diff options
author | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
---|---|---|
committer | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
commit | 6ffe9e53658409f212834330e13564e4952558f6 (patch) | |
tree | 85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm16/utils/TableGen/DAGISelMatcherGen.cpp | |
parent | 726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff) | |
download | ydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz |
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm16/utils/TableGen/DAGISelMatcherGen.cpp')
-rw-r--r-- | contrib/libs/llvm16/utils/TableGen/DAGISelMatcherGen.cpp | 1111 |
1 files changed, 1111 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/utils/TableGen/DAGISelMatcherGen.cpp b/contrib/libs/llvm16/utils/TableGen/DAGISelMatcherGen.cpp new file mode 100644 index 0000000000..44bff4c67a --- /dev/null +++ b/contrib/libs/llvm16/utils/TableGen/DAGISelMatcherGen.cpp @@ -0,0 +1,1111 @@ +//===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "CodeGenDAGPatterns.h" +#include "CodeGenInstruction.h" +#include "CodeGenRegisters.h" +#include "DAGISelMatcher.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringMap.h" +#include "llvm/TableGen/Error.h" +#include "llvm/TableGen/Record.h" +#include <utility> +using namespace llvm; + + +/// getRegisterValueType - Look up and return the ValueType of the specified +/// register. If the register is a member of multiple register classes which +/// have different associated types, return MVT::Other. +static MVT::SimpleValueType getRegisterValueType(Record *R, + const CodeGenTarget &T) { + bool FoundRC = false; + MVT::SimpleValueType VT = MVT::Other; + const CodeGenRegister *Reg = T.getRegBank().getReg(R); + + for (const auto &RC : T.getRegBank().getRegClasses()) { + if (!RC.contains(Reg)) + continue; + + if (!FoundRC) { + FoundRC = true; + const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0); + if (VVT.isSimple()) + VT = VVT.getSimple().SimpleTy; + continue; + } + +#ifndef NDEBUG + // If this occurs in multiple register classes, they all have to agree. + const ValueTypeByHwMode &T = RC.getValueTypeNum(0); + assert((!T.isSimple() || T.getSimple().SimpleTy == VT) && + "ValueType mismatch between register classes for this register"); +#endif + } + return VT; +} + + +namespace { + class MatcherGen { + const PatternToMatch &Pattern; + const CodeGenDAGPatterns &CGP; + + /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts + /// out with all of the types removed. This allows us to insert type checks + /// as we scan the tree. + TreePatternNodePtr PatWithNoTypes; + + /// VariableMap - A map from variable names ('$dst') to the recorded operand + /// number that they were captured as. These are biased by 1 to make + /// insertion easier. + StringMap<unsigned> VariableMap; + + /// This maintains the recorded operand number that OPC_CheckComplexPattern + /// drops each sub-operand into. We don't want to insert these into + /// VariableMap because that leads to identity checking if they are + /// encountered multiple times. Biased by 1 like VariableMap for + /// consistency. + StringMap<unsigned> NamedComplexPatternOperands; + + /// NextRecordedOperandNo - As we emit opcodes to record matched values in + /// the RecordedNodes array, this keeps track of which slot will be next to + /// record into. + unsigned NextRecordedOperandNo; + + /// MatchedChainNodes - This maintains the position in the recorded nodes + /// array of all of the recorded input nodes that have chains. + SmallVector<unsigned, 2> MatchedChainNodes; + + /// MatchedComplexPatterns - This maintains a list of all of the + /// ComplexPatterns that we need to check. The second element of each pair + /// is the recorded operand number of the input node. + SmallVector<std::pair<const TreePatternNode*, + unsigned>, 2> MatchedComplexPatterns; + + /// PhysRegInputs - List list has an entry for each explicitly specified + /// physreg input to the pattern. The first elt is the Register node, the + /// second is the recorded slot number the input pattern match saved it in. + SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs; + + /// Matcher - This is the top level of the generated matcher, the result. + Matcher *TheMatcher; + + /// CurPredicate - As we emit matcher nodes, this points to the latest check + /// which should have future checks stuck into its Next position. + Matcher *CurPredicate; + public: + MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp); + + bool EmitMatcherCode(unsigned Variant); + void EmitResultCode(); + + Matcher *GetMatcher() const { return TheMatcher; } + private: + void AddMatcher(Matcher *NewNode); + void InferPossibleTypes(unsigned ForceMode); + + // Matcher Generation. + void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes, + unsigned ForceMode); + void EmitLeafMatchCode(const TreePatternNode *N); + void EmitOperatorMatchCode(const TreePatternNode *N, + TreePatternNode *NodeNoTypes, + unsigned ForceMode); + + /// If this is the first time a node with unique identifier Name has been + /// seen, record it. Otherwise, emit a check to make sure this is the same + /// node. Returns true if this is the first encounter. + bool recordUniqueNode(ArrayRef<std::string> Names); + + // Result Code Generation. + unsigned getNamedArgumentSlot(StringRef Name) { + unsigned VarMapEntry = VariableMap[Name]; + assert(VarMapEntry != 0 && + "Variable referenced but not defined and not caught earlier!"); + return VarMapEntry-1; + } + + void EmitResultOperand(const TreePatternNode *N, + SmallVectorImpl<unsigned> &ResultOps); + void EmitResultOfNamedOperand(const TreePatternNode *N, + SmallVectorImpl<unsigned> &ResultOps); + void EmitResultLeafAsOperand(const TreePatternNode *N, + SmallVectorImpl<unsigned> &ResultOps); + void EmitResultInstructionAsOperand(const TreePatternNode *N, + SmallVectorImpl<unsigned> &ResultOps); + void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, + SmallVectorImpl<unsigned> &ResultOps); + }; + +} // end anonymous namespace + +MatcherGen::MatcherGen(const PatternToMatch &pattern, + const CodeGenDAGPatterns &cgp) +: Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0), + TheMatcher(nullptr), CurPredicate(nullptr) { + // We need to produce the matcher tree for the patterns source pattern. To do + // this we need to match the structure as well as the types. To do the type + // matching, we want to figure out the fewest number of type checks we need to + // emit. For example, if there is only one integer type supported by a + // target, there should be no type comparisons at all for integer patterns! + // + // To figure out the fewest number of type checks needed, clone the pattern, + // remove the types, then perform type inference on the pattern as a whole. + // If there are unresolved types, emit an explicit check for those types, + // apply the type to the tree, then rerun type inference. Iterate until all + // types are resolved. + // + PatWithNoTypes = Pattern.getSrcPattern()->clone(); + PatWithNoTypes->RemoveAllTypes(); + + // If there are types that are manifestly known, infer them. + InferPossibleTypes(Pattern.getForceMode()); +} + +/// InferPossibleTypes - As we emit the pattern, we end up generating type +/// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we +/// want to propagate implied types as far throughout the tree as possible so +/// that we avoid doing redundant type checks. This does the type propagation. +void MatcherGen::InferPossibleTypes(unsigned ForceMode) { + // TP - Get *SOME* tree pattern, we don't care which. It is only used for + // diagnostics, which we know are impossible at this point. + TreePattern &TP = *CGP.pf_begin()->second; + TP.getInfer().CodeGen = true; + TP.getInfer().ForceMode = ForceMode; + + bool MadeChange = true; + while (MadeChange) + MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP, + true/*Ignore reg constraints*/); +} + + +/// AddMatcher - Add a matcher node to the current graph we're building. +void MatcherGen::AddMatcher(Matcher *NewNode) { + if (CurPredicate) + CurPredicate->setNext(NewNode); + else + TheMatcher = NewNode; + CurPredicate = NewNode; +} + + +//===----------------------------------------------------------------------===// +// Pattern Match Generation +//===----------------------------------------------------------------------===// + +/// EmitLeafMatchCode - Generate matching code for leaf nodes. +void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { + assert(N->isLeaf() && "Not a leaf?"); + + // Direct match against an integer constant. + if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { + // If this is the root of the dag we're matching, we emit a redundant opcode + // check to ensure that this gets folded into the normal top-level + // OpcodeSwitch. + if (N == Pattern.getSrcPattern()) { + const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm")); + AddMatcher(new CheckOpcodeMatcher(NI)); + } + + return AddMatcher(new CheckIntegerMatcher(II->getValue())); + } + + // An UnsetInit represents a named node without any constraints. + if (isa<UnsetInit>(N->getLeafValue())) { + assert(N->hasName() && "Unnamed ? leaf"); + return; + } + + DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); + if (!DI) { + errs() << "Unknown leaf kind: " << *N << "\n"; + abort(); + } + + Record *LeafRec = DI->getDef(); + + // A ValueType leaf node can represent a register when named, or itself when + // unnamed. + if (LeafRec->isSubClassOf("ValueType")) { + // A named ValueType leaf always matches: (add i32:$a, i32:$b). + if (N->hasName()) + return; + // An unnamed ValueType as in (sext_inreg GPR:$foo, i8). + return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName())); + } + + if (// Handle register references. Nothing to do here, they always match. + LeafRec->isSubClassOf("RegisterClass") || + LeafRec->isSubClassOf("RegisterOperand") || + LeafRec->isSubClassOf("PointerLikeRegClass") || + LeafRec->isSubClassOf("SubRegIndex") || + // Place holder for SRCVALUE nodes. Nothing to do here. + LeafRec->getName() == "srcvalue") + return; + + // If we have a physreg reference like (mul gpr:$src, EAX) then we need to + // record the register + if (LeafRec->isSubClassOf("Register")) { + AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(), + NextRecordedOperandNo)); + PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++)); + return; + } + + if (LeafRec->isSubClassOf("CondCode")) + return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName())); + + if (LeafRec->isSubClassOf("ComplexPattern")) { + // We can't model ComplexPattern uses that don't have their name taken yet. + // The OPC_CheckComplexPattern operation implicitly records the results. + if (N->getName().empty()) { + std::string S; + raw_string_ostream OS(S); + OS << "We expect complex pattern uses to have names: " << *N; + PrintFatalError(S); + } + + // Remember this ComplexPattern so that we can emit it after all the other + // structural matches are done. + unsigned InputOperand = VariableMap[N->getName()] - 1; + MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand)); + return; + } + + if (LeafRec->getName() == "immAllOnesV") { + // If this is the root of the dag we're matching, we emit a redundant opcode + // check to ensure that this gets folded into the normal top-level + // OpcodeSwitch. + if (N == Pattern.getSrcPattern()) { + MVT VT = N->getSimpleType(0); + StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector"; + const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name)); + AddMatcher(new CheckOpcodeMatcher(NI)); + } + return AddMatcher(new CheckImmAllOnesVMatcher()); + } + if (LeafRec->getName() == "immAllZerosV") { + // If this is the root of the dag we're matching, we emit a redundant opcode + // check to ensure that this gets folded into the normal top-level + // OpcodeSwitch. + if (N == Pattern.getSrcPattern()) { + MVT VT = N->getSimpleType(0); + StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector"; + const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name)); + AddMatcher(new CheckOpcodeMatcher(NI)); + } + return AddMatcher(new CheckImmAllZerosVMatcher()); + } + + errs() << "Unknown leaf kind: " << *N << "\n"; + abort(); +} + +void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, + TreePatternNode *NodeNoTypes, + unsigned ForceMode) { + assert(!N->isLeaf() && "Not an operator?"); + + if (N->getOperator()->isSubClassOf("ComplexPattern")) { + // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is + // "MY_PAT:op1:op2". We should already have validated that the uses are + // consistent. + std::string PatternName = std::string(N->getOperator()->getName()); + for (unsigned i = 0; i < N->getNumChildren(); ++i) { + PatternName += ":"; + PatternName += N->getChild(i)->getName(); + } + + if (recordUniqueNode(PatternName)) { + auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1); + MatchedComplexPatterns.push_back(NodeAndOpNum); + } + + return; + } + + const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator()); + + // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is + // a constant without a predicate fn that has more than one bit set, handle + // this as a special case. This is usually for targets that have special + // handling of certain large constants (e.g. alpha with it's 8/16/32-bit + // handling stuff). Using these instructions is often far more efficient + // than materializing the constant. Unfortunately, both the instcombiner + // and the dag combiner can often infer that bits are dead, and thus drop + // them from the mask in the dag. For example, it might turn 'AND X, 255' + // into 'AND X, 254' if it knows the low bit is set. Emit code that checks + // to handle this. + if ((N->getOperator()->getName() == "and" || + N->getOperator()->getName() == "or") && + N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateCalls().empty() && + N->getPredicateCalls().empty()) { + if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) { + if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. + // If this is at the root of the pattern, we emit a redundant + // CheckOpcode so that the following checks get factored properly under + // a single opcode check. + if (N == Pattern.getSrcPattern()) + AddMatcher(new CheckOpcodeMatcher(CInfo)); + + // Emit the CheckAndImm/CheckOrImm node. + if (N->getOperator()->getName() == "and") + AddMatcher(new CheckAndImmMatcher(II->getValue())); + else + AddMatcher(new CheckOrImmMatcher(II->getValue())); + + // Match the LHS of the AND as appropriate. + AddMatcher(new MoveChildMatcher(0)); + EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0), ForceMode); + AddMatcher(new MoveParentMatcher()); + return; + } + } + } + + // Check that the current opcode lines up. + AddMatcher(new CheckOpcodeMatcher(CInfo)); + + // If this node has memory references (i.e. is a load or store), tell the + // interpreter to capture them in the memref array. + if (N->NodeHasProperty(SDNPMemOperand, CGP)) + AddMatcher(new RecordMemRefMatcher()); + + // If this node has a chain, then the chain is operand #0 is the SDNode, and + // the child numbers of the node are all offset by one. + unsigned OpNo = 0; + if (N->NodeHasProperty(SDNPHasChain, CGP)) { + // Record the node and remember it in our chained nodes list. + AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() + + "' chained node", + NextRecordedOperandNo)); + // Remember all of the input chains our pattern will match. + MatchedChainNodes.push_back(NextRecordedOperandNo++); + + // Don't look at the input chain when matching the tree pattern to the + // SDNode. + OpNo = 1; + + // If this node is not the root and the subtree underneath it produces a + // chain, then the result of matching the node is also produce a chain. + // Beyond that, this means that we're also folding (at least) the root node + // into the node that produce the chain (for example, matching + // "(add reg, (load ptr))" as a add_with_memory on X86). This is + // problematic, if the 'reg' node also uses the load (say, its chain). + // Graphically: + // + // [LD] + // ^ ^ + // | \ DAG's like cheese. + // / | + // / [YY] + // | ^ + // [XX]--/ + // + // It would be invalid to fold XX and LD. In this case, folding the two + // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG' + // To prevent this, we emit a dynamic check for legality before allowing + // this to be folded. + // + const TreePatternNode *Root = Pattern.getSrcPattern(); + if (N != Root) { // Not the root of the pattern. + // If there is a node between the root and this node, then we definitely + // need to emit the check. + bool NeedCheck = !Root->hasChild(N); + + // If it *is* an immediate child of the root, we can still need a check if + // the root SDNode has multiple inputs. For us, this means that it is an + // intrinsic, has multiple operands, or has other inputs like chain or + // glue). + if (!NeedCheck) { + const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator()); + NeedCheck = + Root->getOperator() == CGP.get_intrinsic_void_sdnode() || + Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() || + Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || + PInfo.getNumOperands() > 1 || + PInfo.hasProperty(SDNPHasChain) || + PInfo.hasProperty(SDNPInGlue) || + PInfo.hasProperty(SDNPOptInGlue); + } + + if (NeedCheck) + AddMatcher(new CheckFoldableChainNodeMatcher()); + } + } + + // If this node has an output glue and isn't the root, remember it. + if (N->NodeHasProperty(SDNPOutGlue, CGP) && + N != Pattern.getSrcPattern()) { + // TODO: This redundantly records nodes with both glues and chains. + + // Record the node and remember it in our chained nodes list. + AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() + + "' glue output node", + NextRecordedOperandNo)); + } + + // If this node is known to have an input glue or if it *might* have an input + // glue, capture it as the glue input of the pattern. + if (N->NodeHasProperty(SDNPOptInGlue, CGP) || + N->NodeHasProperty(SDNPInGlue, CGP)) + AddMatcher(new CaptureGlueInputMatcher()); + + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { + // Get the code suitable for matching this child. Move to the child, check + // it then move back to the parent. + AddMatcher(new MoveChildMatcher(OpNo)); + EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i), ForceMode); + AddMatcher(new MoveParentMatcher()); + } +} + +bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) { + unsigned Entry = 0; + for (const std::string &Name : Names) { + unsigned &VarMapEntry = VariableMap[Name]; + if (!Entry) + Entry = VarMapEntry; + assert(Entry == VarMapEntry); + } + + bool NewRecord = false; + if (Entry == 0) { + // If it is a named node, we must emit a 'Record' opcode. + std::string WhatFor; + for (const std::string &Name : Names) { + if (!WhatFor.empty()) + WhatFor += ','; + WhatFor += "$" + Name; + } + AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo)); + Entry = ++NextRecordedOperandNo; + NewRecord = true; + } else { + // If we get here, this is a second reference to a specific name. Since + // we already have checked that the first reference is valid, we don't + // have to recursively match it, just check that it's the same as the + // previously named thing. + AddMatcher(new CheckSameMatcher(Entry-1)); + } + + for (const std::string &Name : Names) + VariableMap[Name] = Entry; + + return NewRecord; +} + +void MatcherGen::EmitMatchCode(const TreePatternNode *N, + TreePatternNode *NodeNoTypes, + unsigned ForceMode) { + // If N and NodeNoTypes don't agree on a type, then this is a case where we + // need to do a type check. Emit the check, apply the type to NodeNoTypes and + // reinfer any correlated types. + SmallVector<unsigned, 2> ResultsToTypeCheck; + + for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) { + if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue; + NodeNoTypes->setType(i, N->getExtType(i)); + InferPossibleTypes(ForceMode); + ResultsToTypeCheck.push_back(i); + } + + // If this node has a name associated with it, capture it in VariableMap. If + // we already saw this in the pattern, emit code to verify dagness. + SmallVector<std::string, 4> Names; + if (!N->getName().empty()) + Names.push_back(N->getName()); + + for (const ScopedName &Name : N->getNamesAsPredicateArg()) { + Names.push_back(("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str()); + } + + if (!Names.empty()) { + if (!recordUniqueNode(Names)) + return; + } + + if (N->isLeaf()) + EmitLeafMatchCode(N); + else + EmitOperatorMatchCode(N, NodeNoTypes, ForceMode); + + // If there are node predicates for this node, generate their checks. + for (unsigned i = 0, e = N->getPredicateCalls().size(); i != e; ++i) { + const TreePredicateCall &Pred = N->getPredicateCalls()[i]; + SmallVector<unsigned, 4> Operands; + if (Pred.Fn.usesOperands()) { + TreePattern *TP = Pred.Fn.getOrigPatFragRecord(); + for (unsigned i = 0; i < TP->getNumArgs(); ++i) { + std::string Name = + ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str(); + Operands.push_back(getNamedArgumentSlot(Name)); + } + } + AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands)); + } + + for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i) + AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]), + ResultsToTypeCheck[i])); +} + +/// EmitMatcherCode - Generate the code that matches the predicate of this +/// pattern for the specified Variant. If the variant is invalid this returns +/// true and does not generate code, if it is valid, it returns false. +bool MatcherGen::EmitMatcherCode(unsigned Variant) { + // If the root of the pattern is a ComplexPattern and if it is specified to + // match some number of root opcodes, these are considered to be our variants. + // Depending on which variant we're generating code for, emit the root opcode + // check. + if (const ComplexPattern *CP = + Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) { + const std::vector<Record*> &OpNodes = CP->getRootNodes(); + assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match"); + if (Variant >= OpNodes.size()) return true; + + AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant]))); + } else { + if (Variant != 0) return true; + } + + // Emit the matcher for the pattern structure and types. + EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes.get(), + Pattern.getForceMode()); + + // If the pattern has a predicate on it (e.g. only enabled when a subtarget + // feature is around, do the check). + if (!Pattern.getPredicateCheck().empty()) + AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck())); + + // Now that we've completed the structural type match, emit any ComplexPattern + // checks (e.g. addrmode matches). We emit this after the structural match + // because they are generally more expensive to evaluate and more difficult to + // factor. + for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) { + auto N = MatchedComplexPatterns[i].first; + + // Remember where the results of this match get stuck. + if (N->isLeaf()) { + NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1; + } else { + unsigned CurOp = NextRecordedOperandNo; + for (unsigned i = 0; i < N->getNumChildren(); ++i) { + NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1; + CurOp += N->getChild(i)->getNumMIResults(CGP); + } + } + + // Get the slot we recorded the value in from the name on the node. + unsigned RecNodeEntry = MatchedComplexPatterns[i].second; + + const ComplexPattern &CP = *N->getComplexPatternInfo(CGP); + + // Emit a CheckComplexPat operation, which does the match (aborting if it + // fails) and pushes the matched operands onto the recorded nodes list. + AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry, + N->getName(), NextRecordedOperandNo)); + + // Record the right number of operands. + NextRecordedOperandNo += CP.getNumOperands(); + if (CP.hasProperty(SDNPHasChain)) { + // If the complex pattern has a chain, then we need to keep track of the + // fact that we just recorded a chain input. The chain input will be + // matched as the last operand of the predicate if it was successful. + ++NextRecordedOperandNo; // Chained node operand. + + // It is the last operand recorded. + assert(NextRecordedOperandNo > 1 && + "Should have recorded input/result chains at least!"); + MatchedChainNodes.push_back(NextRecordedOperandNo-1); + } + + // TODO: Complex patterns can't have output glues, if they did, we'd want + // to record them. + } + + return false; +} + + +//===----------------------------------------------------------------------===// +// Node Result Generation +//===----------------------------------------------------------------------===// + +void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N, + SmallVectorImpl<unsigned> &ResultOps){ + assert(!N->getName().empty() && "Operand not named!"); + + if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) { + // Complex operands have already been completely selected, just find the + // right slot ant add the arguments directly. + for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) + ResultOps.push_back(SlotNo - 1 + i); + + return; + } + + unsigned SlotNo = getNamedArgumentSlot(N->getName()); + + // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target + // version of the immediate so that it doesn't get selected due to some other + // node use. + if (!N->isLeaf()) { + StringRef OperatorName = N->getOperator()->getName(); + if (OperatorName == "imm" || OperatorName == "fpimm") { + AddMatcher(new EmitConvertToTargetMatcher(SlotNo)); + ResultOps.push_back(NextRecordedOperandNo++); + return; + } + } + + for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) + ResultOps.push_back(SlotNo + i); +} + +void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N, + SmallVectorImpl<unsigned> &ResultOps) { + assert(N->isLeaf() && "Must be a leaf"); + + if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { + AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0))); + ResultOps.push_back(NextRecordedOperandNo++); + return; + } + + // If this is an explicit register reference, handle it. + if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { + Record *Def = DI->getDef(); + if (Def->isSubClassOf("Register")) { + const CodeGenRegister *Reg = + CGP.getTargetInfo().getRegBank().getReg(Def); + AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0))); + ResultOps.push_back(NextRecordedOperandNo++); + return; + } + + if (Def->getName() == "zero_reg") { + AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0))); + ResultOps.push_back(NextRecordedOperandNo++); + return; + } + + if (Def->getName() == "undef_tied_input") { + std::array<MVT::SimpleValueType, 1> ResultVTs = {{ N->getSimpleType(0) }}; + std::array<unsigned, 0> InstOps; + auto IDOperandNo = NextRecordedOperandNo++; + AddMatcher(new EmitNodeMatcher("TargetOpcode::IMPLICIT_DEF", + ResultVTs, InstOps, false, false, false, + false, -1, IDOperandNo)); + ResultOps.push_back(IDOperandNo); + return; + } + + // Handle a reference to a register class. This is used + // in COPY_TO_SUBREG instructions. + if (Def->isSubClassOf("RegisterOperand")) + Def = Def->getValueAsDef("RegClass"); + if (Def->isSubClassOf("RegisterClass")) { + // If the register class has an enum integer value greater than 127, the + // encoding overflows the limit of 7 bits, which precludes the use of + // StringIntegerMatcher. In this case, fallback to using IntegerMatcher. + const CodeGenRegisterClass &RC = + CGP.getTargetInfo().getRegisterClass(Def); + if (RC.EnumValue <= 127) { + std::string Value = getQualifiedName(Def) + "RegClassID"; + AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); + ResultOps.push_back(NextRecordedOperandNo++); + } else { + AddMatcher(new EmitIntegerMatcher(RC.EnumValue, MVT::i32)); + ResultOps.push_back(NextRecordedOperandNo++); + } + return; + } + + // Handle a subregister index. This is used for INSERT_SUBREG etc. + if (Def->isSubClassOf("SubRegIndex")) { + const CodeGenRegBank &RB = CGP.getTargetInfo().getRegBank(); + // If we have more than 127 subreg indices the encoding can overflow + // 7 bit and we cannot use StringInteger. + if (RB.getSubRegIndices().size() > 127) { + const CodeGenSubRegIndex *I = RB.findSubRegIdx(Def); + assert(I && "Cannot find subreg index by name!"); + if (I->EnumValue > 127) { + AddMatcher(new EmitIntegerMatcher(I->EnumValue, MVT::i32)); + ResultOps.push_back(NextRecordedOperandNo++); + return; + } + } + std::string Value = getQualifiedName(Def); + AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); + ResultOps.push_back(NextRecordedOperandNo++); + return; + } + } + + errs() << "unhandled leaf node:\n"; + N->dump(); +} + +static bool +mayInstNodeLoadOrStore(const TreePatternNode *N, + const CodeGenDAGPatterns &CGP) { + Record *Op = N->getOperator(); + const CodeGenTarget &CGT = CGP.getTargetInfo(); + CodeGenInstruction &II = CGT.getInstruction(Op); + return II.mayLoad || II.mayStore; +} + +static unsigned +numNodesThatMayLoadOrStore(const TreePatternNode *N, + const CodeGenDAGPatterns &CGP) { + if (N->isLeaf()) + return 0; + + Record *OpRec = N->getOperator(); + if (!OpRec->isSubClassOf("Instruction")) + return 0; + + unsigned Count = 0; + if (mayInstNodeLoadOrStore(N, CGP)) + ++Count; + + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) + Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP); + + return Count; +} + +void MatcherGen:: +EmitResultInstructionAsOperand(const TreePatternNode *N, + SmallVectorImpl<unsigned> &OutputOps) { + Record *Op = N->getOperator(); + const CodeGenTarget &CGT = CGP.getTargetInfo(); + CodeGenInstruction &II = CGT.getInstruction(Op); + const DAGInstruction &Inst = CGP.getInstruction(Op); + + bool isRoot = N == Pattern.getDstPattern(); + + // TreeHasOutGlue - True if this tree has glue. + bool TreeHasInGlue = false, TreeHasOutGlue = false; + if (isRoot) { + const TreePatternNode *SrcPat = Pattern.getSrcPattern(); + TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) || + SrcPat->TreeHasProperty(SDNPInGlue, CGP); + + // FIXME2: this is checking the entire pattern, not just the node in + // question, doing this just for the root seems like a total hack. + TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP); + } + + // NumResults - This is the number of results produced by the instruction in + // the "outs" list. + unsigned NumResults = Inst.getNumResults(); + + // Number of operands we know the output instruction must have. If it is + // variadic, we could have more operands. + unsigned NumFixedOperands = II.Operands.size(); + + SmallVector<unsigned, 8> InstOps; + + // Loop over all of the fixed operands of the instruction pattern, emitting + // code to fill them all in. The node 'N' usually has number children equal to + // the number of input operands of the instruction. However, in cases where + // there are predicate operands for an instruction, we need to fill in the + // 'execute always' values. Match up the node operands to the instruction + // operands to do this. + unsigned ChildNo = 0; + + // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the + // number of operands at the end of the list which have default values. + // Those can come from the pattern if it provides enough arguments, or be + // filled in with the default if the pattern hasn't provided them. But any + // operand with a default value _before_ the last mandatory one will be + // filled in with their defaults unconditionally. + unsigned NonOverridableOperands = NumFixedOperands; + while (NonOverridableOperands > NumResults && + CGP.operandHasDefault(II.Operands[NonOverridableOperands-1].Rec)) + --NonOverridableOperands; + + for (unsigned InstOpNo = NumResults, e = NumFixedOperands; + InstOpNo != e; ++InstOpNo) { + // Determine what to emit for this operand. + Record *OperandNode = II.Operands[InstOpNo].Rec; + if (CGP.operandHasDefault(OperandNode) && + (InstOpNo < NonOverridableOperands || ChildNo >= N->getNumChildren())) { + // This is a predicate or optional def operand which the pattern has not + // overridden, or which we aren't letting it override; emit the 'default + // ops' operands. + const DAGDefaultOperand &DefaultOp + = CGP.getDefaultOperand(OperandNode); + for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) + EmitResultOperand(DefaultOp.DefaultOps[i].get(), InstOps); + continue; + } + + // Otherwise this is a normal operand or a predicate operand without + // 'execute always'; emit it. + + // For operands with multiple sub-operands we may need to emit + // multiple child patterns to cover them all. However, ComplexPattern + // children may themselves emit multiple MI operands. + unsigned NumSubOps = 1; + if (OperandNode->isSubClassOf("Operand")) { + DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); + if (unsigned NumArgs = MIOpInfo->getNumArgs()) + NumSubOps = NumArgs; + } + + unsigned FinalNumOps = InstOps.size() + NumSubOps; + while (InstOps.size() < FinalNumOps) { + const TreePatternNode *Child = N->getChild(ChildNo); + unsigned BeforeAddingNumOps = InstOps.size(); + EmitResultOperand(Child, InstOps); + assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands"); + + // If the operand is an instruction and it produced multiple results, just + // take the first one. + if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction")) + InstOps.resize(BeforeAddingNumOps+1); + + ++ChildNo; + } + } + + // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't + // expand suboperands, use default operands, or other features determined from + // the CodeGenInstruction after the fixed operands, which were handled + // above. Emit the remaining instructions implicitly added by the use for + // variable_ops. + if (II.Operands.isVariadic) { + for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I) + EmitResultOperand(N->getChild(I), InstOps); + } + + // If this node has input glue or explicitly specified input physregs, we + // need to add chained and glued copyfromreg nodes and materialize the glue + // input. + if (isRoot && !PhysRegInputs.empty()) { + // Emit all of the CopyToReg nodes for the input physical registers. These + // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src). + for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) { + const CodeGenRegister *Reg = + CGP.getTargetInfo().getRegBank().getReg(PhysRegInputs[i].first); + AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second, + Reg)); + } + + // Even if the node has no other glue inputs, the resultant node must be + // glued to the CopyFromReg nodes we just generated. + TreeHasInGlue = true; + } + + // Result order: node results, chain, glue + + // Determine the result types. + SmallVector<MVT::SimpleValueType, 4> ResultVTs; + for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) + ResultVTs.push_back(N->getSimpleType(i)); + + // If this is the root instruction of a pattern that has physical registers in + // its result pattern, add output VTs for them. For example, X86 has: + // (set AL, (mul ...)) + // This also handles implicit results like: + // (implicit EFLAGS) + if (isRoot && !Pattern.getDstRegs().empty()) { + // If the root came from an implicit def in the instruction handling stuff, + // don't re-add it. + Record *HandledReg = nullptr; + if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) + HandledReg = II.ImplicitDefs[0]; + + for (Record *Reg : Pattern.getDstRegs()) { + if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; + ResultVTs.push_back(getRegisterValueType(Reg, CGT)); + } + } + + // If this is the root of the pattern and the pattern we're matching includes + // a node that is variadic, mark the generated node as variadic so that it + // gets the excess operands from the input DAG. + int NumFixedArityOperands = -1; + if (isRoot && + Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)) + NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren(); + + // If this is the root node and multiple matched nodes in the input pattern + // have MemRefs in them, have the interpreter collect them and plop them onto + // this node. If there is just one node with MemRefs, leave them on that node + // even if it is not the root. + // + // FIXME3: This is actively incorrect for result patterns with multiple + // memory-referencing instructions. + bool PatternHasMemOperands = + Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP); + + bool NodeHasMemRefs = false; + if (PatternHasMemOperands) { + unsigned NumNodesThatLoadOrStore = + numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP); + bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) && + NumNodesThatLoadOrStore == 1; + NodeHasMemRefs = + NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) || + NumNodesThatLoadOrStore != 1)); + } + + // Determine whether we need to attach a chain to this node. + bool NodeHasChain = false; + if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)) { + // For some instructions, we were able to infer from the pattern whether + // they should have a chain. Otherwise, attach the chain to the root. + // + // FIXME2: This is extremely dubious for several reasons, not the least of + // which it gives special status to instructions with patterns that Pat<> + // nodes can't duplicate. + if (II.hasChain_Inferred) + NodeHasChain = II.hasChain; + else + NodeHasChain = isRoot; + // Instructions which load and store from memory should have a chain, + // regardless of whether they happen to have a pattern saying so. + if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad || + II.hasSideEffects) + NodeHasChain = true; + } + + assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) && + "Node has no result"); + + AddMatcher(new EmitNodeMatcher(II.Namespace.str()+"::"+II.TheDef->getName().str(), + ResultVTs, InstOps, + NodeHasChain, TreeHasInGlue, TreeHasOutGlue, + NodeHasMemRefs, NumFixedArityOperands, + NextRecordedOperandNo)); + + // The non-chain and non-glue results of the newly emitted node get recorded. + for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) { + if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break; + OutputOps.push_back(NextRecordedOperandNo++); + } +} + +void MatcherGen:: +EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, + SmallVectorImpl<unsigned> &ResultOps) { + assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?"); + + // Emit the operand. + SmallVector<unsigned, 8> InputOps; + + // FIXME2: Could easily generalize this to support multiple inputs and outputs + // to the SDNodeXForm. For now we just support one input and one output like + // the old instruction selector. + assert(N->getNumChildren() == 1); + EmitResultOperand(N->getChild(0), InputOps); + + // The input currently must have produced exactly one result. + assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm"); + + AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator())); + ResultOps.push_back(NextRecordedOperandNo++); +} + +void MatcherGen::EmitResultOperand(const TreePatternNode *N, + SmallVectorImpl<unsigned> &ResultOps) { + // This is something selected from the pattern we matched. + if (!N->getName().empty()) + return EmitResultOfNamedOperand(N, ResultOps); + + if (N->isLeaf()) + return EmitResultLeafAsOperand(N, ResultOps); + + Record *OpRec = N->getOperator(); + if (OpRec->isSubClassOf("Instruction")) + return EmitResultInstructionAsOperand(N, ResultOps); + if (OpRec->isSubClassOf("SDNodeXForm")) + return EmitResultSDNodeXFormAsOperand(N, ResultOps); + errs() << "Unknown result node to emit code for: " << *N << '\n'; + PrintFatalError("Unknown node in result pattern!"); +} + +void MatcherGen::EmitResultCode() { + // Patterns that match nodes with (potentially multiple) chain inputs have to + // merge them together into a token factor. This informs the generated code + // what all the chained nodes are. + if (!MatchedChainNodes.empty()) + AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes)); + + // Codegen the root of the result pattern, capturing the resulting values. + SmallVector<unsigned, 8> Ops; + EmitResultOperand(Pattern.getDstPattern(), Ops); + + // At this point, we have however many values the result pattern produces. + // However, the input pattern might not need all of these. If there are + // excess values at the end (such as implicit defs of condition codes etc) + // just lop them off. This doesn't need to worry about glue or chains, just + // explicit results. + // + unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes(); + + // If the pattern also has (implicit) results, count them as well. + if (!Pattern.getDstRegs().empty()) { + // If the root came from an implicit def in the instruction handling stuff, + // don't re-add it. + Record *HandledReg = nullptr; + const TreePatternNode *DstPat = Pattern.getDstPattern(); + if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){ + const CodeGenTarget &CGT = CGP.getTargetInfo(); + CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator()); + + if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) + HandledReg = II.ImplicitDefs[0]; + } + + for (Record *Reg : Pattern.getDstRegs()) { + if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; + ++NumSrcResults; + } + } + + SmallVector<unsigned, 8> Results(Ops); + + // Apply result permutation. + for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern()->getNumResults(); + ++ResNo) { + Results[ResNo] = Ops[Pattern.getDstPattern()->getResultIndex(ResNo)]; + } + + Results.resize(NumSrcResults); + AddMatcher(new CompleteMatchMatcher(Results, Pattern)); +} + + +/// ConvertPatternToMatcher - Create the matcher for the specified pattern with +/// the specified variant. If the variant number is invalid, this returns null. +Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern, + unsigned Variant, + const CodeGenDAGPatterns &CGP) { + MatcherGen Gen(Pattern, CGP); + + // Generate the code for the matcher. + if (Gen.EmitMatcherCode(Variant)) + return nullptr; + + // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence. + // FIXME2: Split result code out to another table, and make the matcher end + // with an "Emit <index>" command. This allows result generation stuff to be + // shared and factored? + + // If the match succeeds, then we generate Pattern. + Gen.EmitResultCode(); + + // Unconditional match. + return Gen.GetMatcher(); +} |