diff options
author | morozov1one <morozov1one@yandex-team.com> | 2024-11-29 20:28:24 +0300 |
---|---|---|
committer | morozov1one <morozov1one@yandex-team.com> | 2024-11-29 20:37:50 +0300 |
commit | 0924e1c53b7aec2c5efefe89499154b0a7e902f7 (patch) | |
tree | d41153892fac73aeed483b850203444f747bf54e /contrib/libs/mimalloc/src | |
parent | c67888be3cb9ffde249bcc0ec11b1a2cde58f60b (diff) | |
download | ydb-0924e1c53b7aec2c5efefe89499154b0a7e902f7.tar.gz |
Upgrade mimalloc to 1.8.7
Ниже описал существенные изменения в поведении, которые я заметил (в сравнении с версией 1.7.2, которая лежит в контрибах сейчас)
Полный changelog можно посмотреть в [readme.md](http://readme.md)
* Поменялся дефолт у [опции](https://github.com/microsoft/mimalloc/blob/9cae0d31cd28476664dbaa6e4e6940b9d900842a/src/options.c#L109), определяющей то, как неиспользуемая память возвращается в систему. В старых версиях по умолчанию использовался madvise с флагом MADV_FREE, в свежих версиях же используется MADV_DONTNEED. Это может вызвать неожиданные изменения (в худшую сторону) на графиках потребляемой анонимной памяти (), хотя по факту потребление должно быть \+- одинаковым
* Алгоритм работы аллокатора претерпел некоторые изменения. Например, мы споткнулись об то, что в новой версии mimalloc выделяет себе 1Gb (размер задается [опцией](https://github.com/microsoft/mimalloc/blob/2765ec93026f445cad8f38e6b196dd226a1f6e61/src/options.c#L87)) памяти при первой же аллокации. Само по себе это мало на что влияет, но неприятности могут случиться, если звать в начале программы mlockall
commit_hash:dc6d945c1776c874e554f94b705c4e446b0a11d8
Diffstat (limited to 'contrib/libs/mimalloc/src')
26 files changed, 5757 insertions, 4209 deletions
diff --git a/contrib/libs/mimalloc/src/alloc-aligned.c b/contrib/libs/mimalloc/src/alloc-aligned.c index 724c0a1bfe..20c3604449 100644 --- a/contrib/libs/mimalloc/src/alloc-aligned.c +++ b/contrib/libs/mimalloc/src/alloc-aligned.c @@ -6,113 +6,222 @@ terms of the MIT license. A copy of the license can be found in the file -----------------------------------------------------------------------------*/ #include "mimalloc.h" -#include "mimalloc-internal.h" +#include "mimalloc/internal.h" +#include "mimalloc/prim.h" // mi_prim_get_default_heap -#include <string.h> // memset +#include <string.h> // memset // ------------------------------------------------------ // Aligned Allocation // ------------------------------------------------------ -static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept { - // note: we don't require `size > offset`, we just guarantee that - // the address at offset is aligned regardless of the allocated size. - mi_assert(alignment > 0); - if (mi_unlikely(size > PTRDIFF_MAX)) return NULL; // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>) - if (mi_unlikely(alignment==0 || !_mi_is_power_of_two(alignment))) return NULL; // require power-of-two (see <https://en.cppreference.com/w/c/memory/aligned_alloc>) - const uintptr_t align_mask = alignment-1; // for any x, `(x & align_mask) == (x % alignment)` - - // try if there is a small block available with just the right alignment - const size_t padsize = size + MI_PADDING_SIZE; - if (mi_likely(padsize <= MI_SMALL_SIZE_MAX)) { - mi_page_t* page = _mi_heap_get_free_small_page(heap,padsize); - const bool is_aligned = (((uintptr_t)page->free+offset) & align_mask)==0; - if (mi_likely(page->free != NULL && is_aligned)) - { - #if MI_STAT>1 - mi_heap_stat_increase( heap, malloc, size); +static bool mi_malloc_is_naturally_aligned( size_t size, size_t alignment ) { + // objects up to `MI_MAX_ALIGN_GUARANTEE` are allocated aligned to their size (see `segment.c:_mi_segment_page_start`). + mi_assert_internal(_mi_is_power_of_two(alignment) && (alignment > 0)); + if (alignment > size) return false; + if (alignment <= MI_MAX_ALIGN_SIZE) return true; + const size_t bsize = mi_good_size(size); + return (bsize <= MI_MAX_ALIGN_GUARANTEE && (bsize & (alignment-1)) == 0); +} + +// Fallback aligned allocation that over-allocates -- split out for better codegen +static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_overalloc(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept +{ + mi_assert_internal(size <= (MI_MAX_ALLOC_SIZE - MI_PADDING_SIZE)); + mi_assert_internal(alignment != 0 && _mi_is_power_of_two(alignment)); + + void* p; + size_t oversize; + if mi_unlikely(alignment > MI_BLOCK_ALIGNMENT_MAX) { + // use OS allocation for very large alignment and allocate inside a huge page (dedicated segment with 1 page) + // This can support alignments >= MI_SEGMENT_SIZE by ensuring the object can be aligned at a point in the + // first (and single) page such that the segment info is `MI_SEGMENT_SIZE` bytes before it (so it can be found by aligning the pointer down) + if mi_unlikely(offset != 0) { + // todo: cannot support offset alignment for very large alignments yet + #if MI_DEBUG > 0 + _mi_error_message(EOVERFLOW, "aligned allocation with a very large alignment cannot be used with an alignment offset (size %zu, alignment %zu, offset %zu)\n", size, alignment, offset); #endif - void* p = _mi_page_malloc(heap,page,padsize); // TODO: inline _mi_page_malloc - mi_assert_internal(p != NULL); - mi_assert_internal(((uintptr_t)p + offset) % alignment == 0); - if (zero) _mi_block_zero_init(page,p,size); - return p; + return NULL; + } + oversize = (size <= MI_SMALL_SIZE_MAX ? MI_SMALL_SIZE_MAX + 1 /* ensure we use generic malloc path */ : size); + p = _mi_heap_malloc_zero_ex(heap, oversize, false, alignment); // the page block size should be large enough to align in the single huge page block + // zero afterwards as only the area from the aligned_p may be committed! + if (p == NULL) return NULL; + } + else { + // otherwise over-allocate + oversize = size + alignment - 1; + p = _mi_heap_malloc_zero(heap, oversize, zero); + if (p == NULL) return NULL; + } + + // .. and align within the allocation + const uintptr_t align_mask = alignment - 1; // for any x, `(x & align_mask) == (x % alignment)` + const uintptr_t poffset = ((uintptr_t)p + offset) & align_mask; + const uintptr_t adjust = (poffset == 0 ? 0 : alignment - poffset); + mi_assert_internal(adjust < alignment); + void* aligned_p = (void*)((uintptr_t)p + adjust); + if (aligned_p != p) { + mi_page_t* page = _mi_ptr_page(p); + mi_page_set_has_aligned(page, true); + _mi_padding_shrink(page, (mi_block_t*)p, adjust + size); + } + // todo: expand padding if overallocated ? + + mi_assert_internal(mi_page_usable_block_size(_mi_ptr_page(p)) >= adjust + size); + mi_assert_internal(p == _mi_page_ptr_unalign(_mi_ptr_page(aligned_p), aligned_p)); + mi_assert_internal(((uintptr_t)aligned_p + offset) % alignment == 0); + mi_assert_internal(mi_usable_size(aligned_p)>=size); + mi_assert_internal(mi_usable_size(p) == mi_usable_size(aligned_p)+adjust); + + // now zero the block if needed + if (alignment > MI_BLOCK_ALIGNMENT_MAX) { + // for the tracker, on huge aligned allocations only from the start of the large block is defined + mi_track_mem_undefined(aligned_p, size); + if (zero) { + _mi_memzero_aligned(aligned_p, mi_usable_size(aligned_p)); } } - // use regular allocation if it is guaranteed to fit the alignment constraints - if (offset==0 && alignment<=padsize && padsize<=MI_MEDIUM_OBJ_SIZE_MAX && (padsize&align_mask)==0) { + if (p != aligned_p) { + mi_track_align(p,aligned_p,adjust,mi_usable_size(aligned_p)); + } + return aligned_p; +} + +// Generic primitive aligned allocation -- split out for better codegen +static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_generic(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept +{ + mi_assert_internal(alignment != 0 && _mi_is_power_of_two(alignment)); + // we don't allocate more than MI_MAX_ALLOC_SIZE (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>) + if mi_unlikely(size > (MI_MAX_ALLOC_SIZE - MI_PADDING_SIZE)) { + #if MI_DEBUG > 0 + _mi_error_message(EOVERFLOW, "aligned allocation request is too large (size %zu, alignment %zu)\n", size, alignment); + #endif + return NULL; + } + + // use regular allocation if it is guaranteed to fit the alignment constraints. + // this is important to try as the fast path in `mi_heap_malloc_zero_aligned` only works when there exist + // a page with the right block size, and if we always use the over-alloc fallback that would never happen. + if (offset == 0 && mi_malloc_is_naturally_aligned(size,alignment)) { void* p = _mi_heap_malloc_zero(heap, size, zero); mi_assert_internal(p == NULL || ((uintptr_t)p % alignment) == 0); - return p; + const bool is_aligned_or_null = (((uintptr_t)p) & (alignment-1))==0; + if mi_likely(is_aligned_or_null) { + return p; + } + else { + // this should never happen if the `mi_malloc_is_naturally_aligned` check is correct.. + mi_assert(false); + mi_free(p); + } + } + + // fall back to over-allocation + return mi_heap_malloc_zero_aligned_at_overalloc(heap,size,alignment,offset,zero); +} + +// Primitive aligned allocation +static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept +{ + // note: we don't require `size > offset`, we just guarantee that the address at offset is aligned regardless of the allocated size. + if mi_unlikely(alignment == 0 || !_mi_is_power_of_two(alignment)) { // require power-of-two (see <https://en.cppreference.com/w/c/memory/aligned_alloc>) + #if MI_DEBUG > 0 + _mi_error_message(EOVERFLOW, "aligned allocation requires the alignment to be a power-of-two (size %zu, alignment %zu)\n", size, alignment); + #endif + return NULL; } - // otherwise over-allocate - void* p = _mi_heap_malloc_zero(heap, size + alignment - 1, zero); - if (p == NULL) return NULL; + // try first if there happens to be a small block available with just the right alignment + if mi_likely(size <= MI_SMALL_SIZE_MAX && alignment <= size) { + const uintptr_t align_mask = alignment-1; // for any x, `(x & align_mask) == (x % alignment)` + const size_t padsize = size + MI_PADDING_SIZE; + mi_page_t* page = _mi_heap_get_free_small_page(heap, padsize); + if mi_likely(page->free != NULL) { + const bool is_aligned = (((uintptr_t)page->free + offset) & align_mask)==0; + if mi_likely(is_aligned) + { + #if MI_STAT>1 + mi_heap_stat_increase(heap, malloc, size); + #endif + void* p = (zero ? _mi_page_malloc_zeroed(heap,page,padsize) : _mi_page_malloc(heap,page,padsize)); // call specific page malloc for better codegen + mi_assert_internal(p != NULL); + mi_assert_internal(((uintptr_t)p + offset) % alignment == 0); + mi_track_malloc(p,size,zero); + return p; + } + } + } - // .. and align within the allocation - uintptr_t adjust = alignment - (((uintptr_t)p + offset) & align_mask); - mi_assert_internal(adjust <= alignment); - void* aligned_p = (adjust == alignment ? p : (void*)((uintptr_t)p + adjust)); - if (aligned_p != p) mi_page_set_has_aligned(_mi_ptr_page(p), true); - mi_assert_internal(((uintptr_t)aligned_p + offset) % alignment == 0); - mi_assert_internal( p == _mi_page_ptr_unalign(_mi_ptr_segment(aligned_p),_mi_ptr_page(aligned_p),aligned_p) ); - return aligned_p; + // fallback to generic aligned allocation + return mi_heap_malloc_zero_aligned_at_generic(heap, size, alignment, offset, zero); } -mi_decl_restrict void* mi_heap_malloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { +// ------------------------------------------------------ +// Optimized mi_heap_malloc_aligned / mi_malloc_aligned +// ------------------------------------------------------ + +mi_decl_nodiscard mi_decl_restrict void* mi_heap_malloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, false); } -mi_decl_restrict void* mi_heap_malloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept { +mi_decl_nodiscard mi_decl_restrict void* mi_heap_malloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept { return mi_heap_malloc_aligned_at(heap, size, alignment, 0); } -mi_decl_restrict void* mi_heap_zalloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { +// ------------------------------------------------------ +// Aligned Allocation +// ------------------------------------------------------ + +mi_decl_nodiscard mi_decl_restrict void* mi_heap_zalloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, true); } -mi_decl_restrict void* mi_heap_zalloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept { +mi_decl_nodiscard mi_decl_restrict void* mi_heap_zalloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept { return mi_heap_zalloc_aligned_at(heap, size, alignment, 0); } -mi_decl_restrict void* mi_heap_calloc_aligned_at(mi_heap_t* heap, size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { +mi_decl_nodiscard mi_decl_restrict void* mi_heap_calloc_aligned_at(mi_heap_t* heap, size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { size_t total; if (mi_count_size_overflow(count, size, &total)) return NULL; return mi_heap_zalloc_aligned_at(heap, total, alignment, offset); } -mi_decl_restrict void* mi_heap_calloc_aligned(mi_heap_t* heap, size_t count, size_t size, size_t alignment) mi_attr_noexcept { +mi_decl_nodiscard mi_decl_restrict void* mi_heap_calloc_aligned(mi_heap_t* heap, size_t count, size_t size, size_t alignment) mi_attr_noexcept { return mi_heap_calloc_aligned_at(heap,count,size,alignment,0); } -mi_decl_restrict void* mi_malloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept { - return mi_heap_malloc_aligned_at(mi_get_default_heap(), size, alignment, offset); +mi_decl_nodiscard mi_decl_restrict void* mi_malloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept { + return mi_heap_malloc_aligned_at(mi_prim_get_default_heap(), size, alignment, offset); } -mi_decl_restrict void* mi_malloc_aligned(size_t size, size_t alignment) mi_attr_noexcept { - return mi_heap_malloc_aligned(mi_get_default_heap(), size, alignment); +mi_decl_nodiscard mi_decl_restrict void* mi_malloc_aligned(size_t size, size_t alignment) mi_attr_noexcept { + return mi_heap_malloc_aligned(mi_prim_get_default_heap(), size, alignment); } -mi_decl_restrict void* mi_zalloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept { - return mi_heap_zalloc_aligned_at(mi_get_default_heap(), size, alignment, offset); +mi_decl_nodiscard mi_decl_restrict void* mi_zalloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept { + return mi_heap_zalloc_aligned_at(mi_prim_get_default_heap(), size, alignment, offset); } -mi_decl_restrict void* mi_zalloc_aligned(size_t size, size_t alignment) mi_attr_noexcept { - return mi_heap_zalloc_aligned(mi_get_default_heap(), size, alignment); +mi_decl_nodiscard mi_decl_restrict void* mi_zalloc_aligned(size_t size, size_t alignment) mi_attr_noexcept { + return mi_heap_zalloc_aligned(mi_prim_get_default_heap(), size, alignment); } -mi_decl_restrict void* mi_calloc_aligned_at(size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { - return mi_heap_calloc_aligned_at(mi_get_default_heap(), count, size, alignment, offset); +mi_decl_nodiscard mi_decl_restrict void* mi_calloc_aligned_at(size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { + return mi_heap_calloc_aligned_at(mi_prim_get_default_heap(), count, size, alignment, offset); } -mi_decl_restrict void* mi_calloc_aligned(size_t count, size_t size, size_t alignment) mi_attr_noexcept { - return mi_heap_calloc_aligned(mi_get_default_heap(), count, size, alignment); +mi_decl_nodiscard mi_decl_restrict void* mi_calloc_aligned(size_t count, size_t size, size_t alignment) mi_attr_noexcept { + return mi_heap_calloc_aligned(mi_prim_get_default_heap(), count, size, alignment); } +// ------------------------------------------------------ +// Aligned re-allocation +// ------------------------------------------------------ + static void* mi_heap_realloc_zero_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset, bool zero) mi_attr_noexcept { mi_assert(alignment > 0); if (alignment <= sizeof(uintptr_t)) return _mi_heap_realloc_zero(heap,p,newsize,zero); @@ -123,19 +232,13 @@ static void* mi_heap_realloc_zero_aligned_at(mi_heap_t* heap, void* p, size_t ne return p; // reallocation still fits, is aligned and not more than 50% waste } else { + // note: we don't zero allocate upfront so we only zero initialize the expanded part void* newp = mi_heap_malloc_aligned_at(heap,newsize,alignment,offset); if (newp != NULL) { if (zero && newsize > size) { - const mi_page_t* page = _mi_ptr_page(newp); - if (page->is_zero) { - // already zero initialized - mi_assert_expensive(mi_mem_is_zero(newp,newsize)); - } - else { - // also set last word in the previous allocation to zero to ensure any padding is zero-initialized - size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0); - memset((uint8_t*)newp + start, 0, newsize - start); - } + // also set last word in the previous allocation to zero to ensure any padding is zero-initialized + size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0); + _mi_memzero((uint8_t*)newp + start, newsize - start); } _mi_memcpy_aligned(newp, p, (newsize > size ? size : newsize)); mi_free(p); // only free if successful @@ -151,55 +254,54 @@ static void* mi_heap_realloc_zero_aligned(mi_heap_t* heap, void* p, size_t newsi return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,zero); } -void* mi_heap_realloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { +mi_decl_nodiscard void* mi_heap_realloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,false); } -void* mi_heap_realloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept { +mi_decl_nodiscard void* mi_heap_realloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept { return mi_heap_realloc_zero_aligned(heap,p,newsize,alignment,false); } -void* mi_heap_rezalloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { +mi_decl_nodiscard void* mi_heap_rezalloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { return mi_heap_realloc_zero_aligned_at(heap, p, newsize, alignment, offset, true); } -void* mi_heap_rezalloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept { +mi_decl_nodiscard void* mi_heap_rezalloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept { return mi_heap_realloc_zero_aligned(heap, p, newsize, alignment, true); } -void* mi_heap_recalloc_aligned_at(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { +mi_decl_nodiscard void* mi_heap_recalloc_aligned_at(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { size_t total; if (mi_count_size_overflow(newcount, size, &total)) return NULL; return mi_heap_rezalloc_aligned_at(heap, p, total, alignment, offset); } -void* mi_heap_recalloc_aligned(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept { +mi_decl_nodiscard void* mi_heap_recalloc_aligned(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept { size_t total; if (mi_count_size_overflow(newcount, size, &total)) return NULL; return mi_heap_rezalloc_aligned(heap, p, total, alignment); } -void* mi_realloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { - return mi_heap_realloc_aligned_at(mi_get_default_heap(), p, newsize, alignment, offset); +mi_decl_nodiscard void* mi_realloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { + return mi_heap_realloc_aligned_at(mi_prim_get_default_heap(), p, newsize, alignment, offset); } -void* mi_realloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept { - return mi_heap_realloc_aligned(mi_get_default_heap(), p, newsize, alignment); +mi_decl_nodiscard void* mi_realloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept { + return mi_heap_realloc_aligned(mi_prim_get_default_heap(), p, newsize, alignment); } -void* mi_rezalloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { - return mi_heap_rezalloc_aligned_at(mi_get_default_heap(), p, newsize, alignment, offset); +mi_decl_nodiscard void* mi_rezalloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { + return mi_heap_rezalloc_aligned_at(mi_prim_get_default_heap(), p, newsize, alignment, offset); } -void* mi_rezalloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept { - return mi_heap_rezalloc_aligned(mi_get_default_heap(), p, newsize, alignment); +mi_decl_nodiscard void* mi_rezalloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept { + return mi_heap_rezalloc_aligned(mi_prim_get_default_heap(), p, newsize, alignment); } -void* mi_recalloc_aligned_at(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { - return mi_heap_recalloc_aligned_at(mi_get_default_heap(), p, newcount, size, alignment, offset); +mi_decl_nodiscard void* mi_recalloc_aligned_at(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { + return mi_heap_recalloc_aligned_at(mi_prim_get_default_heap(), p, newcount, size, alignment, offset); } -void* mi_recalloc_aligned(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept { - return mi_heap_recalloc_aligned(mi_get_default_heap(), p, newcount, size, alignment); +mi_decl_nodiscard void* mi_recalloc_aligned(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept { + return mi_heap_recalloc_aligned(mi_prim_get_default_heap(), p, newcount, size, alignment); } - diff --git a/contrib/libs/mimalloc/src/alloc-override-osx.c b/contrib/libs/mimalloc/src/alloc-override-osx.c deleted file mode 100644 index f506d30a95..0000000000 --- a/contrib/libs/mimalloc/src/alloc-override-osx.c +++ /dev/null @@ -1,281 +0,0 @@ -/* ---------------------------------------------------------------------------- -Copyright (c) 2018-2020, Microsoft Research, Daan Leijen -This is free software; you can redistribute it and/or modify it under the -terms of the MIT license. A copy of the license can be found in the file -"LICENSE" at the root of this distribution. ------------------------------------------------------------------------------*/ - -#include "mimalloc.h" -#include "mimalloc-internal.h" - -#if defined(MI_MALLOC_OVERRIDE) - -#if !defined(__APPLE__) -#error "this file should only be included on macOS" -#endif - -/* ------------------------------------------------------ - Override system malloc on macOS - This is done through the malloc zone interface. - It seems we also need to interpose (see `alloc-override.c`) - or otherwise we get zone errors as there are usually - already allocations done by the time we take over the - zone. Unfortunately, that means we need to replace - the `free` with a checked free (`cfree`) impacting - performance. ------------------------------------------------------- */ - -#include <AvailabilityMacros.h> -#include <malloc/malloc.h> -#include <string.h> // memset - -#if defined(MAC_OS_X_VERSION_10_6) && \ - MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6 -// only available from OSX 10.6 -extern malloc_zone_t* malloc_default_purgeable_zone(void) __attribute__((weak_import)); -#endif - -/* ------------------------------------------------------ - malloc zone members ------------------------------------------------------- */ - -static size_t zone_size(malloc_zone_t* zone, const void* p) { - UNUSED(zone); - if (!mi_is_in_heap_region(p)) - return 0; // not our pointer, bail out - - return mi_usable_size(p); -} - -static void* zone_malloc(malloc_zone_t* zone, size_t size) { - UNUSED(zone); - return mi_malloc(size); -} - -static void* zone_calloc(malloc_zone_t* zone, size_t count, size_t size) { - UNUSED(zone); - return mi_calloc(count, size); -} - -static void* zone_valloc(malloc_zone_t* zone, size_t size) { - UNUSED(zone); - return mi_malloc_aligned(size, _mi_os_page_size()); -} - -static void zone_free(malloc_zone_t* zone, void* p) { - UNUSED(zone); - mi_free(p); -} - -static void* zone_realloc(malloc_zone_t* zone, void* p, size_t newsize) { - UNUSED(zone); - return mi_realloc(p, newsize); -} - -static void* zone_memalign(malloc_zone_t* zone, size_t alignment, size_t size) { - UNUSED(zone); - return mi_malloc_aligned(size,alignment); -} - -static void zone_destroy(malloc_zone_t* zone) { - UNUSED(zone); - // todo: ignore for now? -} - -static unsigned zone_batch_malloc(malloc_zone_t* zone, size_t size, void** ps, unsigned count) { - size_t i; - for (i = 0; i < count; i++) { - ps[i] = zone_malloc(zone, size); - if (ps[i] == NULL) break; - } - return i; -} - -static void zone_batch_free(malloc_zone_t* zone, void** ps, unsigned count) { - for(size_t i = 0; i < count; i++) { - zone_free(zone, ps[i]); - ps[i] = NULL; - } -} - -static size_t zone_pressure_relief(malloc_zone_t* zone, size_t size) { - UNUSED(zone); UNUSED(size); - mi_collect(false); - return 0; -} - -static void zone_free_definite_size(malloc_zone_t* zone, void* p, size_t size) { - UNUSED(size); - zone_free(zone,p); -} - - -/* ------------------------------------------------------ - Introspection members ------------------------------------------------------- */ - -static kern_return_t intro_enumerator(task_t task, void* p, - unsigned type_mask, vm_address_t zone_address, - memory_reader_t reader, - vm_range_recorder_t recorder) -{ - // todo: enumerate all memory - UNUSED(task); UNUSED(p); UNUSED(type_mask); UNUSED(zone_address); - UNUSED(reader); UNUSED(recorder); - return KERN_SUCCESS; -} - -static size_t intro_good_size(malloc_zone_t* zone, size_t size) { - UNUSED(zone); - return mi_good_size(size); -} - -static boolean_t intro_check(malloc_zone_t* zone) { - UNUSED(zone); - return true; -} - -static void intro_print(malloc_zone_t* zone, boolean_t verbose) { - UNUSED(zone); UNUSED(verbose); - mi_stats_print(NULL); -} - -static void intro_log(malloc_zone_t* zone, void* p) { - UNUSED(zone); UNUSED(p); - // todo? -} - -static void intro_force_lock(malloc_zone_t* zone) { - UNUSED(zone); - // todo? -} - -static void intro_force_unlock(malloc_zone_t* zone) { - UNUSED(zone); - // todo? -} - -static void intro_statistics(malloc_zone_t* zone, malloc_statistics_t* stats) { - UNUSED(zone); - // todo... - stats->blocks_in_use = 0; - stats->size_in_use = 0; - stats->max_size_in_use = 0; - stats->size_allocated = 0; -} - -static boolean_t intro_zone_locked(malloc_zone_t* zone) { - UNUSED(zone); - return false; -} - - -/* ------------------------------------------------------ - At process start, override the default allocator ------------------------------------------------------- */ - -static malloc_zone_t* mi_get_default_zone() -{ - // The first returned zone is the real default - malloc_zone_t** zones = NULL; - unsigned count = 0; - kern_return_t ret = malloc_get_all_zones(0, NULL, (vm_address_t**)&zones, &count); - if (ret == KERN_SUCCESS && count > 0) { - return zones[0]; - } - else { - // fallback - return malloc_default_zone(); - } -} - -static malloc_introspection_t mi_introspect = { - .enumerator = &intro_enumerator, - .good_size = &intro_good_size, - .check = &intro_check, - .print = &intro_print, - .log = &intro_log, - .force_lock = &intro_force_lock, - .force_unlock = &intro_force_unlock, -#if defined(MAC_OS_X_VERSION_10_6) && \ - MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6 - .zone_locked = &intro_zone_locked, - .statistics = &intro_statistics, -#endif -}; - -static malloc_zone_t mi_malloc_zone = { - .size = &zone_size, - .zone_name = "mimalloc", - .introspect = &mi_introspect, - .malloc = &zone_malloc, - .calloc = &zone_calloc, - .valloc = &zone_valloc, - .free = &zone_free, - .realloc = &zone_realloc, - .destroy = &zone_destroy, - .batch_malloc = &zone_batch_malloc, - .batch_free = &zone_batch_free, -#if defined(MAC_OS_X_VERSION_10_6) && \ - MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6 - // switch to version 9 on OSX 10.6 to support memalign. - .version = 9, - .memalign = &zone_memalign, - .free_definite_size = &zone_free_definite_size, - .pressure_relief = &zone_pressure_relief, -#else - .version = 4, -#endif -}; - - -#if defined(MI_SHARED_LIB_EXPORT) && defined(MI_INTERPOSE) - -static malloc_zone_t *mi_malloc_default_zone(void) { - return &mi_malloc_zone; -} -// TODO: should use the macros in alloc-override but they aren't available here. -__attribute__((used)) static struct { - const void *replacement; - const void *target; -} replace_malloc_default_zone[] __attribute__((section("__DATA, __interpose"))) = { - { (const void*)mi_malloc_default_zone, (const void*)malloc_default_zone }, -}; -#endif - -static void __attribute__((constructor(0))) _mi_macos_override_malloc() { - malloc_zone_t* purgeable_zone = NULL; - -#if defined(MAC_OS_X_VERSION_10_6) && \ - MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6 - // force the purgeable zone to exist to avoid strange bugs - if (malloc_default_purgeable_zone) { - purgeable_zone = malloc_default_purgeable_zone(); - } -#endif - - // Register our zone. - // thomcc: I think this is still needed to put us in the zone list. - malloc_zone_register(&mi_malloc_zone); - // Unregister the default zone, this makes our zone the new default - // as that was the last registered. - malloc_zone_t *default_zone = mi_get_default_zone(); - // thomcc: Unsure if the next test is *always* false or just false in the - // cases I've tried. I'm also unsure if the code inside is needed. at all - if (default_zone != &mi_malloc_zone) { - malloc_zone_unregister(default_zone); - - // Reregister the default zone so free and realloc in that zone keep working. - malloc_zone_register(default_zone); - } - - // Unregister, and re-register the purgeable_zone to avoid bugs if it occurs - // earlier than the default zone. - if (purgeable_zone != NULL) { - malloc_zone_unregister(purgeable_zone); - malloc_zone_register(purgeable_zone); - } - -} - -#endif // MI_MALLOC_OVERRIDE diff --git a/contrib/libs/mimalloc/src/alloc-override.c b/contrib/libs/mimalloc/src/alloc-override.c index 6a87e7bd2d..12837cdd94 100644 --- a/contrib/libs/mimalloc/src/alloc-override.c +++ b/contrib/libs/mimalloc/src/alloc-override.c @@ -13,15 +13,26 @@ terms of the MIT license. A copy of the license can be found in the file #error "It is only possible to override "malloc" on Windows when building as a DLL (and linking the C runtime as a DLL)" #endif -#if defined(MI_MALLOC_OVERRIDE) && !(defined(_WIN32)) // || (defined(__APPLE__) && !defined(MI_INTERPOSE))) +#if defined(MI_MALLOC_OVERRIDE) && !(defined(_WIN32)) + +#if defined(__APPLE__) +#include <AvailabilityMacros.h> +mi_decl_externc void vfree(void* p); +mi_decl_externc size_t malloc_size(const void* p); +mi_decl_externc size_t malloc_good_size(size_t size); +#endif + +// helper definition for C override of C++ new +typedef void* mi_nothrow_t; // ------------------------------------------------------ // Override system malloc // ------------------------------------------------------ -#if (defined(__GNUC__) || defined(__clang__)) && !defined(__APPLE__) - // use aliasing to alias the exported function to one of our `mi_` functions +#if (defined(__GNUC__) || defined(__clang__)) && !defined(__APPLE__) && !MI_TRACK_ENABLED + // gcc, clang: use aliasing to alias the exported function to one of our `mi_` functions #if (defined(__GNUC__) && __GNUC__ >= 9) + #pragma GCC diagnostic ignored "-Wattributes" // or we get warnings that nodiscard is ignored on a forward #define MI_FORWARD(fun) __attribute__((alias(#fun), used, visibility("default"), copy(fun))); #else #define MI_FORWARD(fun) __attribute__((alias(#fun), used, visibility("default"))); @@ -32,7 +43,7 @@ terms of the MIT license. A copy of the license can be found in the file #define MI_FORWARD0(fun,x) MI_FORWARD(fun) #define MI_FORWARD02(fun,x,y) MI_FORWARD(fun) #else - // use forwarding by calling our `mi_` function + // otherwise use forwarding by calling our `mi_` function #define MI_FORWARD1(fun,x) { return fun(x); } #define MI_FORWARD2(fun,x,y) { return fun(x,y); } #define MI_FORWARD3(fun,x,y,z) { return fun(x,y,z); } @@ -40,7 +51,17 @@ terms of the MIT license. A copy of the license can be found in the file #define MI_FORWARD02(fun,x,y) { fun(x,y); } #endif -#if defined(__APPLE__) && defined(MI_SHARED_LIB_EXPORT) && defined(MI_INTERPOSE) + +#if defined(__APPLE__) && defined(MI_SHARED_LIB_EXPORT) && defined(MI_OSX_INTERPOSE) + // define MI_OSX_IS_INTERPOSED as we should not provide forwarding definitions for + // functions that are interposed (or the interposing does not work) + #define MI_OSX_IS_INTERPOSED + + mi_decl_externc size_t mi_malloc_size_checked(void *p) { + if (!mi_is_in_heap_region(p)) return 0; + return mi_usable_size(p); + } + // use interposing so `DYLD_INSERT_LIBRARIES` works without `DYLD_FORCE_FLAT_NAMESPACE=1` // See: <https://books.google.com/books?id=K8vUkpOXhN4C&pg=PA73> struct mi_interpose_s { @@ -49,36 +70,79 @@ terms of the MIT license. A copy of the license can be found in the file }; #define MI_INTERPOSE_FUN(oldfun,newfun) { (const void*)&newfun, (const void*)&oldfun } #define MI_INTERPOSE_MI(fun) MI_INTERPOSE_FUN(fun,mi_##fun) + __attribute__((used)) static struct mi_interpose_s _mi_interposes[] __attribute__((section("__DATA, __interpose"))) = { MI_INTERPOSE_MI(malloc), MI_INTERPOSE_MI(calloc), MI_INTERPOSE_MI(realloc), MI_INTERPOSE_MI(strdup), + #if defined(MAC_OS_X_VERSION_10_7) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_7 MI_INTERPOSE_MI(strndup), + #endif MI_INTERPOSE_MI(realpath), MI_INTERPOSE_MI(posix_memalign), MI_INTERPOSE_MI(reallocf), MI_INTERPOSE_MI(valloc), - #ifndef MI_OSX_ZONE - // some code allocates from default zone but deallocates using plain free :-( (like NxHashResizeToCapacity <https://github.com/nneonneo/osx-10.9-opensource/blob/master/objc4-551.1/runtime/hashtable2.mm>) - MI_INTERPOSE_FUN(free,mi_cfree), // use safe free that checks if pointers are from us - #else - // We interpose malloc_default_zone in alloc-override-osx.c - MI_INTERPOSE_MI(free), + MI_INTERPOSE_FUN(malloc_size,mi_malloc_size_checked), + MI_INTERPOSE_MI(malloc_good_size), + #if defined(MAC_OS_X_VERSION_10_15) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_15 + MI_INTERPOSE_MI(aligned_alloc), #endif - // some code allocates from a zone but deallocates using plain free :-( (like NxHashResizeToCapacity <https://github.com/nneonneo/osx-10.9-opensource/blob/master/objc4-551.1/runtime/hashtable2.mm>) + #ifdef MI_OSX_ZONE + // we interpose malloc_default_zone in alloc-override-osx.c so we can use mi_free safely + MI_INTERPOSE_MI(free), + MI_INTERPOSE_FUN(vfree,mi_free), + #else + // sometimes code allocates from default zone but deallocates using plain free :-( (like NxHashResizeToCapacity <https://github.com/nneonneo/osx-10.9-opensource/blob/master/objc4-551.1/runtime/hashtable2.mm>) MI_INTERPOSE_FUN(free,mi_cfree), // use safe free that checks if pointers are from us + MI_INTERPOSE_FUN(vfree,mi_cfree), + #endif }; + + #ifdef __cplusplus + extern "C" { + #endif + void _ZdlPv(void* p); // delete + void _ZdaPv(void* p); // delete[] + void _ZdlPvm(void* p, size_t n); // delete + void _ZdaPvm(void* p, size_t n); // delete[] + void* _Znwm(size_t n); // new + void* _Znam(size_t n); // new[] + void* _ZnwmRKSt9nothrow_t(size_t n, mi_nothrow_t tag); // new nothrow + void* _ZnamRKSt9nothrow_t(size_t n, mi_nothrow_t tag); // new[] nothrow + #ifdef __cplusplus + } + #endif + __attribute__((used)) static struct mi_interpose_s _mi_cxx_interposes[] __attribute__((section("__DATA, __interpose"))) = + { + MI_INTERPOSE_FUN(_ZdlPv,mi_free), + MI_INTERPOSE_FUN(_ZdaPv,mi_free), + MI_INTERPOSE_FUN(_ZdlPvm,mi_free_size), + MI_INTERPOSE_FUN(_ZdaPvm,mi_free_size), + MI_INTERPOSE_FUN(_Znwm,mi_new), + MI_INTERPOSE_FUN(_Znam,mi_new), + MI_INTERPOSE_FUN(_ZnwmRKSt9nothrow_t,mi_new_nothrow), + MI_INTERPOSE_FUN(_ZnamRKSt9nothrow_t,mi_new_nothrow), + }; + #elif defined(_MSC_VER) // cannot override malloc unless using a dll. // we just override new/delete which does work in a static library. #else - // On all other systems forward to our API - void* malloc(size_t size) MI_FORWARD1(mi_malloc, size) - void* calloc(size_t size, size_t n) MI_FORWARD2(mi_calloc, size, n) - void* realloc(void* p, size_t newsize) MI_FORWARD2(mi_realloc, p, newsize) - void free(void* p) MI_FORWARD0(mi_free, p) + // On all other systems forward allocation primitives to our API + mi_decl_export void* malloc(size_t size) MI_FORWARD1(mi_malloc, size) + mi_decl_export void* calloc(size_t size, size_t n) MI_FORWARD2(mi_calloc, size, n) + mi_decl_export void* realloc(void* p, size_t newsize) MI_FORWARD2(mi_realloc, p, newsize) + mi_decl_export void free(void* p) MI_FORWARD0(mi_free, p) + // In principle we do not need to forward `strdup`/`strndup` but on some systems these do not use `malloc` internally (but a more primitive call) + // We only override if `strdup` is not a macro (as on some older libc's, see issue #885) + #if !defined(strdup) + mi_decl_export char* strdup(const char* str) MI_FORWARD1(mi_strdup, str) + #endif + #if !defined(strndup) && (!defined(__APPLE__) || (defined(MAC_OS_X_VERSION_10_7) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_7)) + mi_decl_export char* strndup(const char* str, size_t n) MI_FORWARD2(mi_strndup, str, n) + #endif #endif #if (defined(__GNUC__) || defined(__clang__)) && !defined(__APPLE__) @@ -96,18 +160,21 @@ terms of the MIT license. A copy of the license can be found in the file // see <https://en.cppreference.com/w/cpp/memory/new/operator_new> // ------------------------------------------------------ #include <new> - void operator delete(void* p) noexcept MI_FORWARD0(mi_free,p) - void operator delete[](void* p) noexcept MI_FORWARD0(mi_free,p) - void* operator new(std::size_t n) noexcept(false) MI_FORWARD1(mi_new,n) - void* operator new[](std::size_t n) noexcept(false) MI_FORWARD1(mi_new,n) + #ifndef MI_OSX_IS_INTERPOSED + void operator delete(void* p) noexcept MI_FORWARD0(mi_free,p) + void operator delete[](void* p) noexcept MI_FORWARD0(mi_free,p) + + void* operator new(std::size_t n) noexcept(false) MI_FORWARD1(mi_new,n) + void* operator new[](std::size_t n) noexcept(false) MI_FORWARD1(mi_new,n) - void* operator new (std::size_t n, const std::nothrow_t& tag) noexcept { UNUSED(tag); return mi_new_nothrow(n); } - void* operator new[](std::size_t n, const std::nothrow_t& tag) noexcept { UNUSED(tag); return mi_new_nothrow(n); } + void* operator new (std::size_t n, const std::nothrow_t& tag) noexcept { MI_UNUSED(tag); return mi_new_nothrow(n); } + void* operator new[](std::size_t n, const std::nothrow_t& tag) noexcept { MI_UNUSED(tag); return mi_new_nothrow(n); } - #if (__cplusplus >= 201402L || _MSC_VER >= 1916) - void operator delete (void* p, std::size_t n) noexcept MI_FORWARD02(mi_free_size,p,n) - void operator delete[](void* p, std::size_t n) noexcept MI_FORWARD02(mi_free_size,p,n) + #if (__cplusplus >= 201402L || _MSC_VER >= 1916) + void operator delete (void* p, std::size_t n) noexcept MI_FORWARD02(mi_free_size,p,n) + void operator delete[](void* p, std::size_t n) noexcept MI_FORWARD02(mi_free_size,p,n) + #endif #endif #if (__cplusplus > 201402L && defined(__cpp_aligned_new)) && (!defined(__GNUC__) || (__GNUC__ > 5)) @@ -115,6 +182,8 @@ terms of the MIT license. A copy of the license can be found in the file void operator delete[](void* p, std::align_val_t al) noexcept { mi_free_aligned(p, static_cast<size_t>(al)); } void operator delete (void* p, std::size_t n, std::align_val_t al) noexcept { mi_free_size_aligned(p, n, static_cast<size_t>(al)); }; void operator delete[](void* p, std::size_t n, std::align_val_t al) noexcept { mi_free_size_aligned(p, n, static_cast<size_t>(al)); }; + void operator delete (void* p, std::align_val_t al, const std::nothrow_t&) noexcept { mi_free_aligned(p, static_cast<size_t>(al)); } + void operator delete[](void* p, std::align_val_t al, const std::nothrow_t&) noexcept { mi_free_aligned(p, static_cast<size_t>(al)); } void* operator new( std::size_t n, std::align_val_t al) noexcept(false) { return mi_new_aligned(n, static_cast<size_t>(al)); } void* operator new[]( std::size_t n, std::align_val_t al) noexcept(false) { return mi_new_aligned(n, static_cast<size_t>(al)); } @@ -128,86 +197,109 @@ terms of the MIT license. A copy of the license can be found in the file // used by GCC and CLang). // See <https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling> // ------------------------------------------------------ + void _ZdlPv(void* p) MI_FORWARD0(mi_free,p) // delete void _ZdaPv(void* p) MI_FORWARD0(mi_free,p) // delete[] void _ZdlPvm(void* p, size_t n) MI_FORWARD02(mi_free_size,p,n) void _ZdaPvm(void* p, size_t n) MI_FORWARD02(mi_free_size,p,n) + void _ZdlPvSt11align_val_t(void* p, size_t al) { mi_free_aligned(p,al); } void _ZdaPvSt11align_val_t(void* p, size_t al) { mi_free_aligned(p,al); } void _ZdlPvmSt11align_val_t(void* p, size_t n, size_t al) { mi_free_size_aligned(p,n,al); } void _ZdaPvmSt11align_val_t(void* p, size_t n, size_t al) { mi_free_size_aligned(p,n,al); } - typedef struct mi_nothrow_s { int _tag; } mi_nothrow_t; + void _ZdlPvRKSt9nothrow_t(void* p, mi_nothrow_t tag) { MI_UNUSED(tag); mi_free(p); } // operator delete(void*, std::nothrow_t const&) + void _ZdaPvRKSt9nothrow_t(void* p, mi_nothrow_t tag) { MI_UNUSED(tag); mi_free(p); } // operator delete[](void*, std::nothrow_t const&) + void _ZdlPvSt11align_val_tRKSt9nothrow_t(void* p, size_t al, mi_nothrow_t tag) { MI_UNUSED(tag); mi_free_aligned(p,al); } // operator delete(void*, std::align_val_t, std::nothrow_t const&) + void _ZdaPvSt11align_val_tRKSt9nothrow_t(void* p, size_t al, mi_nothrow_t tag) { MI_UNUSED(tag); mi_free_aligned(p,al); } // operator delete[](void*, std::align_val_t, std::nothrow_t const&) + #if (MI_INTPTR_SIZE==8) void* _Znwm(size_t n) MI_FORWARD1(mi_new,n) // new 64-bit void* _Znam(size_t n) MI_FORWARD1(mi_new,n) // new[] 64-bit + void* _ZnwmRKSt9nothrow_t(size_t n, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_nothrow(n); } + void* _ZnamRKSt9nothrow_t(size_t n, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_nothrow(n); } void* _ZnwmSt11align_val_t(size_t n, size_t al) MI_FORWARD2(mi_new_aligned, n, al) void* _ZnamSt11align_val_t(size_t n, size_t al) MI_FORWARD2(mi_new_aligned, n, al) - void* _ZnwmRKSt9nothrow_t(size_t n, mi_nothrow_t tag) { UNUSED(tag); return mi_new_nothrow(n); } - void* _ZnamRKSt9nothrow_t(size_t n, mi_nothrow_t tag) { UNUSED(tag); return mi_new_nothrow(n); } - void* _ZnwmSt11align_val_tRKSt9nothrow_t(size_t n, size_t al, mi_nothrow_t tag) { UNUSED(tag); return mi_new_aligned_nothrow(n,al); } - void* _ZnamSt11align_val_tRKSt9nothrow_t(size_t n, size_t al, mi_nothrow_t tag) { UNUSED(tag); return mi_new_aligned_nothrow(n,al); } + void* _ZnwmSt11align_val_tRKSt9nothrow_t(size_t n, size_t al, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_aligned_nothrow(n,al); } + void* _ZnamSt11align_val_tRKSt9nothrow_t(size_t n, size_t al, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_aligned_nothrow(n,al); } #elif (MI_INTPTR_SIZE==4) void* _Znwj(size_t n) MI_FORWARD1(mi_new,n) // new 64-bit void* _Znaj(size_t n) MI_FORWARD1(mi_new,n) // new[] 64-bit + void* _ZnwjRKSt9nothrow_t(size_t n, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_nothrow(n); } + void* _ZnajRKSt9nothrow_t(size_t n, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_nothrow(n); } void* _ZnwjSt11align_val_t(size_t n, size_t al) MI_FORWARD2(mi_new_aligned, n, al) void* _ZnajSt11align_val_t(size_t n, size_t al) MI_FORWARD2(mi_new_aligned, n, al) - void* _ZnwjRKSt9nothrow_t(size_t n, mi_nothrow_t tag) { UNUSED(tag); return mi_new_nothrow(n); } - void* _ZnajRKSt9nothrow_t(size_t n, mi_nothrow_t tag) { UNUSED(tag); return mi_new_nothrow(n); } - void* _ZnwjSt11align_val_tRKSt9nothrow_t(size_t n, size_t al, mi_nothrow_t tag) { UNUSED(tag); return mi_new_aligned_nothrow(n,al); } - void* _ZnajSt11align_val_tRKSt9nothrow_t(size_t n, size_t al, mi_nothrow_t tag) { UNUSED(tag); return mi_new_aligned_nothrow(n,al); } + void* _ZnwjSt11align_val_tRKSt9nothrow_t(size_t n, size_t al, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_aligned_nothrow(n,al); } + void* _ZnajSt11align_val_tRKSt9nothrow_t(size_t n, size_t al, mi_nothrow_t tag) { MI_UNUSED(tag); return mi_new_aligned_nothrow(n,al); } #else - #error "define overloads for new/delete for this platform (just for performance, can be skipped)" + #error "define overloads for new/delete for this platform (just for performance, can be skipped)" #endif #endif // __cplusplus +// ------------------------------------------------------ +// Further Posix & Unix functions definitions +// ------------------------------------------------------ #ifdef __cplusplus extern "C" { #endif -// ------------------------------------------------------ -// Posix & Unix functions definitions -// ------------------------------------------------------ +#ifndef MI_OSX_IS_INTERPOSED + // Forward Posix/Unix calls as well + void* reallocf(void* p, size_t newsize) MI_FORWARD2(mi_reallocf,p,newsize) + size_t malloc_size(const void* p) MI_FORWARD1(mi_usable_size,p) + #if !defined(__ANDROID__) && !defined(__FreeBSD__) + size_t malloc_usable_size(void *p) MI_FORWARD1(mi_usable_size,p) + #else + size_t malloc_usable_size(const void *p) MI_FORWARD1(mi_usable_size,p) + #endif -void cfree(void* p) MI_FORWARD0(mi_free, p) -void* reallocf(void* p, size_t newsize) MI_FORWARD2(mi_reallocf,p,newsize) -size_t malloc_size(const void* p) MI_FORWARD1(mi_usable_size,p) -#if !defined(__ANDROID__) -size_t malloc_usable_size(void *p) MI_FORWARD1(mi_usable_size,p) -#else -size_t malloc_usable_size(const void *p) MI_FORWARD1(mi_usable_size,p) + // No forwarding here due to aliasing/name mangling issues + void* valloc(size_t size) { return mi_valloc(size); } + void vfree(void* p) { mi_free(p); } + size_t malloc_good_size(size_t size) { return mi_malloc_good_size(size); } + int posix_memalign(void** p, size_t alignment, size_t size) { return mi_posix_memalign(p, alignment, size); } + + // `aligned_alloc` is only available when __USE_ISOC11 is defined. + // Note: it seems __USE_ISOC11 is not defined in musl (and perhaps other libc's) so we only check + // for it if using glibc. + // Note: Conda has a custom glibc where `aligned_alloc` is declared `static inline` and we cannot + // override it, but both _ISOC11_SOURCE and __USE_ISOC11 are undefined in Conda GCC7 or GCC9. + // Fortunately, in the case where `aligned_alloc` is declared as `static inline` it + // uses internally `memalign`, `posix_memalign`, or `_aligned_malloc` so we can avoid overriding it ourselves. + #if !defined(__GLIBC__) || __USE_ISOC11 + void* aligned_alloc(size_t alignment, size_t size) { return mi_aligned_alloc(alignment, size); } + #endif #endif // no forwarding here due to aliasing/name mangling issues -void* valloc(size_t size) { return mi_valloc(size); } -void* pvalloc(size_t size) { return mi_pvalloc(size); } -void* reallocarray(void* p, size_t count, size_t size) { return mi_reallocarray(p, count, size); } -void* memalign(size_t alignment, size_t size) { return mi_memalign(alignment, size); } -int posix_memalign(void** p, size_t alignment, size_t size) { return mi_posix_memalign(p, alignment, size); } -void* _aligned_malloc(size_t alignment, size_t size) { return mi_aligned_alloc(alignment, size); } - -// `aligned_alloc` is only available when __USE_ISOC11 is defined. -// Note: Conda has a custom glibc where `aligned_alloc` is declared `static inline` and we cannot -// override it, but both _ISOC11_SOURCE and __USE_ISOC11 are undefined in Conda GCC7 or GCC9. -// Fortunately, in the case where `aligned_alloc` is declared as `static inline` it -// uses internally `memalign`, `posix_memalign`, or `_aligned_malloc` so we can avoid overriding it ourselves. -#if __USE_ISOC11 -void* aligned_alloc(size_t alignment, size_t size) { return mi_aligned_alloc(alignment, size); } -#endif +void cfree(void* p) { mi_free(p); } +void* pvalloc(size_t size) { return mi_pvalloc(size); } +void* memalign(size_t alignment, size_t size) { return mi_memalign(alignment, size); } +void* _aligned_malloc(size_t alignment, size_t size) { return mi_aligned_alloc(alignment, size); } +void* reallocarray(void* p, size_t count, size_t size) { return mi_reallocarray(p, count, size); } +// some systems define reallocarr so mark it as a weak symbol (#751) +mi_decl_weak int reallocarr(void* p, size_t count, size_t size) { return mi_reallocarr(p, count, size); } +#if defined(__wasi__) + // forward __libc interface (see PR #667) + void* __libc_malloc(size_t size) MI_FORWARD1(mi_malloc, size) + void* __libc_calloc(size_t count, size_t size) MI_FORWARD2(mi_calloc, count, size) + void* __libc_realloc(void* p, size_t size) MI_FORWARD2(mi_realloc, p, size) + void __libc_free(void* p) MI_FORWARD0(mi_free, p) + void* __libc_memalign(size_t alignment, size_t size) { return mi_memalign(alignment, size); } -#if defined(__GLIBC__) && defined(__linux__) +#elif defined(__GLIBC__) && defined(__linux__) // forward __libc interface (needed for glibc-based Linux distributions) - void* __libc_malloc(size_t size) MI_FORWARD1(mi_malloc,size) - void* __libc_calloc(size_t count, size_t size) MI_FORWARD2(mi_calloc,count,size) - void* __libc_realloc(void* p, size_t size) MI_FORWARD2(mi_realloc,p,size) - void __libc_free(void* p) MI_FORWARD0(mi_free,p) - void __libc_cfree(void* p) MI_FORWARD0(mi_free,p) - - void* __libc_valloc(size_t size) { return mi_valloc(size); } - void* __libc_pvalloc(size_t size) { return mi_pvalloc(size); } - void* __libc_memalign(size_t alignment, size_t size) { return mi_memalign(alignment,size); } + void* __libc_malloc(size_t size) MI_FORWARD1(mi_malloc,size) + void* __libc_calloc(size_t count, size_t size) MI_FORWARD2(mi_calloc,count,size) + void* __libc_realloc(void* p, size_t size) MI_FORWARD2(mi_realloc,p,size) + void __libc_free(void* p) MI_FORWARD0(mi_free,p) + void __libc_cfree(void* p) MI_FORWARD0(mi_free,p) + + void* __libc_valloc(size_t size) { return mi_valloc(size); } + void* __libc_pvalloc(size_t size) { return mi_pvalloc(size); } + void* __libc_memalign(size_t alignment, size_t size) { return mi_memalign(alignment,size); } int __posix_memalign(void** p, size_t alignment, size_t size) { return mi_posix_memalign(p,alignment,size); } #endif diff --git a/contrib/libs/mimalloc/src/alloc-posix.c b/contrib/libs/mimalloc/src/alloc-posix.c index 43931e56da..225752fd87 100644 --- a/contrib/libs/mimalloc/src/alloc-posix.c +++ b/contrib/libs/mimalloc/src/alloc-posix.c @@ -10,7 +10,7 @@ terms of the MIT license. A copy of the license can be found in the file // for convenience and used when overriding these functions. // ------------------------------------------------------------------------ #include "mimalloc.h" -#include "mimalloc-internal.h" +#include "mimalloc/internal.h" // ------------------------------------------------------ // Posix & Unix functions definitions @@ -32,14 +32,20 @@ terms of the MIT license. A copy of the license can be found in the file #endif -size_t mi_malloc_size(const void* p) mi_attr_noexcept { +mi_decl_nodiscard size_t mi_malloc_size(const void* p) mi_attr_noexcept { + // if (!mi_is_in_heap_region(p)) return 0; return mi_usable_size(p); } -size_t mi_malloc_usable_size(const void *p) mi_attr_noexcept { +mi_decl_nodiscard size_t mi_malloc_usable_size(const void *p) mi_attr_noexcept { + // if (!mi_is_in_heap_region(p)) return 0; return mi_usable_size(p); } +mi_decl_nodiscard size_t mi_malloc_good_size(size_t size) mi_attr_noexcept { + return mi_good_size(size); +} + void mi_cfree(void* p) mi_attr_noexcept { if (mi_is_in_heap_region(p)) { mi_free(p); @@ -50,53 +56,75 @@ int mi_posix_memalign(void** p, size_t alignment, size_t size) mi_attr_noexcept // Note: The spec dictates we should not modify `*p` on an error. (issue#27) // <http://man7.org/linux/man-pages/man3/posix_memalign.3.html> if (p == NULL) return EINVAL; - if (alignment % sizeof(void*) != 0) return EINVAL; // natural alignment - if (!_mi_is_power_of_two(alignment)) return EINVAL; // not a power of 2 - void* q = (mi_malloc_satisfies_alignment(alignment, size) ? mi_malloc(size) : mi_malloc_aligned(size, alignment)); + if ((alignment % sizeof(void*)) != 0) return EINVAL; // natural alignment + // it is also required that alignment is a power of 2 and > 0; this is checked in `mi_malloc_aligned` + if (alignment==0 || !_mi_is_power_of_two(alignment)) return EINVAL; // not a power of 2 + void* q = mi_malloc_aligned(size, alignment); if (q==NULL && size != 0) return ENOMEM; mi_assert_internal(((uintptr_t)q % alignment) == 0); *p = q; return 0; } -mi_decl_restrict void* mi_memalign(size_t alignment, size_t size) mi_attr_noexcept { - void* p = (mi_malloc_satisfies_alignment(alignment,size) ? mi_malloc(size) : mi_malloc_aligned(size, alignment)); +mi_decl_nodiscard mi_decl_restrict void* mi_memalign(size_t alignment, size_t size) mi_attr_noexcept { + void* p = mi_malloc_aligned(size, alignment); mi_assert_internal(((uintptr_t)p % alignment) == 0); return p; } -mi_decl_restrict void* mi_valloc(size_t size) mi_attr_noexcept { +mi_decl_nodiscard mi_decl_restrict void* mi_valloc(size_t size) mi_attr_noexcept { return mi_memalign( _mi_os_page_size(), size ); } -mi_decl_restrict void* mi_pvalloc(size_t size) mi_attr_noexcept { +mi_decl_nodiscard mi_decl_restrict void* mi_pvalloc(size_t size) mi_attr_noexcept { size_t psize = _mi_os_page_size(); if (size >= SIZE_MAX - psize) return NULL; // overflow size_t asize = _mi_align_up(size, psize); return mi_malloc_aligned(asize, psize); } -mi_decl_restrict void* mi_aligned_alloc(size_t alignment, size_t size) mi_attr_noexcept { - if (alignment==0 || !_mi_is_power_of_two(alignment)) return NULL; - if ((size&(alignment-1)) != 0) return NULL; // C11 requires integral multiple, see <https://en.cppreference.com/w/c/memory/aligned_alloc> - void* p = (mi_malloc_satisfies_alignment(alignment, size) ? mi_malloc(size) : mi_malloc_aligned(size, alignment)); +mi_decl_nodiscard mi_decl_restrict void* mi_aligned_alloc(size_t alignment, size_t size) mi_attr_noexcept { + // C11 requires the size to be an integral multiple of the alignment, see <https://en.cppreference.com/w/c/memory/aligned_alloc>. + // unfortunately, it turns out quite some programs pass a size that is not an integral multiple so skip this check.. + /* if mi_unlikely((size & (alignment - 1)) != 0) { // C11 requires alignment>0 && integral multiple, see <https://en.cppreference.com/w/c/memory/aligned_alloc> + #if MI_DEBUG > 0 + _mi_error_message(EOVERFLOW, "(mi_)aligned_alloc requires the size to be an integral multiple of the alignment (size %zu, alignment %zu)\n", size, alignment); + #endif + return NULL; + } + */ + // C11 also requires alignment to be a power-of-two (and > 0) which is checked in mi_malloc_aligned + void* p = mi_malloc_aligned(size, alignment); mi_assert_internal(((uintptr_t)p % alignment) == 0); return p; } -void* mi_reallocarray( void* p, size_t count, size_t size ) mi_attr_noexcept { // BSD +mi_decl_nodiscard void* mi_reallocarray( void* p, size_t count, size_t size ) mi_attr_noexcept { // BSD void* newp = mi_reallocn(p,count,size); - if (newp==NULL) errno = ENOMEM; + if (newp==NULL) { errno = ENOMEM; } return newp; } +mi_decl_nodiscard int mi_reallocarr( void* p, size_t count, size_t size ) mi_attr_noexcept { // NetBSD + mi_assert(p != NULL); + if (p == NULL) { + errno = EINVAL; + return EINVAL; + } + void** op = (void**)p; + void* newp = mi_reallocarray(*op, count, size); + if mi_unlikely(newp == NULL) { return errno; } + *op = newp; + return 0; +} + void* mi__expand(void* p, size_t newsize) mi_attr_noexcept { // Microsoft void* res = mi_expand(p, newsize); - if (res == NULL) errno = ENOMEM; + if (res == NULL) { errno = ENOMEM; } return res; } -mi_decl_restrict unsigned short* mi_wcsdup(const unsigned short* s) mi_attr_noexcept { +mi_decl_nodiscard mi_decl_restrict unsigned short* mi_wcsdup(const unsigned short* s) mi_attr_noexcept { if (s==NULL) return NULL; size_t len; for(len = 0; s[len] != 0; len++) { } @@ -108,7 +136,7 @@ mi_decl_restrict unsigned short* mi_wcsdup(const unsigned short* s) mi_attr_noex return p; } -mi_decl_restrict unsigned char* mi_mbsdup(const unsigned char* s) mi_attr_noexcept { +mi_decl_nodiscard mi_decl_restrict unsigned char* mi_mbsdup(const unsigned char* s) mi_attr_noexcept { return (unsigned char*)mi_strdup((const char*)s); } @@ -122,7 +150,7 @@ int mi_dupenv_s(char** buf, size_t* size, const char* name) mi_attr_noexcept { else { *buf = mi_strdup(p); if (*buf==NULL) return ENOMEM; - if (size != NULL) *size = strlen(p); + if (size != NULL) *size = _mi_strlen(p); } return 0; } @@ -148,10 +176,10 @@ int mi_wdupenv_s(unsigned short** buf, size_t* size, const unsigned short* name) #endif } -void* mi_aligned_offset_recalloc(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { // Microsoft +mi_decl_nodiscard void* mi_aligned_offset_recalloc(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { // Microsoft return mi_recalloc_aligned_at(p, newcount, size, alignment, offset); } -void* mi_aligned_recalloc(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept { // Microsoft +mi_decl_nodiscard void* mi_aligned_recalloc(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept { // Microsoft return mi_recalloc_aligned(p, newcount, size, alignment); } diff --git a/contrib/libs/mimalloc/src/alloc.c b/contrib/libs/mimalloc/src/alloc.c index 8acff78327..6c9c5baf36 100644 --- a/contrib/libs/mimalloc/src/alloc.c +++ b/contrib/libs/mimalloc/src/alloc.c @@ -1,18 +1,24 @@ /* ---------------------------------------------------------------------------- -Copyright (c) 2018-2021, Microsoft Research, Daan Leijen +Copyright (c) 2018-2024, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ +#ifndef _DEFAULT_SOURCE +#define _DEFAULT_SOURCE // for realpath() on Linux +#endif + #include "mimalloc.h" -#include "mimalloc-internal.h" -#include "mimalloc-atomic.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" +#include "mimalloc/prim.h" // _mi_prim_thread_id() -#include <string.h> // memset, strlen -#include <stdlib.h> // malloc, exit +#include <string.h> // memset, strlen (for mi_strdup) +#include <stdlib.h> // malloc, abort #define MI_IN_ALLOC_C #include "alloc-override.c" +#include "free.c" #undef MI_IN_ALLOC_C // ------------------------------------------------------ @@ -21,625 +27,254 @@ terms of the MIT license. A copy of the license can be found in the file // Fast allocation in a page: just pop from the free list. // Fall back to generic allocation only if the list is empty. -extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size) mi_attr_noexcept { - mi_assert_internal(page->xblock_size==0||mi_page_block_size(page) >= size); +// Note: in release mode the (inlined) routine is about 7 instructions with a single test. +extern inline void* _mi_page_malloc_zero(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept +{ + mi_assert_internal(page->block_size == 0 /* empty heap */ || mi_page_block_size(page) >= size); mi_block_t* const block = page->free; - if (mi_unlikely(block == NULL)) { - return _mi_malloc_generic(heap, size); + if mi_unlikely(block == NULL) { + return _mi_malloc_generic(heap, size, zero, 0); } mi_assert_internal(block != NULL && _mi_ptr_page(block) == page); // pop from the free list - page->used++; page->free = mi_block_next(page, block); + page->used++; mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page); + #if MI_DEBUG>3 + if (page->free_is_zero) { + mi_assert_expensive(mi_mem_is_zero(block+1,size - sizeof(*block))); + } + #endif -#if (MI_DEBUG>0) - if (!page->is_zero) { memset(block, MI_DEBUG_UNINIT, size); } -#elif (MI_SECURE!=0) - block->next = 0; // don't leak internal data -#endif + // allow use of the block internally + // note: when tracking we need to avoid ever touching the MI_PADDING since + // that is tracked by valgrind etc. as non-accessible (through the red-zone, see `mimalloc/track.h`) + mi_track_mem_undefined(block, mi_page_usable_block_size(page)); + + // zero the block? note: we need to zero the full block size (issue #63) + if mi_unlikely(zero) { + mi_assert_internal(page->block_size != 0); // do not call with zero'ing for huge blocks (see _mi_malloc_generic) + mi_assert_internal(page->block_size >= MI_PADDING_SIZE); + if (page->free_is_zero) { + block->next = 0; + mi_track_mem_defined(block, page->block_size - MI_PADDING_SIZE); + } + else { + _mi_memzero_aligned(block, page->block_size - MI_PADDING_SIZE); + } + } + + #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN + if (!zero && !mi_page_is_huge(page)) { + memset(block, MI_DEBUG_UNINIT, mi_page_usable_block_size(page)); + } + #elif (MI_SECURE!=0) + if (!zero) { block->next = 0; } // don't leak internal data + #endif -#if (MI_STAT>0) + #if (MI_STAT>0) const size_t bsize = mi_page_usable_block_size(page); if (bsize <= MI_LARGE_OBJ_SIZE_MAX) { mi_heap_stat_increase(heap, normal, bsize); mi_heap_stat_counter_increase(heap, normal_count, 1); -#if (MI_STAT>1) + #if (MI_STAT>1) const size_t bin = _mi_bin(bsize); mi_heap_stat_increase(heap, normal_bins[bin], 1); -#endif + #endif } -#endif + #endif -#if (MI_PADDING > 0) && defined(MI_ENCODE_FREELIST) - mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + mi_page_usable_block_size(page)); - ptrdiff_t delta = ((uint8_t*)padding - (uint8_t*)block - (size - MI_PADDING_SIZE)); - mi_assert_internal(delta >= 0 && mi_page_usable_block_size(page) >= (size - MI_PADDING_SIZE + delta)); - padding->canary = (uint32_t)(mi_ptr_encode(page,block,page->keys)); - padding->delta = (uint32_t)(delta); - uint8_t* fill = (uint8_t*)padding - delta; - const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // set at most N initial padding bytes - for (size_t i = 0; i < maxpad; i++) { fill[i] = MI_DEBUG_PADDING; } -#endif + #if MI_PADDING // && !MI_TRACK_ENABLED + mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + mi_page_usable_block_size(page)); + ptrdiff_t delta = ((uint8_t*)padding - (uint8_t*)block - (size - MI_PADDING_SIZE)); + #if (MI_DEBUG>=2) + mi_assert_internal(delta >= 0 && mi_page_usable_block_size(page) >= (size - MI_PADDING_SIZE + delta)); + #endif + mi_track_mem_defined(padding,sizeof(mi_padding_t)); // note: re-enable since mi_page_usable_block_size may set noaccess + padding->canary = (uint32_t)(mi_ptr_encode(page,block,page->keys)); + padding->delta = (uint32_t)(delta); + #if MI_PADDING_CHECK + if (!mi_page_is_huge(page)) { + uint8_t* fill = (uint8_t*)padding - delta; + const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // set at most N initial padding bytes + for (size_t i = 0; i < maxpad; i++) { fill[i] = MI_DEBUG_PADDING; } + } + #endif + #endif return block; } -// allocate a small block -extern inline mi_decl_restrict void* mi_heap_malloc_small(mi_heap_t* heap, size_t size) mi_attr_noexcept { - mi_assert(heap!=NULL); - mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id()); // heaps are thread local +// extra entries for improved efficiency in `alloc-aligned.c`. +extern void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size) mi_attr_noexcept { + return _mi_page_malloc_zero(heap,page,size,false); +} +extern void* _mi_page_malloc_zeroed(mi_heap_t* heap, mi_page_t* page, size_t size) mi_attr_noexcept { + return _mi_page_malloc_zero(heap,page,size,true); +} + +static inline mi_decl_restrict void* mi_heap_malloc_small_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept { + mi_assert(heap != NULL); + #if MI_DEBUG + const uintptr_t tid = _mi_thread_id(); + mi_assert(heap->thread_id == 0 || heap->thread_id == tid); // heaps are thread local + #endif mi_assert(size <= MI_SMALL_SIZE_MAX); #if (MI_PADDING) - if (size == 0) { - size = sizeof(void*); - } + if (size == 0) { size = sizeof(void*); } #endif - mi_page_t* page = _mi_heap_get_free_small_page(heap,size + MI_PADDING_SIZE); - void* p = _mi_page_malloc(heap, page, size + MI_PADDING_SIZE); - mi_assert_internal(p==NULL || mi_usable_size(p) >= size); + + mi_page_t* page = _mi_heap_get_free_small_page(heap, size + MI_PADDING_SIZE); + void* const p = _mi_page_malloc_zero(heap, page, size + MI_PADDING_SIZE, zero); + mi_track_malloc(p,size,zero); + #if MI_STAT>1 if (p != NULL) { - if (!mi_heap_is_initialized(heap)) { heap = mi_get_default_heap(); } + if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); } mi_heap_stat_increase(heap, malloc, mi_usable_size(p)); } #endif + #if MI_DEBUG>3 + if (p != NULL && zero) { + mi_assert_expensive(mi_mem_is_zero(p, size)); + } + #endif return p; } -extern inline mi_decl_restrict void* mi_malloc_small(size_t size) mi_attr_noexcept { - return mi_heap_malloc_small(mi_get_default_heap(), size); +// allocate a small block +mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_malloc_small(mi_heap_t* heap, size_t size) mi_attr_noexcept { + return mi_heap_malloc_small_zero(heap, size, false); +} + +mi_decl_nodiscard extern inline mi_decl_restrict void* mi_malloc_small(size_t size) mi_attr_noexcept { + return mi_heap_malloc_small(mi_prim_get_default_heap(), size); } // The main allocation function -extern inline mi_decl_restrict void* mi_heap_malloc(mi_heap_t* heap, size_t size) mi_attr_noexcept { - if (mi_likely(size <= MI_SMALL_SIZE_MAX)) { - return mi_heap_malloc_small(heap, size); +extern inline void* _mi_heap_malloc_zero_ex(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept { + if mi_likely(size <= MI_SMALL_SIZE_MAX) { + mi_assert_internal(huge_alignment == 0); + return mi_heap_malloc_small_zero(heap, size, zero); } else { mi_assert(heap!=NULL); - mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id()); // heaps are thread local - void* const p = _mi_malloc_generic(heap, size + MI_PADDING_SIZE); // note: size can overflow but it is detected in malloc_generic - mi_assert_internal(p == NULL || mi_usable_size(p) >= size); + mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id()); // heaps are thread local + void* const p = _mi_malloc_generic(heap, size + MI_PADDING_SIZE, zero, huge_alignment); // note: size can overflow but it is detected in malloc_generic + mi_track_malloc(p,size,zero); #if MI_STAT>1 if (p != NULL) { - if (!mi_heap_is_initialized(heap)) { heap = mi_get_default_heap(); } + if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); } mi_heap_stat_increase(heap, malloc, mi_usable_size(p)); } #endif - return p; - } -} - -extern inline mi_decl_restrict void* mi_malloc(size_t size) mi_attr_noexcept { - return mi_heap_malloc(mi_get_default_heap(), size); -} - - -void _mi_block_zero_init(const mi_page_t* page, void* p, size_t size) { - // note: we need to initialize the whole usable block size to zero, not just the requested size, - // or the recalloc/rezalloc functions cannot safely expand in place (see issue #63) - UNUSED(size); - mi_assert_internal(p != NULL); - mi_assert_internal(mi_usable_size(p) >= size); // size can be zero - mi_assert_internal(_mi_ptr_page(p)==page); - if (page->is_zero && size > sizeof(mi_block_t)) { - // already zero initialized memory - ((mi_block_t*)p)->next = 0; // clear the free list pointer - mi_assert_expensive(mi_mem_is_zero(p, mi_usable_size(p))); - } - else { - // otherwise memset - memset(p, 0, mi_usable_size(p)); - } -} - -// zero initialized small block -mi_decl_restrict void* mi_zalloc_small(size_t size) mi_attr_noexcept { - void* p = mi_malloc_small(size); - if (p != NULL) { - _mi_block_zero_init(_mi_ptr_page(p), p, size); // todo: can we avoid getting the page again? - } - return p; -} - -void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) { - void* p = mi_heap_malloc(heap,size); - if (zero && p != NULL) { - _mi_block_zero_init(_mi_ptr_page(p),p,size); // todo: can we avoid getting the page again? - } - return p; -} - -extern inline mi_decl_restrict void* mi_heap_zalloc(mi_heap_t* heap, size_t size) mi_attr_noexcept { - return _mi_heap_malloc_zero(heap, size, true); -} - -mi_decl_restrict void* mi_zalloc(size_t size) mi_attr_noexcept { - return mi_heap_zalloc(mi_get_default_heap(),size); -} - - -// ------------------------------------------------------ -// Check for double free in secure and debug mode -// This is somewhat expensive so only enabled for secure mode 4 -// ------------------------------------------------------ - -#if (MI_ENCODE_FREELIST && (MI_SECURE>=4 || MI_DEBUG!=0)) -// linear check if the free list contains a specific element -static bool mi_list_contains(const mi_page_t* page, const mi_block_t* list, const mi_block_t* elem) { - while (list != NULL) { - if (elem==list) return true; - list = mi_block_next(page, list); - } - return false; -} - -static mi_decl_noinline bool mi_check_is_double_freex(const mi_page_t* page, const mi_block_t* block) { - // The decoded value is in the same page (or NULL). - // Walk the free lists to verify positively if it is already freed - if (mi_list_contains(page, page->free, block) || - mi_list_contains(page, page->local_free, block) || - mi_list_contains(page, mi_page_thread_free(page), block)) - { - _mi_error_message(EAGAIN, "double free detected of block %p with size %zu\n", block, mi_page_block_size(page)); - return true; - } - return false; -} - -static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) { - mi_block_t* n = mi_block_nextx(page, block, page->keys); // pretend it is freed, and get the decoded first field - if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 && // quick check: aligned pointer? - (n==NULL || mi_is_in_same_page(block, n))) // quick check: in same page or NULL? - { - // Suspicous: decoded value a in block is in the same page (or NULL) -- maybe a double free? - // (continue in separate function to improve code generation) - return mi_check_is_double_freex(page, block); - } - return false; -} -#else -static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) { - UNUSED(page); - UNUSED(block); - return false; -} -#endif - -// --------------------------------------------------------------------------- -// Check for heap block overflow by setting up padding at the end of the block -// --------------------------------------------------------------------------- - -#if (MI_PADDING>0) && defined(MI_ENCODE_FREELIST) -static bool mi_page_decode_padding(const mi_page_t* page, const mi_block_t* block, size_t* delta, size_t* bsize) { - *bsize = mi_page_usable_block_size(page); - const mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + *bsize); - *delta = padding->delta; - return ((uint32_t)mi_ptr_encode(page,block,page->keys) == padding->canary && *delta <= *bsize); -} - -// Return the exact usable size of a block. -static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) { - size_t bsize; - size_t delta; - bool ok = mi_page_decode_padding(page, block, &delta, &bsize); - mi_assert_internal(ok); mi_assert_internal(delta <= bsize); - return (ok ? bsize - delta : 0); -} - -static bool mi_verify_padding(const mi_page_t* page, const mi_block_t* block, size_t* size, size_t* wrong) { - size_t bsize; - size_t delta; - bool ok = mi_page_decode_padding(page, block, &delta, &bsize); - *size = *wrong = bsize; - if (!ok) return false; - mi_assert_internal(bsize >= delta); - *size = bsize - delta; - uint8_t* fill = (uint8_t*)block + bsize - delta; - const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // check at most the first N padding bytes - for (size_t i = 0; i < maxpad; i++) { - if (fill[i] != MI_DEBUG_PADDING) { - *wrong = bsize - delta + i; - return false; - } - } - return true; -} - -static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) { - size_t size; - size_t wrong; - if (!mi_verify_padding(page,block,&size,&wrong)) { - _mi_error_message(EFAULT, "buffer overflow in heap block %p of size %zu: write after %zu bytes\n", block, size, wrong ); - } -} - -// When a non-thread-local block is freed, it becomes part of the thread delayed free -// list that is freed later by the owning heap. If the exact usable size is too small to -// contain the pointer for the delayed list, then shrink the padding (by decreasing delta) -// so it will later not trigger an overflow error in `mi_free_block`. -static void mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) { - size_t bsize; - size_t delta; - bool ok = mi_page_decode_padding(page, block, &delta, &bsize); - mi_assert_internal(ok); - if (!ok || (bsize - delta) >= min_size) return; // usually already enough space - mi_assert_internal(bsize >= min_size); - if (bsize < min_size) return; // should never happen - size_t new_delta = (bsize - min_size); - mi_assert_internal(new_delta < bsize); - mi_padding_t* padding = (mi_padding_t*)((uint8_t*)block + bsize); - padding->delta = (uint32_t)new_delta; -} -#else -static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) { - UNUSED(page); - UNUSED(block); -} - -static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) { - UNUSED(block); - return mi_page_usable_block_size(page); -} - -static void mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) { - UNUSED(page); - UNUSED(block); - UNUSED(min_size); -} -#endif - -// only maintain stats for smaller objects if requested -#if (MI_STAT>0) -static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) { -#if (MI_STAT < 2) - UNUSED(block); -#endif - mi_heap_t* const heap = mi_heap_get_default(); - const size_t bsize = mi_page_usable_block_size(page); -#if (MI_STAT>1) - const size_t usize = mi_page_usable_size_of(page, block); - mi_heap_stat_decrease(heap, malloc, usize); -#endif - if (bsize <= MI_LARGE_OBJ_SIZE_MAX) { - mi_heap_stat_decrease(heap, normal, bsize); -#if (MI_STAT > 1) - mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], 1); -#endif - } -} -#else -static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) { - UNUSED(page); UNUSED(block); -} -#endif - -#if (MI_STAT>0) -// maintain stats for huge objects -static void mi_stat_huge_free(const mi_page_t* page) { - mi_heap_t* const heap = mi_heap_get_default(); - const size_t bsize = mi_page_block_size(page); // to match stats in `page.c:mi_page_huge_alloc` - if (bsize <= MI_HUGE_OBJ_SIZE_MAX) { - mi_heap_stat_decrease(heap, huge, bsize); - } - else { - mi_heap_stat_decrease(heap, giant, bsize); - } -} -#else -static void mi_stat_huge_free(const mi_page_t* page) { - UNUSED(page); -} -#endif - -// ------------------------------------------------------ -// Free -// ------------------------------------------------------ - -// multi-threaded free -static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* block) -{ - // The padding check may access the non-thread-owned page for the key values. - // that is safe as these are constant and the page won't be freed (as the block is not freed yet). - mi_check_padding(page, block); - mi_padding_shrink(page, block, sizeof(mi_block_t)); // for small size, ensure we can fit the delayed thread pointers without triggering overflow detection - #if (MI_DEBUG!=0) - memset(block, MI_DEBUG_FREED, mi_usable_size(block)); - #endif - - // huge page segments are always abandoned and can be freed immediately - mi_segment_t* const segment = _mi_page_segment(page); - if (segment->page_kind==MI_PAGE_HUGE) { - mi_stat_huge_free(page); - _mi_segment_huge_page_free(segment, page, block); - return; - } - - // Try to put the block on either the page-local thread free list, or the heap delayed free list. - mi_thread_free_t tfreex; - bool use_delayed; - mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free); - do { - use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE); - if (mi_unlikely(use_delayed)) { - // unlikely: this only happens on the first concurrent free in a page that is in the full list - tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING); + #if MI_DEBUG>3 + if (p != NULL && zero) { + mi_assert_expensive(mi_mem_is_zero(p, size)); } - else { - // usual: directly add to page thread_free list - mi_block_set_next(page, block, mi_tf_block(tfree)); - tfreex = mi_tf_set_block(tfree,block); - } - } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex)); - - if (mi_unlikely(use_delayed)) { - // racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`) - mi_heap_t* const heap = (mi_heap_t*)(mi_atomic_load_acquire(&page->xheap)); //mi_page_heap(page); - mi_assert_internal(heap != NULL); - if (heap != NULL) { - // add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity) - mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free); - do { - mi_block_set_nextx(heap,block,dfree, heap->keys); - } while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block)); - } - - // and reset the MI_DELAYED_FREEING flag - tfree = mi_atomic_load_relaxed(&page->xthread_free); - do { - tfreex = tfree; - mi_assert_internal(mi_tf_delayed(tfree) == MI_DELAYED_FREEING); - tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE); - } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex)); - } -} - -// regular free -static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block) -{ - // and push it on the free list - if (mi_likely(local)) { - // owning thread can free a block directly - if (mi_unlikely(mi_check_is_double_free(page, block))) return; - mi_check_padding(page, block); - #if (MI_DEBUG!=0) - memset(block, MI_DEBUG_FREED, mi_page_block_size(page)); #endif - mi_block_set_next(page, block, page->local_free); - page->local_free = block; - page->used--; - if (mi_unlikely(mi_page_all_free(page))) { - _mi_page_retire(page); - } - else if (mi_unlikely(mi_page_is_in_full(page))) { - _mi_page_unfull(page); - } - } - else { - _mi_free_block_mt(page,block); + return p; } } - -// Adjust a block that was allocated aligned, to the actual start of the block in the page. -mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p) { - mi_assert_internal(page!=NULL && p!=NULL); - const size_t diff = (uint8_t*)p - _mi_page_start(segment, page, NULL); - const size_t adjust = (diff % mi_page_block_size(page)); - return (mi_block_t*)((uintptr_t)p - adjust); -} - - -static void mi_decl_noinline mi_free_generic(const mi_segment_t* segment, bool local, void* p) { - mi_page_t* const page = _mi_segment_page_of(segment, p); - mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(segment, page, p) : (mi_block_t*)p); - mi_stat_free(page, block); - _mi_free_block(page, local, block); +extern inline void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept { + return _mi_heap_malloc_zero_ex(heap, size, zero, 0); } -// Get the segment data belonging to a pointer -// This is just a single `and` in assembly but does further checks in debug mode -// (and secure mode) if this was a valid pointer. -static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* msg) -{ - UNUSED(msg); -#if (MI_DEBUG>0) - if (mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0)) { - _mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p); - return NULL; - } -#endif - - mi_segment_t* const segment = _mi_ptr_segment(p); - if (mi_unlikely(segment == NULL)) return NULL; // checks also for (p==NULL) - -#if (MI_DEBUG>0) - if (mi_unlikely(!mi_is_in_heap_region(p))) { - _mi_warning_message("%s: pointer might not point to a valid heap region: %p\n" - "(this may still be a valid very large allocation (over 64MiB))\n", msg, p); - if (mi_likely(_mi_ptr_cookie(segment) == segment->cookie)) { - _mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p); - } - } -#endif -#if (MI_DEBUG>0 || MI_SECURE>=4) - if (mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie)) { - _mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", p); - } -#endif - return segment; -} - - -// Free a block -void mi_free(void* p) mi_attr_noexcept -{ - const mi_segment_t* const segment = mi_checked_ptr_segment(p,"mi_free"); - if (mi_unlikely(segment == NULL)) return; - - const uintptr_t tid = _mi_thread_id(); - mi_page_t* const page = _mi_segment_page_of(segment, p); - mi_block_t* const block = (mi_block_t*)p; - - if (mi_likely(tid == segment->thread_id && page->flags.full_aligned == 0)) { // the thread id matches and it is not a full page, nor has aligned blocks - // local, and not full or aligned - if (mi_unlikely(mi_check_is_double_free(page,block))) return; - mi_check_padding(page, block); - mi_stat_free(page, block); - #if (MI_DEBUG!=0) - memset(block, MI_DEBUG_FREED, mi_page_block_size(page)); - #endif - mi_block_set_next(page, block, page->local_free); - page->local_free = block; - if (mi_unlikely(--page->used == 0)) { // using this expression generates better code than: page->used--; if (mi_page_all_free(page)) - _mi_page_retire(page); - } - } - else { - // non-local, aligned blocks, or a full page; use the more generic path - // note: recalc page in generic to improve code generation - mi_free_generic(segment, tid == segment->thread_id, p); - } +mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_malloc(mi_heap_t* heap, size_t size) mi_attr_noexcept { + return _mi_heap_malloc_zero(heap, size, false); } -bool _mi_free_delayed_block(mi_block_t* block) { - // get segment and page - const mi_segment_t* const segment = _mi_ptr_segment(block); - mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie); - mi_assert_internal(_mi_thread_id() == segment->thread_id); - mi_page_t* const page = _mi_segment_page_of(segment, block); - - // Clear the no-delayed flag so delayed freeing is used again for this page. - // This must be done before collecting the free lists on this page -- otherwise - // some blocks may end up in the page `thread_free` list with no blocks in the - // heap `thread_delayed_free` list which may cause the page to be never freed! - // (it would only be freed if we happen to scan it in `mi_page_queue_find_free_ex`) - _mi_page_use_delayed_free(page, MI_USE_DELAYED_FREE, false /* dont overwrite never delayed */); - - // collect all other non-local frees to ensure up-to-date `used` count - _mi_page_free_collect(page, false); - - // and free the block (possibly freeing the page as well since used is updated) - _mi_free_block(page, true, block); - return true; -} - -// Bytes available in a block -static size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noexcept { - const mi_segment_t* const segment = mi_checked_ptr_segment(p,msg); - if (segment==NULL) return 0; - const mi_page_t* const page = _mi_segment_page_of(segment, p); - const mi_block_t* block = (const mi_block_t*)p; - if (mi_unlikely(mi_page_has_aligned(page))) { - block = _mi_page_ptr_unalign(segment, page, p); - size_t size = mi_page_usable_size_of(page, block); - ptrdiff_t const adjust = (uint8_t*)p - (uint8_t*)block; - mi_assert_internal(adjust >= 0 && (size_t)adjust <= size); - return (size - adjust); - } - else { - return mi_page_usable_size_of(page, block); - } +mi_decl_nodiscard extern inline mi_decl_restrict void* mi_malloc(size_t size) mi_attr_noexcept { + return mi_heap_malloc(mi_prim_get_default_heap(), size); } -size_t mi_usable_size(const void* p) mi_attr_noexcept { - return _mi_usable_size(p, "mi_usable_size"); +// zero initialized small block +mi_decl_nodiscard mi_decl_restrict void* mi_zalloc_small(size_t size) mi_attr_noexcept { + return mi_heap_malloc_small_zero(mi_prim_get_default_heap(), size, true); } - -// ------------------------------------------------------ -// ensure explicit external inline definitions are emitted! -// ------------------------------------------------------ - -#ifdef __cplusplus -void* _mi_externs[] = { - (void*)&_mi_page_malloc, - (void*)&mi_malloc, - (void*)&mi_malloc_small, - (void*)&mi_zalloc_small, - (void*)&mi_heap_malloc, - (void*)&mi_heap_zalloc, - (void*)&mi_heap_malloc_small -}; -#endif - - -// ------------------------------------------------------ -// Allocation extensions -// ------------------------------------------------------ - -void mi_free_size(void* p, size_t size) mi_attr_noexcept { - UNUSED_RELEASE(size); - mi_assert(p == NULL || size <= _mi_usable_size(p,"mi_free_size")); - mi_free(p); +mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_zalloc(mi_heap_t* heap, size_t size) mi_attr_noexcept { + return _mi_heap_malloc_zero(heap, size, true); } -void mi_free_size_aligned(void* p, size_t size, size_t alignment) mi_attr_noexcept { - UNUSED_RELEASE(alignment); - mi_assert(((uintptr_t)p % alignment) == 0); - mi_free_size(p,size); +mi_decl_nodiscard mi_decl_restrict void* mi_zalloc(size_t size) mi_attr_noexcept { + return mi_heap_zalloc(mi_prim_get_default_heap(),size); } -void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept { - UNUSED_RELEASE(alignment); - mi_assert(((uintptr_t)p % alignment) == 0); - mi_free(p); -} -extern inline mi_decl_restrict void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept { +mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept { size_t total; if (mi_count_size_overflow(count,size,&total)) return NULL; return mi_heap_zalloc(heap,total); } -mi_decl_restrict void* mi_calloc(size_t count, size_t size) mi_attr_noexcept { - return mi_heap_calloc(mi_get_default_heap(),count,size); +mi_decl_nodiscard mi_decl_restrict void* mi_calloc(size_t count, size_t size) mi_attr_noexcept { + return mi_heap_calloc(mi_prim_get_default_heap(),count,size); } // Uninitialized `calloc` -extern mi_decl_restrict void* mi_heap_mallocn(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept { +mi_decl_nodiscard extern mi_decl_restrict void* mi_heap_mallocn(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept { size_t total; if (mi_count_size_overflow(count, size, &total)) return NULL; return mi_heap_malloc(heap, total); } -mi_decl_restrict void* mi_mallocn(size_t count, size_t size) mi_attr_noexcept { - return mi_heap_mallocn(mi_get_default_heap(),count,size); +mi_decl_nodiscard mi_decl_restrict void* mi_mallocn(size_t count, size_t size) mi_attr_noexcept { + return mi_heap_mallocn(mi_prim_get_default_heap(),count,size); } -// Expand in place or fail +// Expand (or shrink) in place (or fail) void* mi_expand(void* p, size_t newsize) mi_attr_noexcept { + #if MI_PADDING + // we do not shrink/expand with padding enabled + MI_UNUSED(p); MI_UNUSED(newsize); + return NULL; + #else if (p == NULL) return NULL; - size_t size = _mi_usable_size(p,"mi_expand"); + const size_t size = _mi_usable_size(p,"mi_expand"); if (newsize > size) return NULL; return p; // it fits + #endif } -void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) { - if (p == NULL) return _mi_heap_malloc_zero(heap,newsize,zero); - size_t size = _mi_usable_size(p,"mi_realloc"); - if (newsize <= size && newsize >= (size / 2)) { +void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) mi_attr_noexcept { + // if p == NULL then behave as malloc. + // else if size == 0 then reallocate to a zero-sized block (and don't return NULL, just as mi_malloc(0)). + // (this means that returning NULL always indicates an error, and `p` will not have been freed in that case.) + const size_t size = _mi_usable_size(p,"mi_realloc"); // also works if p == NULL (with size 0) + if mi_unlikely(newsize <= size && newsize >= (size / 2) && newsize > 0) { // note: newsize must be > 0 or otherwise we return NULL for realloc(NULL,0) + mi_assert_internal(p!=NULL); + // todo: do not track as the usable size is still the same in the free; adjust potential padding? + // mi_track_resize(p,size,newsize) + // if (newsize < size) { mi_track_mem_noaccess((uint8_t*)p + newsize, size - newsize); } return p; // reallocation still fits and not more than 50% waste } void* newp = mi_heap_malloc(heap,newsize); - if (mi_likely(newp != NULL)) { + if mi_likely(newp != NULL) { if (zero && newsize > size) { // also set last word in the previous allocation to zero to ensure any padding is zero-initialized - size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0); - memset((uint8_t*)newp + start, 0, newsize - start); + const size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0); + _mi_memzero((uint8_t*)newp + start, newsize - start); + } + else if (newsize == 0) { + ((uint8_t*)newp)[0] = 0; // work around for applications that expect zero-reallocation to be zero initialized (issue #725) + } + if mi_likely(p != NULL) { + const size_t copysize = (newsize > size ? size : newsize); + mi_track_mem_defined(p,copysize); // _mi_useable_size may be too large for byte precise memory tracking.. + _mi_memcpy(newp, p, copysize); + mi_free(p); // only free the original pointer if successful } - _mi_memcpy_aligned(newp, p, (newsize > size ? size : newsize)); - mi_free(p); // only free if successful } return newp; } -void* mi_heap_realloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept { +mi_decl_nodiscard void* mi_heap_realloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept { return _mi_heap_realloc_zero(heap, p, newsize, false); } -void* mi_heap_reallocn(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept { +mi_decl_nodiscard void* mi_heap_reallocn(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept { size_t total; if (mi_count_size_overflow(count, size, &total)) return NULL; return mi_heap_realloc(heap, p, total); @@ -647,42 +282,42 @@ void* mi_heap_reallocn(mi_heap_t* heap, void* p, size_t count, size_t size) mi_a // Reallocate but free `p` on errors -void* mi_heap_reallocf(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept { +mi_decl_nodiscard void* mi_heap_reallocf(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept { void* newp = mi_heap_realloc(heap, p, newsize); if (newp==NULL && p!=NULL) mi_free(p); return newp; } -void* mi_heap_rezalloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept { +mi_decl_nodiscard void* mi_heap_rezalloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept { return _mi_heap_realloc_zero(heap, p, newsize, true); } -void* mi_heap_recalloc(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept { +mi_decl_nodiscard void* mi_heap_recalloc(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept { size_t total; if (mi_count_size_overflow(count, size, &total)) return NULL; return mi_heap_rezalloc(heap, p, total); } -void* mi_realloc(void* p, size_t newsize) mi_attr_noexcept { - return mi_heap_realloc(mi_get_default_heap(),p,newsize); +mi_decl_nodiscard void* mi_realloc(void* p, size_t newsize) mi_attr_noexcept { + return mi_heap_realloc(mi_prim_get_default_heap(),p,newsize); } -void* mi_reallocn(void* p, size_t count, size_t size) mi_attr_noexcept { - return mi_heap_reallocn(mi_get_default_heap(),p,count,size); +mi_decl_nodiscard void* mi_reallocn(void* p, size_t count, size_t size) mi_attr_noexcept { + return mi_heap_reallocn(mi_prim_get_default_heap(),p,count,size); } // Reallocate but free `p` on errors -void* mi_reallocf(void* p, size_t newsize) mi_attr_noexcept { - return mi_heap_reallocf(mi_get_default_heap(),p,newsize); +mi_decl_nodiscard void* mi_reallocf(void* p, size_t newsize) mi_attr_noexcept { + return mi_heap_reallocf(mi_prim_get_default_heap(),p,newsize); } -void* mi_rezalloc(void* p, size_t newsize) mi_attr_noexcept { - return mi_heap_rezalloc(mi_get_default_heap(), p, newsize); +mi_decl_nodiscard void* mi_rezalloc(void* p, size_t newsize) mi_attr_noexcept { + return mi_heap_rezalloc(mi_prim_get_default_heap(), p, newsize); } -void* mi_recalloc(void* p, size_t count, size_t size) mi_attr_noexcept { - return mi_heap_recalloc(mi_get_default_heap(), p, count, size); +mi_decl_nodiscard void* mi_recalloc(void* p, size_t count, size_t size) mi_attr_noexcept { + return mi_heap_recalloc(mi_prim_get_default_heap(), p, count, size); } @@ -692,33 +327,33 @@ void* mi_recalloc(void* p, size_t count, size_t size) mi_attr_noexcept { // ------------------------------------------------------ // `strdup` using mi_malloc -mi_decl_restrict char* mi_heap_strdup(mi_heap_t* heap, const char* s) mi_attr_noexcept { +mi_decl_nodiscard mi_decl_restrict char* mi_heap_strdup(mi_heap_t* heap, const char* s) mi_attr_noexcept { if (s == NULL) return NULL; - size_t n = strlen(s); - char* t = (char*)mi_heap_malloc(heap,n+1); - if (t != NULL) _mi_memcpy(t, s, n + 1); + size_t len = _mi_strlen(s); + char* t = (char*)mi_heap_malloc(heap,len+1); + if (t == NULL) return NULL; + _mi_memcpy(t, s, len); + t[len] = 0; return t; } -mi_decl_restrict char* mi_strdup(const char* s) mi_attr_noexcept { - return mi_heap_strdup(mi_get_default_heap(), s); +mi_decl_nodiscard mi_decl_restrict char* mi_strdup(const char* s) mi_attr_noexcept { + return mi_heap_strdup(mi_prim_get_default_heap(), s); } // `strndup` using mi_malloc -mi_decl_restrict char* mi_heap_strndup(mi_heap_t* heap, const char* s, size_t n) mi_attr_noexcept { +mi_decl_nodiscard mi_decl_restrict char* mi_heap_strndup(mi_heap_t* heap, const char* s, size_t n) mi_attr_noexcept { if (s == NULL) return NULL; - const char* end = (const char*)memchr(s, 0, n); // find end of string in the first `n` characters (returns NULL if not found) - const size_t m = (end != NULL ? (size_t)(end - s) : n); // `m` is the minimum of `n` or the end-of-string - mi_assert_internal(m <= n); - char* t = (char*)mi_heap_malloc(heap, m+1); + const size_t len = _mi_strnlen(s,n); // len <= n + char* t = (char*)mi_heap_malloc(heap, len+1); if (t == NULL) return NULL; - _mi_memcpy(t, s, m); - t[m] = 0; + _mi_memcpy(t, s, len); + t[len] = 0; return t; } -mi_decl_restrict char* mi_strndup(const char* s, size_t n) mi_attr_noexcept { - return mi_heap_strndup(mi_get_default_heap(),s,n); +mi_decl_nodiscard mi_decl_restrict char* mi_strndup(const char* s, size_t n) mi_attr_noexcept { + return mi_heap_strndup(mi_prim_get_default_heap(),s,n); } #ifndef __wasi__ @@ -728,7 +363,7 @@ mi_decl_restrict char* mi_strndup(const char* s, size_t n) mi_attr_noexcept { #define PATH_MAX MAX_PATH #endif #include <windows.h> -mi_decl_restrict char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept { +mi_decl_nodiscard mi_decl_restrict char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept { // todo: use GetFullPathNameW to allow longer file names char buf[PATH_MAX]; DWORD res = GetFullPathNameA(fname, PATH_MAX, (resolved_name == NULL ? buf : resolved_name), NULL); @@ -746,8 +381,9 @@ mi_decl_restrict char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char } } #else +/* #include <unistd.h> // pathconf -static size_t mi_path_max() { +static size_t mi_path_max(void) { static size_t path_max = 0; if (path_max <= 0) { long m = pathconf("/",_PC_PATH_MAX); @@ -757,25 +393,37 @@ static size_t mi_path_max() { } return path_max; } - +*/ char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept { if (resolved_name != NULL) { return realpath(fname,resolved_name); } else { - size_t n = mi_path_max(); + char* rname = realpath(fname, NULL); + if (rname == NULL) return NULL; + char* result = mi_heap_strdup(heap, rname); + mi_cfree(rname); // use checked free (which may be redirected to our free but that's ok) + // note: with ASAN realpath is intercepted and mi_cfree may leak the returned pointer :-( + return result; + } + /* + const size_t n = mi_path_max(); char* buf = (char*)mi_malloc(n+1); - if (buf==NULL) return NULL; + if (buf == NULL) { + errno = ENOMEM; + return NULL; + } char* rname = realpath(fname,buf); char* result = mi_heap_strndup(heap,rname,n); // ok if `rname==NULL` mi_free(buf); return result; } + */ } #endif -mi_decl_restrict char* mi_realpath(const char* fname, char* resolved_name) mi_attr_noexcept { - return mi_heap_realpath(mi_get_default_heap(),fname,resolved_name); +mi_decl_nodiscard mi_decl_restrict char* mi_realpath(const char* fname, char* resolved_name) mi_attr_noexcept { + return mi_heap_realpath(mi_prim_get_default_heap(),fname,resolved_name); } #endif @@ -796,9 +444,16 @@ static bool mi_try_new_handler(bool nothrow) { #else std::new_handler h = std::set_new_handler(); std::set_new_handler(h); - #endif + #endif if (h==NULL) { - if (!nothrow) throw std::bad_alloc(); + _mi_error_message(ENOMEM, "out of memory in 'new'"); + #if defined(_CPPUNWIND) || defined(__cpp_exceptions) // exceptions are not always enabled + if (!nothrow) { + throw std::bad_alloc(); + } + #else + MI_UNUSED(nothrow); + #endif return false; } else { @@ -807,13 +462,13 @@ static bool mi_try_new_handler(bool nothrow) { } } #else -typedef void (*std_new_handler_t)(); +typedef void (*std_new_handler_t)(void); -#if (defined(__GNUC__) || defined(__clang__)) -std_new_handler_t __attribute((weak)) _ZSt15get_new_handlerv() { +#if (defined(__GNUC__) || (defined(__clang__) && !defined(_MSC_VER))) // exclude clang-cl, see issue #631 +std_new_handler_t __attribute__((weak)) _ZSt15get_new_handlerv(void) { return NULL; } -static std_new_handler_t mi_get_new_handler() { +static std_new_handler_t mi_get_new_handler(void) { return _ZSt15get_new_handlerv(); } #else @@ -826,7 +481,10 @@ static std_new_handler_t mi_get_new_handler() { static bool mi_try_new_handler(bool nothrow) { std_new_handler_t h = mi_get_new_handler(); if (h==NULL) { - if (!nothrow) exit(ENOMEM); // cannot throw in plain C, use exit as we are out of memory anyway. + _mi_error_message(ENOMEM, "out of memory in 'new'"); + if (!nothrow) { + abort(); // cannot throw in plain C, use abort + } return false; } else { @@ -836,27 +494,53 @@ static bool mi_try_new_handler(bool nothrow) { } #endif -static mi_decl_noinline void* mi_try_new(size_t size, bool nothrow ) { +mi_decl_export mi_decl_noinline void* mi_heap_try_new(mi_heap_t* heap, size_t size, bool nothrow ) { void* p = NULL; while(p == NULL && mi_try_new_handler(nothrow)) { - p = mi_malloc(size); + p = mi_heap_malloc(heap,size); } return p; } -mi_decl_restrict void* mi_new(size_t size) { - void* p = mi_malloc(size); - if (mi_unlikely(p == NULL)) return mi_try_new(size,false); +static mi_decl_noinline void* mi_try_new(size_t size, bool nothrow) { + return mi_heap_try_new(mi_prim_get_default_heap(), size, nothrow); +} + + +mi_decl_nodiscard mi_decl_restrict void* mi_heap_alloc_new(mi_heap_t* heap, size_t size) { + void* p = mi_heap_malloc(heap,size); + if mi_unlikely(p == NULL) return mi_heap_try_new(heap, size, false); return p; } -mi_decl_restrict void* mi_new_nothrow(size_t size) mi_attr_noexcept { +mi_decl_nodiscard mi_decl_restrict void* mi_new(size_t size) { + return mi_heap_alloc_new(mi_prim_get_default_heap(), size); +} + + +mi_decl_nodiscard mi_decl_restrict void* mi_heap_alloc_new_n(mi_heap_t* heap, size_t count, size_t size) { + size_t total; + if mi_unlikely(mi_count_size_overflow(count, size, &total)) { + mi_try_new_handler(false); // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc + return NULL; + } + else { + return mi_heap_alloc_new(heap,total); + } +} + +mi_decl_nodiscard mi_decl_restrict void* mi_new_n(size_t count, size_t size) { + return mi_heap_alloc_new_n(mi_prim_get_default_heap(), size, count); +} + + +mi_decl_nodiscard mi_decl_restrict void* mi_new_nothrow(size_t size) mi_attr_noexcept { void* p = mi_malloc(size); - if (mi_unlikely(p == NULL)) return mi_try_new(size, true); + if mi_unlikely(p == NULL) return mi_try_new(size, true); return p; } -mi_decl_restrict void* mi_new_aligned(size_t size, size_t alignment) { +mi_decl_nodiscard mi_decl_restrict void* mi_new_aligned(size_t size, size_t alignment) { void* p; do { p = mi_malloc_aligned(size, alignment); @@ -865,7 +549,7 @@ mi_decl_restrict void* mi_new_aligned(size_t size, size_t alignment) { return p; } -mi_decl_restrict void* mi_new_aligned_nothrow(size_t size, size_t alignment) mi_attr_noexcept { +mi_decl_nodiscard mi_decl_restrict void* mi_new_aligned_nothrow(size_t size, size_t alignment) mi_attr_noexcept { void* p; do { p = mi_malloc_aligned(size, alignment); @@ -874,18 +558,7 @@ mi_decl_restrict void* mi_new_aligned_nothrow(size_t size, size_t alignment) mi_ return p; } -mi_decl_restrict void* mi_new_n(size_t count, size_t size) { - size_t total; - if (mi_unlikely(mi_count_size_overflow(count, size, &total))) { - mi_try_new_handler(false); // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc - return NULL; - } - else { - return mi_new(total); - } -} - -void* mi_new_realloc(void* p, size_t newsize) { +mi_decl_nodiscard void* mi_new_realloc(void* p, size_t newsize) { void* q; do { q = mi_realloc(p, newsize); @@ -893,9 +566,9 @@ void* mi_new_realloc(void* p, size_t newsize) { return q; } -void* mi_new_reallocn(void* p, size_t newcount, size_t size) { +mi_decl_nodiscard void* mi_new_reallocn(void* p, size_t newcount, size_t size) { size_t total; - if (mi_unlikely(mi_count_size_overflow(newcount, size, &total))) { + if mi_unlikely(mi_count_size_overflow(newcount, size, &total)) { mi_try_new_handler(false); // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc return NULL; } @@ -903,3 +576,23 @@ void* mi_new_reallocn(void* p, size_t newcount, size_t size) { return mi_new_realloc(p, total); } } + +// ------------------------------------------------------ +// ensure explicit external inline definitions are emitted! +// ------------------------------------------------------ + +#ifdef __cplusplus +void* _mi_externs[] = { + (void*)&_mi_page_malloc, + (void*)&_mi_heap_malloc_zero, + (void*)&_mi_heap_malloc_zero_ex, + (void*)&mi_malloc, + (void*)&mi_malloc_small, + (void*)&mi_zalloc_small, + (void*)&mi_heap_malloc, + (void*)&mi_heap_zalloc, + (void*)&mi_heap_malloc_small + // (void*)&mi_heap_alloc_new, + // (void*)&mi_heap_alloc_new_n +}; +#endif diff --git a/contrib/libs/mimalloc/src/arena.c b/contrib/libs/mimalloc/src/arena.c index 0e6615a420..25ce56ec8f 100644 --- a/contrib/libs/mimalloc/src/arena.c +++ b/contrib/libs/mimalloc/src/arena.c @@ -1,5 +1,5 @@ /* ---------------------------------------------------------------------------- -Copyright (c) 2019-2021, Microsoft Research, Daan Leijen +Copyright (c) 2019-2023, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. @@ -7,107 +7,214 @@ terms of the MIT license. A copy of the license can be found in the file /* ---------------------------------------------------------------------------- "Arenas" are fixed area's of OS memory from which we can allocate -large blocks (>= MI_ARENA_BLOCK_SIZE, 32MiB). +large blocks (>= MI_ARENA_MIN_BLOCK_SIZE, 4MiB). In contrast to the rest of mimalloc, the arenas are shared between threads and need to be accessed using atomic operations. -Currently arenas are only used to for huge OS page (1GiB) reservations, -otherwise it delegates to direct allocation from the OS. -In the future, we can expose an API to manually add more kinds of arenas -which is sometimes needed for embedded devices or shared memory for example. -(We can also employ this with WASI or `sbrk` systems to reserve large arenas - on demand and be able to reuse them efficiently). - -The arena allocation needs to be thread safe and we use an atomic -bitmap to allocate. The current implementation of the bitmap can -only do this within a field (`uintptr_t`) so we can allocate at most -blocks of 2GiB (64*32MiB) and no object can cross the boundary. This -can lead to fragmentation but fortunately most objects will be regions -of 256MiB in practice. +Arenas are used to for huge OS page (1GiB) reservations or for reserving +OS memory upfront which can be improve performance or is sometimes needed +on embedded devices. We can also employ this with WASI or `sbrk` systems +to reserve large arenas upfront and be able to reuse the memory more effectively. + +The arena allocation needs to be thread safe and we use an atomic bitmap to allocate. -----------------------------------------------------------------------------*/ #include "mimalloc.h" -#include "mimalloc-internal.h" -#include "mimalloc-atomic.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" #include <string.h> // memset -#include <errno.h> // ENOMEM +#include <errno.h> // ENOMEM #include "bitmap.h" // atomic bitmap - -// os.c -void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool* large, mi_stats_t* stats); -void _mi_os_free_ex(void* p, size_t size, bool was_committed, mi_stats_t* stats); -void _mi_os_free(void* p, size_t size, mi_stats_t* stats); - -void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_secs, size_t* pages_reserved, size_t* psize); -void _mi_os_free_huge_pages(void* p, size_t size, mi_stats_t* stats); - -bool _mi_os_commit(void* p, size_t size, bool* is_zero, mi_stats_t* stats); -bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats); - /* ----------------------------------------------------------- Arena allocation ----------------------------------------------------------- */ -#define MI_SEGMENT_ALIGN MI_SEGMENT_SIZE -#define MI_ARENA_BLOCK_SIZE (4*MI_SEGMENT_ALIGN) // 32MiB -#define MI_ARENA_MIN_OBJ_SIZE (MI_ARENA_BLOCK_SIZE/2) // 16MiB -#define MI_MAX_ARENAS (64) // not more than 256 (since we use 8 bits in the memid) +// Block info: bit 0 contains the `in_use` bit, the upper bits the +// size in count of arena blocks. +typedef uintptr_t mi_block_info_t; +#define MI_ARENA_BLOCK_SIZE (MI_SEGMENT_SIZE) // 64MiB (must be at least MI_SEGMENT_ALIGN) +#define MI_ARENA_MIN_OBJ_SIZE (MI_ARENA_BLOCK_SIZE/2) // 32MiB +#define MI_MAX_ARENAS (112) // not more than 126 (since we use 7 bits in the memid and an arena index + 1) // A memory arena descriptor typedef struct mi_arena_s { + mi_arena_id_t id; // arena id; 0 for non-specific + mi_memid_t memid; // memid of the memory area _Atomic(uint8_t*) start; // the start of the memory area size_t block_count; // size of the area in arena blocks (of `MI_ARENA_BLOCK_SIZE`) size_t field_count; // number of bitmap fields (where `field_count * MI_BITMAP_FIELD_BITS >= block_count`) + size_t meta_size; // size of the arena structure itself (including its bitmaps) + mi_memid_t meta_memid; // memid of the arena structure itself (OS or static allocation) int numa_node; // associated NUMA node - bool is_zero_init; // is the arena zero initialized? - bool is_committed; // is the memory fully committed? (if so, block_committed == NULL) - bool is_large; // large- or huge OS pages (always committed) - _Atomic(uintptr_t) search_idx; // optimization to start the search for free blocks + bool exclusive; // only allow allocations if specifically for this arena + bool is_large; // memory area consists of large- or huge OS pages (always committed) + _Atomic(size_t) search_idx; // optimization to start the search for free blocks + _Atomic(mi_msecs_t) purge_expire; // expiration time when blocks should be decommitted from `blocks_decommit`. mi_bitmap_field_t* blocks_dirty; // are the blocks potentially non-zero? - mi_bitmap_field_t* blocks_committed; // if `!is_committed`, are the blocks committed? + mi_bitmap_field_t* blocks_committed; // are the blocks committed? (can be NULL for memory that cannot be decommitted) + mi_bitmap_field_t* blocks_purge; // blocks that can be (reset) decommitted. (can be NULL for memory that cannot be (reset) decommitted) + mi_bitmap_field_t* blocks_abandoned; // blocks that start with an abandoned segment. (This crosses API's but it is convenient to have here) mi_bitmap_field_t blocks_inuse[1]; // in-place bitmap of in-use blocks (of size `field_count`) + // do not add further fields here as the dirty, committed, purged, and abandoned bitmaps follow the inuse bitmap fields. } mi_arena_t; // The available arenas static mi_decl_cache_align _Atomic(mi_arena_t*) mi_arenas[MI_MAX_ARENAS]; -static mi_decl_cache_align _Atomic(uintptr_t) mi_arena_count; // = 0 +static mi_decl_cache_align _Atomic(size_t) mi_arena_count; // = 0 + +//static bool mi_manage_os_memory_ex2(void* start, size_t size, bool is_large, int numa_node, bool exclusive, mi_memid_t memid, mi_arena_id_t* arena_id) mi_attr_noexcept; /* ----------------------------------------------------------- - Arena allocations get a memory id where the lower 8 bits are - the arena index +1, and the upper bits the block index. + Arena id's + id = arena_index + 1 ----------------------------------------------------------- */ -// Use `0` as a special id for direct OS allocated memory. -#define MI_MEMID_OS 0 +static size_t mi_arena_id_index(mi_arena_id_t id) { + return (size_t)(id <= 0 ? MI_MAX_ARENAS : id - 1); +} + +static mi_arena_id_t mi_arena_id_create(size_t arena_index) { + mi_assert_internal(arena_index < MI_MAX_ARENAS); + return (int)arena_index + 1; +} + +mi_arena_id_t _mi_arena_id_none(void) { + return 0; +} -static size_t mi_arena_id_create(size_t arena_index, mi_bitmap_index_t bitmap_index) { - mi_assert_internal(arena_index < 0xFE); - mi_assert_internal(((bitmap_index << 8) >> 8) == bitmap_index); // no overflow? - return ((bitmap_index << 8) | ((arena_index+1) & 0xFF)); +static bool mi_arena_id_is_suitable(mi_arena_id_t arena_id, bool arena_is_exclusive, mi_arena_id_t req_arena_id) { + return ((!arena_is_exclusive && req_arena_id == _mi_arena_id_none()) || + (arena_id == req_arena_id)); } -static void mi_arena_id_indices(size_t memid, size_t* arena_index, mi_bitmap_index_t* bitmap_index) { - mi_assert_internal(memid != MI_MEMID_OS); - *arena_index = (memid & 0xFF) - 1; - *bitmap_index = (memid >> 8); +bool _mi_arena_memid_is_suitable(mi_memid_t memid, mi_arena_id_t request_arena_id) { + if (memid.memkind == MI_MEM_ARENA) { + return mi_arena_id_is_suitable(memid.mem.arena.id, memid.mem.arena.is_exclusive, request_arena_id); + } + else { + return mi_arena_id_is_suitable(_mi_arena_id_none(), false, request_arena_id); + } } + +/* ----------------------------------------------------------- + Arena allocations get a (currently) 16-bit memory id where the + lower 8 bits are the arena id, and the upper bits the block index. +----------------------------------------------------------- */ + static size_t mi_block_count_of_size(size_t size) { return _mi_divide_up(size, MI_ARENA_BLOCK_SIZE); } +static size_t mi_arena_block_size(size_t bcount) { + return (bcount * MI_ARENA_BLOCK_SIZE); +} + +static size_t mi_arena_size(mi_arena_t* arena) { + return mi_arena_block_size(arena->block_count); +} + +static mi_memid_t mi_memid_create_arena(mi_arena_id_t id, bool is_exclusive, mi_bitmap_index_t bitmap_index) { + mi_memid_t memid = _mi_memid_create(MI_MEM_ARENA); + memid.mem.arena.id = id; + memid.mem.arena.block_index = bitmap_index; + memid.mem.arena.is_exclusive = is_exclusive; + return memid; +} + +static bool mi_arena_memid_indices(mi_memid_t memid, size_t* arena_index, mi_bitmap_index_t* bitmap_index) { + mi_assert_internal(memid.memkind == MI_MEM_ARENA); + *arena_index = mi_arena_id_index(memid.mem.arena.id); + *bitmap_index = memid.mem.arena.block_index; + return memid.mem.arena.is_exclusive; +} + + + +/* ----------------------------------------------------------- + Special static area for mimalloc internal structures + to avoid OS calls (for example, for the arena metadata) +----------------------------------------------------------- */ + +#define MI_ARENA_STATIC_MAX (MI_INTPTR_SIZE*MI_KiB) // 8 KiB on 64-bit + +static mi_decl_cache_align uint8_t mi_arena_static[MI_ARENA_STATIC_MAX]; // must be cache aligned, see issue #895 +static mi_decl_cache_align _Atomic(size_t) mi_arena_static_top; + +static void* mi_arena_static_zalloc(size_t size, size_t alignment, mi_memid_t* memid) { + *memid = _mi_memid_none(); + if (size == 0 || size > MI_ARENA_STATIC_MAX) return NULL; + const size_t toplow = mi_atomic_load_relaxed(&mi_arena_static_top); + if ((toplow + size) > MI_ARENA_STATIC_MAX) return NULL; + + // try to claim space + if (alignment < MI_MAX_ALIGN_SIZE) { alignment = MI_MAX_ALIGN_SIZE; } + const size_t oversize = size + alignment - 1; + if (toplow + oversize > MI_ARENA_STATIC_MAX) return NULL; + const size_t oldtop = mi_atomic_add_acq_rel(&mi_arena_static_top, oversize); + size_t top = oldtop + oversize; + if (top > MI_ARENA_STATIC_MAX) { + // try to roll back, ok if this fails + mi_atomic_cas_strong_acq_rel(&mi_arena_static_top, &top, oldtop); + return NULL; + } + + // success + *memid = _mi_memid_create(MI_MEM_STATIC); + memid->initially_zero = true; + const size_t start = _mi_align_up(oldtop, alignment); + uint8_t* const p = &mi_arena_static[start]; + _mi_memzero_aligned(p, size); + return p; +} + +static void* mi_arena_meta_zalloc(size_t size, mi_memid_t* memid, mi_stats_t* stats) { + *memid = _mi_memid_none(); + + // try static + void* p = mi_arena_static_zalloc(size, MI_MAX_ALIGN_SIZE, memid); + if (p != NULL) return p; + + // or fall back to the OS + p = _mi_os_alloc(size, memid, stats); + if (p == NULL) return NULL; + + // zero the OS memory if needed + if (!memid->initially_zero) { + _mi_memzero_aligned(p, size); + memid->initially_zero = true; + } + return p; +} + +static void mi_arena_meta_free(void* p, mi_memid_t memid, size_t size, mi_stats_t* stats) { + if (mi_memkind_is_os(memid.memkind)) { + _mi_os_free(p, size, memid, stats); + } + else { + mi_assert(memid.memkind == MI_MEM_STATIC); + } +} + +static void* mi_arena_block_start(mi_arena_t* arena, mi_bitmap_index_t bindex) { + return (arena->start + mi_arena_block_size(mi_bitmap_index_bit(bindex))); +} + + /* ----------------------------------------------------------- Thread safe allocation in an arena ----------------------------------------------------------- */ -static bool mi_arena_alloc(mi_arena_t* arena, size_t blocks, mi_bitmap_index_t* bitmap_idx) + +// claim the `blocks_inuse` bits +static bool mi_arena_try_claim(mi_arena_t* arena, size_t blocks, mi_bitmap_index_t* bitmap_idx, mi_stats_t* stats) { - size_t idx = mi_atomic_load_acquire(&arena->search_idx); // start from last search - if (_mi_bitmap_try_find_from_claim_across(arena->blocks_inuse, arena->field_count, idx, blocks, bitmap_idx)) { - mi_atomic_store_release(&arena->search_idx, idx); // start search from here next time + size_t idx = 0; // mi_atomic_load_relaxed(&arena->search_idx); // start from last search; ok to be relaxed as the exact start does not matter + if (_mi_bitmap_try_find_from_claim_across(arena->blocks_inuse, arena->field_count, idx, blocks, bitmap_idx, stats)) { + mi_atomic_store_relaxed(&arena->search_idx, mi_bitmap_index_field(*bitmap_idx)); // start search from found location next time around return true; }; return false; @@ -118,194 +225,713 @@ static bool mi_arena_alloc(mi_arena_t* arena, size_t blocks, mi_bitmap_index_t* Arena Allocation ----------------------------------------------------------- */ -static void* mi_arena_alloc_from(mi_arena_t* arena, size_t arena_index, size_t needed_bcount, - bool* commit, bool* large, bool* is_pinned, bool* is_zero, size_t* memid, mi_os_tld_t* tld) +static mi_decl_noinline void* mi_arena_try_alloc_at(mi_arena_t* arena, size_t arena_index, size_t needed_bcount, + bool commit, mi_memid_t* memid, mi_os_tld_t* tld) { + MI_UNUSED(arena_index); + mi_assert_internal(mi_arena_id_index(arena->id) == arena_index); + mi_bitmap_index_t bitmap_index; - if (!mi_arena_alloc(arena, needed_bcount, &bitmap_index)) return NULL; - - // claimed it! set the dirty bits (todo: no need for an atomic op here?) - void* p = arena->start + (mi_bitmap_index_bit(bitmap_index)*MI_ARENA_BLOCK_SIZE); - *memid = mi_arena_id_create(arena_index, bitmap_index); - *is_zero = _mi_bitmap_claim_across(arena->blocks_dirty, arena->field_count, needed_bcount, bitmap_index, NULL); - *large = arena->is_large; - *is_pinned = (arena->is_large || arena->is_committed); - if (arena->is_committed) { + if (!mi_arena_try_claim(arena, needed_bcount, &bitmap_index, tld->stats)) return NULL; + + // claimed it! + void* p = mi_arena_block_start(arena, bitmap_index); + *memid = mi_memid_create_arena(arena->id, arena->exclusive, bitmap_index); + memid->is_pinned = arena->memid.is_pinned; + + // none of the claimed blocks should be scheduled for a decommit + if (arena->blocks_purge != NULL) { + // this is thread safe as a potential purge only decommits parts that are not yet claimed as used (in `blocks_inuse`). + _mi_bitmap_unclaim_across(arena->blocks_purge, arena->field_count, needed_bcount, bitmap_index); + } + + // set the dirty bits (todo: no need for an atomic op here?) + if (arena->memid.initially_zero && arena->blocks_dirty != NULL) { + memid->initially_zero = _mi_bitmap_claim_across(arena->blocks_dirty, arena->field_count, needed_bcount, bitmap_index, NULL); + } + + // set commit state + if (arena->blocks_committed == NULL) { // always committed - *commit = true; + memid->initially_committed = true; } - else if (*commit) { - // arena not committed as a whole, but commit requested: ensure commit now + else if (commit) { + // commit requested, but the range may not be committed as a whole: ensure it is committed now + memid->initially_committed = true; bool any_uncommitted; _mi_bitmap_claim_across(arena->blocks_committed, arena->field_count, needed_bcount, bitmap_index, &any_uncommitted); if (any_uncommitted) { - bool commit_zero; - _mi_os_commit(p, needed_bcount * MI_ARENA_BLOCK_SIZE, &commit_zero, tld->stats); - if (commit_zero) *is_zero = true; + bool commit_zero = false; + if (!_mi_os_commit(p, mi_arena_block_size(needed_bcount), &commit_zero, tld->stats)) { + memid->initially_committed = false; + } + else { + if (commit_zero) { memid->initially_zero = true; } + } } } else { // no need to commit, but check if already fully committed - *commit = _mi_bitmap_is_claimed_across(arena->blocks_committed, arena->field_count, needed_bcount, bitmap_index); + memid->initially_committed = _mi_bitmap_is_claimed_across(arena->blocks_committed, arena->field_count, needed_bcount, bitmap_index); } + return p; } -void* _mi_arena_alloc_aligned(size_t size, size_t alignment, bool* commit, bool* large, bool* is_pinned, bool* is_zero, - size_t* memid, mi_os_tld_t* tld) +// allocate in a speficic arena +static void* mi_arena_try_alloc_at_id(mi_arena_id_t arena_id, bool match_numa_node, int numa_node, size_t size, size_t alignment, + bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld ) { - mi_assert_internal(commit != NULL && is_pinned != NULL && is_zero != NULL && memid != NULL && tld != NULL); - mi_assert_internal(size > 0); - *memid = MI_MEMID_OS; - *is_zero = false; - *is_pinned = false; - - // try to allocate in an arena if the alignment is small enough - // and the object is not too large or too small. - if (alignment <= MI_SEGMENT_ALIGN && - size >= MI_ARENA_MIN_OBJ_SIZE && - mi_atomic_load_relaxed(&mi_arena_count) > 0) - { - const size_t bcount = mi_block_count_of_size(size); - const int numa_node = _mi_os_numa_node(tld); // current numa node + MI_UNUSED_RELEASE(alignment); + mi_assert_internal(alignment <= MI_SEGMENT_ALIGN); + const size_t bcount = mi_block_count_of_size(size); + const size_t arena_index = mi_arena_id_index(arena_id); + mi_assert_internal(arena_index < mi_atomic_load_relaxed(&mi_arena_count)); + mi_assert_internal(size <= mi_arena_block_size(bcount)); + + // Check arena suitability + mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[arena_index]); + if (arena == NULL) return NULL; + if (!allow_large && arena->is_large) return NULL; + if (!mi_arena_id_is_suitable(arena->id, arena->exclusive, req_arena_id)) return NULL; + if (req_arena_id == _mi_arena_id_none()) { // in not specific, check numa affinity + const bool numa_suitable = (numa_node < 0 || arena->numa_node < 0 || arena->numa_node == numa_node); + if (match_numa_node) { if (!numa_suitable) return NULL; } + else { if (numa_suitable) return NULL; } + } - mi_assert_internal(size <= bcount*MI_ARENA_BLOCK_SIZE); + // try to allocate + void* p = mi_arena_try_alloc_at(arena, arena_index, bcount, commit, memid, tld); + mi_assert_internal(p == NULL || _mi_is_aligned(p, alignment)); + return p; +} + + +// allocate from an arena with fallback to the OS +static mi_decl_noinline void* mi_arena_try_alloc(int numa_node, size_t size, size_t alignment, + bool commit, bool allow_large, + mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld ) +{ + MI_UNUSED(alignment); + mi_assert_internal(alignment <= MI_SEGMENT_ALIGN); + const size_t max_arena = mi_atomic_load_relaxed(&mi_arena_count); + if mi_likely(max_arena == 0) return NULL; + + if (req_arena_id != _mi_arena_id_none()) { + // try a specific arena if requested + if (mi_arena_id_index(req_arena_id) < max_arena) { + void* p = mi_arena_try_alloc_at_id(req_arena_id, true, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld); + if (p != NULL) return p; + } + } + else { // try numa affine allocation - for (size_t i = 0; i < MI_MAX_ARENAS; i++) { - mi_arena_t* arena = mi_atomic_load_ptr_relaxed(mi_arena_t, &mi_arenas[i]); - if (arena==NULL) break; // end reached - if ((arena->numa_node<0 || arena->numa_node==numa_node) && // numa local? - (*large || !arena->is_large)) // large OS pages allowed, or arena is not large OS pages - { - void* p = mi_arena_alloc_from(arena, i, bcount, commit, large, is_pinned, is_zero, memid, tld); - mi_assert_internal((uintptr_t)p % alignment == 0); - if (p != NULL) return p; - } + for (size_t i = 0; i < max_arena; i++) { + void* p = mi_arena_try_alloc_at_id(mi_arena_id_create(i), true, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld); + if (p != NULL) return p; } + // try from another numa node instead.. - for (size_t i = 0; i < MI_MAX_ARENAS; i++) { - mi_arena_t* arena = mi_atomic_load_ptr_relaxed(mi_arena_t, &mi_arenas[i]); - if (arena==NULL) break; // end reached - if ((arena->numa_node>=0 && arena->numa_node!=numa_node) && // not numa local! - (*large || !arena->is_large)) // large OS pages allowed, or arena is not large OS pages - { - void* p = mi_arena_alloc_from(arena, i, bcount, commit, large, is_pinned, is_zero, memid, tld); - mi_assert_internal((uintptr_t)p % alignment == 0); + if (numa_node >= 0) { // if numa_node was < 0 (no specific affinity requested), all arena's have been tried already + for (size_t i = 0; i < max_arena; i++) { + void* p = mi_arena_try_alloc_at_id(mi_arena_id_create(i), false /* only proceed if not numa local */, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld); if (p != NULL) return p; } } } + return NULL; +} - // finally, fall back to the OS - if (mi_option_is_enabled(mi_option_limit_os_alloc)) { +// try to reserve a fresh arena space +static bool mi_arena_reserve(size_t req_size, bool allow_large, mi_arena_id_t req_arena_id, mi_arena_id_t *arena_id) +{ + if (_mi_preloading()) return false; // use OS only while pre loading + if (req_arena_id != _mi_arena_id_none()) return false; + + const size_t arena_count = mi_atomic_load_acquire(&mi_arena_count); + if (arena_count > (MI_MAX_ARENAS - 4)) return false; + + size_t arena_reserve = mi_option_get_size(mi_option_arena_reserve); + if (arena_reserve == 0) return false; + + if (!_mi_os_has_virtual_reserve()) { + arena_reserve = arena_reserve/4; // be conservative if virtual reserve is not supported (for WASM for example) + } + arena_reserve = _mi_align_up(arena_reserve, MI_ARENA_BLOCK_SIZE); + if (arena_count >= 8 && arena_count <= 128) { + arena_reserve = ((size_t)1<<(arena_count/8)) * arena_reserve; // scale up the arena sizes exponentially + } + if (arena_reserve < req_size) return false; // should be able to at least handle the current allocation size + + // commit eagerly? + bool arena_commit = false; + if (mi_option_get(mi_option_arena_eager_commit) == 2) { arena_commit = _mi_os_has_overcommit(); } + else if (mi_option_get(mi_option_arena_eager_commit) == 1) { arena_commit = true; } + + return (mi_reserve_os_memory_ex(arena_reserve, arena_commit, allow_large, false /* exclusive? */, arena_id) == 0); +} + + +void* _mi_arena_alloc_aligned(size_t size, size_t alignment, size_t align_offset, bool commit, bool allow_large, + mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld) +{ + mi_assert_internal(memid != NULL && tld != NULL); + mi_assert_internal(size > 0); + *memid = _mi_memid_none(); + + const int numa_node = _mi_os_numa_node(tld); // current numa node + + // try to allocate in an arena if the alignment is small enough and the object is not too small (as for heap meta data) + if (!mi_option_is_enabled(mi_option_disallow_arena_alloc) || req_arena_id != _mi_arena_id_none()) { // is arena allocation allowed? + if (size >= MI_ARENA_MIN_OBJ_SIZE && alignment <= MI_SEGMENT_ALIGN && align_offset == 0) { + void* p = mi_arena_try_alloc(numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld); + if (p != NULL) return p; + + // otherwise, try to first eagerly reserve a new arena + if (req_arena_id == _mi_arena_id_none()) { + mi_arena_id_t arena_id = 0; + if (mi_arena_reserve(size, allow_large, req_arena_id, &arena_id)) { + // and try allocate in there + mi_assert_internal(req_arena_id == _mi_arena_id_none()); + p = mi_arena_try_alloc_at_id(arena_id, true, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld); + if (p != NULL) return p; + } + } + } + } + + // if we cannot use OS allocation, return NULL + if (mi_option_is_enabled(mi_option_disallow_os_alloc) || req_arena_id != _mi_arena_id_none()) { errno = ENOMEM; return NULL; } - *is_zero = true; - *memid = MI_MEMID_OS; - void* p = _mi_os_alloc_aligned(size, alignment, *commit, large, tld->stats); - if (p != NULL) *is_pinned = *large; - return p; + + // finally, fall back to the OS + if (align_offset > 0) { + return _mi_os_alloc_aligned_at_offset(size, alignment, align_offset, commit, allow_large, memid, tld->stats); + } + else { + return _mi_os_alloc_aligned(size, alignment, commit, allow_large, memid, tld->stats); + } } -void* _mi_arena_alloc(size_t size, bool* commit, bool* large, bool* is_pinned, bool* is_zero, size_t* memid, mi_os_tld_t* tld) +void* _mi_arena_alloc(size_t size, bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld) { - return _mi_arena_alloc_aligned(size, MI_ARENA_BLOCK_SIZE, commit, large, is_pinned, is_zero, memid, tld); + return _mi_arena_alloc_aligned(size, MI_ARENA_BLOCK_SIZE, 0, commit, allow_large, req_arena_id, memid, tld); } + +void* mi_arena_area(mi_arena_id_t arena_id, size_t* size) { + if (size != NULL) *size = 0; + size_t arena_index = mi_arena_id_index(arena_id); + if (arena_index >= MI_MAX_ARENAS) return NULL; + mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[arena_index]); + if (arena == NULL) return NULL; + if (size != NULL) { *size = mi_arena_block_size(arena->block_count); } + return arena->start; +} + + +/* ----------------------------------------------------------- + Arena purge +----------------------------------------------------------- */ + +static long mi_arena_purge_delay(void) { + // <0 = no purging allowed, 0=immediate purging, >0=milli-second delay + return (mi_option_get(mi_option_purge_delay) * mi_option_get(mi_option_arena_purge_mult)); +} + +// reset or decommit in an arena and update the committed/decommit bitmaps +// assumes we own the area (i.e. blocks_in_use is claimed by us) +static void mi_arena_purge(mi_arena_t* arena, size_t bitmap_idx, size_t blocks, mi_stats_t* stats) { + mi_assert_internal(arena->blocks_committed != NULL); + mi_assert_internal(arena->blocks_purge != NULL); + mi_assert_internal(!arena->memid.is_pinned); + const size_t size = mi_arena_block_size(blocks); + void* const p = mi_arena_block_start(arena, bitmap_idx); + bool needs_recommit; + if (_mi_bitmap_is_claimed_across(arena->blocks_committed, arena->field_count, blocks, bitmap_idx)) { + // all blocks are committed, we can purge freely + needs_recommit = _mi_os_purge(p, size, stats); + } + else { + // some blocks are not committed -- this can happen when a partially committed block is freed + // in `_mi_arena_free` and it is conservatively marked as uncommitted but still scheduled for a purge + // we need to ensure we do not try to reset (as that may be invalid for uncommitted memory), + // and also undo the decommit stats (as it was already adjusted) + mi_assert_internal(mi_option_is_enabled(mi_option_purge_decommits)); + needs_recommit = _mi_os_purge_ex(p, size, false /* allow reset? */, stats); + if (needs_recommit) { _mi_stat_increase(&_mi_stats_main.committed, size); } + } + + // clear the purged blocks + _mi_bitmap_unclaim_across(arena->blocks_purge, arena->field_count, blocks, bitmap_idx); + // update committed bitmap + if (needs_recommit) { + _mi_bitmap_unclaim_across(arena->blocks_committed, arena->field_count, blocks, bitmap_idx); + } +} + +// Schedule a purge. This is usually delayed to avoid repeated decommit/commit calls. +// Note: assumes we (still) own the area as we may purge immediately +static void mi_arena_schedule_purge(mi_arena_t* arena, size_t bitmap_idx, size_t blocks, mi_stats_t* stats) { + mi_assert_internal(arena->blocks_purge != NULL); + const long delay = mi_arena_purge_delay(); + if (delay < 0) return; // is purging allowed at all? + + if (_mi_preloading() || delay == 0) { + // decommit directly + mi_arena_purge(arena, bitmap_idx, blocks, stats); + } + else { + // schedule decommit + mi_msecs_t expire = mi_atomic_loadi64_relaxed(&arena->purge_expire); + if (expire != 0) { + mi_atomic_addi64_acq_rel(&arena->purge_expire, (mi_msecs_t)(delay/10)); // add smallish extra delay + } + else { + mi_atomic_storei64_release(&arena->purge_expire, _mi_clock_now() + delay); + } + _mi_bitmap_claim_across(arena->blocks_purge, arena->field_count, blocks, bitmap_idx, NULL); + } +} + +// purge a range of blocks +// return true if the full range was purged. +// assumes we own the area (i.e. blocks_in_use is claimed by us) +static bool mi_arena_purge_range(mi_arena_t* arena, size_t idx, size_t startidx, size_t bitlen, size_t purge, mi_stats_t* stats) { + const size_t endidx = startidx + bitlen; + size_t bitidx = startidx; + bool all_purged = false; + while (bitidx < endidx) { + // count consequetive ones in the purge mask + size_t count = 0; + while (bitidx + count < endidx && (purge & ((size_t)1 << (bitidx + count))) != 0) { + count++; + } + if (count > 0) { + // found range to be purged + const mi_bitmap_index_t range_idx = mi_bitmap_index_create(idx, bitidx); + mi_arena_purge(arena, range_idx, count, stats); + if (count == bitlen) { + all_purged = true; + } + } + bitidx += (count+1); // +1 to skip the zero bit (or end) + } + return all_purged; +} + +// returns true if anything was purged +static bool mi_arena_try_purge(mi_arena_t* arena, mi_msecs_t now, bool force, mi_stats_t* stats) +{ + if (arena->memid.is_pinned || arena->blocks_purge == NULL) return false; + mi_msecs_t expire = mi_atomic_loadi64_relaxed(&arena->purge_expire); + if (expire == 0) return false; + if (!force && expire > now) return false; + + // reset expire (if not already set concurrently) + mi_atomic_casi64_strong_acq_rel(&arena->purge_expire, &expire, (mi_msecs_t)0); + + // potential purges scheduled, walk through the bitmap + bool any_purged = false; + bool full_purge = true; + for (size_t i = 0; i < arena->field_count; i++) { + size_t purge = mi_atomic_load_relaxed(&arena->blocks_purge[i]); + if (purge != 0) { + size_t bitidx = 0; + while (bitidx < MI_BITMAP_FIELD_BITS) { + // find consequetive range of ones in the purge mask + size_t bitlen = 0; + while (bitidx + bitlen < MI_BITMAP_FIELD_BITS && (purge & ((size_t)1 << (bitidx + bitlen))) != 0) { + bitlen++; + } + // try to claim the longest range of corresponding in_use bits + const mi_bitmap_index_t bitmap_index = mi_bitmap_index_create(i, bitidx); + while( bitlen > 0 ) { + if (_mi_bitmap_try_claim(arena->blocks_inuse, arena->field_count, bitlen, bitmap_index)) { + break; + } + bitlen--; + } + // actual claimed bits at `in_use` + if (bitlen > 0) { + // read purge again now that we have the in_use bits + purge = mi_atomic_load_acquire(&arena->blocks_purge[i]); + if (!mi_arena_purge_range(arena, i, bitidx, bitlen, purge, stats)) { + full_purge = false; + } + any_purged = true; + // release the claimed `in_use` bits again + _mi_bitmap_unclaim(arena->blocks_inuse, arena->field_count, bitlen, bitmap_index); + } + bitidx += (bitlen+1); // +1 to skip the zero (or end) + } // while bitidx + } // purge != 0 + } + // if not fully purged, make sure to purge again in the future + if (!full_purge) { + const long delay = mi_arena_purge_delay(); + mi_msecs_t expected = 0; + mi_atomic_casi64_strong_acq_rel(&arena->purge_expire,&expected,_mi_clock_now() + delay); + } + return any_purged; +} + +static void mi_arenas_try_purge( bool force, bool visit_all, mi_stats_t* stats ) { + if (_mi_preloading() || mi_arena_purge_delay() <= 0) return; // nothing will be scheduled + + const size_t max_arena = mi_atomic_load_acquire(&mi_arena_count); + if (max_arena == 0) return; + + // allow only one thread to purge at a time + static mi_atomic_guard_t purge_guard; + mi_atomic_guard(&purge_guard) + { + mi_msecs_t now = _mi_clock_now(); + size_t max_purge_count = (visit_all ? max_arena : 1); + for (size_t i = 0; i < max_arena; i++) { + mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[i]); + if (arena != NULL) { + if (mi_arena_try_purge(arena, now, force, stats)) { + if (max_purge_count <= 1) break; + max_purge_count--; + } + } + } + } +} + + /* ----------------------------------------------------------- Arena free ----------------------------------------------------------- */ -void _mi_arena_free(void* p, size_t size, size_t memid, bool all_committed, mi_stats_t* stats) { +void _mi_arena_free(void* p, size_t size, size_t committed_size, mi_memid_t memid, mi_stats_t* stats) { mi_assert_internal(size > 0 && stats != NULL); + mi_assert_internal(committed_size <= size); if (p==NULL) return; if (size==0) return; - if (memid == MI_MEMID_OS) { + const bool all_committed = (committed_size == size); + + if (mi_memkind_is_os(memid.memkind)) { // was a direct OS allocation, pass through - _mi_os_free_ex(p, size, all_committed, stats); + if (!all_committed && committed_size > 0) { + // if partially committed, adjust the committed stats (as `_mi_os_free` will increase decommit by the full size) + _mi_stat_decrease(&_mi_stats_main.committed, committed_size); + } + _mi_os_free(p, size, memid, stats); } - else { + else if (memid.memkind == MI_MEM_ARENA) { // allocated in an arena size_t arena_idx; size_t bitmap_idx; - mi_arena_id_indices(memid, &arena_idx, &bitmap_idx); + mi_arena_memid_indices(memid, &arena_idx, &bitmap_idx); mi_assert_internal(arena_idx < MI_MAX_ARENAS); - mi_arena_t* arena = mi_atomic_load_ptr_relaxed(mi_arena_t,&mi_arenas[arena_idx]); + mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t,&mi_arenas[arena_idx]); mi_assert_internal(arena != NULL); const size_t blocks = mi_block_count_of_size(size); + // checks if (arena == NULL) { - _mi_error_message(EINVAL, "trying to free from non-existent arena: %p, size %zu, memid: 0x%zx\n", p, size, memid); + _mi_error_message(EINVAL, "trying to free from an invalid arena: %p, size %zu, memid: 0x%zx\n", p, size, memid); return; } mi_assert_internal(arena->field_count > mi_bitmap_index_field(bitmap_idx)); if (arena->field_count <= mi_bitmap_index_field(bitmap_idx)) { - _mi_error_message(EINVAL, "trying to free from non-existent arena block: %p, size %zu, memid: 0x%zx\n", p, size, memid); + _mi_error_message(EINVAL, "trying to free from an invalid arena block: %p, size %zu, memid: 0x%zx\n", p, size, memid); return; } + + // need to set all memory to undefined as some parts may still be marked as no_access (like padding etc.) + mi_track_mem_undefined(p,size); + // potentially decommit - if (arena->is_committed) { - mi_assert_internal(all_committed); + if (arena->memid.is_pinned || arena->blocks_committed == NULL) { + mi_assert_internal(all_committed); } else { mi_assert_internal(arena->blocks_committed != NULL); - _mi_os_decommit(p, blocks * MI_ARENA_BLOCK_SIZE, stats); // ok if this fails - _mi_bitmap_unclaim_across(arena->blocks_committed, arena->field_count, blocks, bitmap_idx); + mi_assert_internal(arena->blocks_purge != NULL); + + if (!all_committed) { + // mark the entire range as no longer committed (so we recommit the full range when re-using) + _mi_bitmap_unclaim_across(arena->blocks_committed, arena->field_count, blocks, bitmap_idx); + mi_track_mem_noaccess(p,size); + if (committed_size > 0) { + // if partially committed, adjust the committed stats (is it will be recommitted when re-using) + // in the delayed purge, we now need to not count a decommit if the range is not marked as committed. + _mi_stat_decrease(&_mi_stats_main.committed, committed_size); + } + // note: if not all committed, it may be that the purge will reset/decommit the entire range + // that contains already decommitted parts. Since purge consistently uses reset or decommit that + // works (as we should never reset decommitted parts). + } + // (delay) purge the entire range + mi_arena_schedule_purge(arena, bitmap_idx, blocks, stats); } - // and make it available to others again + + // and make it available to others again bool all_inuse = _mi_bitmap_unclaim_across(arena->blocks_inuse, arena->field_count, blocks, bitmap_idx); if (!all_inuse) { - _mi_error_message(EAGAIN, "trying to free an already freed block: %p, size %zu\n", p, size); + _mi_error_message(EAGAIN, "trying to free an already freed arena block: %p, size %zu\n", p, size); return; }; } + else { + // arena was none, external, or static; nothing to do + mi_assert_internal(memid.memkind < MI_MEM_OS); + } + + // purge expired decommits + mi_arenas_try_purge(false, false, stats); +} + +// destroy owned arenas; this is unsafe and should only be done using `mi_option_destroy_on_exit` +// for dynamic libraries that are unloaded and need to release all their allocated memory. +static void mi_arenas_unsafe_destroy(void) { + const size_t max_arena = mi_atomic_load_relaxed(&mi_arena_count); + size_t new_max_arena = 0; + for (size_t i = 0; i < max_arena; i++) { + mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[i]); + if (arena != NULL) { + if (arena->start != NULL && mi_memkind_is_os(arena->memid.memkind)) { + mi_atomic_store_ptr_release(mi_arena_t, &mi_arenas[i], NULL); + _mi_os_free(arena->start, mi_arena_size(arena), arena->memid, &_mi_stats_main); + } + else { + new_max_arena = i; + } + mi_arena_meta_free(arena, arena->meta_memid, arena->meta_size, &_mi_stats_main); + } + } + + // try to lower the max arena. + size_t expected = max_arena; + mi_atomic_cas_strong_acq_rel(&mi_arena_count, &expected, new_max_arena); +} + +// Purge the arenas; if `force_purge` is true, amenable parts are purged even if not yet expired +void _mi_arenas_collect(bool force_purge, mi_stats_t* stats) { + mi_arenas_try_purge(force_purge, force_purge /* visit all? */, stats); +} + +// destroy owned arenas; this is unsafe and should only be done using `mi_option_destroy_on_exit` +// for dynamic libraries that are unloaded and need to release all their allocated memory. +void _mi_arena_unsafe_destroy_all(mi_stats_t* stats) { + mi_arenas_unsafe_destroy(); + _mi_arenas_collect(true /* force purge */, stats); // purge non-owned arenas +} + +// Is a pointer inside any of our arenas? +bool _mi_arena_contains(const void* p) { + const size_t max_arena = mi_atomic_load_relaxed(&mi_arena_count); + for (size_t i = 0; i < max_arena; i++) { + mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[i]); + if (arena != NULL && arena->start <= (const uint8_t*)p && arena->start + mi_arena_block_size(arena->block_count) > (const uint8_t*)p) { + return true; + } + } + return false; +} + +/* ----------------------------------------------------------- + Abandoned blocks/segments. + This is used to atomically abandon/reclaim segments + (and crosses the arena API but it is convenient to have here). + Abandoned segments still have live blocks; they get reclaimed + when a thread frees a block in it, or when a thread needs a fresh + segment; these threads scan the abandoned segments through + the arena bitmaps. +----------------------------------------------------------- */ + +// Maintain a count of all abandoned segments +static mi_decl_cache_align _Atomic(size_t)abandoned_count; + +size_t _mi_arena_segment_abandoned_count(void) { + return mi_atomic_load_relaxed(&abandoned_count); +} + +// reclaim a specific abandoned segment; `true` on success. +// sets the thread_id. +bool _mi_arena_segment_clear_abandoned(mi_segment_t* segment ) +{ + if (segment->memid.memkind != MI_MEM_ARENA) { + // not in an arena, consider it un-abandoned now. + // but we need to still claim it atomically -- we use the thread_id for that. + size_t expected = 0; + if (mi_atomic_cas_strong_acq_rel(&segment->thread_id, &expected, _mi_thread_id())) { + mi_atomic_decrement_relaxed(&abandoned_count); + return true; + } + else { + return false; + } + } + // arena segment: use the blocks_abandoned bitmap. + size_t arena_idx; + size_t bitmap_idx; + mi_arena_memid_indices(segment->memid, &arena_idx, &bitmap_idx); + mi_assert_internal(arena_idx < MI_MAX_ARENAS); + mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[arena_idx]); + mi_assert_internal(arena != NULL); + bool was_marked = _mi_bitmap_unclaim(arena->blocks_abandoned, arena->field_count, 1, bitmap_idx); + if (was_marked) { + mi_assert_internal(mi_atomic_load_relaxed(&segment->thread_id) == 0); + mi_atomic_decrement_relaxed(&abandoned_count); + mi_atomic_store_release(&segment->thread_id, _mi_thread_id()); + } + // mi_assert_internal(was_marked); + mi_assert_internal(!was_marked || _mi_bitmap_is_claimed(arena->blocks_inuse, arena->field_count, 1, bitmap_idx)); + //mi_assert_internal(arena->blocks_committed == NULL || _mi_bitmap_is_claimed(arena->blocks_committed, arena->field_count, 1, bitmap_idx)); + return was_marked; +} + +// mark a specific segment as abandoned +// clears the thread_id. +void _mi_arena_segment_mark_abandoned(mi_segment_t* segment) +{ + mi_atomic_store_release(&segment->thread_id, 0); + mi_assert_internal(segment->used == segment->abandoned); + if (segment->memid.memkind != MI_MEM_ARENA) { + // not in an arena; count it as abandoned and return + mi_atomic_increment_relaxed(&abandoned_count); + return; + } + size_t arena_idx; + size_t bitmap_idx; + mi_arena_memid_indices(segment->memid, &arena_idx, &bitmap_idx); + mi_assert_internal(arena_idx < MI_MAX_ARENAS); + mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[arena_idx]); + mi_assert_internal(arena != NULL); + const bool was_unmarked = _mi_bitmap_claim(arena->blocks_abandoned, arena->field_count, 1, bitmap_idx, NULL); + if (was_unmarked) { mi_atomic_increment_relaxed(&abandoned_count); } + mi_assert_internal(was_unmarked); + mi_assert_internal(_mi_bitmap_is_claimed(arena->blocks_inuse, arena->field_count, 1, bitmap_idx)); +} + +// start a cursor at a randomized arena +void _mi_arena_field_cursor_init(mi_heap_t* heap, mi_arena_field_cursor_t* current) { + const size_t max_arena = mi_atomic_load_relaxed(&mi_arena_count); + current->start = (max_arena == 0 ? 0 : (mi_arena_id_t)( _mi_heap_random_next(heap) % max_arena)); + current->count = 0; + current->bitmap_idx = 0; +} + +// reclaim abandoned segments +// this does not set the thread id (so it appears as still abandoned) +mi_segment_t* _mi_arena_segment_clear_abandoned_next(mi_arena_field_cursor_t* previous ) +{ + const int max_arena = (int)mi_atomic_load_relaxed(&mi_arena_count); + if (max_arena <= 0 || mi_atomic_load_relaxed(&abandoned_count) == 0) return NULL; + + int count = previous->count; + size_t field_idx = mi_bitmap_index_field(previous->bitmap_idx); + size_t bit_idx = mi_bitmap_index_bit_in_field(previous->bitmap_idx) + 1; + // visit arena's (from previous) + for (; count < max_arena; count++, field_idx = 0, bit_idx = 0) { + mi_arena_id_t arena_idx = previous->start + count; + if (arena_idx >= max_arena) { arena_idx = arena_idx % max_arena; } // wrap around + mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[arena_idx]); + if (arena != NULL) { + // visit the abandoned fields (starting at previous_idx) + for ( ; field_idx < arena->field_count; field_idx++, bit_idx = 0) { + size_t field = mi_atomic_load_relaxed(&arena->blocks_abandoned[field_idx]); + if mi_unlikely(field != 0) { // skip zero fields quickly + // visit each set bit in the field (todo: maybe use `ctz` here?) + for ( ; bit_idx < MI_BITMAP_FIELD_BITS; bit_idx++) { + // pre-check if the bit is set + size_t mask = ((size_t)1 << bit_idx); + if mi_unlikely((field & mask) == mask) { + mi_bitmap_index_t bitmap_idx = mi_bitmap_index_create(field_idx, bit_idx); + // try to reclaim it atomically + if (_mi_bitmap_unclaim(arena->blocks_abandoned, arena->field_count, 1, bitmap_idx)) { + mi_atomic_decrement_relaxed(&abandoned_count); + previous->bitmap_idx = bitmap_idx; + previous->count = count; + mi_assert_internal(_mi_bitmap_is_claimed(arena->blocks_inuse, arena->field_count, 1, bitmap_idx)); + mi_segment_t* segment = (mi_segment_t*)mi_arena_block_start(arena, bitmap_idx); + mi_assert_internal(mi_atomic_load_relaxed(&segment->thread_id) == 0); + //mi_assert_internal(arena->blocks_committed == NULL || _mi_bitmap_is_claimed(arena->blocks_committed, arena->field_count, 1, bitmap_idx)); + return segment; + } + } + } + } + } + } + } + // no more found + previous->bitmap_idx = 0; + previous->count = 0; + return NULL; } + /* ----------------------------------------------------------- Add an arena. ----------------------------------------------------------- */ -static bool mi_arena_add(mi_arena_t* arena) { +static bool mi_arena_add(mi_arena_t* arena, mi_arena_id_t* arena_id, mi_stats_t* stats) { mi_assert_internal(arena != NULL); mi_assert_internal((uintptr_t)mi_atomic_load_ptr_relaxed(uint8_t,&arena->start) % MI_SEGMENT_ALIGN == 0); mi_assert_internal(arena->block_count > 0); + if (arena_id != NULL) { *arena_id = -1; } - uintptr_t i = mi_atomic_increment_acq_rel(&mi_arena_count); + size_t i = mi_atomic_increment_acq_rel(&mi_arena_count); if (i >= MI_MAX_ARENAS) { mi_atomic_decrement_acq_rel(&mi_arena_count); return false; } + _mi_stat_counter_increase(&stats->arena_count,1); + arena->id = mi_arena_id_create(i); mi_atomic_store_ptr_release(mi_arena_t,&mi_arenas[i], arena); + if (arena_id != NULL) { *arena_id = arena->id; } return true; } -bool mi_manage_os_memory(void* start, size_t size, bool is_committed, bool is_large, bool is_zero, int numa_node) mi_attr_noexcept +static bool mi_manage_os_memory_ex2(void* start, size_t size, bool is_large, int numa_node, bool exclusive, mi_memid_t memid, mi_arena_id_t* arena_id) mi_attr_noexcept { + if (arena_id != NULL) *arena_id = _mi_arena_id_none(); + if (size < MI_ARENA_BLOCK_SIZE) return false; + if (is_large) { - mi_assert_internal(is_committed); - is_committed = true; + mi_assert_internal(memid.initially_committed && memid.is_pinned); } - - const size_t bcount = mi_block_count_of_size(size); + + const size_t bcount = size / MI_ARENA_BLOCK_SIZE; const size_t fields = _mi_divide_up(bcount, MI_BITMAP_FIELD_BITS); - const size_t bitmaps = (is_committed ? 2 : 3); + const size_t bitmaps = (memid.is_pinned ? 3 : 5); const size_t asize = sizeof(mi_arena_t) + (bitmaps*fields*sizeof(mi_bitmap_field_t)); - mi_arena_t* arena = (mi_arena_t*)_mi_os_alloc(asize, &_mi_stats_main); // TODO: can we avoid allocating from the OS? + mi_memid_t meta_memid; + mi_arena_t* arena = (mi_arena_t*)mi_arena_meta_zalloc(asize, &meta_memid, &_mi_stats_main); // TODO: can we avoid allocating from the OS? if (arena == NULL) return false; + // already zero'd due to zalloc + // _mi_memzero(arena, asize); + arena->id = _mi_arena_id_none(); + arena->memid = memid; + arena->exclusive = exclusive; + arena->meta_size = asize; + arena->meta_memid = meta_memid; arena->block_count = bcount; arena->field_count = fields; arena->start = (uint8_t*)start; arena->numa_node = numa_node; // TODO: or get the current numa node if -1? (now it allows anyone to allocate on -1) arena->is_large = is_large; - arena->is_zero_init = is_zero; - arena->is_committed = is_committed; + arena->purge_expire = 0; arena->search_idx = 0; - arena->blocks_dirty = &arena->blocks_inuse[fields]; // just after inuse bitmap - arena->blocks_committed = (is_committed ? NULL : &arena->blocks_inuse[2*fields]); // just after dirty bitmap - // the bitmaps are already zero initialized due to os_alloc - // just claim leftover blocks if needed + // consequetive bitmaps + arena->blocks_dirty = &arena->blocks_inuse[fields]; // just after inuse bitmap + arena->blocks_abandoned = &arena->blocks_inuse[2 * fields]; // just after dirty bitmap + arena->blocks_committed = (arena->memid.is_pinned ? NULL : &arena->blocks_inuse[3*fields]); // just after abandoned bitmap + arena->blocks_purge = (arena->memid.is_pinned ? NULL : &arena->blocks_inuse[4*fields]); // just after committed bitmap + // initialize committed bitmap? + if (arena->blocks_committed != NULL && arena->memid.initially_committed) { + memset((void*)arena->blocks_committed, 0xFF, fields*sizeof(mi_bitmap_field_t)); // cast to void* to avoid atomic warning + } + + // and claim leftover blocks if needed (so we never allocate there) ptrdiff_t post = (fields * MI_BITMAP_FIELD_BITS) - bcount; mi_assert_internal(post >= 0); if (post > 0) { @@ -313,52 +939,132 @@ bool mi_manage_os_memory(void* start, size_t size, bool is_committed, bool is_la mi_bitmap_index_t postidx = mi_bitmap_index_create(fields - 1, MI_BITMAP_FIELD_BITS - post); _mi_bitmap_claim(arena->blocks_inuse, fields, post, postidx, NULL); } + return mi_arena_add(arena, arena_id, &_mi_stats_main); - mi_arena_add(arena); - return true; +} + +bool mi_manage_os_memory_ex(void* start, size_t size, bool is_committed, bool is_large, bool is_zero, int numa_node, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept { + mi_memid_t memid = _mi_memid_create(MI_MEM_EXTERNAL); + memid.initially_committed = is_committed; + memid.initially_zero = is_zero; + memid.is_pinned = is_large; + return mi_manage_os_memory_ex2(start,size,is_large,numa_node,exclusive,memid, arena_id); } // Reserve a range of regular OS memory -int mi_reserve_os_memory(size_t size, bool commit, bool allow_large) mi_attr_noexcept -{ - size = _mi_os_good_alloc_size(size); - bool large = allow_large; - void* start = _mi_os_alloc_aligned(size, MI_SEGMENT_ALIGN, commit, &large, &_mi_stats_main); - if (start==NULL) return ENOMEM; - if (!mi_manage_os_memory(start, size, (large || commit), large, true, -1)) { - _mi_os_free_ex(start, size, commit, &_mi_stats_main); - _mi_verbose_message("failed to reserve %zu k memory\n", _mi_divide_up(size,1024)); +int mi_reserve_os_memory_ex(size_t size, bool commit, bool allow_large, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept { + if (arena_id != NULL) *arena_id = _mi_arena_id_none(); + size = _mi_align_up(size, MI_ARENA_BLOCK_SIZE); // at least one block + mi_memid_t memid; + void* start = _mi_os_alloc_aligned(size, MI_SEGMENT_ALIGN, commit, allow_large, &memid, &_mi_stats_main); + if (start == NULL) return ENOMEM; + const bool is_large = memid.is_pinned; // todo: use separate is_large field? + if (!mi_manage_os_memory_ex2(start, size, is_large, -1 /* numa node */, exclusive, memid, arena_id)) { + _mi_os_free_ex(start, size, commit, memid, &_mi_stats_main); + _mi_verbose_message("failed to reserve %zu KiB memory\n", _mi_divide_up(size, 1024)); return ENOMEM; } - _mi_verbose_message("reserved %zu kb memory%s\n", _mi_divide_up(size,1024), large ? " (in large os pages)" : ""); + _mi_verbose_message("reserved %zu KiB memory%s\n", _mi_divide_up(size, 1024), is_large ? " (in large os pages)" : ""); return 0; } +// Manage a range of regular OS memory +bool mi_manage_os_memory(void* start, size_t size, bool is_committed, bool is_large, bool is_zero, int numa_node) mi_attr_noexcept { + return mi_manage_os_memory_ex(start, size, is_committed, is_large, is_zero, numa_node, false /* exclusive? */, NULL); +} + +// Reserve a range of regular OS memory +int mi_reserve_os_memory(size_t size, bool commit, bool allow_large) mi_attr_noexcept { + return mi_reserve_os_memory_ex(size, commit, allow_large, false, NULL); +} + + +/* ----------------------------------------------------------- + Debugging +----------------------------------------------------------- */ + +static size_t mi_debug_show_bitmap(const char* prefix, const char* header, size_t block_count, mi_bitmap_field_t* fields, size_t field_count ) { + _mi_verbose_message("%s%s:\n", prefix, header); + size_t bcount = 0; + size_t inuse_count = 0; + for (size_t i = 0; i < field_count; i++) { + char buf[MI_BITMAP_FIELD_BITS + 1]; + uintptr_t field = mi_atomic_load_relaxed(&fields[i]); + for (size_t bit = 0; bit < MI_BITMAP_FIELD_BITS; bit++, bcount++) { + if (bcount < block_count) { + bool inuse = ((((uintptr_t)1 << bit) & field) != 0); + if (inuse) inuse_count++; + buf[bit] = (inuse ? 'x' : '.'); + } + else { + buf[bit] = ' '; + } + } + buf[MI_BITMAP_FIELD_BITS] = 0; + _mi_verbose_message("%s %s\n", prefix, buf); + } + _mi_verbose_message("%s total ('x'): %zu\n", prefix, inuse_count); + return inuse_count; +} + +void mi_debug_show_arenas(bool show_inuse, bool show_abandoned, bool show_purge) mi_attr_noexcept { + size_t max_arenas = mi_atomic_load_relaxed(&mi_arena_count); + size_t inuse_total = 0; + size_t abandoned_total = 0; + size_t purge_total = 0; + for (size_t i = 0; i < max_arenas; i++) { + mi_arena_t* arena = mi_atomic_load_ptr_relaxed(mi_arena_t, &mi_arenas[i]); + if (arena == NULL) break; + _mi_verbose_message("arena %zu: %zu blocks of size %zuMiB (in %zu fields) %s\n", i, arena->block_count, MI_ARENA_BLOCK_SIZE / MI_MiB, arena->field_count, (arena->memid.is_pinned ? ", pinned" : "")); + if (show_inuse) { + inuse_total += mi_debug_show_bitmap(" ", "inuse blocks", arena->block_count, arena->blocks_inuse, arena->field_count); + } + if (arena->blocks_committed != NULL) { + mi_debug_show_bitmap(" ", "committed blocks", arena->block_count, arena->blocks_committed, arena->field_count); + } + if (show_abandoned) { + abandoned_total += mi_debug_show_bitmap(" ", "abandoned blocks", arena->block_count, arena->blocks_abandoned, arena->field_count); + } + if (show_purge && arena->blocks_purge != NULL) { + purge_total += mi_debug_show_bitmap(" ", "purgeable blocks", arena->block_count, arena->blocks_purge, arena->field_count); + } + } + if (show_inuse) _mi_verbose_message("total inuse blocks : %zu\n", inuse_total); + if (show_abandoned) _mi_verbose_message("total abandoned blocks: %zu\n", abandoned_total); + if (show_purge) _mi_verbose_message("total purgeable blocks: %zu\n", purge_total); +} + + /* ----------------------------------------------------------- Reserve a huge page arena. ----------------------------------------------------------- */ // reserve at a specific numa node -int mi_reserve_huge_os_pages_at(size_t pages, int numa_node, size_t timeout_msecs) mi_attr_noexcept { +int mi_reserve_huge_os_pages_at_ex(size_t pages, int numa_node, size_t timeout_msecs, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept { + if (arena_id != NULL) *arena_id = -1; if (pages==0) return 0; if (numa_node < -1) numa_node = -1; if (numa_node >= 0) numa_node = numa_node % _mi_os_numa_node_count(); size_t hsize = 0; size_t pages_reserved = 0; - void* p = _mi_os_alloc_huge_os_pages(pages, numa_node, timeout_msecs, &pages_reserved, &hsize); + mi_memid_t memid; + void* p = _mi_os_alloc_huge_os_pages(pages, numa_node, timeout_msecs, &pages_reserved, &hsize, &memid); if (p==NULL || pages_reserved==0) { - _mi_warning_message("failed to reserve %zu gb huge pages\n", pages); + _mi_warning_message("failed to reserve %zu GiB huge pages\n", pages); return ENOMEM; } - _mi_verbose_message("numa node %i: reserved %zu gb huge pages (of the %zu gb requested)\n", numa_node, pages_reserved, pages); + _mi_verbose_message("numa node %i: reserved %zu GiB huge pages (of the %zu GiB requested)\n", numa_node, pages_reserved, pages); - if (!mi_manage_os_memory(p, hsize, true, true, true, numa_node)) { - _mi_os_free_huge_pages(p, hsize, &_mi_stats_main); + if (!mi_manage_os_memory_ex2(p, hsize, true, numa_node, exclusive, memid, arena_id)) { + _mi_os_free(p, hsize, memid, &_mi_stats_main); return ENOMEM; } return 0; } +int mi_reserve_huge_os_pages_at(size_t pages, int numa_node, size_t timeout_msecs) mi_attr_noexcept { + return mi_reserve_huge_os_pages_at_ex(pages, numa_node, timeout_msecs, false, NULL); +} // reserve huge pages evenly among the given number of numa nodes (or use the available ones as detected) int mi_reserve_huge_os_pages_interleave(size_t pages, size_t numa_nodes, size_t timeout_msecs) mi_attr_noexcept { @@ -389,10 +1095,11 @@ int mi_reserve_huge_os_pages_interleave(size_t pages, size_t numa_nodes, size_t } int mi_reserve_huge_os_pages(size_t pages, double max_secs, size_t* pages_reserved) mi_attr_noexcept { - UNUSED(max_secs); + MI_UNUSED(max_secs); _mi_warning_message("mi_reserve_huge_os_pages is deprecated: use mi_reserve_huge_os_pages_interleave/at instead\n"); if (pages_reserved != NULL) *pages_reserved = 0; int err = mi_reserve_huge_os_pages_interleave(pages, 0, (size_t)(max_secs * 1000.0)); if (err==0 && pages_reserved!=NULL) *pages_reserved = pages; return err; } + diff --git a/contrib/libs/mimalloc/src/bitmap.c b/contrib/libs/mimalloc/src/bitmap.c index 3b5c8199ca..976ba72c63 100644 --- a/contrib/libs/mimalloc/src/bitmap.c +++ b/contrib/libs/mimalloc/src/bitmap.c @@ -1,5 +1,5 @@ /* ---------------------------------------------------------------------------- -Copyright (c) 2019-2021 Microsoft Research, Daan Leijen +Copyright (c) 2019-2023 Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. @@ -7,18 +7,17 @@ terms of the MIT license. A copy of the license can be found in the file /* ---------------------------------------------------------------------------- Concurrent bitmap that can set/reset sequences of bits atomically, -represeted as an array of fields where each field is a machine word (`uintptr_t`) +represented as an array of fields where each field is a machine word (`size_t`) There are two api's; the standard one cannot have sequences that cross between the bitmap fields (and a sequence must be <= MI_BITMAP_FIELD_BITS). -(this is used in region allocation) The `_across` postfixed functions do allow sequences that can cross over between the fields. (This is used in arena allocation) ---------------------------------------------------------------------------- */ #include "mimalloc.h" -#include "mimalloc-internal.h" +#include "mimalloc/internal.h" #include "bitmap.h" /* ----------------------------------------------------------- @@ -26,12 +25,12 @@ between the fields. (This is used in arena allocation) ----------------------------------------------------------- */ // The bit mask for a given number of blocks at a specified bit index. -static inline uintptr_t mi_bitmap_mask_(size_t count, size_t bitidx) { +static inline size_t mi_bitmap_mask_(size_t count, size_t bitidx) { mi_assert_internal(count + bitidx <= MI_BITMAP_FIELD_BITS); mi_assert_internal(count > 0); if (count >= MI_BITMAP_FIELD_BITS) return MI_BITMAP_FIELD_FULL; if (count == 0) return 0; - return ((((uintptr_t)1 << count) - 1) << bitidx); + return ((((size_t)1 << count) - 1) << bitidx); } @@ -46,29 +45,29 @@ bool _mi_bitmap_try_find_claim_field(mi_bitmap_t bitmap, size_t idx, const size_ { mi_assert_internal(bitmap_idx != NULL); mi_assert_internal(count <= MI_BITMAP_FIELD_BITS); - _Atomic(uintptr_t)* field = &bitmap[idx]; - uintptr_t map = mi_atomic_load_relaxed(field); + mi_bitmap_field_t* field = &bitmap[idx]; + size_t map = mi_atomic_load_relaxed(field); if (map==MI_BITMAP_FIELD_FULL) return false; // short cut // search for 0-bit sequence of length count - const uintptr_t mask = mi_bitmap_mask_(count, 0); - const size_t bitidx_max = MI_BITMAP_FIELD_BITS - count; + const size_t mask = mi_bitmap_mask_(count, 0); + const size_t bitidx_max = MI_BITMAP_FIELD_BITS - count; #ifdef MI_HAVE_FAST_BITSCAN size_t bitidx = mi_ctz(~map); // quickly find the first zero bit if possible #else size_t bitidx = 0; // otherwise start at 0 #endif - uintptr_t m = (mask << bitidx); // invariant: m == mask shifted by bitidx + size_t m = (mask << bitidx); // invariant: m == mask shifted by bitidx // scan linearly for a free range of zero bits while (bitidx <= bitidx_max) { - const uintptr_t mapm = map & m; + const size_t mapm = (map & m); if (mapm == 0) { // are the mask bits free at bitidx? mi_assert_internal((m >> bitidx) == mask); // no overflow? - const uintptr_t newmap = map | m; + const size_t newmap = (map | m); mi_assert_internal((newmap^map) >> bitidx == mask); - if (!mi_atomic_cas_weak_acq_rel(field, &map, newmap)) { // TODO: use strong cas here? + if (!mi_atomic_cas_strong_acq_rel(field, &map, newmap)) { // TODO: use weak cas here? // no success, another thread claimed concurrently.. keep going (with updated `map`) continue; } @@ -81,7 +80,8 @@ bool _mi_bitmap_try_find_claim_field(mi_bitmap_t bitmap, size_t idx, const size_ else { // on to the next bit range #ifdef MI_HAVE_FAST_BITSCAN - const size_t shift = (count == 1 ? 1 : mi_bsr(mapm) - bitidx + 1); + mi_assert_internal(mapm != 0); + const size_t shift = (count == 1 ? 1 : (MI_INTPTR_BITS - mi_clz(mapm) - bitidx)); mi_assert_internal(shift > 0 && shift <= count); #else const size_t shift = 1; @@ -100,7 +100,7 @@ bool _mi_bitmap_try_find_claim_field(mi_bitmap_t bitmap, size_t idx, const size_ bool _mi_bitmap_try_find_from_claim(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_index_t* bitmap_idx) { size_t idx = start_field_idx; for (size_t visited = 0; visited < bitmap_fields; visited++, idx++) { - if (idx >= bitmap_fields) idx = 0; // wrap + if (idx >= bitmap_fields) { idx = 0; } // wrap if (_mi_bitmap_try_find_claim_field(bitmap, idx, count, bitmap_idx)) { return true; } @@ -108,23 +108,16 @@ bool _mi_bitmap_try_find_from_claim(mi_bitmap_t bitmap, const size_t bitmap_fiel return false; } -/* -// Find `count` bits of 0 and set them to 1 atomically; returns `true` on success. -// For now, `count` can be at most MI_BITMAP_FIELD_BITS and will never span fields. -bool _mi_bitmap_try_find_claim(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t count, mi_bitmap_index_t* bitmap_idx) { - return _mi_bitmap_try_find_from_claim(bitmap, bitmap_fields, 0, count, bitmap_idx); -} -*/ // Set `count` bits at `bitmap_idx` to 0 atomically // Returns `true` if all `count` bits were 1 previously. -bool mi_bitmap_unclaim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) { +bool _mi_bitmap_unclaim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) { const size_t idx = mi_bitmap_index_field(bitmap_idx); const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx); - const uintptr_t mask = mi_bitmap_mask_(count, bitidx); - mi_assert_internal(bitmap_fields > idx); UNUSED(bitmap_fields); + const size_t mask = mi_bitmap_mask_(count, bitidx); + mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields); // mi_assert_internal((bitmap[idx] & mask) == mask); - uintptr_t prev = mi_atomic_and_acq_rel(&bitmap[idx], ~mask); + const size_t prev = mi_atomic_and_acq_rel(&bitmap[idx], ~mask); return ((prev & mask) == mask); } @@ -134,11 +127,11 @@ bool mi_bitmap_unclaim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, m bool _mi_bitmap_claim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* any_zero) { const size_t idx = mi_bitmap_index_field(bitmap_idx); const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx); - const uintptr_t mask = mi_bitmap_mask_(count, bitidx); - mi_assert_internal(bitmap_fields > idx); UNUSED(bitmap_fields); + const size_t mask = mi_bitmap_mask_(count, bitidx); + mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields); //mi_assert_internal(any_zero != NULL || (bitmap[idx] & mask) == 0); - uintptr_t prev = mi_atomic_or_acq_rel(&bitmap[idx], mask); - if (any_zero != NULL) *any_zero = ((prev & mask) != mask); + size_t prev = mi_atomic_or_acq_rel(&bitmap[idx], mask); + if (any_zero != NULL) { *any_zero = ((prev & mask) != mask); } return ((prev & mask) == 0); } @@ -146,13 +139,30 @@ bool _mi_bitmap_claim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi static bool mi_bitmap_is_claimedx(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* any_ones) { const size_t idx = mi_bitmap_index_field(bitmap_idx); const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx); - const uintptr_t mask = mi_bitmap_mask_(count, bitidx); - mi_assert_internal(bitmap_fields > idx); UNUSED(bitmap_fields); - uintptr_t field = mi_atomic_load_relaxed(&bitmap[idx]); - if (any_ones != NULL) *any_ones = ((field & mask) != 0); + const size_t mask = mi_bitmap_mask_(count, bitidx); + mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields); + const size_t field = mi_atomic_load_relaxed(&bitmap[idx]); + if (any_ones != NULL) { *any_ones = ((field & mask) != 0); } return ((field & mask) == mask); } +// Try to set `count` bits at `bitmap_idx` from 0 to 1 atomically. +// Returns `true` if successful when all previous `count` bits were 0. +bool _mi_bitmap_try_claim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) { + const size_t idx = mi_bitmap_index_field(bitmap_idx); + const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx); + const size_t mask = mi_bitmap_mask_(count, bitidx); + mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields); + size_t expected = mi_atomic_load_relaxed(&bitmap[idx]); + do { + if ((expected & mask) != 0) return false; + } + while (!mi_atomic_cas_strong_acq_rel(&bitmap[idx], &expected, expected | mask)); + mi_assert_internal((expected & mask) == 0); + return true; +} + + bool _mi_bitmap_is_claimed(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) { return mi_bitmap_is_claimedx(bitmap, bitmap_fields, count, bitmap_idx, NULL); } @@ -169,87 +179,93 @@ bool _mi_bitmap_is_any_claimed(mi_bitmap_t bitmap, size_t bitmap_fields, size_t // between the fields. This is used in arena allocation //-------------------------------------------------------------------------- -// Try to atomically claim a sequence of `count` bits starting from the field +// Try to atomically claim a sequence of `count` bits starting from the field // at `idx` in `bitmap` and crossing into subsequent fields. Returns `true` on success. -static bool mi_bitmap_try_find_claim_field_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t idx, const size_t count, const size_t retries, mi_bitmap_index_t* bitmap_idx) +// Only needs to consider crossing into the next fields (see `mi_bitmap_try_find_from_claim_across`) +static bool mi_bitmap_try_find_claim_field_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t idx, const size_t count, const size_t retries, mi_bitmap_index_t* bitmap_idx, mi_stats_t* stats) { mi_assert_internal(bitmap_idx != NULL); - + // check initial trailing zeros - _Atomic(uintptr_t)* field = &bitmap[idx]; - uintptr_t map = mi_atomic_load_relaxed(field); + mi_bitmap_field_t* field = &bitmap[idx]; + size_t map = mi_atomic_load_relaxed(field); const size_t initial = mi_clz(map); // count of initial zeros starting at idx mi_assert_internal(initial <= MI_BITMAP_FIELD_BITS); if (initial == 0) return false; - if (initial >= count) return _mi_bitmap_try_find_claim_field(bitmap, idx, count, bitmap_idx); // no need to cross fields + if (initial >= count) return _mi_bitmap_try_find_claim_field(bitmap, idx, count, bitmap_idx); // no need to cross fields (this case won't happen for us) if (_mi_divide_up(count - initial, MI_BITMAP_FIELD_BITS) >= (bitmap_fields - idx)) return false; // not enough entries - + // scan ahead size_t found = initial; - uintptr_t mask = 0; // mask bits for the final field + size_t mask = 0; // mask bits for the final field while(found < count) { field++; map = mi_atomic_load_relaxed(field); - const uintptr_t mask_bits = (found + MI_BITMAP_FIELD_BITS <= count ? MI_BITMAP_FIELD_BITS : (count - found)); + const size_t mask_bits = (found + MI_BITMAP_FIELD_BITS <= count ? MI_BITMAP_FIELD_BITS : (count - found)); + mi_assert_internal(mask_bits > 0 && mask_bits <= MI_BITMAP_FIELD_BITS); mask = mi_bitmap_mask_(mask_bits, 0); - if ((map & mask) != 0) return false; + if ((map & mask) != 0) return false; // some part is already claimed found += mask_bits; } mi_assert_internal(field < &bitmap[bitmap_fields]); - // found range of zeros up to the final field; mask contains mask in the final field - // now claim it atomically - _Atomic(uintptr_t)* const final_field = field; - const uintptr_t final_mask = mask; - _Atomic(uintptr_t)* const initial_field = &bitmap[idx]; - const uintptr_t initial_mask = mi_bitmap_mask_(initial, MI_BITMAP_FIELD_BITS - initial); + // we found a range of contiguous zeros up to the final field; mask contains mask in the final field + // now try to claim the range atomically + mi_bitmap_field_t* const final_field = field; + const size_t final_mask = mask; + mi_bitmap_field_t* const initial_field = &bitmap[idx]; + const size_t initial_idx = MI_BITMAP_FIELD_BITS - initial; + const size_t initial_mask = mi_bitmap_mask_(initial, initial_idx); // initial field - uintptr_t newmap; + size_t newmap; field = initial_field; map = mi_atomic_load_relaxed(field); do { - newmap = map | initial_mask; + newmap = (map | initial_mask); if ((map & initial_mask) != 0) { goto rollback; }; } while (!mi_atomic_cas_strong_acq_rel(field, &map, newmap)); - + // intermediate fields while (++field < final_field) { newmap = mi_bitmap_mask_(MI_BITMAP_FIELD_BITS, 0); map = 0; if (!mi_atomic_cas_strong_acq_rel(field, &map, newmap)) { goto rollback; } } - + // final field mi_assert_internal(field == final_field); map = mi_atomic_load_relaxed(field); do { - newmap = map | final_mask; + newmap = (map | final_mask); if ((map & final_mask) != 0) { goto rollback; } } while (!mi_atomic_cas_strong_acq_rel(field, &map, newmap)); // claimed! - *bitmap_idx = mi_bitmap_index_create(idx, MI_BITMAP_FIELD_BITS - initial); + mi_stat_counter_increase(stats->arena_crossover_count,1); + *bitmap_idx = mi_bitmap_index_create(idx, initial_idx); return true; -rollback: +rollback: // roll back intermediate fields + // (we just failed to claim `field` so decrement first) while (--field > initial_field) { newmap = 0; map = mi_bitmap_mask_(MI_BITMAP_FIELD_BITS, 0); mi_assert_internal(mi_atomic_load_relaxed(field) == map); mi_atomic_store_release(field, newmap); } - if (field == initial_field) { + if (field == initial_field) { // (if we failed on the initial field, `field + 1 == initial_field`) map = mi_atomic_load_relaxed(field); do { mi_assert_internal((map & initial_mask) == initial_mask); - newmap = map & ~initial_mask; + newmap = (map & ~initial_mask); } while (!mi_atomic_cas_strong_acq_rel(field, &map, newmap)); - } + } + mi_stat_counter_increase(stats->arena_rollback_count,1); // retry? (we make a recursive call instead of goto to be able to use const declarations) - if (retries < 4) { - return mi_bitmap_try_find_claim_field_across(bitmap, bitmap_fields, idx, count, retries+1, bitmap_idx); + if (retries <= 2) { + return mi_bitmap_try_find_claim_field_across(bitmap, bitmap_fields, idx, count, retries+1, bitmap_idx, stats); } else { return false; @@ -259,20 +275,27 @@ rollback: // Find `count` bits of zeros and set them to 1 atomically; returns `true` on success. // Starts at idx, and wraps around to search in all `bitmap_fields` fields. -bool _mi_bitmap_try_find_from_claim_across(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_index_t* bitmap_idx) { +bool _mi_bitmap_try_find_from_claim_across(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_index_t* bitmap_idx, mi_stats_t* stats) { mi_assert_internal(count > 0); - if (count==1) return _mi_bitmap_try_find_from_claim(bitmap, bitmap_fields, start_field_idx, count, bitmap_idx); + if (count <= 2) { + // we don't bother with crossover fields for small counts + return _mi_bitmap_try_find_from_claim(bitmap, bitmap_fields, start_field_idx, count, bitmap_idx); + } + + // visit the fields size_t idx = start_field_idx; for (size_t visited = 0; visited < bitmap_fields; visited++, idx++) { - if (idx >= bitmap_fields) idx = 0; // wrap - // try to claim inside the field + if (idx >= bitmap_fields) { idx = 0; } // wrap + // first try to claim inside a field + /* if (count <= MI_BITMAP_FIELD_BITS) { if (_mi_bitmap_try_find_claim_field(bitmap, idx, count, bitmap_idx)) { return true; } } - // try to claim across fields - if (mi_bitmap_try_find_claim_field_across(bitmap, bitmap_fields, idx, count, 0, bitmap_idx)) { + */ + // if that fails, then try to claim across fields + if (mi_bitmap_try_find_claim_field_across(bitmap, bitmap_fields, idx, count, 0, bitmap_idx, stats)) { return true; } } @@ -280,10 +303,10 @@ bool _mi_bitmap_try_find_from_claim_across(mi_bitmap_t bitmap, const size_t bitm } // Helper for masks across fields; returns the mid count, post_mask may be 0 -static size_t mi_bitmap_mask_across(mi_bitmap_index_t bitmap_idx, size_t bitmap_fields, size_t count, uintptr_t* pre_mask, uintptr_t* mid_mask, uintptr_t* post_mask) { - UNUSED_RELEASE(bitmap_fields); +static size_t mi_bitmap_mask_across(mi_bitmap_index_t bitmap_idx, size_t bitmap_fields, size_t count, size_t* pre_mask, size_t* mid_mask, size_t* post_mask) { + MI_UNUSED(bitmap_fields); const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx); - if (mi_likely(bitidx + count <= MI_BITMAP_FIELD_BITS)) { + if mi_likely(bitidx + count <= MI_BITMAP_FIELD_BITS) { *pre_mask = mi_bitmap_mask_(count, bitidx); *mid_mask = 0; *post_mask = 0; @@ -308,37 +331,37 @@ static size_t mi_bitmap_mask_across(mi_bitmap_index_t bitmap_idx, size_t bitmap_ // Returns `true` if all `count` bits were 1 previously. bool _mi_bitmap_unclaim_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) { size_t idx = mi_bitmap_index_field(bitmap_idx); - uintptr_t pre_mask; - uintptr_t mid_mask; - uintptr_t post_mask; - size_t mid_count = mi_bitmap_mask_across(bitmap_idx, bitmap_fields, count, &pre_mask, &mid_mask, &post_mask); + size_t pre_mask; + size_t mid_mask; + size_t post_mask; + size_t mid_count = mi_bitmap_mask_across(bitmap_idx, bitmap_fields, count, &pre_mask, &mid_mask, &post_mask); bool all_one = true; - _Atomic(uintptr_t)*field = &bitmap[idx]; - uintptr_t prev = mi_atomic_and_acq_rel(field++, ~pre_mask); + mi_bitmap_field_t* field = &bitmap[idx]; + size_t prev = mi_atomic_and_acq_rel(field++, ~pre_mask); // clear first part if ((prev & pre_mask) != pre_mask) all_one = false; while(mid_count-- > 0) { - prev = mi_atomic_and_acq_rel(field++, ~mid_mask); + prev = mi_atomic_and_acq_rel(field++, ~mid_mask); // clear mid part if ((prev & mid_mask) != mid_mask) all_one = false; } if (post_mask!=0) { - prev = mi_atomic_and_acq_rel(field, ~post_mask); + prev = mi_atomic_and_acq_rel(field, ~post_mask); // clear end part if ((prev & post_mask) != post_mask) all_one = false; } - return all_one; + return all_one; } // Set `count` bits at `bitmap_idx` to 1 atomically // Returns `true` if all `count` bits were 0 previously. `any_zero` is `true` if there was at least one zero bit. bool _mi_bitmap_claim_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* pany_zero) { size_t idx = mi_bitmap_index_field(bitmap_idx); - uintptr_t pre_mask; - uintptr_t mid_mask; - uintptr_t post_mask; + size_t pre_mask; + size_t mid_mask; + size_t post_mask; size_t mid_count = mi_bitmap_mask_across(bitmap_idx, bitmap_fields, count, &pre_mask, &mid_mask, &post_mask); bool all_zero = true; bool any_zero = false; - _Atomic(uintptr_t)*field = &bitmap[idx]; - uintptr_t prev = mi_atomic_or_acq_rel(field++, pre_mask); + _Atomic(size_t)*field = &bitmap[idx]; + size_t prev = mi_atomic_or_acq_rel(field++, pre_mask); if ((prev & pre_mask) != 0) all_zero = false; if ((prev & pre_mask) != pre_mask) any_zero = true; while (mid_count-- > 0) { @@ -351,23 +374,23 @@ bool _mi_bitmap_claim_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t co if ((prev & post_mask) != 0) all_zero = false; if ((prev & post_mask) != post_mask) any_zero = true; } - if (pany_zero != NULL) *pany_zero = any_zero; + if (pany_zero != NULL) { *pany_zero = any_zero; } return all_zero; } -// Returns `true` if all `count` bits were 1. +// Returns `true` if all `count` bits were 1. // `any_ones` is `true` if there was at least one bit set to one. static bool mi_bitmap_is_claimedx_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* pany_ones) { size_t idx = mi_bitmap_index_field(bitmap_idx); - uintptr_t pre_mask; - uintptr_t mid_mask; - uintptr_t post_mask; + size_t pre_mask; + size_t mid_mask; + size_t post_mask; size_t mid_count = mi_bitmap_mask_across(bitmap_idx, bitmap_fields, count, &pre_mask, &mid_mask, &post_mask); bool all_ones = true; bool any_ones = false; - _Atomic(uintptr_t)* field = &bitmap[idx]; - uintptr_t prev = mi_atomic_load_relaxed(field++); + mi_bitmap_field_t* field = &bitmap[idx]; + size_t prev = mi_atomic_load_relaxed(field++); if ((prev & pre_mask) != pre_mask) all_ones = false; if ((prev & pre_mask) != 0) any_ones = true; while (mid_count-- > 0) { @@ -379,8 +402,8 @@ static bool mi_bitmap_is_claimedx_across(mi_bitmap_t bitmap, size_t bitmap_field prev = mi_atomic_load_relaxed(field); if ((prev & post_mask) != post_mask) all_ones = false; if ((prev & post_mask) != 0) any_ones = true; - } - if (pany_ones != NULL) *pany_ones = any_ones; + } + if (pany_ones != NULL) { *pany_ones = any_ones; } return all_ones; } diff --git a/contrib/libs/mimalloc/src/bitmap.h b/contrib/libs/mimalloc/src/bitmap.h index 21fd4e13d0..a1e7686abc 100644 --- a/contrib/libs/mimalloc/src/bitmap.h +++ b/contrib/libs/mimalloc/src/bitmap.h @@ -1,5 +1,5 @@ /* ---------------------------------------------------------------------------- -Copyright (c) 2019-2020 Microsoft Research, Daan Leijen +Copyright (c) 2019-2023 Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. @@ -7,7 +7,7 @@ terms of the MIT license. A copy of the license can be found in the file /* ---------------------------------------------------------------------------- Concurrent bitmap that can set/reset sequences of bits atomically, -represeted as an array of fields where each field is a machine word (`uintptr_t`) +represented as an array of fields where each field is a machine word (`size_t`) There are two api's; the standard one cannot have sequences that cross between the bitmap fields (and a sequence must be <= MI_BITMAP_FIELD_BITS). @@ -24,11 +24,11 @@ between the fields. (This is used in arena allocation) Bitmap definition ----------------------------------------------------------- */ -#define MI_BITMAP_FIELD_BITS (8*MI_INTPTR_SIZE) -#define MI_BITMAP_FIELD_FULL (~((uintptr_t)0)) // all bits set +#define MI_BITMAP_FIELD_BITS (8*MI_SIZE_SIZE) +#define MI_BITMAP_FIELD_FULL (~((size_t)0)) // all bits set -// An atomic bitmap of `uintptr_t` fields -typedef _Atomic(uintptr_t) mi_bitmap_field_t; +// An atomic bitmap of `size_t` fields +typedef _Atomic(size_t) mi_bitmap_field_t; typedef mi_bitmap_field_t* mi_bitmap_t; // A bitmap index is the index of the bit in a bitmap. @@ -69,7 +69,11 @@ bool _mi_bitmap_try_find_from_claim(mi_bitmap_t bitmap, const size_t bitmap_fiel // Set `count` bits at `bitmap_idx` to 0 atomically // Returns `true` if all `count` bits were 1 previously. -bool mi_bitmap_unclaim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx); +bool _mi_bitmap_unclaim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx); + +// Try to set `count` bits at `bitmap_idx` from 0 to 1 atomically. +// Returns `true` if successful when all previous `count` bits were 0. +bool _mi_bitmap_try_claim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx); // Set `count` bits at `bitmap_idx` to 1 atomically // Returns `true` if all `count` bits were 0 previously. `any_zero` is `true` if there was at least one zero bit. @@ -86,7 +90,7 @@ bool _mi_bitmap_is_any_claimed(mi_bitmap_t bitmap, size_t bitmap_fields, size_t // Find `count` bits of zeros and set them to 1 atomically; returns `true` on success. // Starts at idx, and wraps around to search in all `bitmap_fields` fields. -bool _mi_bitmap_try_find_from_claim_across(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_index_t* bitmap_idx); +bool _mi_bitmap_try_find_from_claim_across(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_index_t* bitmap_idx, mi_stats_t* stats); // Set `count` bits at `bitmap_idx` to 0 atomically // Returns `true` if all `count` bits were 1 previously. diff --git a/contrib/libs/mimalloc/src/free.c b/contrib/libs/mimalloc/src/free.c new file mode 100644 index 0000000000..c065d2f3f6 --- /dev/null +++ b/contrib/libs/mimalloc/src/free.c @@ -0,0 +1,520 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2024, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ +#if !defined(MI_IN_ALLOC_C) +#error "this file should be included from 'alloc.c' (so aliases can work from alloc-override)" +// add includes help an IDE +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" +#include "mimalloc/prim.h" // _mi_prim_thread_id() +#endif + +// forward declarations +static void mi_check_padding(const mi_page_t* page, const mi_block_t* block); +static bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block); +static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block); +static void mi_stat_free(const mi_page_t* page, const mi_block_t* block); + + +// ------------------------------------------------------ +// Free +// ------------------------------------------------------ + +// forward declaration of multi-threaded free (`_mt`) (or free in huge block if compiled with MI_HUGE_PAGE_ABANDON) +static mi_decl_noinline void mi_free_block_mt(mi_page_t* page, mi_segment_t* segment, mi_block_t* block); + +// regular free of a (thread local) block pointer +// fast path written carefully to prevent spilling on the stack +static inline void mi_free_block_local(mi_page_t* page, mi_block_t* block, bool track_stats, bool check_full) +{ + // checks + if mi_unlikely(mi_check_is_double_free(page, block)) return; + mi_check_padding(page, block); + if (track_stats) { mi_stat_free(page, block); } + #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN + memset(block, MI_DEBUG_FREED, mi_page_block_size(page)); + #endif + if (track_stats) { mi_track_free_size(block, mi_page_usable_size_of(page, block)); } // faster then mi_usable_size as we already know the page and that p is unaligned + + // actual free: push on the local free list + mi_block_set_next(page, block, page->local_free); + page->local_free = block; + if mi_unlikely(--page->used == 0) { + _mi_page_retire(page); + } + else if mi_unlikely(check_full && mi_page_is_in_full(page)) { + _mi_page_unfull(page); + } +} + +// Adjust a block that was allocated aligned, to the actual start of the block in the page. +// note: this can be called from `mi_free_generic_mt` where a non-owning thread accesses the +// `page_start` and `block_size` fields; however these are constant and the page won't be +// deallocated (as the block we are freeing keeps it alive) and thus safe to read concurrently. +mi_block_t* _mi_page_ptr_unalign(const mi_page_t* page, const void* p) { + mi_assert_internal(page!=NULL && p!=NULL); + + size_t diff = (uint8_t*)p - page->page_start; + size_t adjust; + if mi_likely(page->block_size_shift != 0) { + adjust = diff & (((size_t)1 << page->block_size_shift) - 1); + } + else { + adjust = diff % mi_page_block_size(page); + } + + return (mi_block_t*)((uintptr_t)p - adjust); +} + +// free a local pointer (page parameter comes first for better codegen) +static void mi_decl_noinline mi_free_generic_local(mi_page_t* page, mi_segment_t* segment, void* p) mi_attr_noexcept { + MI_UNUSED(segment); + mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(page, p) : (mi_block_t*)p); + mi_free_block_local(page, block, true /* track stats */, true /* check for a full page */); +} + +// free a pointer owned by another thread (page parameter comes first for better codegen) +static void mi_decl_noinline mi_free_generic_mt(mi_page_t* page, mi_segment_t* segment, void* p) mi_attr_noexcept { + mi_block_t* const block = _mi_page_ptr_unalign(page, p); // don't check `has_aligned` flag to avoid a race (issue #865) + mi_free_block_mt(page, segment, block); +} + +// generic free (for runtime integration) +void mi_decl_noinline _mi_free_generic(mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept { + if (is_local) mi_free_generic_local(page,segment,p); + else mi_free_generic_mt(page,segment,p); +} + +// Get the segment data belonging to a pointer +// This is just a single `and` in release mode but does further checks in debug mode +// (and secure mode) to see if this was a valid pointer. +static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* msg) +{ + MI_UNUSED(msg); + +#if (MI_DEBUG>0) + if mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) { + _mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p); + return NULL; + } +#endif + + mi_segment_t* const segment = _mi_ptr_segment(p); + if mi_unlikely(segment==NULL) return segment; + +#if (MI_DEBUG>0) + if mi_unlikely(!mi_is_in_heap_region(p)) { + _mi_warning_message("%s: pointer might not point to a valid heap region: %p\n" + "(this may still be a valid very large allocation (over 64MiB))\n", msg, p); + if mi_likely(_mi_ptr_cookie(segment) == segment->cookie) { + _mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p); + } + } +#endif +#if (MI_DEBUG>0 || MI_SECURE>=4) + if mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie) { + _mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", msg, p); + return NULL; + } +#endif + + return segment; +} + +// Free a block +// Fast path written carefully to prevent register spilling on the stack +void mi_free(void* p) mi_attr_noexcept +{ + mi_segment_t* const segment = mi_checked_ptr_segment(p,"mi_free"); + if mi_unlikely(segment==NULL) return; + + const bool is_local = (_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id)); + mi_page_t* const page = _mi_segment_page_of(segment, p); + + if mi_likely(is_local) { // thread-local free? + if mi_likely(page->flags.full_aligned == 0) { // and it is not a full page (full pages need to move from the full bin), nor has aligned blocks (aligned blocks need to be unaligned) + // thread-local, aligned, and not a full page + mi_block_t* const block = (mi_block_t*)p; + mi_free_block_local(page, block, true /* track stats */, false /* no need to check if the page is full */); + } + else { + // page is full or contains (inner) aligned blocks; use generic path + mi_free_generic_local(page, segment, p); + } + } + else { + // not thread-local; use generic path + mi_free_generic_mt(page, segment, p); + } +} + +// return true if successful +bool _mi_free_delayed_block(mi_block_t* block) { + // get segment and page + mi_assert_internal(block!=NULL); + const mi_segment_t* const segment = _mi_ptr_segment(block); + mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie); + mi_assert_internal(_mi_thread_id() == segment->thread_id); + mi_page_t* const page = _mi_segment_page_of(segment, block); + + // Clear the no-delayed flag so delayed freeing is used again for this page. + // This must be done before collecting the free lists on this page -- otherwise + // some blocks may end up in the page `thread_free` list with no blocks in the + // heap `thread_delayed_free` list which may cause the page to be never freed! + // (it would only be freed if we happen to scan it in `mi_page_queue_find_free_ex`) + if (!_mi_page_try_use_delayed_free(page, MI_USE_DELAYED_FREE, false /* dont overwrite never delayed */)) { + return false; + } + + // collect all other non-local frees (move from `thread_free` to `free`) to ensure up-to-date `used` count + _mi_page_free_collect(page, false); + + // and free the block (possibly freeing the page as well since `used` is updated) + mi_free_block_local(page, block, false /* stats have already been adjusted */, true /* check for a full page */); + return true; +} + +// ------------------------------------------------------ +// Multi-threaded Free (`_mt`) +// ------------------------------------------------------ + +// Push a block that is owned by another thread on its page-local thread free +// list or it's heap delayed free list. Such blocks are later collected by +// the owning thread in `_mi_free_delayed_block`. +static void mi_decl_noinline mi_free_block_delayed_mt( mi_page_t* page, mi_block_t* block ) +{ + // Try to put the block on either the page-local thread free list, + // or the heap delayed free list (if this is the first non-local free in that page) + mi_thread_free_t tfreex; + bool use_delayed; + mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free); + do { + use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE); + if mi_unlikely(use_delayed) { + // unlikely: this only happens on the first concurrent free in a page that is in the full list + tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING); + } + else { + // usual: directly add to page thread_free list + mi_block_set_next(page, block, mi_tf_block(tfree)); + tfreex = mi_tf_set_block(tfree,block); + } + } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex)); + + // If this was the first non-local free, we need to push it on the heap delayed free list instead + if mi_unlikely(use_delayed) { + // racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`) + mi_heap_t* const heap = (mi_heap_t*)(mi_atomic_load_acquire(&page->xheap)); //mi_page_heap(page); + mi_assert_internal(heap != NULL); + if (heap != NULL) { + // add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity) + mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free); + do { + mi_block_set_nextx(heap,block,dfree, heap->keys); + } while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block)); + } + + // and reset the MI_DELAYED_FREEING flag + tfree = mi_atomic_load_relaxed(&page->xthread_free); + do { + tfreex = tfree; + mi_assert_internal(mi_tf_delayed(tfree) == MI_DELAYED_FREEING); + tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE); + } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex)); + } +} + +// Multi-threaded free (`_mt`) (or free in huge block if compiled with MI_HUGE_PAGE_ABANDON) +static void mi_decl_noinline mi_free_block_mt(mi_page_t* page, mi_segment_t* segment, mi_block_t* block) +{ + // first see if the segment was abandoned and if we can reclaim it into our thread + if (mi_option_is_enabled(mi_option_abandoned_reclaim_on_free) && + #if MI_HUGE_PAGE_ABANDON + segment->page_kind != MI_PAGE_HUGE && + #endif + mi_atomic_load_relaxed(&segment->thread_id) == 0) + { + // the segment is abandoned, try to reclaim it into our heap + if (_mi_segment_attempt_reclaim(mi_heap_get_default(), segment)) { + mi_assert_internal(_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id)); + mi_free(block); // recursively free as now it will be a local free in our heap + return; + } + } + + // The padding check may access the non-thread-owned page for the key values. + // that is safe as these are constant and the page won't be freed (as the block is not freed yet). + mi_check_padding(page, block); + + // adjust stats (after padding check and potentially recursive `mi_free` above) + mi_stat_free(page, block); // stat_free may access the padding + mi_track_free_size(block, mi_page_usable_size_of(page,block)); + + // for small size, ensure we can fit the delayed thread pointers without triggering overflow detection + _mi_padding_shrink(page, block, sizeof(mi_block_t)); + + if (segment->page_kind == MI_PAGE_HUGE) { + #if MI_HUGE_PAGE_ABANDON + // huge page segments are always abandoned and can be freed immediately + _mi_segment_huge_page_free(segment, page, block); + return; + #else + // huge pages are special as they occupy the entire segment + // as these are large we reset the memory occupied by the page so it is available to other threads + // (as the owning thread needs to actually free the memory later). + _mi_segment_huge_page_reset(segment, page, block); + #endif + } + else { + #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN // note: when tracking, cannot use mi_usable_size with multi-threading + memset(block, MI_DEBUG_FREED, mi_usable_size(block)); + #endif + } + + // and finally free the actual block by pushing it on the owning heap + // thread_delayed free list (or heap delayed free list) + mi_free_block_delayed_mt(page,block); +} + + +// ------------------------------------------------------ +// Usable size +// ------------------------------------------------------ + +// Bytes available in a block +static size_t mi_decl_noinline mi_page_usable_aligned_size_of(const mi_page_t* page, const void* p) mi_attr_noexcept { + const mi_block_t* block = _mi_page_ptr_unalign(page, p); + const size_t size = mi_page_usable_size_of(page, block); + const ptrdiff_t adjust = (uint8_t*)p - (uint8_t*)block; + mi_assert_internal(adjust >= 0 && (size_t)adjust <= size); + return (size - adjust); +} + +static inline size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noexcept { + const mi_segment_t* const segment = mi_checked_ptr_segment(p, msg); + if mi_unlikely(segment==NULL) return 0; + const mi_page_t* const page = _mi_segment_page_of(segment, p); + if mi_likely(!mi_page_has_aligned(page)) { + const mi_block_t* block = (const mi_block_t*)p; + return mi_page_usable_size_of(page, block); + } + else { + // split out to separate routine for improved code generation + return mi_page_usable_aligned_size_of(page, p); + } +} + +mi_decl_nodiscard size_t mi_usable_size(const void* p) mi_attr_noexcept { + return _mi_usable_size(p, "mi_usable_size"); +} + + +// ------------------------------------------------------ +// Free variants +// ------------------------------------------------------ + +void mi_free_size(void* p, size_t size) mi_attr_noexcept { + MI_UNUSED_RELEASE(size); + mi_assert(p == NULL || size <= _mi_usable_size(p,"mi_free_size")); + mi_free(p); +} + +void mi_free_size_aligned(void* p, size_t size, size_t alignment) mi_attr_noexcept { + MI_UNUSED_RELEASE(alignment); + mi_assert(((uintptr_t)p % alignment) == 0); + mi_free_size(p,size); +} + +void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept { + MI_UNUSED_RELEASE(alignment); + mi_assert(((uintptr_t)p % alignment) == 0); + mi_free(p); +} + + +// ------------------------------------------------------ +// Check for double free in secure and debug mode +// This is somewhat expensive so only enabled for secure mode 4 +// ------------------------------------------------------ + +#if (MI_ENCODE_FREELIST && (MI_SECURE>=4 || MI_DEBUG!=0)) +// linear check if the free list contains a specific element +static bool mi_list_contains(const mi_page_t* page, const mi_block_t* list, const mi_block_t* elem) { + while (list != NULL) { + if (elem==list) return true; + list = mi_block_next(page, list); + } + return false; +} + +static mi_decl_noinline bool mi_check_is_double_freex(const mi_page_t* page, const mi_block_t* block) { + // The decoded value is in the same page (or NULL). + // Walk the free lists to verify positively if it is already freed + if (mi_list_contains(page, page->free, block) || + mi_list_contains(page, page->local_free, block) || + mi_list_contains(page, mi_page_thread_free(page), block)) + { + _mi_error_message(EAGAIN, "double free detected of block %p with size %zu\n", block, mi_page_block_size(page)); + return true; + } + return false; +} + +#define mi_track_page(page,access) { size_t psize; void* pstart = _mi_page_start(_mi_page_segment(page),page,&psize); mi_track_mem_##access( pstart, psize); } + +static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) { + bool is_double_free = false; + mi_block_t* n = mi_block_nextx(page, block, page->keys); // pretend it is freed, and get the decoded first field + if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 && // quick check: aligned pointer? + (n==NULL || mi_is_in_same_page(block, n))) // quick check: in same page or NULL? + { + // Suspicious: decoded value a in block is in the same page (or NULL) -- maybe a double free? + // (continue in separate function to improve code generation) + is_double_free = mi_check_is_double_freex(page, block); + } + return is_double_free; +} +#else +static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) { + MI_UNUSED(page); + MI_UNUSED(block); + return false; +} +#endif + + +// --------------------------------------------------------------------------- +// Check for heap block overflow by setting up padding at the end of the block +// --------------------------------------------------------------------------- + +#if MI_PADDING // && !MI_TRACK_ENABLED +static bool mi_page_decode_padding(const mi_page_t* page, const mi_block_t* block, size_t* delta, size_t* bsize) { + *bsize = mi_page_usable_block_size(page); + const mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + *bsize); + mi_track_mem_defined(padding,sizeof(mi_padding_t)); + *delta = padding->delta; + uint32_t canary = padding->canary; + uintptr_t keys[2]; + keys[0] = page->keys[0]; + keys[1] = page->keys[1]; + bool ok = ((uint32_t)mi_ptr_encode(page,block,keys) == canary && *delta <= *bsize); + mi_track_mem_noaccess(padding,sizeof(mi_padding_t)); + return ok; +} + +// Return the exact usable size of a block. +static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) { + size_t bsize; + size_t delta; + bool ok = mi_page_decode_padding(page, block, &delta, &bsize); + mi_assert_internal(ok); mi_assert_internal(delta <= bsize); + return (ok ? bsize - delta : 0); +} + +// When a non-thread-local block is freed, it becomes part of the thread delayed free +// list that is freed later by the owning heap. If the exact usable size is too small to +// contain the pointer for the delayed list, then shrink the padding (by decreasing delta) +// so it will later not trigger an overflow error in `mi_free_block`. +void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) { + size_t bsize; + size_t delta; + bool ok = mi_page_decode_padding(page, block, &delta, &bsize); + mi_assert_internal(ok); + if (!ok || (bsize - delta) >= min_size) return; // usually already enough space + mi_assert_internal(bsize >= min_size); + if (bsize < min_size) return; // should never happen + size_t new_delta = (bsize - min_size); + mi_assert_internal(new_delta < bsize); + mi_padding_t* padding = (mi_padding_t*)((uint8_t*)block + bsize); + mi_track_mem_defined(padding,sizeof(mi_padding_t)); + padding->delta = (uint32_t)new_delta; + mi_track_mem_noaccess(padding,sizeof(mi_padding_t)); +} +#else +static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) { + MI_UNUSED(block); + return mi_page_usable_block_size(page); +} + +void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) { + MI_UNUSED(page); + MI_UNUSED(block); + MI_UNUSED(min_size); +} +#endif + +#if MI_PADDING && MI_PADDING_CHECK + +static bool mi_verify_padding(const mi_page_t* page, const mi_block_t* block, size_t* size, size_t* wrong) { + size_t bsize; + size_t delta; + bool ok = mi_page_decode_padding(page, block, &delta, &bsize); + *size = *wrong = bsize; + if (!ok) return false; + mi_assert_internal(bsize >= delta); + *size = bsize - delta; + if (!mi_page_is_huge(page)) { + uint8_t* fill = (uint8_t*)block + bsize - delta; + const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // check at most the first N padding bytes + mi_track_mem_defined(fill, maxpad); + for (size_t i = 0; i < maxpad; i++) { + if (fill[i] != MI_DEBUG_PADDING) { + *wrong = bsize - delta + i; + ok = false; + break; + } + } + mi_track_mem_noaccess(fill, maxpad); + } + return ok; +} + +static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) { + size_t size; + size_t wrong; + if (!mi_verify_padding(page,block,&size,&wrong)) { + _mi_error_message(EFAULT, "buffer overflow in heap block %p of size %zu: write after %zu bytes\n", block, size, wrong ); + } +} + +#else + +static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) { + MI_UNUSED(page); + MI_UNUSED(block); +} + +#endif + +// only maintain stats for smaller objects if requested +#if (MI_STAT>0) +static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) { +#if (MI_STAT < 2) + MI_UNUSED(block); +#endif + mi_heap_t* const heap = mi_heap_get_default(); + const size_t bsize = mi_page_usable_block_size(page); +#if (MI_STAT>1) + const size_t usize = mi_page_usable_size_of(page, block); + mi_heap_stat_decrease(heap, malloc, usize); +#endif + if (bsize <= MI_LARGE_OBJ_SIZE_MAX) { + mi_heap_stat_decrease(heap, normal, bsize); +#if (MI_STAT > 1) + mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], 1); +#endif + } + else { + const size_t bpsize = mi_page_block_size(page); // match stat in page.c:mi_huge_page_alloc + mi_heap_stat_decrease(heap, huge, bpsize); + } +} +#else +static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) { + MI_UNUSED(page); MI_UNUSED(block); +} +#endif diff --git a/contrib/libs/mimalloc/src/heap.c b/contrib/libs/mimalloc/src/heap.c index bda10699d0..f6f2354913 100644 --- a/contrib/libs/mimalloc/src/heap.c +++ b/contrib/libs/mimalloc/src/heap.c @@ -6,8 +6,9 @@ terms of the MIT license. A copy of the license can be found in the file -----------------------------------------------------------------------------*/ #include "mimalloc.h" -#include "mimalloc-internal.h" -#include "mimalloc-atomic.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" +#include "mimalloc/prim.h" // mi_prim_get_default_heap #include <string.h> // memset, memcpy @@ -30,15 +31,18 @@ static bool mi_heap_visit_pages(mi_heap_t* heap, heap_page_visitor_fun* fn, void // visit all pages #if MI_DEBUG>1 size_t total = heap->page_count; - #endif size_t count = 0; + #endif + for (size_t i = 0; i <= MI_BIN_FULL; i++) { mi_page_queue_t* pq = &heap->pages[i]; mi_page_t* page = pq->first; while(page != NULL) { mi_page_t* next = page->next; // save next in case the page gets removed from the queue mi_assert_internal(mi_page_heap(page) == heap); + #if MI_DEBUG>1 count++; + #endif if (!fn(heap, pq, page, arg1, arg2)) return false; page = next; // and continue } @@ -50,9 +54,9 @@ static bool mi_heap_visit_pages(mi_heap_t* heap, heap_page_visitor_fun* fn, void #if MI_DEBUG>=2 static bool mi_heap_page_is_valid(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) { - UNUSED(arg1); - UNUSED(arg2); - UNUSED(pq); + MI_UNUSED(arg1); + MI_UNUSED(arg2); + MI_UNUSED(pq); mi_assert_internal(mi_page_heap(page) == heap); mi_segment_t* segment = _mi_page_segment(page); mi_assert_internal(segment->thread_id == heap->thread_id); @@ -86,13 +90,13 @@ typedef enum mi_collect_e { static bool mi_heap_page_collect(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg_collect, void* arg2 ) { - UNUSED(arg2); - UNUSED(heap); + MI_UNUSED(arg2); + MI_UNUSED(heap); mi_assert_internal(mi_heap_page_is_valid(heap, pq, page, NULL, NULL)); mi_collect_t collect = *((mi_collect_t*)arg_collect); _mi_page_free_collect(page, collect >= MI_FORCE); if (mi_page_all_free(page)) { - // no more used blocks, free the page. + // no more used blocks, free the page. // note: this will free retired pages as well. _mi_page_free(page, pq, collect >= MI_FORCE); } @@ -104,10 +108,10 @@ static bool mi_heap_page_collect(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t } static bool mi_heap_page_never_delayed_free(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) { - UNUSED(arg1); - UNUSED(arg2); - UNUSED(heap); - UNUSED(pq); + MI_UNUSED(arg1); + MI_UNUSED(arg2); + MI_UNUSED(heap); + MI_UNUSED(pq); _mi_page_use_delayed_free(page, MI_NEVER_DELAYED_FREE, false); return true; // don't break } @@ -115,47 +119,53 @@ static bool mi_heap_page_never_delayed_free(mi_heap_t* heap, mi_page_queue_t* pq static void mi_heap_collect_ex(mi_heap_t* heap, mi_collect_t collect) { if (heap==NULL || !mi_heap_is_initialized(heap)) return; - _mi_deferred_free(heap, collect >= MI_FORCE); - // note: never reclaim on collect but leave it to threads that need storage to reclaim + const bool force = (collect >= MI_FORCE); + _mi_deferred_free(heap, force); + + // python/cpython#112532: we may be called from a thread that is not the owner of the heap + const bool is_main_thread = (_mi_is_main_thread() && heap->thread_id == _mi_thread_id()); + + // note: never reclaim on collect but leave it to threads that need storage to reclaim if ( #ifdef NDEBUG collect == MI_FORCE #else collect >= MI_FORCE #endif - && _mi_is_main_thread() && mi_heap_is_backing(heap) && !heap->no_reclaim) + && is_main_thread && mi_heap_is_backing(heap) && !heap->no_reclaim) { // the main thread is abandoned (end-of-program), try to reclaim all abandoned segments. // if all memory is freed by now, all segments should be freed. _mi_abandoned_reclaim_all(heap, &heap->tld->segments); } - + // if abandoning, mark all pages to no longer add to delayed_free if (collect == MI_ABANDON) { mi_heap_visit_pages(heap, &mi_heap_page_never_delayed_free, NULL, NULL); } - // free thread delayed blocks. + // free all current thread delayed blocks. // (if abandoning, after this there are no more thread-delayed references into the pages.) - _mi_heap_delayed_free(heap); + _mi_heap_delayed_free_all(heap); // collect retired pages - _mi_heap_collect_retired(heap, collect >= MI_FORCE); + _mi_heap_collect_retired(heap, force); // collect all pages owned by this thread mi_heap_visit_pages(heap, &mi_heap_page_collect, &collect, NULL); mi_assert_internal( collect != MI_ABANDON || mi_atomic_load_ptr_acquire(mi_block_t,&heap->thread_delayed_free) == NULL ); - // collect segment caches - if (collect >= MI_FORCE) { - _mi_segment_thread_collect(&heap->tld->segments); - } + // collect segments (purge pages, this can be expensive so don't force on abandonment) + _mi_segments_collect(collect == MI_FORCE, &heap->tld->segments); - // collect regions on program-exit (or shared library unload) - if (collect >= MI_FORCE && _mi_is_main_thread() && mi_heap_is_backing(heap)) { - _mi_mem_collect(&heap->tld->os); + // if forced, collect thread data cache on program-exit (or shared library unload) + if (force && is_main_thread && mi_heap_is_backing(heap)) { + _mi_thread_data_collect(); // collect thread data cache } + + // collect arenas (this is program wide so don't force purges on abandonment of threads) + _mi_arenas_collect(collect == MI_FORCE /* force purge? */, &heap->tld->stats); } void _mi_heap_collect_abandon(mi_heap_t* heap) { @@ -167,7 +177,7 @@ void mi_heap_collect(mi_heap_t* heap, bool force) mi_attr_noexcept { } void mi_collect(bool force) mi_attr_noexcept { - mi_heap_collect(mi_get_default_heap(), force); + mi_heap_collect(mi_prim_get_default_heap(), force); } @@ -177,9 +187,14 @@ void mi_collect(bool force) mi_attr_noexcept { mi_heap_t* mi_heap_get_default(void) { mi_thread_init(); - return mi_get_default_heap(); + return mi_prim_get_default_heap(); +} + +static bool mi_heap_is_default(const mi_heap_t* heap) { + return (heap == mi_prim_get_default_heap()); } + mi_heap_t* mi_heap_get_backing(void) { mi_heap_t* heap = mi_heap_get_default(); mi_assert_internal(heap!=NULL); @@ -189,24 +204,44 @@ mi_heap_t* mi_heap_get_backing(void) { return bheap; } -mi_heap_t* mi_heap_new(void) { - mi_heap_t* bheap = mi_heap_get_backing(); - mi_heap_t* heap = mi_heap_malloc_tp(bheap, mi_heap_t); // todo: OS allocate in secure mode? - if (heap==NULL) return NULL; +void _mi_heap_init(mi_heap_t* heap, mi_tld_t* tld, mi_arena_id_t arena_id, bool noreclaim, uint8_t tag) { _mi_memcpy_aligned(heap, &_mi_heap_empty, sizeof(mi_heap_t)); - heap->tld = bheap->tld; - heap->thread_id = _mi_thread_id(); - _mi_random_split(&bheap->random, &heap->random); + heap->tld = tld; + heap->thread_id = _mi_thread_id(); + heap->arena_id = arena_id; + heap->no_reclaim = noreclaim; + heap->tag = tag; + if (heap == tld->heap_backing) { + _mi_random_init(&heap->random); + } + else { + _mi_random_split(&tld->heap_backing->random, &heap->random); + } heap->cookie = _mi_heap_random_next(heap) | 1; heap->keys[0] = _mi_heap_random_next(heap); heap->keys[1] = _mi_heap_random_next(heap); - heap->no_reclaim = true; // don't reclaim abandoned pages or otherwise destroy is unsafe // push on the thread local heaps list heap->next = heap->tld->heaps; heap->tld->heaps = heap; +} + +mi_decl_nodiscard mi_heap_t* mi_heap_new_in_arena(mi_arena_id_t arena_id) { + mi_heap_t* bheap = mi_heap_get_backing(); + mi_heap_t* heap = mi_heap_malloc_tp(bheap, mi_heap_t); // todo: OS allocate in secure mode? + if (heap == NULL) return NULL; + // don't reclaim abandoned pages or otherwise destroy is unsafe + _mi_heap_init(heap, bheap->tld, arena_id, true /* no reclaim */, 0 /* default tag */); return heap; } +mi_decl_nodiscard mi_heap_t* mi_heap_new(void) { + return mi_heap_new_in_arena(_mi_arena_id_none()); +} + +bool _mi_heap_memid_is_suitable(mi_heap_t* heap, mi_memid_t memid) { + return _mi_arena_memid_is_suitable(memid, heap->arena_id); +} + uintptr_t _mi_heap_random_next(mi_heap_t* heap) { return _mi_random_next(&heap->random); } @@ -217,9 +252,6 @@ static void mi_heap_reset_pages(mi_heap_t* heap) { mi_assert_internal(mi_heap_is_initialized(heap)); // TODO: copy full empty heap instead? memset(&heap->pages_free_direct, 0, sizeof(heap->pages_free_direct)); -#ifdef MI_MEDIUM_DIRECT - memset(&heap->pages_free_medium, 0, sizeof(heap->pages_free_medium)); -#endif _mi_memcpy_aligned(&heap->pages, &_mi_heap_empty.pages, sizeof(heap->pages)); heap->thread_delayed_free = NULL; heap->page_count = 0; @@ -240,7 +272,7 @@ static void mi_heap_free(mi_heap_t* heap) { // remove ourselves from the thread local heaps list // linear search but we expect the number of heaps to be relatively small mi_heap_t* prev = NULL; - mi_heap_t* curr = heap->tld->heaps; + mi_heap_t* curr = heap->tld->heaps; while (curr != heap && curr != NULL) { prev = curr; curr = curr->next; @@ -256,16 +288,28 @@ static void mi_heap_free(mi_heap_t* heap) { mi_free(heap); } +// return a heap on the same thread as `heap` specialized for the specified tag (if it exists) +mi_heap_t* _mi_heap_by_tag(mi_heap_t* heap, uint8_t tag) { + if (heap->tag == tag) { + return heap; + } + for (mi_heap_t *curr = heap->tld->heaps; curr != NULL; curr = curr->next) { + if (curr->tag == tag) { + return curr; + } + } + return NULL; +} /* ----------------------------------------------------------- Heap destroy ----------------------------------------------------------- */ static bool _mi_heap_page_destroy(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) { - UNUSED(arg1); - UNUSED(arg2); - UNUSED(heap); - UNUSED(pq); + MI_UNUSED(arg1); + MI_UNUSED(arg2); + MI_UNUSED(heap); + MI_UNUSED(pq); // ensure no more thread_delayed_free will be added _mi_page_use_delayed_free(page, MI_NEVER_DELAYED_FREE, false); @@ -273,12 +317,7 @@ static bool _mi_heap_page_destroy(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_ // stats const size_t bsize = mi_page_block_size(page); if (bsize > MI_LARGE_OBJ_SIZE_MAX) { - if (bsize > MI_HUGE_OBJ_SIZE_MAX) { - mi_heap_stat_decrease(heap, giant, bsize); - } - else { - mi_heap_stat_decrease(heap, huge, bsize); - } + mi_heap_stat_decrease(heap, huge, bsize); } #if (MI_STAT) _mi_page_free_collect(page, false); // update used count @@ -310,6 +349,14 @@ void _mi_heap_destroy_pages(mi_heap_t* heap) { mi_heap_reset_pages(heap); } +#if MI_TRACK_HEAP_DESTROY +static bool mi_cdecl mi_heap_track_block_free(const mi_heap_t* heap, const mi_heap_area_t* area, void* block, size_t block_size, void* arg) { + MI_UNUSED(heap); MI_UNUSED(area); MI_UNUSED(arg); MI_UNUSED(block_size); + mi_track_free_size(block,mi_usable_size(block)); + return true; +} +#endif + void mi_heap_destroy(mi_heap_t* heap) { mi_assert(heap != NULL); mi_assert(mi_heap_is_initialized(heap)); @@ -321,27 +368,45 @@ void mi_heap_destroy(mi_heap_t* heap) { mi_heap_delete(heap); } else { + // track all blocks as freed + #if MI_TRACK_HEAP_DESTROY + mi_heap_visit_blocks(heap, true, mi_heap_track_block_free, NULL); + #endif // free all pages _mi_heap_destroy_pages(heap); mi_heap_free(heap); } } - +// forcefully destroy all heaps in the current thread +void _mi_heap_unsafe_destroy_all(void) { + mi_heap_t* bheap = mi_heap_get_backing(); + mi_heap_t* curr = bheap->tld->heaps; + while (curr != NULL) { + mi_heap_t* next = curr->next; + if (curr->no_reclaim) { + mi_heap_destroy(curr); + } + else { + _mi_heap_destroy_pages(curr); + } + curr = next; + } +} /* ----------------------------------------------------------- Safe Heap delete ----------------------------------------------------------- */ -// Tranfer the pages from one heap to the other +// Transfer the pages from one heap to the other static void mi_heap_absorb(mi_heap_t* heap, mi_heap_t* from) { mi_assert_internal(heap!=NULL); if (from==NULL || from->page_count == 0) return; // reduce the size of the delayed frees - _mi_heap_delayed_free(from); - - // transfer all pages by appending the queues; this will set a new heap field + _mi_heap_delayed_free_partial(from); + + // transfer all pages by appending the queues; this will set a new heap field // so threads may do delayed frees in either heap for a while. // note: appending waits for each page to not be in the `MI_DELAYED_FREEING` state // so after this only the new heap will get delayed frees @@ -354,17 +419,17 @@ static void mi_heap_absorb(mi_heap_t* heap, mi_heap_t* from) { } mi_assert_internal(from->page_count == 0); - // and do outstanding delayed frees in the `from` heap + // and do outstanding delayed frees in the `from` heap // note: be careful here as the `heap` field in all those pages no longer point to `from`, - // turns out to be ok as `_mi_heap_delayed_free` only visits the list and calls a + // turns out to be ok as `_mi_heap_delayed_free` only visits the list and calls a // the regular `_mi_free_delayed_block` which is safe. - _mi_heap_delayed_free(from); + _mi_heap_delayed_free_all(from); #if !defined(_MSC_VER) || (_MSC_VER > 1900) // somehow the following line gives an error in VS2015, issue #353 mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_block_t,&from->thread_delayed_free) == NULL); #endif // and reset the `from` heap - mi_heap_reset_pages(from); + mi_heap_reset_pages(from); } // Safe delete a heap without freeing any still allocated blocks in that heap. @@ -376,7 +441,7 @@ void mi_heap_delete(mi_heap_t* heap) if (heap==NULL || !mi_heap_is_initialized(heap)) return; if (!mi_heap_is_backing(heap)) { - // tranfer still used pages to the backing heap + // transfer still used pages to the backing heap mi_heap_absorb(heap->tld->heap_backing, heap); } else { @@ -392,7 +457,7 @@ mi_heap_t* mi_heap_set_default(mi_heap_t* heap) { mi_assert(mi_heap_is_initialized(heap)); if (heap==NULL || !mi_heap_is_initialized(heap)) return NULL; mi_assert_expensive(mi_heap_is_valid(heap)); - mi_heap_t* old = mi_get_default_heap(); + mi_heap_t* old = mi_prim_get_default_heap(); _mi_heap_set_default_direct(heap); return old; } @@ -410,7 +475,7 @@ static mi_heap_t* mi_heap_of_block(const void* p) { mi_segment_t* segment = _mi_ptr_segment(p); bool valid = (_mi_ptr_cookie(segment) == segment->cookie); mi_assert_internal(valid); - if (mi_unlikely(!valid)) return NULL; + if mi_unlikely(!valid) return NULL; return mi_page_heap(_mi_segment_page_of(segment,p)); } @@ -422,11 +487,10 @@ bool mi_heap_contains_block(mi_heap_t* heap, const void* p) { static bool mi_heap_page_check_owned(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* p, void* vfound) { - UNUSED(heap); - UNUSED(pq); + MI_UNUSED(heap); + MI_UNUSED(pq); bool* found = (bool*)vfound; - mi_segment_t* segment = _mi_page_segment(page); - void* start = _mi_page_start(segment, page, NULL); + void* start = mi_page_start(page); void* end = (uint8_t*)start + (page->capacity * mi_page_block_size(page)); *found = (p >= start && p < end); return (!*found); // continue if not found @@ -442,7 +506,7 @@ bool mi_heap_check_owned(mi_heap_t* heap, const void* p) { } bool mi_check_owned(const void* p) { - return mi_heap_check_owned(mi_get_default_heap(), p); + return mi_heap_check_owned(mi_prim_get_default_heap(), p); } /* ----------------------------------------------------------- @@ -470,13 +534,14 @@ static bool mi_heap_area_visit_blocks(const mi_heap_area_ex_t* xarea, mi_block_v if (page->used == 0) return true; const size_t bsize = mi_page_block_size(page); + const size_t ubsize = mi_page_usable_block_size(page); // without padding size_t psize; - uint8_t* pstart = _mi_page_start(_mi_page_segment(page), page, &psize); + uint8_t* pstart = _mi_segment_page_start(_mi_page_segment(page), page, &psize); if (page->capacity == 1) { // optimize page with one block mi_assert_internal(page->used == 1 && page->free == NULL); - return visitor(mi_page_heap(page), area, pstart, bsize, arg); + return visitor(mi_page_heap(page), area, pstart, ubsize, arg); } // create a bitmap of free blocks. @@ -484,9 +549,13 @@ static bool mi_heap_area_visit_blocks(const mi_heap_area_ex_t* xarea, mi_block_v uintptr_t free_map[MI_MAX_BLOCKS / sizeof(uintptr_t)]; memset(free_map, 0, sizeof(free_map)); + #if MI_DEBUG>1 size_t free_count = 0; + #endif for (mi_block_t* block = page->free; block != NULL; block = mi_block_next(page,block)) { + #if MI_DEBUG>1 free_count++; + #endif mi_assert_internal((uint8_t*)block >= pstart && (uint8_t*)block < (pstart + psize)); size_t offset = (uint8_t*)block - pstart; mi_assert_internal(offset % bsize == 0); @@ -499,7 +568,9 @@ static bool mi_heap_area_visit_blocks(const mi_heap_area_ex_t* xarea, mi_block_v mi_assert_internal(page->capacity == (free_count + page->used)); // walk through all blocks skipping the free ones + #if MI_DEBUG>1 size_t used_count = 0; + #endif for (size_t i = 0; i < page->capacity; i++) { size_t bitidx = (i / sizeof(uintptr_t)); size_t bit = i - (bitidx * sizeof(uintptr_t)); @@ -508,9 +579,11 @@ static bool mi_heap_area_visit_blocks(const mi_heap_area_ex_t* xarea, mi_block_v i += (sizeof(uintptr_t) - 1); // skip a run of free blocks } else if ((m & ((uintptr_t)1 << bit)) == 0) { + #if MI_DEBUG>1 used_count++; + #endif uint8_t* block = pstart + (i * bsize); - if (!visitor(mi_page_heap(page), area, block, bsize, arg)) return false; + if (!visitor(mi_page_heap(page), area, block, ubsize, arg)) return false; } } mi_assert_internal(page->used == used_count); @@ -521,17 +594,19 @@ typedef bool (mi_heap_area_visit_fun)(const mi_heap_t* heap, const mi_heap_area_ static bool mi_heap_visit_areas_page(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* vfun, void* arg) { - UNUSED(heap); - UNUSED(pq); + MI_UNUSED(heap); + MI_UNUSED(pq); mi_heap_area_visit_fun* fun = (mi_heap_area_visit_fun*)vfun; mi_heap_area_ex_t xarea; const size_t bsize = mi_page_block_size(page); + const size_t ubsize = mi_page_usable_block_size(page); xarea.page = page; xarea.area.reserved = page->reserved * bsize; xarea.area.committed = page->capacity * bsize; - xarea.area.blocks = _mi_page_start(_mi_page_segment(page), page, NULL); - xarea.area.used = page->used; - xarea.area.block_size = bsize; + xarea.area.blocks = mi_page_start(page); + xarea.area.used = page->used; // number of blocks in use (#553) + xarea.area.block_size = ubsize; + xarea.area.full_block_size = bsize; return fun(heap, &xarea, arg); } diff --git a/contrib/libs/mimalloc/src/init.c b/contrib/libs/mimalloc/src/init.c index c0f09b5ed8..62bb69ddcb 100644 --- a/contrib/libs/mimalloc/src/init.c +++ b/contrib/libs/mimalloc/src/init.c @@ -1,33 +1,42 @@ /* ---------------------------------------------------------------------------- -Copyright (c) 2018-2021, Microsoft Research, Daan Leijen +Copyright (c) 2018-2022, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #include "mimalloc.h" -#include "mimalloc-internal.h" +#include "mimalloc/internal.h" +#include "mimalloc/prim.h" #include <string.h> // memcpy, memset #include <stdlib.h> // atexit + // Empty page used to initialize the small free pages array const mi_page_t _mi_page_empty = { - 0, false, false, false, false, + 0, + false, false, false, false, 0, // capacity 0, // reserved capacity { 0 }, // flags false, // is_zero 0, // retire_expire NULL, // free - #if MI_ENCODE_FREELIST + NULL, // local_free + 0, // used + 0, // block size shift + 0, // heap tag + 0, // block_size + NULL, // page_start + #if (MI_PADDING || MI_ENCODE_FREELIST) { 0, 0 }, #endif - 0, // used - 0, // xblock_size - NULL, // local_free - ATOMIC_VAR_INIT(0), // xthread_free - ATOMIC_VAR_INIT(0), // xheap + MI_ATOMIC_VAR_INIT(0), // xthread_free + MI_ATOMIC_VAR_INIT(0), // xheap NULL, NULL + #if MI_INTPTR_SIZE==4 + , { NULL } + #endif }; #define MI_PAGE_EMPTY() ((mi_page_t*)&_mi_page_empty) @@ -74,7 +83,9 @@ const mi_page_t _mi_page_empty = { MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \ MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \ MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \ - { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, \ + MI_STAT_COUNT_NULL(), \ + { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, \ + { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, \ { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } \ MI_STAT_COUNT_END_NULL() @@ -89,19 +100,26 @@ const mi_page_t _mi_page_empty = { mi_decl_cache_align const mi_heap_t _mi_heap_empty = { NULL, - MI_SMALL_PAGES_EMPTY, - MI_PAGE_QUEUES_EMPTY, - ATOMIC_VAR_INIT(NULL), + MI_ATOMIC_VAR_INIT(NULL), 0, // tid 0, // cookie + 0, // arena id { 0, 0 }, // keys - { {0}, {0}, 0 }, + { {0}, {0}, 0, true }, // random 0, // page count MI_BIN_FULL, 0, // page retired min/max NULL, // next - false + false, // can reclaim + 0, // tag + MI_SMALL_PAGES_EMPTY, + MI_PAGE_QUEUES_EMPTY }; + +mi_threadid_t _mi_thread_id(void) mi_attr_noexcept { + return _mi_prim_thread_id(); +} + // the thread-local default heap for allocation mi_decl_thread mi_heap_t* _mi_heap_default = (mi_heap_t*)&_mi_heap_empty; @@ -111,7 +129,7 @@ static mi_tld_t tld_main = { 0, false, &_mi_heap_main, &_mi_heap_main, { { NULL, NULL }, {NULL ,NULL}, {NULL ,NULL, 0}, - 0, 0, 0, 0, 0, 0, NULL, + 0, 0, 0, 0, 0, &tld_main.stats, &tld_main.os }, // segments { 0, &tld_main.stats }, // os @@ -120,17 +138,19 @@ static mi_tld_t tld_main = { mi_heap_t _mi_heap_main = { &tld_main, - MI_SMALL_PAGES_EMPTY, - MI_PAGE_QUEUES_EMPTY, - ATOMIC_VAR_INIT(NULL), + MI_ATOMIC_VAR_INIT(NULL), 0, // thread id 0, // initial cookie + 0, // arena id { 0, 0 }, // the key of the main heap can be fixed (unlike page keys that need to be secure!) - { {0x846ca68b}, {0}, 0 }, // random + { {0x846ca68b}, {0}, 0, true }, // random 0, // page count MI_BIN_FULL, 0, // page retired min/max NULL, // next heap - false // can reclaim + false, // can reclaim + 0, // tag + MI_SMALL_PAGES_EMPTY, + MI_PAGE_QUEUES_EMPTY }; bool _mi_process_is_initialized = false; // set to `true` in `mi_process_init`. @@ -141,8 +161,13 @@ mi_stats_t _mi_stats_main = { MI_STATS_NULL }; static void mi_heap_main_init(void) { if (_mi_heap_main.cookie == 0) { _mi_heap_main.thread_id = _mi_thread_id(); - _mi_heap_main.cookie = _os_random_weak((uintptr_t)&mi_heap_main_init); - _mi_random_init(&_mi_heap_main.random); + _mi_heap_main.cookie = 1; + #if defined(_WIN32) && !defined(MI_SHARED_LIB) + _mi_random_init_weak(&_mi_heap_main.random); // prevent allocation failure during bcrypt dll initialization with static linking + #else + _mi_random_init(&_mi_heap_main.random); + #endif + _mi_heap_main.cookie = _mi_heap_random_next(&_mi_heap_main); _mi_heap_main.keys[0] = _mi_heap_random_next(&_mi_heap_main); _mi_heap_main.keys[1] = _mi_heap_random_next(&_mi_heap_main); } @@ -160,54 +185,123 @@ mi_heap_t* _mi_heap_main_get(void) { // note: in x64 in release build `sizeof(mi_thread_data_t)` is under 4KiB (= OS page size). typedef struct mi_thread_data_s { - mi_heap_t heap; // must come first due to cast in `_mi_heap_done` + mi_heap_t heap; // must come first due to cast in `_mi_heap_done` mi_tld_t tld; + mi_memid_t memid; // must come last due to zero'ing } mi_thread_data_t; + +// Thread meta-data is allocated directly from the OS. For +// some programs that do not use thread pools and allocate and +// destroy many OS threads, this may causes too much overhead +// per thread so we maintain a small cache of recently freed metadata. + +#define TD_CACHE_SIZE (16) +static _Atomic(mi_thread_data_t*) td_cache[TD_CACHE_SIZE]; + +static mi_thread_data_t* mi_thread_data_zalloc(void) { + // try to find thread metadata in the cache + bool is_zero = false; + mi_thread_data_t* td = NULL; + for (int i = 0; i < TD_CACHE_SIZE; i++) { + td = mi_atomic_load_ptr_relaxed(mi_thread_data_t, &td_cache[i]); + if (td != NULL) { + // found cached allocation, try use it + td = mi_atomic_exchange_ptr_acq_rel(mi_thread_data_t, &td_cache[i], NULL); + if (td != NULL) { + break; + } + } + } + + // if that fails, allocate as meta data + if (td == NULL) { + mi_memid_t memid; + td = (mi_thread_data_t*)_mi_os_alloc(sizeof(mi_thread_data_t), &memid, &_mi_stats_main); + if (td == NULL) { + // if this fails, try once more. (issue #257) + td = (mi_thread_data_t*)_mi_os_alloc(sizeof(mi_thread_data_t), &memid, &_mi_stats_main); + if (td == NULL) { + // really out of memory + _mi_error_message(ENOMEM, "unable to allocate thread local heap metadata (%zu bytes)\n", sizeof(mi_thread_data_t)); + } + } + if (td != NULL) { + td->memid = memid; + is_zero = memid.initially_zero; + } + } + + if (td != NULL && !is_zero) { + _mi_memzero_aligned(td, offsetof(mi_thread_data_t,memid)); + } + return td; +} + +static void mi_thread_data_free( mi_thread_data_t* tdfree ) { + // try to add the thread metadata to the cache + for (int i = 0; i < TD_CACHE_SIZE; i++) { + mi_thread_data_t* td = mi_atomic_load_ptr_relaxed(mi_thread_data_t, &td_cache[i]); + if (td == NULL) { + mi_thread_data_t* expected = NULL; + if (mi_atomic_cas_ptr_weak_acq_rel(mi_thread_data_t, &td_cache[i], &expected, tdfree)) { + return; + } + } + } + // if that fails, just free it directly + _mi_os_free(tdfree, sizeof(mi_thread_data_t), tdfree->memid, &_mi_stats_main); +} + +void _mi_thread_data_collect(void) { + // free all thread metadata from the cache + for (int i = 0; i < TD_CACHE_SIZE; i++) { + mi_thread_data_t* td = mi_atomic_load_ptr_relaxed(mi_thread_data_t, &td_cache[i]); + if (td != NULL) { + td = mi_atomic_exchange_ptr_acq_rel(mi_thread_data_t, &td_cache[i], NULL); + if (td != NULL) { + _mi_os_free(td, sizeof(mi_thread_data_t), td->memid, &_mi_stats_main); + } + } + } +} + // Initialize the thread local default heap, called from `mi_thread_init` -static bool _mi_heap_init(void) { - if (mi_heap_is_initialized(mi_get_default_heap())) return true; +static bool _mi_thread_heap_init(void) { + if (mi_heap_is_initialized(mi_prim_get_default_heap())) return true; if (_mi_is_main_thread()) { // mi_assert_internal(_mi_heap_main.thread_id != 0); // can happen on freeBSD where alloc is called before any initialization // the main heap is statically allocated mi_heap_main_init(); _mi_heap_set_default_direct(&_mi_heap_main); - //mi_assert_internal(_mi_heap_default->tld->heap_backing == mi_get_default_heap()); + //mi_assert_internal(_mi_heap_default->tld->heap_backing == mi_prim_get_default_heap()); } else { // use `_mi_os_alloc` to allocate directly from the OS - mi_thread_data_t* td = (mi_thread_data_t*)_mi_os_alloc(sizeof(mi_thread_data_t), &_mi_stats_main); // Todo: more efficient allocation? - if (td == NULL) { - // if this fails, try once more. (issue #257) - td = (mi_thread_data_t*)_mi_os_alloc(sizeof(mi_thread_data_t), &_mi_stats_main); - if (td == NULL) { - // really out of memory - _mi_error_message(ENOMEM, "unable to allocate thread local heap metadata (%zu bytes)\n", sizeof(mi_thread_data_t)); - return false; - } - } - // OS allocated so already zero initialized + mi_thread_data_t* td = mi_thread_data_zalloc(); + if (td == NULL) return false; + mi_tld_t* tld = &td->tld; mi_heap_t* heap = &td->heap; - _mi_memcpy_aligned(heap, &_mi_heap_empty, sizeof(*heap)); - heap->thread_id = _mi_thread_id(); - _mi_random_init(&heap->random); - heap->cookie = _mi_heap_random_next(heap) | 1; - heap->keys[0] = _mi_heap_random_next(heap); - heap->keys[1] = _mi_heap_random_next(heap); - heap->tld = tld; - tld->heap_backing = heap; - tld->heaps = heap; - tld->segments.stats = &tld->stats; - tld->segments.os = &tld->os; - tld->os.stats = &tld->stats; - _mi_heap_set_default_direct(heap); + _mi_tld_init(tld, heap); // must be before `_mi_heap_init` + _mi_heap_init(heap, tld, _mi_arena_id_none(), false /* can reclaim */, 0 /* default tag */); + _mi_heap_set_default_direct(heap); } return false; } +// initialize thread local data +void _mi_tld_init(mi_tld_t* tld, mi_heap_t* bheap) { + _mi_memzero_aligned(tld,sizeof(mi_tld_t)); + tld->heap_backing = bheap; + tld->heaps = NULL; + tld->segments.stats = &tld->stats; + tld->segments.os = &tld->os; + tld->os.stats = &tld->stats; +} + // Free the thread local default heap (called from `mi_thread_done`) -static bool _mi_heap_done(mi_heap_t* heap) { +static bool _mi_thread_heap_done(mi_heap_t* heap) { if (!mi_heap_is_initialized(heap)) return true; // reset default heap @@ -234,23 +328,23 @@ static bool _mi_heap_done(mi_heap_t* heap) { if (heap != &_mi_heap_main) { _mi_heap_collect_abandon(heap); } - + // merge stats - _mi_stats_done(&heap->tld->stats); + _mi_stats_done(&heap->tld->stats); // free if not the main thread if (heap != &_mi_heap_main) { mi_assert_internal(heap->tld->segments.count == 0 || heap->thread_id != _mi_thread_id()); - _mi_os_free(heap, sizeof(mi_thread_data_t), &_mi_stats_main); + mi_thread_data_free((mi_thread_data_t*)heap); } -#if 0 - // never free the main thread even in debug mode; if a dll is linked statically with mimalloc, - // there may still be delete/free calls after the mi_fls_done is called. Issue #207 else { + #if 0 + // never free the main thread even in debug mode; if a dll is linked statically with mimalloc, + // there may still be delete/free calls after the mi_fls_done is called. Issue #207 _mi_heap_destroy_pages(heap); mi_assert_internal(heap->tld->heap_backing == &_mi_heap_main); + #endif } -#endif return false; } @@ -272,57 +366,12 @@ static bool _mi_heap_done(mi_heap_t* heap) { // to set up the thread local keys. // -------------------------------------------------------- -static void _mi_thread_done(mi_heap_t* default_heap); - -#ifdef __wasi__ -// no pthreads in the WebAssembly Standard Interface -#elif !defined(_WIN32) -#define MI_USE_PTHREADS -#endif - -#if defined(_WIN32) && defined(MI_SHARED_LIB) - // nothing to do as it is done in DllMain -#elif defined(_WIN32) && !defined(MI_SHARED_LIB) - // use thread local storage keys to detect thread ending - #include <windows.h> - #include <fibersapi.h> - #if (_WIN32_WINNT < 0x600) // before Windows Vista - WINBASEAPI DWORD WINAPI FlsAlloc( _In_opt_ PFLS_CALLBACK_FUNCTION lpCallback ); - WINBASEAPI PVOID WINAPI FlsGetValue( _In_ DWORD dwFlsIndex ); - WINBASEAPI BOOL WINAPI FlsSetValue( _In_ DWORD dwFlsIndex, _In_opt_ PVOID lpFlsData ); - WINBASEAPI BOOL WINAPI FlsFree(_In_ DWORD dwFlsIndex); - #endif - static DWORD mi_fls_key = (DWORD)(-1); - static void NTAPI mi_fls_done(PVOID value) { - if (value!=NULL) _mi_thread_done((mi_heap_t*)value); - } -#elif defined(MI_USE_PTHREADS) - // use pthread local storage keys to detect thread ending - // (and used with MI_TLS_PTHREADS for the default heap) - #include <pthread.h> - pthread_key_t _mi_heap_default_key = (pthread_key_t)(-1); - static void mi_pthread_done(void* value) { - if (value!=NULL) _mi_thread_done((mi_heap_t*)value); - } -#elif defined(__wasi__) -// no pthreads in the WebAssembly Standard Interface -#else - #pragma message("define a way to call mi_thread_done when a thread is done") -#endif - // Set up handlers so `mi_thread_done` is called automatically static void mi_process_setup_auto_thread_done(void) { static bool tls_initialized = false; // fine if it races if (tls_initialized) return; tls_initialized = true; - #if defined(_WIN32) && defined(MI_SHARED_LIB) - // nothing to do as it is done in DllMain - #elif defined(_WIN32) && !defined(MI_SHARED_LIB) - mi_fls_key = FlsAlloc(&mi_fls_done); - #elif defined(MI_USE_PTHREADS) - mi_assert_internal(_mi_heap_default_key == (pthread_key_t)(-1)); - pthread_key_create(&_mi_heap_default_key, &mi_pthread_done); - #endif + _mi_prim_thread_init_auto_done(); _mi_heap_set_default_direct(&_mi_heap_main); } @@ -331,41 +380,62 @@ bool _mi_is_main_thread(void) { return (_mi_heap_main.thread_id==0 || _mi_heap_main.thread_id == _mi_thread_id()); } +static _Atomic(size_t) thread_count = MI_ATOMIC_VAR_INIT(1); + +size_t _mi_current_thread_count(void) { + return mi_atomic_load_relaxed(&thread_count); +} + // This is called from the `mi_malloc_generic` void mi_thread_init(void) mi_attr_noexcept { // ensure our process has started already mi_process_init(); - + // initialize the thread local default heap // (this will call `_mi_heap_set_default_direct` and thus set the // fiber/pthread key to a non-zero value, ensuring `_mi_thread_done` is called) - if (_mi_heap_init()) return; // returns true if already initialized + if (_mi_thread_heap_init()) return; // returns true if already initialized _mi_stat_increase(&_mi_stats_main.threads, 1); + mi_atomic_increment_relaxed(&thread_count); //_mi_verbose_message("thread init: 0x%zx\n", _mi_thread_id()); } void mi_thread_done(void) mi_attr_noexcept { - _mi_thread_done(mi_get_default_heap()); + _mi_thread_done(NULL); } -static void _mi_thread_done(mi_heap_t* heap) { +void _mi_thread_done(mi_heap_t* heap) +{ + // calling with NULL implies using the default heap + if (heap == NULL) { + heap = mi_prim_get_default_heap(); + if (heap == NULL) return; + } + + // prevent re-entrancy through heap_done/heap_set_default_direct (issue #699) + if (!mi_heap_is_initialized(heap)) { + return; + } + + // adjust stats + mi_atomic_decrement_relaxed(&thread_count); _mi_stat_decrease(&_mi_stats_main.threads, 1); // check thread-id as on Windows shutdown with FLS the main (exit) thread may call this on thread-local heaps... if (heap->thread_id != _mi_thread_id()) return; - + // abandon the thread local heap - if (_mi_heap_done(heap)) return; // returns true if already ran + if (_mi_thread_heap_done(heap)) return; // returns true if already ran } void _mi_heap_set_default_direct(mi_heap_t* heap) { mi_assert_internal(heap != NULL); #if defined(MI_TLS_SLOT) - mi_tls_slot_set(MI_TLS_SLOT,heap); + mi_prim_tls_slot_set(MI_TLS_SLOT,heap); #elif defined(MI_TLS_PTHREAD_SLOT_OFS) - *mi_tls_pthread_heap_slot() = heap; + *mi_prim_tls_pthread_heap_slot() = heap; #elif defined(MI_TLS_PTHREAD) // we use _mi_heap_default_key #else @@ -374,38 +444,29 @@ void _mi_heap_set_default_direct(mi_heap_t* heap) { // ensure the default heap is passed to `_mi_thread_done` // setting to a non-NULL value also ensures `mi_thread_done` is called. - #if defined(_WIN32) && defined(MI_SHARED_LIB) - // nothing to do as it is done in DllMain - #elif defined(_WIN32) && !defined(MI_SHARED_LIB) - mi_assert_internal(mi_fls_key != 0); - FlsSetValue(mi_fls_key, heap); - #elif defined(MI_USE_PTHREADS) - if (_mi_heap_default_key != (pthread_key_t)(-1)) { // can happen during recursive invocation on freeBSD - pthread_setspecific(_mi_heap_default_key, heap); - } - #endif + _mi_prim_thread_associate_default_heap(heap); } // -------------------------------------------------------- // Run functions on process init/done, and thread init/done // -------------------------------------------------------- -static void mi_process_done(void); +static void mi_cdecl mi_process_done(void); static bool os_preloading = true; // true until this module is initialized static bool mi_redirected = false; // true if malloc redirects to mi_malloc // Returns true if this module has not been initialized; Don't use C runtime routines until it returns false. -bool _mi_preloading(void) { +bool mi_decl_noinline _mi_preloading(void) { return os_preloading; } -bool mi_is_redirected(void) mi_attr_noexcept { +mi_decl_nodiscard bool mi_is_redirected(void) mi_attr_noexcept { return mi_redirected; } // Communicate with the redirection module on Windows -#if defined(_WIN32) && defined(MI_SHARED_LIB) +#if defined(_WIN32) && defined(MI_SHARED_LIB) && !defined(MI_WIN_NOREDIRECT) #ifdef __cplusplus extern "C" { #endif @@ -421,8 +482,8 @@ mi_decl_export void _mi_redirect_entry(DWORD reason) { mi_thread_done(); } } -__declspec(dllimport) bool mi_allocator_init(const char** message); -__declspec(dllimport) void mi_allocator_done(void); +__declspec(dllimport) bool mi_cdecl mi_allocator_init(const char** message); +__declspec(dllimport) void mi_cdecl mi_allocator_done(void); #ifdef __cplusplus } #endif @@ -439,15 +500,18 @@ static void mi_allocator_done(void) { // Called once by the process loader static void mi_process_load(void) { mi_heap_main_init(); - #if defined(MI_TLS_RECURSE_GUARD) + #if defined(__APPLE__) || defined(MI_TLS_RECURSE_GUARD) volatile mi_heap_t* dummy = _mi_heap_default; // access TLS to allocate it before setting tls_initialized to true; - UNUSED(dummy); + if (dummy == NULL) return; // use dummy or otherwise the access may get optimized away (issue #697) #endif os_preloading = false; + mi_assert_internal(_mi_is_main_thread()); + #if !(defined(_WIN32) && defined(MI_SHARED_LIB)) // use Dll process detach (see below) instead of atexit (issue #521) atexit(&mi_process_done); + #endif _mi_options_init(); + mi_process_setup_auto_thread_done(); mi_process_init(); - //mi_stats_reset();- if (mi_redirected) _mi_verbose_message("malloc is redirected.\n"); // show message from the redirector (if present) @@ -456,6 +520,9 @@ static void mi_process_load(void) { if (msg != NULL && (mi_option_is_enabled(mi_option_verbose) || mi_option_is_enabled(mi_option_show_errors))) { _mi_fputs(NULL,NULL,NULL,msg); } + + // reseed random + _mi_random_reinit_if_weak(&_mi_heap_main.random); } #if defined(_WIN32) && (defined(_M_IX86) || defined(_M_X64)) @@ -466,7 +533,7 @@ static void mi_detect_cpu_features(void) { // FSRM for fast rep movsb support (AMD Zen3+ (~2020) or Intel Ice Lake+ (~2017)) int32_t cpu_info[4]; __cpuid(cpu_info, 7); - _mi_cpu_has_fsrm = ((cpu_info[3] & (1 << 4)) != 0); // bit 4 of EDX : see <https ://en.wikipedia.org/wiki/CPUID#EAX=7,_ECX=0:_Extended_Features> + _mi_cpu_has_fsrm = ((cpu_info[3] & (1 << 4)) != 0); // bit 4 of EDX : see <https://en.wikipedia.org/wiki/CPUID#EAX=7,_ECX=0:_Extended_Features> } #else static void mi_detect_cpu_features(void) { @@ -477,33 +544,57 @@ static void mi_detect_cpu_features(void) { // Initialize the process; called by thread_init or the process loader void mi_process_init(void) mi_attr_noexcept { // ensure we are called once - if (_mi_process_is_initialized) return; + static mi_atomic_once_t process_init; + #if _MSC_VER < 1920 + mi_heap_main_init(); // vs2017 can dynamically re-initialize _mi_heap_main + #endif + if (!mi_atomic_once(&process_init)) return; _mi_process_is_initialized = true; + _mi_verbose_message("process init: 0x%zx\n", _mi_thread_id()); mi_process_setup_auto_thread_done(); - _mi_verbose_message("process init: 0x%zx\n", _mi_thread_id()); mi_detect_cpu_features(); _mi_os_init(); mi_heap_main_init(); - #if (MI_DEBUG) + #if MI_DEBUG _mi_verbose_message("debug level : %d\n", MI_DEBUG); #endif _mi_verbose_message("secure level: %d\n", MI_SECURE); + _mi_verbose_message("mem tracking: %s\n", MI_TRACK_TOOL); + #if MI_TSAN + _mi_verbose_message("thread santizer enabled\n"); + #endif mi_thread_init(); + + #if defined(_WIN32) + // On windows, when building as a static lib the FLS cleanup happens to early for the main thread. + // To avoid this, set the FLS value for the main thread to NULL so the fls cleanup + // will not call _mi_thread_done on the (still executing) main thread. See issue #508. + _mi_prim_thread_associate_default_heap(NULL); + #endif + mi_stats_reset(); // only call stat reset *after* thread init (or the heap tld == NULL) + mi_track_init(); if (mi_option_is_enabled(mi_option_reserve_huge_os_pages)) { - size_t pages = mi_option_get(mi_option_reserve_huge_os_pages); - mi_reserve_huge_os_pages_interleave(pages, 0, pages*500); - } + size_t pages = mi_option_get_clamp(mi_option_reserve_huge_os_pages, 0, 128*1024); + long reserve_at = mi_option_get(mi_option_reserve_huge_os_pages_at); + if (reserve_at != -1) { + mi_reserve_huge_os_pages_at(pages, reserve_at, pages*500); + } else { + mi_reserve_huge_os_pages_interleave(pages, 0, pages*500); + } + } if (mi_option_is_enabled(mi_option_reserve_os_memory)) { long ksize = mi_option_get(mi_option_reserve_os_memory); - if (ksize > 0) mi_reserve_os_memory((size_t)ksize*KiB, true, true); + if (ksize > 0) { + mi_reserve_os_memory((size_t)ksize*MI_KiB, true, true); + } } } // Called when the process is done (through `at_exit`) -static void mi_process_done(void) { +static void mi_cdecl mi_process_done(void) { // only shutdown if we were initialized if (!_mi_process_is_initialized) return; // ensure we are called once @@ -511,22 +602,31 @@ static void mi_process_done(void) { if (process_done) return; process_done = true; - #if defined(_WIN32) && !defined(MI_SHARED_LIB) - FlsSetValue(mi_fls_key, NULL); // don't call main-thread callback - FlsFree(mi_fls_key); // call thread-done on all threads to prevent dangling callback pointer if statically linked with a DLL; Issue #208 - #endif - - #if (MI_DEBUG != 0) || !defined(MI_SHARED_LIB) - // free all memory if possible on process exit. This is not needed for a stand-alone process - // but should be done if mimalloc is statically linked into another shared library which - // is repeatedly loaded/unloaded, see issue #281. - mi_collect(true /* force */ ); + // release any thread specific resources and ensure _mi_thread_done is called on all but the main thread + _mi_prim_thread_done_auto_done(); + + #ifndef MI_SKIP_COLLECT_ON_EXIT + #if (MI_DEBUG || !defined(MI_SHARED_LIB)) + // free all memory if possible on process exit. This is not needed for a stand-alone process + // but should be done if mimalloc is statically linked into another shared library which + // is repeatedly loaded/unloaded, see issue #281. + mi_collect(true /* force */ ); + #endif #endif + // Forcefully release all retained memory; this can be dangerous in general if overriding regular malloc/free + // since after process_done there might still be other code running that calls `free` (like at_exit routines, + // or C-runtime termination code. + if (mi_option_is_enabled(mi_option_destroy_on_exit)) { + mi_collect(true /* force */); + _mi_heap_unsafe_destroy_all(); // forcefully release all memory held by all heaps (of this thread only!) + _mi_arena_unsafe_destroy_all(& _mi_heap_main_get()->tld->stats); + } + if (mi_option_is_enabled(mi_option_show_stats) || mi_option_is_enabled(mi_option_verbose)) { mi_stats_print(NULL); } - mi_allocator_done(); + mi_allocator_done(); _mi_verbose_message("process done: 0x%zx\n", _mi_heap_main.thread_id); os_preloading = true; // don't call the C runtime anymore } @@ -536,31 +636,22 @@ static void mi_process_done(void) { #if defined(_WIN32) && defined(MI_SHARED_LIB) // Windows DLL: easy to hook into process_init and thread_done __declspec(dllexport) BOOL WINAPI DllMain(HINSTANCE inst, DWORD reason, LPVOID reserved) { - UNUSED(reserved); - UNUSED(inst); + MI_UNUSED(reserved); + MI_UNUSED(inst); if (reason==DLL_PROCESS_ATTACH) { mi_process_load(); } + else if (reason==DLL_PROCESS_DETACH) { + mi_process_done(); + } else if (reason==DLL_THREAD_DETACH) { - if (!mi_is_redirected()) mi_thread_done(); + if (!mi_is_redirected()) { + mi_thread_done(); + } } return TRUE; } -#elif defined(__cplusplus) - // C++: use static initialization to detect process start - static bool _mi_process_init(void) { - mi_process_load(); - return (_mi_heap_main.thread_id != 0); - } - static bool mi_initialized = _mi_process_init(); - -#elif defined(__GNUC__) || defined(__clang__) - // GCC,Clang: use the constructor attribute - static void __attribute__((constructor)) _mi_process_init(void) { - mi_process_load(); - } - #elif defined(_MSC_VER) // MSVC: use data section magic for static libraries // See <https://www.codeguru.com/cpp/misc/misc/applicationcontrol/article.php/c6945/Running-Code-Before-and-After-Main.htm> @@ -568,17 +659,31 @@ static void mi_process_done(void) { mi_process_load(); return 0; } - typedef int(*_crt_cb)(void); - #ifdef _M_X64 + typedef int(*_mi_crt_callback_t)(void); + #if defined(_M_X64) || defined(_M_ARM64) __pragma(comment(linker, "/include:" "_mi_msvc_initu")) #pragma section(".CRT$XIU", long, read) #else __pragma(comment(linker, "/include:" "__mi_msvc_initu")) #endif #pragma data_seg(".CRT$XIU") - _crt_cb _mi_msvc_initu[] = { &_mi_process_init }; + mi_decl_externc _mi_crt_callback_t _mi_msvc_initu[] = { &_mi_process_init }; #pragma data_seg() +#elif defined(__cplusplus) + // C++: use static initialization to detect process start + static bool _mi_process_init(void) { + mi_process_load(); + return (_mi_heap_main.thread_id != 0); + } + static bool mi_initialized = _mi_process_init(); + +#elif defined(__GNUC__) || defined(__clang__) + // GCC,Clang: use the constructor attribute + static void __attribute__((constructor)) _mi_process_init(void) { + mi_process_load(); + } + #else #pragma message("define a way to call mi_process_load on your platform") #endif diff --git a/contrib/libs/mimalloc/src/libc.c b/contrib/libs/mimalloc/src/libc.c new file mode 100644 index 0000000000..dd6b400737 --- /dev/null +++ b/contrib/libs/mimalloc/src/libc.c @@ -0,0 +1,273 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2023, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +// -------------------------------------------------------- +// This module defines various std libc functions to reduce +// the dependency on libc, and also prevent errors caused +// by some libc implementations when called before `main` +// executes (due to malloc redirection) +// -------------------------------------------------------- + +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/prim.h" // mi_prim_getenv + +char _mi_toupper(char c) { + if (c >= 'a' && c <= 'z') return (c - 'a' + 'A'); + else return c; +} + +int _mi_strnicmp(const char* s, const char* t, size_t n) { + if (n == 0) return 0; + for (; *s != 0 && *t != 0 && n > 0; s++, t++, n--) { + if (_mi_toupper(*s) != _mi_toupper(*t)) break; + } + return (n == 0 ? 0 : *s - *t); +} + +void _mi_strlcpy(char* dest, const char* src, size_t dest_size) { + if (dest==NULL || src==NULL || dest_size == 0) return; + // copy until end of src, or when dest is (almost) full + while (*src != 0 && dest_size > 1) { + *dest++ = *src++; + dest_size--; + } + // always zero terminate + *dest = 0; +} + +void _mi_strlcat(char* dest, const char* src, size_t dest_size) { + if (dest==NULL || src==NULL || dest_size == 0) return; + // find end of string in the dest buffer + while (*dest != 0 && dest_size > 1) { + dest++; + dest_size--; + } + // and catenate + _mi_strlcpy(dest, src, dest_size); +} + +size_t _mi_strlen(const char* s) { + if (s==NULL) return 0; + size_t len = 0; + while(s[len] != 0) { len++; } + return len; +} + +size_t _mi_strnlen(const char* s, size_t max_len) { + if (s==NULL) return 0; + size_t len = 0; + while(s[len] != 0 && len < max_len) { len++; } + return len; +} + +#ifdef MI_NO_GETENV +bool _mi_getenv(const char* name, char* result, size_t result_size) { + MI_UNUSED(name); + MI_UNUSED(result); + MI_UNUSED(result_size); + return false; +} +#else +bool _mi_getenv(const char* name, char* result, size_t result_size) { + if (name==NULL || result == NULL || result_size < 64) return false; + return _mi_prim_getenv(name,result,result_size); +} +#endif + +// -------------------------------------------------------- +// Define our own limited `_mi_vsnprintf` and `_mi_snprintf` +// This is mostly to avoid calling these when libc is not yet +// initialized (and to reduce dependencies) +// +// format: d i, p x u, s +// prec: z l ll L +// width: 10 +// align-left: - +// fill: 0 +// plus: + +// -------------------------------------------------------- + +static void mi_outc(char c, char** out, char* end) { + char* p = *out; + if (p >= end) return; + *p = c; + *out = p + 1; +} + +static void mi_outs(const char* s, char** out, char* end) { + if (s == NULL) return; + char* p = *out; + while (*s != 0 && p < end) { + *p++ = *s++; + } + *out = p; +} + +static void mi_out_fill(char fill, size_t len, char** out, char* end) { + char* p = *out; + for (size_t i = 0; i < len && p < end; i++) { + *p++ = fill; + } + *out = p; +} + +static void mi_out_alignright(char fill, char* start, size_t len, size_t extra, char* end) { + if (len == 0 || extra == 0) return; + if (start + len + extra >= end) return; + // move `len` characters to the right (in reverse since it can overlap) + for (size_t i = 1; i <= len; i++) { + start[len + extra - i] = start[len - i]; + } + // and fill the start + for (size_t i = 0; i < extra; i++) { + start[i] = fill; + } +} + + +static void mi_out_num(uintptr_t x, size_t base, char prefix, char** out, char* end) +{ + if (x == 0 || base == 0 || base > 16) { + if (prefix != 0) { mi_outc(prefix, out, end); } + mi_outc('0',out,end); + } + else { + // output digits in reverse + char* start = *out; + while (x > 0) { + char digit = (char)(x % base); + mi_outc((digit <= 9 ? '0' + digit : 'A' + digit - 10),out,end); + x = x / base; + } + if (prefix != 0) { + mi_outc(prefix, out, end); + } + size_t len = *out - start; + // and reverse in-place + for (size_t i = 0; i < (len / 2); i++) { + char c = start[len - i - 1]; + start[len - i - 1] = start[i]; + start[i] = c; + } + } +} + + +#define MI_NEXTC() c = *in; if (c==0) break; in++; + +void _mi_vsnprintf(char* buf, size_t bufsize, const char* fmt, va_list args) { + if (buf == NULL || bufsize == 0 || fmt == NULL) return; + buf[bufsize - 1] = 0; + char* const end = buf + (bufsize - 1); + const char* in = fmt; + char* out = buf; + while (true) { + if (out >= end) break; + char c; + MI_NEXTC(); + if (c != '%') { + if ((c >= ' ' && c <= '~') || c=='\n' || c=='\r' || c=='\t') { // output visible ascii or standard control only + mi_outc(c, &out, end); + } + } + else { + MI_NEXTC(); + char fill = ' '; + size_t width = 0; + char numtype = 'd'; + char numplus = 0; + bool alignright = true; + if (c == '+' || c == ' ') { numplus = c; MI_NEXTC(); } + if (c == '-') { alignright = false; MI_NEXTC(); } + if (c == '0') { fill = '0'; MI_NEXTC(); } + if (c >= '1' && c <= '9') { + width = (c - '0'); MI_NEXTC(); + while (c >= '0' && c <= '9') { + width = (10 * width) + (c - '0'); MI_NEXTC(); + } + if (c == 0) break; // extra check due to while + } + if (c == 'z' || c == 't' || c == 'L') { numtype = c; MI_NEXTC(); } + else if (c == 'l') { + numtype = c; MI_NEXTC(); + if (c == 'l') { numtype = 'L'; MI_NEXTC(); } + } + + char* start = out; + if (c == 's') { + // string + const char* s = va_arg(args, const char*); + mi_outs(s, &out, end); + } + else if (c == 'p' || c == 'x' || c == 'u') { + // unsigned + uintptr_t x = 0; + if (c == 'x' || c == 'u') { + if (numtype == 'z') x = va_arg(args, size_t); + else if (numtype == 't') x = va_arg(args, uintptr_t); // unsigned ptrdiff_t + else if (numtype == 'L') x = (uintptr_t)va_arg(args, unsigned long long); + else x = va_arg(args, unsigned long); + } + else if (c == 'p') { + x = va_arg(args, uintptr_t); + mi_outs("0x", &out, end); + start = out; + width = (width >= 2 ? width - 2 : 0); + } + if (width == 0 && (c == 'x' || c == 'p')) { + if (c == 'p') { width = 2 * (x <= UINT32_MAX ? 4 : ((x >> 16) <= UINT32_MAX ? 6 : sizeof(void*))); } + if (width == 0) { width = 2; } + fill = '0'; + } + mi_out_num(x, (c == 'x' || c == 'p' ? 16 : 10), numplus, &out, end); + } + else if (c == 'i' || c == 'd') { + // signed + intptr_t x = 0; + if (numtype == 'z') x = va_arg(args, intptr_t ); + else if (numtype == 't') x = va_arg(args, ptrdiff_t); + else if (numtype == 'L') x = (intptr_t)va_arg(args, long long); + else x = va_arg(args, long); + char pre = 0; + if (x < 0) { + pre = '-'; + if (x > INTPTR_MIN) { x = -x; } + } + else if (numplus != 0) { + pre = numplus; + } + mi_out_num((uintptr_t)x, 10, pre, &out, end); + } + else if (c >= ' ' && c <= '~') { + // unknown format + mi_outc('%', &out, end); + mi_outc(c, &out, end); + } + + // fill & align + mi_assert_internal(out <= end); + mi_assert_internal(out >= start); + const size_t len = out - start; + if (len < width) { + mi_out_fill(fill, width - len, &out, end); + if (alignright && out <= end) { + mi_out_alignright(fill, start, len, width - len, end); + } + } + } + } + mi_assert_internal(out <= end); + *out = 0; +} + +void _mi_snprintf(char* buf, size_t buflen, const char* fmt, ...) { + va_list args; + va_start(args, fmt); + _mi_vsnprintf(buf, buflen, fmt, args); + va_end(args); +} diff --git a/contrib/libs/mimalloc/src/options.c b/contrib/libs/mimalloc/src/options.c index 30025db226..db6e040fe8 100644 --- a/contrib/libs/mimalloc/src/options.c +++ b/contrib/libs/mimalloc/src/options.c @@ -5,32 +5,24 @@ terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #include "mimalloc.h" -#include "mimalloc-internal.h" -#include "mimalloc-atomic.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" +#include "mimalloc/prim.h" // mi_prim_out_stderr -#include <stdio.h> -#include <stdlib.h> // strtol -#include <string.h> // strncpy, strncat, strlen, strstr -#include <ctype.h> // toupper -#include <stdarg.h> +#include <stdio.h> // stdin/stdout +#include <stdlib.h> // abort -#ifdef _MSC_VER -#pragma warning(disable:4996) // strncpy, strncat -#endif -static uintptr_t mi_max_error_count = 16; // stop outputting errors after this -static uintptr_t mi_max_warning_count = 16; // stop outputting warnings after this +static long mi_max_error_count = 16; // stop outputting errors after this (use < 0 for no limit) +static long mi_max_warning_count = 16; // stop outputting warnings after this (use < 0 for no limit) -static void mi_add_stderr_output(); +static void mi_add_stderr_output(void); int mi_version(void) mi_attr_noexcept { return MI_MALLOC_VERSION; } -#ifdef _WIN32 -#include <conio.h> -#endif // -------------------------------------------------------- // Options @@ -49,10 +41,11 @@ typedef struct mi_option_desc_s { mi_init_t init; // is it initialized yet? (from the environment) mi_option_t option; // for debugging: the option index should match the option const char* name; // option name without `mimalloc_` prefix + const char* legacy_name; // potential legacy option name } mi_option_desc_t; -#define MI_OPTION(opt) mi_option_##opt, #opt -#define MI_OPTION_DESC(opt) {0, UNINIT, MI_OPTION(opt) } +#define MI_OPTION(opt) mi_option_##opt, #opt, NULL +#define MI_OPTION_LEGACY(opt,legacy) mi_option_##opt, #opt, #legacy static mi_option_desc_t options[_mi_option_last] = { @@ -66,65 +59,95 @@ static mi_option_desc_t options[_mi_option_last] = { 0, UNINIT, MI_OPTION(verbose) }, // the following options are experimental and not all combinations make sense. - { 1, UNINIT, MI_OPTION(eager_commit) }, // commit per segment directly (4MiB) (but see also `eager_commit_delay`) - #if defined(_WIN32) || (MI_INTPTR_SIZE <= 4) // and other OS's without overcommit? - { 0, UNINIT, MI_OPTION(eager_region_commit) }, - { 1, UNINIT, MI_OPTION(reset_decommits) }, // reset decommits memory - #else - { 1, UNINIT, MI_OPTION(eager_region_commit) }, - { 0, UNINIT, MI_OPTION(reset_decommits) }, // reset uses MADV_FREE/MADV_DONTNEED - #endif - { 0, UNINIT, MI_OPTION(large_os_pages) }, // use large OS pages, use only with eager commit to prevent fragmentation of VMA's - { 0, UNINIT, MI_OPTION(reserve_huge_os_pages) }, // per 1GiB huge pages - { 0, UNINIT, MI_OPTION(reserve_os_memory) }, - { 0, UNINIT, MI_OPTION(segment_cache) }, // cache N segments per thread - { 1, UNINIT, MI_OPTION(page_reset) }, // reset page memory on free - { 0, UNINIT, MI_OPTION(abandoned_page_reset) },// reset free page memory when a thread terminates - { 0, UNINIT, MI_OPTION(segment_reset) }, // reset segment memory on free (needs eager commit) + { 1, UNINIT, MI_OPTION(eager_commit) }, // commit per segment directly (4MiB) (but see also `eager_commit_delay`) + { 2, UNINIT, MI_OPTION_LEGACY(arena_eager_commit,eager_region_commit) }, // eager commit arena's? 2 is used to enable this only on an OS that has overcommit (i.e. linux) + { 1, UNINIT, MI_OPTION_LEGACY(purge_decommits,reset_decommits) }, // purge decommits memory (instead of reset) (note: on linux this uses MADV_DONTNEED for decommit) + { 0, UNINIT, MI_OPTION_LEGACY(allow_large_os_pages,large_os_pages) }, // use large OS pages, use only with eager commit to prevent fragmentation of VMA's + { 0, UNINIT, MI_OPTION(reserve_huge_os_pages) }, // per 1GiB huge pages + {-1, UNINIT, MI_OPTION(reserve_huge_os_pages_at) }, // reserve huge pages at node N + { 0, UNINIT, MI_OPTION(reserve_os_memory) }, // reserve N KiB OS memory in advance (use `option_get_size`) + { 0, UNINIT, MI_OPTION(deprecated_segment_cache) }, // cache N segments per thread + { 0, UNINIT, MI_OPTION(deprecated_page_reset) }, // reset page memory on free + { 0, UNINIT, MI_OPTION(abandoned_page_purge) }, // purge free page memory when a thread terminates + { 0, UNINIT, MI_OPTION(deprecated_segment_reset) }, // reset segment memory on free (needs eager commit) #if defined(__NetBSD__) - { 0, UNINIT, MI_OPTION(eager_commit_delay) }, // the first N segments per thread are not eagerly committed + { 0, UNINIT, MI_OPTION(eager_commit_delay) }, // the first N segments per thread are not eagerly committed #else - { 1, UNINIT, MI_OPTION(eager_commit_delay) }, // the first N segments per thread are not eagerly committed (but per page in the segment on demand) + { 1, UNINIT, MI_OPTION(eager_commit_delay) }, // the first N segments per thread are not eagerly committed (but per page in the segment on demand) #endif - { 100, UNINIT, MI_OPTION(reset_delay) }, // reset delay in milli-seconds - { 0, UNINIT, MI_OPTION(use_numa_nodes) }, // 0 = use available numa nodes, otherwise use at most N nodes. - { 0, UNINIT, MI_OPTION(limit_os_alloc) }, // 1 = do not use OS memory for allocation (but only reserved arenas) - { 100, UNINIT, MI_OPTION(os_tag) }, // only apple specific for now but might serve more or less related purpose - { 16, UNINIT, MI_OPTION(max_errors) }, // maximum errors that are output - { 16, UNINIT, MI_OPTION(max_warnings) } // maximum warnings that are output + { 10, UNINIT, MI_OPTION_LEGACY(purge_delay,reset_delay) }, // purge delay in milli-seconds + { 0, UNINIT, MI_OPTION(use_numa_nodes) }, // 0 = use available numa nodes, otherwise use at most N nodes. + { 0, UNINIT, MI_OPTION_LEGACY(disallow_os_alloc,limit_os_alloc) }, // 1 = do not use OS memory for allocation (but only reserved arenas) + { 100, UNINIT, MI_OPTION(os_tag) }, // only apple specific for now but might serve more or less related purpose + { 32, UNINIT, MI_OPTION(max_errors) }, // maximum errors that are output + { 32, UNINIT, MI_OPTION(max_warnings) }, // maximum warnings that are output + { 10, UNINIT, MI_OPTION(max_segment_reclaim)}, // max. percentage of the abandoned segments to be reclaimed per try. + { 0, UNINIT, MI_OPTION(destroy_on_exit)}, // release all OS memory on process exit; careful with dangling pointer or after-exit frees! + #if (MI_INTPTR_SIZE>4) + { 1024L*1024L, UNINIT, MI_OPTION(arena_reserve) }, // reserve memory N KiB at a time (=1GiB) (use `option_get_size`) + #else + { 128L*1024L, UNINIT, MI_OPTION(arena_reserve) }, // =128MiB on 32-bit + #endif + { 10, UNINIT, MI_OPTION(arena_purge_mult) }, // purge delay multiplier for arena's + { 1, UNINIT, MI_OPTION_LEGACY(purge_extend_delay, decommit_extend_delay) }, + { 1, UNINIT, MI_OPTION(abandoned_reclaim_on_free) },// reclaim an abandoned segment on a free + { 0, UNINIT, MI_OPTION(disallow_arena_alloc) }, // 1 = do not use arena's for allocation (except if using specific arena id's) + { 400, UNINIT, MI_OPTION(retry_on_oom) }, // windows only: retry on out-of-memory for N milli seconds (=400), set to 0 to disable retries. }; static void mi_option_init(mi_option_desc_t* desc); +static bool mi_option_has_size_in_kib(mi_option_t option) { + return (option == mi_option_reserve_os_memory || option == mi_option_arena_reserve); +} + void _mi_options_init(void) { // called on process load; should not be called before the CRT is initialized! // (e.g. do not call this from process_init as that may run before CRT initialization) mi_add_stderr_output(); // now it safe to use stderr for output for(int i = 0; i < _mi_option_last; i++ ) { mi_option_t option = (mi_option_t)i; - long l = mi_option_get(option); UNUSED(l); // initialize - if (option != mi_option_verbose) { + long l = mi_option_get(option); MI_UNUSED(l); // initialize + // if (option != mi_option_verbose) + { mi_option_desc_t* desc = &options[option]; - _mi_verbose_message("option '%s': %ld\n", desc->name, desc->value); + _mi_verbose_message("option '%s': %ld %s\n", desc->name, desc->value, (mi_option_has_size_in_kib(option) ? "KiB" : "")); } } mi_max_error_count = mi_option_get(mi_option_max_errors); mi_max_warning_count = mi_option_get(mi_option_max_warnings); } -long mi_option_get(mi_option_t option) { +mi_decl_nodiscard long mi_option_get(mi_option_t option) { mi_assert(option >= 0 && option < _mi_option_last); + if (option < 0 || option >= _mi_option_last) return 0; mi_option_desc_t* desc = &options[option]; mi_assert(desc->option == option); // index should match the option - if (mi_unlikely(desc->init == UNINIT)) { + if mi_unlikely(desc->init == UNINIT) { mi_option_init(desc); } return desc->value; } +mi_decl_nodiscard long mi_option_get_clamp(mi_option_t option, long min, long max) { + long x = mi_option_get(option); + return (x < min ? min : (x > max ? max : x)); +} + +mi_decl_nodiscard size_t mi_option_get_size(mi_option_t option) { + mi_assert_internal(mi_option_has_size_in_kib(option)); + const long x = mi_option_get(option); + size_t size = (x < 0 ? 0 : (size_t)x); + if (mi_option_has_size_in_kib(option)) { + size *= MI_KiB; + } + return size; +} + void mi_option_set(mi_option_t option, long value) { mi_assert(option >= 0 && option < _mi_option_last); + if (option < 0 || option >= _mi_option_last) return; mi_option_desc_t* desc = &options[option]; mi_assert(desc->option == option); // index should match the option desc->value = value; @@ -133,13 +156,14 @@ void mi_option_set(mi_option_t option, long value) { void mi_option_set_default(mi_option_t option, long value) { mi_assert(option >= 0 && option < _mi_option_last); + if (option < 0 || option >= _mi_option_last) return; mi_option_desc_t* desc = &options[option]; if (desc->init != INITIALIZED) { desc->value = value; } } -bool mi_option_is_enabled(mi_option_t option) { +mi_decl_nodiscard bool mi_option_is_enabled(mi_option_t option) { return (mi_option_get(option) != 0); } @@ -159,16 +183,11 @@ void mi_option_disable(mi_option_t option) { mi_option_set_enabled(option,false); } - -static void mi_out_stderr(const char* msg, void* arg) { - UNUSED(arg); - #ifdef _WIN32 - // on windows with redirection, the C runtime cannot handle locale dependent output - // after the main thread closes so we use direct console output. - if (!_mi_preloading()) { _cputs(msg); } - #else - fputs(msg, stderr); - #endif +static void mi_cdecl mi_out_stderr(const char* msg, void* arg) { + MI_UNUSED(arg); + if (msg != NULL && msg[0] != 0) { + _mi_prim_out_stderr(msg); + } } // Since an output function can be registered earliest in the `main` @@ -176,19 +195,19 @@ static void mi_out_stderr(const char* msg, void* arg) { // an output function is registered it is called immediately with // the output up to that point. #ifndef MI_MAX_DELAY_OUTPUT -#define MI_MAX_DELAY_OUTPUT ((uintptr_t)(32*1024)) +#define MI_MAX_DELAY_OUTPUT ((size_t)(32*1024)) #endif static char out_buf[MI_MAX_DELAY_OUTPUT+1]; -static _Atomic(uintptr_t) out_len; +static _Atomic(size_t) out_len; -static void mi_out_buf(const char* msg, void* arg) { - UNUSED(arg); +static void mi_cdecl mi_out_buf(const char* msg, void* arg) { + MI_UNUSED(arg); if (msg==NULL) return; if (mi_atomic_load_relaxed(&out_len)>=MI_MAX_DELAY_OUTPUT) return; - size_t n = strlen(msg); + size_t n = _mi_strlen(msg); if (n==0) return; // claim space - uintptr_t start = mi_atomic_add_acq_rel(&out_len, n); + size_t start = mi_atomic_add_acq_rel(&out_len, n); if (start >= MI_MAX_DELAY_OUTPUT) return; // check bound if (start+n >= MI_MAX_DELAY_OUTPUT) { @@ -213,7 +232,7 @@ static void mi_out_buf_flush(mi_output_fun* out, bool no_more_buf, void* arg) { // Once this module is loaded, switch to this routine // which outputs to stderr and the delayed output buffer. -static void mi_out_buf_stderr(const char* msg, void* arg) { +static void mi_cdecl mi_out_buf_stderr(const char* msg, void* arg) { mi_out_stderr(msg,arg); mi_out_buf(msg,arg); } @@ -242,7 +261,7 @@ void mi_register_output(mi_output_fun* out, void* arg) mi_attr_noexcept { } // add stderr to the delayed output after the module is loaded -static void mi_add_stderr_output() { +static void mi_add_stderr_output(void) { mi_assert_internal(mi_out_default == NULL); mi_out_buf_flush(&mi_out_stderr, false, NULL); // flush current contents to stderr mi_out_default = &mi_out_buf_stderr; // and add stderr to the delayed output @@ -251,31 +270,46 @@ static void mi_add_stderr_output() { // -------------------------------------------------------- // Messages, all end up calling `_mi_fputs`. // -------------------------------------------------------- -static _Atomic(uintptr_t) error_count; // = 0; // when >= max_error_count stop emitting errors -static _Atomic(uintptr_t) warning_count; // = 0; // when >= max_warning_count stop emitting warnings +static _Atomic(size_t) error_count; // = 0; // when >= max_error_count stop emitting errors +static _Atomic(size_t) warning_count; // = 0; // when >= max_warning_count stop emitting warnings // When overriding malloc, we may recurse into mi_vfprintf if an allocation // inside the C runtime causes another message. +// In some cases (like on macOS) the loader already allocates which +// calls into mimalloc; if we then access thread locals (like `recurse`) +// this may crash as the access may call _tlv_bootstrap that tries to +// (recursively) invoke malloc again to allocate space for the thread local +// variables on demand. This is why we use a _mi_preloading test on such +// platforms. However, C code generator may move the initial thread local address +// load before the `if` and we therefore split it out in a separate funcion. static mi_decl_thread bool recurse = false; -static bool mi_recurse_enter(void) { - #if defined(__APPLE__) || defined(MI_TLS_RECURSE_GUARD) - if (_mi_preloading()) return true; - #endif +static mi_decl_noinline bool mi_recurse_enter_prim(void) { if (recurse) return false; recurse = true; return true; } +static mi_decl_noinline void mi_recurse_exit_prim(void) { + recurse = false; +} + +static bool mi_recurse_enter(void) { + #if defined(__APPLE__) || defined(MI_TLS_RECURSE_GUARD) + if (_mi_preloading()) return false; + #endif + return mi_recurse_enter_prim(); +} + static void mi_recurse_exit(void) { #if defined(__APPLE__) || defined(MI_TLS_RECURSE_GUARD) if (_mi_preloading()) return; #endif - recurse = false; + mi_recurse_exit_prim(); } void _mi_fputs(mi_output_fun* out, void* arg, const char* prefix, const char* message) { - if (out==NULL || (FILE*)out==stdout || (FILE*)out==stderr) { // TODO: use mi_out_stderr for stderr? + if (out==NULL || (void*)out==(void*)stdout || (void*)out==(void*)stderr) { // TODO: use mi_out_stderr for stderr? if (!mi_recurse_enter()) return; out = mi_out_get_default(&arg); if (prefix != NULL) out(prefix, arg); @@ -289,12 +323,12 @@ void _mi_fputs(mi_output_fun* out, void* arg, const char* prefix, const char* me } // Define our own limited `fprintf` that avoids memory allocation. -// We do this using `snprintf` with a limited buffer. +// We do this using `_mi_vsnprintf` with a limited buffer. static void mi_vfprintf( mi_output_fun* out, void* arg, const char* prefix, const char* fmt, va_list args ) { char buf[512]; if (fmt==NULL) return; if (!mi_recurse_enter()) return; - vsnprintf(buf,sizeof(buf)-1,fmt,args); + _mi_vsnprintf(buf, sizeof(buf)-1, fmt, args); mi_recurse_exit(); _mi_fputs(out,arg,prefix,buf); } @@ -306,11 +340,22 @@ void _mi_fprintf( mi_output_fun* out, void* arg, const char* fmt, ... ) { va_end(args); } +static void mi_vfprintf_thread(mi_output_fun* out, void* arg, const char* prefix, const char* fmt, va_list args) { + if (prefix != NULL && _mi_strnlen(prefix,33) <= 32 && !_mi_is_main_thread()) { + char tprefix[64]; + _mi_snprintf(tprefix, sizeof(tprefix), "%sthread 0x%tx: ", prefix, (uintptr_t)_mi_thread_id()); + mi_vfprintf(out, arg, tprefix, fmt, args); + } + else { + mi_vfprintf(out, arg, prefix, fmt, args); + } +} + void _mi_trace_message(const char* fmt, ...) { if (mi_option_get(mi_option_verbose) <= 1) return; // only with verbose level 2 or higher va_list args; va_start(args, fmt); - mi_vfprintf(NULL, NULL, "mimalloc: ", fmt, args); + mi_vfprintf_thread(NULL, NULL, "mimalloc: ", fmt, args); va_end(args); } @@ -323,17 +368,21 @@ void _mi_verbose_message(const char* fmt, ...) { } static void mi_show_error_message(const char* fmt, va_list args) { - if (!mi_option_is_enabled(mi_option_show_errors) && !mi_option_is_enabled(mi_option_verbose)) return; - if (mi_atomic_increment_acq_rel(&error_count) > mi_max_error_count) return; - mi_vfprintf(NULL, NULL, "mimalloc: error: ", fmt, args); + if (!mi_option_is_enabled(mi_option_verbose)) { + if (!mi_option_is_enabled(mi_option_show_errors)) return; + if (mi_max_error_count >= 0 && (long)mi_atomic_increment_acq_rel(&error_count) > mi_max_error_count) return; + } + mi_vfprintf_thread(NULL, NULL, "mimalloc: error: ", fmt, args); } void _mi_warning_message(const char* fmt, ...) { - if (!mi_option_is_enabled(mi_option_show_errors) && !mi_option_is_enabled(mi_option_verbose)) return; - if (mi_atomic_increment_acq_rel(&warning_count) > mi_max_warning_count) return; + if (!mi_option_is_enabled(mi_option_verbose)) { + if (!mi_option_is_enabled(mi_option_show_errors)) return; + if (mi_max_warning_count >= 0 && (long)mi_atomic_increment_acq_rel(&warning_count) > mi_max_warning_count) return; + } va_list args; va_start(args,fmt); - mi_vfprintf(NULL, NULL, "mimalloc: warning: ", fmt, args); + mi_vfprintf_thread(NULL, NULL, "mimalloc: warning: ", fmt, args); va_end(args); } @@ -353,8 +402,8 @@ static mi_error_fun* volatile mi_error_handler; // = NULL static _Atomic(void*) mi_error_arg; // = NULL static void mi_error_default(int err) { - UNUSED(err); -#if (MI_DEBUG>0) + MI_UNUSED(err); +#if (MI_DEBUG>0) if (err==EFAULT) { #ifdef _MSC_VER __debugbreak(); @@ -398,108 +447,34 @@ void _mi_error_message(int err, const char* fmt, ...) { // Initialize options by checking the environment // -------------------------------------------------------- -static void mi_strlcpy(char* dest, const char* src, size_t dest_size) { - dest[0] = 0; - strncpy(dest, src, dest_size - 1); - dest[dest_size - 1] = 0; -} +// TODO: implement ourselves to reduce dependencies on the C runtime +#include <stdlib.h> // strtol +#include <string.h> // strstr -static void mi_strlcat(char* dest, const char* src, size_t dest_size) { - strncat(dest, src, dest_size - 1); - dest[dest_size - 1] = 0; -} -static inline int mi_strnicmp(const char* s, const char* t, size_t n) { - if (n==0) return 0; - for (; *s != 0 && *t != 0 && n > 0; s++, t++, n--) { - if (toupper(*s) != toupper(*t)) break; - } - return (n==0 ? 0 : *s - *t); -} - -#if defined _WIN32 -// On Windows use GetEnvironmentVariable instead of getenv to work -// reliably even when this is invoked before the C runtime is initialized. -// i.e. when `_mi_preloading() == true`. -// Note: on windows, environment names are not case sensitive. -#include <windows.h> -static bool mi_getenv(const char* name, char* result, size_t result_size) { - result[0] = 0; - size_t len = GetEnvironmentVariableA(name, result, (DWORD)result_size); - return (len > 0 && len < result_size); -} -#elif !defined(MI_USE_ENVIRON) || (MI_USE_ENVIRON!=0) -// On Posix systemsr use `environ` to acces environment variables -// even before the C runtime is initialized. -#if defined(__APPLE__) && defined(__has_include) && __has_include(<crt_externs.h>) -#include <crt_externs.h> -static char** mi_get_environ(void) { - return (*_NSGetEnviron()); -} -#else -extern char** environ; -static char** mi_get_environ(void) { - return environ; -} -#endif -static bool mi_getenv(const char* name, char* result, size_t result_size) { - if (name==NULL) return false; - const size_t len = strlen(name); - if (len == 0) return false; - char** env = mi_get_environ(); - if (env == NULL) return false; - // compare up to 256 entries - for (int i = 0; i < 256 && env[i] != NULL; i++) { - const char* s = env[i]; - if (mi_strnicmp(name, s, len) == 0 && s[len] == '=') { // case insensitive - // found it - mi_strlcpy(result, s + len + 1, result_size); - return true; - } - } - return false; -} -#else -// fallback: use standard C `getenv` but this cannot be used while initializing the C runtime -static bool mi_getenv(const char* name, char* result, size_t result_size) { - // cannot call getenv() when still initializing the C runtime. - if (_mi_preloading()) return false; - const char* s = getenv(name); - if (s == NULL) { - // we check the upper case name too. - char buf[64+1]; - size_t len = strlen(name); - if (len >= sizeof(buf)) len = sizeof(buf) - 1; - for (size_t i = 0; i < len; i++) { - buf[i] = toupper(name[i]); +static void mi_option_init(mi_option_desc_t* desc) { + // Read option value from the environment + char s[64 + 1]; + char buf[64+1]; + _mi_strlcpy(buf, "mimalloc_", sizeof(buf)); + _mi_strlcat(buf, desc->name, sizeof(buf)); + bool found = _mi_getenv(buf, s, sizeof(s)); + if (!found && desc->legacy_name != NULL) { + _mi_strlcpy(buf, "mimalloc_", sizeof(buf)); + _mi_strlcat(buf, desc->legacy_name, sizeof(buf)); + found = _mi_getenv(buf, s, sizeof(s)); + if (found) { + _mi_warning_message("environment option \"mimalloc_%s\" is deprecated -- use \"mimalloc_%s\" instead.\n", desc->legacy_name, desc->name); } - buf[len] = 0; - s = getenv(buf); } - if (s != NULL && strlen(s) < result_size) { - mi_strlcpy(result, s, result_size); - return true; - } - else { - return false; - } -} -#endif -static void mi_option_init(mi_option_desc_t* desc) { - // Read option value from the environment - char buf[64+1]; - mi_strlcpy(buf, "mimalloc_", sizeof(buf)); - mi_strlcat(buf, desc->name, sizeof(buf)); - char s[64+1]; - if (mi_getenv(buf, s, sizeof(s))) { - size_t len = strlen(s); - if (len >= sizeof(buf)) len = sizeof(buf) - 1; + if (found) { + size_t len = _mi_strnlen(s, sizeof(buf) - 1); for (size_t i = 0; i < len; i++) { - buf[i] = (char)toupper(s[i]); + buf[i] = _mi_toupper(s[i]); } buf[len] = 0; - if (buf[0]==0 || strstr("1;TRUE;YES;ON", buf) != NULL) { + if (buf[0] == 0 || strstr("1;TRUE;YES;ON", buf) != NULL) { desc->value = 1; desc->init = INITIALIZED; } @@ -510,21 +485,38 @@ static void mi_option_init(mi_option_desc_t* desc) { else { char* end = buf; long value = strtol(buf, &end, 10); - if (desc->option == mi_option_reserve_os_memory) { - // this option is interpreted in KiB to prevent overflow of `long` + if (mi_option_has_size_in_kib(desc->option)) { + // this option is interpreted in KiB to prevent overflow of `long` for large allocations + // (long is 32-bit on 64-bit windows, which allows for 4TiB max.) + size_t size = (value < 0 ? 0 : (size_t)value); + bool overflow = false; if (*end == 'K') { end++; } - else if (*end == 'M') { value *= KiB; end++; } - else if (*end == 'G') { value *= MiB; end++; } - else { value = (value + KiB - 1) / KiB; } - if (*end == 'B') { end++; } + else if (*end == 'M') { overflow = mi_mul_overflow(size,MI_KiB,&size); end++; } + else if (*end == 'G') { overflow = mi_mul_overflow(size,MI_MiB,&size); end++; } + else if (*end == 'T') { overflow = mi_mul_overflow(size,MI_GiB,&size); end++; } + else { size = (size + MI_KiB - 1) / MI_KiB; } + if (end[0] == 'I' && end[1] == 'B') { end += 2; } // KiB, MiB, GiB, TiB + else if (*end == 'B') { end++; } // Kb, Mb, Gb, Tb + if (overflow || size > MI_MAX_ALLOC_SIZE) { size = (MI_MAX_ALLOC_SIZE / MI_KiB); } + value = (size > LONG_MAX ? LONG_MAX : (long)size); } if (*end == 0) { desc->value = value; desc->init = INITIALIZED; } else { - _mi_warning_message("environment option mimalloc_%s has an invalid value: %s\n", desc->name, buf); + // set `init` first to avoid recursion through _mi_warning_message on mimalloc_verbose. desc->init = DEFAULTED; + if (desc->option == mi_option_verbose && desc->value == 0) { + // if the 'mimalloc_verbose' env var has a bogus value we'd never know + // (since the value defaults to 'off') so in that case briefly enable verbose + desc->value = 1; + _mi_warning_message("environment option mimalloc_%s has an invalid value.\n", desc->name); + desc->value = 0; + } + else { + _mi_warning_message("environment option mimalloc_%s has an invalid value.\n", desc->name); + } } } mi_assert_internal(desc->init != UNINIT); diff --git a/contrib/libs/mimalloc/src/os.c b/contrib/libs/mimalloc/src/os.c index 85415232d7..88e7fcb32e 100644 --- a/contrib/libs/mimalloc/src/os.c +++ b/contrib/libs/mimalloc/src/os.c @@ -1,552 +1,225 @@ /* ---------------------------------------------------------------------------- -Copyright (c) 2018-2021, Microsoft Research, Daan Leijen +Copyright (c) 2018-2023, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ -#ifndef _DEFAULT_SOURCE -#define _DEFAULT_SOURCE // ensure mmap flags are defined -#endif - -#if defined(__sun) -// illumos provides new mman.h api when any of these are defined -// otherwise the old api based on caddr_t which predates the void pointers one. -// stock solaris provides only the former, chose to atomically to discard those -// flags only here rather than project wide tough. -#undef _XOPEN_SOURCE -#undef _POSIX_C_SOURCE -#endif #include "mimalloc.h" -#include "mimalloc-internal.h" -#include "mimalloc-atomic.h" - -#include <string.h> // strerror - -#ifdef _MSC_VER -#pragma warning(disable:4996) // strerror -#endif - +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" +#include "mimalloc/prim.h" -#if defined(_WIN32) -#include <windows.h> -#elif defined(__wasi__) -// stdlib.h is all we need, and has already been included in mimalloc.h -#else -#include <sys/mman.h> // mmap -#include <unistd.h> // sysconf -#if defined(__linux__) -#include <features.h> -#if defined(__GLIBC__) -#include <linux/mman.h> // linux mmap flags -#else -#include <sys/mman.h> -#endif -#endif -#if defined(__APPLE__) -#include <TargetConditionals.h> -#if !TARGET_IOS_IPHONE && !TARGET_IOS_SIMULATOR -#include <mach/vm_statistics.h> -#endif -#endif -#if defined(__HAIKU__) -#define madvise posix_madvise -#define MADV_DONTNEED POSIX_MADV_DONTNEED -#endif -#endif /* ----------------------------------------------------------- - Initialization. - On windows initializes support for aligned allocation and - large OS pages (if MIMALLOC_LARGE_OS_PAGES is true). + Initialization. ----------------------------------------------------------- */ -bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats); -static void* mi_align_up_ptr(void* p, size_t alignment) { - return (void*)_mi_align_up((uintptr_t)p, alignment); -} +static mi_os_mem_config_t mi_os_mem_config = { + 4096, // page size + 0, // large page size (usually 2MiB) + 4096, // allocation granularity + true, // has overcommit? (if true we use MAP_NORESERVE on mmap systems) + false, // can we partially free allocated blocks? (on mmap systems we can free anywhere in a mapped range, but on Windows we must free the entire span) + true // has virtual reserve? (if true we can reserve virtual address space without using commit or physical memory) +}; -static inline uintptr_t _mi_align_down(uintptr_t sz, size_t alignment) { - mi_assert_internal(alignment != 0); - uintptr_t mask = alignment - 1; - if ((alignment & mask) == 0) { // power of two? - return (sz & ~mask); - } - else { - return ((sz / alignment) * alignment); - } +bool _mi_os_has_overcommit(void) { + return mi_os_mem_config.has_overcommit; } -static void* mi_align_down_ptr(void* p, size_t alignment) { - return (void*)_mi_align_down((uintptr_t)p, alignment); +bool _mi_os_has_virtual_reserve(void) { + return mi_os_mem_config.has_virtual_reserve; } -// page size (initialized properly in `os_init`) -static size_t os_page_size = 4096; - -// minimal allocation granularity -static size_t os_alloc_granularity = 4096; - -// if non-zero, use large page allocation -static size_t large_os_page_size = 0; // OS (small) page size -size_t _mi_os_page_size() { - return os_page_size; +size_t _mi_os_page_size(void) { + return mi_os_mem_config.page_size; } // if large OS pages are supported (2 or 4MiB), then return the size, otherwise return the small page size (4KiB) -size_t _mi_os_large_page_size() { - return (large_os_page_size != 0 ? large_os_page_size : _mi_os_page_size()); +size_t _mi_os_large_page_size(void) { + return (mi_os_mem_config.large_page_size != 0 ? mi_os_mem_config.large_page_size : _mi_os_page_size()); } -static bool use_large_os_page(size_t size, size_t alignment) { +bool _mi_os_use_large_page(size_t size, size_t alignment) { // if we have access, check the size and alignment requirements - if (large_os_page_size == 0 || !mi_option_is_enabled(mi_option_large_os_pages)) return false; - return ((size % large_os_page_size) == 0 && (alignment % large_os_page_size) == 0); + if (mi_os_mem_config.large_page_size == 0 || !mi_option_is_enabled(mi_option_allow_large_os_pages)) return false; + return ((size % mi_os_mem_config.large_page_size) == 0 && (alignment % mi_os_mem_config.large_page_size) == 0); } // round to a good OS allocation size (bounded by max 12.5% waste) size_t _mi_os_good_alloc_size(size_t size) { size_t align_size; - if (size < 512*KiB) align_size = _mi_os_page_size(); - else if (size < 2*MiB) align_size = 64*KiB; - else if (size < 8*MiB) align_size = 256*KiB; - else if (size < 32*MiB) align_size = 1*MiB; - else align_size = 4*MiB; - if (mi_unlikely(size >= (SIZE_MAX - align_size))) return size; // possible overflow? + if (size < 512*MI_KiB) align_size = _mi_os_page_size(); + else if (size < 2*MI_MiB) align_size = 64*MI_KiB; + else if (size < 8*MI_MiB) align_size = 256*MI_KiB; + else if (size < 32*MI_MiB) align_size = 1*MI_MiB; + else align_size = 4*MI_MiB; + if mi_unlikely(size >= (SIZE_MAX - align_size)) return size; // possible overflow? return _mi_align_up(size, align_size); } -#if defined(_WIN32) -// We use VirtualAlloc2 for aligned allocation, but it is only supported on Windows 10 and Windows Server 2016. -// So, we need to look it up dynamically to run on older systems. (use __stdcall for 32-bit compatibility) -// NtAllocateVirtualAllocEx is used for huge OS page allocation (1GiB) -// -// We hide MEM_EXTENDED_PARAMETER to compile with older SDK's. -#include <winternl.h> -typedef PVOID (__stdcall *PVirtualAlloc2)(HANDLE, PVOID, SIZE_T, ULONG, ULONG, /* MEM_EXTENDED_PARAMETER* */ void*, ULONG); -typedef NTSTATUS (__stdcall *PNtAllocateVirtualMemoryEx)(HANDLE, PVOID*, SIZE_T*, ULONG, ULONG, /* MEM_EXTENDED_PARAMETER* */ PVOID, ULONG); -static PVirtualAlloc2 pVirtualAlloc2 = NULL; -static PNtAllocateVirtualMemoryEx pNtAllocateVirtualMemoryEx = NULL; - -// Similarly, GetNumaProcesorNodeEx is only supported since Windows 7 -#if (_WIN32_WINNT < 0x601) // before Win7 -typedef struct _PROCESSOR_NUMBER { WORD Group; BYTE Number; BYTE Reserved; } PROCESSOR_NUMBER, *PPROCESSOR_NUMBER; -#endif -typedef VOID (__stdcall *PGetCurrentProcessorNumberEx)(PPROCESSOR_NUMBER ProcNumber); -typedef BOOL (__stdcall *PGetNumaProcessorNodeEx)(PPROCESSOR_NUMBER Processor, PUSHORT NodeNumber); -typedef BOOL (__stdcall* PGetNumaNodeProcessorMaskEx)(USHORT Node, PGROUP_AFFINITY ProcessorMask); -static PGetCurrentProcessorNumberEx pGetCurrentProcessorNumberEx = NULL; -static PGetNumaProcessorNodeEx pGetNumaProcessorNodeEx = NULL; -static PGetNumaNodeProcessorMaskEx pGetNumaNodeProcessorMaskEx = NULL; - -static bool mi_win_enable_large_os_pages() -{ - if (large_os_page_size > 0) return true; - - // Try to see if large OS pages are supported - // To use large pages on Windows, we first need access permission - // Set "Lock pages in memory" permission in the group policy editor - // <https://devblogs.microsoft.com/oldnewthing/20110128-00/?p=11643> - unsigned long err = 0; - HANDLE token = NULL; - BOOL ok = OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token); - if (ok) { - TOKEN_PRIVILEGES tp; - ok = LookupPrivilegeValue(NULL, TEXT("SeLockMemoryPrivilege"), &tp.Privileges[0].Luid); - if (ok) { - tp.PrivilegeCount = 1; - tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED; - ok = AdjustTokenPrivileges(token, FALSE, &tp, 0, (PTOKEN_PRIVILEGES)NULL, 0); - if (ok) { - err = GetLastError(); - ok = (err == ERROR_SUCCESS); - if (ok) { - large_os_page_size = GetLargePageMinimum(); - } - } - } - CloseHandle(token); - } - if (!ok) { - if (err == 0) err = GetLastError(); - _mi_warning_message("cannot enable large OS page support, error %lu\n", err); - } - return (ok!=0); -} - void _mi_os_init(void) { - // get the page size - SYSTEM_INFO si; - GetSystemInfo(&si); - if (si.dwPageSize > 0) os_page_size = si.dwPageSize; - if (si.dwAllocationGranularity > 0) os_alloc_granularity = si.dwAllocationGranularity; - // get the VirtualAlloc2 function - HINSTANCE hDll; - hDll = LoadLibrary(TEXT("kernelbase.dll")); - if (hDll != NULL) { - // use VirtualAlloc2FromApp if possible as it is available to Windows store apps - pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2FromApp"); - if (pVirtualAlloc2==NULL) pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2"); - FreeLibrary(hDll); - } - // NtAllocateVirtualMemoryEx is used for huge page allocation - hDll = LoadLibrary(TEXT("ntdll.dll")); - if (hDll != NULL) { - pNtAllocateVirtualMemoryEx = (PNtAllocateVirtualMemoryEx)(void (*)(void))GetProcAddress(hDll, "NtAllocateVirtualMemoryEx"); - FreeLibrary(hDll); - } - // Try to use Win7+ numa API - hDll = LoadLibrary(TEXT("kernel32.dll")); - if (hDll != NULL) { - pGetCurrentProcessorNumberEx = (PGetCurrentProcessorNumberEx)(void (*)(void))GetProcAddress(hDll, "GetCurrentProcessorNumberEx"); - pGetNumaProcessorNodeEx = (PGetNumaProcessorNodeEx)(void (*)(void))GetProcAddress(hDll, "GetNumaProcessorNodeEx"); - pGetNumaNodeProcessorMaskEx = (PGetNumaNodeProcessorMaskEx)(void (*)(void))GetProcAddress(hDll, "GetNumaNodeProcessorMaskEx"); - FreeLibrary(hDll); - } - if (mi_option_is_enabled(mi_option_large_os_pages) || mi_option_is_enabled(mi_option_reserve_huge_os_pages)) { - mi_win_enable_large_os_pages(); - } -} -#elif defined(__wasi__) -void _mi_os_init() { - os_page_size = 0x10000; // WebAssembly has a fixed page size: 64KB - os_alloc_granularity = 16; -} -#else -void _mi_os_init() { - // get the page size - long result = sysconf(_SC_PAGESIZE); - if (result > 0) { - os_page_size = (size_t)result; - os_alloc_granularity = os_page_size; - } - large_os_page_size = 2*MiB; // TODO: can we query the OS for this? + _mi_prim_mem_init(&mi_os_mem_config); } -#endif /* ----------------------------------------------------------- - Raw allocation on Windows (VirtualAlloc) and Unix's (mmap). ------------------------------------------------------------ */ + Util +-------------------------------------------------------------- */ +bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats); +bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats); -static bool mi_os_mem_free(void* addr, size_t size, bool was_committed, mi_stats_t* stats) -{ - if (addr == NULL || size == 0) return true; // || _mi_os_is_huge_reserved(addr) - bool err = false; -#if defined(_WIN32) - err = (VirtualFree(addr, 0, MEM_RELEASE) == 0); -#elif defined(__wasi__) - err = 0; // WebAssembly's heap cannot be shrunk -#else - err = (munmap(addr, size) == -1); -#endif - if (was_committed) _mi_stat_decrease(&stats->committed, size); - _mi_stat_decrease(&stats->reserved, size); - if (err) { - _mi_warning_message("munmap failed: %s, addr 0x%8li, size %lu\n", strerror(errno), (size_t)addr, size); - return false; +static inline uintptr_t _mi_align_down(uintptr_t sz, size_t alignment) { + mi_assert_internal(alignment != 0); + uintptr_t mask = alignment - 1; + if ((alignment & mask) == 0) { // power of two? + return (sz & ~mask); } else { - return true; - } -} - -static void* mi_os_get_aligned_hint(size_t try_alignment, size_t size); - -#ifdef _WIN32 -static void* mi_win_virtual_allocx(void* addr, size_t size, size_t try_alignment, DWORD flags) { -#if (MI_INTPTR_SIZE >= 8) - // on 64-bit systems, try to use the virtual address area after 4TiB for 4MiB aligned allocations - void* hint; - if (addr == NULL && (hint = mi_os_get_aligned_hint(try_alignment,size)) != NULL) { - void* p = VirtualAlloc(hint, size, flags, PAGE_READWRITE); - if (p != NULL) return p; - DWORD err = GetLastError(); - if (err != ERROR_INVALID_ADDRESS && // If linked with multiple instances, we may have tried to allocate at an already allocated area (#210) - err != ERROR_INVALID_PARAMETER) { // Windows7 instability (#230) - return NULL; - } - // fall through - } -#endif -#if defined(MEM_EXTENDED_PARAMETER_TYPE_BITS) - // on modern Windows try use VirtualAlloc2 for aligned allocation - if (try_alignment > 0 && (try_alignment % _mi_os_page_size()) == 0 && pVirtualAlloc2 != NULL) { - MEM_ADDRESS_REQUIREMENTS reqs = { 0, 0, 0 }; - reqs.Alignment = try_alignment; - MEM_EXTENDED_PARAMETER param = { {0, 0}, {0} }; - param.Type = MemExtendedParameterAddressRequirements; - param.Pointer = &reqs; - return (*pVirtualAlloc2)(GetCurrentProcess(), addr, size, flags, PAGE_READWRITE, ¶m, 1); + return ((sz / alignment) * alignment); } -#endif - // last resort - return VirtualAlloc(addr, size, flags, PAGE_READWRITE); } -static void* mi_win_virtual_alloc(void* addr, size_t size, size_t try_alignment, DWORD flags, bool large_only, bool allow_large, bool* is_large) { - mi_assert_internal(!(large_only && !allow_large)); - static _Atomic(uintptr_t) large_page_try_ok; // = 0; - void* p = NULL; - if ((large_only || use_large_os_page(size, try_alignment)) - && allow_large && (flags&MEM_COMMIT)!=0 && (flags&MEM_RESERVE)!=0) { - uintptr_t try_ok = mi_atomic_load_acquire(&large_page_try_ok); - if (!large_only && try_ok > 0) { - // if a large page allocation fails, it seems the calls to VirtualAlloc get very expensive. - // therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times. - mi_atomic_cas_strong_acq_rel(&large_page_try_ok, &try_ok, try_ok - 1); - } - else { - // large OS pages must always reserve and commit. - *is_large = true; - p = mi_win_virtual_allocx(addr, size, try_alignment, flags | MEM_LARGE_PAGES); - if (large_only) return p; - // fall back to non-large page allocation on error (`p == NULL`). - if (p == NULL) { - mi_atomic_store_release(&large_page_try_ok,10UL); // on error, don't try again for the next N allocations - } - } - } - if (p == NULL) { - *is_large = ((flags&MEM_LARGE_PAGES) != 0); - p = mi_win_virtual_allocx(addr, size, try_alignment, flags); - } - if (p == NULL) { - _mi_warning_message("unable to allocate OS memory (%zu bytes, error code: %i, address: %p, large only: %d, allow large: %d)\n", size, GetLastError(), addr, large_only, allow_large); - } - return p; +static void* mi_align_down_ptr(void* p, size_t alignment) { + return (void*)_mi_align_down((uintptr_t)p, alignment); } -#elif defined(__wasi__) -static void* mi_wasm_heap_grow(size_t size, size_t try_alignment) { - uintptr_t base = __builtin_wasm_memory_size(0) * _mi_os_page_size(); - uintptr_t aligned_base = _mi_align_up(base, (uintptr_t) try_alignment); - size_t alloc_size = _mi_align_up( aligned_base - base + size, _mi_os_page_size()); - mi_assert(alloc_size >= size && (alloc_size % _mi_os_page_size()) == 0); - if (alloc_size < size) return NULL; - if (__builtin_wasm_memory_grow(0, alloc_size / _mi_os_page_size()) == SIZE_MAX) { - errno = ENOMEM; - return NULL; - } - return (void*)aligned_base; -} -#else -#define MI_OS_USE_MMAP -static void* mi_unix_mmapx(void* addr, size_t size, size_t try_alignment, int protect_flags, int flags, int fd) { - void* p = NULL; - #if (MI_INTPTR_SIZE >= 8) && !defined(MAP_ALIGNED) - // on 64-bit systems, use the virtual address area after 4TiB for 4MiB aligned allocations - void* hint; - if (addr == NULL && (hint = mi_os_get_aligned_hint(try_alignment, size)) != NULL) { - p = mmap(hint,size,protect_flags,flags,fd,0); - if (p==MAP_FAILED) p = NULL; // fall back to regular mmap - } - #else - UNUSED(try_alignment); - UNUSED(mi_os_get_aligned_hint); - #endif - if (p==NULL) { - p = mmap(addr,size,protect_flags,flags,fd,0); - if (p==MAP_FAILED) p = NULL; - } - return p; -} -static void* mi_unix_mmap(void* addr, size_t size, size_t try_alignment, int protect_flags, bool large_only, bool allow_large, bool* is_large) { - void* p = NULL; - #if !defined(MAP_ANONYMOUS) - #define MAP_ANONYMOUS MAP_ANON - #endif - #if !defined(MAP_NORESERVE) - #define MAP_NORESERVE 0 - #endif - int flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE; - int fd = -1; - #if defined(MAP_ALIGNED) // BSD - if (try_alignment > 0) { - size_t n = mi_bsr(try_alignment); - if (((size_t)1 << n) == try_alignment && n >= 12 && n <= 30) { // alignment is a power of 2 and 4096 <= alignment <= 1GiB - flags |= MAP_ALIGNED(n); - } - } - #endif - #if defined(PROT_MAX) - protect_flags |= PROT_MAX(PROT_READ | PROT_WRITE); // BSD - #endif - #if defined(VM_MAKE_TAG) - // macOS: tracking anonymous page with a specific ID. (All up to 98 are taken officially but LLVM sanitizers had taken 99) - int os_tag = (int)mi_option_get(mi_option_os_tag); - if (os_tag < 100 || os_tag > 255) os_tag = 100; - fd = VM_MAKE_TAG(os_tag); - #endif - if ((large_only || use_large_os_page(size, try_alignment)) && allow_large) { - static _Atomic(uintptr_t) large_page_try_ok; // = 0; - uintptr_t try_ok = mi_atomic_load_acquire(&large_page_try_ok); - if (!large_only && try_ok > 0) { - // If the OS is not configured for large OS pages, or the user does not have - // enough permission, the `mmap` will always fail (but it might also fail for other reasons). - // Therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times - // to avoid too many failing calls to mmap. - mi_atomic_cas_strong_acq_rel(&large_page_try_ok, &try_ok, try_ok - 1); - } - else { - int lflags = flags & ~MAP_NORESERVE; // using NORESERVE on huge pages seems to fail on Linux - int lfd = fd; - #ifdef MAP_ALIGNED_SUPER - lflags |= MAP_ALIGNED_SUPER; - #endif - #ifdef MAP_HUGETLB - lflags |= MAP_HUGETLB; - #endif - #ifdef MAP_HUGE_1GB - static bool mi_huge_pages_available = true; - if ((size % GiB) == 0 && mi_huge_pages_available) { - lflags |= MAP_HUGE_1GB; - } - else - #endif - { - #ifdef MAP_HUGE_2MB - lflags |= MAP_HUGE_2MB; - #endif - } - #ifdef VM_FLAGS_SUPERPAGE_SIZE_2MB - lfd |= VM_FLAGS_SUPERPAGE_SIZE_2MB; - #endif - if (large_only || lflags != flags) { - // try large OS page allocation - *is_large = true; - p = mi_unix_mmapx(addr, size, try_alignment, protect_flags, lflags, lfd); - #ifdef MAP_HUGE_1GB - if (p == NULL && (lflags & MAP_HUGE_1GB) != 0) { - mi_huge_pages_available = false; // don't try huge 1GiB pages again - _mi_warning_message("unable to allocate huge (1GiB) page, trying large (2MiB) pages instead (error %i)\n", errno); - lflags = ((lflags & ~MAP_HUGE_1GB) | MAP_HUGE_2MB); - p = mi_unix_mmapx(addr, size, try_alignment, protect_flags, lflags, lfd); - } - #endif - if (large_only) return p; - if (p == NULL) { - mi_atomic_store_release(&large_page_try_ok, (uintptr_t)10); // on error, don't try again for the next N allocations - } - } - } - } - if (p == NULL) { - *is_large = false; - p = mi_unix_mmapx(addr, size, try_alignment, protect_flags, flags, fd); - #if defined(MADV_HUGEPAGE) - // Many Linux systems don't allow MAP_HUGETLB but they support instead - // transparent huge pages (THP). It is not required to call `madvise` with MADV_HUGE - // though since properly aligned allocations will already use large pages if available - // in that case -- in particular for our large regions (in `memory.c`). - // However, some systems only allow THP if called with explicit `madvise`, so - // when large OS pages are enabled for mimalloc, we call `madvise` anyways. - if (allow_large && use_large_os_page(size, try_alignment)) { - if (madvise(p, size, MADV_HUGEPAGE) == 0) { - *is_large = true; // possibly - }; - } - #endif - #if defined(__sun) - if (allow_large && use_large_os_page(size, try_alignment)) { - struct memcntl_mha cmd = {0}; - cmd.mha_pagesize = large_os_page_size; - cmd.mha_cmd = MHA_MAPSIZE_VA; - if (memcntl(p, size, MC_HAT_ADVISE, (caddr_t)&cmd, 0, 0) == 0) { - *is_large = true; - } - } - #endif - } - if (p == NULL) { - _mi_warning_message("unable to allocate OS memory (%zu bytes, error code: %i, address: %p, large only: %d, allow large: %d)\n", size, errno, addr, large_only, allow_large); - } - return p; -} -#endif +/* ----------------------------------------------------------- + aligned hinting +-------------------------------------------------------------- */ // On 64-bit systems, we can do efficient aligned allocation by using -// the 4TiB to 30TiB area to allocate them. -#if (MI_INTPTR_SIZE >= 8) && (defined(_WIN32) || (defined(MI_OS_USE_MMAP) && !defined(MAP_ALIGNED))) -static mi_decl_cache_align _Atomic(uintptr_t) aligned_base; +// the 2TiB to 30TiB area to allocate those. +#if (MI_INTPTR_SIZE >= 8) +static mi_decl_cache_align _Atomic(uintptr_t)aligned_base; -// Return a 4MiB aligned address that is probably available. -// If this returns NULL, the OS will determine the address but on some OS's that may not be +// Return a MI_SEGMENT_SIZE aligned address that is probably available. +// If this returns NULL, the OS will determine the address but on some OS's that may not be // properly aligned which can be more costly as it needs to be adjusted afterwards. -// For a size > 1GiB this always returns NULL in order to guarantee good ASLR randomization; -// (otherwise an initial large allocation of say 2TiB has a 50% chance to include (known) addresses +// For a size > 1GiB this always returns NULL in order to guarantee good ASLR randomization; +// (otherwise an initial large allocation of say 2TiB has a 50% chance to include (known) addresses // in the middle of the 2TiB - 6TiB address range (see issue #372)) -#define KK_HINT_BASE ((uintptr_t)2 << 40) // 2TiB start -#define KK_HINT_AREA ((uintptr_t)4 << 40) // upto 6TiB (since before win8 there is "only" 8TiB available to processes) -#define KK_HINT_MAX ((uintptr_t)30 << 40) // wrap after 30TiB (area after 32TiB is used for huge OS pages) +#define MI_HINT_BASE ((uintptr_t)2 << 40) // 2TiB start +#define MI_HINT_AREA ((uintptr_t)4 << 40) // upto 6TiB (since before win8 there is "only" 8TiB available to processes) +#define MI_HINT_MAX ((uintptr_t)30 << 40) // wrap after 30TiB (area after 32TiB is used for huge OS pages) -static void* mi_os_get_aligned_hint(size_t try_alignment, size_t size) +void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size) { - if (try_alignment == 0 || try_alignment > MI_SEGMENT_SIZE) return NULL; - if ((size%MI_SEGMENT_SIZE) != 0) return NULL; - if (size > 1*GiB) return NULL; // guarantee the chance of fixed valid address is at most 1/(KK_HINT_AREA / 1<<30) = 1/4096. + if (try_alignment <= 1 || try_alignment > MI_SEGMENT_SIZE) return NULL; + size = _mi_align_up(size, MI_SEGMENT_SIZE); + if (size > 1*MI_GiB) return NULL; // guarantee the chance of fixed valid address is at most 1/(MI_HINT_AREA / 1<<30) = 1/4096. #if (MI_SECURE>0) size += MI_SEGMENT_SIZE; // put in `MI_SEGMENT_SIZE` virtual gaps between hinted blocks; this splits VLA's but increases guarded areas. #endif uintptr_t hint = mi_atomic_add_acq_rel(&aligned_base, size); - if (hint == 0 || hint > KK_HINT_MAX) { // wrap or initialize - uintptr_t init = KK_HINT_BASE; + if (hint == 0 || hint > MI_HINT_MAX) { // wrap or initialize + uintptr_t init = MI_HINT_BASE; #if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of aligned allocations unless in debug mode - uintptr_t r = _mi_heap_random_next(mi_get_default_heap()); - init = init + ((MI_SEGMENT_SIZE * ((r>>17) & 0xFFFFF)) % KK_HINT_AREA); // (randomly 20 bits)*4MiB == 0 to 4TiB + uintptr_t r = _mi_heap_random_next(mi_prim_get_default_heap()); + init = init + ((MI_SEGMENT_SIZE * ((r>>17) & 0xFFFFF)) % MI_HINT_AREA); // (randomly 20 bits)*4MiB == 0 to 4TiB #endif uintptr_t expected = hint + size; mi_atomic_cas_strong_acq_rel(&aligned_base, &expected, init); - hint = mi_atomic_add_acq_rel(&aligned_base, size); // this may still give 0 or > KK_HINT_MAX but that is ok, it is a hint after all + hint = mi_atomic_add_acq_rel(&aligned_base, size); // this may still give 0 or > MI_HINT_MAX but that is ok, it is a hint after all } if (hint%try_alignment != 0) return NULL; return (void*)hint; } #else -static void* mi_os_get_aligned_hint(size_t try_alignment, size_t size) { - UNUSED(try_alignment); UNUSED(size); +void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size) { + MI_UNUSED(try_alignment); MI_UNUSED(size); return NULL; } #endif -// Primitive allocation from the OS. +/* ----------------------------------------------------------- + Free memory +-------------------------------------------------------------- */ + +static void mi_os_free_huge_os_pages(void* p, size_t size, mi_stats_t* stats); + +static void mi_os_prim_free(void* addr, size_t size, bool still_committed, mi_stats_t* tld_stats) { + MI_UNUSED(tld_stats); + mi_stats_t* stats = &_mi_stats_main; + mi_assert_internal((size % _mi_os_page_size()) == 0); + if (addr == NULL || size == 0) return; // || _mi_os_is_huge_reserved(addr) + int err = _mi_prim_free(addr, size); + if (err != 0) { + _mi_warning_message("unable to free OS memory (error: %d (0x%x), size: 0x%zx bytes, address: %p)\n", err, err, size, addr); + } + if (still_committed) { _mi_stat_decrease(&stats->committed, size); } + _mi_stat_decrease(&stats->reserved, size); +} + +void _mi_os_free_ex(void* addr, size_t size, bool still_committed, mi_memid_t memid, mi_stats_t* tld_stats) { + if (mi_memkind_is_os(memid.memkind)) { + size_t csize = _mi_os_good_alloc_size(size); + void* base = addr; + // different base? (due to alignment) + if (memid.mem.os.base != NULL) { + mi_assert(memid.mem.os.base <= addr); + mi_assert((uint8_t*)memid.mem.os.base + memid.mem.os.alignment >= (uint8_t*)addr); + base = memid.mem.os.base; + csize += ((uint8_t*)addr - (uint8_t*)memid.mem.os.base); + } + // free it + if (memid.memkind == MI_MEM_OS_HUGE) { + mi_assert(memid.is_pinned); + mi_os_free_huge_os_pages(base, csize, tld_stats); + } + else { + mi_os_prim_free(base, csize, still_committed, tld_stats); + } + } + else { + // nothing to do + mi_assert(memid.memkind < MI_MEM_OS); + } +} + +void _mi_os_free(void* p, size_t size, mi_memid_t memid, mi_stats_t* tld_stats) { + _mi_os_free_ex(p, size, true, memid, tld_stats); +} + + +/* ----------------------------------------------------------- + Primitive allocation from the OS. +-------------------------------------------------------------- */ + // Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned. -static void* mi_os_mem_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, mi_stats_t* stats) { +static void* mi_os_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, mi_stats_t* tld_stats) { mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0); + mi_assert_internal(is_zero != NULL); + mi_assert_internal(is_large != NULL); if (size == 0) return NULL; - if (!commit) allow_large = false; - + if (!commit) { allow_large = false; } + if (try_alignment == 0) { try_alignment = 1; } // avoid 0 to ensure there will be no divide by zero when aligning + *is_zero = false; void* p = NULL; - /* - if (commit && allow_large) { - p = _mi_os_try_alloc_from_huge_reserved(size, try_alignment); - if (p != NULL) { - *is_large = true; - return p; - } + int err = _mi_prim_alloc(size, try_alignment, commit, allow_large, is_large, is_zero, &p); + if (err != 0) { + _mi_warning_message("unable to allocate OS memory (error: %d (0x%x), size: 0x%zx bytes, align: 0x%zx, commit: %d, allow large: %d)\n", err, err, size, try_alignment, commit, allow_large); } - */ - #if defined(_WIN32) - int flags = MEM_RESERVE; - if (commit) flags |= MEM_COMMIT; - p = mi_win_virtual_alloc(NULL, size, try_alignment, flags, false, allow_large, is_large); - #elif defined(__wasi__) - *is_large = false; - p = mi_wasm_heap_grow(size, try_alignment); - #else - int protect_flags = (commit ? (PROT_WRITE | PROT_READ) : PROT_NONE); - p = mi_unix_mmap(NULL, size, try_alignment, protect_flags, false, allow_large, is_large); - #endif + MI_UNUSED(tld_stats); + mi_stats_t* stats = &_mi_stats_main; mi_stat_counter_increase(stats->mmap_calls, 1); if (p != NULL) { _mi_stat_increase(&stats->reserved, size); - if (commit) { _mi_stat_increase(&stats->committed, size); } + if (commit) { + _mi_stat_increase(&stats->committed, size); + // seems needed for asan (or `mimalloc-test-api` fails) + #ifdef MI_TRACK_ASAN + if (*is_zero) { mi_track_mem_defined(p,size); } + else { mi_track_mem_undefined(p,size); } + #endif + } } return p; } @@ -554,119 +227,147 @@ static void* mi_os_mem_alloc(size_t size, size_t try_alignment, bool commit, boo // Primitive aligned allocation from the OS. // This function guarantees the allocated memory is aligned. -static void* mi_os_mem_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, bool* is_large, mi_stats_t* stats) { +static void* mi_os_prim_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** base, mi_stats_t* stats) { mi_assert_internal(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0)); mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0); + mi_assert_internal(is_large != NULL); + mi_assert_internal(is_zero != NULL); + mi_assert_internal(base != NULL); if (!commit) allow_large = false; if (!(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0))) return NULL; size = _mi_align_up(size, _mi_os_page_size()); // try first with a hint (this will be aligned directly on Win 10+ or BSD) - void* p = mi_os_mem_alloc(size, alignment, commit, allow_large, is_large, stats); + void* p = mi_os_prim_alloc(size, alignment, commit, allow_large, is_large, is_zero, stats); if (p == NULL) return NULL; - // if not aligned, free it, overallocate, and unmap around it - if (((uintptr_t)p % alignment != 0)) { - mi_os_mem_free(p, size, commit, stats); + // aligned already? + if (((uintptr_t)p % alignment) == 0) { + *base = p; + } + else { + // if not aligned, free it, overallocate, and unmap around it + _mi_warning_message("unable to allocate aligned OS memory directly, fall back to over-allocation (size: 0x%zx bytes, address: %p, alignment: 0x%zx, commit: %d)\n", size, p, alignment, commit); + mi_os_prim_free(p, size, commit, stats); if (size >= (SIZE_MAX - alignment)) return NULL; // overflow - size_t over_size = size + alignment; - -#if _WIN32 - // over-allocate and than re-allocate exactly at an aligned address in there. - // this may fail due to threads allocating at the same time so we - // retry this at most 3 times before giving up. - // (we can not decommit around the overallocation on Windows, because we can only - // free the original pointer, not one pointing inside the area) - int flags = MEM_RESERVE; - if (commit) flags |= MEM_COMMIT; - for (int tries = 0; tries < 3; tries++) { - // over-allocate to determine a virtual memory range - p = mi_os_mem_alloc(over_size, alignment, commit, false, is_large, stats); - if (p == NULL) return NULL; // error - if (((uintptr_t)p % alignment) == 0) { - // if p happens to be aligned, just decommit the left-over area - _mi_os_decommit((uint8_t*)p + size, over_size - size, stats); - break; - } - else { - // otherwise free and allocate at an aligned address in there - mi_os_mem_free(p, over_size, commit, stats); - void* aligned_p = mi_align_up_ptr(p, alignment); - p = mi_win_virtual_alloc(aligned_p, size, alignment, flags, false, allow_large, is_large); - if (p == aligned_p) break; // success! - if (p != NULL) { // should not happen? - mi_os_mem_free(p, size, commit, stats); - p = NULL; - } + const size_t over_size = size + alignment; + + if (!mi_os_mem_config.has_partial_free) { // win32 virtualAlloc cannot free parts of an allocated block + // over-allocate uncommitted (virtual) memory + p = mi_os_prim_alloc(over_size, 1 /*alignment*/, false /* commit? */, false /* allow_large */, is_large, is_zero, stats); + if (p == NULL) return NULL; + + // set p to the aligned part in the full region + // note: this is dangerous on Windows as VirtualFree needs the actual base pointer + // this is handled though by having the `base` field in the memid's + *base = p; // remember the base + p = mi_align_up_ptr(p, alignment); + + // explicitly commit only the aligned part + if (commit) { + _mi_os_commit(p, size, NULL, stats); } } -#else - // overallocate... - p = mi_os_mem_alloc(over_size, alignment, commit, false, is_large, stats); - if (p == NULL) return NULL; - // and selectively unmap parts around the over-allocated area. - void* aligned_p = mi_align_up_ptr(p, alignment); - size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p; - size_t mid_size = _mi_align_up(size, _mi_os_page_size()); - size_t post_size = over_size - pre_size - mid_size; - mi_assert_internal(pre_size < over_size && post_size < over_size && mid_size >= size); - if (pre_size > 0) mi_os_mem_free(p, pre_size, commit, stats); - if (post_size > 0) mi_os_mem_free((uint8_t*)aligned_p + mid_size, post_size, commit, stats); - // we can return the aligned pointer on `mmap` systems - p = aligned_p; -#endif + else { // mmap can free inside an allocation + // overallocate... + p = mi_os_prim_alloc(over_size, 1, commit, false, is_large, is_zero, stats); + if (p == NULL) return NULL; + + // and selectively unmap parts around the over-allocated area. + void* aligned_p = mi_align_up_ptr(p, alignment); + size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p; + size_t mid_size = _mi_align_up(size, _mi_os_page_size()); + size_t post_size = over_size - pre_size - mid_size; + mi_assert_internal(pre_size < over_size&& post_size < over_size&& mid_size >= size); + if (pre_size > 0) { mi_os_prim_free(p, pre_size, commit, stats); } + if (post_size > 0) { mi_os_prim_free((uint8_t*)aligned_p + mid_size, post_size, commit, stats); } + // we can return the aligned pointer on `mmap` systems + p = aligned_p; + *base = aligned_p; // since we freed the pre part, `*base == p`. + } } - mi_assert_internal(p == NULL || (p != NULL && ((uintptr_t)p % alignment) == 0)); + mi_assert_internal(p == NULL || (p != NULL && *base != NULL && ((uintptr_t)p % alignment) == 0)); return p; } + /* ----------------------------------------------------------- - OS API: alloc, free, alloc_aligned + OS API: alloc and alloc_aligned ----------------------------------------------------------- */ -void* _mi_os_alloc(size_t size, mi_stats_t* tld_stats) { - UNUSED(tld_stats); - mi_stats_t* stats = &_mi_stats_main; +void* _mi_os_alloc(size_t size, mi_memid_t* memid, mi_stats_t* stats) { + *memid = _mi_memid_none(); if (size == 0) return NULL; size = _mi_os_good_alloc_size(size); - bool is_large = false; - return mi_os_mem_alloc(size, 0, true, false, &is_large, stats); -} - -void _mi_os_free_ex(void* p, size_t size, bool was_committed, mi_stats_t* tld_stats) { - UNUSED(tld_stats); - mi_stats_t* stats = &_mi_stats_main; - if (size == 0 || p == NULL) return; - size = _mi_os_good_alloc_size(size); - mi_os_mem_free(p, size, was_committed, stats); -} - -void _mi_os_free(void* p, size_t size, mi_stats_t* stats) { - _mi_os_free_ex(p, size, true, stats); + bool os_is_large = false; + bool os_is_zero = false; + void* p = mi_os_prim_alloc(size, 0, true, false, &os_is_large, &os_is_zero, stats); + if (p != NULL) { + *memid = _mi_memid_create_os(true, os_is_zero, os_is_large); + } + return p; } -void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool* large, mi_stats_t* tld_stats) +void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* stats) { - UNUSED(tld_stats); + MI_UNUSED(&_mi_os_get_aligned_hint); // suppress unused warnings + *memid = _mi_memid_none(); if (size == 0) return NULL; size = _mi_os_good_alloc_size(size); alignment = _mi_align_up(alignment, _mi_os_page_size()); - bool allow_large = false; - if (large != NULL) { - allow_large = *large; - *large = false; + + bool os_is_large = false; + bool os_is_zero = false; + void* os_base = NULL; + void* p = mi_os_prim_alloc_aligned(size, alignment, commit, allow_large, &os_is_large, &os_is_zero, &os_base, stats ); + if (p != NULL) { + *memid = _mi_memid_create_os(commit, os_is_zero, os_is_large); + memid->mem.os.base = os_base; + memid->mem.os.alignment = alignment; } - return mi_os_mem_alloc_aligned(size, alignment, commit, allow_large, (large!=NULL?large:&allow_large), &_mi_stats_main /*tld->stats*/ ); + return p; } +/* ----------------------------------------------------------- + OS aligned allocation with an offset. This is used + for large alignments > MI_BLOCK_ALIGNMENT_MAX. We use a large mimalloc + page where the object can be aligned at an offset from the start of the segment. + As we may need to overallocate, we need to free such pointers using `mi_free_aligned` + to use the actual start of the memory region. +----------------------------------------------------------- */ +void* _mi_os_alloc_aligned_at_offset(size_t size, size_t alignment, size_t offset, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* stats) { + mi_assert(offset <= MI_SEGMENT_SIZE); + mi_assert(offset <= size); + mi_assert((alignment % _mi_os_page_size()) == 0); + *memid = _mi_memid_none(); + if (offset > MI_SEGMENT_SIZE) return NULL; + if (offset == 0) { + // regular aligned allocation + return _mi_os_alloc_aligned(size, alignment, commit, allow_large, memid, stats); + } + else { + // overallocate to align at an offset + const size_t extra = _mi_align_up(offset, alignment) - offset; + const size_t oversize = size + extra; + void* const start = _mi_os_alloc_aligned(oversize, alignment, commit, allow_large, memid, stats); + if (start == NULL) return NULL; + + void* const p = (uint8_t*)start + extra; + mi_assert(_mi_is_aligned((uint8_t*)p + offset, alignment)); + // decommit the overallocation at the start + if (commit && extra > _mi_os_page_size()) { + _mi_os_decommit(start, extra, stats); + } + return p; + } +} /* ----------------------------------------------------------- OS memory API: reset, commit, decommit, protect, unprotect. ----------------------------------------------------------- */ - // OS page align within a given area, either conservative (pages inside the area only), // or not (straddling pages outside the area is possible) static void* mi_os_page_align_areax(bool conservative, void* addr, size_t size, size_t* newsize) { @@ -691,176 +392,115 @@ static void* mi_os_page_align_area_conservative(void* addr, size_t size, size_t* return mi_os_page_align_areax(true, addr, size, newsize); } -static void mi_mprotect_hint(int err) { -#if defined(MI_OS_USE_MMAP) && (MI_SECURE>=2) // guard page around every mimalloc page - if (err == ENOMEM) { - _mi_warning_message("the previous warning may have been caused by a low memory map limit.\n" - " On Linux this is controlled by the vm.max_map_count. For example:\n" - " > sudo sysctl -w vm.max_map_count=262144\n"); - } -#else - UNUSED(err); -#endif -} - -// Commit/Decommit memory. -// Usually commit is aligned liberal, while decommit is aligned conservative. -// (but not for the reset version where we want commit to be conservative as well) -static bool mi_os_commitx(void* addr, size_t size, bool commit, bool conservative, bool* is_zero, mi_stats_t* stats) { - // page align in the range, commit liberally, decommit conservative +bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats) { + MI_UNUSED(tld_stats); + mi_stats_t* stats = &_mi_stats_main; if (is_zero != NULL) { *is_zero = false; } + _mi_stat_increase(&stats->committed, size); // use size for precise commit vs. decommit + _mi_stat_counter_increase(&stats->commit_calls, 1); + + // page align range size_t csize; - void* start = mi_os_page_align_areax(conservative, addr, size, &csize); - if (csize == 0) return true; // || _mi_os_is_huge_reserved(addr)) - int err = 0; - if (commit) { - _mi_stat_increase(&stats->committed, size); // use size for precise commit vs. decommit - _mi_stat_counter_increase(&stats->commit_calls, 1); - } - else { - _mi_stat_decrease(&stats->committed, size); - } + void* start = mi_os_page_align_areax(false /* conservative? */, addr, size, &csize); + if (csize == 0) return true; - #if defined(_WIN32) - if (commit) { - // if the memory was already committed, the call succeeds but it is not zero'd - // *is_zero = true; - void* p = VirtualAlloc(start, csize, MEM_COMMIT, PAGE_READWRITE); - err = (p == start ? 0 : GetLastError()); - } - else { - BOOL ok = VirtualFree(start, csize, MEM_DECOMMIT); - err = (ok ? 0 : GetLastError()); - } - #elif defined(__wasi__) - // WebAssembly guests can't control memory protection - #elif defined(MAP_FIXED) - if (!commit) { - // use mmap with MAP_FIXED to discard the existing memory (and reduce commit charge) - void* p = mmap(start, csize, PROT_NONE, (MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE), -1, 0); - if (p != start) { err = errno; } + // commit + bool os_is_zero = false; + int err = _mi_prim_commit(start, csize, &os_is_zero); + if (err != 0) { + _mi_warning_message("cannot commit OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize); + return false; } - else { - // for commit, just change the protection - err = mprotect(start, csize, (PROT_READ | PROT_WRITE)); - if (err != 0) { err = errno; } - #if defined(MADV_FREE_REUSE) - while ((err = madvise(start, csize, MADV_FREE_REUSE)) != 0 && errno == EAGAIN) { errno = 0; } - #endif + if (os_is_zero && is_zero != NULL) { + *is_zero = true; + mi_assert_expensive(mi_mem_is_zero(start, csize)); } - #else - err = mprotect(start, csize, (commit ? (PROT_READ | PROT_WRITE) : PROT_NONE)); - if (err != 0) { err = errno; } + // note: the following seems required for asan (otherwise `mimalloc-test-stress` fails) + #ifdef MI_TRACK_ASAN + if (os_is_zero) { mi_track_mem_defined(start,csize); } + else { mi_track_mem_undefined(start,csize); } #endif + return true; +} + +static bool mi_os_decommit_ex(void* addr, size_t size, bool* needs_recommit, mi_stats_t* tld_stats) { + MI_UNUSED(tld_stats); + mi_stats_t* stats = &_mi_stats_main; + mi_assert_internal(needs_recommit!=NULL); + _mi_stat_decrease(&stats->committed, size); + + // page align + size_t csize; + void* start = mi_os_page_align_area_conservative(addr, size, &csize); + if (csize == 0) return true; + + // decommit + *needs_recommit = true; + int err = _mi_prim_decommit(start,csize,needs_recommit); if (err != 0) { - _mi_warning_message("%s error: start: %p, csize: 0x%x, err: %i\n", commit ? "commit" : "decommit", start, csize, err); - mi_mprotect_hint(err); + _mi_warning_message("cannot decommit OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize); } mi_assert_internal(err == 0); return (err == 0); } -bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats) { - UNUSED(tld_stats); - mi_stats_t* stats = &_mi_stats_main; - return mi_os_commitx(addr, size, true, false /* liberal */, is_zero, stats); -} - bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* tld_stats) { - UNUSED(tld_stats); - mi_stats_t* stats = &_mi_stats_main; - bool is_zero; - return mi_os_commitx(addr, size, false, true /* conservative */, &is_zero, stats); + bool needs_recommit; + return mi_os_decommit_ex(addr, size, &needs_recommit, tld_stats); } -static bool mi_os_commit_unreset(void* addr, size_t size, bool* is_zero, mi_stats_t* stats) { - return mi_os_commitx(addr, size, true, true /* conservative */, is_zero, stats); -} // Signal to the OS that the address range is no longer in use // but may be used later again. This will release physical memory // pages and reduce swapping while keeping the memory committed. // We page align to a conservative area inside the range to reset. -static bool mi_os_resetx(void* addr, size_t size, bool reset, mi_stats_t* stats) { +bool _mi_os_reset(void* addr, size_t size, mi_stats_t* stats) { // page align conservatively within the range size_t csize; void* start = mi_os_page_align_area_conservative(addr, size, &csize); if (csize == 0) return true; // || _mi_os_is_huge_reserved(addr) - if (reset) _mi_stat_increase(&stats->reset, csize); - else _mi_stat_decrease(&stats->reset, csize); - if (!reset) return true; // nothing to do on unreset! + _mi_stat_increase(&stats->reset, csize); + _mi_stat_counter_increase(&stats->reset_calls, 1); - #if (MI_DEBUG>1) - if (MI_SECURE==0) { - memset(start, 0, csize); // pretend it is eagerly reset - } + #if (MI_DEBUG>1) && !MI_SECURE && !MI_TRACK_ENABLED // && !MI_TSAN + memset(start, 0, csize); // pretend it is eagerly reset #endif -#if defined(_WIN32) - // Testing shows that for us (on `malloc-large`) MEM_RESET is 2x faster than DiscardVirtualMemory - void* p = VirtualAlloc(start, csize, MEM_RESET, PAGE_READWRITE); - mi_assert_internal(p == start); - #if 1 - if (p == start && start != NULL) { - VirtualUnlock(start,csize); // VirtualUnlock after MEM_RESET removes the memory from the working set - } - #endif - if (p != start) return false; -#else -#if defined(MADV_FREE) - #if defined(MADV_FREE_REUSABLE) - #define KK_MADV_FREE_INITIAL MADV_FREE_REUSABLE - #else - #define KK_MADV_FREE_INITIAL MADV_FREE - #endif - static _Atomic(uintptr_t) advice = ATOMIC_VAR_INIT(KK_MADV_FREE_INITIAL); - int oadvice = (int)mi_atomic_load_relaxed(&advice); - int err; - while ((err = madvise(start, csize, oadvice)) != 0 && errno == EAGAIN) { errno = 0; }; - if (err != 0 && errno == EINVAL && oadvice == KK_MADV_FREE_INITIAL) { - // if MADV_FREE/MADV_FREE_REUSABLE is not supported, fall back to MADV_DONTNEED from now on - mi_atomic_store_release(&advice, (uintptr_t)MADV_DONTNEED); - err = madvise(start, csize, MADV_DONTNEED); - } -#elif defined(__wasi__) - int err = 0; -#else - int err = madvise(start, csize, MADV_DONTNEED); -#endif + int err = _mi_prim_reset(start, csize); if (err != 0) { - _mi_warning_message("madvise reset error: start: %p, csize: 0x%x, errno: %i\n", start, csize, errno); + _mi_warning_message("cannot reset OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize); } - //mi_assert(err == 0); - if (err != 0) return false; -#endif - return true; + return (err == 0); } -// Signal to the OS that the address range is no longer in use -// but may be used later again. This will release physical memory -// pages and reduce swapping while keeping the memory committed. -// We page align to a conservative area inside the range to reset. -bool _mi_os_reset(void* addr, size_t size, mi_stats_t* tld_stats) { - UNUSED(tld_stats); - mi_stats_t* stats = &_mi_stats_main; - if (mi_option_is_enabled(mi_option_reset_decommits)) { - return _mi_os_decommit(addr, size, stats); + +// either resets or decommits memory, returns true if the memory needs +// to be recommitted if it is to be re-used later on. +bool _mi_os_purge_ex(void* p, size_t size, bool allow_reset, mi_stats_t* stats) +{ + if (mi_option_get(mi_option_purge_delay) < 0) return false; // is purging allowed? + _mi_stat_counter_increase(&stats->purge_calls, 1); + _mi_stat_increase(&stats->purged, size); + + if (mi_option_is_enabled(mi_option_purge_decommits) && // should decommit? + !_mi_preloading()) // don't decommit during preloading (unsafe) + { + bool needs_recommit = true; + mi_os_decommit_ex(p, size, &needs_recommit, stats); + return needs_recommit; } else { - return mi_os_resetx(addr, size, true, stats); + if (allow_reset) { // this can sometimes be not allowed if the range is not fully committed + _mi_os_reset(p, size, stats); + } + return false; // needs no recommit } } -bool _mi_os_unreset(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats) { - UNUSED(tld_stats); - mi_stats_t* stats = &_mi_stats_main; - if (mi_option_is_enabled(mi_option_reset_decommits)) { - return mi_os_commit_unreset(addr, size, is_zero, stats); // re-commit it (conservatively!) - } - else { - *is_zero = false; - return mi_os_resetx(addr, size, false, stats); - } +// either resets or decommits memory, returns true if the memory needs +// to be recommitted if it is to be re-used later on. +bool _mi_os_purge(void* p, size_t size, mi_stats_t * stats) { + return _mi_os_purge_ex(p, size, true, stats); } @@ -875,20 +515,9 @@ static bool mi_os_protectx(void* addr, size_t size, bool protect) { _mi_warning_message("cannot mprotect memory allocated in huge OS pages\n"); } */ - int err = 0; -#ifdef _WIN32 - DWORD oldprotect = 0; - BOOL ok = VirtualProtect(start, csize, protect ? PAGE_NOACCESS : PAGE_READWRITE, &oldprotect); - err = (ok ? 0 : GetLastError()); -#elif defined(__wasi__) - err = 0; -#else - err = mprotect(start, csize, protect ? PROT_NONE : (PROT_READ | PROT_WRITE)); - if (err != 0) { err = errno; } -#endif + int err = _mi_prim_protect(start,csize,protect); if (err != 0) { - _mi_warning_message("mprotect error: start: %p, csize: 0x%x, err: %i\n", start, csize, err); - mi_mprotect_hint(err); + _mi_warning_message("cannot %s OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", (protect ? "protect" : "unprotect"), err, err, start, csize); } return (err == 0); } @@ -903,121 +532,12 @@ bool _mi_os_unprotect(void* addr, size_t size) { -bool _mi_os_shrink(void* p, size_t oldsize, size_t newsize, mi_stats_t* stats) { - // page align conservatively within the range - mi_assert_internal(oldsize > newsize && p != NULL); - if (oldsize < newsize || p == NULL) return false; - if (oldsize == newsize) return true; - - // oldsize and newsize should be page aligned or we cannot shrink precisely - void* addr = (uint8_t*)p + newsize; - size_t size = 0; - void* start = mi_os_page_align_area_conservative(addr, oldsize - newsize, &size); - if (size == 0 || start != addr) return false; - -#ifdef _WIN32 - // we cannot shrink on windows, but we can decommit - return _mi_os_decommit(start, size, stats); -#else - return mi_os_mem_free(start, size, true, stats); -#endif -} - - /* ---------------------------------------------------------------------------- Support for allocating huge OS pages (1Gib) that are reserved up-front and possibly associated with a specific NUMA node. (use `numa_node>=0`) -----------------------------------------------------------------------------*/ -#define MI_HUGE_OS_PAGE_SIZE (GiB) +#define MI_HUGE_OS_PAGE_SIZE (MI_GiB) -#if defined(_WIN32) && (MI_INTPTR_SIZE >= 8) -static void* mi_os_alloc_huge_os_pagesx(void* addr, size_t size, int numa_node) -{ - mi_assert_internal(size%GiB == 0); - mi_assert_internal(addr != NULL); - const DWORD flags = MEM_LARGE_PAGES | MEM_COMMIT | MEM_RESERVE; - - mi_win_enable_large_os_pages(); - - #if defined(MEM_EXTENDED_PARAMETER_TYPE_BITS) - MEM_EXTENDED_PARAMETER params[3] = { {{0,0},{0}},{{0,0},{0}},{{0,0},{0}} }; - // on modern Windows try use NtAllocateVirtualMemoryEx for 1GiB huge pages - static bool mi_huge_pages_available = true; - if (pNtAllocateVirtualMemoryEx != NULL && mi_huge_pages_available) { - #ifndef MEM_EXTENDED_PARAMETER_NONPAGED_HUGE - #define MEM_EXTENDED_PARAMETER_NONPAGED_HUGE (0x10) - #endif - params[0].Type = 5; // == MemExtendedParameterAttributeFlags; - params[0].ULong64 = MEM_EXTENDED_PARAMETER_NONPAGED_HUGE; - ULONG param_count = 1; - if (numa_node >= 0) { - param_count++; - params[1].Type = MemExtendedParameterNumaNode; - params[1].ULong = (unsigned)numa_node; - } - SIZE_T psize = size; - void* base = addr; - NTSTATUS err = (*pNtAllocateVirtualMemoryEx)(GetCurrentProcess(), &base, &psize, flags, PAGE_READWRITE, params, param_count); - if (err == 0 && base != NULL) { - return base; - } - else { - // fall back to regular large pages - mi_huge_pages_available = false; // don't try further huge pages - _mi_warning_message("unable to allocate using huge (1gb) pages, trying large (2mb) pages instead (status 0x%lx)\n", err); - } - } - // on modern Windows try use VirtualAlloc2 for numa aware large OS page allocation - if (pVirtualAlloc2 != NULL && numa_node >= 0) { - params[0].Type = MemExtendedParameterNumaNode; - params[0].ULong = (unsigned)numa_node; - return (*pVirtualAlloc2)(GetCurrentProcess(), addr, size, flags, PAGE_READWRITE, params, 1); - } - #else - UNUSED(numa_node); - #endif - // otherwise use regular virtual alloc on older windows - return VirtualAlloc(addr, size, flags, PAGE_READWRITE); -} - -#elif defined(MI_OS_USE_MMAP) && (MI_INTPTR_SIZE >= 8) && !defined(__HAIKU__) -#include <sys/syscall.h> -#ifndef MPOL_PREFERRED -#define MPOL_PREFERRED 1 -#endif -#if defined(SYS_mbind) -static long mi_os_mbind(void* start, unsigned long len, unsigned long mode, const unsigned long* nmask, unsigned long maxnode, unsigned flags) { - return syscall(SYS_mbind, start, len, mode, nmask, maxnode, flags); -} -#else -static long mi_os_mbind(void* start, unsigned long len, unsigned long mode, const unsigned long* nmask, unsigned long maxnode, unsigned flags) { - UNUSED(start); UNUSED(len); UNUSED(mode); UNUSED(nmask); UNUSED(maxnode); UNUSED(flags); - return 0; -} -#endif -static void* mi_os_alloc_huge_os_pagesx(void* addr, size_t size, int numa_node) { - mi_assert_internal(size%GiB == 0); - bool is_large = true; - void* p = mi_unix_mmap(addr, size, MI_SEGMENT_SIZE, PROT_READ | PROT_WRITE, true, true, &is_large); - if (p == NULL) return NULL; - if (numa_node >= 0 && numa_node < 8*MI_INTPTR_SIZE) { // at most 64 nodes - uintptr_t numa_mask = (1UL << numa_node); - // TODO: does `mbind` work correctly for huge OS pages? should we - // use `set_mempolicy` before calling mmap instead? - // see: <https://lkml.org/lkml/2017/2/9/875> - long err = mi_os_mbind(p, size, MPOL_PREFERRED, &numa_mask, 8*MI_INTPTR_SIZE, 0); - if (err != 0) { - _mi_warning_message("failed to bind huge (1gb) pages to numa node %d: %s\n", numa_node, strerror(errno)); - } - } - return p; -} -#else -static void* mi_os_alloc_huge_os_pagesx(void* addr, size_t size, int numa_node) { - UNUSED(addr); UNUSED(size); UNUSED(numa_node); - return NULL; -} -#endif #if (MI_INTPTR_SIZE >= 8) // To ensure proper alignment, use our own area for huge OS pages @@ -1036,10 +556,10 @@ static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) { if (start == 0) { // Initialize the start address after the 32TiB area start = ((uintptr_t)32 << 40); // 32TiB virtual start address -#if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of huge pages unless in debug mode - uintptr_t r = _mi_heap_random_next(mi_get_default_heap()); + #if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of huge pages unless in debug mode + uintptr_t r = _mi_heap_random_next(mi_prim_get_default_heap()); start = start + ((uintptr_t)MI_HUGE_OS_PAGE_SIZE * ((r>>17) & 0x0FFF)); // (randomly 12bits)*1GiB == between 0 to 4TiB -#endif + #endif } end = start + size; mi_assert_internal(end % MI_SEGMENT_SIZE == 0); @@ -1050,14 +570,15 @@ static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) { } #else static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) { - UNUSED(pages); + MI_UNUSED(pages); if (total_size != NULL) *total_size = 0; return NULL; } #endif // Allocate MI_SEGMENT_SIZE aligned huge pages -void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_msecs, size_t* pages_reserved, size_t* psize) { +void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_msecs, size_t* pages_reserved, size_t* psize, mi_memid_t* memid) { + *memid = _mi_memid_none(); if (psize != NULL) *psize = 0; if (pages_reserved != NULL) *pages_reserved = 0; size_t size = 0; @@ -1068,23 +589,32 @@ void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_mse // We allocate one page at the time to be able to abort if it takes too long // or to at least allocate as many as available on the system. mi_msecs_t start_t = _mi_clock_start(); - size_t page; - for (page = 0; page < pages; page++) { + size_t page = 0; + bool all_zero = true; + while (page < pages) { // allocate a page + bool is_zero = false; void* addr = start + (page * MI_HUGE_OS_PAGE_SIZE); - void* p = mi_os_alloc_huge_os_pagesx(addr, MI_HUGE_OS_PAGE_SIZE, numa_node); + void* p = NULL; + int err = _mi_prim_alloc_huge_os_pages(addr, MI_HUGE_OS_PAGE_SIZE, numa_node, &is_zero, &p); + if (!is_zero) { all_zero = false; } + if (err != 0) { + _mi_warning_message("unable to allocate huge OS page (error: %d (0x%x), address: %p, size: %zx bytes)\n", err, err, addr, MI_HUGE_OS_PAGE_SIZE); + break; + } // Did we succeed at a contiguous address? if (p != addr) { // no success, issue a warning and break if (p != NULL) { - _mi_warning_message("could not allocate contiguous huge page %zu at %p\n", page, addr); - _mi_os_free(p, MI_HUGE_OS_PAGE_SIZE, &_mi_stats_main); + _mi_warning_message("could not allocate contiguous huge OS page %zu at %p\n", page, addr); + mi_os_prim_free(p, MI_HUGE_OS_PAGE_SIZE, true, &_mi_stats_main); } break; } // success, record it + page++; // increase before timeout check (see issue #711) _mi_stat_increase(&_mi_stats_main.committed, MI_HUGE_OS_PAGE_SIZE); _mi_stat_increase(&_mi_stats_main.reserved, MI_HUGE_OS_PAGE_SIZE); @@ -1098,109 +628,41 @@ void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_mse } } if (elapsed > max_msecs) { - _mi_warning_message("huge page allocation timed out\n"); + _mi_warning_message("huge OS page allocation timed out (after allocating %zu page(s))\n", page); break; } } } mi_assert_internal(page*MI_HUGE_OS_PAGE_SIZE <= size); - if (pages_reserved != NULL) *pages_reserved = page; - if (psize != NULL) *psize = page * MI_HUGE_OS_PAGE_SIZE; + if (pages_reserved != NULL) { *pages_reserved = page; } + if (psize != NULL) { *psize = page * MI_HUGE_OS_PAGE_SIZE; } + if (page != 0) { + mi_assert(start != NULL); + *memid = _mi_memid_create_os(true /* is committed */, all_zero, true /* is_large */); + memid->memkind = MI_MEM_OS_HUGE; + mi_assert(memid->is_pinned); + #ifdef MI_TRACK_ASAN + if (all_zero) { mi_track_mem_defined(start,size); } + #endif + } return (page == 0 ? NULL : start); } // free every huge page in a range individually (as we allocated per page) // note: needed with VirtualAlloc but could potentially be done in one go on mmap'd systems. -void _mi_os_free_huge_pages(void* p, size_t size, mi_stats_t* stats) { +static void mi_os_free_huge_os_pages(void* p, size_t size, mi_stats_t* stats) { if (p==NULL || size==0) return; uint8_t* base = (uint8_t*)p; while (size >= MI_HUGE_OS_PAGE_SIZE) { - _mi_os_free(base, MI_HUGE_OS_PAGE_SIZE, stats); + mi_os_prim_free(base, MI_HUGE_OS_PAGE_SIZE, true, stats); size -= MI_HUGE_OS_PAGE_SIZE; + base += MI_HUGE_OS_PAGE_SIZE; } } /* ---------------------------------------------------------------------------- Support NUMA aware allocation -----------------------------------------------------------------------------*/ -#ifdef _WIN32 -static size_t mi_os_numa_nodex() { - USHORT numa_node = 0; - if (pGetCurrentProcessorNumberEx != NULL && pGetNumaProcessorNodeEx != NULL) { - // Extended API is supported - PROCESSOR_NUMBER pnum; - (*pGetCurrentProcessorNumberEx)(&pnum); - USHORT nnode = 0; - BOOL ok = (*pGetNumaProcessorNodeEx)(&pnum, &nnode); - if (ok) numa_node = nnode; - } - else { - // Vista or earlier, use older API that is limited to 64 processors. Issue #277 - DWORD pnum = GetCurrentProcessorNumber(); - UCHAR nnode = 0; - BOOL ok = GetNumaProcessorNode((UCHAR)pnum, &nnode); - if (ok) numa_node = nnode; - } - return numa_node; -} - -static size_t mi_os_numa_node_countx(void) { - ULONG numa_max = 0; - GetNumaHighestNodeNumber(&numa_max); - // find the highest node number that has actual processors assigned to it. Issue #282 - while(numa_max > 0) { - if (pGetNumaNodeProcessorMaskEx != NULL) { - // Extended API is supported - GROUP_AFFINITY affinity; - if ((*pGetNumaNodeProcessorMaskEx)((USHORT)numa_max, &affinity)) { - if (affinity.Mask != 0) break; // found the maximum non-empty node - } - } - else { - // Vista or earlier, use older API that is limited to 64 processors. - ULONGLONG mask; - if (GetNumaNodeProcessorMask((UCHAR)numa_max, &mask)) { - if (mask != 0) break; // found the maximum non-empty node - }; - } - // max node was invalid or had no processor assigned, try again - numa_max--; - } - return ((size_t)numa_max + 1); -} -#elif defined(__linux__) -#include <sys/syscall.h> // getcpu -#include <stdio.h> // access - -static size_t mi_os_numa_nodex(void) { -#ifdef SYS_getcpu - unsigned long node = 0; - unsigned long ncpu = 0; - long err = syscall(SYS_getcpu, &ncpu, &node, NULL); - if (err != 0) return 0; - return node; -#else - return 0; -#endif -} -static size_t mi_os_numa_node_countx(void) { - char buf[128]; - unsigned node = 0; - for(node = 0; node < 256; node++) { - // enumerate node entries -- todo: it there a more efficient way to do this? (but ensure there is no allocation) - snprintf(buf, 127, "/sys/devices/system/node/node%u", node + 1); - if (access(buf,R_OK) != 0) break; - } - return (node+1); -} -#else -static size_t mi_os_numa_nodex(void) { - return 0; -} -static size_t mi_os_numa_node_countx(void) { - return 1; -} -#endif _Atomic(size_t) _mi_numa_node_count; // = 0 // cache the node count @@ -1212,9 +674,9 @@ size_t _mi_os_numa_node_count_get(void) { count = (size_t)ncount; } else { - count = mi_os_numa_node_countx(); // or detect dynamically + count = _mi_prim_numa_node_count(); // or detect dynamically if (count == 0) count = 1; - } + } mi_atomic_store_release(&_mi_numa_node_count, count); // save it _mi_verbose_message("using %zd numa regions\n", count); } @@ -1222,11 +684,11 @@ size_t _mi_os_numa_node_count_get(void) { } int _mi_os_numa_node_get(mi_os_tld_t* tld) { - UNUSED(tld); + MI_UNUSED(tld); size_t numa_count = _mi_os_numa_node_count(); if (numa_count<=1) return 0; // optimize on single numa node systems: always node 0 // never more than the node count and >= 0 - size_t numa_node = mi_os_numa_nodex(); + size_t numa_node = _mi_prim_numa_node(); if (numa_node >= numa_count) { numa_node = numa_node % numa_count; } return (int)numa_node; } diff --git a/contrib/libs/mimalloc/src/page-queue.c b/contrib/libs/mimalloc/src/page-queue.c index 365257e766..02a8008d4a 100644 --- a/contrib/libs/mimalloc/src/page-queue.c +++ b/contrib/libs/mimalloc/src/page-queue.c @@ -1,5 +1,5 @@ /*---------------------------------------------------------------------------- -Copyright (c) 2018-2020, Microsoft Research, Daan Leijen +Copyright (c) 2018-2024, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. @@ -11,6 +11,10 @@ terms of the MIT license. A copy of the license can be found in the file #ifndef MI_IN_PAGE_C #error "this file should be included from 'page.c'" +// include to help an IDE +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" #endif /* ----------------------------------------------------------- @@ -53,7 +57,7 @@ static inline bool mi_page_queue_is_special(const mi_page_queue_t* pq) { // Returns MI_BIN_HUGE if the size is too large. // We use `wsize` for the size in "machine word sizes", // i.e. byte size == `wsize*sizeof(void*)`. -extern inline uint8_t _mi_bin(size_t size) { +static inline uint8_t mi_bin(size_t size) { size_t wsize = _mi_wsize_from_size(size); uint8_t bin; if (wsize <= 1) { @@ -76,7 +80,7 @@ extern inline uint8_t _mi_bin(size_t size) { bin = MI_BIN_HUGE; } else { - #if defined(MI_ALIGN4W) + #if defined(MI_ALIGN4W) if (wsize <= 16) { wsize = (wsize+3)&~3; } // round to 4x word sizes #endif wsize--; @@ -98,6 +102,10 @@ extern inline uint8_t _mi_bin(size_t size) { Queue of pages with free blocks ----------------------------------------------------------- */ +uint8_t _mi_bin(size_t size) { + return mi_bin(size); +} + size_t _mi_bin_size(uint8_t bin) { return _mi_heap_empty.pages[bin].block_size; } @@ -105,10 +113,10 @@ size_t _mi_bin_size(uint8_t bin) { // Good size for allocation size_t mi_good_size(size_t size) mi_attr_noexcept { if (size <= MI_LARGE_OBJ_SIZE_MAX) { - return _mi_bin_size(_mi_bin(size)); + return _mi_bin_size(mi_bin(size + MI_PADDING_SIZE)); } else { - return _mi_align_up(size,_mi_os_page_size()); + return _mi_align_up(size + MI_PADDING_SIZE,_mi_os_page_size()); } } @@ -133,21 +141,21 @@ static bool mi_heap_contains_queue(const mi_heap_t* heap, const mi_page_queue_t* } #endif -static mi_page_queue_t* mi_page_queue_of(const mi_page_t* page) { - uint8_t bin = (mi_page_is_in_full(page) ? MI_BIN_FULL : _mi_bin(page->xblock_size)); - mi_heap_t* heap = mi_page_heap(page); - mi_assert_internal(heap != NULL && bin <= MI_BIN_FULL); +static mi_page_queue_t* mi_heap_page_queue_of(mi_heap_t* heap, const mi_page_t* page) { + mi_assert_internal(heap!=NULL); + uint8_t bin = (mi_page_is_in_full(page) ? MI_BIN_FULL : (mi_page_is_huge(page) ? MI_BIN_HUGE : mi_bin(mi_page_block_size(page)))); + mi_assert_internal(bin <= MI_BIN_FULL); mi_page_queue_t* pq = &heap->pages[bin]; - mi_assert_internal(bin >= MI_BIN_HUGE || page->xblock_size == pq->block_size); - mi_assert_expensive(mi_page_queue_contains(pq, page)); + mi_assert_internal((mi_page_block_size(page) == pq->block_size) || + (mi_page_is_huge(page) && mi_page_queue_is_huge(pq)) || + (mi_page_is_in_full(page) && mi_page_queue_is_full(pq))); return pq; } -static mi_page_queue_t* mi_heap_page_queue_of(mi_heap_t* heap, const mi_page_t* page) { - uint8_t bin = (mi_page_is_in_full(page) ? MI_BIN_FULL : _mi_bin(page->xblock_size)); - mi_assert_internal(bin <= MI_BIN_FULL); - mi_page_queue_t* pq = &heap->pages[bin]; - mi_assert_internal(mi_page_is_in_full(page) || page->xblock_size == pq->block_size); +static mi_page_queue_t* mi_page_queue_of(const mi_page_t* page) { + mi_heap_t* heap = mi_page_heap(page); + mi_page_queue_t* pq = mi_heap_page_queue_of(heap, page); + mi_assert_expensive(mi_page_queue_contains(pq, page)); return pq; } @@ -177,9 +185,9 @@ static inline void mi_heap_queue_first_update(mi_heap_t* heap, const mi_page_que } else { // find previous size; due to minimal alignment upto 3 previous bins may need to be skipped - uint8_t bin = _mi_bin(size); + uint8_t bin = mi_bin(size); const mi_page_queue_t* prev = pq - 1; - while( bin == _mi_bin(prev->block_size) && prev > &heap->pages[0]) { + while( bin == mi_bin(prev->block_size) && prev > &heap->pages[0]) { prev--; } start = 1 + _mi_wsize_from_size(prev->block_size); @@ -202,7 +210,9 @@ static bool mi_page_queue_is_empty(mi_page_queue_t* queue) { static void mi_page_queue_remove(mi_page_queue_t* queue, mi_page_t* page) { mi_assert_internal(page != NULL); mi_assert_expensive(mi_page_queue_contains(queue, page)); - mi_assert_internal(page->xblock_size == queue->block_size || (page->xblock_size > MI_LARGE_OBJ_SIZE_MAX && mi_page_queue_is_huge(queue)) || (mi_page_is_in_full(page) && mi_page_queue_is_full(queue))); + mi_assert_internal(mi_page_block_size(page) == queue->block_size || + (mi_page_is_huge(page) && mi_page_queue_is_huge(queue)) || + (mi_page_is_in_full(page) && mi_page_queue_is_full(queue))); mi_heap_t* heap = mi_page_heap(page); if (page->prev != NULL) page->prev->next = page->next; if (page->next != NULL) page->next->prev = page->prev; @@ -224,9 +234,11 @@ static void mi_page_queue_remove(mi_page_queue_t* queue, mi_page_t* page) { static void mi_page_queue_push(mi_heap_t* heap, mi_page_queue_t* queue, mi_page_t* page) { mi_assert_internal(mi_page_heap(page) == heap); mi_assert_internal(!mi_page_queue_contains(queue, page)); + #if MI_HUGE_PAGE_ABANDON mi_assert_internal(_mi_page_segment(page)->page_kind != MI_PAGE_HUGE); - mi_assert_internal(page->xblock_size == queue->block_size || - (page->xblock_size > MI_LARGE_OBJ_SIZE_MAX && mi_page_queue_is_huge(queue)) || + #endif + mi_assert_internal(mi_page_block_size(page) == queue->block_size || + (mi_page_is_huge(page) && mi_page_queue_is_huge(queue)) || (mi_page_is_in_full(page) && mi_page_queue_is_full(queue))); mi_page_set_in_full(page, mi_page_queue_is_full(queue)); @@ -252,11 +264,13 @@ static void mi_page_queue_enqueue_from(mi_page_queue_t* to, mi_page_queue_t* fro mi_assert_internal(page != NULL); mi_assert_expensive(mi_page_queue_contains(from, page)); mi_assert_expensive(!mi_page_queue_contains(to, page)); - mi_assert_internal((page->xblock_size == to->block_size && page->xblock_size == from->block_size) || - (page->xblock_size == to->block_size && mi_page_queue_is_full(from)) || - (page->xblock_size == from->block_size && mi_page_queue_is_full(to)) || - (page->xblock_size > MI_LARGE_OBJ_SIZE_MAX && mi_page_queue_is_huge(to)) || - (page->xblock_size > MI_LARGE_OBJ_SIZE_MAX && mi_page_queue_is_full(to))); + const size_t bsize = mi_page_block_size(page); + MI_UNUSED(bsize); + mi_assert_internal((bsize == to->block_size && bsize == from->block_size) || + (bsize == to->block_size && mi_page_queue_is_full(from)) || + (bsize == from->block_size && mi_page_queue_is_full(to)) || + (mi_page_is_huge(page) && mi_page_queue_is_huge(to)) || + (mi_page_is_huge(page) && mi_page_queue_is_full(to))); mi_heap_t* heap = mi_page_heap(page); if (page->prev != NULL) page->prev->next = page->next; @@ -297,7 +311,7 @@ size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue for (mi_page_t* page = append->first; page != NULL; page = page->next) { // inline `mi_page_set_heap` to avoid wrong assertion during absorption; // in this case it is ok to be delayed freeing since both "to" and "from" heap are still alive. - mi_atomic_store_release(&page->xheap, (uintptr_t)heap); + mi_atomic_store_release(&page->xheap, (uintptr_t)heap); // set the flag to delayed free (not overriding NEVER_DELAYED_FREE) which has as a // side effect that it spins until any DELAYED_FREEING is finished. This ensures // that after appending only the new heap will be used for delayed free operations. diff --git a/contrib/libs/mimalloc/src/page.c b/contrib/libs/mimalloc/src/page.c index c08be9c00b..5a18b78027 100644 --- a/contrib/libs/mimalloc/src/page.c +++ b/contrib/libs/mimalloc/src/page.c @@ -1,5 +1,5 @@ /*---------------------------------------------------------------------------- -Copyright (c) 2018-2020, Microsoft Research, Daan Leijen +Copyright (c) 2018-2024, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. @@ -7,13 +7,13 @@ terms of the MIT license. A copy of the license can be found in the file /* ----------------------------------------------------------- The core of the allocator. Every segment contains - pages of a {certain block size. The main function + pages of a certain block size. The main function exported is `mi_malloc_generic`. ----------------------------------------------------------- */ #include "mimalloc.h" -#include "mimalloc-internal.h" -#include "mimalloc-atomic.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" /* ----------------------------------------------------------- Definition of page queues for each block size @@ -30,7 +30,7 @@ terms of the MIT license. A copy of the license can be found in the file // Index a block in a page static inline mi_block_t* mi_page_block_at(const mi_page_t* page, void* page_start, size_t block_size, size_t i) { - UNUSED(page); + MI_UNUSED(page); mi_assert_internal(page != NULL); mi_assert_internal(i <= page->reserved); return (mi_block_t*)((uint8_t*)page_start + (i * block_size)); @@ -59,42 +59,54 @@ static inline uint8_t* mi_page_area(const mi_page_t* page) { static bool mi_page_list_is_valid(mi_page_t* page, mi_block_t* p) { size_t psize; - uint8_t* page_area = _mi_page_start(_mi_page_segment(page), page, &psize); + uint8_t* page_area = _mi_segment_page_start(_mi_page_segment(page), page, &psize); mi_block_t* start = (mi_block_t*)page_area; mi_block_t* end = (mi_block_t*)(page_area + psize); while(p != NULL) { if (p < start || p >= end) return false; p = mi_block_next(page, p); } +#if MI_DEBUG>3 // generally too expensive to check this + if (page->free_is_zero) { + const size_t ubsize = mi_page_usable_block_size(page); + for (mi_block_t* block = page->free; block != NULL; block = mi_block_next(page, block)) { + mi_assert_expensive(mi_mem_is_zero(block + 1, ubsize - sizeof(mi_block_t))); + } + } +#endif return true; } static bool mi_page_is_valid_init(mi_page_t* page) { - mi_assert_internal(page->xblock_size > 0); + mi_assert_internal(mi_page_block_size(page) > 0); mi_assert_internal(page->used <= page->capacity); mi_assert_internal(page->capacity <= page->reserved); - const size_t bsize = mi_page_block_size(page); + // const size_t bsize = mi_page_block_size(page); mi_segment_t* segment = _mi_page_segment(page); - uint8_t* start = _mi_page_start(segment,page,NULL); - mi_assert_internal(start == _mi_segment_page_start(segment,page,bsize,NULL,NULL)); + uint8_t* start = mi_page_start(page); + mi_assert_internal(start == _mi_segment_page_start(segment,page,NULL)); + mi_assert_internal(page->is_huge == (segment->page_kind == MI_PAGE_HUGE)); //mi_assert_internal(start + page->capacity*page->block_size == page->top); mi_assert_internal(mi_page_list_is_valid(page,page->free)); mi_assert_internal(mi_page_list_is_valid(page,page->local_free)); #if MI_DEBUG>3 // generally too expensive to check this - if (page->flags.is_zero) { - for(mi_block_t* block = page->free; block != NULL; mi_block_next(page,block)) { - mi_assert_expensive(mi_mem_is_zero(block + 1, page->block_size - sizeof(mi_block_t))); + if (page->free_is_zero) { + const size_t ubsize = mi_page_usable_block_size(page); + for(mi_block_t* block = page->free; block != NULL; block = mi_block_next(page,block)) { + mi_assert_expensive(mi_mem_is_zero(block + 1, ubsize - sizeof(mi_block_t))); } } #endif + #if !MI_TRACK_ENABLED && !MI_TSAN mi_block_t* tfree = mi_page_thread_free(page); mi_assert_internal(mi_page_list_is_valid(page, tfree)); //size_t tfree_count = mi_page_list_count(page, tfree); //mi_assert_internal(tfree_count <= page->thread_freed + 1); + #endif size_t free_count = mi_page_list_count(page, page->free) + mi_page_list_count(page, page->local_free); mi_assert_internal(page->used + free_count == page->capacity); @@ -102,6 +114,8 @@ static bool mi_page_is_valid_init(mi_page_t* page) { return true; } +extern bool _mi_process_is_initialized; // has mi_process_init been called? + bool _mi_page_is_valid(mi_page_t* page) { mi_assert_internal(mi_page_is_valid_init(page)); #if MI_SECURE @@ -110,7 +124,10 @@ bool _mi_page_is_valid(mi_page_t* page) { if (mi_page_heap(page)!=NULL) { mi_segment_t* segment = _mi_page_segment(page); mi_assert_internal(!_mi_process_is_initialized || segment->thread_id == mi_page_heap(page)->thread_id || segment->thread_id==0); - if (segment->page_kind != MI_PAGE_HUGE) { + #if MI_HUGE_PAGE_ABANDON + if (segment->page_kind != MI_PAGE_HUGE) + #endif + { mi_page_queue_t* pq = mi_page_queue_of(page); mi_assert_internal(mi_page_queue_contains(pq, page)); mi_assert_internal(pq->block_size==mi_page_block_size(page) || mi_page_block_size(page) > MI_LARGE_OBJ_SIZE_MAX || mi_page_is_in_full(page)); @@ -122,14 +139,23 @@ bool _mi_page_is_valid(mi_page_t* page) { #endif void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never) { + while (!_mi_page_try_use_delayed_free(page, delay, override_never)) { + mi_atomic_yield(); + } +} + +bool _mi_page_try_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never) { mi_thread_free_t tfreex; mi_delayed_t old_delay; - mi_thread_free_t tfree; + mi_thread_free_t tfree; + size_t yield_count = 0; do { tfree = mi_atomic_load_acquire(&page->xthread_free); // note: must acquire as we can break/repeat this loop and not do a CAS; tfreex = mi_tf_set_delayed(tfree, delay); old_delay = mi_tf_delayed(tfree); - if (mi_unlikely(old_delay == MI_DELAYED_FREEING)) { + if mi_unlikely(old_delay == MI_DELAYED_FREEING) { + if (yield_count >= 4) return false; // give up after 4 tries + yield_count++; mi_atomic_yield(); // delay until outstanding MI_DELAYED_FREEING are done. // tfree = mi_tf_set_delayed(tfree, MI_NO_DELAYED_FREE); // will cause CAS to busy fail } @@ -141,6 +167,8 @@ void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool overrid } } while ((old_delay == MI_DELAYED_FREEING) || !mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex)); + + return true; // success } /* ----------------------------------------------------------- @@ -165,8 +193,8 @@ static void _mi_page_thread_free_collect(mi_page_t* page) if (head == NULL) return; // find the tail -- also to get a proper count (without data races) - uint32_t max_count = page->capacity; // cannot collect more than capacity - uint32_t count = 1; + size_t max_count = page->capacity; // cannot collect more than capacity + size_t count = 1; mi_block_t* tail = head; mi_block_t* next; while ((next = mi_block_next(page,tail)) != NULL && count <= max_count) { @@ -184,7 +212,7 @@ static void _mi_page_thread_free_collect(mi_page_t* page) page->local_free = head; // update counts now - page->used -= count; + page->used -= (uint16_t)count; } void _mi_page_free_collect(mi_page_t* page, bool force) { @@ -197,11 +225,11 @@ void _mi_page_free_collect(mi_page_t* page, bool force) { // and the local free list if (page->local_free != NULL) { - if (mi_likely(page->free == NULL)) { + if mi_likely(page->free == NULL) { // usual case page->free = page->local_free; page->local_free = NULL; - page->is_zero = false; + page->free_is_zero = false; } else if (force) { // append -- only on shutdown (force) as this is a linear operation @@ -213,7 +241,7 @@ void _mi_page_free_collect(mi_page_t* page, bool force) { mi_block_set_next(page, tail, page->free); page->free = page->local_free; page->local_free = NULL; - page->is_zero = false; + page->free_is_zero = false; } } @@ -231,8 +259,10 @@ void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page) { mi_assert_expensive(mi_page_is_valid_init(page)); mi_assert_internal(mi_page_heap(page) == heap); mi_assert_internal(mi_page_thread_free_flag(page) != MI_NEVER_DELAYED_FREE); + #if MI_HUGE_PAGE_ABANDON mi_assert_internal(_mi_page_segment(page)->page_kind != MI_PAGE_HUGE); - mi_assert_internal(!page->is_reset); + #endif + // TODO: push on full queue immediately if it is full? mi_page_queue_t* pq = mi_page_queue(heap, mi_page_block_size(page)); mi_page_queue_push(heap, pq, page); @@ -240,19 +270,27 @@ void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page) { } // allocate a fresh page from a segment -static mi_page_t* mi_page_fresh_alloc(mi_heap_t* heap, mi_page_queue_t* pq, size_t block_size) { - mi_assert_internal(pq==NULL||mi_heap_contains_queue(heap, pq)); - mi_assert_internal(pq==NULL||block_size == pq->block_size); - mi_page_t* page = _mi_segment_page_alloc(heap, block_size, &heap->tld->segments, &heap->tld->os); +static mi_page_t* mi_page_fresh_alloc(mi_heap_t* heap, mi_page_queue_t* pq, size_t block_size, size_t page_alignment) { + #if !MI_HUGE_PAGE_ABANDON + mi_assert_internal(pq != NULL); + mi_assert_internal(mi_heap_contains_queue(heap, pq)); + mi_assert_internal(page_alignment > 0 || block_size > MI_LARGE_OBJ_SIZE_MAX || block_size == pq->block_size); + #endif + mi_page_t* page = _mi_segment_page_alloc(heap, block_size, page_alignment, &heap->tld->segments, &heap->tld->os); if (page == NULL) { // this may be out-of-memory, or an abandoned page was reclaimed (and in our queue) return NULL; } - // a fresh page was found, initialize it + #if MI_HUGE_PAGE_ABANDON mi_assert_internal(pq==NULL || _mi_page_segment(page)->page_kind != MI_PAGE_HUGE); - mi_page_init(heap, page, block_size, heap->tld); - _mi_stat_increase(&heap->tld->stats.pages, 1); - if (pq!=NULL) mi_page_queue_push(heap, pq, page); // huge pages use pq==NULL + #endif + mi_assert_internal(pq!=NULL || mi_page_block_size(page) >= block_size); + // a fresh page was found, initialize it + const size_t full_block_size = (pq == NULL || mi_page_is_huge(page) ? mi_page_block_size(page) : block_size); // see also: mi_segment_huge_page_alloc + mi_assert_internal(full_block_size >= block_size); + mi_page_init(heap, page, full_block_size, heap->tld); + mi_heap_stat_increase(heap, pages, 1); + if (pq != NULL) { mi_page_queue_push(heap, pq, page); } mi_assert_expensive(_mi_page_is_valid(page)); return page; } @@ -260,7 +298,7 @@ static mi_page_t* mi_page_fresh_alloc(mi_heap_t* heap, mi_page_queue_t* pq, size // Get a fresh page to use static mi_page_t* mi_page_fresh(mi_heap_t* heap, mi_page_queue_t* pq) { mi_assert_internal(mi_heap_contains_queue(heap, pq)); - mi_page_t* page = mi_page_fresh_alloc(heap, pq, pq->block_size); + mi_page_t* page = mi_page_fresh_alloc(heap, pq, pq->block_size, 0); if (page==NULL) return NULL; mi_assert_internal(pq->block_size==mi_page_block_size(page)); mi_assert_internal(pq==mi_page_queue(heap, mi_page_block_size(page))); @@ -271,10 +309,18 @@ static mi_page_t* mi_page_fresh(mi_heap_t* heap, mi_page_queue_t* pq) { Do any delayed frees (put there by other threads if they deallocated in a full page) ----------------------------------------------------------- */ -void _mi_heap_delayed_free(mi_heap_t* heap) { +void _mi_heap_delayed_free_all(mi_heap_t* heap) { + while (!_mi_heap_delayed_free_partial(heap)) { + mi_atomic_yield(); + } +} + +// returns true if all delayed frees were processed +bool _mi_heap_delayed_free_partial(mi_heap_t* heap) { // take over the list (note: no atomic exchange since it is often NULL) mi_block_t* block = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free); while (block != NULL && !mi_atomic_cas_ptr_weak_acq_rel(mi_block_t, &heap->thread_delayed_free, &block, NULL)) { /* nothing */ }; + bool all_freed = true; // and free them all while(block != NULL) { @@ -282,7 +328,9 @@ void _mi_heap_delayed_free(mi_heap_t* heap) { // use internal free instead of regular one to keep stats etc correct if (!_mi_free_delayed_block(block)) { // we might already start delayed freeing while another thread has not yet - // reset the delayed_freeing flag; in that case delay it further by reinserting. + // reset the delayed_freeing flag; in that case delay it further by reinserting the current block + // into the delayed free list + all_freed = false; mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free); do { mi_block_set_nextx(heap, block, dfree, heap->keys); @@ -290,6 +338,7 @@ void _mi_heap_delayed_free(mi_heap_t* heap) { } block = next; } + return all_freed; } /* ----------------------------------------------------------- @@ -342,7 +391,7 @@ void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq) { mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE); mi_page_set_heap(page, NULL); -#if MI_DEBUG>1 +#if (MI_DEBUG>1) && !MI_TRACK_ENABLED // check there are no references left.. for (mi_block_t* block = (mi_block_t*)pheap->thread_delayed_free; block != NULL; block = mi_block_nextx(pheap, block, pheap->keys)) { mi_assert_internal(_mi_ptr_page(block) != page); @@ -376,8 +425,8 @@ void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force) { _mi_segment_page_free(page, force, segments_tld); } -#define MI_MAX_RETIRE_SIZE MI_LARGE_OBJ_SIZE_MAX -#define MI_RETIRE_CYCLES (8) +#define MI_MAX_RETIRE_SIZE MI_LARGE_OBJ_SIZE_MAX // should be less than size for MI_BIN_HUGE +#define MI_RETIRE_CYCLES (16) // Retire a page with no more used blocks // Important to not retire too quickly though as new @@ -385,7 +434,7 @@ void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force) { // Note: called from `mi_free` and benchmarks often // trigger this due to freeing everything and then // allocating again so careful when changing this. -void _mi_page_retire(mi_page_t* page) { +void _mi_page_retire(mi_page_t* page) mi_attr_noexcept { mi_assert_internal(page != NULL); mi_assert_expensive(_mi_page_is_valid(page)); mi_assert_internal(mi_page_all_free(page)); @@ -399,10 +448,11 @@ void _mi_page_retire(mi_page_t* page) { // how to check this efficiently though... // for now, we don't retire if it is the only page left of this size class. mi_page_queue_t* pq = mi_page_queue_of(page); - if (mi_likely(page->xblock_size <= MI_MAX_RETIRE_SIZE && !mi_page_is_in_full(page))) { + const size_t bsize = mi_page_block_size(page); + if mi_likely( /* bsize < MI_MAX_RETIRE_SIZE && */ !mi_page_queue_is_special(pq)) { // not full or huge queue? if (pq->last==page && pq->first==page) { // the only page in the queue? mi_stat_counter_increase(_mi_stats_main.page_no_retire,1); - page->retire_expire = (page->xblock_size <= MI_SMALL_OBJ_SIZE_MAX ? MI_RETIRE_CYCLES : MI_RETIRE_CYCLES/4); + page->retire_expire = (bsize <= MI_SMALL_OBJ_SIZE_MAX ? MI_RETIRE_CYCLES : MI_RETIRE_CYCLES/4); mi_heap_t* heap = mi_page_heap(page); mi_assert_internal(pq >= heap->pages); const size_t index = pq - heap->pages; @@ -410,7 +460,7 @@ void _mi_page_retire(mi_page_t* page) { if (index < heap->page_retired_min) heap->page_retired_min = index; if (index > heap->page_retired_max) heap->page_retired_max = index; mi_assert_internal(mi_page_all_free(page)); - return; // dont't free after all + return; // don't free after all } } @@ -458,14 +508,14 @@ void _mi_heap_collect_retired(mi_heap_t* heap, bool force) { #define MI_MIN_SLICES (2) static void mi_page_free_list_extend_secure(mi_heap_t* const heap, mi_page_t* const page, const size_t bsize, const size_t extend, mi_stats_t* const stats) { - UNUSED(stats); + MI_UNUSED(stats); #if (MI_SECURE<=2) mi_assert_internal(page->free == NULL); mi_assert_internal(page->local_free == NULL); #endif mi_assert_internal(page->capacity + extend <= page->reserved); mi_assert_internal(bsize == mi_page_block_size(page)); - void* const page_area = _mi_page_start(_mi_page_segment(page), page, NULL); + void* const page_area = mi_page_start(page); // initialize a randomized free list // set up `slice_count` slices to alternate between @@ -516,14 +566,14 @@ static void mi_page_free_list_extend_secure(mi_heap_t* const heap, mi_page_t* co static mi_decl_noinline void mi_page_free_list_extend( mi_page_t* const page, const size_t bsize, const size_t extend, mi_stats_t* const stats) { - UNUSED(stats); + MI_UNUSED(stats); #if (MI_SECURE <= 2) mi_assert_internal(page->free == NULL); mi_assert_internal(page->local_free == NULL); #endif mi_assert_internal(page->capacity + extend <= page->reserved); mi_assert_internal(bsize == mi_page_block_size(page)); - void* const page_area = _mi_page_start(_mi_page_segment(page), page, NULL ); + void* const page_area = mi_page_start(page); mi_block_t* const start = mi_page_block_at(page, page_area, bsize, page->capacity); @@ -566,20 +616,23 @@ static void mi_page_extend_free(mi_heap_t* heap, mi_page_t* page, mi_tld_t* tld) if (page->capacity >= page->reserved) return; size_t page_size; - //uint8_t* page_start = - _mi_page_start(_mi_page_segment(page), page, &page_size); + //uint8_t* page_start = + _mi_segment_page_start(_mi_page_segment(page), page, &page_size); mi_stat_counter_increase(tld->stats.pages_extended, 1); // calculate the extend count - const size_t bsize = (page->xblock_size < MI_HUGE_BLOCK_SIZE ? page->xblock_size : page_size); + const size_t bsize = mi_page_block_size(page); size_t extend = page->reserved - page->capacity; - size_t max_extend = (bsize >= MI_MAX_EXTEND_SIZE ? MI_MIN_EXTEND : MI_MAX_EXTEND_SIZE/(uint32_t)bsize); - if (max_extend < MI_MIN_EXTEND) max_extend = MI_MIN_EXTEND; + mi_assert_internal(extend > 0); + + size_t max_extend = (bsize >= MI_MAX_EXTEND_SIZE ? MI_MIN_EXTEND : MI_MAX_EXTEND_SIZE/bsize); + if (max_extend < MI_MIN_EXTEND) { max_extend = MI_MIN_EXTEND; } + mi_assert_internal(max_extend > 0); if (extend > max_extend) { // ensure we don't touch memory beyond the page to reduce page commit. // the `lean` benchmark tests this. Going from 1 to 8 increases rss by 50%. - extend = (max_extend==0 ? 1 : max_extend); + extend = max_extend; } mi_assert_internal(extend > 0 && extend + page->capacity <= page->reserved); @@ -595,11 +648,6 @@ static void mi_page_extend_free(mi_heap_t* heap, mi_page_t* page, mi_tld_t* tld) // enable the new free list page->capacity += (uint16_t)extend; mi_stat_increase(tld->stats.page_committed, extend * bsize); - - // extension into zero initialized memory preserves the zero'd free list - if (!page->is_zero_init) { - page->is_zero = false; - } mi_assert_expensive(mi_page_is_valid_init(page)); } @@ -611,16 +659,30 @@ static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi mi_assert_internal(block_size > 0); // set fields mi_page_set_heap(page, heap); + page->block_size = block_size; size_t page_size; - _mi_segment_page_start(segment, page, block_size, &page_size, NULL); - page->xblock_size = (block_size < MI_HUGE_BLOCK_SIZE ? (uint32_t)block_size : MI_HUGE_BLOCK_SIZE); + page->page_start = _mi_segment_page_start(segment, page, &page_size); + mi_track_mem_noaccess(page->page_start,page_size); mi_assert_internal(page_size / block_size < (1L<<16)); page->reserved = (uint16_t)(page_size / block_size); - #ifdef MI_ENCODE_FREELIST + mi_assert_internal(page->reserved > 0); + #if (MI_PADDING || MI_ENCODE_FREELIST) page->keys[0] = _mi_heap_random_next(heap); page->keys[1] = _mi_heap_random_next(heap); #endif - page->is_zero = page->is_zero_init; + page->free_is_zero = page->is_zero_init; + #if MI_DEBUG>2 + if (page->is_zero_init) { + mi_track_mem_defined(page->page_start, page_size); + mi_assert_expensive(mi_mem_is_zero(page->page_start, page_size)); + } + #endif + if (block_size > 0 && _mi_is_power_of_two(block_size)) { + page->block_size_shift = (uint8_t)(mi_ctz((uintptr_t)block_size)); + } + else { + page->block_size_shift = 0; + } mi_assert_internal(page->capacity == 0); mi_assert_internal(page->free == NULL); @@ -630,10 +692,11 @@ static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi mi_assert_internal(page->prev == NULL); mi_assert_internal(page->retire_expire == 0); mi_assert_internal(!mi_page_has_aligned(page)); - #if (MI_ENCODE_FREELIST) + #if (MI_PADDING || MI_ENCODE_FREELIST) mi_assert_internal(page->keys[0] != 0); mi_assert_internal(page->keys[1] != 0); #endif + mi_assert_internal(page->block_size_shift == 0 || (block_size == ((size_t)1 << page->block_size_shift))); mi_assert_expensive(mi_page_is_valid_init(page)); // initialize an initial free list @@ -650,12 +713,16 @@ static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi static mi_page_t* mi_page_queue_find_free_ex(mi_heap_t* heap, mi_page_queue_t* pq, bool first_try) { // search through the pages in "next fit" order + #if MI_STAT size_t count = 0; + #endif mi_page_t* page = pq->first; while (page != NULL) { mi_page_t* next = page->next; // remember next + #if MI_STAT count++; + #endif // 0. collect freed blocks by us and other threads _mi_page_free_collect(page, false); @@ -680,14 +747,14 @@ static mi_page_t* mi_page_queue_find_free_ex(mi_heap_t* heap, mi_page_queue_t* p page = next; } // for each page - mi_stat_counter_increase(heap->tld->stats.searches, count); + mi_heap_stat_counter_increase(heap, searches, count); if (page == NULL) { _mi_heap_collect_retired(heap, false); // perhaps make a page available page = mi_page_fresh(heap, pq); if (page == NULL && first_try) { // out-of-memory _or_ an abandoned page with free blocks was reclaimed, try once again - page = mi_page_queue_find_free_ex(heap, pq, false); + page = mi_page_queue_find_free_ex(heap, pq, false); } } else { @@ -705,17 +772,17 @@ static inline mi_page_t* mi_find_free_page(mi_heap_t* heap, size_t size) { mi_page_queue_t* pq = mi_page_queue(heap,size); mi_page_t* page = pq->first; if (page != NULL) { - #if (MI_SECURE>=3) // in secure mode, we extend half the time to increase randomness + #if (MI_SECURE>=3) // in secure mode, we extend half the time to increase randomness if (page->capacity < page->reserved && ((_mi_heap_random_next(heap) & 1) == 1)) { mi_page_extend_free(heap, page, heap->tld); mi_assert_internal(mi_page_immediate_available(page)); } - else + else #endif { _mi_page_free_collect(page,false); } - + if (mi_page_immediate_available(page)) { page->retire_expire = 0; return page; // fast path @@ -754,31 +821,31 @@ void mi_register_deferred_free(mi_deferred_free_fun* fn, void* arg) mi_attr_noex General allocation ----------------------------------------------------------- */ -// A huge page is allocated directly without being in a queue. -// Because huge pages contain just one block, and the segment contains -// just that page, we always treat them as abandoned and any thread -// that frees the block can free the whole page and segment directly. -static mi_page_t* mi_huge_page_alloc(mi_heap_t* heap, size_t size) { +// Huge pages contain just one block, and the segment contains just that page. +// Huge pages are also use if the requested alignment is very large (> MI_BLOCK_ALIGNMENT_MAX) +// so their size is not always `> MI_LARGE_OBJ_SIZE_MAX`. +static mi_page_t* mi_huge_page_alloc(mi_heap_t* heap, size_t size, size_t page_alignment) { size_t block_size = _mi_os_good_alloc_size(size); - mi_assert_internal(_mi_bin(block_size) == MI_BIN_HUGE); - mi_page_t* page = mi_page_fresh_alloc(heap,NULL,block_size); + mi_assert_internal(mi_bin(block_size) == MI_BIN_HUGE || page_alignment > 0); + #if MI_HUGE_PAGE_ABANDON + mi_page_queue_t* pq = NULL; + #else + mi_page_queue_t* pq = mi_page_queue(heap, MI_LARGE_OBJ_SIZE_MAX+1); // always in the huge queue regardless of the block size + mi_assert_internal(mi_page_queue_is_huge(pq)); + #endif + mi_page_t* page = mi_page_fresh_alloc(heap, pq, block_size, page_alignment); if (page != NULL) { - const size_t bsize = mi_page_block_size(page); // note: not `mi_page_usable_block_size` as `size` includes padding already - mi_assert_internal(bsize >= size); + mi_assert_internal(mi_page_block_size(page) >= size); mi_assert_internal(mi_page_immediate_available(page)); - mi_assert_internal(_mi_page_segment(page)->page_kind==MI_PAGE_HUGE); + mi_assert_internal(mi_page_is_huge(page)); + mi_assert_internal(_mi_page_segment(page)->page_kind == MI_PAGE_HUGE); mi_assert_internal(_mi_page_segment(page)->used==1); + #if MI_HUGE_PAGE_ABANDON mi_assert_internal(_mi_page_segment(page)->thread_id==0); // abandoned, not in the huge queue mi_page_set_heap(page, NULL); - - if (bsize > MI_HUGE_OBJ_SIZE_MAX) { - _mi_stat_increase(&heap->tld->stats.giant, bsize); - _mi_stat_counter_increase(&heap->tld->stats.giant_count, 1); - } - else { - _mi_stat_increase(&heap->tld->stats.huge, bsize); - _mi_stat_counter_increase(&heap->tld->stats.huge_count, 1); - } + #endif + mi_heap_stat_increase(heap, huge, mi_page_block_size(page)); + mi_heap_stat_counter_increase(heap, huge_count, 1); } return page; } @@ -786,54 +853,57 @@ static mi_page_t* mi_huge_page_alloc(mi_heap_t* heap, size_t size) { // Allocate a page // Note: in debug mode the size includes MI_PADDING_SIZE and might have overflowed. -static mi_page_t* mi_find_page(mi_heap_t* heap, size_t size) mi_attr_noexcept { +static mi_page_t* mi_find_page(mi_heap_t* heap, size_t size, size_t huge_alignment) mi_attr_noexcept { // huge allocation? - const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size` - if (mi_unlikely(req_size > (MI_LARGE_OBJ_SIZE_MAX - MI_PADDING_SIZE) )) { - if (mi_unlikely(req_size > PTRDIFF_MAX)) { // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>) + const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size` + if mi_unlikely(req_size > (MI_LARGE_OBJ_SIZE_MAX - MI_PADDING_SIZE) || huge_alignment > 0) { + if mi_unlikely(req_size > MI_MAX_ALLOC_SIZE) { _mi_error_message(EOVERFLOW, "allocation request is too large (%zu bytes)\n", req_size); return NULL; } else { - return mi_huge_page_alloc(heap,size); + return mi_huge_page_alloc(heap,size,huge_alignment); } } else { // otherwise find a page with free blocks in our size segregated queues + #if MI_PADDING mi_assert_internal(size >= MI_PADDING_SIZE); + #endif return mi_find_free_page(heap, size); } } // Generic allocation routine if the fast path (`alloc.c:mi_page_malloc`) does not succeed. // Note: in debug mode the size includes MI_PADDING_SIZE and might have overflowed. -void* _mi_malloc_generic(mi_heap_t* heap, size_t size) mi_attr_noexcept +// The `huge_alignment` is normally 0 but is set to a multiple of MI_SEGMENT_SIZE for +// very large requested alignments in which case we use a huge segment. +void* _mi_malloc_generic(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept { mi_assert_internal(heap != NULL); // initialize if necessary - if (mi_unlikely(!mi_heap_is_initialized(heap))) { - mi_thread_init(); // calls `_mi_heap_init` in turn - heap = mi_get_default_heap(); - if (mi_unlikely(!mi_heap_is_initialized(heap))) { return NULL; } + if mi_unlikely(!mi_heap_is_initialized(heap)) { + heap = mi_heap_get_default(); // calls mi_thread_init + if mi_unlikely(!mi_heap_is_initialized(heap)) { return NULL; } } mi_assert_internal(mi_heap_is_initialized(heap)); // call potential deferred free routines _mi_deferred_free(heap, false); - // free delayed frees from other threads - _mi_heap_delayed_free(heap); + // free delayed frees from other threads (but skip contended ones) + _mi_heap_delayed_free_partial(heap); // find (or allocate) a page of the right size - mi_page_t* page = mi_find_page(heap, size); - if (mi_unlikely(page == NULL)) { // first time out of memory, try to collect and retry the allocation once more + mi_page_t* page = mi_find_page(heap, size, huge_alignment); + if mi_unlikely(page == NULL) { // first time out of memory, try to collect and retry the allocation once more mi_heap_collect(heap, true /* force */); - page = mi_find_page(heap, size); + page = mi_find_page(heap, size, huge_alignment); } - if (mi_unlikely(page == NULL)) { // out of memory - const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size` + if mi_unlikely(page == NULL) { // out of memory + const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size` _mi_error_message(ENOMEM, "unable to allocate memory (%zu bytes)\n", req_size); return NULL; } @@ -841,6 +911,15 @@ void* _mi_malloc_generic(mi_heap_t* heap, size_t size) mi_attr_noexcept mi_assert_internal(mi_page_immediate_available(page)); mi_assert_internal(mi_page_block_size(page) >= size); - // and try again, this time succeeding! (i.e. this should never recurse) - return _mi_page_malloc(heap, page, size); + // and try again, this time succeeding! (i.e. this should never recurse through _mi_page_malloc) + if mi_unlikely(zero && page->block_size == 0) { + // note: we cannot call _mi_page_malloc with zeroing for huge blocks; we zero it afterwards in that case. + void* p = _mi_page_malloc(heap, page, size); + mi_assert_internal(p != NULL); + _mi_memzero_aligned(p, mi_page_usable_block_size(page)); + return p; + } + else { + return _mi_page_malloc_zero(heap, page, size, zero); + } } diff --git a/contrib/libs/mimalloc/src/prim/osx/alloc-override-zone.c b/contrib/libs/mimalloc/src/prim/osx/alloc-override-zone.c new file mode 100644 index 0000000000..1515b886b2 --- /dev/null +++ b/contrib/libs/mimalloc/src/prim/osx/alloc-override-zone.c @@ -0,0 +1,461 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2022, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +#include "mimalloc.h" +#include "mimalloc/internal.h" + +#if defined(MI_MALLOC_OVERRIDE) + +#if !defined(__APPLE__) +#error "this file should only be included on macOS" +#endif + +/* ------------------------------------------------------ + Override system malloc on macOS + This is done through the malloc zone interface. + It seems to be most robust in combination with interposing + though or otherwise we may get zone errors as there are could + be allocations done by the time we take over the + zone. +------------------------------------------------------ */ + +#include <AvailabilityMacros.h> +#include <malloc/malloc.h> +#include <string.h> // memset +#include <stdlib.h> + +#ifdef __cplusplus +extern "C" { +#endif + +#if defined(MAC_OS_X_VERSION_10_6) && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6) +// only available from OSX 10.6 +extern malloc_zone_t* malloc_default_purgeable_zone(void) __attribute__((weak_import)); +#endif + +/* ------------------------------------------------------ + malloc zone members +------------------------------------------------------ */ + +static size_t zone_size(malloc_zone_t* zone, const void* p) { + MI_UNUSED(zone); + if (!mi_is_in_heap_region(p)){ return 0; } // not our pointer, bail out + return mi_usable_size(p); +} + +static void* zone_malloc(malloc_zone_t* zone, size_t size) { + MI_UNUSED(zone); + return mi_malloc(size); +} + +static void* zone_calloc(malloc_zone_t* zone, size_t count, size_t size) { + MI_UNUSED(zone); + return mi_calloc(count, size); +} + +static void* zone_valloc(malloc_zone_t* zone, size_t size) { + MI_UNUSED(zone); + return mi_malloc_aligned(size, _mi_os_page_size()); +} + +static void zone_free(malloc_zone_t* zone, void* p) { + MI_UNUSED(zone); + mi_cfree(p); +} + +static void* zone_realloc(malloc_zone_t* zone, void* p, size_t newsize) { + MI_UNUSED(zone); + return mi_realloc(p, newsize); +} + +static void* zone_memalign(malloc_zone_t* zone, size_t alignment, size_t size) { + MI_UNUSED(zone); + return mi_malloc_aligned(size,alignment); +} + +static void zone_destroy(malloc_zone_t* zone) { + MI_UNUSED(zone); + // todo: ignore for now? +} + +static unsigned zone_batch_malloc(malloc_zone_t* zone, size_t size, void** ps, unsigned count) { + size_t i; + for (i = 0; i < count; i++) { + ps[i] = zone_malloc(zone, size); + if (ps[i] == NULL) break; + } + return i; +} + +static void zone_batch_free(malloc_zone_t* zone, void** ps, unsigned count) { + for(size_t i = 0; i < count; i++) { + zone_free(zone, ps[i]); + ps[i] = NULL; + } +} + +static size_t zone_pressure_relief(malloc_zone_t* zone, size_t size) { + MI_UNUSED(zone); MI_UNUSED(size); + mi_collect(false); + return 0; +} + +static void zone_free_definite_size(malloc_zone_t* zone, void* p, size_t size) { + MI_UNUSED(size); + zone_free(zone,p); +} + +static boolean_t zone_claimed_address(malloc_zone_t* zone, void* p) { + MI_UNUSED(zone); + return mi_is_in_heap_region(p); +} + + +/* ------------------------------------------------------ + Introspection members +------------------------------------------------------ */ + +static kern_return_t intro_enumerator(task_t task, void* p, + unsigned type_mask, vm_address_t zone_address, + memory_reader_t reader, + vm_range_recorder_t recorder) +{ + // todo: enumerate all memory + MI_UNUSED(task); MI_UNUSED(p); MI_UNUSED(type_mask); MI_UNUSED(zone_address); + MI_UNUSED(reader); MI_UNUSED(recorder); + return KERN_SUCCESS; +} + +static size_t intro_good_size(malloc_zone_t* zone, size_t size) { + MI_UNUSED(zone); + return mi_good_size(size); +} + +static boolean_t intro_check(malloc_zone_t* zone) { + MI_UNUSED(zone); + return true; +} + +static void intro_print(malloc_zone_t* zone, boolean_t verbose) { + MI_UNUSED(zone); MI_UNUSED(verbose); + mi_stats_print(NULL); +} + +static void intro_log(malloc_zone_t* zone, void* p) { + MI_UNUSED(zone); MI_UNUSED(p); + // todo? +} + +static void intro_force_lock(malloc_zone_t* zone) { + MI_UNUSED(zone); + // todo? +} + +static void intro_force_unlock(malloc_zone_t* zone) { + MI_UNUSED(zone); + // todo? +} + +static void intro_statistics(malloc_zone_t* zone, malloc_statistics_t* stats) { + MI_UNUSED(zone); + // todo... + stats->blocks_in_use = 0; + stats->size_in_use = 0; + stats->max_size_in_use = 0; + stats->size_allocated = 0; +} + +static boolean_t intro_zone_locked(malloc_zone_t* zone) { + MI_UNUSED(zone); + return false; +} + + +/* ------------------------------------------------------ + At process start, override the default allocator +------------------------------------------------------ */ + +#if defined(__GNUC__) && !defined(__clang__) +#pragma GCC diagnostic ignored "-Wmissing-field-initializers" +#endif + +#if defined(__clang__) +#pragma clang diagnostic ignored "-Wc99-extensions" +#endif + +static malloc_introspection_t mi_introspect = { + .enumerator = &intro_enumerator, + .good_size = &intro_good_size, + .check = &intro_check, + .print = &intro_print, + .log = &intro_log, + .force_lock = &intro_force_lock, + .force_unlock = &intro_force_unlock, +#if defined(MAC_OS_X_VERSION_10_6) && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6) && !defined(__ppc__) + .statistics = &intro_statistics, + .zone_locked = &intro_zone_locked, +#endif +}; + +static malloc_zone_t mi_malloc_zone = { + // note: even with designators, the order is important for C++ compilation + //.reserved1 = NULL, + //.reserved2 = NULL, + .size = &zone_size, + .malloc = &zone_malloc, + .calloc = &zone_calloc, + .valloc = &zone_valloc, + .free = &zone_free, + .realloc = &zone_realloc, + .destroy = &zone_destroy, + .zone_name = "mimalloc", + .batch_malloc = &zone_batch_malloc, + .batch_free = &zone_batch_free, + .introspect = &mi_introspect, +#if defined(MAC_OS_X_VERSION_10_6) && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6) && !defined(__ppc__) + #if defined(MAC_OS_X_VERSION_10_14) && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_14) + .version = 10, + #else + .version = 9, + #endif + // switch to version 9+ on OSX 10.6 to support memalign. + .memalign = &zone_memalign, + .free_definite_size = &zone_free_definite_size, + #if defined(MAC_OS_X_VERSION_10_7) && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_7) + .pressure_relief = &zone_pressure_relief, + #endif + #if defined(MAC_OS_X_VERSION_10_14) && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_14) + .claimed_address = &zone_claimed_address, + #endif +#else + .version = 4, +#endif +}; + +#ifdef __cplusplus +} +#endif + + +#if defined(MI_OSX_INTERPOSE) && defined(MI_SHARED_LIB_EXPORT) + +// ------------------------------------------------------ +// Override malloc_xxx and malloc_zone_xxx api's to use only +// our mimalloc zone. Since even the loader uses malloc +// on macOS, this ensures that all allocations go through +// mimalloc (as all calls are interposed). +// The main `malloc`, `free`, etc calls are interposed in `alloc-override.c`, +// Here, we also override macOS specific API's like +// `malloc_zone_calloc` etc. see <https://github.com/aosm/libmalloc/blob/master/man/malloc_zone_malloc.3> +// ------------------------------------------------------ + +static inline malloc_zone_t* mi_get_default_zone(void) +{ + static bool init; + if mi_unlikely(!init) { + init = true; + malloc_zone_register(&mi_malloc_zone); // by calling register we avoid a zone error on free (see <http://eatmyrandom.blogspot.com/2010/03/mallocfree-interception-on-mac-os-x.html>) + } + return &mi_malloc_zone; +} + +mi_decl_externc int malloc_jumpstart(uintptr_t cookie); +mi_decl_externc void _malloc_fork_prepare(void); +mi_decl_externc void _malloc_fork_parent(void); +mi_decl_externc void _malloc_fork_child(void); + + +static malloc_zone_t* mi_malloc_create_zone(vm_size_t size, unsigned flags) { + MI_UNUSED(size); MI_UNUSED(flags); + return mi_get_default_zone(); +} + +static malloc_zone_t* mi_malloc_default_zone (void) { + return mi_get_default_zone(); +} + +static malloc_zone_t* mi_malloc_default_purgeable_zone(void) { + return mi_get_default_zone(); +} + +static void mi_malloc_destroy_zone(malloc_zone_t* zone) { + MI_UNUSED(zone); + // nothing. +} + +static kern_return_t mi_malloc_get_all_zones (task_t task, memory_reader_t mr, vm_address_t** addresses, unsigned* count) { + MI_UNUSED(task); MI_UNUSED(mr); + if (addresses != NULL) *addresses = NULL; + if (count != NULL) *count = 0; + return KERN_SUCCESS; +} + +static const char* mi_malloc_get_zone_name(malloc_zone_t* zone) { + return (zone == NULL ? mi_malloc_zone.zone_name : zone->zone_name); +} + +static void mi_malloc_set_zone_name(malloc_zone_t* zone, const char* name) { + MI_UNUSED(zone); MI_UNUSED(name); +} + +static int mi_malloc_jumpstart(uintptr_t cookie) { + MI_UNUSED(cookie); + return 1; // or 0 for no error? +} + +static void mi__malloc_fork_prepare(void) { + // nothing +} +static void mi__malloc_fork_parent(void) { + // nothing +} +static void mi__malloc_fork_child(void) { + // nothing +} + +static void mi_malloc_printf(const char* fmt, ...) { + MI_UNUSED(fmt); +} + +static bool zone_check(malloc_zone_t* zone) { + MI_UNUSED(zone); + return true; +} + +static malloc_zone_t* zone_from_ptr(const void* p) { + MI_UNUSED(p); + return mi_get_default_zone(); +} + +static void zone_log(malloc_zone_t* zone, void* p) { + MI_UNUSED(zone); MI_UNUSED(p); +} + +static void zone_print(malloc_zone_t* zone, bool b) { + MI_UNUSED(zone); MI_UNUSED(b); +} + +static void zone_print_ptr_info(void* p) { + MI_UNUSED(p); +} + +static void zone_register(malloc_zone_t* zone) { + MI_UNUSED(zone); +} + +static void zone_unregister(malloc_zone_t* zone) { + MI_UNUSED(zone); +} + +// use interposing so `DYLD_INSERT_LIBRARIES` works without `DYLD_FORCE_FLAT_NAMESPACE=1` +// See: <https://books.google.com/books?id=K8vUkpOXhN4C&pg=PA73> +struct mi_interpose_s { + const void* replacement; + const void* target; +}; +#define MI_INTERPOSE_FUN(oldfun,newfun) { (const void*)&newfun, (const void*)&oldfun } +#define MI_INTERPOSE_MI(fun) MI_INTERPOSE_FUN(fun,mi_##fun) +#define MI_INTERPOSE_ZONE(fun) MI_INTERPOSE_FUN(malloc_##fun,fun) +__attribute__((used)) static const struct mi_interpose_s _mi_zone_interposes[] __attribute__((section("__DATA, __interpose"))) = +{ + + MI_INTERPOSE_MI(malloc_create_zone), + MI_INTERPOSE_MI(malloc_default_purgeable_zone), + MI_INTERPOSE_MI(malloc_default_zone), + MI_INTERPOSE_MI(malloc_destroy_zone), + MI_INTERPOSE_MI(malloc_get_all_zones), + MI_INTERPOSE_MI(malloc_get_zone_name), + MI_INTERPOSE_MI(malloc_jumpstart), + MI_INTERPOSE_MI(malloc_printf), + MI_INTERPOSE_MI(malloc_set_zone_name), + MI_INTERPOSE_MI(_malloc_fork_child), + MI_INTERPOSE_MI(_malloc_fork_parent), + MI_INTERPOSE_MI(_malloc_fork_prepare), + + MI_INTERPOSE_ZONE(zone_batch_free), + MI_INTERPOSE_ZONE(zone_batch_malloc), + MI_INTERPOSE_ZONE(zone_calloc), + MI_INTERPOSE_ZONE(zone_check), + MI_INTERPOSE_ZONE(zone_free), + MI_INTERPOSE_ZONE(zone_from_ptr), + MI_INTERPOSE_ZONE(zone_log), + MI_INTERPOSE_ZONE(zone_malloc), + MI_INTERPOSE_ZONE(zone_memalign), + MI_INTERPOSE_ZONE(zone_print), + MI_INTERPOSE_ZONE(zone_print_ptr_info), + MI_INTERPOSE_ZONE(zone_realloc), + MI_INTERPOSE_ZONE(zone_register), + MI_INTERPOSE_ZONE(zone_unregister), + MI_INTERPOSE_ZONE(zone_valloc) +}; + + +#else + +// ------------------------------------------------------ +// hook into the zone api's without interposing +// This is the official way of adding an allocator but +// it seems less robust than using interpose. +// ------------------------------------------------------ + +static inline malloc_zone_t* mi_get_default_zone(void) +{ + // The first returned zone is the real default + malloc_zone_t** zones = NULL; + unsigned count = 0; + kern_return_t ret = malloc_get_all_zones(0, NULL, (vm_address_t**)&zones, &count); + if (ret == KERN_SUCCESS && count > 0) { + return zones[0]; + } + else { + // fallback + return malloc_default_zone(); + } +} + +#if defined(__clang__) +__attribute__((constructor(0))) +#else +__attribute__((constructor)) // seems not supported by g++-11 on the M1 +#endif +__attribute__((used)) +static void _mi_macos_override_malloc(void) { + malloc_zone_t* purgeable_zone = NULL; + + #if defined(MAC_OS_X_VERSION_10_6) && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_6) + // force the purgeable zone to exist to avoid strange bugs + if (malloc_default_purgeable_zone) { + purgeable_zone = malloc_default_purgeable_zone(); + } + #endif + + // Register our zone. + // thomcc: I think this is still needed to put us in the zone list. + malloc_zone_register(&mi_malloc_zone); + // Unregister the default zone, this makes our zone the new default + // as that was the last registered. + malloc_zone_t *default_zone = mi_get_default_zone(); + // thomcc: Unsure if the next test is *always* false or just false in the + // cases I've tried. I'm also unsure if the code inside is needed. at all + if (default_zone != &mi_malloc_zone) { + malloc_zone_unregister(default_zone); + + // Reregister the default zone so free and realloc in that zone keep working. + malloc_zone_register(default_zone); + } + + // Unregister, and re-register the purgeable_zone to avoid bugs if it occurs + // earlier than the default zone. + if (purgeable_zone != NULL) { + malloc_zone_unregister(purgeable_zone); + malloc_zone_register(purgeable_zone); + } + +} +#endif // MI_OSX_INTERPOSE + +#endif // MI_MALLOC_OVERRIDE diff --git a/contrib/libs/mimalloc/src/prim/osx/prim.c b/contrib/libs/mimalloc/src/prim/osx/prim.c new file mode 100644 index 0000000000..8a2f4e8aa4 --- /dev/null +++ b/contrib/libs/mimalloc/src/prim/osx/prim.c @@ -0,0 +1,9 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2023, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +// We use the unix/prim.c with the mmap API on macOSX +#include "../unix/prim.c" diff --git a/contrib/libs/mimalloc/src/prim/prim.c b/contrib/libs/mimalloc/src/prim/prim.c new file mode 100644 index 0000000000..992a1a4be5 --- /dev/null +++ b/contrib/libs/mimalloc/src/prim/prim.c @@ -0,0 +1,27 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2023, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +// Select the implementation of the primitives +// depending on the OS. + +#if defined(_WIN32) +#error #include "windows/prim.c" // VirtualAlloc (Windows) + +#elif defined(__APPLE__) +#include "osx/prim.c" // macOSX (actually defers to mmap in unix/prim.c) + +#elif defined(__wasi__) +#define MI_USE_SBRK +#error #include "wasi/prim.c" // memory-grow or sbrk (Wasm) + +#elif defined(__EMSCRIPTEN__) +#error #include "emscripten/prim.c" // emmalloc_*, + pthread support + +#else +#include "unix/prim.c" // mmap() (Linux, macOSX, BSD, Illumnos, Haiku, DragonFly, etc.) + +#endif diff --git a/contrib/libs/mimalloc/src/prim/unix/prim.c b/contrib/libs/mimalloc/src/prim/unix/prim.c new file mode 100644 index 0000000000..7890f936b9 --- /dev/null +++ b/contrib/libs/mimalloc/src/prim/unix/prim.c @@ -0,0 +1,882 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2018-2023, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +// This file is included in `src/prim/prim.c` + +#ifndef _DEFAULT_SOURCE +#define _DEFAULT_SOURCE // ensure mmap flags and syscall are defined +#endif + +#if defined(__sun) +// illumos provides new mman.h api when any of these are defined +// otherwise the old api based on caddr_t which predates the void pointers one. +// stock solaris provides only the former, chose to atomically to discard those +// flags only here rather than project wide tough. +#undef _XOPEN_SOURCE +#undef _POSIX_C_SOURCE +#endif + +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" +#include "mimalloc/prim.h" + +#include <sys/mman.h> // mmap +#include <unistd.h> // sysconf +#include <fcntl.h> // open, close, read, access + +#if defined(__linux__) + #include <features.h> + #if defined(MI_NO_THP) + #include <sys/prctl.h> + #endif + #if defined(__GLIBC__) + #include <linux/mman.h> // linux mmap flags + #else + #include <sys/mman.h> + #endif +#elif defined(__APPLE__) + #include <AvailabilityMacros.h> + #include <TargetConditionals.h> + #if !defined(TARGET_OS_OSX) || TARGET_OS_OSX // see issue #879, used to be (!TARGET_IOS_IPHONE && !TARGET_IOS_SIMULATOR) + #include <mach/vm_statistics.h> // VM_MAKE_TAG, VM_FLAGS_SUPERPAGE_SIZE_2MB, etc. + #endif + #if !defined(MAC_OS_X_VERSION_10_7) + #define MAC_OS_X_VERSION_10_7 1070 + #endif +#elif defined(__FreeBSD__) || defined(__DragonFly__) + #include <sys/param.h> + #if __FreeBSD_version >= 1200000 + #include <sys/cpuset.h> + #error #include <sys/domainset.h> + #endif + #include <sys/sysctl.h> +#endif + +#if defined(__linux__) || defined(__FreeBSD__) + #define MI_HAS_SYSCALL_H + #include <sys/syscall.h> +#endif + + +//------------------------------------------------------------------------------------ +// Use syscalls for some primitives to allow for libraries that override open/read/close etc. +// and do allocation themselves; using syscalls prevents recursion when mimalloc is +// still initializing (issue #713) +// Declare inline to avoid unused function warnings. +//------------------------------------------------------------------------------------ + +#if defined(MI_HAS_SYSCALL_H) && defined(SYS_open) && defined(SYS_close) && defined(SYS_read) && defined(SYS_access) + +static inline int mi_prim_open(const char* fpath, int open_flags) { + return syscall(SYS_open,fpath,open_flags,0); +} +static inline ssize_t mi_prim_read(int fd, void* buf, size_t bufsize) { + return syscall(SYS_read,fd,buf,bufsize); +} +static inline int mi_prim_close(int fd) { + return syscall(SYS_close,fd); +} +static inline int mi_prim_access(const char *fpath, int mode) { + return syscall(SYS_access,fpath,mode); +} + +#else + +static inline int mi_prim_open(const char* fpath, int open_flags) { + return open(fpath,open_flags); +} +static inline ssize_t mi_prim_read(int fd, void* buf, size_t bufsize) { + return read(fd,buf,bufsize); +} +static inline int mi_prim_close(int fd) { + return close(fd); +} +static inline int mi_prim_access(const char *fpath, int mode) { + return access(fpath,mode); +} + +#endif + + + +//--------------------------------------------- +// init +//--------------------------------------------- + +static bool unix_detect_overcommit(void) { + bool os_overcommit = true; +#if defined(__linux__) + int fd = mi_prim_open("/proc/sys/vm/overcommit_memory", O_RDONLY); + if (fd >= 0) { + char buf[32]; + ssize_t nread = mi_prim_read(fd, &buf, sizeof(buf)); + mi_prim_close(fd); + // <https://www.kernel.org/doc/Documentation/vm/overcommit-accounting> + // 0: heuristic overcommit, 1: always overcommit, 2: never overcommit (ignore NORESERVE) + if (nread >= 1) { + os_overcommit = (buf[0] == '0' || buf[0] == '1'); + } + } +#elif defined(__FreeBSD__) + int val = 0; + size_t olen = sizeof(val); + if (sysctlbyname("vm.overcommit", &val, &olen, NULL, 0) == 0) { + os_overcommit = (val != 0); + } +#else + // default: overcommit is true +#endif + return os_overcommit; +} + +void _mi_prim_mem_init( mi_os_mem_config_t* config ) +{ + long psize = sysconf(_SC_PAGESIZE); + if (psize > 0) { + config->page_size = (size_t)psize; + config->alloc_granularity = (size_t)psize; + } + config->large_page_size = 2*MI_MiB; // TODO: can we query the OS for this? + config->has_overcommit = unix_detect_overcommit(); + config->has_partial_free = true; // mmap can free in parts + config->has_virtual_reserve = true; // todo: check if this true for NetBSD? (for anonymous mmap with PROT_NONE) + + // disable transparent huge pages for this process? + #if (defined(__linux__) || defined(__ANDROID__)) && defined(PR_GET_THP_DISABLE) + #if defined(MI_NO_THP) + if (true) + #else + if (!mi_option_is_enabled(mi_option_allow_large_os_pages)) // disable THP also if large OS pages are not allowed in the options + #endif + { + int val = 0; + if (prctl(PR_GET_THP_DISABLE, &val, 0, 0, 0) != 0) { + // Most likely since distros often come with always/madvise settings. + val = 1; + // Disabling only for mimalloc process rather than touching system wide settings + (void)prctl(PR_SET_THP_DISABLE, &val, 0, 0, 0); + } + } + #endif +} + + +//--------------------------------------------- +// free +//--------------------------------------------- + +int _mi_prim_free(void* addr, size_t size ) { + bool err = (munmap(addr, size) == -1); + return (err ? errno : 0); +} + + +//--------------------------------------------- +// mmap +//--------------------------------------------- + +static int unix_madvise(void* addr, size_t size, int advice) { + #if defined(__sun) + return madvise((caddr_t)addr, size, advice); // Solaris needs cast (issue #520) + #else + return madvise(addr, size, advice); + #endif +} + +static void* unix_mmap_prim(void* addr, size_t size, size_t try_alignment, int protect_flags, int flags, int fd) { + MI_UNUSED(try_alignment); + void* p = NULL; + #if defined(MAP_ALIGNED) // BSD + if (addr == NULL && try_alignment > 1 && (try_alignment % _mi_os_page_size()) == 0) { + size_t n = mi_bsr(try_alignment); + if (((size_t)1 << n) == try_alignment && n >= 12 && n <= 30) { // alignment is a power of 2 and 4096 <= alignment <= 1GiB + p = mmap(addr, size, protect_flags, flags | MAP_ALIGNED(n), fd, 0); + if (p==MAP_FAILED || !_mi_is_aligned(p,try_alignment)) { + int err = errno; + _mi_trace_message("unable to directly request aligned OS memory (error: %d (0x%x), size: 0x%zx bytes, alignment: 0x%zx, hint address: %p)\n", err, err, size, try_alignment, addr); + } + if (p!=MAP_FAILED) return p; + // fall back to regular mmap + } + } + #elif defined(MAP_ALIGN) // Solaris + if (addr == NULL && try_alignment > 1 && (try_alignment % _mi_os_page_size()) == 0) { + p = mmap((void*)try_alignment, size, protect_flags, flags | MAP_ALIGN, fd, 0); // addr parameter is the required alignment + if (p!=MAP_FAILED) return p; + // fall back to regular mmap + } + #endif + #if (MI_INTPTR_SIZE >= 8) && !defined(MAP_ALIGNED) + // on 64-bit systems, use the virtual address area after 2TiB for 4MiB aligned allocations + if (addr == NULL) { + void* hint = _mi_os_get_aligned_hint(try_alignment, size); + if (hint != NULL) { + p = mmap(hint, size, protect_flags, flags, fd, 0); + if (p==MAP_FAILED || !_mi_is_aligned(p,try_alignment)) { + #if MI_TRACK_ENABLED // asan sometimes does not instrument errno correctly? + int err = 0; + #else + int err = errno; + #endif + _mi_trace_message("unable to directly request hinted aligned OS memory (error: %d (0x%x), size: 0x%zx bytes, alignment: 0x%zx, hint address: %p)\n", err, err, size, try_alignment, hint); + } + if (p!=MAP_FAILED) return p; + // fall back to regular mmap + } + } + #endif + // regular mmap + p = mmap(addr, size, protect_flags, flags, fd, 0); + if (p!=MAP_FAILED) return p; + // failed to allocate + return NULL; +} + +static int unix_mmap_fd(void) { + #if defined(VM_MAKE_TAG) + // macOS: tracking anonymous page with a specific ID. (All up to 98 are taken officially but LLVM sanitizers had taken 99) + int os_tag = (int)mi_option_get(mi_option_os_tag); + if (os_tag < 100 || os_tag > 255) { os_tag = 100; } + return VM_MAKE_TAG(os_tag); + #else + return -1; + #endif +} + +static void* unix_mmap(void* addr, size_t size, size_t try_alignment, int protect_flags, bool large_only, bool allow_large, bool* is_large) { + #if !defined(MAP_ANONYMOUS) + #define MAP_ANONYMOUS MAP_ANON + #endif + #if !defined(MAP_NORESERVE) + #define MAP_NORESERVE 0 + #endif + void* p = NULL; + const int fd = unix_mmap_fd(); + int flags = MAP_PRIVATE | MAP_ANONYMOUS; + if (_mi_os_has_overcommit()) { + flags |= MAP_NORESERVE; + } + #if defined(PROT_MAX) + protect_flags |= PROT_MAX(PROT_READ | PROT_WRITE); // BSD + #endif + // huge page allocation + if ((large_only || _mi_os_use_large_page(size, try_alignment)) && allow_large) { + static _Atomic(size_t) large_page_try_ok; // = 0; + size_t try_ok = mi_atomic_load_acquire(&large_page_try_ok); + if (!large_only && try_ok > 0) { + // If the OS is not configured for large OS pages, or the user does not have + // enough permission, the `mmap` will always fail (but it might also fail for other reasons). + // Therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times + // to avoid too many failing calls to mmap. + mi_atomic_cas_strong_acq_rel(&large_page_try_ok, &try_ok, try_ok - 1); + } + else { + int lflags = flags & ~MAP_NORESERVE; // using NORESERVE on huge pages seems to fail on Linux + int lfd = fd; + #ifdef MAP_ALIGNED_SUPER + lflags |= MAP_ALIGNED_SUPER; + #endif + #ifdef MAP_HUGETLB + lflags |= MAP_HUGETLB; + #endif + #ifdef MAP_HUGE_1GB + static bool mi_huge_pages_available = true; + if ((size % MI_GiB) == 0 && mi_huge_pages_available) { + lflags |= MAP_HUGE_1GB; + } + else + #endif + { + #ifdef MAP_HUGE_2MB + lflags |= MAP_HUGE_2MB; + #endif + } + #ifdef VM_FLAGS_SUPERPAGE_SIZE_2MB + lfd |= VM_FLAGS_SUPERPAGE_SIZE_2MB; + #endif + if (large_only || lflags != flags) { + // try large OS page allocation + *is_large = true; + p = unix_mmap_prim(addr, size, try_alignment, protect_flags, lflags, lfd); + #ifdef MAP_HUGE_1GB + if (p == NULL && (lflags & MAP_HUGE_1GB) == MAP_HUGE_1GB) { + mi_huge_pages_available = false; // don't try huge 1GiB pages again + _mi_warning_message("unable to allocate huge (1GiB) page, trying large (2MiB) pages instead (errno: %i)\n", errno); + lflags = ((lflags & ~MAP_HUGE_1GB) | MAP_HUGE_2MB); + p = unix_mmap_prim(addr, size, try_alignment, protect_flags, lflags, lfd); + } + #endif + if (large_only) return p; + if (p == NULL) { + mi_atomic_store_release(&large_page_try_ok, (size_t)8); // on error, don't try again for the next N allocations + } + } + } + } + // regular allocation + if (p == NULL) { + *is_large = false; + p = unix_mmap_prim(addr, size, try_alignment, protect_flags, flags, fd); + if (p != NULL) { + #if defined(MADV_HUGEPAGE) + // Many Linux systems don't allow MAP_HUGETLB but they support instead + // transparent huge pages (THP). Generally, it is not required to call `madvise` with MADV_HUGE + // though since properly aligned allocations will already use large pages if available + // in that case -- in particular for our large regions (in `memory.c`). + // However, some systems only allow THP if called with explicit `madvise`, so + // when large OS pages are enabled for mimalloc, we call `madvise` anyways. + if (allow_large && _mi_os_use_large_page(size, try_alignment)) { + if (unix_madvise(p, size, MADV_HUGEPAGE) == 0) { + *is_large = true; // possibly + }; + } + #elif defined(__sun) + if (allow_large && _mi_os_use_large_page(size, try_alignment)) { + struct memcntl_mha cmd = {0}; + cmd.mha_pagesize = _mi_os_large_page_size(); + cmd.mha_cmd = MHA_MAPSIZE_VA; + if (memcntl((caddr_t)p, size, MC_HAT_ADVISE, (caddr_t)&cmd, 0, 0) == 0) { + *is_large = true; + } + } + #endif + } + } + return p; +} + +// Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned. +int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr) { + mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0); + mi_assert_internal(commit || !allow_large); + mi_assert_internal(try_alignment > 0); + + *is_zero = true; + int protect_flags = (commit ? (PROT_WRITE | PROT_READ) : PROT_NONE); + *addr = unix_mmap(NULL, size, try_alignment, protect_flags, false, allow_large, is_large); + return (*addr != NULL ? 0 : errno); +} + + +//--------------------------------------------- +// Commit/Reset +//--------------------------------------------- + +static void unix_mprotect_hint(int err) { + #if defined(__linux__) && (MI_SECURE>=2) // guard page around every mimalloc page + if (err == ENOMEM) { + _mi_warning_message("The next warning may be caused by a low memory map limit.\n" + " On Linux this is controlled by the vm.max_map_count -- maybe increase it?\n" + " For example: sudo sysctl -w vm.max_map_count=262144\n"); + } + #else + MI_UNUSED(err); + #endif +} + + + + + +int _mi_prim_commit(void* start, size_t size, bool* is_zero) { + // commit: ensure we can access the area + // note: we may think that *is_zero can be true since the memory + // was either from mmap PROT_NONE, or from decommit MADV_DONTNEED, but + // we sometimes call commit on a range with still partially committed + // memory and `mprotect` does not zero the range. + *is_zero = false; + int err = mprotect(start, size, (PROT_READ | PROT_WRITE)); + if (err != 0) { + err = errno; + unix_mprotect_hint(err); + } + return err; +} + +int _mi_prim_decommit(void* start, size_t size, bool* needs_recommit) { + int err = 0; + // decommit: use MADV_DONTNEED as it decreases rss immediately (unlike MADV_FREE) + err = unix_madvise(start, size, MADV_DONTNEED); + #if !MI_DEBUG && !MI_SECURE + *needs_recommit = false; + #else + *needs_recommit = true; + mprotect(start, size, PROT_NONE); + #endif + /* + // decommit: use mmap with MAP_FIXED and PROT_NONE to discard the existing memory (and reduce rss) + *needs_recommit = true; + const int fd = unix_mmap_fd(); + void* p = mmap(start, size, PROT_NONE, (MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE), fd, 0); + if (p != start) { err = errno; } + */ + return err; +} + +int _mi_prim_reset(void* start, size_t size) { + // We try to use `MADV_FREE` as that is the fastest. A drawback though is that it + // will not reduce the `rss` stats in tools like `top` even though the memory is available + // to other processes. With the default `MIMALLOC_PURGE_DECOMMITS=1` we ensure that by + // default `MADV_DONTNEED` is used though. + #if defined(MADV_FREE) + static _Atomic(size_t) advice = MI_ATOMIC_VAR_INIT(MADV_FREE); + int oadvice = (int)mi_atomic_load_relaxed(&advice); + int err; + while ((err = unix_madvise(start, size, oadvice)) != 0 && errno == EAGAIN) { errno = 0; }; + if (err != 0 && errno == EINVAL && oadvice == MADV_FREE) { + // if MADV_FREE is not supported, fall back to MADV_DONTNEED from now on + mi_atomic_store_release(&advice, (size_t)MADV_DONTNEED); + err = unix_madvise(start, size, MADV_DONTNEED); + } + #else + int err = unix_madvise(start, size, MADV_DONTNEED); + #endif + return err; +} + +int _mi_prim_protect(void* start, size_t size, bool protect) { + int err = mprotect(start, size, protect ? PROT_NONE : (PROT_READ | PROT_WRITE)); + if (err != 0) { err = errno; } + unix_mprotect_hint(err); + return err; +} + + + +//--------------------------------------------- +// Huge page allocation +//--------------------------------------------- + +#if (MI_INTPTR_SIZE >= 8) && !defined(__HAIKU__) && !defined(__CYGWIN__) + +#ifndef MPOL_PREFERRED +#define MPOL_PREFERRED 1 +#endif + +#if defined(MI_HAS_SYSCALL_H) && defined(SYS_mbind) +static long mi_prim_mbind(void* start, unsigned long len, unsigned long mode, const unsigned long* nmask, unsigned long maxnode, unsigned flags) { + return syscall(SYS_mbind, start, len, mode, nmask, maxnode, flags); +} +#else +static long mi_prim_mbind(void* start, unsigned long len, unsigned long mode, const unsigned long* nmask, unsigned long maxnode, unsigned flags) { + MI_UNUSED(start); MI_UNUSED(len); MI_UNUSED(mode); MI_UNUSED(nmask); MI_UNUSED(maxnode); MI_UNUSED(flags); + return 0; +} +#endif + +int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, bool* is_zero, void** addr) { + bool is_large = true; + *is_zero = true; + *addr = unix_mmap(hint_addr, size, MI_SEGMENT_SIZE, PROT_READ | PROT_WRITE, true, true, &is_large); + if (*addr != NULL && numa_node >= 0 && numa_node < 8*MI_INTPTR_SIZE) { // at most 64 nodes + unsigned long numa_mask = (1UL << numa_node); + // TODO: does `mbind` work correctly for huge OS pages? should we + // use `set_mempolicy` before calling mmap instead? + // see: <https://lkml.org/lkml/2017/2/9/875> + long err = mi_prim_mbind(*addr, size, MPOL_PREFERRED, &numa_mask, 8*MI_INTPTR_SIZE, 0); + if (err != 0) { + err = errno; + _mi_warning_message("failed to bind huge (1GiB) pages to numa node %d (error: %d (0x%x))\n", numa_node, err, err); + } + } + return (*addr != NULL ? 0 : errno); +} + +#else + +int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, bool* is_zero, void** addr) { + MI_UNUSED(hint_addr); MI_UNUSED(size); MI_UNUSED(numa_node); + *is_zero = false; + *addr = NULL; + return ENOMEM; +} + +#endif + +//--------------------------------------------- +// NUMA nodes +//--------------------------------------------- + +#if defined(__linux__) + +size_t _mi_prim_numa_node(void) { + #if defined(MI_HAS_SYSCALL_H) && defined(SYS_getcpu) + unsigned long node = 0; + unsigned long ncpu = 0; + long err = syscall(SYS_getcpu, &ncpu, &node, NULL); + if (err != 0) return 0; + return node; + #else + return 0; + #endif +} + +size_t _mi_prim_numa_node_count(void) { + char buf[128]; + unsigned node = 0; + for(node = 0; node < 256; node++) { + // enumerate node entries -- todo: it there a more efficient way to do this? (but ensure there is no allocation) + _mi_snprintf(buf, 127, "/sys/devices/system/node/node%u", node + 1); + if (mi_prim_access(buf,R_OK) != 0) break; + } + return (node+1); +} + +#elif defined(__FreeBSD__) && __FreeBSD_version >= 1200000 + +size_t _mi_prim_numa_node(void) { + domainset_t dom; + size_t node; + int policy; + if (cpuset_getdomain(CPU_LEVEL_CPUSET, CPU_WHICH_PID, -1, sizeof(dom), &dom, &policy) == -1) return 0ul; + for (node = 0; node < MAXMEMDOM; node++) { + if (DOMAINSET_ISSET(node, &dom)) return node; + } + return 0ul; +} + +size_t _mi_prim_numa_node_count(void) { + size_t ndomains = 0; + size_t len = sizeof(ndomains); + if (sysctlbyname("vm.ndomains", &ndomains, &len, NULL, 0) == -1) return 0ul; + return ndomains; +} + +#elif defined(__DragonFly__) + +size_t _mi_prim_numa_node(void) { + // TODO: DragonFly does not seem to provide any userland means to get this information. + return 0ul; +} + +size_t _mi_prim_numa_node_count(void) { + size_t ncpus = 0, nvirtcoresperphys = 0; + size_t len = sizeof(size_t); + if (sysctlbyname("hw.ncpu", &ncpus, &len, NULL, 0) == -1) return 0ul; + if (sysctlbyname("hw.cpu_topology_ht_ids", &nvirtcoresperphys, &len, NULL, 0) == -1) return 0ul; + return nvirtcoresperphys * ncpus; +} + +#else + +size_t _mi_prim_numa_node(void) { + return 0; +} + +size_t _mi_prim_numa_node_count(void) { + return 1; +} + +#endif + +// ---------------------------------------------------------------- +// Clock +// ---------------------------------------------------------------- + +#include <time.h> + +#if defined(CLOCK_REALTIME) || defined(CLOCK_MONOTONIC) + +mi_msecs_t _mi_prim_clock_now(void) { + struct timespec t; + #ifdef CLOCK_MONOTONIC + clock_gettime(CLOCK_MONOTONIC, &t); + #else + clock_gettime(CLOCK_REALTIME, &t); + #endif + return ((mi_msecs_t)t.tv_sec * 1000) + ((mi_msecs_t)t.tv_nsec / 1000000); +} + +#else + +// low resolution timer +mi_msecs_t _mi_prim_clock_now(void) { + #if !defined(CLOCKS_PER_SEC) || (CLOCKS_PER_SEC == 1000) || (CLOCKS_PER_SEC == 0) + return (mi_msecs_t)clock(); + #elif (CLOCKS_PER_SEC < 1000) + return (mi_msecs_t)clock() * (1000 / (mi_msecs_t)CLOCKS_PER_SEC); + #else + return (mi_msecs_t)clock() / ((mi_msecs_t)CLOCKS_PER_SEC / 1000); + #endif +} + +#endif + + + + +//---------------------------------------------------------------- +// Process info +//---------------------------------------------------------------- + +#if defined(__unix__) || defined(__unix) || defined(unix) || defined(__APPLE__) || defined(__HAIKU__) +#include <stdio.h> +#include <unistd.h> +#include <sys/resource.h> + +#if defined(__APPLE__) +#include <mach/mach.h> +#endif + +#if defined(__HAIKU__) +#error #include <kernel/OS.h> +#endif + +static mi_msecs_t timeval_secs(const struct timeval* tv) { + return ((mi_msecs_t)tv->tv_sec * 1000L) + ((mi_msecs_t)tv->tv_usec / 1000L); +} + +void _mi_prim_process_info(mi_process_info_t* pinfo) +{ + struct rusage rusage; + getrusage(RUSAGE_SELF, &rusage); + pinfo->utime = timeval_secs(&rusage.ru_utime); + pinfo->stime = timeval_secs(&rusage.ru_stime); +#if !defined(__HAIKU__) + pinfo->page_faults = rusage.ru_majflt; +#endif +#if defined(__HAIKU__) + // Haiku does not have (yet?) a way to + // get these stats per process + thread_info tid; + area_info mem; + ssize_t c; + get_thread_info(find_thread(0), &tid); + while (get_next_area_info(tid.team, &c, &mem) == B_OK) { + pinfo->peak_rss += mem.ram_size; + } + pinfo->page_faults = 0; +#elif defined(__APPLE__) + pinfo->peak_rss = rusage.ru_maxrss; // macos reports in bytes + #ifdef MACH_TASK_BASIC_INFO + struct mach_task_basic_info info; + mach_msg_type_number_t infoCount = MACH_TASK_BASIC_INFO_COUNT; + if (task_info(mach_task_self(), MACH_TASK_BASIC_INFO, (task_info_t)&info, &infoCount) == KERN_SUCCESS) { + pinfo->current_rss = (size_t)info.resident_size; + } + #else + struct task_basic_info info; + mach_msg_type_number_t infoCount = TASK_BASIC_INFO_COUNT; + if (task_info(mach_task_self(), TASK_BASIC_INFO, (task_info_t)&info, &infoCount) == KERN_SUCCESS) { + pinfo->current_rss = (size_t)info.resident_size; + } + #endif +#else + pinfo->peak_rss = rusage.ru_maxrss * 1024; // Linux/BSD report in KiB +#endif + // use defaults for commit +} + +#else + +#ifndef __wasi__ +// WebAssembly instances are not processes +#pragma message("define a way to get process info") +#endif + +void _mi_prim_process_info(mi_process_info_t* pinfo) +{ + // use defaults + MI_UNUSED(pinfo); +} + +#endif + + +//---------------------------------------------------------------- +// Output +//---------------------------------------------------------------- + +void _mi_prim_out_stderr( const char* msg ) { + fputs(msg,stderr); +} + + +//---------------------------------------------------------------- +// Environment +//---------------------------------------------------------------- + +#if !defined(MI_USE_ENVIRON) || (MI_USE_ENVIRON!=0) +// On Posix systemsr use `environ` to access environment variables +// even before the C runtime is initialized. +#if defined(__APPLE__) && defined(__has_include) && __has_include(<crt_externs.h>) +#include <crt_externs.h> +static char** mi_get_environ(void) { + return (*_NSGetEnviron()); +} +#else +extern char** environ; +static char** mi_get_environ(void) { + return environ; +} +#endif +bool _mi_prim_getenv(const char* name, char* result, size_t result_size) { + if (name==NULL) return false; + const size_t len = _mi_strlen(name); + if (len == 0) return false; + char** env = mi_get_environ(); + if (env == NULL) return false; + // compare up to 10000 entries + for (int i = 0; i < 10000 && env[i] != NULL; i++) { + const char* s = env[i]; + if (_mi_strnicmp(name, s, len) == 0 && s[len] == '=') { // case insensitive + // found it + _mi_strlcpy(result, s + len + 1, result_size); + return true; + } + } + return false; +} +#else +// fallback: use standard C `getenv` but this cannot be used while initializing the C runtime +bool _mi_prim_getenv(const char* name, char* result, size_t result_size) { + // cannot call getenv() when still initializing the C runtime. + if (_mi_preloading()) return false; + const char* s = getenv(name); + if (s == NULL) { + // we check the upper case name too. + char buf[64+1]; + size_t len = _mi_strnlen(name,sizeof(buf)-1); + for (size_t i = 0; i < len; i++) { + buf[i] = _mi_toupper(name[i]); + } + buf[len] = 0; + s = getenv(buf); + } + if (s == NULL || _mi_strnlen(s,result_size) >= result_size) return false; + _mi_strlcpy(result, s, result_size); + return true; +} +#endif // !MI_USE_ENVIRON + + +//---------------------------------------------------------------- +// Random +//---------------------------------------------------------------- + +#if defined(__APPLE__) && defined(MAC_OS_X_VERSION_10_15) && (MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_15) +#include <CommonCrypto/CommonCryptoError.h> +#include <CommonCrypto/CommonRandom.h> + +bool _mi_prim_random_buf(void* buf, size_t buf_len) { + // We prefere CCRandomGenerateBytes as it returns an error code while arc4random_buf + // may fail silently on macOS. See PR #390, and <https://opensource.apple.com/source/Libc/Libc-1439.40.11/gen/FreeBSD/arc4random.c.auto.html> + return (CCRandomGenerateBytes(buf, buf_len) == kCCSuccess); +} + +#elif defined(__ANDROID__) || defined(__DragonFly__) || \ + defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || \ + defined(__sun) || \ + (defined(__APPLE__) && (MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_7)) + +#include <stdlib.h> +bool _mi_prim_random_buf(void* buf, size_t buf_len) { + arc4random_buf(buf, buf_len); + return true; +} + +#elif defined(__APPLE__) || defined(__linux__) || defined(__HAIKU__) // also for old apple versions < 10.7 (issue #829) + +#include <sys/types.h> +#include <sys/stat.h> +#include <errno.h> + +bool _mi_prim_random_buf(void* buf, size_t buf_len) { + // Modern Linux provides `getrandom` but different distributions either use `sys/random.h` or `linux/random.h` + // and for the latter the actual `getrandom` call is not always defined. + // (see <https://stackoverflow.com/questions/45237324/why-doesnt-getrandom-compile>) + // We therefore use a syscall directly and fall back dynamically to /dev/urandom when needed. + #if defined(MI_HAS_SYSCALL_H) && defined(SYS_getrandom) + #ifndef GRND_NONBLOCK + #define GRND_NONBLOCK (1) + #endif + static _Atomic(uintptr_t) no_getrandom; // = 0 + if (mi_atomic_load_acquire(&no_getrandom)==0) { + ssize_t ret = syscall(SYS_getrandom, buf, buf_len, GRND_NONBLOCK); + if (ret >= 0) return (buf_len == (size_t)ret); + if (errno != ENOSYS) return false; + mi_atomic_store_release(&no_getrandom, (uintptr_t)1); // don't call again, and fall back to /dev/urandom + } + #endif + int flags = O_RDONLY; + #if defined(O_CLOEXEC) + flags |= O_CLOEXEC; + #endif + int fd = mi_prim_open("/dev/urandom", flags); + if (fd < 0) return false; + size_t count = 0; + while(count < buf_len) { + ssize_t ret = mi_prim_read(fd, (char*)buf + count, buf_len - count); + if (ret<=0) { + if (errno!=EAGAIN && errno!=EINTR) break; + } + else { + count += ret; + } + } + mi_prim_close(fd); + return (count==buf_len); +} + +#else + +bool _mi_prim_random_buf(void* buf, size_t buf_len) { + return false; +} + +#endif + + +//---------------------------------------------------------------- +// Thread init/done +//---------------------------------------------------------------- + +#if defined(MI_USE_PTHREADS) + +// use pthread local storage keys to detect thread ending +// (and used with MI_TLS_PTHREADS for the default heap) +pthread_key_t _mi_heap_default_key = (pthread_key_t)(-1); + +static void mi_pthread_done(void* value) { + if (value!=NULL) { + _mi_thread_done((mi_heap_t*)value); + } +} + +void _mi_prim_thread_init_auto_done(void) { + mi_assert_internal(_mi_heap_default_key == (pthread_key_t)(-1)); + pthread_key_create(&_mi_heap_default_key, &mi_pthread_done); +} + +void _mi_prim_thread_done_auto_done(void) { + if (_mi_heap_default_key != (pthread_key_t)(-1)) { // do not leak the key, see issue #809 + pthread_key_delete(_mi_heap_default_key); + } +} + +void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) { + if (_mi_heap_default_key != (pthread_key_t)(-1)) { // can happen during recursive invocation on freeBSD + pthread_setspecific(_mi_heap_default_key, heap); + } +} + +#else + +void _mi_prim_thread_init_auto_done(void) { + // nothing +} + +void _mi_prim_thread_done_auto_done(void) { + // nothing +} + +void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) { + MI_UNUSED(heap); +} + +#endif diff --git a/contrib/libs/mimalloc/src/random.c b/contrib/libs/mimalloc/src/random.c index 255bede4db..4fc8b2f8fb 100644 --- a/contrib/libs/mimalloc/src/random.c +++ b/contrib/libs/mimalloc/src/random.c @@ -5,9 +5,9 @@ terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #include "mimalloc.h" -#include "mimalloc-internal.h" - -#include <string.h> // memset +#include "mimalloc/internal.h" +#include "mimalloc/prim.h" // _mi_prim_random_buf +#include <string.h> // memset /* ---------------------------------------------------------------------------- We use our own PRNG to keep predictable performance of random number generation @@ -154,118 +154,13 @@ uintptr_t _mi_random_next(mi_random_ctx_t* ctx) { /* ---------------------------------------------------------------------------- -To initialize a fresh random context we rely on the OS: -- Windows : BCryptGenRandom (or RtlGenRandom) -- osX,bsd,wasi: arc4random_buf -- Linux : getrandom,/dev/urandom +To initialize a fresh random context. If we cannot get good randomness, we fall back to weak randomness based on a timer and ASLR. -----------------------------------------------------------------------------*/ -#if defined(_WIN32) - -#if !defined(MI_USE_RTLGENRANDOM) -// We prefer BCryptGenRandom over RtlGenRandom -#pragma comment (lib,"bcrypt.lib") -#include <bcrypt.h> -static bool os_random_buf(void* buf, size_t buf_len) { - return (BCryptGenRandom(NULL, (PUCHAR)buf, (ULONG)buf_len, BCRYPT_USE_SYSTEM_PREFERRED_RNG) >= 0); -} -#else -// Use (unofficial) RtlGenRandom -#pragma comment (lib,"advapi32.lib") -#define RtlGenRandom SystemFunction036 -#ifdef __cplusplus -extern "C" { -#endif -BOOLEAN NTAPI RtlGenRandom(PVOID RandomBuffer, ULONG RandomBufferLength); -#ifdef __cplusplus -} -#endif -static bool os_random_buf(void* buf, size_t buf_len) { - return (RtlGenRandom(buf, (ULONG)buf_len) != 0); -} -#endif - -#elif defined(ANDROID) || defined(XP_DARWIN) || defined(__APPLE__) || defined(__DragonFly__) || \ - defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || \ - defined(__sun) || defined(__wasi__) -#include <stdlib.h> -static bool os_random_buf(void* buf, size_t buf_len) { - arc4random_buf(buf, buf_len); - return true; -} -#elif defined(__linux__) -#include <sys/syscall.h> -#include <unistd.h> -#include <sys/types.h> -#include <sys/stat.h> -#include <fcntl.h> -#include <errno.h> -static bool os_random_buf(void* buf, size_t buf_len) { - // Modern Linux provides `getrandom` but different distributions either use `sys/random.h` or `linux/random.h` - // and for the latter the actual `getrandom` call is not always defined. - // (see <https://stackoverflow.com/questions/45237324/why-doesnt-getrandom-compile>) - // We therefore use a syscall directly and fall back dynamically to /dev/urandom when needed. -#ifdef SYS_getrandom - #ifndef GRND_NONBLOCK - #define GRND_NONBLOCK (1) - #endif - static _Atomic(uintptr_t) no_getrandom; // = 0 - if (mi_atomic_load_acquire(&no_getrandom)==0) { - ssize_t ret = syscall(SYS_getrandom, buf, buf_len, GRND_NONBLOCK); - if (ret >= 0) return (buf_len == (size_t)ret); - if (ret != ENOSYS) return false; - mi_atomic_store_release(&no_getrandom, 1UL); // don't call again, and fall back to /dev/urandom - } -#endif - int flags = O_RDONLY; - #if defined(O_CLOEXEC) - flags |= O_CLOEXEC; - #endif - int fd = open("/dev/urandom", flags, 0); - if (fd < 0) return false; - size_t count = 0; - while(count < buf_len) { - ssize_t ret = read(fd, (char*)buf + count, buf_len - count); - if (ret<=0) { - if (errno!=EAGAIN && errno!=EINTR) break; - } - else { - count += ret; - } - } - close(fd); - return (count==buf_len); -} -#else -static bool os_random_buf(void* buf, size_t buf_len) { - return false; -} -#endif - -#if defined(_WIN32) -#include <windows.h> -#elif defined(__APPLE__) -#include <mach/mach_time.h> -#else -#include <time.h> -#endif - -uintptr_t _os_random_weak(uintptr_t extra_seed) { - uintptr_t x = (uintptr_t)&_os_random_weak ^ extra_seed; // ASLR makes the address random - - #if defined(_WIN32) - LARGE_INTEGER pcount; - QueryPerformanceCounter(&pcount); - x ^= (uintptr_t)(pcount.QuadPart); - #elif defined(__APPLE__) - x ^= (uintptr_t)mach_absolute_time(); - #else - struct timespec time; - clock_gettime(CLOCK_MONOTONIC, &time); - x ^= (uintptr_t)time.tv_sec; - x ^= (uintptr_t)time.tv_nsec; - #endif +uintptr_t _mi_os_random_weak(uintptr_t extra_seed) { + uintptr_t x = (uintptr_t)&_mi_os_random_weak ^ extra_seed; // ASLR makes the address random + x ^= _mi_prim_clock_now(); // and do a few randomization steps uintptr_t max = ((x ^ (x >> 17)) & 0x0F) + 1; for (uintptr_t i = 0; i < max; i++) { @@ -275,21 +170,41 @@ uintptr_t _os_random_weak(uintptr_t extra_seed) { return x; } -void _mi_random_init(mi_random_ctx_t* ctx) { +static void mi_random_init_ex(mi_random_ctx_t* ctx, bool use_weak) { uint8_t key[32]; - if (!os_random_buf(key, sizeof(key))) { + if (use_weak || !_mi_prim_random_buf(key, sizeof(key))) { // if we fail to get random data from the OS, we fall back to a // weak random source based on the current time - _mi_warning_message("unable to use secure randomness\n"); - uintptr_t x = _os_random_weak(0); + #if !defined(__wasi__) + if (!use_weak) { _mi_warning_message("unable to use secure randomness\n"); } + #endif + uintptr_t x = _mi_os_random_weak(0); for (size_t i = 0; i < 8; i++) { // key is eight 32-bit words. x = _mi_random_shuffle(x); ((uint32_t*)key)[i] = (uint32_t)x; } + ctx->weak = true; + } + else { + ctx->weak = false; } chacha_init(ctx, key, (uintptr_t)ctx /*nonce*/ ); } +void _mi_random_init(mi_random_ctx_t* ctx) { + mi_random_init_ex(ctx, false); +} + +void _mi_random_init_weak(mi_random_ctx_t * ctx) { + mi_random_init_ex(ctx, true); +} + +void _mi_random_reinit_if_weak(mi_random_ctx_t * ctx) { + if (ctx->weak) { + _mi_random_init(ctx); + } +} + /* -------------------------------------------------------- test vectors from <https://tools.ietf.org/html/rfc8439> ----------------------------------------------------------- */ diff --git a/contrib/libs/mimalloc/src/region.c b/contrib/libs/mimalloc/src/region.c deleted file mode 100644 index 7954073099..0000000000 --- a/contrib/libs/mimalloc/src/region.c +++ /dev/null @@ -1,505 +0,0 @@ -/* ---------------------------------------------------------------------------- -Copyright (c) 2019-2020, Microsoft Research, Daan Leijen -This is free software; you can redistribute it and/or modify it under the -terms of the MIT license. A copy of the license can be found in the file -"LICENSE" at the root of this distribution. ------------------------------------------------------------------------------*/ - -/* ---------------------------------------------------------------------------- -This implements a layer between the raw OS memory (VirtualAlloc/mmap/sbrk/..) -and the segment and huge object allocation by mimalloc. There may be multiple -implementations of this (one could be the identity going directly to the OS, -another could be a simple cache etc), but the current one uses large "regions". -In contrast to the rest of mimalloc, the "regions" are shared between threads and -need to be accessed using atomic operations. -We need this memory layer between the raw OS calls because of: -1. on `sbrk` like systems (like WebAssembly) we need our own memory maps in order - to reuse memory effectively. -2. It turns out that for large objects, between 1MiB and 32MiB (?), the cost of - an OS allocation/free is still (much) too expensive relative to the accesses - in that object :-( (`malloc-large` tests this). This means we need a cheaper - way to reuse memory. -3. This layer allows for NUMA aware allocation. - -Possible issues: -- (2) can potentially be addressed too with a small cache per thread which is much - simpler. Generally though that requires shrinking of huge pages, and may overuse - memory per thread. (and is not compatible with `sbrk`). -- Since the current regions are per-process, we need atomic operations to - claim blocks which may be contended -- In the worst case, we need to search the whole region map (16KiB for 256GiB) - linearly. At what point will direct OS calls be faster? Is there a way to - do this better without adding too much complexity? ------------------------------------------------------------------------------*/ -#include "mimalloc.h" -#include "mimalloc-internal.h" -#include "mimalloc-atomic.h" - -#include <string.h> // memset - -#include "bitmap.h" - -// Internal raw OS interface -size_t _mi_os_large_page_size(); -bool _mi_os_protect(void* addr, size_t size); -bool _mi_os_unprotect(void* addr, size_t size); -bool _mi_os_commit(void* p, size_t size, bool* is_zero, mi_stats_t* stats); -bool _mi_os_decommit(void* p, size_t size, mi_stats_t* stats); -bool _mi_os_reset(void* p, size_t size, mi_stats_t* stats); -bool _mi_os_unreset(void* p, size_t size, bool* is_zero, mi_stats_t* stats); - -// arena.c -void _mi_arena_free(void* p, size_t size, size_t memid, bool all_committed, mi_stats_t* stats); -void* _mi_arena_alloc(size_t size, bool* commit, bool* large, bool* is_pinned, bool* is_zero, size_t* memid, mi_os_tld_t* tld); -void* _mi_arena_alloc_aligned(size_t size, size_t alignment, bool* commit, bool* large, bool* is_pinned, bool* is_zero, size_t* memid, mi_os_tld_t* tld); - - - -// Constants -#if (MI_INTPTR_SIZE==8) -#define MI_HEAP_REGION_MAX_SIZE (256 * GiB) // 64KiB for the region map -#elif (MI_INTPTR_SIZE==4) -#define MI_HEAP_REGION_MAX_SIZE (3 * GiB) // ~ KiB for the region map -#else -#error "define the maximum heap space allowed for regions on this platform" -#endif - -#define MI_SEGMENT_ALIGN MI_SEGMENT_SIZE - -#define MI_REGION_MAX_BLOCKS MI_BITMAP_FIELD_BITS -#define MI_REGION_SIZE (MI_SEGMENT_SIZE * MI_BITMAP_FIELD_BITS) // 256MiB (64MiB on 32 bits) -#define MI_REGION_MAX (MI_HEAP_REGION_MAX_SIZE / MI_REGION_SIZE) // 1024 (48 on 32 bits) -#define MI_REGION_MAX_OBJ_BLOCKS (MI_REGION_MAX_BLOCKS/4) // 64MiB -#define MI_REGION_MAX_OBJ_SIZE (MI_REGION_MAX_OBJ_BLOCKS*MI_SEGMENT_SIZE) - -// Region info -typedef union mi_region_info_u { - uintptr_t value; - struct { - bool valid; // initialized? - bool is_large:1; // allocated in fixed large/huge OS pages - bool is_pinned:1; // pinned memory cannot be decommitted - short numa_node; // the associated NUMA node (where -1 means no associated node) - } x; -} mi_region_info_t; - - -// A region owns a chunk of REGION_SIZE (256MiB) (virtual) memory with -// a bit map with one bit per MI_SEGMENT_SIZE (4MiB) block. -typedef struct mem_region_s { - _Atomic(uintptr_t) info; // mi_region_info_t.value - _Atomic(void*) start; // start of the memory area - mi_bitmap_field_t in_use; // bit per in-use block - mi_bitmap_field_t dirty; // track if non-zero per block - mi_bitmap_field_t commit; // track if committed per block - mi_bitmap_field_t reset; // track if reset per block - _Atomic(uintptr_t) arena_memid; // if allocated from a (huge page) arena - uintptr_t padding; // round to 8 fields -} mem_region_t; - -// The region map -static mem_region_t regions[MI_REGION_MAX]; - -// Allocated regions -static _Atomic(uintptr_t) regions_count; // = 0; - - -/* ---------------------------------------------------------------------------- -Utility functions ------------------------------------------------------------------------------*/ - -// Blocks (of 4MiB) needed for the given size. -static size_t mi_region_block_count(size_t size) { - return _mi_divide_up(size, MI_SEGMENT_SIZE); -} - -/* -// Return a rounded commit/reset size such that we don't fragment large OS pages into small ones. -static size_t mi_good_commit_size(size_t size) { - if (size > (SIZE_MAX - _mi_os_large_page_size())) return size; - return _mi_align_up(size, _mi_os_large_page_size()); -} -*/ - -// Return if a pointer points into a region reserved by us. -bool mi_is_in_heap_region(const void* p) mi_attr_noexcept { - if (p==NULL) return false; - size_t count = mi_atomic_load_relaxed(®ions_count); - for (size_t i = 0; i < count; i++) { - uint8_t* start = (uint8_t*)mi_atomic_load_ptr_relaxed(uint8_t, ®ions[i].start); - if (start != NULL && (uint8_t*)p >= start && (uint8_t*)p < start + MI_REGION_SIZE) return true; - } - return false; -} - - -static void* mi_region_blocks_start(const mem_region_t* region, mi_bitmap_index_t bit_idx) { - uint8_t* start = (uint8_t*)mi_atomic_load_ptr_acquire(uint8_t, &((mem_region_t*)region)->start); - mi_assert_internal(start != NULL); - return (start + (bit_idx * MI_SEGMENT_SIZE)); -} - -static size_t mi_memid_create(mem_region_t* region, mi_bitmap_index_t bit_idx) { - mi_assert_internal(bit_idx < MI_BITMAP_FIELD_BITS); - size_t idx = region - regions; - mi_assert_internal(®ions[idx] == region); - return (idx*MI_BITMAP_FIELD_BITS + bit_idx)<<1; -} - -static size_t mi_memid_create_from_arena(size_t arena_memid) { - return (arena_memid << 1) | 1; -} - - -static bool mi_memid_is_arena(size_t id, mem_region_t** region, mi_bitmap_index_t* bit_idx, size_t* arena_memid) { - if ((id&1)==1) { - if (arena_memid != NULL) *arena_memid = (id>>1); - return true; - } - else { - size_t idx = (id >> 1) / MI_BITMAP_FIELD_BITS; - *bit_idx = (mi_bitmap_index_t)(id>>1) % MI_BITMAP_FIELD_BITS; - *region = ®ions[idx]; - return false; - } -} - - -/* ---------------------------------------------------------------------------- - Allocate a region is allocated from the OS (or an arena) ------------------------------------------------------------------------------*/ - -static bool mi_region_try_alloc_os(size_t blocks, bool commit, bool allow_large, mem_region_t** region, mi_bitmap_index_t* bit_idx, mi_os_tld_t* tld) -{ - // not out of regions yet? - if (mi_atomic_load_relaxed(®ions_count) >= MI_REGION_MAX - 1) return false; - - // try to allocate a fresh region from the OS - bool region_commit = (commit && mi_option_is_enabled(mi_option_eager_region_commit)); - bool region_large = (commit && allow_large); - bool is_zero = false; - bool is_pinned = false; - size_t arena_memid = 0; - void* const start = _mi_arena_alloc_aligned(MI_REGION_SIZE, MI_SEGMENT_ALIGN, ®ion_commit, ®ion_large, &is_pinned, &is_zero, &arena_memid, tld); - if (start == NULL) return false; - mi_assert_internal(!(region_large && !allow_large)); - mi_assert_internal(!region_large || region_commit); - - // claim a fresh slot - const uintptr_t idx = mi_atomic_increment_acq_rel(®ions_count); - if (idx >= MI_REGION_MAX) { - mi_atomic_decrement_acq_rel(®ions_count); - _mi_arena_free(start, MI_REGION_SIZE, arena_memid, region_commit, tld->stats); - _mi_warning_message("maximum regions used: %zu GiB (perhaps recompile with a larger setting for MI_HEAP_REGION_MAX_SIZE)", _mi_divide_up(MI_HEAP_REGION_MAX_SIZE, GiB)); - return false; - } - - // allocated, initialize and claim the initial blocks - mem_region_t* r = ®ions[idx]; - r->arena_memid = arena_memid; - mi_atomic_store_release(&r->in_use, (uintptr_t)0); - mi_atomic_store_release(&r->dirty, (is_zero ? 0 : MI_BITMAP_FIELD_FULL)); - mi_atomic_store_release(&r->commit, (region_commit ? MI_BITMAP_FIELD_FULL : 0)); - mi_atomic_store_release(&r->reset, (uintptr_t)0); - *bit_idx = 0; - _mi_bitmap_claim(&r->in_use, 1, blocks, *bit_idx, NULL); - mi_atomic_store_ptr_release(void,&r->start, start); - - // and share it - mi_region_info_t info; - info.value = 0; // initialize the full union to zero - info.x.valid = true; - info.x.is_large = region_large; - info.x.is_pinned = is_pinned; - info.x.numa_node = (short)_mi_os_numa_node(tld); - mi_atomic_store_release(&r->info, info.value); // now make it available to others - *region = r; - return true; -} - -/* ---------------------------------------------------------------------------- - Try to claim blocks in suitable regions ------------------------------------------------------------------------------*/ - -static bool mi_region_is_suitable(const mem_region_t* region, int numa_node, bool allow_large ) { - // initialized at all? - mi_region_info_t info; - info.value = mi_atomic_load_relaxed(&((mem_region_t*)region)->info); - if (info.value==0) return false; - - // numa correct - if (numa_node >= 0) { // use negative numa node to always succeed - int rnode = info.x.numa_node; - if (rnode >= 0 && rnode != numa_node) return false; - } - - // check allow-large - if (!allow_large && info.x.is_large) return false; - - return true; -} - - -static bool mi_region_try_claim(int numa_node, size_t blocks, bool allow_large, mem_region_t** region, mi_bitmap_index_t* bit_idx, mi_os_tld_t* tld) -{ - // try all regions for a free slot - const size_t count = mi_atomic_load_relaxed(®ions_count); // monotonic, so ok to be relaxed - size_t idx = tld->region_idx; // Or start at 0 to reuse low addresses? Starting at 0 seems to increase latency though - for (size_t visited = 0; visited < count; visited++, idx++) { - if (idx >= count) idx = 0; // wrap around - mem_region_t* r = ®ions[idx]; - // if this region suits our demand (numa node matches, large OS page matches) - if (mi_region_is_suitable(r, numa_node, allow_large)) { - // then try to atomically claim a segment(s) in this region - if (_mi_bitmap_try_find_claim_field(&r->in_use, 0, blocks, bit_idx)) { - tld->region_idx = idx; // remember the last found position - *region = r; - return true; - } - } - } - return false; -} - - -static void* mi_region_try_alloc(size_t blocks, bool* commit, bool* large, bool* is_pinned, bool* is_zero, size_t* memid, mi_os_tld_t* tld) -{ - mi_assert_internal(blocks <= MI_BITMAP_FIELD_BITS); - mem_region_t* region; - mi_bitmap_index_t bit_idx; - const int numa_node = (_mi_os_numa_node_count() <= 1 ? -1 : _mi_os_numa_node(tld)); - // try to claim in existing regions - if (!mi_region_try_claim(numa_node, blocks, *large, ®ion, &bit_idx, tld)) { - // otherwise try to allocate a fresh region and claim in there - if (!mi_region_try_alloc_os(blocks, *commit, *large, ®ion, &bit_idx, tld)) { - // out of regions or memory - return NULL; - } - } - - // ------------------------------------------------ - // found a region and claimed `blocks` at `bit_idx`, initialize them now - mi_assert_internal(region != NULL); - mi_assert_internal(_mi_bitmap_is_claimed(®ion->in_use, 1, blocks, bit_idx)); - - mi_region_info_t info; - info.value = mi_atomic_load_acquire(®ion->info); - uint8_t* start = (uint8_t*)mi_atomic_load_ptr_acquire(uint8_t,®ion->start); - mi_assert_internal(!(info.x.is_large && !*large)); - mi_assert_internal(start != NULL); - - *is_zero = _mi_bitmap_claim(®ion->dirty, 1, blocks, bit_idx, NULL); - *large = info.x.is_large; - *is_pinned = info.x.is_pinned; - *memid = mi_memid_create(region, bit_idx); - void* p = start + (mi_bitmap_index_bit_in_field(bit_idx) * MI_SEGMENT_SIZE); - - // commit - if (*commit) { - // ensure commit - bool any_uncommitted; - _mi_bitmap_claim(®ion->commit, 1, blocks, bit_idx, &any_uncommitted); - if (any_uncommitted) { - mi_assert_internal(!info.x.is_large && !info.x.is_pinned); - bool commit_zero = false; - if (!_mi_mem_commit(p, blocks * MI_SEGMENT_SIZE, &commit_zero, tld)) { - // failed to commit! unclaim and return - mi_bitmap_unclaim(®ion->in_use, 1, blocks, bit_idx); - return NULL; - } - if (commit_zero) *is_zero = true; - } - } - else { - // no need to commit, but check if already fully committed - *commit = _mi_bitmap_is_claimed(®ion->commit, 1, blocks, bit_idx); - } - mi_assert_internal(!*commit || _mi_bitmap_is_claimed(®ion->commit, 1, blocks, bit_idx)); - - // unreset reset blocks - if (_mi_bitmap_is_any_claimed(®ion->reset, 1, blocks, bit_idx)) { - // some blocks are still reset - mi_assert_internal(!info.x.is_large && !info.x.is_pinned); - mi_assert_internal(!mi_option_is_enabled(mi_option_eager_commit) || *commit || mi_option_get(mi_option_eager_commit_delay) > 0); - mi_bitmap_unclaim(®ion->reset, 1, blocks, bit_idx); - if (*commit || !mi_option_is_enabled(mi_option_reset_decommits)) { // only if needed - bool reset_zero = false; - _mi_mem_unreset(p, blocks * MI_SEGMENT_SIZE, &reset_zero, tld); - if (reset_zero) *is_zero = true; - } - } - mi_assert_internal(!_mi_bitmap_is_any_claimed(®ion->reset, 1, blocks, bit_idx)); - - #if (MI_DEBUG>=2) - if (*commit) { ((uint8_t*)p)[0] = 0; } - #endif - - // and return the allocation - mi_assert_internal(p != NULL); - return p; -} - - -/* ---------------------------------------------------------------------------- - Allocation ------------------------------------------------------------------------------*/ - -// Allocate `size` memory aligned at `alignment`. Return non NULL on success, with a given memory `id`. -// (`id` is abstract, but `id = idx*MI_REGION_MAP_BITS + bitidx`) -void* _mi_mem_alloc_aligned(size_t size, size_t alignment, bool* commit, bool* large, bool* is_pinned, bool* is_zero, size_t* memid, mi_os_tld_t* tld) -{ - mi_assert_internal(memid != NULL && tld != NULL); - mi_assert_internal(size > 0); - *memid = 0; - *is_zero = false; - *is_pinned = false; - bool default_large = false; - if (large==NULL) large = &default_large; // ensure `large != NULL` - if (size == 0) return NULL; - size = _mi_align_up(size, _mi_os_page_size()); - - // allocate from regions if possible - void* p = NULL; - size_t arena_memid; - const size_t blocks = mi_region_block_count(size); - if (blocks <= MI_REGION_MAX_OBJ_BLOCKS && alignment <= MI_SEGMENT_ALIGN) { - p = mi_region_try_alloc(blocks, commit, large, is_pinned, is_zero, memid, tld); - if (p == NULL) { - _mi_warning_message("unable to allocate from region: size %zu\n", size); - } - } - if (p == NULL) { - // and otherwise fall back to the OS - p = _mi_arena_alloc_aligned(size, alignment, commit, large, is_pinned, is_zero, &arena_memid, tld); - *memid = mi_memid_create_from_arena(arena_memid); - } - - if (p != NULL) { - mi_assert_internal((uintptr_t)p % alignment == 0); -#if (MI_DEBUG>=2) - if (*commit) { ((uint8_t*)p)[0] = 0; } // ensure the memory is committed -#endif - } - return p; -} - - - -/* ---------------------------------------------------------------------------- -Free ------------------------------------------------------------------------------*/ - -// Free previously allocated memory with a given id. -void _mi_mem_free(void* p, size_t size, size_t id, bool full_commit, bool any_reset, mi_os_tld_t* tld) { - mi_assert_internal(size > 0 && tld != NULL); - if (p==NULL) return; - if (size==0) return; - size = _mi_align_up(size, _mi_os_page_size()); - - size_t arena_memid = 0; - mi_bitmap_index_t bit_idx; - mem_region_t* region; - if (mi_memid_is_arena(id,®ion,&bit_idx,&arena_memid)) { - // was a direct arena allocation, pass through - _mi_arena_free(p, size, arena_memid, full_commit, tld->stats); - } - else { - // allocated in a region - mi_assert_internal(size <= MI_REGION_MAX_OBJ_SIZE); if (size > MI_REGION_MAX_OBJ_SIZE) return; - const size_t blocks = mi_region_block_count(size); - mi_assert_internal(blocks + bit_idx <= MI_BITMAP_FIELD_BITS); - mi_region_info_t info; - info.value = mi_atomic_load_acquire(®ion->info); - mi_assert_internal(info.value != 0); - void* blocks_start = mi_region_blocks_start(region, bit_idx); - mi_assert_internal(blocks_start == p); // not a pointer in our area? - mi_assert_internal(bit_idx + blocks <= MI_BITMAP_FIELD_BITS); - if (blocks_start != p || bit_idx + blocks > MI_BITMAP_FIELD_BITS) return; // or `abort`? - - // committed? - if (full_commit && (size % MI_SEGMENT_SIZE) == 0) { - _mi_bitmap_claim(®ion->commit, 1, blocks, bit_idx, NULL); - } - - if (any_reset) { - // set the is_reset bits if any pages were reset - _mi_bitmap_claim(®ion->reset, 1, blocks, bit_idx, NULL); - } - - // reset the blocks to reduce the working set. - if (!info.x.is_large && !info.x.is_pinned && mi_option_is_enabled(mi_option_segment_reset) - && (mi_option_is_enabled(mi_option_eager_commit) || - mi_option_is_enabled(mi_option_reset_decommits))) // cannot reset halfway committed segments, use only `option_page_reset` instead - { - bool any_unreset; - _mi_bitmap_claim(®ion->reset, 1, blocks, bit_idx, &any_unreset); - if (any_unreset) { - _mi_abandoned_await_readers(); // ensure no more pending write (in case reset = decommit) - _mi_mem_reset(p, blocks * MI_SEGMENT_SIZE, tld); - } - } - - // and unclaim - bool all_unclaimed = mi_bitmap_unclaim(®ion->in_use, 1, blocks, bit_idx); - mi_assert_internal(all_unclaimed); UNUSED(all_unclaimed); - } -} - - -/* ---------------------------------------------------------------------------- - collection ------------------------------------------------------------------------------*/ -void _mi_mem_collect(mi_os_tld_t* tld) { - // free every region that has no segments in use. - uintptr_t rcount = mi_atomic_load_relaxed(®ions_count); - for (size_t i = 0; i < rcount; i++) { - mem_region_t* region = ®ions[i]; - if (mi_atomic_load_relaxed(®ion->info) != 0) { - // if no segments used, try to claim the whole region - uintptr_t m = mi_atomic_load_relaxed(®ion->in_use); - while (m == 0 && !mi_atomic_cas_weak_release(®ion->in_use, &m, MI_BITMAP_FIELD_FULL)) { /* nothing */ }; - if (m == 0) { - // on success, free the whole region - uint8_t* start = (uint8_t*)mi_atomic_load_ptr_acquire(uint8_t,®ions[i].start); - size_t arena_memid = mi_atomic_load_relaxed(®ions[i].arena_memid); - uintptr_t commit = mi_atomic_load_relaxed(®ions[i].commit); - memset(®ions[i], 0, sizeof(mem_region_t)); - // and release the whole region - mi_atomic_store_release(®ion->info, (uintptr_t)0); - if (start != NULL) { // && !_mi_os_is_huge_reserved(start)) { - _mi_abandoned_await_readers(); // ensure no pending reads - _mi_arena_free(start, MI_REGION_SIZE, arena_memid, (~commit == 0), tld->stats); - } - } - } - } -} - - -/* ---------------------------------------------------------------------------- - Other ------------------------------------------------------------------------------*/ - -bool _mi_mem_reset(void* p, size_t size, mi_os_tld_t* tld) { - return _mi_os_reset(p, size, tld->stats); -} - -bool _mi_mem_unreset(void* p, size_t size, bool* is_zero, mi_os_tld_t* tld) { - return _mi_os_unreset(p, size, is_zero, tld->stats); -} - -bool _mi_mem_commit(void* p, size_t size, bool* is_zero, mi_os_tld_t* tld) { - return _mi_os_commit(p, size, is_zero, tld->stats); -} - -bool _mi_mem_decommit(void* p, size_t size, mi_os_tld_t* tld) { - return _mi_os_decommit(p, size, tld->stats); -} - -bool _mi_mem_protect(void* p, size_t size) { - return _mi_os_protect(p, size); -} - -bool _mi_mem_unprotect(void* p, size_t size) { - return _mi_os_unprotect(p, size); -} diff --git a/contrib/libs/mimalloc/src/segment-map.c b/contrib/libs/mimalloc/src/segment-map.c new file mode 100644 index 0000000000..1efb1e2360 --- /dev/null +++ b/contrib/libs/mimalloc/src/segment-map.c @@ -0,0 +1,155 @@ +/* ---------------------------------------------------------------------------- +Copyright (c) 2019-2023, Microsoft Research, Daan Leijen +This is free software; you can redistribute it and/or modify it under the +terms of the MIT license. A copy of the license can be found in the file +"LICENSE" at the root of this distribution. +-----------------------------------------------------------------------------*/ + +/* ----------------------------------------------------------- + The following functions are to reliably find the segment or + block that encompasses any pointer p (or NULL if it is not + in any of our segments). + We maintain a bitmap of all memory with 1 bit per MI_SEGMENT_SIZE (64MiB) + set to 1 if it contains the segment meta data. +----------------------------------------------------------- */ +#include "mimalloc.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" + +#if (MI_INTPTR_SIZE>=8) && MI_TRACK_ASAN +#define MI_MAX_ADDRESS ((size_t)140 << 40) // 140TB (see issue #881) +#elif (MI_INTPTR_SIZE >= 8) +#define MI_MAX_ADDRESS ((size_t)40 << 40) // 40TB (to include huge page areas) +#else +#define MI_MAX_ADDRESS ((size_t)2 << 30) // 2Gb +#endif + +#define MI_SEGMENT_MAP_BITS (MI_MAX_ADDRESS / MI_SEGMENT_SIZE) +#define MI_SEGMENT_MAP_SIZE (MI_SEGMENT_MAP_BITS / 8) +#define MI_SEGMENT_MAP_WSIZE (MI_SEGMENT_MAP_SIZE / MI_INTPTR_SIZE) + +static _Atomic(uintptr_t) mi_segment_map[MI_SEGMENT_MAP_WSIZE + 1]; // 2KiB per TB with 64MiB segments + +static size_t mi_segment_map_index_of(const mi_segment_t* segment, size_t* bitidx) { + // note: segment can be invalid or NULL. + mi_assert_internal(_mi_ptr_segment(segment + 1) == segment); // is it aligned on MI_SEGMENT_SIZE? + if ((uintptr_t)segment >= MI_MAX_ADDRESS) { + *bitidx = 0; + return MI_SEGMENT_MAP_WSIZE; + } + else { + const uintptr_t segindex = ((uintptr_t)segment) / MI_SEGMENT_SIZE; + *bitidx = segindex % MI_INTPTR_BITS; + const size_t mapindex = segindex / MI_INTPTR_BITS; + mi_assert_internal(mapindex < MI_SEGMENT_MAP_WSIZE); + return mapindex; + } +} + +void _mi_segment_map_allocated_at(const mi_segment_t* segment) { + size_t bitidx; + size_t index = mi_segment_map_index_of(segment, &bitidx); + mi_assert_internal(index <= MI_SEGMENT_MAP_WSIZE); + if (index==MI_SEGMENT_MAP_WSIZE) return; + uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]); + uintptr_t newmask; + do { + newmask = (mask | ((uintptr_t)1 << bitidx)); + } while (!mi_atomic_cas_weak_release(&mi_segment_map[index], &mask, newmask)); +} + +void _mi_segment_map_freed_at(const mi_segment_t* segment) { + size_t bitidx; + size_t index = mi_segment_map_index_of(segment, &bitidx); + mi_assert_internal(index <= MI_SEGMENT_MAP_WSIZE); + if (index == MI_SEGMENT_MAP_WSIZE) return; + uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]); + uintptr_t newmask; + do { + newmask = (mask & ~((uintptr_t)1 << bitidx)); + } while (!mi_atomic_cas_weak_release(&mi_segment_map[index], &mask, newmask)); +} + +// Determine the segment belonging to a pointer or NULL if it is not in a valid segment. +static mi_segment_t* _mi_segment_of(const void* p) { + if (p == NULL) return NULL; + mi_segment_t* segment = _mi_ptr_segment(p); // segment can be NULL + size_t bitidx; + size_t index = mi_segment_map_index_of(segment, &bitidx); + // fast path: for any pointer to valid small/medium/large object or first MI_SEGMENT_SIZE in huge + const uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]); + if mi_likely((mask & ((uintptr_t)1 << bitidx)) != 0) { + return segment; // yes, allocated by us + } + if (index==MI_SEGMENT_MAP_WSIZE) return NULL; + + // TODO: maintain max/min allocated range for efficiency for more efficient rejection of invalid pointers? + + // search downwards for the first segment in case it is an interior pointer + // could be slow but searches in MI_INTPTR_SIZE * MI_SEGMENT_SIZE (512MiB) steps trough + // valid huge objects + // note: we could maintain a lowest index to speed up the path for invalid pointers? + size_t lobitidx; + size_t loindex; + uintptr_t lobits = mask & (((uintptr_t)1 << bitidx) - 1); + if (lobits != 0) { + loindex = index; + lobitidx = mi_bsr(lobits); // lobits != 0 + } + else if (index == 0) { + return NULL; + } + else { + mi_assert_internal(index > 0); + uintptr_t lomask = mask; + loindex = index; + do { + loindex--; + lomask = mi_atomic_load_relaxed(&mi_segment_map[loindex]); + } while (lomask != 0 && loindex > 0); + if (lomask == 0) return NULL; + lobitidx = mi_bsr(lomask); // lomask != 0 + } + mi_assert_internal(loindex < MI_SEGMENT_MAP_WSIZE); + // take difference as the addresses could be larger than the MAX_ADDRESS space. + size_t diff = (((index - loindex) * (8*MI_INTPTR_SIZE)) + bitidx - lobitidx) * MI_SEGMENT_SIZE; + segment = (mi_segment_t*)((uint8_t*)segment - diff); + + if (segment == NULL) return NULL; + mi_assert_internal((void*)segment < p); + bool cookie_ok = (_mi_ptr_cookie(segment) == segment->cookie); + mi_assert_internal(cookie_ok); + if mi_unlikely(!cookie_ok) return NULL; + if (((uint8_t*)segment + mi_segment_size(segment)) <= (uint8_t*)p) return NULL; // outside the range + mi_assert_internal(p >= (void*)segment && (uint8_t*)p < (uint8_t*)segment + mi_segment_size(segment)); + return segment; +} + +// Is this a valid pointer in our heap? +static bool mi_is_valid_pointer(const void* p) { + return ((_mi_segment_of(p) != NULL) || (_mi_arena_contains(p))); +} + +mi_decl_nodiscard mi_decl_export bool mi_is_in_heap_region(const void* p) mi_attr_noexcept { + return mi_is_valid_pointer(p); +} + +/* +// Return the full segment range belonging to a pointer +static void* mi_segment_range_of(const void* p, size_t* size) { + mi_segment_t* segment = _mi_segment_of(p); + if (segment == NULL) { + if (size != NULL) *size = 0; + return NULL; + } + else { + if (size != NULL) *size = segment->segment_size; + return segment; + } + mi_assert_expensive(page == NULL || mi_segment_is_valid(_mi_page_segment(page),tld)); + mi_assert_internal(page == NULL || (mi_segment_page_size(_mi_page_segment(page)) - (MI_SECURE == 0 ? 0 : _mi_os_page_size())) >= block_size); + mi_reset_delayed(tld); + mi_assert_internal(page == NULL || mi_page_not_in_queue(page, tld)); + return page; +} +*/ diff --git a/contrib/libs/mimalloc/src/segment.c b/contrib/libs/mimalloc/src/segment.c index 1d59be9d06..fc13d2e778 100644 --- a/contrib/libs/mimalloc/src/segment.c +++ b/contrib/libs/mimalloc/src/segment.c @@ -1,12 +1,12 @@ /* ---------------------------------------------------------------------------- -Copyright (c) 2018-2020, Microsoft Research, Daan Leijen +Copyright (c) 2018-2024, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #include "mimalloc.h" -#include "mimalloc-internal.h" -#include "mimalloc-atomic.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" #include <string.h> // memset #include <stdio.h> @@ -17,22 +17,23 @@ static uint8_t* mi_segment_raw_page_start(const mi_segment_t* segment, const mi_ /* -------------------------------------------------------------------------------- Segment allocation - We allocate pages inside bigger "segments" (4mb on 64-bit). This is to avoid + We allocate pages inside bigger "segments" (4MiB on 64-bit). This is to avoid splitting VMA's on Linux and reduce fragmentation on other OS's. Each thread owns its own segments. Currently we have: - - small pages (64kb), 64 in one segment - - medium pages (512kb), 8 in one segment - - large pages (4mb), 1 in one segment - - huge blocks > MI_LARGE_OBJ_SIZE_MAX become large segment with 1 page + - small pages (64KiB), 64 in one segment + - medium pages (512KiB), 8 in one segment + - large pages (4MiB), 1 in one segment + - huge segments have 1 page in one segment that can be larger than `MI_SEGMENT_SIZE`. + it is used for blocks `> MI_LARGE_OBJ_SIZE_MAX` or with alignment `> MI_BLOCK_ALIGNMENT_MAX`. - In any case the memory for a segment is virtual and usually committed on demand. + The memory for a segment is usually committed on demand. (i.e. we are careful to not touch the memory until we actually allocate a block there) - If a thread ends, it "abandons" pages with used blocks - and there is an abandoned segment list whose segments can - be reclaimed by still running threads, much like work-stealing. + If a thread ends, it "abandons" pages that still contain live blocks. + Such segments are abondoned and these can be reclaimed by still running threads, + (much like work-stealing). -------------------------------------------------------------------------------- */ @@ -54,9 +55,11 @@ static bool mi_segment_queue_contains(const mi_segment_queue_t* queue, const mi_ } #endif +/* static bool mi_segment_queue_is_empty(const mi_segment_queue_t* queue) { return (queue->first == NULL); } +*/ static void mi_segment_queue_remove(mi_segment_queue_t* queue, mi_segment_t* segment) { mi_assert_expensive(mi_segment_queue_contains(queue, segment)); @@ -110,17 +113,7 @@ static void mi_segment_insert_in_free_queue(mi_segment_t* segment, mi_segments_t Invariant checking ----------------------------------------------------------- */ -#if (MI_DEBUG>=2) -static bool mi_segment_is_in_free_queue(const mi_segment_t* segment, mi_segments_tld_t* tld) { - mi_segment_queue_t* queue = mi_segment_free_queue(segment, tld); - bool in_queue = (queue!=NULL && (segment->next != NULL || segment->prev != NULL || queue->first == segment)); - if (in_queue) { - mi_assert_expensive(mi_segment_queue_contains(queue, segment)); - } - return in_queue; -} -#endif - +#if (MI_DEBUG >= 2) || (MI_SECURE >= 2) static size_t mi_segment_page_size(const mi_segment_t* segment) { if (segment->capacity > 1) { mi_assert_internal(segment->page_kind <= MI_PAGE_MEDIUM); @@ -131,11 +124,11 @@ static size_t mi_segment_page_size(const mi_segment_t* segment) { return segment->segment_size; } } - +#endif #if (MI_DEBUG>=2) -static bool mi_pages_reset_contains(const mi_page_t* page, mi_segments_tld_t* tld) { - mi_page_t* p = tld->pages_reset.first; +static bool mi_pages_purge_contains(const mi_page_t* page, mi_segments_tld_t* tld) { + mi_page_t* p = tld->pages_purge.first; while (p != NULL) { if (p == page) return true; p = p->next; @@ -150,15 +143,17 @@ static bool mi_segment_is_valid(const mi_segment_t* segment, mi_segments_tld_t* mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie); mi_assert_internal(segment->used <= segment->capacity); mi_assert_internal(segment->abandoned <= segment->used); + mi_assert_internal(segment->page_kind <= MI_PAGE_MEDIUM || segment->capacity == 1); // one large or huge page per segment size_t nfree = 0; for (size_t i = 0; i < segment->capacity; i++) { const mi_page_t* const page = &segment->pages[i]; if (!page->segment_in_use) { nfree++; } - if (page->segment_in_use || page->is_reset) { - mi_assert_expensive(!mi_pages_reset_contains(page, tld)); + if (page->segment_in_use) { + mi_assert_expensive(!mi_pages_purge_contains(page, tld)); } + mi_assert_internal(page->is_huge == (segment->page_kind == MI_PAGE_HUGE)); } mi_assert_internal(nfree + segment->used == segment->capacity); // mi_assert_internal(segment->thread_id == _mi_thread_id() || (segment->thread_id==0)); // or 0 @@ -171,12 +166,12 @@ static bool mi_segment_is_valid(const mi_segment_t* segment, mi_segments_tld_t* static bool mi_page_not_in_queue(const mi_page_t* page, mi_segments_tld_t* tld) { mi_assert_internal(page != NULL); if (page->next != NULL || page->prev != NULL) { - mi_assert_internal(mi_pages_reset_contains(page, tld)); + mi_assert_internal(mi_pages_purge_contains(page, tld)); return false; } else { // both next and prev are NULL, check for singleton list - return (tld->pages_reset.first != page && tld->pages_reset.last != page); + return (tld->pages_purge.first != page && tld->pages_purge.last != page); } } @@ -187,10 +182,10 @@ static bool mi_page_not_in_queue(const mi_page_t* page, mi_segments_tld_t* tld) static void mi_segment_protect_range(void* p, size_t size, bool protect) { if (protect) { - _mi_mem_protect(p, size); + _mi_os_protect(p, size); } else { - _mi_mem_unprotect(p, size); + _mi_os_unprotect(p, size); } } @@ -202,14 +197,17 @@ static void mi_segment_protect(mi_segment_t* segment, bool protect, mi_os_tld_t* mi_assert_internal((segment->segment_info_size - os_psize) >= (sizeof(mi_segment_t) + ((segment->capacity - 1) * sizeof(mi_page_t)))); mi_assert_internal(((uintptr_t)segment + segment->segment_info_size) % os_psize == 0); mi_segment_protect_range((uint8_t*)segment + segment->segment_info_size - os_psize, os_psize, protect); - if (MI_SECURE <= 1 || segment->capacity == 1) { + #if (MI_SECURE >= 2) + if (segment->capacity == 1) + #endif + { // and protect the last (or only) page too mi_assert_internal(MI_SECURE <= 1 || segment->page_kind >= MI_PAGE_LARGE); uint8_t* start = (uint8_t*)segment + segment->segment_size - os_psize; - if (protect && !segment->mem_is_committed) { + if (protect && !segment->memid.initially_committed) { if (protect) { // ensure secure page is committed - if (_mi_mem_commit(start, os_psize, NULL, tld)) { // if this fails that is ok (as it is an unaccessible page) + if (_mi_os_commit(start, os_psize, NULL, tld->stats)) { // if this fails that is ok (as it is an unaccessible page) mi_segment_protect_range(start, os_psize, protect); } } @@ -218,6 +216,7 @@ static void mi_segment_protect(mi_segment_t* segment, bool protect, mi_os_tld_t* mi_segment_protect_range(start, os_psize, protect); } } + #if (MI_SECURE >= 2) else { // or protect every page const size_t page_size = mi_segment_page_size(segment); @@ -227,6 +226,7 @@ static void mi_segment_protect(mi_segment_t* segment, bool protect, mi_os_tld_t* } } } + #endif } } @@ -234,35 +234,39 @@ static void mi_segment_protect(mi_segment_t* segment, bool protect, mi_os_tld_t* Page reset ----------------------------------------------------------- */ -static void mi_page_reset(mi_segment_t* segment, mi_page_t* page, size_t size, mi_segments_tld_t* tld) { +static void mi_page_purge(mi_segment_t* segment, mi_page_t* page, mi_segments_tld_t* tld) { + // todo: should we purge the guard page as well when MI_SECURE>=2 ? mi_assert_internal(page->is_committed); - if (!mi_option_is_enabled(mi_option_page_reset)) return; - if (segment->mem_is_pinned || page->segment_in_use || !page->is_committed || page->is_reset) return; + mi_assert_internal(!page->segment_in_use); + if (!segment->allow_purge) return; + mi_assert_internal(page->used == 0); + mi_assert_internal(page->free == NULL); + mi_assert_expensive(!mi_pages_purge_contains(page, tld)); size_t psize; void* start = mi_segment_raw_page_start(segment, page, &psize); - page->is_reset = true; - mi_assert_internal(size <= psize); - size_t reset_size = ((size == 0 || size > psize) ? psize : size); - if (reset_size > 0) _mi_mem_reset(start, reset_size, tld->os); + const bool needs_recommit = _mi_os_purge(start, psize, tld->stats); + if (needs_recommit) { page->is_committed = false; } } -static bool mi_page_unreset(mi_segment_t* segment, mi_page_t* page, size_t size, mi_segments_tld_t* tld) -{ - mi_assert_internal(page->is_reset); - mi_assert_internal(page->is_committed); - mi_assert_internal(!segment->mem_is_pinned); - if (segment->mem_is_pinned || !page->is_committed || !page->is_reset) return true; - page->is_reset = false; +static bool mi_page_ensure_committed(mi_segment_t* segment, mi_page_t* page, mi_segments_tld_t* tld) { + if (page->is_committed) return true; + mi_assert_internal(segment->allow_decommit); + mi_assert_expensive(!mi_pages_purge_contains(page, tld)); + size_t psize; uint8_t* start = mi_segment_raw_page_start(segment, page, &psize); - size_t unreset_size = (size == 0 || size > psize ? psize : size); bool is_zero = false; - bool ok = true; - if (unreset_size > 0) { - ok = _mi_mem_unreset(start, unreset_size, &is_zero, tld->os); + const size_t gsize = (MI_SECURE >= 2 ? _mi_os_page_size() : 0); + bool ok = _mi_os_commit(start, psize + gsize, &is_zero, tld->stats); + if (!ok) return false; // failed to commit! + page->is_committed = true; + page->used = 0; + page->free = NULL; + page->is_zero_init = is_zero; + if (gsize > 0) { + mi_segment_protect_range(start + psize, gsize, true); } - if (is_zero) page->is_zero_init = true; - return ok; + return true; } @@ -270,37 +274,49 @@ static bool mi_page_unreset(mi_segment_t* segment, mi_page_t* page, size_t size, The free page queue ----------------------------------------------------------- */ -// we re-use the `used` field for the expiration counter. Since this is a -// a 32-bit field while the clock is always 64-bit we need to guard -// against overflow, we use substraction to check for expiry which work +// we re-use the `free` field for the expiration counter. Since this is a +// a pointer size field while the clock is always 64-bit we need to guard +// against overflow, we use substraction to check for expiry which works // as long as the reset delay is under (2^30 - 1) milliseconds (~12 days) -static void mi_page_reset_set_expire(mi_page_t* page) { - uint32_t expire = (uint32_t)_mi_clock_now() + mi_option_get(mi_option_reset_delay); - page->used = expire; +static uint32_t mi_page_get_expire( mi_page_t* page ) { + return (uint32_t)((uintptr_t)page->free); } -static bool mi_page_reset_is_expired(mi_page_t* page, mi_msecs_t now) { - int32_t expire = (int32_t)(page->used); +static void mi_page_set_expire( mi_page_t* page, uint32_t expire ) { + page->free = (mi_block_t*)((uintptr_t)expire); +} + +static void mi_page_purge_set_expire(mi_page_t* page) { + mi_assert_internal(mi_page_get_expire(page)==0); + uint32_t expire = (uint32_t)_mi_clock_now() + mi_option_get(mi_option_purge_delay); + mi_page_set_expire(page, expire); +} + +// we re-use the `free` field for the expiration counter. Since this is a +// a pointer size field while the clock is always 64-bit we need to guard +// against overflow, we use substraction to check for expiry which work +// as long as the reset delay is under (2^30 - 1) milliseconds (~12 days) +static bool mi_page_purge_is_expired(mi_page_t* page, mi_msecs_t now) { + int32_t expire = (int32_t)mi_page_get_expire(page); return (((int32_t)now - expire) >= 0); } -static void mi_pages_reset_add(mi_segment_t* segment, mi_page_t* page, mi_segments_tld_t* tld) { - mi_assert_internal(!page->segment_in_use || !page->is_committed); +static void mi_segment_schedule_purge(mi_segment_t* segment, mi_page_t* page, mi_segments_tld_t* tld) { + mi_assert_internal(!page->segment_in_use); mi_assert_internal(mi_page_not_in_queue(page,tld)); - mi_assert_expensive(!mi_pages_reset_contains(page, tld)); + mi_assert_expensive(!mi_pages_purge_contains(page, tld)); mi_assert_internal(_mi_page_segment(page)==segment); - if (!mi_option_is_enabled(mi_option_page_reset)) return; - if (segment->mem_is_pinned || page->segment_in_use || !page->is_committed || page->is_reset) return; + if (!segment->allow_purge) return; - if (mi_option_get(mi_option_reset_delay) == 0) { - // reset immediately? - mi_page_reset(segment, page, 0, tld); + if (mi_option_get(mi_option_purge_delay) == 0) { + // purge immediately? + mi_page_purge(segment, page, tld); } - else { + else if (mi_option_get(mi_option_purge_delay) > 0) { // no purging if the delay is negative // otherwise push on the delayed page reset queue - mi_page_queue_t* pq = &tld->pages_reset; + mi_page_queue_t* pq = &tld->pages_purge; // push on top - mi_page_reset_set_expire(page); + mi_page_purge_set_expire(page); page->next = pq->first; page->prev = NULL; if (pq->first == NULL) { @@ -314,29 +330,30 @@ static void mi_pages_reset_add(mi_segment_t* segment, mi_page_t* page, mi_segmen } } -static void mi_pages_reset_remove(mi_page_t* page, mi_segments_tld_t* tld) { +static void mi_page_purge_remove(mi_page_t* page, mi_segments_tld_t* tld) { if (mi_page_not_in_queue(page,tld)) return; - mi_page_queue_t* pq = &tld->pages_reset; + mi_page_queue_t* pq = &tld->pages_purge; mi_assert_internal(pq!=NULL); mi_assert_internal(!page->segment_in_use); - mi_assert_internal(mi_pages_reset_contains(page, tld)); + mi_assert_internal(mi_page_get_expire(page) != 0); + mi_assert_internal(mi_pages_purge_contains(page, tld)); if (page->prev != NULL) page->prev->next = page->next; if (page->next != NULL) page->next->prev = page->prev; if (page == pq->last) pq->last = page->prev; if (page == pq->first) pq->first = page->next; page->next = page->prev = NULL; - page->used = 0; + mi_page_set_expire(page,0); } -static void mi_pages_reset_remove_all_in_segment(mi_segment_t* segment, bool force_reset, mi_segments_tld_t* tld) { - if (segment->mem_is_pinned) return; // never reset in huge OS pages +static void mi_segment_remove_all_purges(mi_segment_t* segment, bool force_purge, mi_segments_tld_t* tld) { + if (segment->memid.is_pinned) return; // never reset in huge OS pages for (size_t i = 0; i < segment->capacity; i++) { mi_page_t* page = &segment->pages[i]; - if (!page->segment_in_use && page->is_committed && !page->is_reset) { - mi_pages_reset_remove(page, tld); - if (force_reset) { - mi_page_reset(segment, page, 0, tld); + if (!page->segment_in_use) { + mi_page_purge_remove(page, tld); + if (force_purge && page->is_committed) { + mi_page_purge(segment, page, tld); } } else { @@ -345,17 +362,17 @@ static void mi_pages_reset_remove_all_in_segment(mi_segment_t* segment, bool for } } -static void mi_reset_delayed(mi_segments_tld_t* tld) { - if (!mi_option_is_enabled(mi_option_page_reset)) return; +static void mi_pages_try_purge(bool force, mi_segments_tld_t* tld) { + if (mi_option_get(mi_option_purge_delay) < 0) return; // purging is not allowed + mi_msecs_t now = _mi_clock_now(); - mi_page_queue_t* pq = &tld->pages_reset; + mi_page_queue_t* pq = &tld->pages_purge; // from oldest up to the first that has not expired yet mi_page_t* page = pq->last; - while (page != NULL && mi_page_reset_is_expired(page,now)) { + while (page != NULL && (force || mi_page_purge_is_expired(page,now))) { mi_page_t* const prev = page->prev; // save previous field - mi_page_reset(_mi_page_segment(page), page, 0, tld); - page->used = 0; - page->prev = page->next = NULL; + mi_page_purge_remove(page, tld); // remove from the list to maintain invariant for mi_page_purge + mi_page_purge(_mi_page_segment(page), page, tld); page = prev; } // discard the reset pages from the queue @@ -373,10 +390,14 @@ static void mi_reset_delayed(mi_segments_tld_t* tld) { Segment size calculations ----------------------------------------------------------- */ +static size_t mi_segment_raw_page_size(const mi_segment_t* segment) { + return (segment->page_kind == MI_PAGE_HUGE ? segment->segment_size : (size_t)1 << segment->page_shift); +} + // Raw start of the page available memory; can be used on uninitialized pages (only `segment_idx` must be set) // The raw start is not taking aligned block allocation into consideration. static uint8_t* mi_segment_raw_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size) { - size_t psize = (segment->page_kind == MI_PAGE_HUGE ? segment->segment_size : (size_t)1 << segment->page_shift); + size_t psize = mi_segment_raw_page_size(segment); uint8_t* p = (uint8_t*)segment + page->segment_idx * psize; if (page->segment_idx == 0) { @@ -394,35 +415,36 @@ static uint8_t* mi_segment_raw_page_start(const mi_segment_t* segment, const mi_ #endif if (page_size != NULL) *page_size = psize; - mi_assert_internal(page->xblock_size == 0 || _mi_ptr_page(p) == page); + mi_assert_internal(page->block_size == 0 || _mi_ptr_page(p) == page); mi_assert_internal(_mi_ptr_segment(p) == segment); return p; } // Start of the page available memory; can be used on uninitialized pages (only `segment_idx` must be set) -uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t block_size, size_t* page_size, size_t* pre_size) +uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size) { size_t psize; uint8_t* p = mi_segment_raw_page_start(segment, page, &psize); - if (pre_size != NULL) *pre_size = 0; - if (page->segment_idx == 0 && block_size > 0 && segment->page_kind <= MI_PAGE_MEDIUM) { + const size_t block_size = mi_page_block_size(page); + if (/*page->segment_idx == 0 &&*/ block_size > 0 && block_size <= MI_MAX_ALIGN_GUARANTEE) { // for small and medium objects, ensure the page start is aligned with the block size (PR#66 by kickunderscore) + mi_assert_internal(segment->page_kind <= MI_PAGE_MEDIUM); size_t adjust = block_size - ((uintptr_t)p % block_size); - if (adjust < block_size) { + if (adjust < block_size && psize >= block_size + adjust) { p += adjust; psize -= adjust; - if (pre_size != NULL) *pre_size = adjust; + mi_assert_internal((uintptr_t)p % block_size == 0); } - mi_assert_internal((uintptr_t)p % block_size == 0); } if (page_size != NULL) *page_size = psize; - mi_assert_internal(page->xblock_size==0 || _mi_ptr_page(p) == page); + mi_assert_internal(_mi_ptr_page(p) == page); mi_assert_internal(_mi_ptr_segment(p) == segment); return p; } -static size_t mi_segment_size(size_t capacity, size_t required, size_t* pre_size, size_t* info_size) + +static size_t mi_segment_calculate_sizes(size_t capacity, size_t required, size_t* pre_size, size_t* info_size) { const size_t minsize = sizeof(mi_segment_t) + ((capacity - 1) * sizeof(mi_page_t)) + 16 /* padding */; size_t guardsize = 0; @@ -464,110 +486,104 @@ static void mi_segments_track_size(long segment_size, mi_segments_tld_t* tld) { static void mi_segment_os_free(mi_segment_t* segment, size_t segment_size, mi_segments_tld_t* tld) { segment->thread_id = 0; + _mi_segment_map_freed_at(segment); mi_segments_track_size(-((long)segment_size),tld); + if (segment->was_reclaimed) { + tld->reclaim_count--; + segment->was_reclaimed = false; + } + if (MI_SECURE != 0) { - mi_assert_internal(!segment->mem_is_pinned); + mi_assert_internal(!segment->memid.is_pinned); mi_segment_protect(segment, false, tld->os); // ensure no more guard pages are set } - bool any_reset = false; bool fully_committed = true; + size_t committed_size = 0; + const size_t page_size = mi_segment_raw_page_size(segment); for (size_t i = 0; i < segment->capacity; i++) { mi_page_t* page = &segment->pages[i]; + if (page->is_committed) { committed_size += page_size; } if (!page->is_committed) { fully_committed = false; } - if (page->is_reset) { any_reset = true; } - } - if (any_reset && mi_option_is_enabled(mi_option_reset_decommits)) { - fully_committed = false; } - _mi_mem_free(segment, segment_size, segment->memid, fully_committed, any_reset, tld->os); + MI_UNUSED(fully_committed); + mi_assert_internal((fully_committed && committed_size == segment_size) || (!fully_committed && committed_size < segment_size)); + + _mi_abandoned_await_readers(); // prevent ABA issue if concurrent readers try to access our memory (that might be purged) + _mi_arena_free(segment, segment_size, committed_size, segment->memid, tld->stats); } +// called from `heap_collect`. +void _mi_segments_collect(bool force, mi_segments_tld_t* tld) { + mi_pages_try_purge(force,tld); + #if MI_DEBUG>=2 + if (!_mi_is_main_thread()) { + mi_assert_internal(tld->pages_purge.first == NULL); + mi_assert_internal(tld->pages_purge.last == NULL); + } + #endif +} -// The thread local segment cache is limited to be at most 1/8 of the peak size of segments in use, -#define MI_SEGMENT_CACHE_FRACTION (8) -// note: returned segment may be partially reset -static mi_segment_t* mi_segment_cache_pop(size_t segment_size, mi_segments_tld_t* tld) { - if (segment_size != 0 && segment_size != MI_SEGMENT_SIZE) return NULL; - mi_segment_t* segment = tld->cache; - if (segment == NULL) return NULL; - tld->cache_count--; - tld->cache = segment->next; - segment->next = NULL; - mi_assert_internal(segment->segment_size == MI_SEGMENT_SIZE); - _mi_stat_decrease(&tld->stats->segments_cache, 1); - return segment; -} +/* ----------------------------------------------------------- + Segment allocation +----------------------------------------------------------- */ -static bool mi_segment_cache_full(mi_segments_tld_t* tld) +static mi_segment_t* mi_segment_os_alloc(bool eager_delayed, size_t page_alignment, mi_arena_id_t req_arena_id, + size_t pre_size, size_t info_size, bool commit, size_t segment_size, + mi_segments_tld_t* tld, mi_os_tld_t* tld_os) { - // if (tld->count == 1 && tld->cache_count==0) return false; // always cache at least the final segment of a thread - size_t max_cache = mi_option_get(mi_option_segment_cache); - if (tld->cache_count < max_cache - && tld->cache_count < (1 + (tld->peak_count / MI_SEGMENT_CACHE_FRACTION)) // at least allow a 1 element cache - ) { - return false; + mi_memid_t memid; + bool allow_large = (!eager_delayed && (MI_SECURE == 0)); // only allow large OS pages once we are no longer lazy + size_t align_offset = 0; + size_t alignment = MI_SEGMENT_SIZE; + if (page_alignment > 0) { + alignment = page_alignment; + align_offset = _mi_align_up(pre_size, MI_SEGMENT_SIZE); + segment_size = segment_size + (align_offset - pre_size); // adjust the segment size } - // take the opportunity to reduce the segment cache if it is too large (now) - // TODO: this never happens as we check against peak usage, should we use current usage instead? - while (tld->cache_count > max_cache) { //(1 + (tld->peak_count / MI_SEGMENT_CACHE_FRACTION))) { - mi_segment_t* segment = mi_segment_cache_pop(0,tld); - mi_assert_internal(segment != NULL); - if (segment != NULL) mi_segment_os_free(segment, segment->segment_size, tld); - } - return true; -} -static bool mi_segment_cache_push(mi_segment_t* segment, mi_segments_tld_t* tld) { - mi_assert_internal(!mi_segment_is_in_free_queue(segment, tld)); - mi_assert_internal(segment->next == NULL); - if (segment->segment_size != MI_SEGMENT_SIZE || mi_segment_cache_full(tld)) { - return false; + mi_segment_t* segment = (mi_segment_t*)_mi_arena_alloc_aligned(segment_size, alignment, align_offset, commit, allow_large, req_arena_id, &memid, tld_os); + if (segment == NULL) { + return NULL; // failed to allocate } - mi_assert_internal(segment->segment_size == MI_SEGMENT_SIZE); - segment->next = tld->cache; - tld->cache = segment; - tld->cache_count++; - _mi_stat_increase(&tld->stats->segments_cache,1); - return true; -} -// called by threads that are terminating to free cached segments -void _mi_segment_thread_collect(mi_segments_tld_t* tld) { - mi_segment_t* segment; - while ((segment = mi_segment_cache_pop(0,tld)) != NULL) { - mi_segment_os_free(segment, segment->segment_size, tld); - } - mi_assert_internal(tld->cache_count == 0); - mi_assert_internal(tld->cache == NULL); -#if MI_DEBUG>=2 - if (!_mi_is_main_thread()) { - mi_assert_internal(tld->pages_reset.first == NULL); - mi_assert_internal(tld->pages_reset.last == NULL); + if (!memid.initially_committed) { + // ensure the initial info is committed + mi_assert_internal(!memid.is_pinned); + bool ok = _mi_os_commit(segment, pre_size, NULL, tld_os->stats); + if (!ok) { + // commit failed; we cannot touch the memory: free the segment directly and return `NULL` + _mi_arena_free(segment, segment_size, 0, memid, tld_os->stats); + return NULL; + } } -#endif -} - -/* ----------------------------------------------------------- - Segment allocation ------------------------------------------------------------ */ + MI_UNUSED(info_size); + segment->memid = memid; + segment->allow_decommit = !memid.is_pinned; + segment->allow_purge = segment->allow_decommit && (mi_option_get(mi_option_purge_delay) >= 0); + segment->segment_size = segment_size; + mi_segments_track_size((long)(segment_size), tld); + _mi_segment_map_allocated_at(segment); + return segment; +} // Allocate a segment from the OS aligned to `MI_SEGMENT_SIZE` . -static mi_segment_t* mi_segment_init(mi_segment_t* segment, size_t required, mi_page_kind_t page_kind, size_t page_shift, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) +static mi_segment_t* mi_segment_alloc(size_t required, mi_page_kind_t page_kind, size_t page_shift, size_t page_alignment, + mi_arena_id_t req_arena_id, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) { - // the segment parameter is non-null if it came from our cache - mi_assert_internal(segment==NULL || (required==0 && page_kind <= MI_PAGE_LARGE)); + // required is only > 0 for huge page allocations + mi_assert_internal((required > 0 && page_kind > MI_PAGE_LARGE)|| (required==0 && page_kind <= MI_PAGE_LARGE)); // calculate needed sizes first size_t capacity; if (page_kind == MI_PAGE_HUGE) { - mi_assert_internal(page_shift == MI_SEGMENT_SHIFT && required > 0); + mi_assert_internal(page_shift == MI_SEGMENT_SHIFT + 1 && required > 0); capacity = 1; } else { - mi_assert_internal(required == 0); + mi_assert_internal(required == 0 && page_alignment == 0); size_t page_size = (size_t)1 << page_shift; capacity = MI_SEGMENT_SIZE / page_size; mi_assert_internal(MI_SEGMENT_SIZE % page_size == 0); @@ -575,108 +591,44 @@ static mi_segment_t* mi_segment_init(mi_segment_t* segment, size_t required, mi_ } size_t info_size; size_t pre_size; - size_t segment_size = mi_segment_size(capacity, required, &pre_size, &info_size); - mi_assert_internal(segment_size >= required); + const size_t init_segment_size = mi_segment_calculate_sizes(capacity, required, &pre_size, &info_size); + mi_assert_internal(init_segment_size >= required); // Initialize parameters - const bool eager_delayed = (page_kind <= MI_PAGE_MEDIUM && tld->count < (size_t)mi_option_get(mi_option_eager_commit_delay)); + const bool eager_delayed = (page_kind <= MI_PAGE_MEDIUM && // don't delay for large objects + // !_mi_os_has_overcommit() && // never delay on overcommit systems + _mi_current_thread_count() > 1 && // do not delay for the first N threads + tld->peak_count < (size_t)mi_option_get(mi_option_eager_commit_delay)); const bool eager = !eager_delayed && mi_option_is_enabled(mi_option_eager_commit); - bool commit = eager; // || (page_kind >= MI_PAGE_LARGE); - bool pages_still_good = false; - bool is_zero = false; + const bool init_commit = eager; // || (page_kind >= MI_PAGE_LARGE); - // Try to get it from our thread local cache first - if (segment != NULL) { - // came from cache - mi_assert_internal(segment->segment_size == segment_size); - if (page_kind <= MI_PAGE_MEDIUM && segment->page_kind == page_kind && segment->segment_size == segment_size) { - pages_still_good = true; - } - else - { - if (MI_SECURE!=0) { - mi_assert_internal(!segment->mem_is_pinned); - mi_segment_protect(segment, false, tld->os); // reset protection if the page kind differs - } - // different page kinds; unreset any reset pages, and unprotect - // TODO: optimize cache pop to return fitting pages if possible? - for (size_t i = 0; i < segment->capacity; i++) { - mi_page_t* page = &segment->pages[i]; - if (page->is_reset) { - if (!commit && mi_option_is_enabled(mi_option_reset_decommits)) { - page->is_reset = false; - } - else { - mi_page_unreset(segment, page, 0, tld); // todo: only unreset the part that was reset? (instead of the full page) - } - } - } - // ensure the initial info is committed - if (segment->capacity < capacity) { - bool commit_zero = false; - bool ok = _mi_mem_commit(segment, pre_size, &commit_zero, tld->os); - if (commit_zero) is_zero = true; - if (!ok) { - return NULL; - } - } - } - } - else { - // Allocate the segment from the OS - size_t memid; - bool mem_large = (!eager_delayed && (MI_SECURE==0)); // only allow large OS pages once we are no longer lazy - bool is_pinned = false; - segment = (mi_segment_t*)_mi_mem_alloc_aligned(segment_size, MI_SEGMENT_SIZE, &commit, &mem_large, &is_pinned, &is_zero, &memid, os_tld); - if (segment == NULL) return NULL; // failed to allocate - if (!commit) { - // ensure the initial info is committed - mi_assert_internal(!mem_large && !is_pinned); - bool commit_zero = false; - bool ok = _mi_mem_commit(segment, pre_size, &commit_zero, tld->os); - if (commit_zero) is_zero = true; - if (!ok) { - // commit failed; we cannot touch the memory: free the segment directly and return `NULL` - _mi_mem_free(segment, MI_SEGMENT_SIZE, memid, false, false, os_tld); - return NULL; - } - } - segment->memid = memid; - segment->mem_is_pinned = (mem_large || is_pinned); - segment->mem_is_committed = commit; - mi_segments_track_size((long)segment_size, tld); - } + // Allocate the segment from the OS (segment_size can change due to alignment) + mi_segment_t* segment = mi_segment_os_alloc(eager_delayed, page_alignment, req_arena_id, pre_size, info_size, init_commit, init_segment_size, tld, os_tld); + if (segment == NULL) return NULL; mi_assert_internal(segment != NULL && (uintptr_t)segment % MI_SEGMENT_SIZE == 0); - mi_assert_internal(segment->mem_is_pinned ? segment->mem_is_committed : true); - mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL); // tsan - if (!pages_still_good) { - // zero the segment info (but not the `mem` fields) - ptrdiff_t ofs = offsetof(mi_segment_t, next); - memset((uint8_t*)segment + ofs, 0, info_size - ofs); - - // initialize pages info - for (uint8_t i = 0; i < capacity; i++) { - segment->pages[i].segment_idx = i; - segment->pages[i].is_reset = false; - segment->pages[i].is_committed = commit; - segment->pages[i].is_zero_init = is_zero; - } - } - else { - // zero the segment info but not the pages info (and mem fields) - ptrdiff_t ofs = offsetof(mi_segment_t, next); - memset((uint8_t*)segment + ofs, 0, offsetof(mi_segment_t,pages) - ofs); + mi_assert_internal(segment->memid.is_pinned ? segment->memid.initially_committed : true); + + // zero the segment info (but not the `mem` fields) + ptrdiff_t ofs = offsetof(mi_segment_t, next); + _mi_memzero((uint8_t*)segment + ofs, info_size - ofs); + + // initialize pages info + const bool is_huge = (page_kind == MI_PAGE_HUGE); + for (size_t i = 0; i < capacity; i++) { + mi_assert_internal(i <= 255); + segment->pages[i].segment_idx = (uint8_t)i; + segment->pages[i].is_committed = segment->memid.initially_committed; + segment->pages[i].is_zero_init = segment->memid.initially_zero; + segment->pages[i].is_huge = is_huge; } // initialize segment->page_kind = page_kind; segment->capacity = capacity; segment->page_shift = page_shift; - segment->segment_size = segment_size; segment->segment_info_size = pre_size; segment->thread_id = _mi_thread_id(); segment->cookie = _mi_ptr_cookie(segment); - // _mi_stat_increase(&tld->stats->page_committed, segment->segment_info_size); // set protection mi_segment_protect(segment, true, tld->os); @@ -686,21 +638,16 @@ static mi_segment_t* mi_segment_init(mi_segment_t* segment, size_t required, mi_ mi_segment_insert_in_free_queue(segment, tld); } - //fprintf(stderr,"mimalloc: alloc segment at %p\n", (void*)segment); return segment; } -static mi_segment_t* mi_segment_alloc(size_t required, mi_page_kind_t page_kind, size_t page_shift, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) { - return mi_segment_init(NULL, required, page_kind, page_shift, tld, os_tld); -} static void mi_segment_free(mi_segment_t* segment, bool force, mi_segments_tld_t* tld) { - UNUSED(force); + MI_UNUSED(force); mi_assert(segment != NULL); - // note: don't reset pages even on abandon as the whole segment is freed? (and ready for reuse) - bool force_reset = (force && mi_option_is_enabled(mi_option_abandoned_page_reset)); - mi_pages_reset_remove_all_in_segment(segment, force_reset, tld); - mi_segment_remove_from_free_queue(segment,tld); + // don't purge as we are freeing now + mi_segment_remove_all_purges(segment, false /* don't force as we are about to free */, tld); + mi_segment_remove_from_free_queue(segment, tld); mi_assert_expensive(!mi_segment_queue_contains(&tld->small_free, segment)); mi_assert_expensive(!mi_segment_queue_contains(&tld->medium_free, segment)); @@ -708,13 +655,8 @@ static void mi_segment_free(mi_segment_t* segment, bool force, mi_segments_tld_t mi_assert(segment->prev == NULL); _mi_stat_decrease(&tld->stats->page_committed, segment->segment_info_size); - if (!force && mi_segment_cache_push(segment, tld)) { - // it is put in our cache - } - else { - // otherwise return it to the OS - mi_segment_os_free(segment, segment->segment_size, tld); - } + // return it to the OS + mi_segment_os_free(segment, segment->segment_size, tld); } /* ----------------------------------------------------------- @@ -729,35 +671,15 @@ static bool mi_segment_has_free(const mi_segment_t* segment) { static bool mi_segment_page_claim(mi_segment_t* segment, mi_page_t* page, mi_segments_tld_t* tld) { mi_assert_internal(_mi_page_segment(page) == segment); mi_assert_internal(!page->segment_in_use); - mi_pages_reset_remove(page, tld); + mi_page_purge_remove(page, tld); + // check commit - if (!page->is_committed) { - mi_assert_internal(!segment->mem_is_pinned); - mi_assert_internal(!page->is_reset); - size_t psize; - uint8_t* start = mi_segment_raw_page_start(segment, page, &psize); - bool is_zero = false; - const size_t gsize = (MI_SECURE >= 2 ? _mi_os_page_size() : 0); - bool ok = _mi_mem_commit(start, psize + gsize, &is_zero, tld->os); - if (!ok) return false; // failed to commit! - if (gsize > 0) { mi_segment_protect_range(start + psize, gsize, true); } - if (is_zero) { page->is_zero_init = true; } - page->is_committed = true; - } + if (!mi_page_ensure_committed(segment, page, tld)) return false; + // set in-use before doing unreset to prevent delayed reset page->segment_in_use = true; segment->used++; - // check reset - if (page->is_reset) { - mi_assert_internal(!segment->mem_is_pinned); - bool ok = mi_page_unreset(segment, page, 0, tld); - if (!ok) { - page->segment_in_use = false; - segment->used--; - return false; - } - } - mi_assert_internal(page->segment_in_use); + mi_assert_internal(page->segment_in_use && page->is_committed && page->used==0 && !mi_pages_purge_contains(page,tld)); mi_assert_internal(segment->used <= segment->capacity); if (segment->used == segment->capacity && segment->page_kind <= MI_PAGE_MEDIUM) { // if no more free pages, remove from the queue @@ -775,7 +697,7 @@ static bool mi_segment_page_claim(mi_segment_t* segment, mi_page_t* page, mi_seg static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld); // clear page data; can be called on abandoned segments -static void mi_segment_page_clear(mi_segment_t* segment, mi_page_t* page, bool allow_reset, mi_segments_tld_t* tld) +static void mi_segment_page_clear(mi_segment_t* segment, mi_page_t* page, mi_segments_tld_t* tld) { mi_assert_internal(page->segment_in_use); mi_assert_internal(mi_page_all_free(page)); @@ -786,35 +708,30 @@ static void mi_segment_page_clear(mi_segment_t* segment, mi_page_t* page, bool a _mi_stat_decrease(&tld->stats->page_committed, inuse); _mi_stat_decrease(&tld->stats->pages, 1); - // calculate the used size from the raw (non-aligned) start of the page - //size_t pre_size; - //_mi_segment_page_start(segment, page, page->block_size, NULL, &pre_size); - //size_t used_size = pre_size + (page->capacity * page->block_size); - page->is_zero_init = false; page->segment_in_use = false; - // reset the page memory to reduce memory pressure? - // note: must come after setting `segment_in_use` to false but before block_size becomes 0 - //mi_page_reset(segment, page, 0 /*used_size*/, tld); - - // zero the page data, but not the segment fields and capacity, and block_size (for page size calculations) - uint32_t block_size = page->xblock_size; + // zero the page data, but not the segment fields and capacity, page start, and block_size (for page size calculations) + size_t block_size = page->block_size; + uint8_t block_size_shift = page->block_size_shift; + uint8_t heap_tag = page->heap_tag; + uint8_t* page_start = page->page_start; uint16_t capacity = page->capacity; uint16_t reserved = page->reserved; ptrdiff_t ofs = offsetof(mi_page_t,capacity); - memset((uint8_t*)page + ofs, 0, sizeof(*page) - ofs); + _mi_memzero((uint8_t*)page + ofs, sizeof(*page) - ofs); page->capacity = capacity; page->reserved = reserved; - page->xblock_size = block_size; + page->block_size = block_size; + page->block_size_shift = block_size_shift; + page->heap_tag = heap_tag; + page->page_start = page_start; segment->used--; - // add to the free page list for reuse/reset - if (allow_reset) { - mi_pages_reset_add(segment, page, tld); - } + // schedule purge + mi_segment_schedule_purge(segment, page, tld); - page->capacity = 0; // after reset these can be zero'd now + page->capacity = 0; // after purge these can be zero'd now page->reserved = 0; } @@ -823,10 +740,10 @@ void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld) mi_assert(page != NULL); mi_segment_t* segment = _mi_page_segment(page); mi_assert_expensive(mi_segment_is_valid(segment,tld)); - mi_reset_delayed(tld); + mi_pages_try_purge(false /*force?*/, tld); // mark it as free now - mi_segment_page_clear(segment, page, true, tld); + mi_segment_page_clear(segment, page, tld); if (segment->used == 0) { // no more used pages; remove from the free list and free the segment @@ -838,9 +755,11 @@ void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld) mi_segment_abandon(segment,tld); } else if (segment->used + 1 == segment->capacity) { - mi_assert_internal(segment->page_kind <= MI_PAGE_MEDIUM); // for now we only support small and medium pages - // move back to segments free list - mi_segment_insert_in_free_queue(segment,tld); + mi_assert_internal(segment->page_kind <= MI_PAGE_MEDIUM); // large and huge pages are always the single page in a segment + if (segment->page_kind <= MI_PAGE_MEDIUM) { + // move back to segments free list + mi_segment_insert_in_free_queue(segment,tld); + } } } } @@ -852,171 +771,21 @@ Abandonment When threads terminate, they can leave segments with live blocks (reached through other threads). Such segments are "abandoned" and will be reclaimed by other threads to -reuse their pages and/or free them eventually - -We maintain a global list of abandoned segments that are -reclaimed on demand. Since this is shared among threads -the implementation needs to avoid the A-B-A problem on -popping abandoned segments: <https://en.wikipedia.org/wiki/ABA_problem> -We use tagged pointers to avoid accidentially identifying -reused segments, much like stamped references in Java. -Secondly, we maintain a reader counter to avoid resetting -or decommitting segments that have a pending read operation. - -Note: the current implementation is one possible design; -another way might be to keep track of abandoned segments -in the regions. This would have the advantage of keeping -all concurrent code in one place and not needing to deal -with ABA issues. The drawback is that it is unclear how to -scan abandoned segments efficiently in that case as they -would be spread among all other segments in the regions. ------------------------------------------------------------ */ +reuse their pages and/or free them eventually. The +`thread_id` of such segments is 0. -// Use the bottom 20-bits (on 64-bit) of the aligned segment pointers -// to put in a tag that increments on update to avoid the A-B-A problem. -#define MI_TAGGED_MASK MI_SEGMENT_MASK -typedef uintptr_t mi_tagged_segment_t; +When a block is freed in an abandoned segment, the segment +is reclaimed into that thread. -static mi_segment_t* mi_tagged_segment_ptr(mi_tagged_segment_t ts) { - return (mi_segment_t*)(ts & ~MI_TAGGED_MASK); -} - -static mi_tagged_segment_t mi_tagged_segment(mi_segment_t* segment, mi_tagged_segment_t ts) { - mi_assert_internal(((uintptr_t)segment & MI_TAGGED_MASK) == 0); - uintptr_t tag = ((ts & MI_TAGGED_MASK) + 1) & MI_TAGGED_MASK; - return ((uintptr_t)segment | tag); -} - -// This is a list of visited abandoned pages that were full at the time. -// this list migrates to `abandoned` when that becomes NULL. The use of -// this list reduces contention and the rate at which segments are visited. -static mi_decl_cache_align _Atomic(mi_segment_t*) abandoned_visited; // = NULL - -// The abandoned page list (tagged as it supports pop) -static mi_decl_cache_align _Atomic(mi_tagged_segment_t) abandoned; // = NULL - -// Maintain these for debug purposes (these counts may be a bit off) -static mi_decl_cache_align _Atomic(uintptr_t) abandoned_count; -static mi_decl_cache_align _Atomic(uintptr_t) abandoned_visited_count; - -// We also maintain a count of current readers of the abandoned list -// in order to prevent resetting/decommitting segment memory if it might -// still be read. -static mi_decl_cache_align _Atomic(uintptr_t) abandoned_readers; // = 0 - -// Push on the visited list -static void mi_abandoned_visited_push(mi_segment_t* segment) { - mi_assert_internal(segment->thread_id == 0); - mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t,&segment->abandoned_next) == NULL); - mi_assert_internal(segment->next == NULL && segment->prev == NULL); - mi_assert_internal(segment->used > 0); - mi_segment_t* anext = mi_atomic_load_ptr_relaxed(mi_segment_t, &abandoned_visited); - do { - mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, anext); - } while (!mi_atomic_cas_ptr_weak_release(mi_segment_t, &abandoned_visited, &anext, segment)); - mi_atomic_increment_relaxed(&abandoned_visited_count); -} - -// Move the visited list to the abandoned list. -static bool mi_abandoned_visited_revisit(void) -{ - // quick check if the visited list is empty - if (mi_atomic_load_ptr_relaxed(mi_segment_t, &abandoned_visited) == NULL) return false; - - // grab the whole visited list - mi_segment_t* first = mi_atomic_exchange_ptr_acq_rel(mi_segment_t, &abandoned_visited, NULL); - if (first == NULL) return false; - - // first try to swap directly if the abandoned list happens to be NULL - mi_tagged_segment_t afirst; - mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned); - if (mi_tagged_segment_ptr(ts)==NULL) { - uintptr_t count = mi_atomic_load_relaxed(&abandoned_visited_count); - afirst = mi_tagged_segment(first, ts); - if (mi_atomic_cas_strong_acq_rel(&abandoned, &ts, afirst)) { - mi_atomic_add_relaxed(&abandoned_count, count); - mi_atomic_sub_relaxed(&abandoned_visited_count, count); - return true; - } - } - - // find the last element of the visited list: O(n) - mi_segment_t* last = first; - mi_segment_t* next; - while ((next = mi_atomic_load_ptr_relaxed(mi_segment_t, &last->abandoned_next)) != NULL) { - last = next; - } - - // and atomically prepend to the abandoned list - // (no need to increase the readers as we don't access the abandoned segments) - mi_tagged_segment_t anext = mi_atomic_load_relaxed(&abandoned); - uintptr_t count; - do { - count = mi_atomic_load_relaxed(&abandoned_visited_count); - mi_atomic_store_ptr_release(mi_segment_t, &last->abandoned_next, mi_tagged_segment_ptr(anext)); - afirst = mi_tagged_segment(first, anext); - } while (!mi_atomic_cas_weak_release(&abandoned, &anext, afirst)); - mi_atomic_add_relaxed(&abandoned_count, count); - mi_atomic_sub_relaxed(&abandoned_visited_count, count); - return true; -} - -// Push on the abandoned list. -static void mi_abandoned_push(mi_segment_t* segment) { - mi_assert_internal(segment->thread_id == 0); - mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL); - mi_assert_internal(segment->next == NULL && segment->prev == NULL); - mi_assert_internal(segment->used > 0); - mi_tagged_segment_t next; - mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned); - do { - mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, mi_tagged_segment_ptr(ts)); - next = mi_tagged_segment(segment, ts); - } while (!mi_atomic_cas_weak_release(&abandoned, &ts, next)); - mi_atomic_increment_relaxed(&abandoned_count); -} +Moreover, if threads are looking for a fresh segment, they +will first consider abondoned segments -- these can be found +by scanning the arena memory +(segments outside arena memoryare only reclaimed by a free). +----------------------------------------------------------- */ -// Wait until there are no more pending reads on segments that used to be in the abandoned list +// legacy: Wait until there are no more pending reads on segments that used to be in the abandoned list void _mi_abandoned_await_readers(void) { - uintptr_t n; - do { - n = mi_atomic_load_acquire(&abandoned_readers); - if (n != 0) mi_atomic_yield(); - } while (n != 0); -} - -// Pop from the abandoned list -static mi_segment_t* mi_abandoned_pop(void) { - mi_segment_t* segment; - // Check efficiently if it is empty (or if the visited list needs to be moved) - mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned); - segment = mi_tagged_segment_ptr(ts); - if (mi_likely(segment == NULL)) { - if (mi_likely(!mi_abandoned_visited_revisit())) { // try to swap in the visited list on NULL - return NULL; - } - } - - // Do a pop. We use a reader count to prevent - // a segment to be decommitted while a read is still pending, - // and a tagged pointer to prevent A-B-A link corruption. - // (this is called from `region.c:_mi_mem_free` for example) - mi_atomic_increment_relaxed(&abandoned_readers); // ensure no segment gets decommitted - mi_tagged_segment_t next = 0; - ts = mi_atomic_load_acquire(&abandoned); - do { - segment = mi_tagged_segment_ptr(ts); - if (segment != NULL) { - mi_segment_t* anext = mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next); - next = mi_tagged_segment(anext, ts); // note: reads the segment's `abandoned_next` field so should not be decommitted - } - } while (segment != NULL && !mi_atomic_cas_weak_acq_rel(&abandoned, &ts, next)); - mi_atomic_decrement_relaxed(&abandoned_readers); // release reader lock - if (segment != NULL) { - mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL); - mi_atomic_decrement_relaxed(&abandoned_count); - } - return segment; + // nothing needed } /* ----------------------------------------------------------- @@ -1026,22 +795,27 @@ static mi_segment_t* mi_abandoned_pop(void) { static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld) { mi_assert_internal(segment->used == segment->abandoned); mi_assert_internal(segment->used > 0); - mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL); mi_assert_expensive(mi_segment_is_valid(segment, tld)); + // Potentially force purge. Only abandoned segments in arena memory can be + // reclaimed without a free so if a segment is not from an arena we force purge here to be conservative. + mi_pages_try_purge(false /*force?*/,tld); + const bool force_purge = (segment->memid.memkind != MI_MEM_ARENA) || mi_option_is_enabled(mi_option_abandoned_page_purge); + mi_segment_remove_all_purges(segment, force_purge, tld); + // remove the segment from the free page queue if needed - mi_reset_delayed(tld); - mi_pages_reset_remove_all_in_segment(segment, mi_option_is_enabled(mi_option_abandoned_page_reset), tld); mi_segment_remove_from_free_queue(segment, tld); mi_assert_internal(segment->next == NULL && segment->prev == NULL); // all pages in the segment are abandoned; add it to the abandoned list _mi_stat_increase(&tld->stats->segments_abandoned, 1); mi_segments_track_size(-((long)segment->segment_size), tld); - segment->thread_id = 0; segment->abandoned_visits = 0; - mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL); - mi_abandoned_push(segment); + if (segment->was_reclaimed) { + tld->reclaim_count--; + segment->was_reclaimed = false; + } + _mi_arena_segment_mark_abandoned(segment); } void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld) { @@ -1049,7 +823,7 @@ void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld) { mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE); mi_assert_internal(mi_page_heap(page) == NULL); mi_segment_t* segment = _mi_page_segment(page); - mi_assert_expensive(!mi_pages_reset_contains(page, tld)); + mi_assert_expensive(!mi_pages_purge_contains(page, tld)); mi_assert_expensive(mi_segment_is_valid(segment, tld)); segment->abandoned++; _mi_stat_increase(&tld->stats->pages_abandoned, 1); @@ -1067,7 +841,6 @@ void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld) { // Possibly clear pages and check if free space is available static bool mi_segment_check_free(mi_segment_t* segment, size_t block_size, bool* all_pages_free) { - mi_assert_internal(block_size < MI_HUGE_BLOCK_SIZE); bool has_page = false; size_t pages_used = 0; size_t pages_used_empty = 0; @@ -1083,7 +856,7 @@ static bool mi_segment_check_free(mi_segment_t* segment, size_t block_size, bool pages_used_empty++; has_page = true; } - else if (page->xblock_size == block_size && mi_page_has_any_available(page)) { + else if (mi_page_block_size(page) == block_size && mi_page_has_any_available(page)) { // a page has available free blocks of the right size has_page = true; } @@ -1104,11 +877,13 @@ static bool mi_segment_check_free(mi_segment_t* segment, size_t block_size, bool // Reclaim a segment; returns NULL if the segment was freed // set `right_page_reclaimed` to `true` if it reclaimed a page of the right `block_size` that was not full. static mi_segment_t* mi_segment_reclaim(mi_segment_t* segment, mi_heap_t* heap, size_t requested_block_size, bool* right_page_reclaimed, mi_segments_tld_t* tld) { - mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL); if (right_page_reclaimed != NULL) { *right_page_reclaimed = false; } - - segment->thread_id = _mi_thread_id(); + // can be 0 still with abandoned_next, or already a thread id for segments outside an arena that are reclaimed on a free. + mi_assert_internal(mi_atomic_load_relaxed(&segment->thread_id) == 0 || mi_atomic_load_relaxed(&segment->thread_id) == _mi_thread_id()); + mi_atomic_store_release(&segment->thread_id, _mi_thread_id()); segment->abandoned_visits = 0; + segment->was_reclaimed = true; + tld->reclaim_count++; mi_segments_track_size((long)segment->segment_size, tld); mi_assert_internal(segment->next == NULL && segment->prev == NULL); mi_assert_expensive(mi_segment_is_valid(segment, tld)); @@ -1117,7 +892,6 @@ static mi_segment_t* mi_segment_reclaim(mi_segment_t* segment, mi_heap_t* heap, for (size_t i = 0; i < segment->capacity; i++) { mi_page_t* page = &segment->pages[i]; if (page->segment_in_use) { - mi_assert_internal(!page->is_reset); mi_assert_internal(page->is_committed); mi_assert_internal(mi_page_not_in_queue(page, tld)); mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE); @@ -1126,26 +900,32 @@ static mi_segment_t* mi_segment_reclaim(mi_segment_t* segment, mi_heap_t* heap, mi_assert(page->next == NULL); _mi_stat_decrease(&tld->stats->pages_abandoned, 1); // set the heap again and allow heap thread delayed free again. - mi_page_set_heap(page, heap); + mi_heap_t* target_heap = _mi_heap_by_tag(heap, page->heap_tag); // allow custom heaps to separate objects + if (target_heap == NULL) { + target_heap = heap; + _mi_error_message(EINVAL, "page with tag %u cannot be reclaimed by a heap with the same tag (using %u instead)\n", page->heap_tag, heap->tag ); + } + mi_page_set_heap(page, target_heap); _mi_page_use_delayed_free(page, MI_USE_DELAYED_FREE, true); // override never (after heap is set) - // TODO: should we not collect again given that we just collected in `check_free`? _mi_page_free_collect(page, false); // ensure used count is up to date if (mi_page_all_free(page)) { // if everything free already, clear the page directly - mi_segment_page_clear(segment, page, true, tld); // reset is ok now + mi_segment_page_clear(segment, page, tld); // reset is ok now } else { // otherwise reclaim it into the heap - _mi_page_reclaim(heap, page); - if (requested_block_size == page->xblock_size && mi_page_has_any_available(page)) { + _mi_page_reclaim(target_heap, page); + if (requested_block_size == mi_page_block_size(page) && mi_page_has_any_available(page) && heap == target_heap) { if (right_page_reclaimed != NULL) { *right_page_reclaimed = true; } } } } - else if (page->is_committed && !page->is_reset) { // not in-use, and not reset yet + /* expired + else if (page->is_committed) { // not in-use, and not reset yet // note: do not reset as this includes pages that were not touched before - // mi_pages_reset_add(segment, page, tld); + // mi_pages_purge_add(segment, page, tld); } + */ } mi_assert_internal(segment->abandoned == 0); if (segment->used == 0) { @@ -1161,21 +941,55 @@ static mi_segment_t* mi_segment_reclaim(mi_segment_t* segment, mi_heap_t* heap, } } +// attempt to reclaim a particular segment (called from multi threaded free `alloc.c:mi_free_block_mt`) +bool _mi_segment_attempt_reclaim(mi_heap_t* heap, mi_segment_t* segment) { + if (mi_atomic_load_relaxed(&segment->thread_id) != 0) return false; // it is not abandoned + // don't reclaim more from a free than half the current segments + // this is to prevent a pure free-ing thread to start owning too many segments + if (heap->tld->segments.reclaim_count * 2 > heap->tld->segments.count) return false; + if (_mi_arena_segment_clear_abandoned(segment)) { // atomically unabandon + mi_segment_t* res = mi_segment_reclaim(segment, heap, 0, NULL, &heap->tld->segments); + mi_assert_internal(res == segment); + return (res != NULL); + } + return false; +} void _mi_abandoned_reclaim_all(mi_heap_t* heap, mi_segments_tld_t* tld) { mi_segment_t* segment; - while ((segment = mi_abandoned_pop()) != NULL) { + mi_arena_field_cursor_t current; _mi_arena_field_cursor_init(heap, ¤t); + while ((segment = _mi_arena_segment_clear_abandoned_next(¤t)) != NULL) { mi_segment_reclaim(segment, heap, 0, NULL, tld); } } +static long mi_segment_get_reclaim_tries(void) { + // limit the tries to 10% (default) of the abandoned segments with at least 8 and at most 1024 tries. + const size_t perc = (size_t)mi_option_get_clamp(mi_option_max_segment_reclaim, 0, 100); + if (perc <= 0) return 0; + const size_t total_count = _mi_arena_segment_abandoned_count(); + if (total_count == 0) return 0; + const size_t relative_count = (total_count > 10000 ? (total_count / 100) * perc : (total_count * perc) / 100); // avoid overflow + long max_tries = (long)(relative_count <= 1 ? 1 : (relative_count > 1024 ? 1024 : relative_count)); + if (max_tries < 8 && total_count > 8) { max_tries = 8; } + return max_tries; +} + static mi_segment_t* mi_segment_try_reclaim(mi_heap_t* heap, size_t block_size, mi_page_kind_t page_kind, bool* reclaimed, mi_segments_tld_t* tld) { *reclaimed = false; + long max_tries = mi_segment_get_reclaim_tries(); + if (max_tries <= 0) return NULL; + mi_segment_t* segment; - int max_tries = 8; // limit the work to bound allocation times - while ((max_tries-- > 0) && ((segment = mi_abandoned_pop()) != NULL)) { + mi_arena_field_cursor_t current; _mi_arena_field_cursor_init(heap, ¤t); + while ((max_tries-- > 0) && ((segment = _mi_arena_segment_clear_abandoned_next(¤t)) != NULL)) + { segment->abandoned_visits++; + // todo: should we respect numa affinity for abondoned reclaim? perhaps only for the first visit? + // todo: an arena exclusive heap will potentially visit many abandoned unsuitable segments and use many tries + // Perhaps we can skip non-suitable ones in a better way? + bool is_suitable = _mi_heap_memid_is_suitable(heap, segment->memid); bool all_pages_free; bool has_page = mi_segment_check_free(segment,block_size,&all_pages_free); // try to free up pages (due to concurrent frees) if (all_pages_free) { @@ -1186,19 +1000,20 @@ static mi_segment_t* mi_segment_try_reclaim(mi_heap_t* heap, size_t block_size, // freeing but that would violate some invariants temporarily) mi_segment_reclaim(segment, heap, 0, NULL, tld); } - else if (has_page && segment->page_kind == page_kind) { + else if (has_page && segment->page_kind == page_kind && is_suitable) { // found a free page of the right kind, or page of the right block_size with free space // we return the result of reclaim (which is usually `segment`) as it might free // the segment due to concurrent frees (in which case `NULL` is returned). return mi_segment_reclaim(segment, heap, block_size, reclaimed, tld); } - else if (segment->abandoned_visits >= 3) { + else if (segment->abandoned_visits >= 3 && is_suitable) { // always reclaim on 3rd visit to limit the list length. mi_segment_reclaim(segment, heap, 0, NULL, tld); } else { - // otherwise, push on the visited list so it gets not looked at too quickly again - mi_abandoned_visited_push(segment); + // otherwise, mark it back as abandoned + // todo: reset delayed pages in the segment? + _mi_arena_segment_mark_abandoned(segment); } } return NULL; @@ -1212,16 +1027,12 @@ static mi_segment_t* mi_segment_try_reclaim(mi_heap_t* heap, size_t block_size, static mi_segment_t* mi_segment_reclaim_or_alloc(mi_heap_t* heap, size_t block_size, mi_page_kind_t page_kind, size_t page_shift, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) { mi_assert_internal(page_kind <= MI_PAGE_LARGE); - mi_assert_internal(block_size < MI_HUGE_BLOCK_SIZE); - // 1. try to get a segment from our cache - mi_segment_t* segment = mi_segment_cache_pop(MI_SEGMENT_SIZE, tld); - if (segment != NULL) { - mi_segment_init(segment, 0, page_kind, page_shift, tld, os_tld); - return segment; - } - // 2. try to reclaim an abandoned segment + mi_assert_internal(block_size <= MI_LARGE_OBJ_SIZE_MAX); + + // 1. try to reclaim an abandoned segment bool reclaimed; - segment = mi_segment_try_reclaim(heap, block_size, page_kind, &reclaimed, tld); + mi_segment_t* segment = mi_segment_try_reclaim(heap, block_size, page_kind, &reclaimed, tld); + mi_assert_internal(segment == NULL || _mi_arena_memid_is_suitable(segment->memid, heap->arena_id)); if (reclaimed) { // reclaimed the right page right into the heap mi_assert_internal(segment != NULL && segment->page_kind == page_kind && page_kind <= MI_PAGE_LARGE); @@ -1231,8 +1042,8 @@ static mi_segment_t* mi_segment_reclaim_or_alloc(mi_heap_t* heap, size_t block_s // reclaimed a segment with empty pages (of `page_kind`) in it return segment; } - // 3. otherwise allocate a fresh segment - return mi_segment_alloc(0, page_kind, page_shift, tld, os_tld); + // 2. otherwise allocate a fresh segment + return mi_segment_alloc(0, page_kind, page_shift, 0, heap->arena_id, tld, os_tld); } @@ -1260,24 +1071,33 @@ static mi_page_t* mi_segment_page_alloc_in(mi_segment_t* segment, mi_segments_tl return mi_segment_find_free(segment, tld); } -static mi_page_t* mi_segment_page_alloc(mi_heap_t* heap, size_t block_size, mi_page_kind_t kind, size_t page_shift, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) { +static mi_page_t* mi_segment_page_try_alloc_in_queue(mi_heap_t* heap, mi_page_kind_t kind, mi_segments_tld_t* tld) { // find an available segment the segment free queue mi_segment_queue_t* const free_queue = mi_segment_free_queue_of_kind(kind, tld); - if (mi_segment_queue_is_empty(free_queue)) { + for (mi_segment_t* segment = free_queue->first; segment != NULL; segment = segment->next) { + if (_mi_arena_memid_is_suitable(segment->memid, heap->arena_id) && mi_segment_has_free(segment)) { + return mi_segment_page_alloc_in(segment, tld); + } + } + return NULL; +} + +static mi_page_t* mi_segment_page_alloc(mi_heap_t* heap, size_t block_size, mi_page_kind_t kind, size_t page_shift, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) { + mi_page_t* page = mi_segment_page_try_alloc_in_queue(heap, kind, tld); + if (page == NULL) { // possibly allocate or reclaim a fresh segment mi_segment_t* const segment = mi_segment_reclaim_or_alloc(heap, block_size, kind, page_shift, tld, os_tld); if (segment == NULL) return NULL; // return NULL if out-of-memory (or reclaimed) - mi_assert_internal(free_queue->first == segment); mi_assert_internal(segment->page_kind==kind); mi_assert_internal(segment->used < segment->capacity); + mi_assert_internal(_mi_arena_memid_is_suitable(segment->memid, heap->arena_id)); + page = mi_segment_page_try_alloc_in_queue(heap, kind, tld); // this should now succeed } - mi_assert_internal(free_queue->first != NULL); - mi_page_t* const page = mi_segment_page_alloc_in(free_queue->first, tld); mi_assert_internal(page != NULL); -#if MI_DEBUG>=2 + #if MI_DEBUG>=2 && !MI_TRACK_ENABLED // && !MI_TSAN // verify it is committed - _mi_segment_page_start(_mi_page_segment(page), page, sizeof(void*), NULL, NULL)[0] = 0; -#endif + mi_segment_raw_page_start(_mi_page_segment(page), page, NULL)[0] = 0; + #endif return page; } @@ -1298,24 +1118,45 @@ static mi_page_t* mi_segment_large_page_alloc(mi_heap_t* heap, size_t block_size if (segment == NULL) return NULL; mi_page_t* page = mi_segment_find_free(segment, tld); mi_assert_internal(page != NULL); -#if MI_DEBUG>=2 - _mi_segment_page_start(segment, page, sizeof(void*), NULL, NULL)[0] = 0; +#if MI_DEBUG>=2 && !MI_TRACK_ENABLED // && !MI_TSAN + mi_segment_raw_page_start(segment, page, NULL)[0] = 0; #endif return page; } -static mi_page_t* mi_segment_huge_page_alloc(size_t size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) +static mi_page_t* mi_segment_huge_page_alloc(size_t size, size_t page_alignment, mi_arena_id_t req_arena_id, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) { - mi_segment_t* segment = mi_segment_alloc(size, MI_PAGE_HUGE, MI_SEGMENT_SHIFT,tld,os_tld); + mi_segment_t* segment = mi_segment_alloc(size, MI_PAGE_HUGE, MI_SEGMENT_SHIFT + 1, page_alignment, req_arena_id, tld, os_tld); if (segment == NULL) return NULL; mi_assert_internal(mi_segment_page_size(segment) - segment->segment_info_size - (2*(MI_SECURE == 0 ? 0 : _mi_os_page_size())) >= size); + #if MI_HUGE_PAGE_ABANDON segment->thread_id = 0; // huge pages are immediately abandoned mi_segments_track_size(-(long)segment->segment_size, tld); + #endif mi_page_t* page = mi_segment_find_free(segment, tld); mi_assert_internal(page != NULL); + mi_assert_internal(page->is_huge); + + // for huge pages we initialize the block_size as we may + // overallocate to accommodate large alignments. + size_t psize; + uint8_t* start = mi_segment_raw_page_start(segment, page, &psize); + page->block_size = psize; + + // reset the part of the page that will not be used; this can be quite large (close to MI_SEGMENT_SIZE) + if (page_alignment > 0 && segment->allow_decommit && page->is_committed) { + uint8_t* aligned_p = (uint8_t*)_mi_align_up((uintptr_t)start, page_alignment); + mi_assert_internal(_mi_is_aligned(aligned_p, page_alignment)); + mi_assert_internal(psize - (aligned_p - start) >= size); + uint8_t* decommit_start = start + sizeof(mi_block_t); // for the free list + ptrdiff_t decommit_size = aligned_p - decommit_start; + _mi_os_reset(decommit_start, decommit_size, os_tld->stats); // do not decommit as it may be in a region + } + return page; } +#if MI_HUGE_PAGE_ABANDON // free huge block from another thread void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block_t* block) { // huge page segments are always abandoned and can be freed immediately by any thread @@ -1326,12 +1167,12 @@ void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block // claim it and free mi_heap_t* heap = mi_heap_get_default(); // issue #221; don't use the internal get_default_heap as we need to ensure the thread is initialized. // paranoia: if this it the last reference, the cas should always succeed - uintptr_t expected_tid = 0; + size_t expected_tid = 0; if (mi_atomic_cas_strong_acq_rel(&segment->thread_id, &expected_tid, heap->thread_id)) { mi_block_set_next(page, block, page->free); page->free = block; page->used--; - page->is_zero = false; + page->is_zero_init = false; mi_assert(page->used == 0); mi_tld_t* tld = heap->tld; mi_segments_track_size((long)segment->segment_size, &tld->segments); @@ -1344,27 +1185,52 @@ void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block #endif } +#else +// reset memory of a huge block from another thread +void _mi_segment_huge_page_reset(mi_segment_t* segment, mi_page_t* page, mi_block_t* block) { + mi_assert_internal(segment->page_kind == MI_PAGE_HUGE); + mi_assert_internal(segment == _mi_page_segment(page)); + mi_assert_internal(page->used == 1); // this is called just before the free + mi_assert_internal(page->free == NULL); + if (segment->allow_decommit && page->is_committed) { + size_t usize = mi_usable_size(block); + if (usize > sizeof(mi_block_t)) { + usize = usize - sizeof(mi_block_t); + uint8_t* p = (uint8_t*)block + sizeof(mi_block_t); + _mi_os_reset(p, usize, &_mi_stats_main); + } + } +} +#endif + /* ----------------------------------------------------------- Page allocation ----------------------------------------------------------- */ -mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) { +mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_size, size_t page_alignment, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) { mi_page_t* page; - if (block_size <= MI_SMALL_OBJ_SIZE_MAX) { + if mi_unlikely(page_alignment > MI_BLOCK_ALIGNMENT_MAX) { + mi_assert_internal(_mi_is_power_of_two(page_alignment)); + mi_assert_internal(page_alignment >= MI_SEGMENT_SIZE); + //mi_assert_internal((MI_SEGMENT_SIZE % page_alignment) == 0); + if (page_alignment < MI_SEGMENT_SIZE) { page_alignment = MI_SEGMENT_SIZE; } + page = mi_segment_huge_page_alloc(block_size, page_alignment, heap->arena_id, tld, os_tld); + } + else if (block_size <= MI_SMALL_OBJ_SIZE_MAX) { page = mi_segment_small_page_alloc(heap, block_size, tld, os_tld); } else if (block_size <= MI_MEDIUM_OBJ_SIZE_MAX) { page = mi_segment_medium_page_alloc(heap, block_size, tld, os_tld); } - else if (block_size <= MI_LARGE_OBJ_SIZE_MAX) { + else if (block_size <= MI_LARGE_OBJ_SIZE_MAX /* || mi_is_good_fit(block_size, MI_LARGE_PAGE_SIZE - sizeof(mi_segment_t)) */ ) { page = mi_segment_large_page_alloc(heap, block_size, tld, os_tld); } else { - page = mi_segment_huge_page_alloc(block_size,tld,os_tld); + page = mi_segment_huge_page_alloc(block_size, page_alignment, heap->arena_id, tld, os_tld); } mi_assert_expensive(page == NULL || mi_segment_is_valid(_mi_page_segment(page),tld)); mi_assert_internal(page == NULL || (mi_segment_page_size(_mi_page_segment(page)) - (MI_SECURE == 0 ? 0 : _mi_os_page_size())) >= block_size); - mi_reset_delayed(tld); + // mi_segment_try_purge(tld); mi_assert_internal(page == NULL || mi_page_not_in_queue(page, tld)); return page; } diff --git a/contrib/libs/mimalloc/src/static.c b/contrib/libs/mimalloc/src/static.c deleted file mode 100644 index 4b3abc285a..0000000000 --- a/contrib/libs/mimalloc/src/static.c +++ /dev/null @@ -1,39 +0,0 @@ -/* ---------------------------------------------------------------------------- -Copyright (c) 2018-2020, Microsoft Research, Daan Leijen -This is free software; you can redistribute it and/or modify it under the -terms of the MIT license. A copy of the license can be found in the file -"LICENSE" at the root of this distribution. ------------------------------------------------------------------------------*/ -#ifndef _DEFAULT_SOURCE -#define _DEFAULT_SOURCE -#endif -#if defined(__sun) -// same remarks as os.c for the static's context. -#undef _XOPEN_SOURCE -#undef _POSIX_C_SOURCE -#endif - -#include "mimalloc.h" -#include "mimalloc-internal.h" - -// For a static override we create a single object file -// containing the whole library. If it is linked first -// it will override all the standard library allocation -// functions (on Unix's). -#include "stats.c" -#include "random.c" -#include "os.c" -#include "bitmap.c" -#include "arena.c" -#include "region.c" -#include "segment.c" -#include "page.c" -#include "heap.c" -#include "alloc.c" -#include "alloc-aligned.c" -#include "alloc-posix.c" -#if MI_OSX_ZONE -#include "alloc-override-osx.c" -#endif -#include "init.c" -#include "options.c" diff --git a/contrib/libs/mimalloc/src/stats.c b/contrib/libs/mimalloc/src/stats.c index 7358539aa5..99cf89c5b7 100644 --- a/contrib/libs/mimalloc/src/stats.c +++ b/contrib/libs/mimalloc/src/stats.c @@ -5,10 +5,10 @@ terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #include "mimalloc.h" -#include "mimalloc-internal.h" -#include "mimalloc-atomic.h" +#include "mimalloc/internal.h" +#include "mimalloc/atomic.h" +#include "mimalloc/prim.h" -#include <stdio.h> // fputs, stderr #include <string.h> // memset #if defined(_MSC_VER) && (_MSC_VER < 1920) @@ -21,7 +21,7 @@ terms of the MIT license. A copy of the license can be found in the file static bool mi_is_in_main(void* stat) { return ((uint8_t*)stat >= (uint8_t*)&_mi_stats_main - && (uint8_t*)stat < ((uint8_t*)&_mi_stats_main + sizeof(mi_stats_t))); + && (uint8_t*)stat < ((uint8_t*)&_mi_stats_main + sizeof(mi_stats_t))); } static void mi_stat_update(mi_stat_count_t* stat, int64_t amount) { @@ -51,7 +51,7 @@ static void mi_stat_update(mi_stat_count_t* stat, int64_t amount) { } } -void _mi_stat_counter_increase(mi_stat_counter_t* stat, size_t amount) { +void _mi_stat_counter_increase(mi_stat_counter_t* stat, size_t amount) { if (mi_is_in_main(stat)) { mi_atomic_addi64_relaxed( &stat->count, 1 ); mi_atomic_addi64_relaxed( &stat->total, (int64_t)amount ); @@ -77,7 +77,7 @@ static void mi_stat_add(mi_stat_count_t* stat, const mi_stat_count_t* src, int64 mi_atomic_addi64_relaxed( &stat->allocated, src->allocated * unit); mi_atomic_addi64_relaxed( &stat->current, src->current * unit); mi_atomic_addi64_relaxed( &stat->freed, src->freed * unit); - // peak scores do not work across threads.. + // peak scores do not work across threads.. mi_atomic_addi64_relaxed( &stat->peak, src->peak * unit); } @@ -95,6 +95,7 @@ static void mi_stats_add(mi_stats_t* stats, const mi_stats_t* src) { mi_stat_add(&stats->reserved, &src->reserved, 1); mi_stat_add(&stats->committed, &src->committed, 1); mi_stat_add(&stats->reset, &src->reset, 1); + mi_stat_add(&stats->purged, &src->purged, 1); mi_stat_add(&stats->page_committed, &src->page_committed, 1); mi_stat_add(&stats->pages_abandoned, &src->pages_abandoned, 1); @@ -110,12 +111,13 @@ static void mi_stats_add(mi_stats_t* stats, const mi_stats_t* src) { mi_stat_counter_add(&stats->pages_extended, &src->pages_extended, 1); mi_stat_counter_add(&stats->mmap_calls, &src->mmap_calls, 1); mi_stat_counter_add(&stats->commit_calls, &src->commit_calls, 1); + mi_stat_counter_add(&stats->reset_calls, &src->reset_calls, 1); + mi_stat_counter_add(&stats->purge_calls, &src->purge_calls, 1); mi_stat_counter_add(&stats->page_no_retire, &src->page_no_retire, 1); mi_stat_counter_add(&stats->searches, &src->searches, 1); mi_stat_counter_add(&stats->normal_count, &src->normal_count, 1); - mi_stat_counter_add(&stats->huge_count, &src->huge_count, 1); - mi_stat_counter_add(&stats->giant_count, &src->giant_count, 1); + mi_stat_counter_add(&stats->huge_count, &src->huge_count, 1); #if MI_STAT>1 for (size_t i = 0; i <= MI_BIN_HUGE; i++) { if (src->normal_bins[i].allocated > 0 || src->normal_bins[i].freed > 0) { @@ -129,31 +131,35 @@ static void mi_stats_add(mi_stats_t* stats, const mi_stats_t* src) { Display statistics ----------------------------------------------------------- */ -// unit > 0 : size in binary bytes +// unit > 0 : size in binary bytes // unit == 0: count as decimal // unit < 0 : count in binary static void mi_printf_amount(int64_t n, int64_t unit, mi_output_fun* out, void* arg, const char* fmt) { - char buf[32]; + char buf[32]; buf[0] = 0; int len = 32; - const char* suffix = (unit <= 0 ? " " : "b"); + const char* suffix = (unit <= 0 ? " " : "B"); const int64_t base = (unit == 0 ? 1000 : 1024); if (unit>0) n *= unit; const int64_t pos = (n < 0 ? -n : n); if (pos < base) { - snprintf(buf, len, "%d %s ", (int)n, suffix); + if (n!=1 || suffix[0] != 'B') { // skip printing 1 B for the unit column + _mi_snprintf(buf, len, "%lld %-3s", (long long)n, (n==0 ? "" : suffix)); + } } else { int64_t divider = base; - const char* magnitude = "k"; - if (pos >= divider*base) { divider *= base; magnitude = "m"; } - if (pos >= divider*base) { divider *= base; magnitude = "g"; } + const char* magnitude = "K"; + if (pos >= divider*base) { divider *= base; magnitude = "M"; } + if (pos >= divider*base) { divider *= base; magnitude = "G"; } const int64_t tens = (n / (divider/10)); const long whole = (long)(tens/10); const long frac1 = (long)(tens%10); - snprintf(buf, len, "%ld.%ld %s%s", whole, (frac1 < 0 ? -frac1 : frac1), magnitude, suffix); + char unitdesc[8]; + _mi_snprintf(unitdesc, 8, "%s%s%s", magnitude, (base==1024 ? "i" : ""), suffix); + _mi_snprintf(buf, len, "%ld.%ld %-3s", whole, (frac1 < 0 ? -frac1 : frac1), unitdesc); } - _mi_fprintf(out, arg, (fmt==NULL ? "%11s" : fmt), buf); + _mi_fprintf(out, arg, (fmt==NULL ? "%12s" : fmt), buf); } @@ -162,58 +168,71 @@ static void mi_print_amount(int64_t n, int64_t unit, mi_output_fun* out, void* a } static void mi_print_count(int64_t n, int64_t unit, mi_output_fun* out, void* arg) { - if (unit==1) _mi_fprintf(out, arg, "%11s"," "); + if (unit==1) _mi_fprintf(out, arg, "%12s"," "); else mi_print_amount(n,0,out,arg); } -static void mi_stat_print(const mi_stat_count_t* stat, const char* msg, int64_t unit, mi_output_fun* out, void* arg ) { +static void mi_stat_print_ex(const mi_stat_count_t* stat, const char* msg, int64_t unit, mi_output_fun* out, void* arg, const char* notok ) { _mi_fprintf(out, arg,"%10s:", msg); - if (unit>0) { - mi_print_amount(stat->peak, unit, out, arg); - mi_print_amount(stat->allocated, unit, out, arg); - mi_print_amount(stat->freed, unit, out, arg); - mi_print_amount(stat->current, unit, out, arg); - mi_print_amount(unit, 1, out, arg); - mi_print_count(stat->allocated, unit, out, arg); - if (stat->allocated > stat->freed) - _mi_fprintf(out, arg, " not all freed!\n"); - else - _mi_fprintf(out, arg, " ok\n"); - } - else if (unit<0) { - mi_print_amount(stat->peak, -1, out, arg); - mi_print_amount(stat->allocated, -1, out, arg); - mi_print_amount(stat->freed, -1, out, arg); - mi_print_amount(stat->current, -1, out, arg); - if (unit==-1) { - _mi_fprintf(out, arg, "%22s", ""); + if (unit != 0) { + if (unit > 0) { + mi_print_amount(stat->peak, unit, out, arg); + mi_print_amount(stat->allocated, unit, out, arg); + mi_print_amount(stat->freed, unit, out, arg); + mi_print_amount(stat->current, unit, out, arg); + mi_print_amount(unit, 1, out, arg); + mi_print_count(stat->allocated, unit, out, arg); } else { - mi_print_amount(-unit, 1, out, arg); - mi_print_count((stat->allocated / -unit), 0, out, arg); + mi_print_amount(stat->peak, -1, out, arg); + mi_print_amount(stat->allocated, -1, out, arg); + mi_print_amount(stat->freed, -1, out, arg); + mi_print_amount(stat->current, -1, out, arg); + if (unit == -1) { + _mi_fprintf(out, arg, "%24s", ""); + } + else { + mi_print_amount(-unit, 1, out, arg); + mi_print_count((stat->allocated / -unit), 0, out, arg); + } + } + if (stat->allocated > stat->freed) { + _mi_fprintf(out, arg, " "); + _mi_fprintf(out, arg, (notok == NULL ? "not all freed" : notok)); + _mi_fprintf(out, arg, "\n"); } - if (stat->allocated > stat->freed) - _mi_fprintf(out, arg, " not all freed!\n"); - else + else { _mi_fprintf(out, arg, " ok\n"); + } } else { mi_print_amount(stat->peak, 1, out, arg); mi_print_amount(stat->allocated, 1, out, arg); - _mi_fprintf(out, arg, "%11s", " "); // no freed + _mi_fprintf(out, arg, "%11s", " "); // no freed mi_print_amount(stat->current, 1, out, arg); _mi_fprintf(out, arg, "\n"); } } +static void mi_stat_print(const mi_stat_count_t* stat, const char* msg, int64_t unit, mi_output_fun* out, void* arg) { + mi_stat_print_ex(stat, msg, unit, out, arg, NULL); +} + +static void mi_stat_peak_print(const mi_stat_count_t* stat, const char* msg, int64_t unit, mi_output_fun* out, void* arg) { + _mi_fprintf(out, arg, "%10s:", msg); + mi_print_amount(stat->peak, unit, out, arg); + _mi_fprintf(out, arg, "\n"); +} + static void mi_stat_counter_print(const mi_stat_counter_t* stat, const char* msg, mi_output_fun* out, void* arg ) { _mi_fprintf(out, arg, "%10s:", msg); mi_print_amount(stat->total, -1, out, arg); _mi_fprintf(out, arg, "\n"); } + static void mi_stat_counter_print_avg(const mi_stat_counter_t* stat, const char* msg, mi_output_fun* out, void* arg) { - const int64_t avg_tens = (stat->count == 0 ? 0 : (stat->total*10 / stat->count)); + const int64_t avg_tens = (stat->count == 0 ? 0 : (stat->total*10 / stat->count)); const long avg_whole = (long)(avg_tens/10); const long avg_frac1 = (long)(avg_tens%10); _mi_fprintf(out, arg, "%10s: %5ld.%ld avg\n", msg, avg_whole, avg_frac1); @@ -221,7 +240,7 @@ static void mi_stat_counter_print_avg(const mi_stat_counter_t* stat, const char* static void mi_print_header(mi_output_fun* out, void* arg ) { - _mi_fprintf(out, arg, "%10s: %10s %10s %10s %10s %10s %10s\n", "heap stats", "peak ", "total ", "freed ", "current ", "unit ", "count "); + _mi_fprintf(out, arg, "%10s: %11s %11s %11s %11s %11s %11s\n", "heap stats", "peak ", "total ", "freed ", "current ", "unit ", "count "); } #if MI_STAT>1 @@ -232,7 +251,7 @@ static void mi_stats_print_bins(const mi_stat_count_t* bins, size_t max, const c if (bins[i].allocated > 0) { found = true; int64_t unit = _mi_bin_size((uint8_t)i); - snprintf(buf, 64, "%s %3lu", fmt, (long)i); + _mi_snprintf(buf, 64, "%s %3lu", fmt, (long)i); mi_stat_print(&bins[i], buf, unit, out, arg); } } @@ -253,7 +272,7 @@ typedef struct buffered_s { mi_output_fun* out; // original output function void* arg; // and state char* buf; // local buffer of at least size `count+1` - size_t used; // currently used chars `used <= count` + size_t used; // currently used chars `used <= count` size_t count; // total chars available for output } buffered_t; @@ -263,7 +282,7 @@ static void mi_buffered_flush(buffered_t* buf) { buf->used = 0; } -static void mi_buffered_out(const char* msg, void* arg) { +static void mi_cdecl mi_buffered_out(const char* msg, void* arg) { buffered_t* buf = (buffered_t*)arg; if (msg==NULL || buf==NULL) return; for (const char* src = msg; *src != 0; src++) { @@ -279,8 +298,6 @@ static void mi_buffered_out(const char* msg, void* arg) { // Print statistics //------------------------------------------------------------ -static void mi_stat_process_info(mi_msecs_t* elapsed, mi_msecs_t* utime, mi_msecs_t* stime, size_t* current_rss, size_t* peak_rss, size_t* current_commit, size_t* peak_commit, size_t* page_faults); - static void _mi_stats_print(mi_stats_t* stats, mi_output_fun* out0, void* arg0) mi_attr_noexcept { // wrap the output function to be line buffered char buf[256]; @@ -296,21 +313,20 @@ static void _mi_stats_print(mi_stats_t* stats, mi_output_fun* out0, void* arg0) #endif #if MI_STAT mi_stat_print(&stats->normal, "normal", (stats->normal_count.count == 0 ? 1 : -(stats->normal.allocated / stats->normal_count.count)), out, arg); - mi_stat_print(&stats->huge, "huge", (stats->huge_count.count == 0 ? 1 : -(stats->huge.allocated / stats->huge_count.count)), out, arg); - mi_stat_print(&stats->giant, "giant", (stats->giant_count.count == 0 ? 1 : -(stats->giant.allocated / stats->giant_count.count)), out, arg); + mi_stat_print(&stats->huge, "huge", (stats->huge_count.count == 0 ? 1 : -(stats->huge.allocated / stats->huge_count.count)), out, arg); mi_stat_count_t total = { 0,0,0,0 }; mi_stat_add(&total, &stats->normal, 1); mi_stat_add(&total, &stats->huge, 1); - mi_stat_add(&total, &stats->giant, 1); mi_stat_print(&total, "total", 1, out, arg); #endif #if MI_STAT>1 mi_stat_print(&stats->malloc, "malloc req", 1, out, arg); _mi_fprintf(out, arg, "\n"); #endif - mi_stat_print(&stats->reserved, "reserved", 1, out, arg); - mi_stat_print(&stats->committed, "committed", 1, out, arg); - mi_stat_print(&stats->reset, "reset", 1, out, arg); + mi_stat_print_ex(&stats->reserved, "reserved", 1, out, arg, ""); + mi_stat_print_ex(&stats->committed, "committed", 1, out, arg, ""); + mi_stat_peak_print(&stats->reset, "reset", 1, out, arg ); + mi_stat_peak_print(&stats->purged, "purged", 1, out, arg ); mi_stat_print(&stats->page_committed, "touched", 1, out, arg); mi_stat_print(&stats->segments, "segments", -1, out, arg); mi_stat_print(&stats->segments_abandoned, "-abandoned", -1, out, arg); @@ -319,22 +335,27 @@ static void _mi_stats_print(mi_stats_t* stats, mi_output_fun* out0, void* arg0) mi_stat_print(&stats->pages_abandoned, "-abandoned", -1, out, arg); mi_stat_counter_print(&stats->pages_extended, "-extended", out, arg); mi_stat_counter_print(&stats->page_no_retire, "-noretire", out, arg); + mi_stat_counter_print(&stats->arena_count, "arenas", out, arg); + mi_stat_counter_print(&stats->arena_crossover_count, "-crossover", out, arg); + mi_stat_counter_print(&stats->arena_rollback_count, "-rollback", out, arg); mi_stat_counter_print(&stats->mmap_calls, "mmaps", out, arg); mi_stat_counter_print(&stats->commit_calls, "commits", out, arg); + mi_stat_counter_print(&stats->reset_calls, "resets", out, arg); + mi_stat_counter_print(&stats->purge_calls, "purges", out, arg); mi_stat_print(&stats->threads, "threads", -1, out, arg); mi_stat_counter_print_avg(&stats->searches, "searches", out, arg); - _mi_fprintf(out, arg, "%10s: %7i\n", "numa nodes", _mi_os_numa_node_count()); - - mi_msecs_t elapsed; - mi_msecs_t user_time; - mi_msecs_t sys_time; + _mi_fprintf(out, arg, "%10s: %5zu\n", "numa nodes", _mi_os_numa_node_count()); + + size_t elapsed; + size_t user_time; + size_t sys_time; size_t current_rss; size_t peak_rss; size_t current_commit; size_t peak_commit; size_t page_faults; - mi_stat_process_info(&elapsed, &user_time, &sys_time, ¤t_rss, &peak_rss, ¤t_commit, &peak_commit, &page_faults); - _mi_fprintf(out, arg, "%10s: %7ld.%03ld s\n", "elapsed", elapsed/1000, elapsed%1000); + mi_process_info(&elapsed, &user_time, &sys_time, ¤t_rss, &peak_rss, ¤t_commit, &peak_commit, &page_faults); + _mi_fprintf(out, arg, "%10s: %5ld.%03ld s\n", "elapsed", elapsed/1000, elapsed%1000); _mi_fprintf(out, arg, "%10s: user: %ld.%03ld s, system: %ld.%03ld s, faults: %lu, rss: ", "process", user_time/1000, user_time%1000, sys_time/1000, sys_time%1000, (unsigned long)page_faults ); mi_printf_amount((int64_t)peak_rss, 1, out, arg, "%s"); @@ -342,7 +363,7 @@ static void _mi_stats_print(mi_stats_t* stats, mi_output_fun* out0, void* arg0) _mi_fprintf(out, arg, ", commit: "); mi_printf_amount((int64_t)peak_commit, 1, out, arg, "%s"); } - _mi_fprintf(out, arg, "\n"); + _mi_fprintf(out, arg, "\n"); } static mi_msecs_t mi_process_start; // = 0 @@ -392,42 +413,12 @@ void mi_thread_stats_print_out(mi_output_fun* out, void* arg) mi_attr_noexcept { // ---------------------------------------------------------------- // Basic timer for convenience; use milli-seconds to avoid doubles // ---------------------------------------------------------------- -#ifdef _WIN32 -#include <windows.h> -static mi_msecs_t mi_to_msecs(LARGE_INTEGER t) { - static LARGE_INTEGER mfreq; // = 0 - if (mfreq.QuadPart == 0LL) { - LARGE_INTEGER f; - QueryPerformanceFrequency(&f); - mfreq.QuadPart = f.QuadPart/1000LL; - if (mfreq.QuadPart == 0) mfreq.QuadPart = 1; - } - return (mi_msecs_t)(t.QuadPart / mfreq.QuadPart); -} + +static mi_msecs_t mi_clock_diff; mi_msecs_t _mi_clock_now(void) { - LARGE_INTEGER t; - QueryPerformanceCounter(&t); - return mi_to_msecs(t); -} -#else -#include <time.h> -#ifdef CLOCK_REALTIME -mi_msecs_t _mi_clock_now(void) { - struct timespec t; - clock_gettime(CLOCK_REALTIME, &t); - return ((mi_msecs_t)t.tv_sec * 1000) + ((mi_msecs_t)t.tv_nsec / 1000000); -} -#else -// low resolution timer -mi_msecs_t _mi_clock_now(void) { - return ((mi_msecs_t)clock() / ((mi_msecs_t)CLOCKS_PER_SEC / 1000)); + return _mi_prim_clock_now(); } -#endif -#endif - - -static mi_msecs_t mi_clock_diff; mi_msecs_t _mi_clock_start(void) { if (mi_clock_diff == 0.0) { @@ -447,129 +438,27 @@ mi_msecs_t _mi_clock_end(mi_msecs_t start) { // Basic process statistics // -------------------------------------------------------- -#if defined(_WIN32) -#include <windows.h> -#include <psapi.h> -#pragma comment(lib,"psapi.lib") - -static mi_msecs_t filetime_msecs(const FILETIME* ftime) { - ULARGE_INTEGER i; - i.LowPart = ftime->dwLowDateTime; - i.HighPart = ftime->dwHighDateTime; - mi_msecs_t msecs = (i.QuadPart / 10000); // FILETIME is in 100 nano seconds - return msecs; -} - -static void mi_stat_process_info(mi_msecs_t* elapsed, mi_msecs_t* utime, mi_msecs_t* stime, size_t* current_rss, size_t* peak_rss, size_t* current_commit, size_t* peak_commit, size_t* page_faults) -{ - *elapsed = _mi_clock_end(mi_process_start); - FILETIME ct; - FILETIME ut; - FILETIME st; - FILETIME et; - GetProcessTimes(GetCurrentProcess(), &ct, &et, &st, &ut); - *utime = filetime_msecs(&ut); - *stime = filetime_msecs(&st); - PROCESS_MEMORY_COUNTERS info; - GetProcessMemoryInfo(GetCurrentProcess(), &info, sizeof(info)); - *current_rss = (size_t)info.WorkingSetSize; - *peak_rss = (size_t)info.PeakWorkingSetSize; - *current_commit = (size_t)info.PagefileUsage; - *peak_commit = (size_t)info.PeakPagefileUsage; - *page_faults = (size_t)info.PageFaultCount; -} - -#elif defined(__unix__) || defined(__unix) || defined(unix) || defined(__APPLE__) || defined(__HAIKU__) -#include <stdio.h> -#include <unistd.h> -#include <sys/resource.h> - -#if defined(__APPLE__) -#include <mach/mach.h> -#endif - -#if defined(__HAIKU__) -#error #include <kernel/OS.h> -#endif - -static mi_msecs_t timeval_secs(const struct timeval* tv) { - return ((mi_msecs_t)tv->tv_sec * 1000L) + ((mi_msecs_t)tv->tv_usec / 1000L); -} - -static void mi_stat_process_info(mi_msecs_t* elapsed, mi_msecs_t* utime, mi_msecs_t* stime, size_t* current_rss, size_t* peak_rss, size_t* current_commit, size_t* peak_commit, size_t* page_faults) -{ - *elapsed = _mi_clock_end(mi_process_start); - struct rusage rusage; - getrusage(RUSAGE_SELF, &rusage); - *utime = timeval_secs(&rusage.ru_utime); - *stime = timeval_secs(&rusage.ru_stime); -#if !defined(__HAIKU__) - *page_faults = rusage.ru_majflt; -#endif - // estimate commit using our stats - *peak_commit = (size_t)(mi_atomic_loadi64_relaxed((_Atomic(int64_t)*)&_mi_stats_main.committed.peak)); - *current_commit = (size_t)(mi_atomic_loadi64_relaxed((_Atomic(int64_t)*)&_mi_stats_main.committed.current)); - *current_rss = *current_commit; // estimate -#if defined(__HAIKU__) - // Haiku does not have (yet?) a way to - // get these stats per process - thread_info tid; - area_info mem; - ssize_t c; - get_thread_info(find_thread(0), &tid); - while (get_next_area_info(tid.team, &c, &mem) == B_OK) { - *peak_rss += mem.ram_size; - } -#elif defined(__APPLE__) - *peak_rss = rusage.ru_maxrss; // BSD reports in bytes - struct mach_task_basic_info info; - mach_msg_type_number_t infoCount = MACH_TASK_BASIC_INFO_COUNT; - if (task_info(mach_task_self(), MACH_TASK_BASIC_INFO, (task_info_t)&info, &infoCount) == KERN_SUCCESS) { - *current_rss = (size_t)info.resident_size; - } -#else - *peak_rss = rusage.ru_maxrss * 1024; // Linux reports in KiB -#endif -} - -#else -#ifndef __wasi__ -// WebAssembly instances are not processes -#pragma message("define a way to get process info") -#endif - -static void mi_stat_process_info(mi_msecs_t* elapsed, mi_msecs_t* utime, mi_msecs_t* stime, size_t* current_rss, size_t* peak_rss, size_t* current_commit, size_t* peak_commit, size_t* page_faults) -{ - *elapsed = _mi_clock_end(mi_process_start); - *peak_commit = (size_t)(mi_atomic_loadi64_relaxed((_Atomic(int64_t)*)&_mi_stats_main.committed.peak)); - *current_commit = (size_t)(mi_atomic_loadi64_relaxed((_Atomic(int64_t)*)&_mi_stats_main.committed.current)); - *peak_rss = *peak_commit; - *current_rss = *current_commit; - *page_faults = 0; - *utime = 0; - *stime = 0; -} -#endif - - mi_decl_export void mi_process_info(size_t* elapsed_msecs, size_t* user_msecs, size_t* system_msecs, size_t* current_rss, size_t* peak_rss, size_t* current_commit, size_t* peak_commit, size_t* page_faults) mi_attr_noexcept { - mi_msecs_t elapsed = 0; - mi_msecs_t utime = 0; - mi_msecs_t stime = 0; - size_t current_rss0 = 0; - size_t peak_rss0 = 0; - size_t current_commit0 = 0; - size_t peak_commit0 = 0; - size_t page_faults0 = 0; - mi_stat_process_info(&elapsed,&utime, &stime, ¤t_rss0, &peak_rss0, ¤t_commit0, &peak_commit0, &page_faults0); - if (elapsed_msecs!=NULL) *elapsed_msecs = (elapsed < 0 ? 0 : (elapsed < (mi_msecs_t)PTRDIFF_MAX ? (size_t)elapsed : PTRDIFF_MAX)); - if (user_msecs!=NULL) *user_msecs = (utime < 0 ? 0 : (utime < (mi_msecs_t)PTRDIFF_MAX ? (size_t)utime : PTRDIFF_MAX)); - if (system_msecs!=NULL) *system_msecs = (stime < 0 ? 0 : (stime < (mi_msecs_t)PTRDIFF_MAX ? (size_t)stime : PTRDIFF_MAX)); - if (current_rss!=NULL) *current_rss = current_rss0; - if (peak_rss!=NULL) *peak_rss = peak_rss0; - if (current_commit!=NULL) *current_commit = current_commit0; - if (peak_commit!=NULL) *peak_commit = peak_commit0; - if (page_faults!=NULL) *page_faults = page_faults0; + mi_process_info_t pinfo; + _mi_memzero_var(pinfo); + pinfo.elapsed = _mi_clock_end(mi_process_start); + pinfo.current_commit = (size_t)(mi_atomic_loadi64_relaxed((_Atomic(int64_t)*)&_mi_stats_main.committed.current)); + pinfo.peak_commit = (size_t)(mi_atomic_loadi64_relaxed((_Atomic(int64_t)*)&_mi_stats_main.committed.peak)); + pinfo.current_rss = pinfo.current_commit; + pinfo.peak_rss = pinfo.peak_commit; + pinfo.utime = 0; + pinfo.stime = 0; + pinfo.page_faults = 0; + + _mi_prim_process_info(&pinfo); + + if (elapsed_msecs!=NULL) *elapsed_msecs = (pinfo.elapsed < 0 ? 0 : (pinfo.elapsed < (mi_msecs_t)PTRDIFF_MAX ? (size_t)pinfo.elapsed : PTRDIFF_MAX)); + if (user_msecs!=NULL) *user_msecs = (pinfo.utime < 0 ? 0 : (pinfo.utime < (mi_msecs_t)PTRDIFF_MAX ? (size_t)pinfo.utime : PTRDIFF_MAX)); + if (system_msecs!=NULL) *system_msecs = (pinfo.stime < 0 ? 0 : (pinfo.stime < (mi_msecs_t)PTRDIFF_MAX ? (size_t)pinfo.stime : PTRDIFF_MAX)); + if (current_rss!=NULL) *current_rss = pinfo.current_rss; + if (peak_rss!=NULL) *peak_rss = pinfo.peak_rss; + if (current_commit!=NULL) *current_commit = pinfo.current_commit; + if (peak_commit!=NULL) *peak_commit = pinfo.peak_commit; + if (page_faults!=NULL) *page_faults = pinfo.page_faults; } - |