diff options
| author | akhropov <[email protected]> | 2024-04-01 11:32:50 +0300 |
|---|---|---|
| committer | akhropov <[email protected]> | 2024-04-01 11:47:04 +0300 |
| commit | 57da078ce9724fd44056ac3e55e97322f6ad1573 (patch) | |
| tree | bed86377263565637f3226a5af1b11f443568ea0 /contrib/libs/lzma/liblzma/rangecoder/range_decoder.h | |
| parent | 3b1c284c897238b5f05323da591fde8b5730a396 (diff) | |
Rollback lzma to 5.4.6 due to CVE-2024-3094.
Revert "Update contrib/libs/lzma to 5.6.0"
This reverts commit de6c124a343d1b577cd3e4a152607415cfd3de0e, reversing
changes made to 859ed80318794bbc7fc49d32dcc97c0e2ff69212.
Revert "Update contrib/libs/lzma to 5.6.1"
This reverts commit 0a981b204173e2ede75381ec3e0bcc40c2770a74, reversing
changes made to 99eb8e73b7afa32f74ce59d38cd695889726568c.
20a97e2bc1bd36939e15e9bb00878453dfd85dfb
Diffstat (limited to 'contrib/libs/lzma/liblzma/rangecoder/range_decoder.h')
| -rw-r--r-- | contrib/libs/lzma/liblzma/rangecoder/range_decoder.h | 838 |
1 files changed, 29 insertions, 809 deletions
diff --git a/contrib/libs/lzma/liblzma/rangecoder/range_decoder.h b/contrib/libs/lzma/liblzma/rangecoder/range_decoder.h index b6422247f3c..e0b051fac2d 100644 --- a/contrib/libs/lzma/liblzma/rangecoder/range_decoder.h +++ b/contrib/libs/lzma/liblzma/rangecoder/range_decoder.h @@ -1,5 +1,3 @@ -// SPDX-License-Identifier: 0BSD - /////////////////////////////////////////////////////////////////////////////// // /// \file range_decoder.h @@ -8,6 +6,9 @@ // Authors: Igor Pavlov // Lasse Collin // +// This file has been put into the public domain. +// You can do whatever you want with this file. +// /////////////////////////////////////////////////////////////////////////////// #ifndef LZMA_RANGE_DECODER_H @@ -16,54 +17,6 @@ #include "range_common.h" -// Choose the range decoder variants to use using a bitmask. -// If no bits are set, only the basic version is used. -// If more than one version is selected for the same feature, -// the last one on the list below is used. -// -// Bitwise-or of the following enable branchless C versions: -// 0x01 normal bittrees -// 0x02 fixed-sized reverse bittrees -// 0x04 variable-sized reverse bittrees (not faster) -// 0x08 matched literal (not faster) -// -// GCC & Clang compatible x86-64 inline assembly: -// 0x010 normal bittrees -// 0x020 fixed-sized reverse bittrees -// 0x040 variable-sized reverse bittrees -// 0x080 matched literal -// 0x100 direct bits -// -// The default can be overridden at build time by defining -// LZMA_RANGE_DECODER_CONFIG to the desired mask. -// -// 2024-02-22: Feedback from benchmarks: -// - Brancless C (0x003) can be better than basic on x86-64 but often it's -// slightly worse on other archs. Since asm is much better on x86-64, -// branchless C is not used at all. -// - With x86-64 asm, there are slight differences between GCC and Clang -// and different processors. Overall 0x1F0 seems to be the best choice. -#ifndef LZMA_RANGE_DECODER_CONFIG -# if defined(__x86_64__) && !defined(__ILP32__) \ - && (defined(__GNUC__) || defined(__clang__)) -# define LZMA_RANGE_DECODER_CONFIG 0x1F0 -# else -# define LZMA_RANGE_DECODER_CONFIG 0 -# endif -#endif - - -// Negative RC_BIT_MODEL_TOTAL but the lowest RC_MOVE_BITS are flipped. -// This is useful for updating probability variables in branchless decoding: -// -// uint32_t decoded_bit = ...; -// probability tmp = RC_BIT_MODEL_OFFSET; -// tmp &= decoded_bit - 1; -// prob -= (prob + tmp) >> RC_MOVE_BITS; -#define RC_BIT_MODEL_OFFSET \ - ((UINT32_C(1) << RC_MOVE_BITS) - 1 - RC_BIT_MODEL_TOTAL) - - typedef struct { uint32_t range; uint32_t code; @@ -97,28 +50,18 @@ rc_read_init(lzma_range_decoder *rc, const uint8_t *restrict in, /// Makes local copies of range decoder and *in_pos variables. Doing this /// improves speed significantly. The range decoder macros expect also -/// variables 'in' and 'in_size' to be defined. -#define rc_to_local(range_decoder, in_pos, fast_mode_in_required) \ +/// variables `in' and `in_size' to be defined. +#define rc_to_local(range_decoder, in_pos) \ lzma_range_decoder rc = range_decoder; \ - const uint8_t *rc_in_ptr = in + (in_pos); \ - const uint8_t *rc_in_end = in + in_size; \ - const uint8_t *rc_in_fast_end \ - = (rc_in_end - rc_in_ptr) <= (fast_mode_in_required) \ - ? rc_in_ptr \ - : rc_in_end - (fast_mode_in_required); \ - (void)rc_in_fast_end; /* Silence a warning with HAVE_SMALL. */ \ + size_t rc_in_pos = (in_pos); \ uint32_t rc_bound -/// Evaluates to true if there is enough input remaining to use fast mode. -#define rc_is_fast_allowed() (rc_in_ptr < rc_in_fast_end) - - /// Stores the local copes back to the range decoder structure. #define rc_from_local(range_decoder, in_pos) \ do { \ range_decoder = rc; \ - in_pos = (size_t)(rc_in_ptr - in); \ + in_pos = rc_in_pos; \ } while (0) @@ -138,30 +81,18 @@ do { \ ((range_decoder).code == 0) -// Read the next input byte if needed. -#define rc_normalize() \ -do { \ - if (rc.range < RC_TOP_VALUE) { \ - rc.range <<= RC_SHIFT_BITS; \ - rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \ - } \ -} while (0) - - -/// If more input is needed but there is +/// Read the next input byte if needed. If more input is needed but there is /// no more input available, "goto out" is used to jump out of the main -/// decoder loop. The "_safe" macros are used in the Resumable decoder -/// mode in order to save the sequence to continue decoding from that -/// point later. -#define rc_normalize_safe(seq) \ +/// decoder loop. +#define rc_normalize(seq) \ do { \ if (rc.range < RC_TOP_VALUE) { \ - if (rc_in_ptr == rc_in_end) { \ + if (unlikely(rc_in_pos == in_size)) { \ coder->sequence = seq; \ goto out; \ } \ rc.range <<= RC_SHIFT_BITS; \ - rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \ + rc.code = (rc.code << RC_SHIFT_BITS) | in[rc_in_pos++]; \ } \ } while (0) @@ -169,7 +100,7 @@ do { \ /// Start decoding a bit. This must be used together with rc_update_0() /// and rc_update_1(): /// -/// rc_if_0(prob) { +/// rc_if_0(prob, seq) { /// rc_update_0(prob); /// // Do something /// } else { @@ -177,28 +108,18 @@ do { \ /// // Do something else /// } /// -#define rc_if_0(prob) \ - rc_normalize(); \ - rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \ - if (rc.code < rc_bound) - - -#define rc_if_0_safe(prob, seq) \ - rc_normalize_safe(seq); \ +#define rc_if_0(prob, seq) \ + rc_normalize(seq); \ rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \ if (rc.code < rc_bound) /// Update the range decoder state and the used probability variable to /// match a decoded bit of 0. -/// -/// The x86-64 assembly uses the commented method but it seems that, -/// at least on x86-64, the first version is slightly faster as C code. #define rc_update_0(prob) \ do { \ rc.range = rc_bound; \ prob += (RC_BIT_MODEL_TOTAL - (prob)) >> RC_MOVE_BITS; \ - /* prob -= ((prob) + RC_BIT_MODEL_OFFSET) >> RC_MOVE_BITS; */ \ } while (0) @@ -216,21 +137,9 @@ do { \ /// This macro is used as the last step in bittree reverse decoders since /// those don't use "symbol" for anything else than indexing the probability /// arrays. -#define rc_bit_last(prob, action0, action1) \ -do { \ - rc_if_0(prob) { \ - rc_update_0(prob); \ - action0; \ - } else { \ - rc_update_1(prob); \ - action1; \ - } \ -} while (0) - - -#define rc_bit_last_safe(prob, action0, action1, seq) \ +#define rc_bit_last(prob, action0, action1, seq) \ do { \ - rc_if_0_safe(prob, seq) { \ + rc_if_0(prob, seq) { \ rc_update_0(prob); \ action0; \ } else { \ @@ -242,724 +151,35 @@ do { \ /// Decodes one bit, updates "symbol", and runs action0 or action1 depending /// on the decoded bit. -#define rc_bit(prob, action0, action1) \ +#define rc_bit(prob, action0, action1, seq) \ rc_bit_last(prob, \ symbol <<= 1; action0, \ - symbol = (symbol << 1) + 1; action1); - - -#define rc_bit_safe(prob, action0, action1, seq) \ - rc_bit_last_safe(prob, \ - symbol <<= 1; action0, \ symbol = (symbol << 1) + 1; action1, \ seq); -// Unroll fixed-sized bittree decoding. -// -// A compile-time constant in final_add can be used to get rid of the high bit -// from symbol that is used for the array indexing (1U << bittree_bits). -// final_add may also be used to add offset to the result (LZMA length -// decoder does that). -// -// The reason to have final_add here is that in the asm code the addition -// can be done for free: in x86-64 there is SBB instruction with -1 as -// the immediate value, and final_add is combined with that value. -#define rc_bittree_bit(prob) \ - rc_bit(prob, , ) - -#define rc_bittree3(probs, final_add) \ -do { \ - symbol = 1; \ - rc_bittree_bit(probs[symbol]); \ - rc_bittree_bit(probs[symbol]); \ - rc_bittree_bit(probs[symbol]); \ - symbol += (uint32_t)(final_add); \ -} while (0) -#define rc_bittree6(probs, final_add) \ -do { \ - symbol = 1; \ - rc_bittree_bit(probs[symbol]); \ - rc_bittree_bit(probs[symbol]); \ - rc_bittree_bit(probs[symbol]); \ - rc_bittree_bit(probs[symbol]); \ - rc_bittree_bit(probs[symbol]); \ - rc_bittree_bit(probs[symbol]); \ - symbol += (uint32_t)(final_add); \ -} while (0) - -#define rc_bittree8(probs, final_add) \ -do { \ - symbol = 1; \ - rc_bittree_bit(probs[symbol]); \ - rc_bittree_bit(probs[symbol]); \ - rc_bittree_bit(probs[symbol]); \ - rc_bittree_bit(probs[symbol]); \ - rc_bittree_bit(probs[symbol]); \ - rc_bittree_bit(probs[symbol]); \ - rc_bittree_bit(probs[symbol]); \ - rc_bittree_bit(probs[symbol]); \ - symbol += (uint32_t)(final_add); \ -} while (0) - - -// Fixed-sized reverse bittree -#define rc_bittree_rev4(probs) \ -do { \ - symbol = 0; \ - rc_bit_last(probs[symbol + 1], , symbol += 1); \ - rc_bit_last(probs[symbol + 2], , symbol += 2); \ - rc_bit_last(probs[symbol + 4], , symbol += 4); \ - rc_bit_last(probs[symbol + 8], , symbol += 8); \ -} while (0) - - -// Decode one bit from variable-sized reverse bittree. The loop is done -// in the code that uses this macro. This could be changed if the assembly -// version benefited from having the loop done in assembly but it didn't -// seem so in early 2024. -// -// Also, if the loop was done here, the loop counter would likely be local -// to the macro so that it wouldn't modify yet another input variable. -// If a _safe version of a macro with a loop was done then a modifiable -// input variable couldn't be avoided though. -#define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \ - rc_bit(probs[symbol], \ - , \ - dest += value_to_add_if_1); - - -// Matched literal -#define decode_with_match_bit \ - t_match_byte <<= 1; \ - t_match_bit = t_match_byte & t_offset; \ - t_subcoder_index = t_offset + t_match_bit + symbol; \ - rc_bit(probs[t_subcoder_index], \ - t_offset &= ~t_match_bit, \ - t_offset &= t_match_bit) - -#define rc_matched_literal(probs_base_var, match_byte) \ -do { \ - uint32_t t_match_byte = (match_byte); \ - uint32_t t_match_bit; \ - uint32_t t_subcoder_index; \ - uint32_t t_offset = 0x100; \ - symbol = 1; \ - decode_with_match_bit; \ - decode_with_match_bit; \ - decode_with_match_bit; \ - decode_with_match_bit; \ - decode_with_match_bit; \ - decode_with_match_bit; \ - decode_with_match_bit; \ - decode_with_match_bit; \ -} while (0) +/// Like rc_bit() but add "case seq:" as a prefix. This makes the unrolled +/// loops more readable because the code isn't littered with "case" +/// statements. On the other hand this also makes it less readable, since +/// spotting the places where the decoder loop may be restarted is less +/// obvious. +#define rc_bit_case(prob, action0, action1, seq) \ + case seq: rc_bit(prob, action0, action1, seq) /// Decode a bit without using a probability. -// -// NOTE: GCC 13 and Clang/LLVM 16 can, at least on x86-64, optimize the bound -// calculation to use an arithmetic right shift so there's no need to provide -// the alternative code which, according to C99/C11/C23 6.3.1.3-p3 isn't -// perfectly portable: rc_bound = (uint32_t)((int32_t)rc.code >> 31); -#define rc_direct(dest, count_var) \ +#define rc_direct(dest, seq) \ do { \ - dest = (dest << 1) + 1; \ - rc_normalize(); \ - rc.range >>= 1; \ - rc.code -= rc.range; \ - rc_bound = UINT32_C(0) - (rc.code >> 31); \ - dest += rc_bound; \ - rc.code += rc.range & rc_bound; \ -} while (--count_var > 0) - - - -#define rc_direct_safe(dest, count_var, seq) \ -do { \ - rc_normalize_safe(seq); \ + rc_normalize(seq); \ rc.range >>= 1; \ rc.code -= rc.range; \ rc_bound = UINT32_C(0) - (rc.code >> 31); \ rc.code += rc.range & rc_bound; \ dest = (dest << 1) + (rc_bound + 1); \ -} while (--count_var > 0) - - -////////////////// -// Branchless C // -////////////////// - -/// Decode a bit using a branchless method. This reduces the number of -/// mispredicted branches and thus can improve speed. -#define rc_c_bit(prob, action_bit, action_neg) \ -do { \ - probability *p = &(prob); \ - rc_normalize(); \ - rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * *p; \ - uint32_t rc_mask = rc.code >= rc_bound; /* rc_mask = decoded bit */ \ - action_bit; /* action when rc_mask is 0 or 1 */ \ - /* rc_mask becomes 0 if bit is 0 and 0xFFFFFFFF if bit is 1: */ \ - rc_mask = 0U - rc_mask; \ - rc.range &= rc_mask; /* If bit 0: set rc.range = 0 */ \ - rc_bound ^= rc_mask; \ - rc_bound -= rc_mask; /* If bit 1: rc_bound = 0U - rc_bound */ \ - rc.range += rc_bound; \ - rc_bound &= rc_mask; \ - rc.code += rc_bound; \ - action_neg; /* action when rc_mask is 0 or 0xFFFFFFFF */ \ - rc_mask = ~rc_mask; /* If bit 0: all bits are set in rc_mask */ \ - rc_mask &= RC_BIT_MODEL_OFFSET; \ - *p -= (*p + rc_mask) >> RC_MOVE_BITS; \ } while (0) -// Testing on x86-64 give an impression that only the normal bittrees and -// the fixed-sized reverse bittrees are worth the branchless C code. -// It should be tested on other archs for which there isn't assembly code -// in this file. - -// Using addition in "(symbol << 1) + rc_mask" allows use of x86 LEA -// or RISC-V SH1ADD instructions. Compilers might infer it from -// "(symbol << 1) | rc_mask" too if they see that mask is 0 or 1 but -// the use of addition doesn't require such analysis from compilers. -#if LZMA_RANGE_DECODER_CONFIG & 0x01 -#undef rc_bittree_bit -#define rc_bittree_bit(prob) \ - rc_c_bit(prob, \ - symbol = (symbol << 1) + rc_mask, \ - ) -#endif // LZMA_RANGE_DECODER_CONFIG & 0x01 - -#if LZMA_RANGE_DECODER_CONFIG & 0x02 -#undef rc_bittree_rev4 -#define rc_bittree_rev4(probs) \ -do { \ - symbol = 0; \ - rc_c_bit(probs[symbol + 1], symbol += rc_mask, ); \ - rc_c_bit(probs[symbol + 2], symbol += rc_mask << 1, ); \ - rc_c_bit(probs[symbol + 4], symbol += rc_mask << 2, ); \ - rc_c_bit(probs[symbol + 8], symbol += rc_mask << 3, ); \ -} while (0) -#endif // LZMA_RANGE_DECODER_CONFIG & 0x02 - -#if LZMA_RANGE_DECODER_CONFIG & 0x04 -#undef rc_bit_add_if_1 -#define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \ - rc_c_bit(probs[symbol], \ - symbol = (symbol << 1) + rc_mask, \ - dest += (value_to_add_if_1) & rc_mask) -#endif // LZMA_RANGE_DECODER_CONFIG & 0x04 - - -#if LZMA_RANGE_DECODER_CONFIG & 0x08 -#undef decode_with_match_bit -#define decode_with_match_bit \ - t_match_byte <<= 1; \ - t_match_bit = t_match_byte & t_offset; \ - t_subcoder_index = t_offset + t_match_bit + symbol; \ - rc_c_bit(probs[t_subcoder_index], \ - symbol = (symbol << 1) + rc_mask, \ - t_offset &= ~t_match_bit ^ rc_mask) -#endif // LZMA_RANGE_DECODER_CONFIG & 0x08 - - -//////////// -// x86-64 // -//////////// - -#if LZMA_RANGE_DECODER_CONFIG & 0x1F0 - -// rc_asm_y and rc_asm_n are used as arguments to macros to control which -// strings to include or omit. -#define rc_asm_y(str) str -#define rc_asm_n(str) - -// There are a few possible variations for normalization. -// This is the smallest variant which is also used by LZMA SDK. -// -// - This has partial register write (the MOV from (%[in_ptr])). -// -// - INC saves one byte in code size over ADD. False dependency on -// partial flags from INC shouldn't become a problem on any processor -// because the instructions after normalization don't read the flags -// until SUB which sets all flags. -// -#define rc_asm_normalize \ - "cmp %[top_value], %[range]\n\t" \ - "jae 1f\n\t" \ - "shl %[shift_bits], %[code]\n\t" \ - "mov (%[in_ptr]), %b[code]\n\t" \ - "shl %[shift_bits], %[range]\n\t" \ - "inc %[in_ptr]\n" \ - "1:\n" - -// rc_asm_calc(prob) is roughly equivalent to the C version of rc_if_0(prob)... -// -// rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); -// if (rc.code < rc_bound) -// -// ...but the bound is stored in "range": -// -// t0 = range; -// range = (range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); -// t0 -= range; -// t1 = code; -// code -= range; -// -// The carry flag (CF) from the last subtraction holds the negation of -// the decoded bit (if CF==0 then the decoded bit is 1). -// The values in t0 and t1 are needed for rc_update_0(prob) and -// rc_update_1(prob). If the bit is 0, rc_update_0(prob)... -// -// rc.range = rc_bound; -// -// ...has already been done but the "code -= range" has to be reverted using -// the old value stored in t1. (Also, prob needs to be updated.) -// -// If the bit is 1, rc_update_1(prob)... -// -// rc.range -= rc_bound; -// rc.code -= rc_bound; -// -// ...is already done for "code" but the value for "range" needs to be taken -// from t0. (Also, prob needs to be updated here as well.) -// -// The assignments from t0 and t1 can be done in a branchless manner with CMOV -// after the instructions from this macro. The CF from SUB tells which moves -// are needed. -#define rc_asm_calc(prob) \ - "mov %[range], %[t0]\n\t" \ - "shr %[bit_model_total_bits], %[range]\n\t" \ - "imul %[" prob "], %[range]\n\t" \ - "sub %[range], %[t0]\n\t" \ - "mov %[code], %[t1]\n\t" \ - "sub %[range], %[code]\n\t" - -// Also, prob needs to be updated: The update math depends on the decoded bit. -// It can be expressed in a few slightly different ways but this is fairly -// convenient here: -// -// prob -= (prob + (bit ? 0 : RC_BIT_MODEL_OFFSET)) >> RC_MOVE_BITS; -// -// To do it in branchless way when the negation of the decoded bit is in CF, -// both "prob" and "prob + RC_BIT_MODEL_OFFSET" are needed. Then the desired -// value can be picked with CMOV. The addition can be done using LEA without -// affecting CF. -// -// (This prob update method is a tiny bit different from LZMA SDK 23.01. -// In the LZMA SDK a single register is reserved solely for a constant to -// be used with CMOV when updating prob. That is fine since there are enough -// free registers to do so. The method used here uses one fewer register, -// which is valuable with inline assembly.) -// -// * * * -// -// In bittree decoding, each (unrolled) loop iteration decodes one bit -// and needs one prob variable. To make it faster, the prob variable of -// the iteration N+1 is loaded during iteration N. There are two possible -// prob variables to choose from for N+1. Both are loaded from memory and -// the correct one is chosen with CMOV using the same CF as is used for -// other things described above. -// -// This preloading/prefetching requires an extra register. To avoid -// useless moves from "preloaded prob register" to "current prob register", -// the macros swap between the two registers for odd and even iterations. -// -// * * * -// -// Finally, the decoded bit has to be stored in "symbol". Since the negation -// of the bit is in CF, this can be done with SBB: symbol -= CF - 1. That is, -// if the decoded bit is 0 (CF==1) the operation is a no-op "symbol -= 0" -// and when bit is 1 (CF==0) the operation is "symbol -= 0 - 1" which is -// the same as "symbol += 1". -// -// The instructions for all things are intertwined for a few reasons: -// - freeing temporary registers for new use -// - not modifying CF too early -// - instruction scheduling -// -// The first and last iterations can cheat a little. For example, -// on the first iteration "symbol" is known to start from 1 so it -// doesn't need to be read; it can even be immediately initialized -// to 2 to prepare for the second iteration of the loop. -// -// * * * -// -// a = number of the current prob variable (0 or 1) -// b = number of the next prob variable (1 or 0) -// *_only = rc_asm_y or _n to include or exclude code marked with them -#define rc_asm_bittree(a, b, first_only, middle_only, last_only) \ - first_only( \ - "movzw 2(%[probs_base]), %[prob" #a "]\n\t" \ - "mov $2, %[symbol]\n\t" \ - "movzw 4(%[probs_base]), %[prob" #b "]\n\t" \ - ) \ - middle_only( \ - /* Note the scaling of 4 instead of 2: */ \ - "movzw (%[probs_base], %q[symbol], 4), %[prob" #b "]\n\t" \ - ) \ - last_only( \ - "add %[symbol], %[symbol]\n\t" \ - ) \ - \ - rc_asm_normalize \ - rc_asm_calc("prob" #a) \ - \ - "cmovae %[t0], %[range]\n\t" \ - \ - first_only( \ - "movzw 6(%[probs_base]), %[t0]\n\t" \ - "cmovae %[t0], %[prob" #b "]\n\t" \ - ) \ - middle_only( \ - "movzw 2(%[probs_base], %q[symbol], 4), %[t0]\n\t" \ - "lea (%q[symbol], %q[symbol]), %[symbol]\n\t" \ - "cmovae %[t0], %[prob" #b "]\n\t" \ - ) \ - \ - "lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \ - "cmovb %[t1], %[code]\n\t" \ - "mov %[symbol], %[t1]\n\t" \ - "cmovae %[prob" #a "], %[t0]\n\t" \ - \ - first_only( \ - "sbb $-1, %[symbol]\n\t" \ - ) \ - middle_only( \ - "sbb $-1, %[symbol]\n\t" \ - ) \ - last_only( \ - "sbb %[last_sbb], %[symbol]\n\t" \ - ) \ - \ - "shr %[move_bits], %[t0]\n\t" \ - "sub %[t0], %[prob" #a "]\n\t" \ - /* Scaling of 1 instead of 2 because symbol <<= 1. */ \ - "mov %w[prob" #a "], (%[probs_base], %q[t1], 1)\n\t" - -// NOTE: The order of variables in __asm__ can affect speed and code size. -#define rc_asm_bittree_n(probs_base_var, final_add, asm_str) \ -do { \ - uint32_t t0; \ - uint32_t t1; \ - uint32_t t_prob0; \ - uint32_t t_prob1; \ - \ - __asm__( \ - asm_str \ - : \ - [range] "+&r"(rc.range), \ - [code] "+&r"(rc.code), \ - [t0] "=&r"(t0), \ - [t1] "=&r"(t1), \ - [prob0] "=&r"(t_prob0), \ - [prob1] "=&r"(t_prob1), \ - [symbol] "=&r"(symbol), \ - [in_ptr] "+&r"(rc_in_ptr) \ - : \ - [probs_base] "r"(probs_base_var), \ - [last_sbb] "n"(-1 - (final_add)), \ - [top_value] "n"(RC_TOP_VALUE), \ - [shift_bits] "n"(RC_SHIFT_BITS), \ - [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ - [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \ - [move_bits] "n"(RC_MOVE_BITS) \ - : \ - "cc", "memory"); \ -} while (0) - - -#if LZMA_RANGE_DECODER_CONFIG & 0x010 -#undef rc_bittree3 -#define rc_bittree3(probs_base_var, final_add) \ - rc_asm_bittree_n(probs_base_var, final_add, \ - rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ - rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ - rc_asm_bittree(0, 1, rc_asm_n, rc_asm_n, rc_asm_y) \ - ) - -#undef rc_bittree6 -#define rc_bittree6(probs_base_var, final_add) \ - rc_asm_bittree_n(probs_base_var, final_add, \ - rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ - rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ - rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ - rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ - rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ - rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \ - ) - -#undef rc_bittree8 -#define rc_bittree8(probs_base_var, final_add) \ - rc_asm_bittree_n(probs_base_var, final_add, \ - rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ - rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ - rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ - rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ - rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ - rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ - rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ - rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \ - ) -#endif // LZMA_RANGE_DECODER_CONFIG & 0x010 - - -// Fixed-sized reverse bittree -// -// This uses the indexing that constructs the final value in symbol directly. -// add = 1, 2, 4, 8 -// dcur = -, 4, 8, 16 -// dnext0 = 4, 8, 16, - -// dnext0 = 6, 12, 24, - -#define rc_asm_bittree_rev(a, b, add, dcur, dnext0, dnext1, \ - first_only, middle_only, last_only) \ - first_only( \ - "movzw 2(%[probs_base]), %[prob" #a "]\n\t" \ - "xor %[symbol], %[symbol]\n\t" \ - "movzw 4(%[probs_base]), %[prob" #b "]\n\t" \ - ) \ - middle_only( \ - "movzw " #dnext0 "(%[probs_base], %q[symbol], 2), " \ - "%[prob" #b "]\n\t" \ - ) \ - \ - rc_asm_normalize \ - rc_asm_calc("prob" #a) \ - \ - "cmovae %[t0], %[range]\n\t" \ - \ - first_only( \ - "movzw 6(%[probs_base]), %[t0]\n\t" \ - "cmovae %[t0], %[prob" #b "]\n\t" \ - ) \ - middle_only( \ - "movzw " #dnext1 "(%[probs_base], %q[symbol], 2), %[t0]\n\t" \ - "cmovae %[t0], %[prob" #b "]\n\t" \ - ) \ - \ - "lea " #add "(%q[symbol]), %[t0]\n\t" \ - "cmovb %[t1], %[code]\n\t" \ - middle_only( \ - "mov %[symbol], %[t1]\n\t" \ - ) \ - last_only( \ - "mov %[symbol], %[t1]\n\t" \ - ) \ - "cmovae %[t0], %[symbol]\n\t" \ - "lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \ - "cmovae %[prob" #a "], %[t0]\n\t" \ - \ - "shr %[move_bits], %[t0]\n\t" \ - "sub %[t0], %[prob" #a "]\n\t" \ - first_only( \ - "mov %w[prob" #a "], 2(%[probs_base])\n\t" \ - ) \ - middle_only( \ - "mov %w[prob" #a "], " \ - #dcur "(%[probs_base], %q[t1], 2)\n\t" \ - ) \ - last_only( \ - "mov %w[prob" #a "], " \ - #dcur "(%[probs_base], %q[t1], 2)\n\t" \ - ) - -#if LZMA_RANGE_DECODER_CONFIG & 0x020 -#undef rc_bittree_rev4 -#define rc_bittree_rev4(probs_base_var) \ -rc_asm_bittree_n(probs_base_var, 4, \ - rc_asm_bittree_rev(0, 1, 1, -, 4, 6, rc_asm_y, rc_asm_n, rc_asm_n) \ - rc_asm_bittree_rev(1, 0, 2, 4, 8, 12, rc_asm_n, rc_asm_y, rc_asm_n) \ - rc_asm_bittree_rev(0, 1, 4, 8, 16, 24, rc_asm_n, rc_asm_y, rc_asm_n) \ - rc_asm_bittree_rev(1, 0, 8, 16, -, -, rc_asm_n, rc_asm_n, rc_asm_y) \ -) -#endif // LZMA_RANGE_DECODER_CONFIG & 0x020 - - -#if LZMA_RANGE_DECODER_CONFIG & 0x040 -#undef rc_bit_add_if_1 -#define rc_bit_add_if_1(probs_base_var, dest_var, value_to_add_if_1) \ -do { \ - uint32_t t0; \ - uint32_t t1; \ - uint32_t t2 = (value_to_add_if_1); \ - uint32_t t_prob; \ - uint32_t t_index; \ - \ - __asm__( \ - "movzw (%[probs_base], %q[symbol], 2), %[prob]\n\t" \ - "mov %[symbol], %[index]\n\t" \ - \ - "add %[dest], %[t2]\n\t" \ - "add %[symbol], %[symbol]\n\t" \ - \ - rc_asm_normalize \ - rc_asm_calc("prob") \ - \ - "cmovae %[t0], %[range]\n\t" \ - "lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \ - "cmovb %[t1], %[code]\n\t" \ - "cmovae %[prob], %[t0]\n\t" \ - \ - "cmovae %[t2], %[dest]\n\t" \ - "sbb $-1, %[symbol]\n\t" \ - \ - "sar %[move_bits], %[t0]\n\t" \ - "sub %[t0], %[prob]\n\t" \ - "mov %w[prob], (%[probs_base], %q[index], 2)" \ - : \ - [range] "+&r"(rc.range), \ - [code] "+&r"(rc.code), \ - [t0] "=&r"(t0), \ - [t1] "=&r"(t1), \ - [prob] "=&r"(t_prob), \ - [index] "=&r"(t_index), \ - [symbol] "+&r"(symbol), \ - [t2] "+&r"(t2), \ - [dest] "+&r"(dest_var), \ - [in_ptr] "+&r"(rc_in_ptr) \ - : \ - [probs_base] "r"(probs_base_var), \ - [top_value] "n"(RC_TOP_VALUE), \ - [shift_bits] "n"(RC_SHIFT_BITS), \ - [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ - [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \ - [move_bits] "n"(RC_MOVE_BITS) \ - : \ - "cc", "memory"); \ -} while (0) -#endif // LZMA_RANGE_DECODER_CONFIG & 0x040 - - -// Literal decoding uses a normal 8-bit bittree but literal with match byte -// is more complex in picking the probability variable from the correct -// subtree. This doesn't use preloading/prefetching of the next prob because -// there are four choices instead of two. -// -// FIXME? The first iteration starts with symbol = 1 so it could be optimized -// by a tiny amount. -#define rc_asm_matched_literal(nonlast_only) \ - "add %[offset], %[symbol]\n\t" \ - "and %[offset], %[match_bit]\n\t" \ - "add %[match_bit], %[symbol]\n\t" \ - \ - "movzw (%[probs_base], %q[symbol], 2), %[prob]\n\t" \ - \ - "add %[symbol], %[symbol]\n\t" \ - \ - nonlast_only( \ - "xor %[match_bit], %[offset]\n\t" \ - "add %[match_byte], %[match_byte]\n\t" \ - ) \ - \ - rc_asm_normalize \ - rc_asm_calc("prob") \ - \ - "cmovae %[t0], %[range]\n\t" \ - "lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \ - "cmovb %[t1], %[code]\n\t" \ - "mov %[symbol], %[t1]\n\t" \ - "cmovae %[prob], %[t0]\n\t" \ - \ - nonlast_only( \ - "cmovae %[match_bit], %[offset]\n\t" \ - "mov %[match_byte], %[match_bit]\n\t" \ - ) \ - \ - "sbb $-1, %[symbol]\n\t" \ - \ - "shr %[move_bits], %[t0]\n\t" \ - /* Undo symbol += match_bit + offset: */ \ - "and $0x1FF, %[symbol]\n\t" \ - "sub %[t0], %[prob]\n\t" \ - \ - /* Scaling of 1 instead of 2 because symbol <<= 1. */ \ - "mov %w[prob], (%[probs_base], %q[t1], 1)\n\t" - - -#if LZMA_RANGE_DECODER_CONFIG & 0x080 -#undef rc_matched_literal -#define rc_matched_literal(probs_base_var, match_byte_value) \ -do { \ - uint32_t t0; \ - uint32_t t1; \ - uint32_t t_prob; \ - uint32_t t_match_byte = (uint32_t)(match_byte_value) << 1; \ - uint32_t t_match_bit = t_match_byte; \ - uint32_t t_offset = 0x100; \ - symbol = 1; \ - \ - __asm__( \ - rc_asm_matched_literal(rc_asm_y) \ - rc_asm_matched_literal(rc_asm_y) \ - rc_asm_matched_literal(rc_asm_y) \ - rc_asm_matched_literal(rc_asm_y) \ - rc_asm_matched_literal(rc_asm_y) \ - rc_asm_matched_literal(rc_asm_y) \ - rc_asm_matched_literal(rc_asm_y) \ - rc_asm_matched_literal(rc_asm_n) \ - : \ - [range] "+&r"(rc.range), \ - [code] "+&r"(rc.code), \ - [t0] "=&r"(t0), \ - [t1] "=&r"(t1), \ - [prob] "=&r"(t_prob), \ - [match_bit] "+&r"(t_match_bit), \ - [symbol] "+&r"(symbol), \ - [match_byte] "+&r"(t_match_byte), \ - [offset] "+&r"(t_offset), \ - [in_ptr] "+&r"(rc_in_ptr) \ - : \ - [probs_base] "r"(probs_base_var), \ - [top_value] "n"(RC_TOP_VALUE), \ - [shift_bits] "n"(RC_SHIFT_BITS), \ - [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ - [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \ - [move_bits] "n"(RC_MOVE_BITS) \ - : \ - "cc", "memory"); \ -} while (0) -#endif // LZMA_RANGE_DECODER_CONFIG & 0x080 - - -// Doing the loop in asm instead of C seems to help a little. -#if LZMA_RANGE_DECODER_CONFIG & 0x100 -#undef rc_direct -#define rc_direct(dest_var, count_var) \ -do { \ - uint32_t t0; \ - uint32_t t1; \ - \ - __asm__( \ - "2:\n\t" \ - "add %[dest], %[dest]\n\t" \ - "lea 1(%q[dest]), %[t1]\n\t" \ - \ - rc_asm_normalize \ - \ - "shr $1, %[range]\n\t" \ - "mov %[code], %[t0]\n\t" \ - "sub %[range], %[code]\n\t" \ - "cmovns %[t1], %[dest]\n\t" \ - "cmovs %[t0], %[code]\n\t" \ - "dec %[count]\n\t" \ - "jnz 2b\n\t" \ - : \ - [range] "+&r"(rc.range), \ - [code] "+&r"(rc.code), \ - [t0] "=&r"(t0), \ - [t1] "=&r"(t1), \ - [dest] "+&r"(dest_var), \ - [count] "+&r"(count_var), \ - [in_ptr] "+&r"(rc_in_ptr) \ - : \ - [top_value] "n"(RC_TOP_VALUE), \ - [shift_bits] "n"(RC_SHIFT_BITS) \ - : \ - "cc", "memory"); \ -} while (0) -#endif // LZMA_RANGE_DECODER_CONFIG & 0x100 - -#endif // x86_64 +// NOTE: No macros are provided for bittree decoding. It seems to be simpler +// to just write them open in the code. #endif |
