aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/tools/llvm-dwarfdump/Statistics.cpp
diff options
context:
space:
mode:
authorvvvv <vvvv@ydb.tech>2024-02-06 20:01:22 +0300
committerAlexander Smirnov <alex@ydb.tech>2024-02-09 19:18:27 +0300
commitee2b7fbda052aa09b6fdb83b8c6f0305fef3e193 (patch)
tree102765416c3866bde98a82facc7752d329ee0226 /contrib/libs/llvm16/tools/llvm-dwarfdump/Statistics.cpp
parent7494ca32d3a5aca00b7ac527b5f127989335102c (diff)
downloadydb-ee2b7fbda052aa09b6fdb83b8c6f0305fef3e193.tar.gz
llvm16 targets
Diffstat (limited to 'contrib/libs/llvm16/tools/llvm-dwarfdump/Statistics.cpp')
-rw-r--r--contrib/libs/llvm16/tools/llvm-dwarfdump/Statistics.cpp1063
1 files changed, 1063 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/tools/llvm-dwarfdump/Statistics.cpp b/contrib/libs/llvm16/tools/llvm-dwarfdump/Statistics.cpp
new file mode 100644
index 0000000000..a967abffc1
--- /dev/null
+++ b/contrib/libs/llvm16/tools/llvm-dwarfdump/Statistics.cpp
@@ -0,0 +1,1063 @@
+//===-- Statistics.cpp - Debug Info quality metrics -----------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm-dwarfdump.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/DebugInfo/DWARF/DWARFContext.h"
+#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
+#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Support/JSON.h"
+
+#define DEBUG_TYPE "dwarfdump"
+using namespace llvm;
+using namespace llvm::dwarfdump;
+using namespace llvm::object;
+
+namespace {
+/// This represents the number of categories of debug location coverage being
+/// calculated. The first category is the number of variables with 0% location
+/// coverage, but the last category is the number of variables with 100%
+/// location coverage.
+constexpr int NumOfCoverageCategories = 12;
+
+/// This is used for zero location coverage bucket.
+constexpr unsigned ZeroCoverageBucket = 0;
+
+/// The UINT64_MAX is used as an indication of the overflow.
+constexpr uint64_t OverflowValue = std::numeric_limits<uint64_t>::max();
+
+/// This represents variables DIE offsets.
+using AbstractOriginVarsTy = llvm::SmallVector<uint64_t>;
+/// This maps function DIE offset to its variables.
+using AbstractOriginVarsTyMap = llvm::DenseMap<uint64_t, AbstractOriginVarsTy>;
+/// This represents function DIE offsets containing an abstract_origin.
+using FunctionsWithAbstractOriginTy = llvm::SmallVector<uint64_t>;
+
+/// This represents a data type for the stats and it helps us to
+/// detect an overflow.
+/// NOTE: This can be implemented as a template if there is an another type
+/// needing this.
+struct SaturatingUINT64 {
+ /// Number that represents the stats.
+ uint64_t Value;
+
+ SaturatingUINT64(uint64_t Value_) : Value(Value_) {}
+
+ void operator++(int) { return *this += 1; }
+ void operator+=(uint64_t Value_) {
+ if (Value != OverflowValue) {
+ if (Value < OverflowValue - Value_)
+ Value += Value_;
+ else
+ Value = OverflowValue;
+ }
+ }
+};
+
+/// Utility struct to store the full location of a DIE - its CU and offset.
+struct DIELocation {
+ DWARFUnit *DwUnit;
+ uint64_t DIEOffset;
+ DIELocation(DWARFUnit *_DwUnit, uint64_t _DIEOffset)
+ : DwUnit(_DwUnit), DIEOffset(_DIEOffset) {}
+};
+/// This represents DWARF locations of CrossCU referencing DIEs.
+using CrossCUReferencingDIELocationTy = llvm::SmallVector<DIELocation>;
+
+/// This maps function DIE offset to its DWARF CU.
+using FunctionDIECUTyMap = llvm::DenseMap<uint64_t, DWARFUnit *>;
+
+/// Holds statistics for one function (or other entity that has a PC range and
+/// contains variables, such as a compile unit).
+struct PerFunctionStats {
+ /// Number of inlined instances of this function.
+ uint64_t NumFnInlined = 0;
+ /// Number of out-of-line instances of this function.
+ uint64_t NumFnOutOfLine = 0;
+ /// Number of inlined instances that have abstract origins.
+ uint64_t NumAbstractOrigins = 0;
+ /// Number of variables and parameters with location across all inlined
+ /// instances.
+ uint64_t TotalVarWithLoc = 0;
+ /// Number of constants with location across all inlined instances.
+ uint64_t ConstantMembers = 0;
+ /// Number of arificial variables, parameters or members across all instances.
+ uint64_t NumArtificial = 0;
+ /// List of all Variables and parameters in this function.
+ StringSet<> VarsInFunction;
+ /// Compile units also cover a PC range, but have this flag set to false.
+ bool IsFunction = false;
+ /// Function has source location information.
+ bool HasSourceLocation = false;
+ /// Number of function parameters.
+ uint64_t NumParams = 0;
+ /// Number of function parameters with source location.
+ uint64_t NumParamSourceLocations = 0;
+ /// Number of function parameters with type.
+ uint64_t NumParamTypes = 0;
+ /// Number of function parameters with a DW_AT_location.
+ uint64_t NumParamLocations = 0;
+ /// Number of local variables.
+ uint64_t NumLocalVars = 0;
+ /// Number of local variables with source location.
+ uint64_t NumLocalVarSourceLocations = 0;
+ /// Number of local variables with type.
+ uint64_t NumLocalVarTypes = 0;
+ /// Number of local variables with DW_AT_location.
+ uint64_t NumLocalVarLocations = 0;
+};
+
+/// Holds accumulated global statistics about DIEs.
+struct GlobalStats {
+ /// Total number of PC range bytes covered by DW_AT_locations.
+ SaturatingUINT64 TotalBytesCovered = 0;
+ /// Total number of parent DIE PC range bytes covered by DW_AT_Locations.
+ SaturatingUINT64 ScopeBytesCovered = 0;
+ /// Total number of PC range bytes in each variable's enclosing scope.
+ SaturatingUINT64 ScopeBytes = 0;
+ /// Total number of PC range bytes covered by DW_AT_locations with
+ /// the debug entry values (DW_OP_entry_value).
+ SaturatingUINT64 ScopeEntryValueBytesCovered = 0;
+ /// Total number of PC range bytes covered by DW_AT_locations of
+ /// formal parameters.
+ SaturatingUINT64 ParamScopeBytesCovered = 0;
+ /// Total number of PC range bytes in each parameter's enclosing scope.
+ SaturatingUINT64 ParamScopeBytes = 0;
+ /// Total number of PC range bytes covered by DW_AT_locations with
+ /// the debug entry values (DW_OP_entry_value) (only for parameters).
+ SaturatingUINT64 ParamScopeEntryValueBytesCovered = 0;
+ /// Total number of PC range bytes covered by DW_AT_locations (only for local
+ /// variables).
+ SaturatingUINT64 LocalVarScopeBytesCovered = 0;
+ /// Total number of PC range bytes in each local variable's enclosing scope.
+ SaturatingUINT64 LocalVarScopeBytes = 0;
+ /// Total number of PC range bytes covered by DW_AT_locations with
+ /// the debug entry values (DW_OP_entry_value) (only for local variables).
+ SaturatingUINT64 LocalVarScopeEntryValueBytesCovered = 0;
+ /// Total number of call site entries (DW_AT_call_file & DW_AT_call_line).
+ SaturatingUINT64 CallSiteEntries = 0;
+ /// Total number of call site DIEs (DW_TAG_call_site).
+ SaturatingUINT64 CallSiteDIEs = 0;
+ /// Total number of call site parameter DIEs (DW_TAG_call_site_parameter).
+ SaturatingUINT64 CallSiteParamDIEs = 0;
+ /// Total byte size of concrete functions. This byte size includes
+ /// inline functions contained in the concrete functions.
+ SaturatingUINT64 FunctionSize = 0;
+ /// Total byte size of inlined functions. This is the total number of bytes
+ /// for the top inline functions within concrete functions. This can help
+ /// tune the inline settings when compiling to match user expectations.
+ SaturatingUINT64 InlineFunctionSize = 0;
+};
+
+/// Holds accumulated debug location statistics about local variables and
+/// formal parameters.
+struct LocationStats {
+ /// Map the scope coverage decile to the number of variables in the decile.
+ /// The first element of the array (at the index zero) represents the number
+ /// of variables with the no debug location at all, but the last element
+ /// in the vector represents the number of fully covered variables within
+ /// its scope.
+ std::vector<SaturatingUINT64> VarParamLocStats{
+ std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)};
+ /// Map non debug entry values coverage.
+ std::vector<SaturatingUINT64> VarParamNonEntryValLocStats{
+ std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)};
+ /// The debug location statistics for formal parameters.
+ std::vector<SaturatingUINT64> ParamLocStats{
+ std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)};
+ /// Map non debug entry values coverage for formal parameters.
+ std::vector<SaturatingUINT64> ParamNonEntryValLocStats{
+ std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)};
+ /// The debug location statistics for local variables.
+ std::vector<SaturatingUINT64> LocalVarLocStats{
+ std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)};
+ /// Map non debug entry values coverage for local variables.
+ std::vector<SaturatingUINT64> LocalVarNonEntryValLocStats{
+ std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)};
+ /// Total number of local variables and function parameters processed.
+ SaturatingUINT64 NumVarParam = 0;
+ /// Total number of formal parameters processed.
+ SaturatingUINT64 NumParam = 0;
+ /// Total number of local variables processed.
+ SaturatingUINT64 NumVar = 0;
+};
+} // namespace
+
+/// Collect debug location statistics for one DIE.
+static void collectLocStats(uint64_t ScopeBytesCovered, uint64_t BytesInScope,
+ std::vector<SaturatingUINT64> &VarParamLocStats,
+ std::vector<SaturatingUINT64> &ParamLocStats,
+ std::vector<SaturatingUINT64> &LocalVarLocStats,
+ bool IsParam, bool IsLocalVar) {
+ auto getCoverageBucket = [ScopeBytesCovered, BytesInScope]() -> unsigned {
+ // No debug location at all for the variable.
+ if (ScopeBytesCovered == 0)
+ return 0;
+ // Fully covered variable within its scope.
+ if (ScopeBytesCovered >= BytesInScope)
+ return NumOfCoverageCategories - 1;
+ // Get covered range (e.g. 20%-29%).
+ unsigned LocBucket = 100 * (double)ScopeBytesCovered / BytesInScope;
+ LocBucket /= 10;
+ return LocBucket + 1;
+ };
+
+ unsigned CoverageBucket = getCoverageBucket();
+
+ VarParamLocStats[CoverageBucket].Value++;
+ if (IsParam)
+ ParamLocStats[CoverageBucket].Value++;
+ else if (IsLocalVar)
+ LocalVarLocStats[CoverageBucket].Value++;
+}
+
+/// Construct an identifier for a given DIE from its Prefix, Name, DeclFileName
+/// and DeclLine. The identifier aims to be unique for any unique entities,
+/// but keeping the same among different instances of the same entity.
+static std::string constructDieID(DWARFDie Die,
+ StringRef Prefix = StringRef()) {
+ std::string IDStr;
+ llvm::raw_string_ostream ID(IDStr);
+ ID << Prefix
+ << Die.getName(DINameKind::LinkageName);
+
+ // Prefix + Name is enough for local variables and parameters.
+ if (!Prefix.empty() && !Prefix.equals("g"))
+ return ID.str();
+
+ auto DeclFile = Die.findRecursively(dwarf::DW_AT_decl_file);
+ std::string File;
+ if (DeclFile) {
+ DWARFUnit *U = Die.getDwarfUnit();
+ if (const auto *LT = U->getContext().getLineTableForUnit(U))
+ if (LT->getFileNameByIndex(
+ dwarf::toUnsigned(DeclFile, 0), U->getCompilationDir(),
+ DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, File))
+ File = std::string(sys::path::filename(File));
+ }
+ ID << ":" << (File.empty() ? "/" : File);
+ ID << ":"
+ << dwarf::toUnsigned(Die.findRecursively(dwarf::DW_AT_decl_line), 0);
+ return ID.str();
+}
+
+/// Return the number of bytes in the overlap of ranges A and B.
+static uint64_t calculateOverlap(DWARFAddressRange A, DWARFAddressRange B) {
+ uint64_t Lower = std::max(A.LowPC, B.LowPC);
+ uint64_t Upper = std::min(A.HighPC, B.HighPC);
+ if (Lower >= Upper)
+ return 0;
+ return Upper - Lower;
+}
+
+/// Collect debug info quality metrics for one DIE.
+static void collectStatsForDie(DWARFDie Die, const std::string &FnPrefix,
+ const std::string &VarPrefix,
+ uint64_t BytesInScope, uint32_t InlineDepth,
+ StringMap<PerFunctionStats> &FnStatMap,
+ GlobalStats &GlobalStats,
+ LocationStats &LocStats,
+ AbstractOriginVarsTy *AbstractOriginVariables) {
+ const dwarf::Tag Tag = Die.getTag();
+ // Skip CU node.
+ if (Tag == dwarf::DW_TAG_compile_unit)
+ return;
+
+ bool HasLoc = false;
+ bool HasSrcLoc = false;
+ bool HasType = false;
+ uint64_t TotalBytesCovered = 0;
+ uint64_t ScopeBytesCovered = 0;
+ uint64_t BytesEntryValuesCovered = 0;
+ auto &FnStats = FnStatMap[FnPrefix];
+ bool IsParam = Tag == dwarf::DW_TAG_formal_parameter;
+ bool IsLocalVar = Tag == dwarf::DW_TAG_variable;
+ bool IsConstantMember = Tag == dwarf::DW_TAG_member &&
+ Die.find(dwarf::DW_AT_const_value);
+
+ // For zero covered inlined variables the locstats will be
+ // calculated later.
+ bool DeferLocStats = false;
+
+ if (Tag == dwarf::DW_TAG_call_site || Tag == dwarf::DW_TAG_GNU_call_site) {
+ GlobalStats.CallSiteDIEs++;
+ return;
+ }
+
+ if (Tag == dwarf::DW_TAG_call_site_parameter ||
+ Tag == dwarf::DW_TAG_GNU_call_site_parameter) {
+ GlobalStats.CallSiteParamDIEs++;
+ return;
+ }
+
+ if (!IsParam && !IsLocalVar && !IsConstantMember) {
+ // Not a variable or constant member.
+ return;
+ }
+
+ // Ignore declarations of global variables.
+ if (IsLocalVar && Die.find(dwarf::DW_AT_declaration))
+ return;
+
+ if (Die.findRecursively(dwarf::DW_AT_decl_file) &&
+ Die.findRecursively(dwarf::DW_AT_decl_line))
+ HasSrcLoc = true;
+
+ if (Die.findRecursively(dwarf::DW_AT_type))
+ HasType = true;
+
+ if (Die.find(dwarf::DW_AT_abstract_origin)) {
+ if (Die.find(dwarf::DW_AT_location) || Die.find(dwarf::DW_AT_const_value)) {
+ if (AbstractOriginVariables) {
+ auto Offset = Die.find(dwarf::DW_AT_abstract_origin);
+ // Do not track this variable any more, since it has location
+ // coverage.
+ llvm::erase_value(*AbstractOriginVariables, (*Offset).getRawUValue());
+ }
+ } else {
+ // The locstats will be handled at the end of
+ // the collectStatsRecursive().
+ DeferLocStats = true;
+ }
+ }
+
+ auto IsEntryValue = [&](ArrayRef<uint8_t> D) -> bool {
+ DWARFUnit *U = Die.getDwarfUnit();
+ DataExtractor Data(toStringRef(D),
+ Die.getDwarfUnit()->getContext().isLittleEndian(), 0);
+ DWARFExpression Expression(Data, U->getAddressByteSize(),
+ U->getFormParams().Format);
+ // Consider the expression containing the DW_OP_entry_value as
+ // an entry value.
+ return llvm::any_of(Expression, [](const DWARFExpression::Operation &Op) {
+ return Op.getCode() == dwarf::DW_OP_entry_value ||
+ Op.getCode() == dwarf::DW_OP_GNU_entry_value;
+ });
+ };
+
+ if (Die.find(dwarf::DW_AT_const_value)) {
+ // This catches constant members *and* variables.
+ HasLoc = true;
+ ScopeBytesCovered = BytesInScope;
+ TotalBytesCovered = BytesInScope;
+ } else {
+ // Handle variables and function arguments.
+ Expected<std::vector<DWARFLocationExpression>> Loc =
+ Die.getLocations(dwarf::DW_AT_location);
+ if (!Loc) {
+ consumeError(Loc.takeError());
+ } else {
+ HasLoc = true;
+ // Get PC coverage.
+ auto Default = find_if(
+ *Loc, [](const DWARFLocationExpression &L) { return !L.Range; });
+ if (Default != Loc->end()) {
+ // Assume the entire range is covered by a single location.
+ ScopeBytesCovered = BytesInScope;
+ TotalBytesCovered = BytesInScope;
+ } else {
+ // Caller checks this Expected result already, it cannot fail.
+ auto ScopeRanges = cantFail(Die.getParent().getAddressRanges());
+ for (auto Entry : *Loc) {
+ TotalBytesCovered += Entry.Range->HighPC - Entry.Range->LowPC;
+ uint64_t ScopeBytesCoveredByEntry = 0;
+ // Calculate how many bytes of the parent scope this entry covers.
+ // FIXME: In section 2.6.2 of the DWARFv5 spec it says that "The
+ // address ranges defined by the bounded location descriptions of a
+ // location list may overlap". So in theory a variable can have
+ // multiple simultaneous locations, which would make this calculation
+ // misleading because we will count the overlapped areas
+ // twice. However, clang does not currently emit DWARF like this.
+ for (DWARFAddressRange R : ScopeRanges) {
+ ScopeBytesCoveredByEntry += calculateOverlap(*Entry.Range, R);
+ }
+ ScopeBytesCovered += ScopeBytesCoveredByEntry;
+ if (IsEntryValue(Entry.Expr))
+ BytesEntryValuesCovered += ScopeBytesCoveredByEntry;
+ }
+ }
+ }
+ }
+
+ // Calculate the debug location statistics.
+ if (BytesInScope && !DeferLocStats) {
+ LocStats.NumVarParam.Value++;
+ if (IsParam)
+ LocStats.NumParam.Value++;
+ else if (IsLocalVar)
+ LocStats.NumVar.Value++;
+
+ collectLocStats(ScopeBytesCovered, BytesInScope, LocStats.VarParamLocStats,
+ LocStats.ParamLocStats, LocStats.LocalVarLocStats, IsParam,
+ IsLocalVar);
+ // Non debug entry values coverage statistics.
+ collectLocStats(ScopeBytesCovered - BytesEntryValuesCovered, BytesInScope,
+ LocStats.VarParamNonEntryValLocStats,
+ LocStats.ParamNonEntryValLocStats,
+ LocStats.LocalVarNonEntryValLocStats, IsParam, IsLocalVar);
+ }
+
+ // Collect PC range coverage data.
+ if (DWARFDie D =
+ Die.getAttributeValueAsReferencedDie(dwarf::DW_AT_abstract_origin))
+ Die = D;
+
+ std::string VarID = constructDieID(Die, VarPrefix);
+ FnStats.VarsInFunction.insert(VarID);
+
+ GlobalStats.TotalBytesCovered += TotalBytesCovered;
+ if (BytesInScope) {
+ GlobalStats.ScopeBytesCovered += ScopeBytesCovered;
+ GlobalStats.ScopeBytes += BytesInScope;
+ GlobalStats.ScopeEntryValueBytesCovered += BytesEntryValuesCovered;
+ if (IsParam) {
+ GlobalStats.ParamScopeBytesCovered += ScopeBytesCovered;
+ GlobalStats.ParamScopeBytes += BytesInScope;
+ GlobalStats.ParamScopeEntryValueBytesCovered += BytesEntryValuesCovered;
+ } else if (IsLocalVar) {
+ GlobalStats.LocalVarScopeBytesCovered += ScopeBytesCovered;
+ GlobalStats.LocalVarScopeBytes += BytesInScope;
+ GlobalStats.LocalVarScopeEntryValueBytesCovered +=
+ BytesEntryValuesCovered;
+ }
+ assert(GlobalStats.ScopeBytesCovered.Value <= GlobalStats.ScopeBytes.Value);
+ }
+
+ if (IsConstantMember) {
+ FnStats.ConstantMembers++;
+ return;
+ }
+
+ FnStats.TotalVarWithLoc += (unsigned)HasLoc;
+
+ if (Die.find(dwarf::DW_AT_artificial)) {
+ FnStats.NumArtificial++;
+ return;
+ }
+
+ if (IsParam) {
+ FnStats.NumParams++;
+ if (HasType)
+ FnStats.NumParamTypes++;
+ if (HasSrcLoc)
+ FnStats.NumParamSourceLocations++;
+ if (HasLoc)
+ FnStats.NumParamLocations++;
+ } else if (IsLocalVar) {
+ FnStats.NumLocalVars++;
+ if (HasType)
+ FnStats.NumLocalVarTypes++;
+ if (HasSrcLoc)
+ FnStats.NumLocalVarSourceLocations++;
+ if (HasLoc)
+ FnStats.NumLocalVarLocations++;
+ }
+}
+
+/// Recursively collect variables from subprogram with DW_AT_inline attribute.
+static void collectAbstractOriginFnInfo(
+ DWARFDie Die, uint64_t SPOffset,
+ AbstractOriginVarsTyMap &GlobalAbstractOriginFnInfo,
+ AbstractOriginVarsTyMap &LocalAbstractOriginFnInfo) {
+ DWARFDie Child = Die.getFirstChild();
+ while (Child) {
+ const dwarf::Tag ChildTag = Child.getTag();
+ if (ChildTag == dwarf::DW_TAG_formal_parameter ||
+ ChildTag == dwarf::DW_TAG_variable) {
+ GlobalAbstractOriginFnInfo[SPOffset].push_back(Child.getOffset());
+ LocalAbstractOriginFnInfo[SPOffset].push_back(Child.getOffset());
+ } else if (ChildTag == dwarf::DW_TAG_lexical_block)
+ collectAbstractOriginFnInfo(Child, SPOffset, GlobalAbstractOriginFnInfo,
+ LocalAbstractOriginFnInfo);
+ Child = Child.getSibling();
+ }
+}
+
+/// Recursively collect debug info quality metrics.
+static void collectStatsRecursive(
+ DWARFDie Die, std::string FnPrefix, std::string VarPrefix,
+ uint64_t BytesInScope, uint32_t InlineDepth,
+ StringMap<PerFunctionStats> &FnStatMap, GlobalStats &GlobalStats,
+ LocationStats &LocStats, FunctionDIECUTyMap &AbstractOriginFnCUs,
+ AbstractOriginVarsTyMap &GlobalAbstractOriginFnInfo,
+ AbstractOriginVarsTyMap &LocalAbstractOriginFnInfo,
+ FunctionsWithAbstractOriginTy &FnsWithAbstractOriginToBeProcessed,
+ AbstractOriginVarsTy *AbstractOriginVarsPtr = nullptr) {
+ // Skip NULL nodes.
+ if (Die.isNULL())
+ return;
+
+ const dwarf::Tag Tag = Die.getTag();
+ // Skip function types.
+ if (Tag == dwarf::DW_TAG_subroutine_type)
+ return;
+
+ // Handle any kind of lexical scope.
+ const bool HasAbstractOrigin =
+ Die.find(dwarf::DW_AT_abstract_origin) != std::nullopt;
+ const bool IsFunction = Tag == dwarf::DW_TAG_subprogram;
+ const bool IsBlock = Tag == dwarf::DW_TAG_lexical_block;
+ const bool IsInlinedFunction = Tag == dwarf::DW_TAG_inlined_subroutine;
+ // We want to know how many variables (with abstract_origin) don't have
+ // location info.
+ const bool IsCandidateForZeroLocCovTracking =
+ (IsInlinedFunction || (IsFunction && HasAbstractOrigin));
+
+ AbstractOriginVarsTy AbstractOriginVars;
+
+ // Get the vars of the inlined fn, so the locstats
+ // reports the missing vars (with coverage 0%).
+ if (IsCandidateForZeroLocCovTracking) {
+ auto OffsetFn = Die.find(dwarf::DW_AT_abstract_origin);
+ if (OffsetFn) {
+ uint64_t OffsetOfInlineFnCopy = (*OffsetFn).getRawUValue();
+ if (LocalAbstractOriginFnInfo.count(OffsetOfInlineFnCopy)) {
+ AbstractOriginVars = LocalAbstractOriginFnInfo[OffsetOfInlineFnCopy];
+ AbstractOriginVarsPtr = &AbstractOriginVars;
+ } else {
+ // This means that the DW_AT_inline fn copy is out of order
+ // or that the abstract_origin references another CU,
+ // so this abstract origin instance will be processed later.
+ FnsWithAbstractOriginToBeProcessed.push_back(Die.getOffset());
+ AbstractOriginVarsPtr = nullptr;
+ }
+ }
+ }
+
+ if (IsFunction || IsInlinedFunction || IsBlock) {
+ // Reset VarPrefix when entering a new function.
+ if (IsFunction || IsInlinedFunction)
+ VarPrefix = "v";
+
+ // Ignore forward declarations.
+ if (Die.find(dwarf::DW_AT_declaration))
+ return;
+
+ // Check for call sites.
+ if (Die.find(dwarf::DW_AT_call_file) && Die.find(dwarf::DW_AT_call_line))
+ GlobalStats.CallSiteEntries++;
+
+ // PC Ranges.
+ auto RangesOrError = Die.getAddressRanges();
+ if (!RangesOrError) {
+ llvm::consumeError(RangesOrError.takeError());
+ return;
+ }
+
+ auto Ranges = RangesOrError.get();
+ uint64_t BytesInThisScope = 0;
+ for (auto Range : Ranges)
+ BytesInThisScope += Range.HighPC - Range.LowPC;
+
+ // Count the function.
+ if (!IsBlock) {
+ // Skip over abstract origins, but collect variables
+ // from it so it can be used for location statistics
+ // for inlined instancies.
+ if (Die.find(dwarf::DW_AT_inline)) {
+ uint64_t SPOffset = Die.getOffset();
+ AbstractOriginFnCUs[SPOffset] = Die.getDwarfUnit();
+ collectAbstractOriginFnInfo(Die, SPOffset, GlobalAbstractOriginFnInfo,
+ LocalAbstractOriginFnInfo);
+ return;
+ }
+
+ std::string FnID = constructDieID(Die);
+ // We've seen an instance of this function.
+ auto &FnStats = FnStatMap[FnID];
+ FnStats.IsFunction = true;
+ if (IsInlinedFunction) {
+ FnStats.NumFnInlined++;
+ if (Die.findRecursively(dwarf::DW_AT_abstract_origin))
+ FnStats.NumAbstractOrigins++;
+ } else {
+ FnStats.NumFnOutOfLine++;
+ }
+ if (Die.findRecursively(dwarf::DW_AT_decl_file) &&
+ Die.findRecursively(dwarf::DW_AT_decl_line))
+ FnStats.HasSourceLocation = true;
+ // Update function prefix.
+ FnPrefix = FnID;
+ }
+
+ if (BytesInThisScope) {
+ BytesInScope = BytesInThisScope;
+ if (IsFunction)
+ GlobalStats.FunctionSize += BytesInThisScope;
+ else if (IsInlinedFunction && InlineDepth == 0)
+ GlobalStats.InlineFunctionSize += BytesInThisScope;
+ }
+ } else {
+ // Not a scope, visit the Die itself. It could be a variable.
+ collectStatsForDie(Die, FnPrefix, VarPrefix, BytesInScope, InlineDepth,
+ FnStatMap, GlobalStats, LocStats, AbstractOriginVarsPtr);
+ }
+
+ // Set InlineDepth correctly for child recursion
+ if (IsFunction)
+ InlineDepth = 0;
+ else if (IsInlinedFunction)
+ ++InlineDepth;
+
+ // Traverse children.
+ unsigned LexicalBlockIndex = 0;
+ unsigned FormalParameterIndex = 0;
+ DWARFDie Child = Die.getFirstChild();
+ while (Child) {
+ std::string ChildVarPrefix = VarPrefix;
+ if (Child.getTag() == dwarf::DW_TAG_lexical_block)
+ ChildVarPrefix += toHex(LexicalBlockIndex++) + '.';
+ if (Child.getTag() == dwarf::DW_TAG_formal_parameter)
+ ChildVarPrefix += 'p' + toHex(FormalParameterIndex++) + '.';
+
+ collectStatsRecursive(
+ Child, FnPrefix, ChildVarPrefix, BytesInScope, InlineDepth, FnStatMap,
+ GlobalStats, LocStats, AbstractOriginFnCUs, GlobalAbstractOriginFnInfo,
+ LocalAbstractOriginFnInfo, FnsWithAbstractOriginToBeProcessed,
+ AbstractOriginVarsPtr);
+ Child = Child.getSibling();
+ }
+
+ if (!IsCandidateForZeroLocCovTracking)
+ return;
+
+ // After we have processed all vars of the inlined function (or function with
+ // an abstract_origin), we want to know how many variables have no location.
+ for (auto Offset : AbstractOriginVars) {
+ LocStats.NumVarParam++;
+ LocStats.VarParamLocStats[ZeroCoverageBucket]++;
+ auto FnDie = Die.getDwarfUnit()->getDIEForOffset(Offset);
+ if (!FnDie)
+ continue;
+ auto Tag = FnDie.getTag();
+ if (Tag == dwarf::DW_TAG_formal_parameter) {
+ LocStats.NumParam++;
+ LocStats.ParamLocStats[ZeroCoverageBucket]++;
+ } else if (Tag == dwarf::DW_TAG_variable) {
+ LocStats.NumVar++;
+ LocStats.LocalVarLocStats[ZeroCoverageBucket]++;
+ }
+ }
+}
+
+/// Print human-readable output.
+/// \{
+static void printDatum(json::OStream &J, const char *Key, json::Value Value) {
+ if (Value == OverflowValue)
+ J.attribute(Key, "overflowed");
+ else
+ J.attribute(Key, Value);
+
+ LLVM_DEBUG(llvm::dbgs() << Key << ": " << Value << '\n');
+}
+
+static void printLocationStats(json::OStream &J, const char *Key,
+ std::vector<SaturatingUINT64> &LocationStats) {
+ if (LocationStats[0].Value == OverflowValue)
+ J.attribute((Twine(Key) +
+ " with (0%,10%) of parent scope covered by DW_AT_location")
+ .str(),
+ "overflowed");
+ else
+ J.attribute(
+ (Twine(Key) + " with 0% of parent scope covered by DW_AT_location")
+ .str(),
+ LocationStats[0].Value);
+ LLVM_DEBUG(
+ llvm::dbgs() << Key
+ << " with 0% of parent scope covered by DW_AT_location: \\"
+ << LocationStats[0].Value << '\n');
+
+ if (LocationStats[1].Value == OverflowValue)
+ J.attribute((Twine(Key) +
+ " with (0%,10%) of parent scope covered by DW_AT_location")
+ .str(),
+ "overflowed");
+ else
+ J.attribute((Twine(Key) +
+ " with (0%,10%) of parent scope covered by DW_AT_location")
+ .str(),
+ LocationStats[1].Value);
+ LLVM_DEBUG(llvm::dbgs()
+ << Key
+ << " with (0%,10%) of parent scope covered by DW_AT_location: "
+ << LocationStats[1].Value << '\n');
+
+ for (unsigned i = 2; i < NumOfCoverageCategories - 1; ++i) {
+ if (LocationStats[i].Value == OverflowValue)
+ J.attribute((Twine(Key) + " with [" + Twine((i - 1) * 10) + "%," +
+ Twine(i * 10) +
+ "%) of parent scope covered by DW_AT_location")
+ .str(),
+ "overflowed");
+ else
+ J.attribute((Twine(Key) + " with [" + Twine((i - 1) * 10) + "%," +
+ Twine(i * 10) +
+ "%) of parent scope covered by DW_AT_location")
+ .str(),
+ LocationStats[i].Value);
+ LLVM_DEBUG(llvm::dbgs()
+ << Key << " with [" << (i - 1) * 10 << "%," << i * 10
+ << "%) of parent scope covered by DW_AT_location: "
+ << LocationStats[i].Value);
+ }
+ if (LocationStats[NumOfCoverageCategories - 1].Value == OverflowValue)
+ J.attribute(
+ (Twine(Key) + " with 100% of parent scope covered by DW_AT_location")
+ .str(),
+ "overflowed");
+ else
+ J.attribute(
+ (Twine(Key) + " with 100% of parent scope covered by DW_AT_location")
+ .str(),
+ LocationStats[NumOfCoverageCategories - 1].Value);
+ LLVM_DEBUG(
+ llvm::dbgs() << Key
+ << " with 100% of parent scope covered by DW_AT_location: "
+ << LocationStats[NumOfCoverageCategories - 1].Value);
+}
+
+static void printSectionSizes(json::OStream &J, const SectionSizes &Sizes) {
+ for (const auto &It : Sizes.DebugSectionSizes)
+ J.attribute((Twine("#bytes in ") + It.first).str(), int64_t(It.second));
+}
+
+/// Stop tracking variables that contain abstract_origin with a location.
+/// This is used for out-of-order DW_AT_inline subprograms only.
+static void updateVarsWithAbstractOriginLocCovInfo(
+ DWARFDie FnDieWithAbstractOrigin,
+ AbstractOriginVarsTy &AbstractOriginVars) {
+ DWARFDie Child = FnDieWithAbstractOrigin.getFirstChild();
+ while (Child) {
+ const dwarf::Tag ChildTag = Child.getTag();
+ if ((ChildTag == dwarf::DW_TAG_formal_parameter ||
+ ChildTag == dwarf::DW_TAG_variable) &&
+ (Child.find(dwarf::DW_AT_location) ||
+ Child.find(dwarf::DW_AT_const_value))) {
+ auto OffsetVar = Child.find(dwarf::DW_AT_abstract_origin);
+ if (OffsetVar)
+ llvm::erase_value(AbstractOriginVars, (*OffsetVar).getRawUValue());
+ } else if (ChildTag == dwarf::DW_TAG_lexical_block)
+ updateVarsWithAbstractOriginLocCovInfo(Child, AbstractOriginVars);
+ Child = Child.getSibling();
+ }
+}
+
+/// Collect zero location coverage for inlined variables which refer to
+/// a DW_AT_inline copy of subprogram that is out of order in the DWARF.
+/// Also cover the variables of a concrete function (represented with
+/// the DW_TAG_subprogram) with an abstract_origin attribute.
+static void collectZeroLocCovForVarsWithAbstractOrigin(
+ DWARFUnit *DwUnit, GlobalStats &GlobalStats, LocationStats &LocStats,
+ AbstractOriginVarsTyMap &LocalAbstractOriginFnInfo,
+ FunctionsWithAbstractOriginTy &FnsWithAbstractOriginToBeProcessed) {
+ // The next variable is used to filter out functions that have been processed,
+ // leaving FnsWithAbstractOriginToBeProcessed with just CrossCU references.
+ FunctionsWithAbstractOriginTy ProcessedFns;
+ for (auto FnOffset : FnsWithAbstractOriginToBeProcessed) {
+ DWARFDie FnDieWithAbstractOrigin = DwUnit->getDIEForOffset(FnOffset);
+ auto FnCopy = FnDieWithAbstractOrigin.find(dwarf::DW_AT_abstract_origin);
+ AbstractOriginVarsTy AbstractOriginVars;
+ if (!FnCopy)
+ continue;
+ uint64_t FnCopyRawUValue = (*FnCopy).getRawUValue();
+ // If there is no entry within LocalAbstractOriginFnInfo for the given
+ // FnCopyRawUValue, function isn't out-of-order in DWARF. Rather, we have
+ // CrossCU referencing.
+ if (!LocalAbstractOriginFnInfo.count(FnCopyRawUValue))
+ continue;
+ AbstractOriginVars = LocalAbstractOriginFnInfo[FnCopyRawUValue];
+ updateVarsWithAbstractOriginLocCovInfo(FnDieWithAbstractOrigin,
+ AbstractOriginVars);
+
+ for (auto Offset : AbstractOriginVars) {
+ LocStats.NumVarParam++;
+ LocStats.VarParamLocStats[ZeroCoverageBucket]++;
+ auto Tag = DwUnit->getDIEForOffset(Offset).getTag();
+ if (Tag == dwarf::DW_TAG_formal_parameter) {
+ LocStats.NumParam++;
+ LocStats.ParamLocStats[ZeroCoverageBucket]++;
+ } else if (Tag == dwarf::DW_TAG_variable) {
+ LocStats.NumVar++;
+ LocStats.LocalVarLocStats[ZeroCoverageBucket]++;
+ }
+ }
+ ProcessedFns.push_back(FnOffset);
+ }
+ for (auto ProcessedFn : ProcessedFns)
+ llvm::erase_value(FnsWithAbstractOriginToBeProcessed, ProcessedFn);
+}
+
+/// Collect zero location coverage for inlined variables which refer to
+/// a DW_AT_inline copy of subprogram that is in a different CU.
+static void collectZeroLocCovForVarsWithCrossCUReferencingAbstractOrigin(
+ LocationStats &LocStats, FunctionDIECUTyMap AbstractOriginFnCUs,
+ AbstractOriginVarsTyMap &GlobalAbstractOriginFnInfo,
+ CrossCUReferencingDIELocationTy &CrossCUReferencesToBeResolved) {
+ for (const auto &CrossCUReferenceToBeResolved :
+ CrossCUReferencesToBeResolved) {
+ DWARFUnit *DwUnit = CrossCUReferenceToBeResolved.DwUnit;
+ DWARFDie FnDIEWithCrossCUReferencing =
+ DwUnit->getDIEForOffset(CrossCUReferenceToBeResolved.DIEOffset);
+ auto FnCopy =
+ FnDIEWithCrossCUReferencing.find(dwarf::DW_AT_abstract_origin);
+ if (!FnCopy)
+ continue;
+ uint64_t FnCopyRawUValue = (*FnCopy).getRawUValue();
+ AbstractOriginVarsTy AbstractOriginVars =
+ GlobalAbstractOriginFnInfo[FnCopyRawUValue];
+ updateVarsWithAbstractOriginLocCovInfo(FnDIEWithCrossCUReferencing,
+ AbstractOriginVars);
+ for (auto Offset : AbstractOriginVars) {
+ LocStats.NumVarParam++;
+ LocStats.VarParamLocStats[ZeroCoverageBucket]++;
+ auto Tag = (AbstractOriginFnCUs[FnCopyRawUValue])
+ ->getDIEForOffset(Offset)
+ .getTag();
+ if (Tag == dwarf::DW_TAG_formal_parameter) {
+ LocStats.NumParam++;
+ LocStats.ParamLocStats[ZeroCoverageBucket]++;
+ } else if (Tag == dwarf::DW_TAG_variable) {
+ LocStats.NumVar++;
+ LocStats.LocalVarLocStats[ZeroCoverageBucket]++;
+ }
+ }
+ }
+}
+
+/// \}
+
+/// Collect debug info quality metrics for an entire DIContext.
+///
+/// Do the impossible and reduce the quality of the debug info down to a few
+/// numbers. The idea is to condense the data into numbers that can be tracked
+/// over time to identify trends in newer compiler versions and gauge the effect
+/// of particular optimizations. The raw numbers themselves are not particularly
+/// useful, only the delta between compiling the same program with different
+/// compilers is.
+bool dwarfdump::collectStatsForObjectFile(ObjectFile &Obj, DWARFContext &DICtx,
+ const Twine &Filename,
+ raw_ostream &OS) {
+ StringRef FormatName = Obj.getFileFormatName();
+ GlobalStats GlobalStats;
+ LocationStats LocStats;
+ StringMap<PerFunctionStats> Statistics;
+ // This variable holds variable information for functions with
+ // abstract_origin globally, across all CUs.
+ AbstractOriginVarsTyMap GlobalAbstractOriginFnInfo;
+ // This variable holds information about the CU of a function with
+ // abstract_origin.
+ FunctionDIECUTyMap AbstractOriginFnCUs;
+ CrossCUReferencingDIELocationTy CrossCUReferencesToBeResolved;
+ for (const auto &CU : static_cast<DWARFContext *>(&DICtx)->compile_units()) {
+ if (DWARFDie CUDie = CU->getNonSkeletonUnitDIE(false)) {
+ // This variable holds variable information for functions with
+ // abstract_origin, but just for the current CU.
+ AbstractOriginVarsTyMap LocalAbstractOriginFnInfo;
+ FunctionsWithAbstractOriginTy FnsWithAbstractOriginToBeProcessed;
+
+ collectStatsRecursive(
+ CUDie, "/", "g", 0, 0, Statistics, GlobalStats, LocStats,
+ AbstractOriginFnCUs, GlobalAbstractOriginFnInfo,
+ LocalAbstractOriginFnInfo, FnsWithAbstractOriginToBeProcessed);
+
+ // collectZeroLocCovForVarsWithAbstractOrigin will filter out all
+ // out-of-order DWARF functions that have been processed within it,
+ // leaving FnsWithAbstractOriginToBeProcessed with only CrossCU
+ // references.
+ collectZeroLocCovForVarsWithAbstractOrigin(
+ CUDie.getDwarfUnit(), GlobalStats, LocStats,
+ LocalAbstractOriginFnInfo, FnsWithAbstractOriginToBeProcessed);
+
+ // Collect all CrossCU references into CrossCUReferencesToBeResolved.
+ for (auto CrossCUReferencingDIEOffset :
+ FnsWithAbstractOriginToBeProcessed)
+ CrossCUReferencesToBeResolved.push_back(
+ DIELocation(CUDie.getDwarfUnit(), CrossCUReferencingDIEOffset));
+ }
+ }
+
+ /// Resolve CrossCU references.
+ collectZeroLocCovForVarsWithCrossCUReferencingAbstractOrigin(
+ LocStats, AbstractOriginFnCUs, GlobalAbstractOriginFnInfo,
+ CrossCUReferencesToBeResolved);
+
+ /// Collect the sizes of debug sections.
+ SectionSizes Sizes;
+ calculateSectionSizes(Obj, Sizes, Filename);
+
+ /// The version number should be increased every time the algorithm is changed
+ /// (including bug fixes). New metrics may be added without increasing the
+ /// version.
+ unsigned Version = 9;
+ SaturatingUINT64 VarParamTotal = 0;
+ SaturatingUINT64 VarParamUnique = 0;
+ SaturatingUINT64 VarParamWithLoc = 0;
+ SaturatingUINT64 NumFunctions = 0;
+ SaturatingUINT64 NumInlinedFunctions = 0;
+ SaturatingUINT64 NumFuncsWithSrcLoc = 0;
+ SaturatingUINT64 NumAbstractOrigins = 0;
+ SaturatingUINT64 ParamTotal = 0;
+ SaturatingUINT64 ParamWithType = 0;
+ SaturatingUINT64 ParamWithLoc = 0;
+ SaturatingUINT64 ParamWithSrcLoc = 0;
+ SaturatingUINT64 LocalVarTotal = 0;
+ SaturatingUINT64 LocalVarWithType = 0;
+ SaturatingUINT64 LocalVarWithSrcLoc = 0;
+ SaturatingUINT64 LocalVarWithLoc = 0;
+ for (auto &Entry : Statistics) {
+ PerFunctionStats &Stats = Entry.getValue();
+ uint64_t TotalVars = Stats.VarsInFunction.size() *
+ (Stats.NumFnInlined + Stats.NumFnOutOfLine);
+ // Count variables in global scope.
+ if (!Stats.IsFunction)
+ TotalVars =
+ Stats.NumLocalVars + Stats.ConstantMembers + Stats.NumArtificial;
+ uint64_t Constants = Stats.ConstantMembers;
+ VarParamWithLoc += Stats.TotalVarWithLoc + Constants;
+ VarParamTotal += TotalVars;
+ VarParamUnique += Stats.VarsInFunction.size();
+ LLVM_DEBUG(for (auto &V
+ : Stats.VarsInFunction) llvm::dbgs()
+ << Entry.getKey() << ": " << V.getKey() << "\n");
+ NumFunctions += Stats.IsFunction;
+ NumFuncsWithSrcLoc += Stats.HasSourceLocation;
+ NumInlinedFunctions += Stats.IsFunction * Stats.NumFnInlined;
+ NumAbstractOrigins += Stats.IsFunction * Stats.NumAbstractOrigins;
+ ParamTotal += Stats.NumParams;
+ ParamWithType += Stats.NumParamTypes;
+ ParamWithLoc += Stats.NumParamLocations;
+ ParamWithSrcLoc += Stats.NumParamSourceLocations;
+ LocalVarTotal += Stats.NumLocalVars;
+ LocalVarWithType += Stats.NumLocalVarTypes;
+ LocalVarWithLoc += Stats.NumLocalVarLocations;
+ LocalVarWithSrcLoc += Stats.NumLocalVarSourceLocations;
+ }
+
+ // Print summary.
+ OS.SetBufferSize(1024);
+ json::OStream J(OS, 2);
+ J.objectBegin();
+ J.attribute("version", Version);
+ LLVM_DEBUG(llvm::dbgs() << "Variable location quality metrics\n";
+ llvm::dbgs() << "---------------------------------\n");
+
+ printDatum(J, "file", Filename.str());
+ printDatum(J, "format", FormatName);
+
+ printDatum(J, "#functions", NumFunctions.Value);
+ printDatum(J, "#functions with location", NumFuncsWithSrcLoc.Value);
+ printDatum(J, "#inlined functions", NumInlinedFunctions.Value);
+ printDatum(J, "#inlined functions with abstract origins",
+ NumAbstractOrigins.Value);
+
+ // This includes local variables and formal parameters.
+ printDatum(J, "#unique source variables", VarParamUnique.Value);
+ printDatum(J, "#source variables", VarParamTotal.Value);
+ printDatum(J, "#source variables with location", VarParamWithLoc.Value);
+
+ printDatum(J, "#call site entries", GlobalStats.CallSiteEntries.Value);
+ printDatum(J, "#call site DIEs", GlobalStats.CallSiteDIEs.Value);
+ printDatum(J, "#call site parameter DIEs",
+ GlobalStats.CallSiteParamDIEs.Value);
+
+ printDatum(J, "sum_all_variables(#bytes in parent scope)",
+ GlobalStats.ScopeBytes.Value);
+ printDatum(J,
+ "sum_all_variables(#bytes in any scope covered by DW_AT_location)",
+ GlobalStats.TotalBytesCovered.Value);
+ printDatum(J,
+ "sum_all_variables(#bytes in parent scope covered by "
+ "DW_AT_location)",
+ GlobalStats.ScopeBytesCovered.Value);
+ printDatum(J,
+ "sum_all_variables(#bytes in parent scope covered by "
+ "DW_OP_entry_value)",
+ GlobalStats.ScopeEntryValueBytesCovered.Value);
+
+ printDatum(J, "sum_all_params(#bytes in parent scope)",
+ GlobalStats.ParamScopeBytes.Value);
+ printDatum(J,
+ "sum_all_params(#bytes in parent scope covered by DW_AT_location)",
+ GlobalStats.ParamScopeBytesCovered.Value);
+ printDatum(J,
+ "sum_all_params(#bytes in parent scope covered by "
+ "DW_OP_entry_value)",
+ GlobalStats.ParamScopeEntryValueBytesCovered.Value);
+
+ printDatum(J, "sum_all_local_vars(#bytes in parent scope)",
+ GlobalStats.LocalVarScopeBytes.Value);
+ printDatum(J,
+ "sum_all_local_vars(#bytes in parent scope covered by "
+ "DW_AT_location)",
+ GlobalStats.LocalVarScopeBytesCovered.Value);
+ printDatum(J,
+ "sum_all_local_vars(#bytes in parent scope covered by "
+ "DW_OP_entry_value)",
+ GlobalStats.LocalVarScopeEntryValueBytesCovered.Value);
+
+ printDatum(J, "#bytes within functions", GlobalStats.FunctionSize.Value);
+ printDatum(J, "#bytes within inlined functions",
+ GlobalStats.InlineFunctionSize.Value);
+
+ // Print the summary for formal parameters.
+ printDatum(J, "#params", ParamTotal.Value);
+ printDatum(J, "#params with source location", ParamWithSrcLoc.Value);
+ printDatum(J, "#params with type", ParamWithType.Value);
+ printDatum(J, "#params with binary location", ParamWithLoc.Value);
+
+ // Print the summary for local variables.
+ printDatum(J, "#local vars", LocalVarTotal.Value);
+ printDatum(J, "#local vars with source location", LocalVarWithSrcLoc.Value);
+ printDatum(J, "#local vars with type", LocalVarWithType.Value);
+ printDatum(J, "#local vars with binary location", LocalVarWithLoc.Value);
+
+ // Print the debug section sizes.
+ printSectionSizes(J, Sizes);
+
+ // Print the location statistics for variables (includes local variables
+ // and formal parameters).
+ printDatum(J, "#variables processed by location statistics",
+ LocStats.NumVarParam.Value);
+ printLocationStats(J, "#variables", LocStats.VarParamLocStats);
+ printLocationStats(J, "#variables - entry values",
+ LocStats.VarParamNonEntryValLocStats);
+
+ // Print the location statistics for formal parameters.
+ printDatum(J, "#params processed by location statistics",
+ LocStats.NumParam.Value);
+ printLocationStats(J, "#params", LocStats.ParamLocStats);
+ printLocationStats(J, "#params - entry values",
+ LocStats.ParamNonEntryValLocStats);
+
+ // Print the location statistics for local variables.
+ printDatum(J, "#local vars processed by location statistics",
+ LocStats.NumVar.Value);
+ printLocationStats(J, "#local vars", LocStats.LocalVarLocStats);
+ printLocationStats(J, "#local vars - entry values",
+ LocStats.LocalVarNonEntryValLocStats);
+ J.objectEnd();
+ OS << '\n';
+ LLVM_DEBUG(
+ llvm::dbgs() << "Total Availability: "
+ << (VarParamTotal.Value
+ ? (int)std::round((VarParamWithLoc.Value * 100.0) /
+ VarParamTotal.Value)
+ : 0)
+ << "%\n";
+ llvm::dbgs() << "PC Ranges covered: "
+ << (GlobalStats.ScopeBytes.Value
+ ? (int)std::round(
+ (GlobalStats.ScopeBytesCovered.Value * 100.0) /
+ GlobalStats.ScopeBytes.Value)
+ : 0)
+ << "%\n");
+ return true;
+}