT_ROTL (SLJIT_OP2_BASE + 14)
+#define SLJIT_ROTL32 (SLJIT_ROTL | SLJIT_32)
+/* Flags: - (may destroy flags)
+ Let bit_length be the length of the rotate operation: 32 or 64.
+ The second operand is always masked by (bit_length - 1). */
+#define SLJIT_ROTR (SLJIT_OP2_BASE + 15)
+#define SLJIT_ROTR32 (SLJIT_ROTR | SLJIT_32)
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
+ sljit_s32 dst, sljit_sw dstw,
+ sljit_s32 src1, sljit_sw src1w,
+ sljit_s32 src2, sljit_sw src2w);
+
+/* The sljit_emit_op2u function is the same as sljit_emit_op2
+ except the result is discarded. */
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2u(struct sljit_compiler *compiler, sljit_s32 op,
+ sljit_s32 src1, sljit_sw src1w,
+ sljit_s32 src2, sljit_sw src2w);
+
+/* Emit a left or right shift operation, where the bits shifted
+ in comes from a separate source operand. All operands are
+ interpreted as unsigned integers.
+
+ In the followings the value_mask variable is 31 for 32 bit
+ operations and word_size - 1 otherwise.
+
+ op must be one of the following operations:
+ SLJIT_SHL or SLJIT_SHL32:
+ src_dst <<= src2
+ src_dst |= ((src1 >> 1) >> (src2 ^ value_mask))
+ SLJIT_MSHL or SLJIT_MSHL32:
+ src2 &= value_mask
+ perform the SLJIT_SHL or SLJIT_SHL32 operation
+ SLJIT_LSHR or SLJIT_LSHR32:
+ src_dst >>= src2
+ src_dst |= ((src1 << 1) << (src2 ^ value_mask))
+ SLJIT_MLSHR or SLJIT_MLSHR32:
+ src2 &= value_mask
+ perform the SLJIT_LSHR or SLJIT_LSHR32 operation
+
+ op can be combined (or'ed) with SLJIT_SHIFT_INTO_NON_ZERO
+
+ src_dst must be a register which content is updated after
+ the operation is completed
+ src1 / src1w contains the bits which shifted into src_dst
+ src2 / src2w contains the shift amount
+
+ Note: a rotate operation can be performed if src_dst and
+ src1 are set to the same register
+
+ Flags: - (may destroy flags) */
+
+/* The src2 contains a non-zero value. Improves the generated
+ code on certain architectures, which provides a small
+ performance improvement. */
+#define SLJIT_SHIFT_INTO_NON_ZERO 0x200
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_shift_into(struct sljit_compiler *compiler, sljit_s32 op,
+ sljit_s32 src_dst,
+ sljit_s32 src1, sljit_sw src1w,
+ sljit_s32 src2, sljit_sw src2w);
+
+/* Starting index of opcodes for sljit_emit_op2. */
+#define SLJIT_OP_SRC_BASE 128
+
+/* Note: src cannot be an immedate value
+ Flags: - (does not modify flags) */
+#define SLJIT_FAST_RETURN (SLJIT_OP_SRC_BASE + 0)
+/* Skip stack frames before fast return.
+ Note: src cannot be an immedate value
+ Flags: may destroy flags. */
+#define SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN (SLJIT_OP_SRC_BASE + 1)
+/* Prefetch value into the level 1 data cache
+ Note: if the target CPU does not support data prefetch,
+ no instructions are emitted.
+ Note: this instruction never fails, even if the memory address is invalid.
+ Flags: - (does not modify flags) */
+#define SLJIT_PREFETCH_L1 (SLJIT_OP_SRC_BASE + 2)
+/* Prefetch value into the level 2 data cache
+ Note: same as SLJIT_PREFETCH_L1 if the target CPU
+ does not support this instruction form.
+ Note: this instruction never fails, even if the memory address is invalid.
+ Flags: - (does not modify flags) */
+#define SLJIT_PREFETCH_L2 (SLJIT_OP_SRC_BASE + 3)
+/* Prefetch value into the level 3 data cache
+ Note: same as SLJIT_PREFETCH_L2 if the target CPU
+ does not support this instruction form.
+ Note: this instruction never fails, even if the memory address is invalid.
+ Flags: - (does not modify flags) */
+#define SLJIT_PREFETCH_L3 (SLJIT_OP_SRC_BASE + 4)
+/* Prefetch a value which is only used once (and can be discarded afterwards)
+ Note: same as SLJIT_PREFETCH_L1 if the target CPU
+ does not support this instruction form.
+ Note: this instruction never fails, even if the memory address is invalid.
+ Flags: - (does not modify flags) */
+#define SLJIT_PREFETCH_ONCE (SLJIT_OP_SRC_BASE + 5)
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_src(struct sljit_compiler *compiler, sljit_s32 op,
+ sljit_s32 src, sljit_sw srcw);
+
+/* Starting index of opcodes for sljit_emit_fop1. */
+#define SLJIT_FOP1_BASE 160
+
+/* Flags: - (does not modify flags) */
+#define SLJIT_MOV_F64 (SLJIT_FOP1_BASE + 0)
+#define SLJIT_MOV_F32 (SLJIT_MOV_F64 | SLJIT_32)
+/* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
+ SRC/DST TYPE can be: F64, F32, S32, SW
+ Rounding mode when the destination is SW or S32: round towards zero. */
+/* Flags: - (may destroy flags) */
+#define SLJIT_CONV_F64_FROM_F32 (SLJIT_FOP1_BASE + 1)
+#define SLJIT_CONV_F32_FROM_F64 (SLJIT_CONV_F64_FROM_F32 | SLJIT_32)
+/* Flags: - (may destroy flags) */
+#define SLJIT_CONV_SW_FROM_F64 (SLJIT_FOP1_BASE + 2)
+#define SLJIT_CONV_SW_FROM_F32 (SLJIT_CONV_SW_FROM_F64 | SLJIT_32)
+/* Flags: - (may destroy flags) */
+#define SLJIT_CONV_S32_FROM_F64 (SLJIT_FOP1_BASE + 3)
+#define SLJIT_CONV_S32_FROM_F32 (SLJIT_CONV_S32_FROM_F64 | SLJIT_32)
+/* Flags: - (may destroy flags) */
+#define SLJIT_CONV_F64_FROM_SW (SLJIT_FOP1_BASE + 4)
+#define SLJIT_CONV_F32_FROM_SW (SLJIT_CONV_F64_FROM_SW | SLJIT_32)
+/* Flags: - (may destroy flags) */
+#define SLJIT_CONV_F64_FROM_S32 (SLJIT_FOP1_BASE + 5)
+#define SLJIT_CONV_F32_FROM_S32 (SLJIT_CONV_F64_FROM_S32 | SLJIT_32)
+/* Note: dst is the left and src is the right operand for SLJIT_CMP_F32/64.
+ Flags: EQUAL_F | LESS_F | GREATER_EQUAL_F | GREATER_F | LESS_EQUAL_F */
+#define SLJIT_CMP_F64 (SLJIT_FOP1_BASE + 6)
+#define SLJIT_CMP_F32 (SLJIT_CMP_F64 | SLJIT_32)
+/* Flags: - (may destroy flags) */
+#define SLJIT_NEG_F64 (SLJIT_FOP1_BASE + 7)
+#define SLJIT_NEG_F32 (SLJIT_NEG_F64 | SLJIT_32)
+/* Flags: - (may destroy flags) */
+#define SLJIT_ABS_F64 (SLJIT_FOP1_BASE + 8)
+#define SLJIT_ABS_F32 (SLJIT_ABS_F64 | SLJIT_32)
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
+ sljit_s32 dst, sljit_sw dstw,
+ sljit_s32 src, sljit_sw srcw);
+
+/* Starting index of opcodes for sljit_emit_fop2. */
+#define SLJIT_FOP2_BASE 192
+
+/* Flags: - (may destroy flags) */
+#define SLJIT_ADD_F64 (SLJIT_FOP2_BASE + 0)
+#define SLJIT_ADD_F32 (SLJIT_ADD_F64 | SLJIT_32)
+/* Flags: - (may destroy flags) */
+#define SLJIT_SUB_F64 (SLJIT_FOP2_BASE + 1)
+#define SLJIT_SUB_F32 (SLJIT_SUB_F64 | SLJIT_32)
+/* Flags: - (may destroy flags) */
+#define SLJIT_MUL_F64 (SLJIT_FOP2_BASE + 2)
+#define SLJIT_MUL_F32 (SLJIT_MUL_F64 | SLJIT_32)
+/* Flags: - (may destroy flags) */
+#define SLJIT_DIV_F64 (SLJIT_FOP2_BASE + 3)
+#define SLJIT_DIV_F32 (SLJIT_DIV_F64 | SLJIT_32)
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
+ sljit_s32 dst, sljit_sw dstw,
+ sljit_s32 src1, sljit_sw src1w,
+ sljit_s32 src2, sljit_sw src2w);
+
+/* Label and jump instructions. */
+
+SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
+
+/* Invert (negate) conditional type: xor (^) with 0x1 */
+
+/* Integer comparison types. */
+#define SLJIT_EQUAL 0
+#define SLJIT_ZERO SLJIT_EQUAL
+#define SLJIT_NOT_EQUAL 1
+#define SLJIT_NOT_ZERO SLJIT_NOT_EQUAL
+
+#define SLJIT_LESS 2
+#define SLJIT_SET_LESS SLJIT_SET(SLJIT_LESS)
+#define SLJIT_GREATER_EQUAL 3
+#define SLJIT_SET_GREATER_EQUAL SLJIT_SET(SLJIT_GREATER_EQUAL)
+#define SLJIT_GREATER 4
+#define SLJIT_SET_GREATER SLJIT_SET(SLJIT_GREATER)
+#define SLJIT_LESS_EQUAL 5
+#define SLJIT_SET_LESS_EQUAL SLJIT_SET(SLJIT_LESS_EQUAL)
+#define SLJIT_SIG_LESS 6
+#define SLJIT_SET_SIG_LESS SLJIT_SET(SLJIT_SIG_LESS)
+#define SLJIT_SIG_GREATER_EQUAL 7
+#define SLJIT_SET_SIG_GREATER_EQUAL SLJIT_SET(SLJIT_SIG_GREATER_EQUAL)
+#define SLJIT_SIG_GREATER 8
+#define SLJIT_SET_SIG_GREATER SLJIT_SET(SLJIT_SIG_GREATER)
+#define SLJIT_SIG_LESS_EQUAL 9
+#define SLJIT_SET_SIG_LESS_EQUAL SLJIT_SET(SLJIT_SIG_LESS_EQUAL)
+
+#define SLJIT_OVERFLOW 10
+#define SLJIT_SET_OVERFLOW SLJIT_SET(SLJIT_OVERFLOW)
+#define SLJIT_NOT_OVERFLOW 11
+
+/* Unlike other flags, sljit_emit_jump may destroy the carry flag. */
+#define SLJIT_CARRY 12
+#define SLJIT_SET_CARRY SLJIT_SET(SLJIT_CARRY)
+#define SLJIT_NOT_CARRY 13
+
+/* Basic floating point comparison types.
+
+ Note: when the comparison result is unordered, their behaviour is unspecified. */
+
+#define SLJIT_F_EQUAL 14
+#define SLJIT_SET_F_EQUAL SLJIT_SET(SLJIT_F_EQUAL)
+#define SLJIT_F_NOT_EQUAL 15
+#define SLJIT_SET_F_NOT_EQUAL SLJIT_SET(SLJIT_F_NOT_EQUAL)
+#define SLJIT_F_LESS 16
+#define SLJIT_SET_F_LESS SLJIT_SET(SLJIT_F_LESS)
+#define SLJIT_F_GREATER_EQUAL 17
+#define SLJIT_SET_F_GREATER_EQUAL SLJIT_SET(SLJIT_F_GREATER_EQUAL)
+#define SLJIT_F_GREATER 18
+#define SLJIT_SET_F_GREATER SLJIT_SET(SLJIT_F_GREATER)
+#define SLJIT_F_LESS_EQUAL 19
+#define SLJIT_SET_F_LESS_EQUAL SLJIT_SET(SLJIT_F_LESS_EQUAL)
+
+/* Jumps when either argument contains a NaN value. */
+#define SLJIT_UNORDERED 20
+#define SLJIT_SET_UNORDERED SLJIT_SET(SLJIT_UNORDERED)
+/* Jumps when neither argument contains a NaN value. */
+#define SLJIT_ORDERED 21
+#define SLJIT_SET_ORDERED SLJIT_SET(SLJIT_ORDERED)
+
+/* Ordered / unordered floating point comparison types.
+
+ Note: each comparison type has an ordered and unordered form. Some
+ architectures supports only either of them (see: sljit_cmp_info). */
+
+#define SLJIT_ORDERED_EQUAL 22
+#define SLJIT_SET_ORDERED_EQUAL SLJIT_SET(SLJIT_ORDERED_EQUAL)
+#define SLJIT_UNORDERED_OR_NOT_EQUAL 23
+#define SLJIT_SET_UNORDERED_OR_NOT_EQUAL SLJIT_SET(SLJIT_UNORDERED_OR_NOT_EQUAL)
+#define SLJIT_ORDERED_LESS 24
+#define SLJIT_SET_ORDERED_LESS SLJIT_SET(SLJIT_ORDERED_LESS)
+#define SLJIT_UNORDERED_OR_GREATER_EQUAL 25
+#define SLJIT_SET_UNORDERED_OR_GREATER_EQUAL SLJIT_SET(SLJIT_UNORDERED_OR_GREATER_EQUAL)
+#define SLJIT_ORDERED_GREATER 26
+#define SLJIT_SET_ORDERED_GREATER SLJIT_SET(SLJIT_ORDERED_GREATER)
+#define SLJIT_UNORDERED_OR_LESS_EQUAL 27
+#define SLJIT_SET_UNORDERED_OR_LESS_EQUAL SLJIT_SET(SLJIT_UNORDERED_OR_LESS_EQUAL)
+
+#define SLJIT_UNORDERED_OR_EQUAL 28
+#define SLJIT_SET_UNORDERED_OR_EQUAL SLJIT_SET(SLJIT_UNORDERED_OR_EQUAL)
+#define SLJIT_ORDERED_NOT_EQUAL 29
+#define SLJIT_SET_ORDERED_NOT_EQUAL SLJIT_SET(SLJIT_ORDERED_NOT_EQUAL)
+#define SLJIT_UNORDERED_OR_LESS 30
+#define SLJIT_SET_UNORDERED_OR_LESS SLJIT_SET(SLJIT_UNORDERED_OR_LESS)
+#define SLJIT_ORDERED_GREATER_EQUAL 31
+#define SLJIT_SET_ORDERED_GREATER_EQUAL SLJIT_SET(SLJIT_ORDERED_GREATER_EQUAL)
+#define SLJIT_UNORDERED_OR_GREATER 32
+#define SLJIT_SET_UNORDERED_OR_GREATER SLJIT_SET(SLJIT_UNORDERED_OR_GREATER)
+#define SLJIT_ORDERED_LESS_EQUAL 33
+#define SLJIT_SET_ORDERED_LESS_EQUAL SLJIT_SET(SLJIT_ORDERED_LESS_EQUAL)
+
+/* Unconditional jump types. */
+#define SLJIT_JUMP 34
+/* Fast calling method. See sljit_emit_fast_enter / SLJIT_FAST_RETURN. */
+#define SLJIT_FAST_CALL 35
+/* Default C calling convention. */
+#define SLJIT_CALL 36
+/* Called function must be compiled by SLJIT.
+ See SLJIT_ENTER_REG_ARG option. */
+#define SLJIT_CALL_REG_ARG 37
+
+/* The target can be changed during runtime (see: sljit_set_jump_addr). */
+#define SLJIT_REWRITABLE_JUMP 0x1000
+/* When this flag is passed, the execution of the current function ends and
+ the called function returns to the caller of the current function. The
+ stack usage is reduced before the call, but it is not necessarily reduced
+ to zero. In the latter case the compiler needs to allocate space for some
+ arguments and the return address must be stored on the stack as well. */
+#define SLJIT_CALL_RETURN 0x2000
+
+/* Emit a jump instruction. The destination is not set, only the type of the jump.
+ type must be between SLJIT_EQUAL and SLJIT_FAST_CALL
+ type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
+
+ Flags: does not modify flags. */
+SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type);
+
+/* Emit a C compiler (ABI) compatible function call.
+ type must be SLJIT_CALL or SLJIT_CALL_REG_ARG
+ type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP and/or SLJIT_CALL_RETURN
+ arg_types can be specified by SLJIT_ARGSx (SLJIT_ARG_RETURN / SLJIT_ARG_VALUE) macros
+
+ Flags: destroy all flags. */
+SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types);
+
+/* Basic arithmetic comparison. In most architectures it is implemented as
+ a compare operation followed by a sljit_emit_jump. However some
+ architectures (i.e: ARM64 or MIPS) may employ special optimizations
+ here. It is suggested to use this comparison form when appropriate.
+ type must be between SLJIT_EQUAL and SLJIT_SIG_LESS_EQUAL
+ type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
+
+ Flags: may destroy flags. */
+SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
+ sljit_s32 src1, sljit_sw src1w,
+ sljit_s32 src2, sljit_sw src2w);
+
+/* Basic floating point comparison. In most architectures it is implemented as
+ a SLJIT_CMP_F32/64 operation (setting appropriate flags) followed by a
+ sljit_emit_jump. However some architectures (i.e: MIPS) may employ
+ special optimizations here. It is suggested to use this comparison form
+ when appropriate.
+ type must be between SLJIT_F_EQUAL and SLJIT_ORDERED_LESS_EQUAL
+ type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
+ Flags: destroy flags.
+ Note: when an operand is NaN the behaviour depends on the comparison type. */
+SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_s32 type,
+ sljit_s32 src1, sljit_sw src1w,
+ sljit_s32 src2, sljit_sw src2w);
+
+/* Set the destination of the jump to this label. */
+SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
+/* Set the destination address of the jump to this label. */
+SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
+
+/* Emit an indirect jump or fast call.
+ Direct form: set src to SLJIT_IMM() and srcw to the address
+ Indirect form: any other valid addressing mode
+ type must be between SLJIT_JUMP and SLJIT_FAST_CALL
+
+ Flags: does not modify flags. */
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw);
+
+/* Emit a C compiler (ABI) compatible function call.
+ Direct form: set src to SLJIT_IMM() and srcw to the address
+ Indirect form: any other valid addressing mode
+ type must be SLJIT_CALL or SLJIT_CALL_REG_ARG
+ type can be combined (or'ed) with SLJIT_CALL_RETURN
+ arg_types can be specified by SLJIT_ARGSx (SLJIT_ARG_RETURN / SLJIT_ARG_VALUE) macros
+
+ Flags: destroy all flags. */
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types, sljit_s32 src, sljit_sw srcw);
+
+/* Perform an operation using the conditional flags as the second argument.
+ Type must always be between SLJIT_EQUAL and SLJIT_ORDERED_LESS_EQUAL.
+ The value represented by the type is 1, if the condition represented
+ by the type is fulfilled, and 0 otherwise.
+
+ When op is SLJIT_MOV or SLJIT_MOV32:
+ Set dst to the value represented by the type (0 or 1).
+ Flags: - (does not modify flags)
+ When op is SLJIT_AND, SLJIT_AND32, SLJIT_OR, SLJIT_OR32, SLJIT_XOR, or SLJIT_XOR32
+ Performs the binary operation using dst as the first, and the value
+ represented by type as the second argument. Result is written into dst.
+ Flags: Z (may destroy flags) */
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
+ sljit_s32 dst, sljit_sw dstw,
+ sljit_s32 type);
+
+/* Emit a conditional mov instruction which moves source to destination,
+ if the condition is satisfied. Unlike other arithmetic operations this
+ instruction does not support memory access.
+
+ type must be between SLJIT_EQUAL and SLJIT_ORDERED_LESS_EQUAL
+ type can be combined (or'ed) with SLJIT_32
+ dst_reg must be a valid register
+ src must be a valid register or immediate (SLJIT_IMM)
+
+ Flags: - (does not modify flags) */
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type,
+ sljit_s32 dst_reg,
+ sljit_s32 src, sljit_sw srcw);
+
+/* The following flags are used by sljit_emit_mem(), sljit_emit_mem_update(),
+ sljit_emit_fmem(), and sljit_emit_fmem_update(). */
+
+/* Memory load operation. This is the default. */
+#define SLJIT_MEM_LOAD 0x000000
+/* Memory store operation. */
+#define SLJIT_MEM_STORE 0x000200
+
+/* The following flags are used by sljit_emit_mem() and sljit_emit_fmem(). */
+
+/* Load or stora data from an unaligned (byte aligned) address. */
+#define SLJIT_MEM_UNALIGNED 0x000400
+/* Load or stora data from a 16 bit aligned address. */
+#define SLJIT_MEM_UNALIGNED_16 0x000800
+/* Load or stora data from a 32 bit aligned address. */
+#define SLJIT_MEM_UNALIGNED_32 0x001000
+
+/* The following flags are used by sljit_emit_mem_update(),
+ and sljit_emit_fmem_update(). */
+
+/* Base register is updated before the memory access (default). */
+#define SLJIT_MEM_PRE 0x000000
+/* Base register is updated after the memory access. */
+#define SLJIT_MEM_POST 0x000400
+
+/* When SLJIT_MEM_SUPP is passed, no instructions are emitted.
+ Instead the function returns with SLJIT_SUCCESS if the instruction
+ form is supported and SLJIT_ERR_UNSUPPORTED otherwise. This flag
+ allows runtime checking of available instruction forms. */
+#define SLJIT_MEM_SUPP 0x000800
+
+/* The sljit_emit_mem emits instructions for various memory operations:
+
+ When SLJIT_MEM_UNALIGNED / SLJIT_MEM_UNALIGNED_16 /
+ SLJIT_MEM_UNALIGNED_32 is set in type argument:
+ Emit instructions for unaligned memory loads or stores. When
+ SLJIT_UNALIGNED is not defined, the only way to access unaligned
+ memory data is using sljit_emit_mem. Otherwise all operations (e.g.
+ sljit_emit_op1/2, or sljit_emit_fop1/2) supports unaligned access.
+ In general, the performance of unaligned memory accesses are often
+ lower than aligned and should be avoided.
+
+ When a pair of registers is passed in reg argument:
+ Emit instructions for moving data between a register pair and
+ memory. The register pair can be specified by the SLJIT_REG_PAIR
+ macro. The first register is loaded from or stored into the
+ location specified by the mem/memw arguments, and the end address
+ of this operation is the starting address of the data transfer
+ between the second register and memory. The type argument must
+ be SLJIT_MOV. The SLJIT_MEM_UNALIGNED* options are allowed for
+ this operation.
+
+ type must be between SLJIT_MOV and SLJIT_MOV_P and can be
+ combined (or'ed) with SLJIT_MEM_* flags
+ reg is a register or register pair, which is the source or
+ destination of the operation
+ mem must be a memory operand
+
+ Flags: - (does not modify flags) */
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type,
+ sljit_s32 reg,
+ sljit_s32 mem, sljit_sw memw);
+
+/* Emit a single memory load or store with update instruction.
+ When the requested instruction form is not supported by the CPU,
+ it returns with SLJIT_ERR_UNSUPPORTED instead of emulating the
+ instruction. This allows specializing tight loops based on
+ the supported instruction forms (see SLJIT_MEM_SUPP flag).
+ Absolute address (SLJIT_MEM0) forms are never supported
+ and the base (first) register specified by the mem argument
+ must not be SLJIT_SP and must also be different from the
+ register specified by the reg argument.
+
+ type must be between SLJIT_MOV and SLJIT_MOV_P and can be
+ combined (or'ed) with SLJIT_MEM_* flags
+ reg is the source or destination register of the operation
+ mem must be a memory operand
+
+ Flags: - (does not modify flags) */
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem_update(struct sljit_compiler *compiler, sljit_s32 type,
+ sljit_s32 reg,
+ sljit_s32 mem, sljit_sw memw);
+
+/* Same as sljit_emit_mem except the followings:
+
+ Loading or storing a pair of registers is not supported.
+
+ type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be
+ combined (or'ed) with SLJIT_MEM_* flags.
+ freg is the source or destination floating point register
+ of the operation
+ mem must be a memory operand
+
+ Flags: - (does not modify flags) */
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem(struct sljit_compiler *compiler, sljit_s32 type,
+ sljit_s32 freg,
+ sljit_s32 mem, sljit_sw memw);
+
+/* Same as sljit_emit_mem_update except the followings:
+
+ type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be
+ combined (or'ed) with SLJIT_MEM_* flags
+ freg is the source or destination floating point register
+ of the operation
+ mem must be a memory operand
+
+ Flags: - (does not modify flags) */
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem_update(struct sljit_compiler *compiler, sljit_s32 type,
+ sljit_s32 freg,
+ sljit_s32 mem, sljit_sw memw);
+
+/* Copies the base address of SLJIT_SP + offset to dst. The offset can
+ represent the starting address of a value in the local data (stack).
+ The offset is not limited by the local data limits, it can be any value.
+ For example if an array of bytes are stored on the stack from
+ offset 0x40, and R0 contains the offset of an array item plus 0x120,
+ this item can be changed by two SLJIT instructions:
+
+ sljit_get_local_base(compiler, SLJIT_R1, 0, 0x40 - 0x120);
+ sljit_emit_op1(compiler, SLJIT_MOV_U8, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_IMM, 0x5);
+
+ Flags: - (may destroy flags) */
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset);
+
+/* Store a value that can be changed runtime (see: sljit_get_const_addr / sljit_set_const)
+ Flags: - (does not modify flags) */
+SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value);
+
+/* Store the value of a label (see: sljit_set_put_label)
+ Flags: - (does not modify flags) */
+SLJIT_API_FUNC_ATTRIBUTE struct sljit_put_label* sljit_emit_put_label(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
+
+/* Set the value stored by put_label to this label. */
+SLJIT_API_FUNC_ATTRIBUTE void sljit_set_put_label(struct sljit_put_label *put_label, struct sljit_label *label);
+
+/* After the code generation the address for label, jump and const instructions
+ are computed. Since these structures are freed by sljit_free_compiler, the
+ addresses must be preserved by the user program elsewere. */
+static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
+static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
+static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
+
+/* Only the address and executable offset are required to perform dynamic
+ code modifications. See sljit_get_executable_offset function. */
+SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset);
+SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset);
+
+/* --------------------------------------------------------------------- */
+/* CPU specific functions */
+/* --------------------------------------------------------------------- */
+
+/* The following function is a helper function for sljit_emit_op_custom.
+ It returns with the real machine register index ( >=0 ) of any SLJIT_R,
+ SLJIT_S and SLJIT_SP registers.
+
+ Note: it returns with -1 for virtual registers (only on x86-32). */
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg);
+
+/* The following function is a helper function for sljit_emit_op_custom.
+ It returns with the real machine register ( >= 0 ) index of any SLJIT_FR,
+ and SLJIT_FS register.
+
+ Note: the index is always an even number on ARM-32, MIPS. */
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg);
+
+/* Any instruction can be inserted into the instruction stream by
+ sljit_emit_op_custom. It has a similar purpose as inline assembly.
+ The size parameter must match to the instruction size of the target
+ architecture:
+
+ x86: 0 < size <= 15. The instruction argument can be byte aligned.
+ Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
+ if size == 4, the instruction argument must be 4 byte aligned.
+ Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
+
+SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
+ void *instruction, sljit_u32 size);
+
+/* Flags were set by a 32 bit operation. */
+#define SLJIT_CURRENT_FLAGS_32 SLJIT_32
+
+/* Flags were set by an ADD or ADDC operations. */
+#define SLJIT_CURRENT_FLAGS_ADD 0x01
+/* Flags were set by a SUB, SUBC, or NEG operation. */
+#define SLJIT_CURRENT_FLAGS_SUB 0x02
+
+/* Flags were set by sljit_emit_op2u with SLJIT_SUB opcode.
+ Must be combined with SLJIT_CURRENT_FLAGS_SUB. */
+#define SLJIT_CURRENT_FLAGS_COMPARE 0x04
+
+/* Define the currently available CPU status flags. It is usually used after
+ an sljit_emit_label or sljit_emit_op_custom operations to define which CPU
+ status flags are available.
+
+ The current_flags must be a valid combination of SLJIT_SET_* and
+ SLJIT_CURRENT_FLAGS_* constants. */
+
+SLJIT_API_FUNC_ATTRIBUTE void sljit_set_current_flags(struct sljit_compiler *compiler,
+ sljit_s32 current_flags);
+
+/* --------------------------------------------------------------------- */
+/* Miscellaneous utility functions */
+/* --------------------------------------------------------------------- */
+
+/* Get the human readable name of the platform. Can be useful on platforms
+ like ARM, where ARM and Thumb2 functions can be mixed, and it is useful
+ to know the type of the code generator. */
+SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void);
+
+/* Portable helper function to get an offset of a member. */
+#define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
+
+#if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
+
+/* The sljit_stack structure and its manipulation functions provides
+ an implementation for a top-down stack. The stack top is stored
+ in the end field of the sljit_stack structure and the stack goes
+ down to the min_start field, so the memory region reserved for
+ this stack is between min_start (inclusive) and end (exclusive)
+ fields. However the application can only use the region between
+ start (inclusive) and end (exclusive) fields. The sljit_stack_resize
+ function can be used to extend this region up to min_start.
+
+ This feature uses the "address space reserve" feature of modern
+ operating systems. Instead of allocating a large memory block
+ applications can allocate a small memory region and extend it
+ later without moving the content of the memory area. Therefore
+ after a successful resize by sljit_stack_resize all pointers into
+ this region are still valid.
+
+ Note:
+ this structure may not be supported by all operating systems.
+ end and max_limit fields are aligned to PAGE_SIZE bytes (usually
+ 4 Kbyte or more).
+ stack should grow in larger steps, e.g. 4Kbyte, 16Kbyte or more. */
+
+struct sljit_stack {
+ /* User data, anything can be stored here.
+ Initialized to the same value as the end field. */
+ sljit_u8 *top;
+/* These members are read only. */
+ /* End address of the stack */
+ sljit_u8 *end;
+ /* Current start address of the stack. */
+ sljit_u8 *start;
+ /* Lowest start address of the stack. */
+ sljit_u8 *min_start;
+};
+
+/* Allocates a new stack. Returns NULL if unsuccessful.
+ Note: see sljit_create_compiler for the explanation of allocator_data. */
+SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_FUNC sljit_allocate_stack(sljit_uw start_size, sljit_uw max_size, void *allocator_data);
+SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
+
+/* Can be used to increase (extend) or decrease (shrink) the stack
+ memory area. Returns with new_start if successful and NULL otherwise.
+ It always fails if new_start is less than min_start or greater or equal
+ than end fields. The fields of the stack are not changed if the returned
+ value is NULL (the current memory content is never lost). */
+SLJIT_API_FUNC_ATTRIBUTE sljit_u8 *SLJIT_FUNC sljit_stack_resize(struct sljit_stack *stack, sljit_u8 *new_start);
+
+#endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
+
+#if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
+
+/* Get the entry address of a given function (signed, unsigned result). */
+#define SLJIT_FUNC_ADDR(func_name) ((sljit_sw)func_name)
+#define SLJIT_FUNC_UADDR(func_name) ((sljit_uw)func_name)
+
+#else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
+
+/* All JIT related code should be placed in the same context (library, binary, etc.). */
+
+/* Get the entry address of a given function (signed, unsigned result). */
+#define SLJIT_FUNC_ADDR(func_name) (*(sljit_sw*)(void*)func_name)
+#define SLJIT_FUNC_UADDR(func_name) (*(sljit_uw*)(void*)func_name)
+
+/* For powerpc64, the function pointers point to a context descriptor. */
+struct sljit_function_context {
+ sljit_uw addr;
+ sljit_uw r2;
+ sljit_uw r11;
+};
+
+/* Fill the context arguments using the addr and the function.
+ If func_ptr is NULL, it will not be set to the address of context
+ If addr is NULL, the function address also comes from the func pointer. */
+SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_uw addr, void* func);
+
+#endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
+
+#if (defined SLJIT_EXECUTABLE_ALLOCATOR && SLJIT_EXECUTABLE_ALLOCATOR)
+/* Free unused executable memory. The allocator keeps some free memory
+ around to reduce the number of OS executable memory allocations.
+ This improves performance since these calls are costly. However
+ it is sometimes desired to free all unused memory regions, e.g.
+ before the application terminates. */
+SLJIT_API_FUNC_ATTRIBUTE void sljit_free_unused_memory_exec(void);
+#endif
+
+#ifdef __cplusplus
+} /* extern "C" */
+#endif
+
+#endif /* SLJIT_LIR_H_ */