aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/utils/TableGen/CodeGenTarget.cpp
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm16/utils/TableGen/CodeGenTarget.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm16/utils/TableGen/CodeGenTarget.cpp')
-rw-r--r--contrib/libs/llvm16/utils/TableGen/CodeGenTarget.cpp952
1 files changed, 952 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/utils/TableGen/CodeGenTarget.cpp b/contrib/libs/llvm16/utils/TableGen/CodeGenTarget.cpp
new file mode 100644
index 0000000000..b7240f0130
--- /dev/null
+++ b/contrib/libs/llvm16/utils/TableGen/CodeGenTarget.cpp
@@ -0,0 +1,952 @@
+//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This class wraps target description classes used by the various code
+// generation TableGen backends. This makes it easier to access the data and
+// provides a single place that needs to check it for validity. All of these
+// classes abort on error conditions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenTarget.h"
+#include "CodeGenInstruction.h"
+#include "CodeGenIntrinsics.h"
+#include "CodeGenSchedule.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/TableGen/Error.h"
+#include "llvm/TableGen/Record.h"
+#include <algorithm>
+using namespace llvm;
+
+cl::OptionCategory AsmParserCat("Options for -gen-asm-parser");
+cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer");
+
+static cl::opt<unsigned>
+ AsmParserNum("asmparsernum", cl::init(0),
+ cl::desc("Make -gen-asm-parser emit assembly parser #N"),
+ cl::cat(AsmParserCat));
+
+static cl::opt<unsigned>
+ AsmWriterNum("asmwriternum", cl::init(0),
+ cl::desc("Make -gen-asm-writer emit assembly writer #N"),
+ cl::cat(AsmWriterCat));
+
+/// getValueType - Return the MVT::SimpleValueType that the specified TableGen
+/// record corresponds to.
+MVT::SimpleValueType llvm::getValueType(Record *Rec) {
+ return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
+}
+
+StringRef llvm::getName(MVT::SimpleValueType T) {
+ switch (T) {
+ case MVT::Other: return "UNKNOWN";
+ case MVT::iPTR: return "TLI.getPointerTy()";
+ case MVT::iPTRAny: return "TLI.getPointerTy()";
+ default: return getEnumName(T);
+ }
+}
+
+StringRef llvm::getEnumName(MVT::SimpleValueType T) {
+ // clang-format off
+ switch (T) {
+ case MVT::Other: return "MVT::Other";
+ case MVT::i1: return "MVT::i1";
+ case MVT::i2: return "MVT::i2";
+ case MVT::i4: return "MVT::i4";
+ case MVT::i8: return "MVT::i8";
+ case MVT::i16: return "MVT::i16";
+ case MVT::i32: return "MVT::i32";
+ case MVT::i64: return "MVT::i64";
+ case MVT::i128: return "MVT::i128";
+ case MVT::Any: return "MVT::Any";
+ case MVT::iAny: return "MVT::iAny";
+ case MVT::fAny: return "MVT::fAny";
+ case MVT::vAny: return "MVT::vAny";
+ case MVT::f16: return "MVT::f16";
+ case MVT::bf16: return "MVT::bf16";
+ case MVT::f32: return "MVT::f32";
+ case MVT::f64: return "MVT::f64";
+ case MVT::f80: return "MVT::f80";
+ case MVT::f128: return "MVT::f128";
+ case MVT::ppcf128: return "MVT::ppcf128";
+ case MVT::x86mmx: return "MVT::x86mmx";
+ case MVT::x86amx: return "MVT::x86amx";
+ case MVT::i64x8: return "MVT::i64x8";
+ case MVT::Glue: return "MVT::Glue";
+ case MVT::isVoid: return "MVT::isVoid";
+ case MVT::v1i1: return "MVT::v1i1";
+ case MVT::v2i1: return "MVT::v2i1";
+ case MVT::v4i1: return "MVT::v4i1";
+ case MVT::v8i1: return "MVT::v8i1";
+ case MVT::v16i1: return "MVT::v16i1";
+ case MVT::v32i1: return "MVT::v32i1";
+ case MVT::v64i1: return "MVT::v64i1";
+ case MVT::v128i1: return "MVT::v128i1";
+ case MVT::v256i1: return "MVT::v256i1";
+ case MVT::v512i1: return "MVT::v512i1";
+ case MVT::v1024i1: return "MVT::v1024i1";
+ case MVT::v2048i1: return "MVT::v2048i1";
+ case MVT::v128i2: return "MVT::v128i2";
+ case MVT::v256i2: return "MVT::v256i2";
+ case MVT::v64i4: return "MVT::v64i4";
+ case MVT::v128i4: return "MVT::v128i4";
+ case MVT::v1i8: return "MVT::v1i8";
+ case MVT::v2i8: return "MVT::v2i8";
+ case MVT::v4i8: return "MVT::v4i8";
+ case MVT::v8i8: return "MVT::v8i8";
+ case MVT::v16i8: return "MVT::v16i8";
+ case MVT::v32i8: return "MVT::v32i8";
+ case MVT::v64i8: return "MVT::v64i8";
+ case MVT::v128i8: return "MVT::v128i8";
+ case MVT::v256i8: return "MVT::v256i8";
+ case MVT::v512i8: return "MVT::v512i8";
+ case MVT::v1024i8: return "MVT::v1024i8";
+ case MVT::v1i16: return "MVT::v1i16";
+ case MVT::v2i16: return "MVT::v2i16";
+ case MVT::v3i16: return "MVT::v3i16";
+ case MVT::v4i16: return "MVT::v4i16";
+ case MVT::v8i16: return "MVT::v8i16";
+ case MVT::v16i16: return "MVT::v16i16";
+ case MVT::v32i16: return "MVT::v32i16";
+ case MVT::v64i16: return "MVT::v64i16";
+ case MVT::v128i16: return "MVT::v128i16";
+ case MVT::v256i16: return "MVT::v256i16";
+ case MVT::v512i16: return "MVT::v512i16";
+ case MVT::v1i32: return "MVT::v1i32";
+ case MVT::v2i32: return "MVT::v2i32";
+ case MVT::v3i32: return "MVT::v3i32";
+ case MVT::v4i32: return "MVT::v4i32";
+ case MVT::v5i32: return "MVT::v5i32";
+ case MVT::v6i32: return "MVT::v6i32";
+ case MVT::v7i32: return "MVT::v7i32";
+ case MVT::v8i32: return "MVT::v8i32";
+ case MVT::v9i32: return "MVT::v9i32";
+ case MVT::v10i32: return "MVT::v10i32";
+ case MVT::v11i32: return "MVT::v11i32";
+ case MVT::v12i32: return "MVT::v12i32";
+ case MVT::v16i32: return "MVT::v16i32";
+ case MVT::v32i32: return "MVT::v32i32";
+ case MVT::v64i32: return "MVT::v64i32";
+ case MVT::v128i32: return "MVT::v128i32";
+ case MVT::v256i32: return "MVT::v256i32";
+ case MVT::v512i32: return "MVT::v512i32";
+ case MVT::v1024i32: return "MVT::v1024i32";
+ case MVT::v2048i32: return "MVT::v2048i32";
+ case MVT::v1i64: return "MVT::v1i64";
+ case MVT::v2i64: return "MVT::v2i64";
+ case MVT::v3i64: return "MVT::v3i64";
+ case MVT::v4i64: return "MVT::v4i64";
+ case MVT::v8i64: return "MVT::v8i64";
+ case MVT::v16i64: return "MVT::v16i64";
+ case MVT::v32i64: return "MVT::v32i64";
+ case MVT::v64i64: return "MVT::v64i64";
+ case MVT::v128i64: return "MVT::v128i64";
+ case MVT::v256i64: return "MVT::v256i64";
+ case MVT::v1i128: return "MVT::v1i128";
+ case MVT::v1f16: return "MVT::v1f16";
+ case MVT::v2f16: return "MVT::v2f16";
+ case MVT::v3f16: return "MVT::v3f16";
+ case MVT::v4f16: return "MVT::v4f16";
+ case MVT::v8f16: return "MVT::v8f16";
+ case MVT::v16f16: return "MVT::v16f16";
+ case MVT::v32f16: return "MVT::v32f16";
+ case MVT::v64f16: return "MVT::v64f16";
+ case MVT::v128f16: return "MVT::v128f16";
+ case MVT::v256f16: return "MVT::v256f16";
+ case MVT::v512f16: return "MVT::v512f16";
+ case MVT::v2bf16: return "MVT::v2bf16";
+ case MVT::v3bf16: return "MVT::v3bf16";
+ case MVT::v4bf16: return "MVT::v4bf16";
+ case MVT::v8bf16: return "MVT::v8bf16";
+ case MVT::v16bf16: return "MVT::v16bf16";
+ case MVT::v32bf16: return "MVT::v32bf16";
+ case MVT::v64bf16: return "MVT::v64bf16";
+ case MVT::v128bf16: return "MVT::v128bf16";
+ case MVT::v1f32: return "MVT::v1f32";
+ case MVT::v2f32: return "MVT::v2f32";
+ case MVT::v3f32: return "MVT::v3f32";
+ case MVT::v4f32: return "MVT::v4f32";
+ case MVT::v5f32: return "MVT::v5f32";
+ case MVT::v6f32: return "MVT::v6f32";
+ case MVT::v7f32: return "MVT::v7f32";
+ case MVT::v8f32: return "MVT::v8f32";
+ case MVT::v9f32: return "MVT::v9f32";
+ case MVT::v10f32: return "MVT::v10f32";
+ case MVT::v11f32: return "MVT::v11f32";
+ case MVT::v12f32: return "MVT::v12f32";
+ case MVT::v16f32: return "MVT::v16f32";
+ case MVT::v32f32: return "MVT::v32f32";
+ case MVT::v64f32: return "MVT::v64f32";
+ case MVT::v128f32: return "MVT::v128f32";
+ case MVT::v256f32: return "MVT::v256f32";
+ case MVT::v512f32: return "MVT::v512f32";
+ case MVT::v1024f32: return "MVT::v1024f32";
+ case MVT::v2048f32: return "MVT::v2048f32";
+ case MVT::v1f64: return "MVT::v1f64";
+ case MVT::v2f64: return "MVT::v2f64";
+ case MVT::v3f64: return "MVT::v3f64";
+ case MVT::v4f64: return "MVT::v4f64";
+ case MVT::v8f64: return "MVT::v8f64";
+ case MVT::v16f64: return "MVT::v16f64";
+ case MVT::v32f64: return "MVT::v32f64";
+ case MVT::v64f64: return "MVT::v64f64";
+ case MVT::v128f64: return "MVT::v128f64";
+ case MVT::v256f64: return "MVT::v256f64";
+ case MVT::nxv1i1: return "MVT::nxv1i1";
+ case MVT::nxv2i1: return "MVT::nxv2i1";
+ case MVT::nxv4i1: return "MVT::nxv4i1";
+ case MVT::nxv8i1: return "MVT::nxv8i1";
+ case MVT::nxv16i1: return "MVT::nxv16i1";
+ case MVT::nxv32i1: return "MVT::nxv32i1";
+ case MVT::nxv64i1: return "MVT::nxv64i1";
+ case MVT::nxv1i8: return "MVT::nxv1i8";
+ case MVT::nxv2i8: return "MVT::nxv2i8";
+ case MVT::nxv4i8: return "MVT::nxv4i8";
+ case MVT::nxv8i8: return "MVT::nxv8i8";
+ case MVT::nxv16i8: return "MVT::nxv16i8";
+ case MVT::nxv32i8: return "MVT::nxv32i8";
+ case MVT::nxv64i8: return "MVT::nxv64i8";
+ case MVT::nxv1i16: return "MVT::nxv1i16";
+ case MVT::nxv2i16: return "MVT::nxv2i16";
+ case MVT::nxv4i16: return "MVT::nxv4i16";
+ case MVT::nxv8i16: return "MVT::nxv8i16";
+ case MVT::nxv16i16: return "MVT::nxv16i16";
+ case MVT::nxv32i16: return "MVT::nxv32i16";
+ case MVT::nxv1i32: return "MVT::nxv1i32";
+ case MVT::nxv2i32: return "MVT::nxv2i32";
+ case MVT::nxv4i32: return "MVT::nxv4i32";
+ case MVT::nxv8i32: return "MVT::nxv8i32";
+ case MVT::nxv16i32: return "MVT::nxv16i32";
+ case MVT::nxv32i32: return "MVT::nxv32i32";
+ case MVT::nxv1i64: return "MVT::nxv1i64";
+ case MVT::nxv2i64: return "MVT::nxv2i64";
+ case MVT::nxv4i64: return "MVT::nxv4i64";
+ case MVT::nxv8i64: return "MVT::nxv8i64";
+ case MVT::nxv16i64: return "MVT::nxv16i64";
+ case MVT::nxv32i64: return "MVT::nxv32i64";
+ case MVT::nxv1f16: return "MVT::nxv1f16";
+ case MVT::nxv2f16: return "MVT::nxv2f16";
+ case MVT::nxv4f16: return "MVT::nxv4f16";
+ case MVT::nxv8f16: return "MVT::nxv8f16";
+ case MVT::nxv16f16: return "MVT::nxv16f16";
+ case MVT::nxv32f16: return "MVT::nxv32f16";
+ case MVT::nxv1bf16: return "MVT::nxv1bf16";
+ case MVT::nxv2bf16: return "MVT::nxv2bf16";
+ case MVT::nxv4bf16: return "MVT::nxv4bf16";
+ case MVT::nxv8bf16: return "MVT::nxv8bf16";
+ case MVT::nxv16bf16: return "MVT::nxv16bf16";
+ case MVT::nxv32bf16: return "MVT::nxv32bf16";
+ case MVT::nxv1f32: return "MVT::nxv1f32";
+ case MVT::nxv2f32: return "MVT::nxv2f32";
+ case MVT::nxv4f32: return "MVT::nxv4f32";
+ case MVT::nxv8f32: return "MVT::nxv8f32";
+ case MVT::nxv16f32: return "MVT::nxv16f32";
+ case MVT::nxv1f64: return "MVT::nxv1f64";
+ case MVT::nxv2f64: return "MVT::nxv2f64";
+ case MVT::nxv4f64: return "MVT::nxv4f64";
+ case MVT::nxv8f64: return "MVT::nxv8f64";
+ case MVT::token: return "MVT::token";
+ case MVT::Metadata: return "MVT::Metadata";
+ case MVT::iPTR: return "MVT::iPTR";
+ case MVT::iPTRAny: return "MVT::iPTRAny";
+ case MVT::Untyped: return "MVT::Untyped";
+ case MVT::funcref: return "MVT::funcref";
+ case MVT::externref: return "MVT::externref";
+ default: llvm_unreachable("ILLEGAL VALUE TYPE!");
+ }
+ // clang-format on
+}
+
+/// getQualifiedName - Return the name of the specified record, with a
+/// namespace qualifier if the record contains one.
+///
+std::string llvm::getQualifiedName(const Record *R) {
+ std::string Namespace;
+ if (R->getValue("Namespace"))
+ Namespace = std::string(R->getValueAsString("Namespace"));
+ if (Namespace.empty())
+ return std::string(R->getName());
+ return Namespace + "::" + R->getName().str();
+}
+
+
+/// getTarget - Return the current instance of the Target class.
+///
+CodeGenTarget::CodeGenTarget(RecordKeeper &records)
+ : Records(records), CGH(records) {
+ std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
+ if (Targets.size() == 0)
+ PrintFatalError("No 'Target' subclasses defined!");
+ if (Targets.size() != 1)
+ PrintFatalError("Multiple subclasses of Target defined!");
+ TargetRec = Targets[0];
+}
+
+CodeGenTarget::~CodeGenTarget() {
+}
+
+StringRef CodeGenTarget::getName() const { return TargetRec->getName(); }
+
+/// getInstNamespace - Find and return the target machine's instruction
+/// namespace. The namespace is cached because it is requested multiple times.
+StringRef CodeGenTarget::getInstNamespace() const {
+ if (InstNamespace.empty()) {
+ for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
+ // We are not interested in the "TargetOpcode" namespace.
+ if (Inst->Namespace != "TargetOpcode") {
+ InstNamespace = Inst->Namespace;
+ break;
+ }
+ }
+ }
+
+ return InstNamespace;
+}
+
+StringRef CodeGenTarget::getRegNamespace() const {
+ auto &RegClasses = RegBank->getRegClasses();
+ return RegClasses.size() > 0 ? RegClasses.front().Namespace : "";
+}
+
+Record *CodeGenTarget::getInstructionSet() const {
+ return TargetRec->getValueAsDef("InstructionSet");
+}
+
+bool CodeGenTarget::getAllowRegisterRenaming() const {
+ return TargetRec->getValueAsInt("AllowRegisterRenaming");
+}
+
+/// getAsmParser - Return the AssemblyParser definition for this target.
+///
+Record *CodeGenTarget::getAsmParser() const {
+ std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
+ if (AsmParserNum >= LI.size())
+ PrintFatalError("Target does not have an AsmParser #" +
+ Twine(AsmParserNum) + "!");
+ return LI[AsmParserNum];
+}
+
+/// getAsmParserVariant - Return the AssemblyParserVariant definition for
+/// this target.
+///
+Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
+ std::vector<Record*> LI =
+ TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
+ if (i >= LI.size())
+ PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
+ "!");
+ return LI[i];
+}
+
+/// getAsmParserVariantCount - Return the AssemblyParserVariant definition
+/// available for this target.
+///
+unsigned CodeGenTarget::getAsmParserVariantCount() const {
+ std::vector<Record*> LI =
+ TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
+ return LI.size();
+}
+
+/// getAsmWriter - Return the AssemblyWriter definition for this target.
+///
+Record *CodeGenTarget::getAsmWriter() const {
+ std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
+ if (AsmWriterNum >= LI.size())
+ PrintFatalError("Target does not have an AsmWriter #" +
+ Twine(AsmWriterNum) + "!");
+ return LI[AsmWriterNum];
+}
+
+CodeGenRegBank &CodeGenTarget::getRegBank() const {
+ if (!RegBank)
+ RegBank = std::make_unique<CodeGenRegBank>(Records, getHwModes());
+ return *RegBank;
+}
+
+std::optional<CodeGenRegisterClass *> CodeGenTarget::getSuperRegForSubReg(
+ const ValueTypeByHwMode &ValueTy, CodeGenRegBank &RegBank,
+ const CodeGenSubRegIndex *SubIdx, bool MustBeAllocatable) const {
+ std::vector<CodeGenRegisterClass *> Candidates;
+ auto &RegClasses = RegBank.getRegClasses();
+
+ // Try to find a register class which supports ValueTy, and also contains
+ // SubIdx.
+ for (CodeGenRegisterClass &RC : RegClasses) {
+ // Is there a subclass of this class which contains this subregister index?
+ CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx);
+ if (!SubClassWithSubReg)
+ continue;
+
+ // We have a class. Check if it supports this value type.
+ if (!llvm::is_contained(SubClassWithSubReg->VTs, ValueTy))
+ continue;
+
+ // If necessary, check that it is allocatable.
+ if (MustBeAllocatable && !SubClassWithSubReg->Allocatable)
+ continue;
+
+ // We have a register class which supports both the value type and
+ // subregister index. Remember it.
+ Candidates.push_back(SubClassWithSubReg);
+ }
+
+ // If we didn't find anything, we're done.
+ if (Candidates.empty())
+ return std::nullopt;
+
+ // Find and return the largest of our candidate classes.
+ llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A,
+ const CodeGenRegisterClass *B) {
+ if (A->getMembers().size() > B->getMembers().size())
+ return true;
+
+ if (A->getMembers().size() < B->getMembers().size())
+ return false;
+
+ // Order by name as a tie-breaker.
+ return StringRef(A->getName()) < B->getName();
+ });
+
+ return Candidates[0];
+}
+
+void CodeGenTarget::ReadRegAltNameIndices() const {
+ RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
+ llvm::sort(RegAltNameIndices, LessRecord());
+}
+
+/// getRegisterByName - If there is a register with the specific AsmName,
+/// return it.
+const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
+ return getRegBank().getRegistersByName().lookup(Name);
+}
+
+std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R)
+ const {
+ const CodeGenRegister *Reg = getRegBank().getReg(R);
+ std::vector<ValueTypeByHwMode> Result;
+ for (const auto &RC : getRegBank().getRegClasses()) {
+ if (RC.contains(Reg)) {
+ ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes();
+ llvm::append_range(Result, InVTs);
+ }
+ }
+
+ // Remove duplicates.
+ llvm::sort(Result);
+ Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
+ return Result;
+}
+
+
+void CodeGenTarget::ReadLegalValueTypes() const {
+ for (const auto &RC : getRegBank().getRegClasses())
+ llvm::append_range(LegalValueTypes, RC.VTs);
+
+ // Remove duplicates.
+ llvm::sort(LegalValueTypes);
+ LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
+ LegalValueTypes.end()),
+ LegalValueTypes.end());
+}
+
+CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
+ if (!SchedModels)
+ SchedModels = std::make_unique<CodeGenSchedModels>(Records, *this);
+ return *SchedModels;
+}
+
+void CodeGenTarget::ReadInstructions() const {
+ std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
+ if (Insts.size() <= 2)
+ PrintFatalError("No 'Instruction' subclasses defined!");
+
+ // Parse the instructions defined in the .td file.
+ for (unsigned i = 0, e = Insts.size(); i != e; ++i)
+ Instructions[Insts[i]] = std::make_unique<CodeGenInstruction>(Insts[i]);
+}
+
+static const CodeGenInstruction *
+GetInstByName(const char *Name,
+ const DenseMap<const Record*,
+ std::unique_ptr<CodeGenInstruction>> &Insts,
+ RecordKeeper &Records) {
+ const Record *Rec = Records.getDef(Name);
+
+ const auto I = Insts.find(Rec);
+ if (!Rec || I == Insts.end())
+ PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
+ return I->second.get();
+}
+
+static const char *FixedInstrs[] = {
+#define HANDLE_TARGET_OPCODE(OPC) #OPC,
+#include "llvm/Support/TargetOpcodes.def"
+ nullptr};
+
+unsigned CodeGenTarget::getNumFixedInstructions() {
+ return std::size(FixedInstrs) - 1;
+}
+
+/// Return all of the instructions defined by the target, ordered by
+/// their enum value.
+void CodeGenTarget::ComputeInstrsByEnum() const {
+ const auto &Insts = getInstructions();
+ for (const char *const *p = FixedInstrs; *p; ++p) {
+ const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
+ assert(Instr && "Missing target independent instruction");
+ assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
+ InstrsByEnum.push_back(Instr);
+ }
+ unsigned EndOfPredefines = InstrsByEnum.size();
+ assert(EndOfPredefines == getNumFixedInstructions() &&
+ "Missing generic opcode");
+
+ for (const auto &I : Insts) {
+ const CodeGenInstruction *CGI = I.second.get();
+ if (CGI->Namespace != "TargetOpcode") {
+ InstrsByEnum.push_back(CGI);
+ if (CGI->TheDef->getValueAsBit("isPseudo"))
+ ++NumPseudoInstructions;
+ }
+ }
+
+ assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
+
+ // All of the instructions are now in random order based on the map iteration.
+ llvm::sort(
+ InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
+ [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
+ const auto &D1 = *Rec1->TheDef;
+ const auto &D2 = *Rec2->TheDef;
+ return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
+ std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
+ });
+}
+
+
+/// isLittleEndianEncoding - Return whether this target encodes its instruction
+/// in little-endian format, i.e. bits laid out in the order [0..n]
+///
+bool CodeGenTarget::isLittleEndianEncoding() const {
+ return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
+}
+
+/// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
+/// encodings, reverse the bit order of all instructions.
+void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
+ if (!isLittleEndianEncoding())
+ return;
+
+ std::vector<Record *> Insts =
+ Records.getAllDerivedDefinitions("InstructionEncoding");
+ for (Record *R : Insts) {
+ if (R->getValueAsString("Namespace") == "TargetOpcode" ||
+ R->getValueAsBit("isPseudo"))
+ continue;
+
+ BitsInit *BI = R->getValueAsBitsInit("Inst");
+
+ unsigned numBits = BI->getNumBits();
+
+ SmallVector<Init *, 16> NewBits(numBits);
+
+ for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
+ unsigned bitSwapIdx = numBits - bit - 1;
+ Init *OrigBit = BI->getBit(bit);
+ Init *BitSwap = BI->getBit(bitSwapIdx);
+ NewBits[bit] = BitSwap;
+ NewBits[bitSwapIdx] = OrigBit;
+ }
+ if (numBits % 2) {
+ unsigned middle = (numBits + 1) / 2;
+ NewBits[middle] = BI->getBit(middle);
+ }
+
+ BitsInit *NewBI = BitsInit::get(Records, NewBits);
+
+ // Update the bits in reversed order so that emitInstrOpBits will get the
+ // correct endianness.
+ R->getValue("Inst")->setValue(NewBI);
+ }
+}
+
+/// guessInstructionProperties - Return true if it's OK to guess instruction
+/// properties instead of raising an error.
+///
+/// This is configurable as a temporary migration aid. It will eventually be
+/// permanently false.
+bool CodeGenTarget::guessInstructionProperties() const {
+ return getInstructionSet()->getValueAsBit("guessInstructionProperties");
+}
+
+//===----------------------------------------------------------------------===//
+// ComplexPattern implementation
+//
+ComplexPattern::ComplexPattern(Record *R) {
+ Ty = R->getValueAsDef("Ty");
+ NumOperands = R->getValueAsInt("NumOperands");
+ SelectFunc = std::string(R->getValueAsString("SelectFunc"));
+ RootNodes = R->getValueAsListOfDefs("RootNodes");
+
+ // FIXME: This is a hack to statically increase the priority of patterns which
+ // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
+ // possible pattern match we'll need to dynamically calculate the complexity
+ // of all patterns a dag can potentially map to.
+ int64_t RawComplexity = R->getValueAsInt("Complexity");
+ if (RawComplexity == -1)
+ Complexity = NumOperands * 3;
+ else
+ Complexity = RawComplexity;
+
+ // FIXME: Why is this different from parseSDPatternOperatorProperties?
+ // Parse the properties.
+ Properties = 0;
+ std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
+ for (unsigned i = 0, e = PropList.size(); i != e; ++i)
+ if (PropList[i]->getName() == "SDNPHasChain") {
+ Properties |= 1 << SDNPHasChain;
+ } else if (PropList[i]->getName() == "SDNPOptInGlue") {
+ Properties |= 1 << SDNPOptInGlue;
+ } else if (PropList[i]->getName() == "SDNPMayStore") {
+ Properties |= 1 << SDNPMayStore;
+ } else if (PropList[i]->getName() == "SDNPMayLoad") {
+ Properties |= 1 << SDNPMayLoad;
+ } else if (PropList[i]->getName() == "SDNPSideEffect") {
+ Properties |= 1 << SDNPSideEffect;
+ } else if (PropList[i]->getName() == "SDNPMemOperand") {
+ Properties |= 1 << SDNPMemOperand;
+ } else if (PropList[i]->getName() == "SDNPVariadic") {
+ Properties |= 1 << SDNPVariadic;
+ } else if (PropList[i]->getName() == "SDNPWantRoot") {
+ Properties |= 1 << SDNPWantRoot;
+ } else if (PropList[i]->getName() == "SDNPWantParent") {
+ Properties |= 1 << SDNPWantParent;
+ } else {
+ PrintFatalError(R->getLoc(), "Unsupported SD Node property '" +
+ PropList[i]->getName() +
+ "' on ComplexPattern '" + R->getName() +
+ "'!");
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// CodeGenIntrinsic Implementation
+//===----------------------------------------------------------------------===//
+
+CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC) {
+ std::vector<Record *> IntrProperties =
+ RC.getAllDerivedDefinitions("IntrinsicProperty");
+
+ std::vector<Record *> DefaultProperties;
+ for (Record *Rec : IntrProperties)
+ if (Rec->getValueAsBit("IsDefault"))
+ DefaultProperties.push_back(Rec);
+
+ std::vector<Record *> Defs = RC.getAllDerivedDefinitions("Intrinsic");
+ Intrinsics.reserve(Defs.size());
+
+ for (unsigned I = 0, e = Defs.size(); I != e; ++I)
+ Intrinsics.push_back(CodeGenIntrinsic(Defs[I], DefaultProperties));
+
+ llvm::sort(Intrinsics,
+ [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) {
+ return std::tie(LHS.TargetPrefix, LHS.Name) <
+ std::tie(RHS.TargetPrefix, RHS.Name);
+ });
+ Targets.push_back({"", 0, 0});
+ for (size_t I = 0, E = Intrinsics.size(); I < E; ++I)
+ if (Intrinsics[I].TargetPrefix != Targets.back().Name) {
+ Targets.back().Count = I - Targets.back().Offset;
+ Targets.push_back({Intrinsics[I].TargetPrefix, I, 0});
+ }
+ Targets.back().Count = Intrinsics.size() - Targets.back().Offset;
+}
+
+CodeGenIntrinsic::CodeGenIntrinsic(Record *R,
+ std::vector<Record *> DefaultProperties) {
+ TheDef = R;
+ std::string DefName = std::string(R->getName());
+ ArrayRef<SMLoc> DefLoc = R->getLoc();
+ Properties = 0;
+ isOverloaded = false;
+ isCommutative = false;
+ canThrow = false;
+ isNoReturn = false;
+ isNoCallback = false;
+ isNoSync = false;
+ isNoFree = false;
+ isWillReturn = false;
+ isCold = false;
+ isNoDuplicate = false;
+ isNoMerge = false;
+ isConvergent = false;
+ isSpeculatable = false;
+ hasSideEffects = false;
+
+ if (DefName.size() <= 4 || DefName.substr(0, 4) != "int_")
+ PrintFatalError(DefLoc,
+ "Intrinsic '" + DefName + "' does not start with 'int_'!");
+
+ EnumName = DefName.substr(4);
+
+ if (R->getValue("ClangBuiltinName")) // Ignore a missing ClangBuiltinName field.
+ ClangBuiltinName = std::string(R->getValueAsString("ClangBuiltinName"));
+ if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field.
+ MSBuiltinName = std::string(R->getValueAsString("MSBuiltinName"));
+
+ TargetPrefix = std::string(R->getValueAsString("TargetPrefix"));
+ Name = std::string(R->getValueAsString("LLVMName"));
+
+ if (Name == "") {
+ // If an explicit name isn't specified, derive one from the DefName.
+ Name = "llvm.";
+
+ for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
+ Name += (EnumName[i] == '_') ? '.' : EnumName[i];
+ } else {
+ // Verify it starts with "llvm.".
+ if (Name.size() <= 5 || Name.substr(0, 5) != "llvm.")
+ PrintFatalError(DefLoc, "Intrinsic '" + DefName +
+ "'s name does not start with 'llvm.'!");
+ }
+
+ // If TargetPrefix is specified, make sure that Name starts with
+ // "llvm.<targetprefix>.".
+ if (!TargetPrefix.empty()) {
+ if (Name.size() < 6+TargetPrefix.size() ||
+ Name.substr(5, 1 + TargetPrefix.size()) != (TargetPrefix + "."))
+ PrintFatalError(DefLoc, "Intrinsic '" + DefName +
+ "' does not start with 'llvm." +
+ TargetPrefix + ".'!");
+ }
+
+ ListInit *RetTypes = R->getValueAsListInit("RetTypes");
+ ListInit *ParamTypes = R->getValueAsListInit("ParamTypes");
+
+ // First collate a list of overloaded types.
+ std::vector<MVT::SimpleValueType> OverloadedVTs;
+ for (ListInit *TypeList : {RetTypes, ParamTypes}) {
+ for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
+ Record *TyEl = TypeList->getElementAsRecord(i);
+ assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
+
+ if (TyEl->isSubClassOf("LLVMMatchType"))
+ continue;
+
+ MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT"));
+ if (MVT(VT).isOverloaded()) {
+ OverloadedVTs.push_back(VT);
+ isOverloaded = true;
+ }
+ }
+ }
+
+ // Parse the list of return types.
+ ListInit *TypeList = RetTypes;
+ for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
+ Record *TyEl = TypeList->getElementAsRecord(i);
+ assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
+ MVT::SimpleValueType VT;
+ if (TyEl->isSubClassOf("LLVMMatchType")) {
+ unsigned MatchTy = TyEl->getValueAsInt("Number");
+ assert(MatchTy < OverloadedVTs.size() &&
+ "Invalid matching number!");
+ VT = OverloadedVTs[MatchTy];
+ // It only makes sense to use the extended and truncated vector element
+ // variants with iAny types; otherwise, if the intrinsic is not
+ // overloaded, all the types can be specified directly.
+ assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
+ !TyEl->isSubClassOf("LLVMTruncatedType")) ||
+ VT == MVT::iAny || VT == MVT::vAny) &&
+ "Expected iAny or vAny type");
+ } else {
+ VT = getValueType(TyEl->getValueAsDef("VT"));
+ }
+
+ // Reject invalid types.
+ if (VT == MVT::isVoid)
+ PrintFatalError(DefLoc, "Intrinsic '" + DefName +
+ " has void in result type list!");
+
+ IS.RetVTs.push_back(VT);
+ IS.RetTypeDefs.push_back(TyEl);
+ }
+
+ // Parse the list of parameter types.
+ TypeList = ParamTypes;
+ for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
+ Record *TyEl = TypeList->getElementAsRecord(i);
+ assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
+ MVT::SimpleValueType VT;
+ if (TyEl->isSubClassOf("LLVMMatchType")) {
+ unsigned MatchTy = TyEl->getValueAsInt("Number");
+ if (MatchTy >= OverloadedVTs.size()) {
+ PrintError(R->getLoc(),
+ "Parameter #" + Twine(i) + " has out of bounds matching "
+ "number " + Twine(MatchTy));
+ PrintFatalError(DefLoc,
+ Twine("ParamTypes is ") + TypeList->getAsString());
+ }
+ VT = OverloadedVTs[MatchTy];
+ // It only makes sense to use the extended and truncated vector element
+ // variants with iAny types; otherwise, if the intrinsic is not
+ // overloaded, all the types can be specified directly.
+ assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
+ !TyEl->isSubClassOf("LLVMTruncatedType")) ||
+ VT == MVT::iAny || VT == MVT::vAny) &&
+ "Expected iAny or vAny type");
+ } else
+ VT = getValueType(TyEl->getValueAsDef("VT"));
+
+ // Reject invalid types.
+ if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
+ PrintFatalError(DefLoc, "Intrinsic '" + DefName +
+ " has void in result type list!");
+
+ IS.ParamVTs.push_back(VT);
+ IS.ParamTypeDefs.push_back(TyEl);
+ }
+
+ // Parse the intrinsic properties.
+ ListInit *PropList = R->getValueAsListInit("IntrProperties");
+ for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
+ Record *Property = PropList->getElementAsRecord(i);
+ assert(Property->isSubClassOf("IntrinsicProperty") &&
+ "Expected a property!");
+
+ setProperty(Property);
+ }
+
+ // Set default properties to true.
+ setDefaultProperties(R, DefaultProperties);
+
+ // Also record the SDPatternOperator Properties.
+ Properties = parseSDPatternOperatorProperties(R);
+
+ // Sort the argument attributes for later benefit.
+ for (auto &Attrs : ArgumentAttributes)
+ llvm::sort(Attrs);
+}
+
+void CodeGenIntrinsic::setDefaultProperties(
+ Record *R, std::vector<Record *> DefaultProperties) {
+ // opt-out of using default attributes.
+ if (R->getValueAsBit("DisableDefaultAttributes"))
+ return;
+
+ for (Record *Rec : DefaultProperties)
+ setProperty(Rec);
+}
+
+void CodeGenIntrinsic::setProperty(Record *R) {
+ if (R->getName() == "IntrNoMem")
+ ME = MemoryEffects::none();
+ else if (R->getName() == "IntrReadMem") {
+ if (ME.onlyWritesMemory())
+ PrintFatalError(TheDef->getLoc(),
+ Twine("IntrReadMem cannot be used after IntrNoMem or "
+ "IntrWriteMem. Default is ReadWrite"));
+ ME &= MemoryEffects::readOnly();
+ } else if (R->getName() == "IntrWriteMem") {
+ if (ME.onlyReadsMemory())
+ PrintFatalError(TheDef->getLoc(),
+ Twine("IntrWriteMem cannot be used after IntrNoMem or "
+ "IntrReadMem. Default is ReadWrite"));
+ ME &= MemoryEffects::writeOnly();
+ } else if (R->getName() == "IntrArgMemOnly")
+ ME &= MemoryEffects::argMemOnly();
+ else if (R->getName() == "IntrInaccessibleMemOnly")
+ ME &= MemoryEffects::inaccessibleMemOnly();
+ else if (R->getName() == "IntrInaccessibleMemOrArgMemOnly")
+ ME &= MemoryEffects::inaccessibleOrArgMemOnly();
+ else if (R->getName() == "Commutative")
+ isCommutative = true;
+ else if (R->getName() == "Throws")
+ canThrow = true;
+ else if (R->getName() == "IntrNoDuplicate")
+ isNoDuplicate = true;
+ else if (R->getName() == "IntrNoMerge")
+ isNoMerge = true;
+ else if (R->getName() == "IntrConvergent")
+ isConvergent = true;
+ else if (R->getName() == "IntrNoReturn")
+ isNoReturn = true;
+ else if (R->getName() == "IntrNoCallback")
+ isNoCallback = true;
+ else if (R->getName() == "IntrNoSync")
+ isNoSync = true;
+ else if (R->getName() == "IntrNoFree")
+ isNoFree = true;
+ else if (R->getName() == "IntrWillReturn")
+ isWillReturn = !isNoReturn;
+ else if (R->getName() == "IntrCold")
+ isCold = true;
+ else if (R->getName() == "IntrSpeculatable")
+ isSpeculatable = true;
+ else if (R->getName() == "IntrHasSideEffects")
+ hasSideEffects = true;
+ else if (R->isSubClassOf("NoCapture")) {
+ unsigned ArgNo = R->getValueAsInt("ArgNo");
+ addArgAttribute(ArgNo, NoCapture);
+ } else if (R->isSubClassOf("NoAlias")) {
+ unsigned ArgNo = R->getValueAsInt("ArgNo");
+ addArgAttribute(ArgNo, NoAlias);
+ } else if (R->isSubClassOf("NoUndef")) {
+ unsigned ArgNo = R->getValueAsInt("ArgNo");
+ addArgAttribute(ArgNo, NoUndef);
+ } else if (R->isSubClassOf("NonNull")) {
+ unsigned ArgNo = R->getValueAsInt("ArgNo");
+ addArgAttribute(ArgNo, NonNull);
+ } else if (R->isSubClassOf("Returned")) {
+ unsigned ArgNo = R->getValueAsInt("ArgNo");
+ addArgAttribute(ArgNo, Returned);
+ } else if (R->isSubClassOf("ReadOnly")) {
+ unsigned ArgNo = R->getValueAsInt("ArgNo");
+ addArgAttribute(ArgNo, ReadOnly);
+ } else if (R->isSubClassOf("WriteOnly")) {
+ unsigned ArgNo = R->getValueAsInt("ArgNo");
+ addArgAttribute(ArgNo, WriteOnly);
+ } else if (R->isSubClassOf("ReadNone")) {
+ unsigned ArgNo = R->getValueAsInt("ArgNo");
+ addArgAttribute(ArgNo, ReadNone);
+ } else if (R->isSubClassOf("ImmArg")) {
+ unsigned ArgNo = R->getValueAsInt("ArgNo");
+ addArgAttribute(ArgNo, ImmArg);
+ } else if (R->isSubClassOf("Align")) {
+ unsigned ArgNo = R->getValueAsInt("ArgNo");
+ uint64_t Align = R->getValueAsInt("Align");
+ addArgAttribute(ArgNo, Alignment, Align);
+ } else
+ llvm_unreachable("Unknown property!");
+}
+
+bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx) const {
+ if (ParamIdx >= IS.ParamVTs.size())
+ return false;
+ MVT ParamType = MVT(IS.ParamVTs[ParamIdx]);
+ return ParamType == MVT::iPTR || ParamType == MVT::iPTRAny;
+}
+
+bool CodeGenIntrinsic::isParamImmArg(unsigned ParamIdx) const {
+ // Convert argument index to attribute index starting from `FirstArgIndex`.
+ ++ParamIdx;
+ if (ParamIdx >= ArgumentAttributes.size())
+ return false;
+ ArgAttribute Val{ImmArg, 0};
+ return std::binary_search(ArgumentAttributes[ParamIdx].begin(),
+ ArgumentAttributes[ParamIdx].end(), Val);
+}
+
+void CodeGenIntrinsic::addArgAttribute(unsigned Idx, ArgAttrKind AK,
+ uint64_t V) {
+ if (Idx >= ArgumentAttributes.size())
+ ArgumentAttributes.resize(Idx + 1);
+ ArgumentAttributes[Idx].emplace_back(AK, V);
+}