aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/utils/TableGen/DAGISelMatcherGen.cpp
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm16/utils/TableGen/DAGISelMatcherGen.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm16/utils/TableGen/DAGISelMatcherGen.cpp')
-rw-r--r--contrib/libs/llvm16/utils/TableGen/DAGISelMatcherGen.cpp1111
1 files changed, 1111 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/utils/TableGen/DAGISelMatcherGen.cpp b/contrib/libs/llvm16/utils/TableGen/DAGISelMatcherGen.cpp
new file mode 100644
index 0000000000..44bff4c67a
--- /dev/null
+++ b/contrib/libs/llvm16/utils/TableGen/DAGISelMatcherGen.cpp
@@ -0,0 +1,1111 @@
+//===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenDAGPatterns.h"
+#include "CodeGenInstruction.h"
+#include "CodeGenRegisters.h"
+#include "DAGISelMatcher.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/TableGen/Error.h"
+#include "llvm/TableGen/Record.h"
+#include <utility>
+using namespace llvm;
+
+
+/// getRegisterValueType - Look up and return the ValueType of the specified
+/// register. If the register is a member of multiple register classes which
+/// have different associated types, return MVT::Other.
+static MVT::SimpleValueType getRegisterValueType(Record *R,
+ const CodeGenTarget &T) {
+ bool FoundRC = false;
+ MVT::SimpleValueType VT = MVT::Other;
+ const CodeGenRegister *Reg = T.getRegBank().getReg(R);
+
+ for (const auto &RC : T.getRegBank().getRegClasses()) {
+ if (!RC.contains(Reg))
+ continue;
+
+ if (!FoundRC) {
+ FoundRC = true;
+ const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
+ if (VVT.isSimple())
+ VT = VVT.getSimple().SimpleTy;
+ continue;
+ }
+
+#ifndef NDEBUG
+ // If this occurs in multiple register classes, they all have to agree.
+ const ValueTypeByHwMode &T = RC.getValueTypeNum(0);
+ assert((!T.isSimple() || T.getSimple().SimpleTy == VT) &&
+ "ValueType mismatch between register classes for this register");
+#endif
+ }
+ return VT;
+}
+
+
+namespace {
+ class MatcherGen {
+ const PatternToMatch &Pattern;
+ const CodeGenDAGPatterns &CGP;
+
+ /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
+ /// out with all of the types removed. This allows us to insert type checks
+ /// as we scan the tree.
+ TreePatternNodePtr PatWithNoTypes;
+
+ /// VariableMap - A map from variable names ('$dst') to the recorded operand
+ /// number that they were captured as. These are biased by 1 to make
+ /// insertion easier.
+ StringMap<unsigned> VariableMap;
+
+ /// This maintains the recorded operand number that OPC_CheckComplexPattern
+ /// drops each sub-operand into. We don't want to insert these into
+ /// VariableMap because that leads to identity checking if they are
+ /// encountered multiple times. Biased by 1 like VariableMap for
+ /// consistency.
+ StringMap<unsigned> NamedComplexPatternOperands;
+
+ /// NextRecordedOperandNo - As we emit opcodes to record matched values in
+ /// the RecordedNodes array, this keeps track of which slot will be next to
+ /// record into.
+ unsigned NextRecordedOperandNo;
+
+ /// MatchedChainNodes - This maintains the position in the recorded nodes
+ /// array of all of the recorded input nodes that have chains.
+ SmallVector<unsigned, 2> MatchedChainNodes;
+
+ /// MatchedComplexPatterns - This maintains a list of all of the
+ /// ComplexPatterns that we need to check. The second element of each pair
+ /// is the recorded operand number of the input node.
+ SmallVector<std::pair<const TreePatternNode*,
+ unsigned>, 2> MatchedComplexPatterns;
+
+ /// PhysRegInputs - List list has an entry for each explicitly specified
+ /// physreg input to the pattern. The first elt is the Register node, the
+ /// second is the recorded slot number the input pattern match saved it in.
+ SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
+
+ /// Matcher - This is the top level of the generated matcher, the result.
+ Matcher *TheMatcher;
+
+ /// CurPredicate - As we emit matcher nodes, this points to the latest check
+ /// which should have future checks stuck into its Next position.
+ Matcher *CurPredicate;
+ public:
+ MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
+
+ bool EmitMatcherCode(unsigned Variant);
+ void EmitResultCode();
+
+ Matcher *GetMatcher() const { return TheMatcher; }
+ private:
+ void AddMatcher(Matcher *NewNode);
+ void InferPossibleTypes(unsigned ForceMode);
+
+ // Matcher Generation.
+ void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes,
+ unsigned ForceMode);
+ void EmitLeafMatchCode(const TreePatternNode *N);
+ void EmitOperatorMatchCode(const TreePatternNode *N,
+ TreePatternNode *NodeNoTypes,
+ unsigned ForceMode);
+
+ /// If this is the first time a node with unique identifier Name has been
+ /// seen, record it. Otherwise, emit a check to make sure this is the same
+ /// node. Returns true if this is the first encounter.
+ bool recordUniqueNode(ArrayRef<std::string> Names);
+
+ // Result Code Generation.
+ unsigned getNamedArgumentSlot(StringRef Name) {
+ unsigned VarMapEntry = VariableMap[Name];
+ assert(VarMapEntry != 0 &&
+ "Variable referenced but not defined and not caught earlier!");
+ return VarMapEntry-1;
+ }
+
+ void EmitResultOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &ResultOps);
+ void EmitResultOfNamedOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &ResultOps);
+ void EmitResultLeafAsOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &ResultOps);
+ void EmitResultInstructionAsOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &ResultOps);
+ void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &ResultOps);
+ };
+
+} // end anonymous namespace
+
+MatcherGen::MatcherGen(const PatternToMatch &pattern,
+ const CodeGenDAGPatterns &cgp)
+: Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
+ TheMatcher(nullptr), CurPredicate(nullptr) {
+ // We need to produce the matcher tree for the patterns source pattern. To do
+ // this we need to match the structure as well as the types. To do the type
+ // matching, we want to figure out the fewest number of type checks we need to
+ // emit. For example, if there is only one integer type supported by a
+ // target, there should be no type comparisons at all for integer patterns!
+ //
+ // To figure out the fewest number of type checks needed, clone the pattern,
+ // remove the types, then perform type inference on the pattern as a whole.
+ // If there are unresolved types, emit an explicit check for those types,
+ // apply the type to the tree, then rerun type inference. Iterate until all
+ // types are resolved.
+ //
+ PatWithNoTypes = Pattern.getSrcPattern()->clone();
+ PatWithNoTypes->RemoveAllTypes();
+
+ // If there are types that are manifestly known, infer them.
+ InferPossibleTypes(Pattern.getForceMode());
+}
+
+/// InferPossibleTypes - As we emit the pattern, we end up generating type
+/// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
+/// want to propagate implied types as far throughout the tree as possible so
+/// that we avoid doing redundant type checks. This does the type propagation.
+void MatcherGen::InferPossibleTypes(unsigned ForceMode) {
+ // TP - Get *SOME* tree pattern, we don't care which. It is only used for
+ // diagnostics, which we know are impossible at this point.
+ TreePattern &TP = *CGP.pf_begin()->second;
+ TP.getInfer().CodeGen = true;
+ TP.getInfer().ForceMode = ForceMode;
+
+ bool MadeChange = true;
+ while (MadeChange)
+ MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
+ true/*Ignore reg constraints*/);
+}
+
+
+/// AddMatcher - Add a matcher node to the current graph we're building.
+void MatcherGen::AddMatcher(Matcher *NewNode) {
+ if (CurPredicate)
+ CurPredicate->setNext(NewNode);
+ else
+ TheMatcher = NewNode;
+ CurPredicate = NewNode;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Pattern Match Generation
+//===----------------------------------------------------------------------===//
+
+/// EmitLeafMatchCode - Generate matching code for leaf nodes.
+void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
+ assert(N->isLeaf() && "Not a leaf?");
+
+ // Direct match against an integer constant.
+ if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
+ // If this is the root of the dag we're matching, we emit a redundant opcode
+ // check to ensure that this gets folded into the normal top-level
+ // OpcodeSwitch.
+ if (N == Pattern.getSrcPattern()) {
+ const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
+ AddMatcher(new CheckOpcodeMatcher(NI));
+ }
+
+ return AddMatcher(new CheckIntegerMatcher(II->getValue()));
+ }
+
+ // An UnsetInit represents a named node without any constraints.
+ if (isa<UnsetInit>(N->getLeafValue())) {
+ assert(N->hasName() && "Unnamed ? leaf");
+ return;
+ }
+
+ DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
+ if (!DI) {
+ errs() << "Unknown leaf kind: " << *N << "\n";
+ abort();
+ }
+
+ Record *LeafRec = DI->getDef();
+
+ // A ValueType leaf node can represent a register when named, or itself when
+ // unnamed.
+ if (LeafRec->isSubClassOf("ValueType")) {
+ // A named ValueType leaf always matches: (add i32:$a, i32:$b).
+ if (N->hasName())
+ return;
+ // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
+ return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
+ }
+
+ if (// Handle register references. Nothing to do here, they always match.
+ LeafRec->isSubClassOf("RegisterClass") ||
+ LeafRec->isSubClassOf("RegisterOperand") ||
+ LeafRec->isSubClassOf("PointerLikeRegClass") ||
+ LeafRec->isSubClassOf("SubRegIndex") ||
+ // Place holder for SRCVALUE nodes. Nothing to do here.
+ LeafRec->getName() == "srcvalue")
+ return;
+
+ // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
+ // record the register
+ if (LeafRec->isSubClassOf("Register")) {
+ AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(),
+ NextRecordedOperandNo));
+ PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
+ return;
+ }
+
+ if (LeafRec->isSubClassOf("CondCode"))
+ return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
+
+ if (LeafRec->isSubClassOf("ComplexPattern")) {
+ // We can't model ComplexPattern uses that don't have their name taken yet.
+ // The OPC_CheckComplexPattern operation implicitly records the results.
+ if (N->getName().empty()) {
+ std::string S;
+ raw_string_ostream OS(S);
+ OS << "We expect complex pattern uses to have names: " << *N;
+ PrintFatalError(S);
+ }
+
+ // Remember this ComplexPattern so that we can emit it after all the other
+ // structural matches are done.
+ unsigned InputOperand = VariableMap[N->getName()] - 1;
+ MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
+ return;
+ }
+
+ if (LeafRec->getName() == "immAllOnesV") {
+ // If this is the root of the dag we're matching, we emit a redundant opcode
+ // check to ensure that this gets folded into the normal top-level
+ // OpcodeSwitch.
+ if (N == Pattern.getSrcPattern()) {
+ MVT VT = N->getSimpleType(0);
+ StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector";
+ const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name));
+ AddMatcher(new CheckOpcodeMatcher(NI));
+ }
+ return AddMatcher(new CheckImmAllOnesVMatcher());
+ }
+ if (LeafRec->getName() == "immAllZerosV") {
+ // If this is the root of the dag we're matching, we emit a redundant opcode
+ // check to ensure that this gets folded into the normal top-level
+ // OpcodeSwitch.
+ if (N == Pattern.getSrcPattern()) {
+ MVT VT = N->getSimpleType(0);
+ StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector";
+ const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name));
+ AddMatcher(new CheckOpcodeMatcher(NI));
+ }
+ return AddMatcher(new CheckImmAllZerosVMatcher());
+ }
+
+ errs() << "Unknown leaf kind: " << *N << "\n";
+ abort();
+}
+
+void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
+ TreePatternNode *NodeNoTypes,
+ unsigned ForceMode) {
+ assert(!N->isLeaf() && "Not an operator?");
+
+ if (N->getOperator()->isSubClassOf("ComplexPattern")) {
+ // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
+ // "MY_PAT:op1:op2". We should already have validated that the uses are
+ // consistent.
+ std::string PatternName = std::string(N->getOperator()->getName());
+ for (unsigned i = 0; i < N->getNumChildren(); ++i) {
+ PatternName += ":";
+ PatternName += N->getChild(i)->getName();
+ }
+
+ if (recordUniqueNode(PatternName)) {
+ auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
+ MatchedComplexPatterns.push_back(NodeAndOpNum);
+ }
+
+ return;
+ }
+
+ const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
+
+ // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
+ // a constant without a predicate fn that has more than one bit set, handle
+ // this as a special case. This is usually for targets that have special
+ // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
+ // handling stuff). Using these instructions is often far more efficient
+ // than materializing the constant. Unfortunately, both the instcombiner
+ // and the dag combiner can often infer that bits are dead, and thus drop
+ // them from the mask in the dag. For example, it might turn 'AND X, 255'
+ // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
+ // to handle this.
+ if ((N->getOperator()->getName() == "and" ||
+ N->getOperator()->getName() == "or") &&
+ N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateCalls().empty() &&
+ N->getPredicateCalls().empty()) {
+ if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
+ if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
+ // If this is at the root of the pattern, we emit a redundant
+ // CheckOpcode so that the following checks get factored properly under
+ // a single opcode check.
+ if (N == Pattern.getSrcPattern())
+ AddMatcher(new CheckOpcodeMatcher(CInfo));
+
+ // Emit the CheckAndImm/CheckOrImm node.
+ if (N->getOperator()->getName() == "and")
+ AddMatcher(new CheckAndImmMatcher(II->getValue()));
+ else
+ AddMatcher(new CheckOrImmMatcher(II->getValue()));
+
+ // Match the LHS of the AND as appropriate.
+ AddMatcher(new MoveChildMatcher(0));
+ EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0), ForceMode);
+ AddMatcher(new MoveParentMatcher());
+ return;
+ }
+ }
+ }
+
+ // Check that the current opcode lines up.
+ AddMatcher(new CheckOpcodeMatcher(CInfo));
+
+ // If this node has memory references (i.e. is a load or store), tell the
+ // interpreter to capture them in the memref array.
+ if (N->NodeHasProperty(SDNPMemOperand, CGP))
+ AddMatcher(new RecordMemRefMatcher());
+
+ // If this node has a chain, then the chain is operand #0 is the SDNode, and
+ // the child numbers of the node are all offset by one.
+ unsigned OpNo = 0;
+ if (N->NodeHasProperty(SDNPHasChain, CGP)) {
+ // Record the node and remember it in our chained nodes list.
+ AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
+ "' chained node",
+ NextRecordedOperandNo));
+ // Remember all of the input chains our pattern will match.
+ MatchedChainNodes.push_back(NextRecordedOperandNo++);
+
+ // Don't look at the input chain when matching the tree pattern to the
+ // SDNode.
+ OpNo = 1;
+
+ // If this node is not the root and the subtree underneath it produces a
+ // chain, then the result of matching the node is also produce a chain.
+ // Beyond that, this means that we're also folding (at least) the root node
+ // into the node that produce the chain (for example, matching
+ // "(add reg, (load ptr))" as a add_with_memory on X86). This is
+ // problematic, if the 'reg' node also uses the load (say, its chain).
+ // Graphically:
+ //
+ // [LD]
+ // ^ ^
+ // | \ DAG's like cheese.
+ // / |
+ // / [YY]
+ // | ^
+ // [XX]--/
+ //
+ // It would be invalid to fold XX and LD. In this case, folding the two
+ // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
+ // To prevent this, we emit a dynamic check for legality before allowing
+ // this to be folded.
+ //
+ const TreePatternNode *Root = Pattern.getSrcPattern();
+ if (N != Root) { // Not the root of the pattern.
+ // If there is a node between the root and this node, then we definitely
+ // need to emit the check.
+ bool NeedCheck = !Root->hasChild(N);
+
+ // If it *is* an immediate child of the root, we can still need a check if
+ // the root SDNode has multiple inputs. For us, this means that it is an
+ // intrinsic, has multiple operands, or has other inputs like chain or
+ // glue).
+ if (!NeedCheck) {
+ const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
+ NeedCheck =
+ Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
+ Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
+ Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
+ PInfo.getNumOperands() > 1 ||
+ PInfo.hasProperty(SDNPHasChain) ||
+ PInfo.hasProperty(SDNPInGlue) ||
+ PInfo.hasProperty(SDNPOptInGlue);
+ }
+
+ if (NeedCheck)
+ AddMatcher(new CheckFoldableChainNodeMatcher());
+ }
+ }
+
+ // If this node has an output glue and isn't the root, remember it.
+ if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
+ N != Pattern.getSrcPattern()) {
+ // TODO: This redundantly records nodes with both glues and chains.
+
+ // Record the node and remember it in our chained nodes list.
+ AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
+ "' glue output node",
+ NextRecordedOperandNo));
+ }
+
+ // If this node is known to have an input glue or if it *might* have an input
+ // glue, capture it as the glue input of the pattern.
+ if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
+ N->NodeHasProperty(SDNPInGlue, CGP))
+ AddMatcher(new CaptureGlueInputMatcher());
+
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
+ // Get the code suitable for matching this child. Move to the child, check
+ // it then move back to the parent.
+ AddMatcher(new MoveChildMatcher(OpNo));
+ EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i), ForceMode);
+ AddMatcher(new MoveParentMatcher());
+ }
+}
+
+bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) {
+ unsigned Entry = 0;
+ for (const std::string &Name : Names) {
+ unsigned &VarMapEntry = VariableMap[Name];
+ if (!Entry)
+ Entry = VarMapEntry;
+ assert(Entry == VarMapEntry);
+ }
+
+ bool NewRecord = false;
+ if (Entry == 0) {
+ // If it is a named node, we must emit a 'Record' opcode.
+ std::string WhatFor;
+ for (const std::string &Name : Names) {
+ if (!WhatFor.empty())
+ WhatFor += ',';
+ WhatFor += "$" + Name;
+ }
+ AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo));
+ Entry = ++NextRecordedOperandNo;
+ NewRecord = true;
+ } else {
+ // If we get here, this is a second reference to a specific name. Since
+ // we already have checked that the first reference is valid, we don't
+ // have to recursively match it, just check that it's the same as the
+ // previously named thing.
+ AddMatcher(new CheckSameMatcher(Entry-1));
+ }
+
+ for (const std::string &Name : Names)
+ VariableMap[Name] = Entry;
+
+ return NewRecord;
+}
+
+void MatcherGen::EmitMatchCode(const TreePatternNode *N,
+ TreePatternNode *NodeNoTypes,
+ unsigned ForceMode) {
+ // If N and NodeNoTypes don't agree on a type, then this is a case where we
+ // need to do a type check. Emit the check, apply the type to NodeNoTypes and
+ // reinfer any correlated types.
+ SmallVector<unsigned, 2> ResultsToTypeCheck;
+
+ for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
+ if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
+ NodeNoTypes->setType(i, N->getExtType(i));
+ InferPossibleTypes(ForceMode);
+ ResultsToTypeCheck.push_back(i);
+ }
+
+ // If this node has a name associated with it, capture it in VariableMap. If
+ // we already saw this in the pattern, emit code to verify dagness.
+ SmallVector<std::string, 4> Names;
+ if (!N->getName().empty())
+ Names.push_back(N->getName());
+
+ for (const ScopedName &Name : N->getNamesAsPredicateArg()) {
+ Names.push_back(("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str());
+ }
+
+ if (!Names.empty()) {
+ if (!recordUniqueNode(Names))
+ return;
+ }
+
+ if (N->isLeaf())
+ EmitLeafMatchCode(N);
+ else
+ EmitOperatorMatchCode(N, NodeNoTypes, ForceMode);
+
+ // If there are node predicates for this node, generate their checks.
+ for (unsigned i = 0, e = N->getPredicateCalls().size(); i != e; ++i) {
+ const TreePredicateCall &Pred = N->getPredicateCalls()[i];
+ SmallVector<unsigned, 4> Operands;
+ if (Pred.Fn.usesOperands()) {
+ TreePattern *TP = Pred.Fn.getOrigPatFragRecord();
+ for (unsigned i = 0; i < TP->getNumArgs(); ++i) {
+ std::string Name =
+ ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str();
+ Operands.push_back(getNamedArgumentSlot(Name));
+ }
+ }
+ AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands));
+ }
+
+ for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
+ AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]),
+ ResultsToTypeCheck[i]));
+}
+
+/// EmitMatcherCode - Generate the code that matches the predicate of this
+/// pattern for the specified Variant. If the variant is invalid this returns
+/// true and does not generate code, if it is valid, it returns false.
+bool MatcherGen::EmitMatcherCode(unsigned Variant) {
+ // If the root of the pattern is a ComplexPattern and if it is specified to
+ // match some number of root opcodes, these are considered to be our variants.
+ // Depending on which variant we're generating code for, emit the root opcode
+ // check.
+ if (const ComplexPattern *CP =
+ Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
+ const std::vector<Record*> &OpNodes = CP->getRootNodes();
+ assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
+ if (Variant >= OpNodes.size()) return true;
+
+ AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
+ } else {
+ if (Variant != 0) return true;
+ }
+
+ // Emit the matcher for the pattern structure and types.
+ EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes.get(),
+ Pattern.getForceMode());
+
+ // If the pattern has a predicate on it (e.g. only enabled when a subtarget
+ // feature is around, do the check).
+ if (!Pattern.getPredicateCheck().empty())
+ AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
+
+ // Now that we've completed the structural type match, emit any ComplexPattern
+ // checks (e.g. addrmode matches). We emit this after the structural match
+ // because they are generally more expensive to evaluate and more difficult to
+ // factor.
+ for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
+ auto N = MatchedComplexPatterns[i].first;
+
+ // Remember where the results of this match get stuck.
+ if (N->isLeaf()) {
+ NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
+ } else {
+ unsigned CurOp = NextRecordedOperandNo;
+ for (unsigned i = 0; i < N->getNumChildren(); ++i) {
+ NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
+ CurOp += N->getChild(i)->getNumMIResults(CGP);
+ }
+ }
+
+ // Get the slot we recorded the value in from the name on the node.
+ unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
+
+ const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
+
+ // Emit a CheckComplexPat operation, which does the match (aborting if it
+ // fails) and pushes the matched operands onto the recorded nodes list.
+ AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
+ N->getName(), NextRecordedOperandNo));
+
+ // Record the right number of operands.
+ NextRecordedOperandNo += CP.getNumOperands();
+ if (CP.hasProperty(SDNPHasChain)) {
+ // If the complex pattern has a chain, then we need to keep track of the
+ // fact that we just recorded a chain input. The chain input will be
+ // matched as the last operand of the predicate if it was successful.
+ ++NextRecordedOperandNo; // Chained node operand.
+
+ // It is the last operand recorded.
+ assert(NextRecordedOperandNo > 1 &&
+ "Should have recorded input/result chains at least!");
+ MatchedChainNodes.push_back(NextRecordedOperandNo-1);
+ }
+
+ // TODO: Complex patterns can't have output glues, if they did, we'd want
+ // to record them.
+ }
+
+ return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Node Result Generation
+//===----------------------------------------------------------------------===//
+
+void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &ResultOps){
+ assert(!N->getName().empty() && "Operand not named!");
+
+ if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
+ // Complex operands have already been completely selected, just find the
+ // right slot ant add the arguments directly.
+ for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
+ ResultOps.push_back(SlotNo - 1 + i);
+
+ return;
+ }
+
+ unsigned SlotNo = getNamedArgumentSlot(N->getName());
+
+ // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
+ // version of the immediate so that it doesn't get selected due to some other
+ // node use.
+ if (!N->isLeaf()) {
+ StringRef OperatorName = N->getOperator()->getName();
+ if (OperatorName == "imm" || OperatorName == "fpimm") {
+ AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
+ ResultOps.push_back(NextRecordedOperandNo++);
+ return;
+ }
+ }
+
+ for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
+ ResultOps.push_back(SlotNo + i);
+}
+
+void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &ResultOps) {
+ assert(N->isLeaf() && "Must be a leaf");
+
+ if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
+ AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0)));
+ ResultOps.push_back(NextRecordedOperandNo++);
+ return;
+ }
+
+ // If this is an explicit register reference, handle it.
+ if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
+ Record *Def = DI->getDef();
+ if (Def->isSubClassOf("Register")) {
+ const CodeGenRegister *Reg =
+ CGP.getTargetInfo().getRegBank().getReg(Def);
+ AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0)));
+ ResultOps.push_back(NextRecordedOperandNo++);
+ return;
+ }
+
+ if (Def->getName() == "zero_reg") {
+ AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0)));
+ ResultOps.push_back(NextRecordedOperandNo++);
+ return;
+ }
+
+ if (Def->getName() == "undef_tied_input") {
+ std::array<MVT::SimpleValueType, 1> ResultVTs = {{ N->getSimpleType(0) }};
+ std::array<unsigned, 0> InstOps;
+ auto IDOperandNo = NextRecordedOperandNo++;
+ AddMatcher(new EmitNodeMatcher("TargetOpcode::IMPLICIT_DEF",
+ ResultVTs, InstOps, false, false, false,
+ false, -1, IDOperandNo));
+ ResultOps.push_back(IDOperandNo);
+ return;
+ }
+
+ // Handle a reference to a register class. This is used
+ // in COPY_TO_SUBREG instructions.
+ if (Def->isSubClassOf("RegisterOperand"))
+ Def = Def->getValueAsDef("RegClass");
+ if (Def->isSubClassOf("RegisterClass")) {
+ // If the register class has an enum integer value greater than 127, the
+ // encoding overflows the limit of 7 bits, which precludes the use of
+ // StringIntegerMatcher. In this case, fallback to using IntegerMatcher.
+ const CodeGenRegisterClass &RC =
+ CGP.getTargetInfo().getRegisterClass(Def);
+ if (RC.EnumValue <= 127) {
+ std::string Value = getQualifiedName(Def) + "RegClassID";
+ AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
+ ResultOps.push_back(NextRecordedOperandNo++);
+ } else {
+ AddMatcher(new EmitIntegerMatcher(RC.EnumValue, MVT::i32));
+ ResultOps.push_back(NextRecordedOperandNo++);
+ }
+ return;
+ }
+
+ // Handle a subregister index. This is used for INSERT_SUBREG etc.
+ if (Def->isSubClassOf("SubRegIndex")) {
+ const CodeGenRegBank &RB = CGP.getTargetInfo().getRegBank();
+ // If we have more than 127 subreg indices the encoding can overflow
+ // 7 bit and we cannot use StringInteger.
+ if (RB.getSubRegIndices().size() > 127) {
+ const CodeGenSubRegIndex *I = RB.findSubRegIdx(Def);
+ assert(I && "Cannot find subreg index by name!");
+ if (I->EnumValue > 127) {
+ AddMatcher(new EmitIntegerMatcher(I->EnumValue, MVT::i32));
+ ResultOps.push_back(NextRecordedOperandNo++);
+ return;
+ }
+ }
+ std::string Value = getQualifiedName(Def);
+ AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
+ ResultOps.push_back(NextRecordedOperandNo++);
+ return;
+ }
+ }
+
+ errs() << "unhandled leaf node:\n";
+ N->dump();
+}
+
+static bool
+mayInstNodeLoadOrStore(const TreePatternNode *N,
+ const CodeGenDAGPatterns &CGP) {
+ Record *Op = N->getOperator();
+ const CodeGenTarget &CGT = CGP.getTargetInfo();
+ CodeGenInstruction &II = CGT.getInstruction(Op);
+ return II.mayLoad || II.mayStore;
+}
+
+static unsigned
+numNodesThatMayLoadOrStore(const TreePatternNode *N,
+ const CodeGenDAGPatterns &CGP) {
+ if (N->isLeaf())
+ return 0;
+
+ Record *OpRec = N->getOperator();
+ if (!OpRec->isSubClassOf("Instruction"))
+ return 0;
+
+ unsigned Count = 0;
+ if (mayInstNodeLoadOrStore(N, CGP))
+ ++Count;
+
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+ Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
+
+ return Count;
+}
+
+void MatcherGen::
+EmitResultInstructionAsOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &OutputOps) {
+ Record *Op = N->getOperator();
+ const CodeGenTarget &CGT = CGP.getTargetInfo();
+ CodeGenInstruction &II = CGT.getInstruction(Op);
+ const DAGInstruction &Inst = CGP.getInstruction(Op);
+
+ bool isRoot = N == Pattern.getDstPattern();
+
+ // TreeHasOutGlue - True if this tree has glue.
+ bool TreeHasInGlue = false, TreeHasOutGlue = false;
+ if (isRoot) {
+ const TreePatternNode *SrcPat = Pattern.getSrcPattern();
+ TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
+ SrcPat->TreeHasProperty(SDNPInGlue, CGP);
+
+ // FIXME2: this is checking the entire pattern, not just the node in
+ // question, doing this just for the root seems like a total hack.
+ TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
+ }
+
+ // NumResults - This is the number of results produced by the instruction in
+ // the "outs" list.
+ unsigned NumResults = Inst.getNumResults();
+
+ // Number of operands we know the output instruction must have. If it is
+ // variadic, we could have more operands.
+ unsigned NumFixedOperands = II.Operands.size();
+
+ SmallVector<unsigned, 8> InstOps;
+
+ // Loop over all of the fixed operands of the instruction pattern, emitting
+ // code to fill them all in. The node 'N' usually has number children equal to
+ // the number of input operands of the instruction. However, in cases where
+ // there are predicate operands for an instruction, we need to fill in the
+ // 'execute always' values. Match up the node operands to the instruction
+ // operands to do this.
+ unsigned ChildNo = 0;
+
+ // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
+ // number of operands at the end of the list which have default values.
+ // Those can come from the pattern if it provides enough arguments, or be
+ // filled in with the default if the pattern hasn't provided them. But any
+ // operand with a default value _before_ the last mandatory one will be
+ // filled in with their defaults unconditionally.
+ unsigned NonOverridableOperands = NumFixedOperands;
+ while (NonOverridableOperands > NumResults &&
+ CGP.operandHasDefault(II.Operands[NonOverridableOperands-1].Rec))
+ --NonOverridableOperands;
+
+ for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
+ InstOpNo != e; ++InstOpNo) {
+ // Determine what to emit for this operand.
+ Record *OperandNode = II.Operands[InstOpNo].Rec;
+ if (CGP.operandHasDefault(OperandNode) &&
+ (InstOpNo < NonOverridableOperands || ChildNo >= N->getNumChildren())) {
+ // This is a predicate or optional def operand which the pattern has not
+ // overridden, or which we aren't letting it override; emit the 'default
+ // ops' operands.
+ const DAGDefaultOperand &DefaultOp
+ = CGP.getDefaultOperand(OperandNode);
+ for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
+ EmitResultOperand(DefaultOp.DefaultOps[i].get(), InstOps);
+ continue;
+ }
+
+ // Otherwise this is a normal operand or a predicate operand without
+ // 'execute always'; emit it.
+
+ // For operands with multiple sub-operands we may need to emit
+ // multiple child patterns to cover them all. However, ComplexPattern
+ // children may themselves emit multiple MI operands.
+ unsigned NumSubOps = 1;
+ if (OperandNode->isSubClassOf("Operand")) {
+ DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
+ if (unsigned NumArgs = MIOpInfo->getNumArgs())
+ NumSubOps = NumArgs;
+ }
+
+ unsigned FinalNumOps = InstOps.size() + NumSubOps;
+ while (InstOps.size() < FinalNumOps) {
+ const TreePatternNode *Child = N->getChild(ChildNo);
+ unsigned BeforeAddingNumOps = InstOps.size();
+ EmitResultOperand(Child, InstOps);
+ assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
+
+ // If the operand is an instruction and it produced multiple results, just
+ // take the first one.
+ if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
+ InstOps.resize(BeforeAddingNumOps+1);
+
+ ++ChildNo;
+ }
+ }
+
+ // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
+ // expand suboperands, use default operands, or other features determined from
+ // the CodeGenInstruction after the fixed operands, which were handled
+ // above. Emit the remaining instructions implicitly added by the use for
+ // variable_ops.
+ if (II.Operands.isVariadic) {
+ for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
+ EmitResultOperand(N->getChild(I), InstOps);
+ }
+
+ // If this node has input glue or explicitly specified input physregs, we
+ // need to add chained and glued copyfromreg nodes and materialize the glue
+ // input.
+ if (isRoot && !PhysRegInputs.empty()) {
+ // Emit all of the CopyToReg nodes for the input physical registers. These
+ // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
+ for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) {
+ const CodeGenRegister *Reg =
+ CGP.getTargetInfo().getRegBank().getReg(PhysRegInputs[i].first);
+ AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
+ Reg));
+ }
+
+ // Even if the node has no other glue inputs, the resultant node must be
+ // glued to the CopyFromReg nodes we just generated.
+ TreeHasInGlue = true;
+ }
+
+ // Result order: node results, chain, glue
+
+ // Determine the result types.
+ SmallVector<MVT::SimpleValueType, 4> ResultVTs;
+ for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
+ ResultVTs.push_back(N->getSimpleType(i));
+
+ // If this is the root instruction of a pattern that has physical registers in
+ // its result pattern, add output VTs for them. For example, X86 has:
+ // (set AL, (mul ...))
+ // This also handles implicit results like:
+ // (implicit EFLAGS)
+ if (isRoot && !Pattern.getDstRegs().empty()) {
+ // If the root came from an implicit def in the instruction handling stuff,
+ // don't re-add it.
+ Record *HandledReg = nullptr;
+ if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
+ HandledReg = II.ImplicitDefs[0];
+
+ for (Record *Reg : Pattern.getDstRegs()) {
+ if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
+ ResultVTs.push_back(getRegisterValueType(Reg, CGT));
+ }
+ }
+
+ // If this is the root of the pattern and the pattern we're matching includes
+ // a node that is variadic, mark the generated node as variadic so that it
+ // gets the excess operands from the input DAG.
+ int NumFixedArityOperands = -1;
+ if (isRoot &&
+ Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
+ NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
+
+ // If this is the root node and multiple matched nodes in the input pattern
+ // have MemRefs in them, have the interpreter collect them and plop them onto
+ // this node. If there is just one node with MemRefs, leave them on that node
+ // even if it is not the root.
+ //
+ // FIXME3: This is actively incorrect for result patterns with multiple
+ // memory-referencing instructions.
+ bool PatternHasMemOperands =
+ Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
+
+ bool NodeHasMemRefs = false;
+ if (PatternHasMemOperands) {
+ unsigned NumNodesThatLoadOrStore =
+ numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
+ bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
+ NumNodesThatLoadOrStore == 1;
+ NodeHasMemRefs =
+ NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
+ NumNodesThatLoadOrStore != 1));
+ }
+
+ // Determine whether we need to attach a chain to this node.
+ bool NodeHasChain = false;
+ if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)) {
+ // For some instructions, we were able to infer from the pattern whether
+ // they should have a chain. Otherwise, attach the chain to the root.
+ //
+ // FIXME2: This is extremely dubious for several reasons, not the least of
+ // which it gives special status to instructions with patterns that Pat<>
+ // nodes can't duplicate.
+ if (II.hasChain_Inferred)
+ NodeHasChain = II.hasChain;
+ else
+ NodeHasChain = isRoot;
+ // Instructions which load and store from memory should have a chain,
+ // regardless of whether they happen to have a pattern saying so.
+ if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
+ II.hasSideEffects)
+ NodeHasChain = true;
+ }
+
+ assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
+ "Node has no result");
+
+ AddMatcher(new EmitNodeMatcher(II.Namespace.str()+"::"+II.TheDef->getName().str(),
+ ResultVTs, InstOps,
+ NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
+ NodeHasMemRefs, NumFixedArityOperands,
+ NextRecordedOperandNo));
+
+ // The non-chain and non-glue results of the newly emitted node get recorded.
+ for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
+ if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
+ OutputOps.push_back(NextRecordedOperandNo++);
+ }
+}
+
+void MatcherGen::
+EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &ResultOps) {
+ assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
+
+ // Emit the operand.
+ SmallVector<unsigned, 8> InputOps;
+
+ // FIXME2: Could easily generalize this to support multiple inputs and outputs
+ // to the SDNodeXForm. For now we just support one input and one output like
+ // the old instruction selector.
+ assert(N->getNumChildren() == 1);
+ EmitResultOperand(N->getChild(0), InputOps);
+
+ // The input currently must have produced exactly one result.
+ assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
+
+ AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
+ ResultOps.push_back(NextRecordedOperandNo++);
+}
+
+void MatcherGen::EmitResultOperand(const TreePatternNode *N,
+ SmallVectorImpl<unsigned> &ResultOps) {
+ // This is something selected from the pattern we matched.
+ if (!N->getName().empty())
+ return EmitResultOfNamedOperand(N, ResultOps);
+
+ if (N->isLeaf())
+ return EmitResultLeafAsOperand(N, ResultOps);
+
+ Record *OpRec = N->getOperator();
+ if (OpRec->isSubClassOf("Instruction"))
+ return EmitResultInstructionAsOperand(N, ResultOps);
+ if (OpRec->isSubClassOf("SDNodeXForm"))
+ return EmitResultSDNodeXFormAsOperand(N, ResultOps);
+ errs() << "Unknown result node to emit code for: " << *N << '\n';
+ PrintFatalError("Unknown node in result pattern!");
+}
+
+void MatcherGen::EmitResultCode() {
+ // Patterns that match nodes with (potentially multiple) chain inputs have to
+ // merge them together into a token factor. This informs the generated code
+ // what all the chained nodes are.
+ if (!MatchedChainNodes.empty())
+ AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
+
+ // Codegen the root of the result pattern, capturing the resulting values.
+ SmallVector<unsigned, 8> Ops;
+ EmitResultOperand(Pattern.getDstPattern(), Ops);
+
+ // At this point, we have however many values the result pattern produces.
+ // However, the input pattern might not need all of these. If there are
+ // excess values at the end (such as implicit defs of condition codes etc)
+ // just lop them off. This doesn't need to worry about glue or chains, just
+ // explicit results.
+ //
+ unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
+
+ // If the pattern also has (implicit) results, count them as well.
+ if (!Pattern.getDstRegs().empty()) {
+ // If the root came from an implicit def in the instruction handling stuff,
+ // don't re-add it.
+ Record *HandledReg = nullptr;
+ const TreePatternNode *DstPat = Pattern.getDstPattern();
+ if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
+ const CodeGenTarget &CGT = CGP.getTargetInfo();
+ CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
+
+ if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
+ HandledReg = II.ImplicitDefs[0];
+ }
+
+ for (Record *Reg : Pattern.getDstRegs()) {
+ if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
+ ++NumSrcResults;
+ }
+ }
+
+ SmallVector<unsigned, 8> Results(Ops);
+
+ // Apply result permutation.
+ for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern()->getNumResults();
+ ++ResNo) {
+ Results[ResNo] = Ops[Pattern.getDstPattern()->getResultIndex(ResNo)];
+ }
+
+ Results.resize(NumSrcResults);
+ AddMatcher(new CompleteMatchMatcher(Results, Pattern));
+}
+
+
+/// ConvertPatternToMatcher - Create the matcher for the specified pattern with
+/// the specified variant. If the variant number is invalid, this returns null.
+Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
+ unsigned Variant,
+ const CodeGenDAGPatterns &CGP) {
+ MatcherGen Gen(Pattern, CGP);
+
+ // Generate the code for the matcher.
+ if (Gen.EmitMatcherCode(Variant))
+ return nullptr;
+
+ // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
+ // FIXME2: Split result code out to another table, and make the matcher end
+ // with an "Emit <index>" command. This allows result generation stuff to be
+ // shared and factored?
+
+ // If the match succeeds, then we generate Pattern.
+ Gen.EmitResultCode();
+
+ // Unconditional match.
+ return Gen.GetMatcher();
+}