diff options
| author | robot-contrib <[email protected]> | 2024-03-21 01:54:21 +0300 | 
|---|---|---|
| committer | robot-contrib <[email protected]> | 2024-03-21 02:05:24 +0300 | 
| commit | 1f10341ce6cb9a6be3d28925d43bd3360c256d27 (patch) | |
| tree | 1285bccd1140f69412cbf72f969da0d9af7fd9a5 /contrib/libs/lzma/liblzma/rangecoder/range_decoder.h | |
| parent | da5121777959fc5aab4a13d1cd50e5e6b9aa8972 (diff) | |
Update contrib/libs/lzma to 5.6.0
de6c124a343d1b577cd3e4a152607415cfd3de0e
Diffstat (limited to 'contrib/libs/lzma/liblzma/rangecoder/range_decoder.h')
| -rw-r--r-- | contrib/libs/lzma/liblzma/rangecoder/range_decoder.h | 838 | 
1 files changed, 809 insertions, 29 deletions
diff --git a/contrib/libs/lzma/liblzma/rangecoder/range_decoder.h b/contrib/libs/lzma/liblzma/rangecoder/range_decoder.h index e0b051fac2d..b6422247f3c 100644 --- a/contrib/libs/lzma/liblzma/rangecoder/range_decoder.h +++ b/contrib/libs/lzma/liblzma/rangecoder/range_decoder.h @@ -1,3 +1,5 @@ +// SPDX-License-Identifier: 0BSD +  ///////////////////////////////////////////////////////////////////////////////  //  /// \file       range_decoder.h @@ -6,9 +8,6 @@  //  Authors:    Igor Pavlov  //              Lasse Collin  // -//  This file has been put into the public domain. -//  You can do whatever you want with this file. -//  ///////////////////////////////////////////////////////////////////////////////  #ifndef LZMA_RANGE_DECODER_H @@ -17,6 +16,54 @@  #include "range_common.h" +// Choose the range decoder variants to use using a bitmask. +// If no bits are set, only the basic version is used. +// If more than one version is selected for the same feature, +// the last one on the list below is used. +// +// Bitwise-or of the following enable branchless C versions: +//   0x01   normal bittrees +//   0x02   fixed-sized reverse bittrees +//   0x04   variable-sized reverse bittrees (not faster) +//   0x08   matched literal (not faster) +// +// GCC & Clang compatible x86-64 inline assembly: +//   0x010   normal bittrees +//   0x020   fixed-sized reverse bittrees +//   0x040   variable-sized reverse bittrees +//   0x080   matched literal +//   0x100   direct bits +// +// The default can be overridden at build time by defining +// LZMA_RANGE_DECODER_CONFIG to the desired mask. +// +// 2024-02-22: Feedback from benchmarks: +//   - Brancless C (0x003) can be better than basic on x86-64 but often it's +//     slightly worse on other archs. Since asm is much better on x86-64, +//     branchless C is not used at all. +//   - With x86-64 asm, there are slight differences between GCC and Clang +//     and different processors. Overall 0x1F0 seems to be the best choice. +#ifndef LZMA_RANGE_DECODER_CONFIG +#	if defined(__x86_64__) && !defined(__ILP32__) \ +			&& (defined(__GNUC__) || defined(__clang__)) +#		define LZMA_RANGE_DECODER_CONFIG 0x1F0 +#	else +#		define LZMA_RANGE_DECODER_CONFIG 0 +#	endif +#endif + + +// Negative RC_BIT_MODEL_TOTAL but the lowest RC_MOVE_BITS are flipped. +// This is useful for updating probability variables in branchless decoding: +// +//     uint32_t decoded_bit = ...; +//     probability tmp = RC_BIT_MODEL_OFFSET; +//     tmp &= decoded_bit - 1; +//     prob -= (prob + tmp) >> RC_MOVE_BITS; +#define RC_BIT_MODEL_OFFSET \ +	((UINT32_C(1) << RC_MOVE_BITS) - 1 - RC_BIT_MODEL_TOTAL) + +  typedef struct {  	uint32_t range;  	uint32_t code; @@ -50,18 +97,28 @@ rc_read_init(lzma_range_decoder *rc, const uint8_t *restrict in,  /// Makes local copies of range decoder and *in_pos variables. Doing this  /// improves speed significantly. The range decoder macros expect also -/// variables `in' and `in_size' to be defined. -#define rc_to_local(range_decoder, in_pos) \ +/// variables 'in' and 'in_size' to be defined. +#define rc_to_local(range_decoder, in_pos, fast_mode_in_required) \  	lzma_range_decoder rc = range_decoder; \ -	size_t rc_in_pos = (in_pos); \ +	const uint8_t *rc_in_ptr = in + (in_pos); \ +	const uint8_t *rc_in_end = in + in_size; \ +	const uint8_t *rc_in_fast_end \ +			= (rc_in_end - rc_in_ptr) <= (fast_mode_in_required) \ +			? rc_in_ptr \ +			: rc_in_end - (fast_mode_in_required); \ +	(void)rc_in_fast_end; /* Silence a warning with HAVE_SMALL. */ \  	uint32_t rc_bound +/// Evaluates to true if there is enough input remaining to use fast mode. +#define rc_is_fast_allowed() (rc_in_ptr < rc_in_fast_end) + +  /// Stores the local copes back to the range decoder structure.  #define rc_from_local(range_decoder, in_pos) \  do { \  	range_decoder = rc; \ -	in_pos = rc_in_pos; \ +	in_pos = (size_t)(rc_in_ptr - in); \  } while (0) @@ -81,18 +138,30 @@ do { \  	((range_decoder).code == 0) -/// Read the next input byte if needed. If more input is needed but there is +// Read the next input byte if needed. +#define rc_normalize() \ +do { \ +	if (rc.range < RC_TOP_VALUE) { \ +		rc.range <<= RC_SHIFT_BITS; \ +		rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \ +	} \ +} while (0) + + +/// If more input is needed but there is  /// no more input available, "goto out" is used to jump out of the main -/// decoder loop. -#define rc_normalize(seq) \ +/// decoder loop. The "_safe" macros are used in the Resumable decoder +/// mode in order to save the sequence to continue decoding from that +/// point later. +#define rc_normalize_safe(seq) \  do { \  	if (rc.range < RC_TOP_VALUE) { \ -		if (unlikely(rc_in_pos == in_size)) { \ +		if (rc_in_ptr == rc_in_end) { \  			coder->sequence = seq; \  			goto out; \  		} \  		rc.range <<= RC_SHIFT_BITS; \ -		rc.code = (rc.code << RC_SHIFT_BITS) | in[rc_in_pos++]; \ +		rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \  	} \  } while (0) @@ -100,7 +169,7 @@ do { \  /// Start decoding a bit. This must be used together with rc_update_0()  /// and rc_update_1():  /// -///     rc_if_0(prob, seq) { +///     rc_if_0(prob) {  ///         rc_update_0(prob);  ///         // Do something  ///     } else { @@ -108,18 +177,28 @@ do { \  ///         // Do something else  ///     }  /// -#define rc_if_0(prob, seq) \ -	rc_normalize(seq); \ +#define rc_if_0(prob) \ +	rc_normalize(); \ +	rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \ +	if (rc.code < rc_bound) + + +#define rc_if_0_safe(prob, seq) \ +	rc_normalize_safe(seq); \  	rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \  	if (rc.code < rc_bound)  /// Update the range decoder state and the used probability variable to  /// match a decoded bit of 0. +/// +/// The x86-64 assembly uses the commented method but it seems that, +/// at least on x86-64, the first version is slightly faster as C code.  #define rc_update_0(prob) \  do { \  	rc.range = rc_bound; \  	prob += (RC_BIT_MODEL_TOTAL - (prob)) >> RC_MOVE_BITS; \ +	/* prob -= ((prob) + RC_BIT_MODEL_OFFSET) >> RC_MOVE_BITS; */ \  } while (0) @@ -137,9 +216,21 @@ do { \  /// This macro is used as the last step in bittree reverse decoders since  /// those don't use "symbol" for anything else than indexing the probability  /// arrays. -#define rc_bit_last(prob, action0, action1, seq) \ +#define rc_bit_last(prob, action0, action1) \ +do { \ +	rc_if_0(prob) { \ +		rc_update_0(prob); \ +		action0; \ +	} else { \ +		rc_update_1(prob); \ +		action1; \ +	} \ +} while (0) + + +#define rc_bit_last_safe(prob, action0, action1, seq) \  do { \ -	rc_if_0(prob, seq) { \ +	rc_if_0_safe(prob, seq) { \  		rc_update_0(prob); \  		action0; \  	} else { \ @@ -151,35 +242,724 @@ do { \  /// Decodes one bit, updates "symbol", and runs action0 or action1 depending  /// on the decoded bit. -#define rc_bit(prob, action0, action1, seq) \ +#define rc_bit(prob, action0, action1) \  	rc_bit_last(prob, \  		symbol <<= 1; action0, \ +		symbol = (symbol << 1) + 1; action1); + + +#define rc_bit_safe(prob, action0, action1, seq) \ +	rc_bit_last_safe(prob, \ +		symbol <<= 1; action0, \  		symbol = (symbol << 1) + 1; action1, \  		seq); +// Unroll fixed-sized bittree decoding. +// +// A compile-time constant in final_add can be used to get rid of the high bit +// from symbol that is used for the array indexing (1U << bittree_bits). +// final_add may also be used to add offset to the result (LZMA length +// decoder does that). +// +// The reason to have final_add here is that in the asm code the addition +// can be done for free: in x86-64 there is SBB instruction with -1 as +// the immediate value, and final_add is combined with that value. +#define rc_bittree_bit(prob) \ +	rc_bit(prob, , ) + +#define rc_bittree3(probs, final_add) \ +do { \ +	symbol = 1; \ +	rc_bittree_bit(probs[symbol]); \ +	rc_bittree_bit(probs[symbol]); \ +	rc_bittree_bit(probs[symbol]); \ +	symbol += (uint32_t)(final_add); \ +} while (0) -/// Like rc_bit() but add "case seq:" as a prefix. This makes the unrolled -/// loops more readable because the code isn't littered with "case" -/// statements. On the other hand this also makes it less readable, since -/// spotting the places where the decoder loop may be restarted is less -/// obvious. -#define rc_bit_case(prob, action0, action1, seq) \ -	case seq: rc_bit(prob, action0, action1, seq) +#define rc_bittree6(probs, final_add) \ +do { \ +	symbol = 1; \ +	rc_bittree_bit(probs[symbol]); \ +	rc_bittree_bit(probs[symbol]); \ +	rc_bittree_bit(probs[symbol]); \ +	rc_bittree_bit(probs[symbol]); \ +	rc_bittree_bit(probs[symbol]); \ +	rc_bittree_bit(probs[symbol]); \ +	symbol += (uint32_t)(final_add); \ +} while (0) + +#define rc_bittree8(probs, final_add) \ +do { \ +	symbol = 1; \ +	rc_bittree_bit(probs[symbol]); \ +	rc_bittree_bit(probs[symbol]); \ +	rc_bittree_bit(probs[symbol]); \ +	rc_bittree_bit(probs[symbol]); \ +	rc_bittree_bit(probs[symbol]); \ +	rc_bittree_bit(probs[symbol]); \ +	rc_bittree_bit(probs[symbol]); \ +	rc_bittree_bit(probs[symbol]); \ +	symbol += (uint32_t)(final_add); \ +} while (0) + + +// Fixed-sized reverse bittree +#define rc_bittree_rev4(probs) \ +do { \ +	symbol = 0; \ +	rc_bit_last(probs[symbol + 1], , symbol += 1); \ +	rc_bit_last(probs[symbol + 2], , symbol += 2); \ +	rc_bit_last(probs[symbol + 4], , symbol += 4); \ +	rc_bit_last(probs[symbol + 8], , symbol += 8); \ +} while (0) + + +// Decode one bit from variable-sized reverse bittree. The loop is done +// in the code that uses this macro. This could be changed if the assembly +// version benefited from having the loop done in assembly but it didn't +// seem so in early 2024. +// +// Also, if the loop was done here, the loop counter would likely be local +// to the macro so that it wouldn't modify yet another input variable. +// If a _safe version of a macro with a loop was done then a modifiable +// input variable couldn't be avoided though. +#define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \ +	rc_bit(probs[symbol], \ +		, \ +		dest += value_to_add_if_1); + + +// Matched literal +#define decode_with_match_bit \ +		t_match_byte <<= 1; \ +		t_match_bit = t_match_byte & t_offset; \ +		t_subcoder_index = t_offset + t_match_bit + symbol; \ +		rc_bit(probs[t_subcoder_index], \ +				t_offset &= ~t_match_bit, \ +				t_offset &= t_match_bit) + +#define rc_matched_literal(probs_base_var, match_byte) \ +do { \ +	uint32_t t_match_byte = (match_byte); \ +	uint32_t t_match_bit; \ +	uint32_t t_subcoder_index; \ +	uint32_t t_offset = 0x100; \ +	symbol = 1; \ +	decode_with_match_bit; \ +	decode_with_match_bit; \ +	decode_with_match_bit; \ +	decode_with_match_bit; \ +	decode_with_match_bit; \ +	decode_with_match_bit; \ +	decode_with_match_bit; \ +	decode_with_match_bit; \ +} while (0)  /// Decode a bit without using a probability. -#define rc_direct(dest, seq) \ +// +// NOTE: GCC 13 and Clang/LLVM 16 can, at least on x86-64, optimize the bound +// calculation to use an arithmetic right shift so there's no need to provide +// the alternative code which, according to C99/C11/C23 6.3.1.3-p3 isn't +// perfectly portable: rc_bound = (uint32_t)((int32_t)rc.code >> 31); +#define rc_direct(dest, count_var) \  do { \ -	rc_normalize(seq); \ +	dest = (dest << 1) + 1; \ +	rc_normalize(); \ +	rc.range >>= 1; \ +	rc.code -= rc.range; \ +	rc_bound = UINT32_C(0) - (rc.code >> 31); \ +	dest += rc_bound; \ +	rc.code += rc.range & rc_bound; \ +} while (--count_var > 0) + + + +#define rc_direct_safe(dest, count_var, seq) \ +do { \ +	rc_normalize_safe(seq); \  	rc.range >>= 1; \  	rc.code -= rc.range; \  	rc_bound = UINT32_C(0) - (rc.code >> 31); \  	rc.code += rc.range & rc_bound; \  	dest = (dest << 1) + (rc_bound + 1); \ +} while (--count_var > 0) + + +////////////////// +// Branchless C // +////////////////// + +/// Decode a bit using a branchless method. This reduces the number of +/// mispredicted branches and thus can improve speed. +#define rc_c_bit(prob, action_bit, action_neg) \ +do { \ +	probability *p = &(prob); \ +	rc_normalize(); \ +	rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * *p; \ +	uint32_t rc_mask = rc.code >= rc_bound; /* rc_mask = decoded bit */ \ +	action_bit; /* action when rc_mask is 0 or 1 */ \ +	/* rc_mask becomes 0 if bit is 0 and 0xFFFFFFFF if bit is 1: */ \ +	rc_mask = 0U - rc_mask; \ +	rc.range &= rc_mask; /* If bit 0: set rc.range = 0 */ \ +	rc_bound ^= rc_mask; \ +	rc_bound -= rc_mask; /* If bit 1: rc_bound = 0U - rc_bound */ \ +	rc.range += rc_bound; \ +	rc_bound &= rc_mask; \ +	rc.code += rc_bound; \ +	action_neg; /* action when rc_mask is 0 or 0xFFFFFFFF */ \ +	rc_mask = ~rc_mask; /* If bit 0: all bits are set in rc_mask */ \ +	rc_mask &= RC_BIT_MODEL_OFFSET; \ +	*p -= (*p + rc_mask) >> RC_MOVE_BITS; \  } while (0) -// NOTE: No macros are provided for bittree decoding. It seems to be simpler -// to just write them open in the code. +// Testing on x86-64 give an impression that only the normal bittrees and +// the fixed-sized reverse bittrees are worth the branchless C code. +// It should be tested on other archs for which there isn't assembly code +// in this file. + +// Using addition in "(symbol << 1) + rc_mask" allows use of x86 LEA +// or RISC-V SH1ADD instructions. Compilers might infer it from +// "(symbol << 1) | rc_mask" too if they see that mask is 0 or 1 but +// the use of addition doesn't require such analysis from compilers. +#if LZMA_RANGE_DECODER_CONFIG & 0x01 +#undef rc_bittree_bit +#define rc_bittree_bit(prob) \ +	rc_c_bit(prob, \ +		symbol = (symbol << 1) + rc_mask, \ +		) +#endif // LZMA_RANGE_DECODER_CONFIG & 0x01 + +#if LZMA_RANGE_DECODER_CONFIG & 0x02 +#undef rc_bittree_rev4 +#define rc_bittree_rev4(probs) \ +do { \ +	symbol = 0; \ +	rc_c_bit(probs[symbol + 1], symbol += rc_mask, ); \ +	rc_c_bit(probs[symbol + 2], symbol += rc_mask << 1, ); \ +	rc_c_bit(probs[symbol + 4], symbol += rc_mask << 2, ); \ +	rc_c_bit(probs[symbol + 8], symbol += rc_mask << 3, ); \ +} while (0) +#endif // LZMA_RANGE_DECODER_CONFIG & 0x02 + +#if LZMA_RANGE_DECODER_CONFIG & 0x04 +#undef rc_bit_add_if_1 +#define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \ +	rc_c_bit(probs[symbol], \ +		symbol = (symbol << 1) + rc_mask, \ +		dest += (value_to_add_if_1) & rc_mask) +#endif // LZMA_RANGE_DECODER_CONFIG & 0x04 + + +#if LZMA_RANGE_DECODER_CONFIG & 0x08 +#undef decode_with_match_bit +#define decode_with_match_bit \ +		t_match_byte <<= 1; \ +		t_match_bit = t_match_byte & t_offset; \ +		t_subcoder_index = t_offset + t_match_bit + symbol; \ +		rc_c_bit(probs[t_subcoder_index], \ +			symbol = (symbol << 1) + rc_mask, \ +			t_offset &= ~t_match_bit ^ rc_mask) +#endif // LZMA_RANGE_DECODER_CONFIG & 0x08 + + +//////////// +// x86-64 // +//////////// + +#if LZMA_RANGE_DECODER_CONFIG & 0x1F0 + +// rc_asm_y and rc_asm_n are used as arguments to macros to control which +// strings to include or omit. +#define rc_asm_y(str) str +#define rc_asm_n(str) + +// There are a few possible variations for normalization. +// This is the smallest variant which is also used by LZMA SDK. +// +//   - This has partial register write (the MOV from (%[in_ptr])). +// +//   - INC saves one byte in code size over ADD. False dependency on +//     partial flags from INC shouldn't become a problem on any processor +//     because the instructions after normalization don't read the flags +//     until SUB which sets all flags. +// +#define rc_asm_normalize \ +	"cmp	%[top_value], %[range]\n\t" \ +	"jae	1f\n\t" \ +	"shl	%[shift_bits], %[code]\n\t" \ +	"mov	(%[in_ptr]), %b[code]\n\t" \ +	"shl	%[shift_bits], %[range]\n\t" \ +	"inc	%[in_ptr]\n" \ +	"1:\n" + +// rc_asm_calc(prob) is roughly equivalent to the C version of rc_if_0(prob)... +// +//     rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); +//     if (rc.code < rc_bound) +// +// ...but the bound is stored in "range": +// +//     t0 = range; +//     range = (range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); +//     t0 -= range; +//     t1 = code; +//     code -= range; +// +// The carry flag (CF) from the last subtraction holds the negation of +// the decoded bit (if CF==0 then the decoded bit is 1). +// The values in t0 and t1 are needed for rc_update_0(prob) and +// rc_update_1(prob). If the bit is 0, rc_update_0(prob)... +// +//     rc.range = rc_bound; +// +// ...has already been done but the "code -= range" has to be reverted using +// the old value stored in t1. (Also, prob needs to be updated.) +// +// If the bit is 1, rc_update_1(prob)... +// +//     rc.range -= rc_bound; +//     rc.code -= rc_bound; +// +// ...is already done for "code" but the value for "range" needs to be taken +// from t0. (Also, prob needs to be updated here as well.) +// +// The assignments from t0 and t1 can be done in a branchless manner with CMOV +// after the instructions from this macro. The CF from SUB tells which moves +// are needed. +#define rc_asm_calc(prob) \ +		"mov	%[range], %[t0]\n\t" \ +		"shr	%[bit_model_total_bits], %[range]\n\t" \ +		"imul	%[" prob "], %[range]\n\t" \ +		"sub	%[range], %[t0]\n\t" \ +		"mov	%[code], %[t1]\n\t" \ +		"sub	%[range], %[code]\n\t" + +// Also, prob needs to be updated: The update math depends on the decoded bit. +// It can be expressed in a few slightly different ways but this is fairly +// convenient here: +// +//     prob -= (prob + (bit ? 0 : RC_BIT_MODEL_OFFSET)) >> RC_MOVE_BITS; +// +// To do it in branchless way when the negation of the decoded bit is in CF, +// both "prob" and "prob + RC_BIT_MODEL_OFFSET" are needed. Then the desired +// value can be picked with CMOV. The addition can be done using LEA without +// affecting CF. +// +// (This prob update method is a tiny bit different from LZMA SDK 23.01. +// In the LZMA SDK a single register is reserved solely for a constant to +// be used with CMOV when updating prob. That is fine since there are enough +// free registers to do so. The method used here uses one fewer register, +// which is valuable with inline assembly.) +// +// * * * +// +// In bittree decoding, each (unrolled) loop iteration decodes one bit +// and needs one prob variable. To make it faster, the prob variable of +// the iteration N+1 is loaded during iteration N. There are two possible +// prob variables to choose from for N+1. Both are loaded from memory and +// the correct one is chosen with CMOV using the same CF as is used for +// other things described above. +// +// This preloading/prefetching requires an extra register. To avoid +// useless moves from "preloaded prob register" to "current prob register", +// the macros swap between the two registers for odd and even iterations. +// +// * * * +// +// Finally, the decoded bit has to be stored in "symbol". Since the negation +// of the bit is in CF, this can be done with SBB: symbol -= CF - 1. That is, +// if the decoded bit is 0 (CF==1) the operation is a no-op "symbol -= 0" +// and when bit is 1 (CF==0) the operation is "symbol -= 0 - 1" which is +// the same as "symbol += 1". +// +// The instructions for all things are intertwined for a few reasons: +//   - freeing temporary registers for new use +//   - not modifying CF too early +//   - instruction scheduling +// +// The first and last iterations can cheat a little. For example, +// on the first iteration "symbol" is known to start from 1 so it +// doesn't need to be read; it can even be immediately initialized +// to 2 to prepare for the second iteration of the loop. +// +// * * * +// +// a = number of the current prob variable (0 or 1) +// b = number of the next prob variable (1 or 0) +// *_only = rc_asm_y or _n to include or exclude code marked with them +#define rc_asm_bittree(a, b, first_only, middle_only, last_only) \ +	first_only( \ +		"movzw	2(%[probs_base]), %[prob" #a "]\n\t" \ +		"mov	$2, %[symbol]\n\t" \ +		"movzw	4(%[probs_base]), %[prob" #b "]\n\t" \ +	) \ +	middle_only( \ +		/* Note the scaling of 4 instead of 2: */ \ +		"movzw	(%[probs_base], %q[symbol], 4), %[prob" #b "]\n\t" \ +	) \ +	last_only( \ +		"add	%[symbol], %[symbol]\n\t" \ +	) \ +		\ +		rc_asm_normalize \ +		rc_asm_calc("prob" #a) \ +		\ +		"cmovae	%[t0], %[range]\n\t" \ +		\ +	first_only( \ +		"movzw	6(%[probs_base]), %[t0]\n\t" \ +		"cmovae	%[t0], %[prob" #b "]\n\t" \ +	) \ +	middle_only( \ +		"movzw	2(%[probs_base], %q[symbol], 4), %[t0]\n\t" \ +		"lea	(%q[symbol], %q[symbol]), %[symbol]\n\t" \ +		"cmovae	%[t0], %[prob" #b "]\n\t" \ +	) \ +		\ +		"lea	%c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \ +		"cmovb	%[t1], %[code]\n\t" \ +		"mov	%[symbol], %[t1]\n\t" \ +		"cmovae	%[prob" #a "], %[t0]\n\t" \ +		\ +	first_only( \ +		"sbb	$-1, %[symbol]\n\t" \ +	) \ +	middle_only( \ +		"sbb	$-1, %[symbol]\n\t" \ +	) \ +	last_only( \ +		"sbb	%[last_sbb], %[symbol]\n\t" \ +	) \ +		\ +		"shr	%[move_bits], %[t0]\n\t" \ +		"sub	%[t0], %[prob" #a "]\n\t" \ +		/* Scaling of 1 instead of 2 because symbol <<= 1. */ \ +		"mov	%w[prob" #a "], (%[probs_base], %q[t1], 1)\n\t" + +// NOTE: The order of variables in __asm__ can affect speed and code size. +#define rc_asm_bittree_n(probs_base_var, final_add, asm_str) \ +do { \ +	uint32_t t0; \ +	uint32_t t1; \ +	uint32_t t_prob0; \ +	uint32_t t_prob1; \ +	\ +	__asm__( \ +		asm_str \ +		: \ +		[range]     "+&r"(rc.range), \ +		[code]      "+&r"(rc.code), \ +		[t0]        "=&r"(t0), \ +		[t1]        "=&r"(t1), \ +		[prob0]     "=&r"(t_prob0), \ +		[prob1]     "=&r"(t_prob1), \ +		[symbol]    "=&r"(symbol), \ +		[in_ptr]    "+&r"(rc_in_ptr) \ +		: \ +		[probs_base]           "r"(probs_base_var), \ +		[last_sbb]             "n"(-1 - (final_add)), \ +		[top_value]            "n"(RC_TOP_VALUE), \ +		[shift_bits]           "n"(RC_SHIFT_BITS), \ +		[bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ +		[bit_model_offset]     "n"(RC_BIT_MODEL_OFFSET), \ +		[move_bits]            "n"(RC_MOVE_BITS) \ +		: \ +		"cc", "memory"); \ +} while (0) + + +#if LZMA_RANGE_DECODER_CONFIG & 0x010 +#undef rc_bittree3 +#define rc_bittree3(probs_base_var, final_add) \ +	rc_asm_bittree_n(probs_base_var, final_add, \ +		rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ +		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ +		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_n, rc_asm_y) \ +	) + +#undef rc_bittree6 +#define rc_bittree6(probs_base_var, final_add) \ +	rc_asm_bittree_n(probs_base_var, final_add, \ +		rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ +		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ +		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ +		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ +		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ +		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \ +	) + +#undef rc_bittree8 +#define rc_bittree8(probs_base_var, final_add) \ +	rc_asm_bittree_n(probs_base_var, final_add, \ +		rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ +		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ +		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ +		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ +		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ +		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ +		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ +		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \ +	) +#endif // LZMA_RANGE_DECODER_CONFIG & 0x010 + + +// Fixed-sized reverse bittree +// +// This uses the indexing that constructs the final value in symbol directly. +// add    = 1,  2,   4,  8 +// dcur   = -,  4,   8, 16 +// dnext0 = 4,   8, 16,  - +// dnext0 = 6,  12, 24,  - +#define rc_asm_bittree_rev(a, b, add, dcur, dnext0, dnext1, \ +		first_only, middle_only, last_only) \ +	first_only( \ +		"movzw	2(%[probs_base]), %[prob" #a "]\n\t" \ +		"xor	%[symbol], %[symbol]\n\t" \ +		"movzw	4(%[probs_base]), %[prob" #b "]\n\t" \ +	) \ +	middle_only( \ +		"movzw	" #dnext0 "(%[probs_base], %q[symbol], 2), " \ +			"%[prob" #b "]\n\t" \ +	) \ +		\ +		rc_asm_normalize \ +		rc_asm_calc("prob" #a) \ +		\ +		"cmovae	%[t0], %[range]\n\t" \ +		\ +	first_only( \ +		"movzw	6(%[probs_base]), %[t0]\n\t" \ +		"cmovae	%[t0], %[prob" #b "]\n\t" \ +	) \ +	middle_only( \ +		"movzw	" #dnext1 "(%[probs_base], %q[symbol], 2), %[t0]\n\t" \ +		"cmovae	%[t0], %[prob" #b "]\n\t" \ +	) \ +		\ +		"lea	" #add "(%q[symbol]), %[t0]\n\t" \ +		"cmovb	%[t1], %[code]\n\t" \ +	middle_only( \ +		"mov	%[symbol], %[t1]\n\t" \ +	) \ +	last_only( \ +		"mov	%[symbol], %[t1]\n\t" \ +	) \ +		"cmovae	%[t0], %[symbol]\n\t" \ +		"lea	%c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \ +		"cmovae	%[prob" #a "], %[t0]\n\t" \ +		\ +		"shr	%[move_bits], %[t0]\n\t" \ +		"sub	%[t0], %[prob" #a "]\n\t" \ +	first_only( \ +		"mov	%w[prob" #a "], 2(%[probs_base])\n\t" \ +	) \ +	middle_only( \ +		"mov	%w[prob" #a "], " \ +			#dcur "(%[probs_base], %q[t1], 2)\n\t" \ +	) \ +	last_only( \ +		"mov	%w[prob" #a "], " \ +			#dcur "(%[probs_base], %q[t1], 2)\n\t" \ +	) + +#if LZMA_RANGE_DECODER_CONFIG & 0x020 +#undef rc_bittree_rev4 +#define rc_bittree_rev4(probs_base_var) \ +rc_asm_bittree_n(probs_base_var, 4, \ +	rc_asm_bittree_rev(0, 1, 1,  -,  4,  6, rc_asm_y, rc_asm_n, rc_asm_n) \ +	rc_asm_bittree_rev(1, 0, 2,  4,  8, 12, rc_asm_n, rc_asm_y, rc_asm_n) \ +	rc_asm_bittree_rev(0, 1, 4,  8, 16, 24, rc_asm_n, rc_asm_y, rc_asm_n) \ +	rc_asm_bittree_rev(1, 0, 8, 16,  -,  -, rc_asm_n, rc_asm_n, rc_asm_y) \ +) +#endif // LZMA_RANGE_DECODER_CONFIG & 0x020 + + +#if LZMA_RANGE_DECODER_CONFIG & 0x040 +#undef rc_bit_add_if_1 +#define rc_bit_add_if_1(probs_base_var, dest_var, value_to_add_if_1) \ +do { \ +	uint32_t t0; \ +	uint32_t t1; \ +	uint32_t t2 = (value_to_add_if_1); \ +	uint32_t t_prob; \ +	uint32_t t_index; \ +	\ +	__asm__( \ +		"movzw	(%[probs_base], %q[symbol], 2), %[prob]\n\t" \ +		"mov	%[symbol], %[index]\n\t" \ +		\ +		"add	%[dest], %[t2]\n\t" \ +		"add	%[symbol], %[symbol]\n\t" \ +		\ +		rc_asm_normalize \ +		rc_asm_calc("prob") \ +		\ +		"cmovae	%[t0], %[range]\n\t" \ +		"lea	%c[bit_model_offset](%q[prob]), %[t0]\n\t" \ +		"cmovb	%[t1], %[code]\n\t" \ +		"cmovae	%[prob], %[t0]\n\t" \ +		\ +		"cmovae	%[t2], %[dest]\n\t" \ +		"sbb	$-1, %[symbol]\n\t" \ +		\ +		"sar	%[move_bits], %[t0]\n\t" \ +		"sub	%[t0], %[prob]\n\t" \ +		"mov	%w[prob], (%[probs_base], %q[index], 2)" \ +		: \ +		[range]     "+&r"(rc.range), \ +		[code]      "+&r"(rc.code), \ +		[t0]        "=&r"(t0), \ +		[t1]        "=&r"(t1), \ +		[prob]      "=&r"(t_prob), \ +		[index]     "=&r"(t_index), \ +		[symbol]    "+&r"(symbol), \ +		[t2]        "+&r"(t2), \ +		[dest]      "+&r"(dest_var), \ +		[in_ptr]    "+&r"(rc_in_ptr) \ +		: \ +		[probs_base]           "r"(probs_base_var), \ +		[top_value]            "n"(RC_TOP_VALUE), \ +		[shift_bits]           "n"(RC_SHIFT_BITS), \ +		[bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ +		[bit_model_offset]     "n"(RC_BIT_MODEL_OFFSET), \ +		[move_bits]            "n"(RC_MOVE_BITS) \ +		: \ +		"cc", "memory"); \ +} while (0) +#endif // LZMA_RANGE_DECODER_CONFIG & 0x040 + + +// Literal decoding uses a normal 8-bit bittree but literal with match byte +// is more complex in picking the probability variable from the correct +// subtree. This doesn't use preloading/prefetching of the next prob because +// there are four choices instead of two. +// +// FIXME? The first iteration starts with symbol = 1 so it could be optimized +// by a tiny amount. +#define rc_asm_matched_literal(nonlast_only) \ +		"add	%[offset], %[symbol]\n\t" \ +		"and	%[offset], %[match_bit]\n\t" \ +		"add	%[match_bit], %[symbol]\n\t" \ +		\ +		"movzw	(%[probs_base], %q[symbol], 2), %[prob]\n\t" \ +		\ +		"add	%[symbol], %[symbol]\n\t" \ +		\ +	nonlast_only( \ +		"xor	%[match_bit], %[offset]\n\t" \ +		"add	%[match_byte], %[match_byte]\n\t" \ +	) \ +		\ +		rc_asm_normalize \ +		rc_asm_calc("prob") \ +		\ +		"cmovae	%[t0], %[range]\n\t" \ +		"lea	%c[bit_model_offset](%q[prob]), %[t0]\n\t" \ +		"cmovb	%[t1], %[code]\n\t" \ +		"mov	%[symbol], %[t1]\n\t" \ +		"cmovae	%[prob], %[t0]\n\t" \ +		\ +	nonlast_only( \ +		"cmovae	%[match_bit], %[offset]\n\t" \ +		"mov	%[match_byte], %[match_bit]\n\t" \ +	) \ +		\ +		"sbb	$-1, %[symbol]\n\t" \ +		\ +		"shr	%[move_bits], %[t0]\n\t" \ +		/* Undo symbol += match_bit + offset: */ \ +		"and	$0x1FF, %[symbol]\n\t" \ +		"sub	%[t0], %[prob]\n\t" \ +		\ +		/* Scaling of 1 instead of 2 because symbol <<= 1. */ \ +		"mov	%w[prob], (%[probs_base], %q[t1], 1)\n\t" + + +#if LZMA_RANGE_DECODER_CONFIG & 0x080 +#undef rc_matched_literal +#define rc_matched_literal(probs_base_var, match_byte_value) \ +do { \ +	uint32_t t0; \ +	uint32_t t1; \ +	uint32_t t_prob; \ +	uint32_t t_match_byte = (uint32_t)(match_byte_value) << 1; \ +	uint32_t t_match_bit = t_match_byte; \ +	uint32_t t_offset = 0x100; \ +	symbol = 1; \ +	\ +	__asm__( \ +		rc_asm_matched_literal(rc_asm_y) \ +		rc_asm_matched_literal(rc_asm_y) \ +		rc_asm_matched_literal(rc_asm_y) \ +		rc_asm_matched_literal(rc_asm_y) \ +		rc_asm_matched_literal(rc_asm_y) \ +		rc_asm_matched_literal(rc_asm_y) \ +		rc_asm_matched_literal(rc_asm_y) \ +		rc_asm_matched_literal(rc_asm_n) \ +		: \ +		[range]       "+&r"(rc.range), \ +		[code]        "+&r"(rc.code), \ +		[t0]          "=&r"(t0), \ +		[t1]          "=&r"(t1), \ +		[prob]        "=&r"(t_prob), \ +		[match_bit]   "+&r"(t_match_bit), \ +		[symbol]      "+&r"(symbol), \ +		[match_byte]  "+&r"(t_match_byte), \ +		[offset]      "+&r"(t_offset), \ +		[in_ptr]      "+&r"(rc_in_ptr) \ +		: \ +		[probs_base]           "r"(probs_base_var), \ +		[top_value]            "n"(RC_TOP_VALUE), \ +		[shift_bits]           "n"(RC_SHIFT_BITS), \ +		[bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ +		[bit_model_offset]     "n"(RC_BIT_MODEL_OFFSET), \ +		[move_bits]            "n"(RC_MOVE_BITS) \ +		: \ +		"cc", "memory"); \ +} while (0) +#endif // LZMA_RANGE_DECODER_CONFIG & 0x080 + + +// Doing the loop in asm instead of C seems to help a little. +#if LZMA_RANGE_DECODER_CONFIG & 0x100 +#undef rc_direct +#define rc_direct(dest_var, count_var) \ +do { \ +	uint32_t t0; \ +	uint32_t t1; \ +	\ +	__asm__( \ +		"2:\n\t" \ +		"add	%[dest], %[dest]\n\t" \ +		"lea	1(%q[dest]), %[t1]\n\t" \ +		\ +		rc_asm_normalize \ +		\ +		"shr	$1, %[range]\n\t" \ +		"mov	%[code], %[t0]\n\t" \ +		"sub	%[range], %[code]\n\t" \ +		"cmovns	%[t1], %[dest]\n\t" \ +		"cmovs	%[t0], %[code]\n\t" \ +		"dec	%[count]\n\t" \ +		"jnz	2b\n\t" \ +		: \ +		[range]       "+&r"(rc.range), \ +		[code]        "+&r"(rc.code), \ +		[t0]          "=&r"(t0), \ +		[t1]          "=&r"(t1), \ +		[dest]        "+&r"(dest_var), \ +		[count]       "+&r"(count_var), \ +		[in_ptr]      "+&r"(rc_in_ptr) \ +		: \ +		[top_value]   "n"(RC_TOP_VALUE), \ +		[shift_bits]  "n"(RC_SHIFT_BITS) \ +		: \ +		"cc", "memory"); \ +} while (0) +#endif // LZMA_RANGE_DECODER_CONFIG & 0x100 + +#endif // x86_64  #endif  | 
