diff options
author | vvvv <vvvv@ydb.tech> | 2024-02-06 20:01:22 +0300 |
---|---|---|
committer | Alexander Smirnov <alex@ydb.tech> | 2024-02-09 19:18:27 +0300 |
commit | ee2b7fbda052aa09b6fdb83b8c6f0305fef3e193 (patch) | |
tree | 102765416c3866bde98a82facc7752d329ee0226 /contrib/libs/llvm16/tools/llvm-dwarfdump/Statistics.cpp | |
parent | 7494ca32d3a5aca00b7ac527b5f127989335102c (diff) | |
download | ydb-ee2b7fbda052aa09b6fdb83b8c6f0305fef3e193.tar.gz |
llvm16 targets
Diffstat (limited to 'contrib/libs/llvm16/tools/llvm-dwarfdump/Statistics.cpp')
-rw-r--r-- | contrib/libs/llvm16/tools/llvm-dwarfdump/Statistics.cpp | 1063 |
1 files changed, 1063 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/tools/llvm-dwarfdump/Statistics.cpp b/contrib/libs/llvm16/tools/llvm-dwarfdump/Statistics.cpp new file mode 100644 index 0000000000..a967abffc1 --- /dev/null +++ b/contrib/libs/llvm16/tools/llvm-dwarfdump/Statistics.cpp @@ -0,0 +1,1063 @@ +//===-- Statistics.cpp - Debug Info quality metrics -----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "llvm-dwarfdump.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/StringSet.h" +#include "llvm/DebugInfo/DWARF/DWARFContext.h" +#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h" +#include "llvm/DebugInfo/DWARF/DWARFExpression.h" +#include "llvm/Object/ObjectFile.h" +#include "llvm/Support/JSON.h" + +#define DEBUG_TYPE "dwarfdump" +using namespace llvm; +using namespace llvm::dwarfdump; +using namespace llvm::object; + +namespace { +/// This represents the number of categories of debug location coverage being +/// calculated. The first category is the number of variables with 0% location +/// coverage, but the last category is the number of variables with 100% +/// location coverage. +constexpr int NumOfCoverageCategories = 12; + +/// This is used for zero location coverage bucket. +constexpr unsigned ZeroCoverageBucket = 0; + +/// The UINT64_MAX is used as an indication of the overflow. +constexpr uint64_t OverflowValue = std::numeric_limits<uint64_t>::max(); + +/// This represents variables DIE offsets. +using AbstractOriginVarsTy = llvm::SmallVector<uint64_t>; +/// This maps function DIE offset to its variables. +using AbstractOriginVarsTyMap = llvm::DenseMap<uint64_t, AbstractOriginVarsTy>; +/// This represents function DIE offsets containing an abstract_origin. +using FunctionsWithAbstractOriginTy = llvm::SmallVector<uint64_t>; + +/// This represents a data type for the stats and it helps us to +/// detect an overflow. +/// NOTE: This can be implemented as a template if there is an another type +/// needing this. +struct SaturatingUINT64 { + /// Number that represents the stats. + uint64_t Value; + + SaturatingUINT64(uint64_t Value_) : Value(Value_) {} + + void operator++(int) { return *this += 1; } + void operator+=(uint64_t Value_) { + if (Value != OverflowValue) { + if (Value < OverflowValue - Value_) + Value += Value_; + else + Value = OverflowValue; + } + } +}; + +/// Utility struct to store the full location of a DIE - its CU and offset. +struct DIELocation { + DWARFUnit *DwUnit; + uint64_t DIEOffset; + DIELocation(DWARFUnit *_DwUnit, uint64_t _DIEOffset) + : DwUnit(_DwUnit), DIEOffset(_DIEOffset) {} +}; +/// This represents DWARF locations of CrossCU referencing DIEs. +using CrossCUReferencingDIELocationTy = llvm::SmallVector<DIELocation>; + +/// This maps function DIE offset to its DWARF CU. +using FunctionDIECUTyMap = llvm::DenseMap<uint64_t, DWARFUnit *>; + +/// Holds statistics for one function (or other entity that has a PC range and +/// contains variables, such as a compile unit). +struct PerFunctionStats { + /// Number of inlined instances of this function. + uint64_t NumFnInlined = 0; + /// Number of out-of-line instances of this function. + uint64_t NumFnOutOfLine = 0; + /// Number of inlined instances that have abstract origins. + uint64_t NumAbstractOrigins = 0; + /// Number of variables and parameters with location across all inlined + /// instances. + uint64_t TotalVarWithLoc = 0; + /// Number of constants with location across all inlined instances. + uint64_t ConstantMembers = 0; + /// Number of arificial variables, parameters or members across all instances. + uint64_t NumArtificial = 0; + /// List of all Variables and parameters in this function. + StringSet<> VarsInFunction; + /// Compile units also cover a PC range, but have this flag set to false. + bool IsFunction = false; + /// Function has source location information. + bool HasSourceLocation = false; + /// Number of function parameters. + uint64_t NumParams = 0; + /// Number of function parameters with source location. + uint64_t NumParamSourceLocations = 0; + /// Number of function parameters with type. + uint64_t NumParamTypes = 0; + /// Number of function parameters with a DW_AT_location. + uint64_t NumParamLocations = 0; + /// Number of local variables. + uint64_t NumLocalVars = 0; + /// Number of local variables with source location. + uint64_t NumLocalVarSourceLocations = 0; + /// Number of local variables with type. + uint64_t NumLocalVarTypes = 0; + /// Number of local variables with DW_AT_location. + uint64_t NumLocalVarLocations = 0; +}; + +/// Holds accumulated global statistics about DIEs. +struct GlobalStats { + /// Total number of PC range bytes covered by DW_AT_locations. + SaturatingUINT64 TotalBytesCovered = 0; + /// Total number of parent DIE PC range bytes covered by DW_AT_Locations. + SaturatingUINT64 ScopeBytesCovered = 0; + /// Total number of PC range bytes in each variable's enclosing scope. + SaturatingUINT64 ScopeBytes = 0; + /// Total number of PC range bytes covered by DW_AT_locations with + /// the debug entry values (DW_OP_entry_value). + SaturatingUINT64 ScopeEntryValueBytesCovered = 0; + /// Total number of PC range bytes covered by DW_AT_locations of + /// formal parameters. + SaturatingUINT64 ParamScopeBytesCovered = 0; + /// Total number of PC range bytes in each parameter's enclosing scope. + SaturatingUINT64 ParamScopeBytes = 0; + /// Total number of PC range bytes covered by DW_AT_locations with + /// the debug entry values (DW_OP_entry_value) (only for parameters). + SaturatingUINT64 ParamScopeEntryValueBytesCovered = 0; + /// Total number of PC range bytes covered by DW_AT_locations (only for local + /// variables). + SaturatingUINT64 LocalVarScopeBytesCovered = 0; + /// Total number of PC range bytes in each local variable's enclosing scope. + SaturatingUINT64 LocalVarScopeBytes = 0; + /// Total number of PC range bytes covered by DW_AT_locations with + /// the debug entry values (DW_OP_entry_value) (only for local variables). + SaturatingUINT64 LocalVarScopeEntryValueBytesCovered = 0; + /// Total number of call site entries (DW_AT_call_file & DW_AT_call_line). + SaturatingUINT64 CallSiteEntries = 0; + /// Total number of call site DIEs (DW_TAG_call_site). + SaturatingUINT64 CallSiteDIEs = 0; + /// Total number of call site parameter DIEs (DW_TAG_call_site_parameter). + SaturatingUINT64 CallSiteParamDIEs = 0; + /// Total byte size of concrete functions. This byte size includes + /// inline functions contained in the concrete functions. + SaturatingUINT64 FunctionSize = 0; + /// Total byte size of inlined functions. This is the total number of bytes + /// for the top inline functions within concrete functions. This can help + /// tune the inline settings when compiling to match user expectations. + SaturatingUINT64 InlineFunctionSize = 0; +}; + +/// Holds accumulated debug location statistics about local variables and +/// formal parameters. +struct LocationStats { + /// Map the scope coverage decile to the number of variables in the decile. + /// The first element of the array (at the index zero) represents the number + /// of variables with the no debug location at all, but the last element + /// in the vector represents the number of fully covered variables within + /// its scope. + std::vector<SaturatingUINT64> VarParamLocStats{ + std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)}; + /// Map non debug entry values coverage. + std::vector<SaturatingUINT64> VarParamNonEntryValLocStats{ + std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)}; + /// The debug location statistics for formal parameters. + std::vector<SaturatingUINT64> ParamLocStats{ + std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)}; + /// Map non debug entry values coverage for formal parameters. + std::vector<SaturatingUINT64> ParamNonEntryValLocStats{ + std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)}; + /// The debug location statistics for local variables. + std::vector<SaturatingUINT64> LocalVarLocStats{ + std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)}; + /// Map non debug entry values coverage for local variables. + std::vector<SaturatingUINT64> LocalVarNonEntryValLocStats{ + std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)}; + /// Total number of local variables and function parameters processed. + SaturatingUINT64 NumVarParam = 0; + /// Total number of formal parameters processed. + SaturatingUINT64 NumParam = 0; + /// Total number of local variables processed. + SaturatingUINT64 NumVar = 0; +}; +} // namespace + +/// Collect debug location statistics for one DIE. +static void collectLocStats(uint64_t ScopeBytesCovered, uint64_t BytesInScope, + std::vector<SaturatingUINT64> &VarParamLocStats, + std::vector<SaturatingUINT64> &ParamLocStats, + std::vector<SaturatingUINT64> &LocalVarLocStats, + bool IsParam, bool IsLocalVar) { + auto getCoverageBucket = [ScopeBytesCovered, BytesInScope]() -> unsigned { + // No debug location at all for the variable. + if (ScopeBytesCovered == 0) + return 0; + // Fully covered variable within its scope. + if (ScopeBytesCovered >= BytesInScope) + return NumOfCoverageCategories - 1; + // Get covered range (e.g. 20%-29%). + unsigned LocBucket = 100 * (double)ScopeBytesCovered / BytesInScope; + LocBucket /= 10; + return LocBucket + 1; + }; + + unsigned CoverageBucket = getCoverageBucket(); + + VarParamLocStats[CoverageBucket].Value++; + if (IsParam) + ParamLocStats[CoverageBucket].Value++; + else if (IsLocalVar) + LocalVarLocStats[CoverageBucket].Value++; +} + +/// Construct an identifier for a given DIE from its Prefix, Name, DeclFileName +/// and DeclLine. The identifier aims to be unique for any unique entities, +/// but keeping the same among different instances of the same entity. +static std::string constructDieID(DWARFDie Die, + StringRef Prefix = StringRef()) { + std::string IDStr; + llvm::raw_string_ostream ID(IDStr); + ID << Prefix + << Die.getName(DINameKind::LinkageName); + + // Prefix + Name is enough for local variables and parameters. + if (!Prefix.empty() && !Prefix.equals("g")) + return ID.str(); + + auto DeclFile = Die.findRecursively(dwarf::DW_AT_decl_file); + std::string File; + if (DeclFile) { + DWARFUnit *U = Die.getDwarfUnit(); + if (const auto *LT = U->getContext().getLineTableForUnit(U)) + if (LT->getFileNameByIndex( + dwarf::toUnsigned(DeclFile, 0), U->getCompilationDir(), + DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, File)) + File = std::string(sys::path::filename(File)); + } + ID << ":" << (File.empty() ? "/" : File); + ID << ":" + << dwarf::toUnsigned(Die.findRecursively(dwarf::DW_AT_decl_line), 0); + return ID.str(); +} + +/// Return the number of bytes in the overlap of ranges A and B. +static uint64_t calculateOverlap(DWARFAddressRange A, DWARFAddressRange B) { + uint64_t Lower = std::max(A.LowPC, B.LowPC); + uint64_t Upper = std::min(A.HighPC, B.HighPC); + if (Lower >= Upper) + return 0; + return Upper - Lower; +} + +/// Collect debug info quality metrics for one DIE. +static void collectStatsForDie(DWARFDie Die, const std::string &FnPrefix, + const std::string &VarPrefix, + uint64_t BytesInScope, uint32_t InlineDepth, + StringMap<PerFunctionStats> &FnStatMap, + GlobalStats &GlobalStats, + LocationStats &LocStats, + AbstractOriginVarsTy *AbstractOriginVariables) { + const dwarf::Tag Tag = Die.getTag(); + // Skip CU node. + if (Tag == dwarf::DW_TAG_compile_unit) + return; + + bool HasLoc = false; + bool HasSrcLoc = false; + bool HasType = false; + uint64_t TotalBytesCovered = 0; + uint64_t ScopeBytesCovered = 0; + uint64_t BytesEntryValuesCovered = 0; + auto &FnStats = FnStatMap[FnPrefix]; + bool IsParam = Tag == dwarf::DW_TAG_formal_parameter; + bool IsLocalVar = Tag == dwarf::DW_TAG_variable; + bool IsConstantMember = Tag == dwarf::DW_TAG_member && + Die.find(dwarf::DW_AT_const_value); + + // For zero covered inlined variables the locstats will be + // calculated later. + bool DeferLocStats = false; + + if (Tag == dwarf::DW_TAG_call_site || Tag == dwarf::DW_TAG_GNU_call_site) { + GlobalStats.CallSiteDIEs++; + return; + } + + if (Tag == dwarf::DW_TAG_call_site_parameter || + Tag == dwarf::DW_TAG_GNU_call_site_parameter) { + GlobalStats.CallSiteParamDIEs++; + return; + } + + if (!IsParam && !IsLocalVar && !IsConstantMember) { + // Not a variable or constant member. + return; + } + + // Ignore declarations of global variables. + if (IsLocalVar && Die.find(dwarf::DW_AT_declaration)) + return; + + if (Die.findRecursively(dwarf::DW_AT_decl_file) && + Die.findRecursively(dwarf::DW_AT_decl_line)) + HasSrcLoc = true; + + if (Die.findRecursively(dwarf::DW_AT_type)) + HasType = true; + + if (Die.find(dwarf::DW_AT_abstract_origin)) { + if (Die.find(dwarf::DW_AT_location) || Die.find(dwarf::DW_AT_const_value)) { + if (AbstractOriginVariables) { + auto Offset = Die.find(dwarf::DW_AT_abstract_origin); + // Do not track this variable any more, since it has location + // coverage. + llvm::erase_value(*AbstractOriginVariables, (*Offset).getRawUValue()); + } + } else { + // The locstats will be handled at the end of + // the collectStatsRecursive(). + DeferLocStats = true; + } + } + + auto IsEntryValue = [&](ArrayRef<uint8_t> D) -> bool { + DWARFUnit *U = Die.getDwarfUnit(); + DataExtractor Data(toStringRef(D), + Die.getDwarfUnit()->getContext().isLittleEndian(), 0); + DWARFExpression Expression(Data, U->getAddressByteSize(), + U->getFormParams().Format); + // Consider the expression containing the DW_OP_entry_value as + // an entry value. + return llvm::any_of(Expression, [](const DWARFExpression::Operation &Op) { + return Op.getCode() == dwarf::DW_OP_entry_value || + Op.getCode() == dwarf::DW_OP_GNU_entry_value; + }); + }; + + if (Die.find(dwarf::DW_AT_const_value)) { + // This catches constant members *and* variables. + HasLoc = true; + ScopeBytesCovered = BytesInScope; + TotalBytesCovered = BytesInScope; + } else { + // Handle variables and function arguments. + Expected<std::vector<DWARFLocationExpression>> Loc = + Die.getLocations(dwarf::DW_AT_location); + if (!Loc) { + consumeError(Loc.takeError()); + } else { + HasLoc = true; + // Get PC coverage. + auto Default = find_if( + *Loc, [](const DWARFLocationExpression &L) { return !L.Range; }); + if (Default != Loc->end()) { + // Assume the entire range is covered by a single location. + ScopeBytesCovered = BytesInScope; + TotalBytesCovered = BytesInScope; + } else { + // Caller checks this Expected result already, it cannot fail. + auto ScopeRanges = cantFail(Die.getParent().getAddressRanges()); + for (auto Entry : *Loc) { + TotalBytesCovered += Entry.Range->HighPC - Entry.Range->LowPC; + uint64_t ScopeBytesCoveredByEntry = 0; + // Calculate how many bytes of the parent scope this entry covers. + // FIXME: In section 2.6.2 of the DWARFv5 spec it says that "The + // address ranges defined by the bounded location descriptions of a + // location list may overlap". So in theory a variable can have + // multiple simultaneous locations, which would make this calculation + // misleading because we will count the overlapped areas + // twice. However, clang does not currently emit DWARF like this. + for (DWARFAddressRange R : ScopeRanges) { + ScopeBytesCoveredByEntry += calculateOverlap(*Entry.Range, R); + } + ScopeBytesCovered += ScopeBytesCoveredByEntry; + if (IsEntryValue(Entry.Expr)) + BytesEntryValuesCovered += ScopeBytesCoveredByEntry; + } + } + } + } + + // Calculate the debug location statistics. + if (BytesInScope && !DeferLocStats) { + LocStats.NumVarParam.Value++; + if (IsParam) + LocStats.NumParam.Value++; + else if (IsLocalVar) + LocStats.NumVar.Value++; + + collectLocStats(ScopeBytesCovered, BytesInScope, LocStats.VarParamLocStats, + LocStats.ParamLocStats, LocStats.LocalVarLocStats, IsParam, + IsLocalVar); + // Non debug entry values coverage statistics. + collectLocStats(ScopeBytesCovered - BytesEntryValuesCovered, BytesInScope, + LocStats.VarParamNonEntryValLocStats, + LocStats.ParamNonEntryValLocStats, + LocStats.LocalVarNonEntryValLocStats, IsParam, IsLocalVar); + } + + // Collect PC range coverage data. + if (DWARFDie D = + Die.getAttributeValueAsReferencedDie(dwarf::DW_AT_abstract_origin)) + Die = D; + + std::string VarID = constructDieID(Die, VarPrefix); + FnStats.VarsInFunction.insert(VarID); + + GlobalStats.TotalBytesCovered += TotalBytesCovered; + if (BytesInScope) { + GlobalStats.ScopeBytesCovered += ScopeBytesCovered; + GlobalStats.ScopeBytes += BytesInScope; + GlobalStats.ScopeEntryValueBytesCovered += BytesEntryValuesCovered; + if (IsParam) { + GlobalStats.ParamScopeBytesCovered += ScopeBytesCovered; + GlobalStats.ParamScopeBytes += BytesInScope; + GlobalStats.ParamScopeEntryValueBytesCovered += BytesEntryValuesCovered; + } else if (IsLocalVar) { + GlobalStats.LocalVarScopeBytesCovered += ScopeBytesCovered; + GlobalStats.LocalVarScopeBytes += BytesInScope; + GlobalStats.LocalVarScopeEntryValueBytesCovered += + BytesEntryValuesCovered; + } + assert(GlobalStats.ScopeBytesCovered.Value <= GlobalStats.ScopeBytes.Value); + } + + if (IsConstantMember) { + FnStats.ConstantMembers++; + return; + } + + FnStats.TotalVarWithLoc += (unsigned)HasLoc; + + if (Die.find(dwarf::DW_AT_artificial)) { + FnStats.NumArtificial++; + return; + } + + if (IsParam) { + FnStats.NumParams++; + if (HasType) + FnStats.NumParamTypes++; + if (HasSrcLoc) + FnStats.NumParamSourceLocations++; + if (HasLoc) + FnStats.NumParamLocations++; + } else if (IsLocalVar) { + FnStats.NumLocalVars++; + if (HasType) + FnStats.NumLocalVarTypes++; + if (HasSrcLoc) + FnStats.NumLocalVarSourceLocations++; + if (HasLoc) + FnStats.NumLocalVarLocations++; + } +} + +/// Recursively collect variables from subprogram with DW_AT_inline attribute. +static void collectAbstractOriginFnInfo( + DWARFDie Die, uint64_t SPOffset, + AbstractOriginVarsTyMap &GlobalAbstractOriginFnInfo, + AbstractOriginVarsTyMap &LocalAbstractOriginFnInfo) { + DWARFDie Child = Die.getFirstChild(); + while (Child) { + const dwarf::Tag ChildTag = Child.getTag(); + if (ChildTag == dwarf::DW_TAG_formal_parameter || + ChildTag == dwarf::DW_TAG_variable) { + GlobalAbstractOriginFnInfo[SPOffset].push_back(Child.getOffset()); + LocalAbstractOriginFnInfo[SPOffset].push_back(Child.getOffset()); + } else if (ChildTag == dwarf::DW_TAG_lexical_block) + collectAbstractOriginFnInfo(Child, SPOffset, GlobalAbstractOriginFnInfo, + LocalAbstractOriginFnInfo); + Child = Child.getSibling(); + } +} + +/// Recursively collect debug info quality metrics. +static void collectStatsRecursive( + DWARFDie Die, std::string FnPrefix, std::string VarPrefix, + uint64_t BytesInScope, uint32_t InlineDepth, + StringMap<PerFunctionStats> &FnStatMap, GlobalStats &GlobalStats, + LocationStats &LocStats, FunctionDIECUTyMap &AbstractOriginFnCUs, + AbstractOriginVarsTyMap &GlobalAbstractOriginFnInfo, + AbstractOriginVarsTyMap &LocalAbstractOriginFnInfo, + FunctionsWithAbstractOriginTy &FnsWithAbstractOriginToBeProcessed, + AbstractOriginVarsTy *AbstractOriginVarsPtr = nullptr) { + // Skip NULL nodes. + if (Die.isNULL()) + return; + + const dwarf::Tag Tag = Die.getTag(); + // Skip function types. + if (Tag == dwarf::DW_TAG_subroutine_type) + return; + + // Handle any kind of lexical scope. + const bool HasAbstractOrigin = + Die.find(dwarf::DW_AT_abstract_origin) != std::nullopt; + const bool IsFunction = Tag == dwarf::DW_TAG_subprogram; + const bool IsBlock = Tag == dwarf::DW_TAG_lexical_block; + const bool IsInlinedFunction = Tag == dwarf::DW_TAG_inlined_subroutine; + // We want to know how many variables (with abstract_origin) don't have + // location info. + const bool IsCandidateForZeroLocCovTracking = + (IsInlinedFunction || (IsFunction && HasAbstractOrigin)); + + AbstractOriginVarsTy AbstractOriginVars; + + // Get the vars of the inlined fn, so the locstats + // reports the missing vars (with coverage 0%). + if (IsCandidateForZeroLocCovTracking) { + auto OffsetFn = Die.find(dwarf::DW_AT_abstract_origin); + if (OffsetFn) { + uint64_t OffsetOfInlineFnCopy = (*OffsetFn).getRawUValue(); + if (LocalAbstractOriginFnInfo.count(OffsetOfInlineFnCopy)) { + AbstractOriginVars = LocalAbstractOriginFnInfo[OffsetOfInlineFnCopy]; + AbstractOriginVarsPtr = &AbstractOriginVars; + } else { + // This means that the DW_AT_inline fn copy is out of order + // or that the abstract_origin references another CU, + // so this abstract origin instance will be processed later. + FnsWithAbstractOriginToBeProcessed.push_back(Die.getOffset()); + AbstractOriginVarsPtr = nullptr; + } + } + } + + if (IsFunction || IsInlinedFunction || IsBlock) { + // Reset VarPrefix when entering a new function. + if (IsFunction || IsInlinedFunction) + VarPrefix = "v"; + + // Ignore forward declarations. + if (Die.find(dwarf::DW_AT_declaration)) + return; + + // Check for call sites. + if (Die.find(dwarf::DW_AT_call_file) && Die.find(dwarf::DW_AT_call_line)) + GlobalStats.CallSiteEntries++; + + // PC Ranges. + auto RangesOrError = Die.getAddressRanges(); + if (!RangesOrError) { + llvm::consumeError(RangesOrError.takeError()); + return; + } + + auto Ranges = RangesOrError.get(); + uint64_t BytesInThisScope = 0; + for (auto Range : Ranges) + BytesInThisScope += Range.HighPC - Range.LowPC; + + // Count the function. + if (!IsBlock) { + // Skip over abstract origins, but collect variables + // from it so it can be used for location statistics + // for inlined instancies. + if (Die.find(dwarf::DW_AT_inline)) { + uint64_t SPOffset = Die.getOffset(); + AbstractOriginFnCUs[SPOffset] = Die.getDwarfUnit(); + collectAbstractOriginFnInfo(Die, SPOffset, GlobalAbstractOriginFnInfo, + LocalAbstractOriginFnInfo); + return; + } + + std::string FnID = constructDieID(Die); + // We've seen an instance of this function. + auto &FnStats = FnStatMap[FnID]; + FnStats.IsFunction = true; + if (IsInlinedFunction) { + FnStats.NumFnInlined++; + if (Die.findRecursively(dwarf::DW_AT_abstract_origin)) + FnStats.NumAbstractOrigins++; + } else { + FnStats.NumFnOutOfLine++; + } + if (Die.findRecursively(dwarf::DW_AT_decl_file) && + Die.findRecursively(dwarf::DW_AT_decl_line)) + FnStats.HasSourceLocation = true; + // Update function prefix. + FnPrefix = FnID; + } + + if (BytesInThisScope) { + BytesInScope = BytesInThisScope; + if (IsFunction) + GlobalStats.FunctionSize += BytesInThisScope; + else if (IsInlinedFunction && InlineDepth == 0) + GlobalStats.InlineFunctionSize += BytesInThisScope; + } + } else { + // Not a scope, visit the Die itself. It could be a variable. + collectStatsForDie(Die, FnPrefix, VarPrefix, BytesInScope, InlineDepth, + FnStatMap, GlobalStats, LocStats, AbstractOriginVarsPtr); + } + + // Set InlineDepth correctly for child recursion + if (IsFunction) + InlineDepth = 0; + else if (IsInlinedFunction) + ++InlineDepth; + + // Traverse children. + unsigned LexicalBlockIndex = 0; + unsigned FormalParameterIndex = 0; + DWARFDie Child = Die.getFirstChild(); + while (Child) { + std::string ChildVarPrefix = VarPrefix; + if (Child.getTag() == dwarf::DW_TAG_lexical_block) + ChildVarPrefix += toHex(LexicalBlockIndex++) + '.'; + if (Child.getTag() == dwarf::DW_TAG_formal_parameter) + ChildVarPrefix += 'p' + toHex(FormalParameterIndex++) + '.'; + + collectStatsRecursive( + Child, FnPrefix, ChildVarPrefix, BytesInScope, InlineDepth, FnStatMap, + GlobalStats, LocStats, AbstractOriginFnCUs, GlobalAbstractOriginFnInfo, + LocalAbstractOriginFnInfo, FnsWithAbstractOriginToBeProcessed, + AbstractOriginVarsPtr); + Child = Child.getSibling(); + } + + if (!IsCandidateForZeroLocCovTracking) + return; + + // After we have processed all vars of the inlined function (or function with + // an abstract_origin), we want to know how many variables have no location. + for (auto Offset : AbstractOriginVars) { + LocStats.NumVarParam++; + LocStats.VarParamLocStats[ZeroCoverageBucket]++; + auto FnDie = Die.getDwarfUnit()->getDIEForOffset(Offset); + if (!FnDie) + continue; + auto Tag = FnDie.getTag(); + if (Tag == dwarf::DW_TAG_formal_parameter) { + LocStats.NumParam++; + LocStats.ParamLocStats[ZeroCoverageBucket]++; + } else if (Tag == dwarf::DW_TAG_variable) { + LocStats.NumVar++; + LocStats.LocalVarLocStats[ZeroCoverageBucket]++; + } + } +} + +/// Print human-readable output. +/// \{ +static void printDatum(json::OStream &J, const char *Key, json::Value Value) { + if (Value == OverflowValue) + J.attribute(Key, "overflowed"); + else + J.attribute(Key, Value); + + LLVM_DEBUG(llvm::dbgs() << Key << ": " << Value << '\n'); +} + +static void printLocationStats(json::OStream &J, const char *Key, + std::vector<SaturatingUINT64> &LocationStats) { + if (LocationStats[0].Value == OverflowValue) + J.attribute((Twine(Key) + + " with (0%,10%) of parent scope covered by DW_AT_location") + .str(), + "overflowed"); + else + J.attribute( + (Twine(Key) + " with 0% of parent scope covered by DW_AT_location") + .str(), + LocationStats[0].Value); + LLVM_DEBUG( + llvm::dbgs() << Key + << " with 0% of parent scope covered by DW_AT_location: \\" + << LocationStats[0].Value << '\n'); + + if (LocationStats[1].Value == OverflowValue) + J.attribute((Twine(Key) + + " with (0%,10%) of parent scope covered by DW_AT_location") + .str(), + "overflowed"); + else + J.attribute((Twine(Key) + + " with (0%,10%) of parent scope covered by DW_AT_location") + .str(), + LocationStats[1].Value); + LLVM_DEBUG(llvm::dbgs() + << Key + << " with (0%,10%) of parent scope covered by DW_AT_location: " + << LocationStats[1].Value << '\n'); + + for (unsigned i = 2; i < NumOfCoverageCategories - 1; ++i) { + if (LocationStats[i].Value == OverflowValue) + J.attribute((Twine(Key) + " with [" + Twine((i - 1) * 10) + "%," + + Twine(i * 10) + + "%) of parent scope covered by DW_AT_location") + .str(), + "overflowed"); + else + J.attribute((Twine(Key) + " with [" + Twine((i - 1) * 10) + "%," + + Twine(i * 10) + + "%) of parent scope covered by DW_AT_location") + .str(), + LocationStats[i].Value); + LLVM_DEBUG(llvm::dbgs() + << Key << " with [" << (i - 1) * 10 << "%," << i * 10 + << "%) of parent scope covered by DW_AT_location: " + << LocationStats[i].Value); + } + if (LocationStats[NumOfCoverageCategories - 1].Value == OverflowValue) + J.attribute( + (Twine(Key) + " with 100% of parent scope covered by DW_AT_location") + .str(), + "overflowed"); + else + J.attribute( + (Twine(Key) + " with 100% of parent scope covered by DW_AT_location") + .str(), + LocationStats[NumOfCoverageCategories - 1].Value); + LLVM_DEBUG( + llvm::dbgs() << Key + << " with 100% of parent scope covered by DW_AT_location: " + << LocationStats[NumOfCoverageCategories - 1].Value); +} + +static void printSectionSizes(json::OStream &J, const SectionSizes &Sizes) { + for (const auto &It : Sizes.DebugSectionSizes) + J.attribute((Twine("#bytes in ") + It.first).str(), int64_t(It.second)); +} + +/// Stop tracking variables that contain abstract_origin with a location. +/// This is used for out-of-order DW_AT_inline subprograms only. +static void updateVarsWithAbstractOriginLocCovInfo( + DWARFDie FnDieWithAbstractOrigin, + AbstractOriginVarsTy &AbstractOriginVars) { + DWARFDie Child = FnDieWithAbstractOrigin.getFirstChild(); + while (Child) { + const dwarf::Tag ChildTag = Child.getTag(); + if ((ChildTag == dwarf::DW_TAG_formal_parameter || + ChildTag == dwarf::DW_TAG_variable) && + (Child.find(dwarf::DW_AT_location) || + Child.find(dwarf::DW_AT_const_value))) { + auto OffsetVar = Child.find(dwarf::DW_AT_abstract_origin); + if (OffsetVar) + llvm::erase_value(AbstractOriginVars, (*OffsetVar).getRawUValue()); + } else if (ChildTag == dwarf::DW_TAG_lexical_block) + updateVarsWithAbstractOriginLocCovInfo(Child, AbstractOriginVars); + Child = Child.getSibling(); + } +} + +/// Collect zero location coverage for inlined variables which refer to +/// a DW_AT_inline copy of subprogram that is out of order in the DWARF. +/// Also cover the variables of a concrete function (represented with +/// the DW_TAG_subprogram) with an abstract_origin attribute. +static void collectZeroLocCovForVarsWithAbstractOrigin( + DWARFUnit *DwUnit, GlobalStats &GlobalStats, LocationStats &LocStats, + AbstractOriginVarsTyMap &LocalAbstractOriginFnInfo, + FunctionsWithAbstractOriginTy &FnsWithAbstractOriginToBeProcessed) { + // The next variable is used to filter out functions that have been processed, + // leaving FnsWithAbstractOriginToBeProcessed with just CrossCU references. + FunctionsWithAbstractOriginTy ProcessedFns; + for (auto FnOffset : FnsWithAbstractOriginToBeProcessed) { + DWARFDie FnDieWithAbstractOrigin = DwUnit->getDIEForOffset(FnOffset); + auto FnCopy = FnDieWithAbstractOrigin.find(dwarf::DW_AT_abstract_origin); + AbstractOriginVarsTy AbstractOriginVars; + if (!FnCopy) + continue; + uint64_t FnCopyRawUValue = (*FnCopy).getRawUValue(); + // If there is no entry within LocalAbstractOriginFnInfo for the given + // FnCopyRawUValue, function isn't out-of-order in DWARF. Rather, we have + // CrossCU referencing. + if (!LocalAbstractOriginFnInfo.count(FnCopyRawUValue)) + continue; + AbstractOriginVars = LocalAbstractOriginFnInfo[FnCopyRawUValue]; + updateVarsWithAbstractOriginLocCovInfo(FnDieWithAbstractOrigin, + AbstractOriginVars); + + for (auto Offset : AbstractOriginVars) { + LocStats.NumVarParam++; + LocStats.VarParamLocStats[ZeroCoverageBucket]++; + auto Tag = DwUnit->getDIEForOffset(Offset).getTag(); + if (Tag == dwarf::DW_TAG_formal_parameter) { + LocStats.NumParam++; + LocStats.ParamLocStats[ZeroCoverageBucket]++; + } else if (Tag == dwarf::DW_TAG_variable) { + LocStats.NumVar++; + LocStats.LocalVarLocStats[ZeroCoverageBucket]++; + } + } + ProcessedFns.push_back(FnOffset); + } + for (auto ProcessedFn : ProcessedFns) + llvm::erase_value(FnsWithAbstractOriginToBeProcessed, ProcessedFn); +} + +/// Collect zero location coverage for inlined variables which refer to +/// a DW_AT_inline copy of subprogram that is in a different CU. +static void collectZeroLocCovForVarsWithCrossCUReferencingAbstractOrigin( + LocationStats &LocStats, FunctionDIECUTyMap AbstractOriginFnCUs, + AbstractOriginVarsTyMap &GlobalAbstractOriginFnInfo, + CrossCUReferencingDIELocationTy &CrossCUReferencesToBeResolved) { + for (const auto &CrossCUReferenceToBeResolved : + CrossCUReferencesToBeResolved) { + DWARFUnit *DwUnit = CrossCUReferenceToBeResolved.DwUnit; + DWARFDie FnDIEWithCrossCUReferencing = + DwUnit->getDIEForOffset(CrossCUReferenceToBeResolved.DIEOffset); + auto FnCopy = + FnDIEWithCrossCUReferencing.find(dwarf::DW_AT_abstract_origin); + if (!FnCopy) + continue; + uint64_t FnCopyRawUValue = (*FnCopy).getRawUValue(); + AbstractOriginVarsTy AbstractOriginVars = + GlobalAbstractOriginFnInfo[FnCopyRawUValue]; + updateVarsWithAbstractOriginLocCovInfo(FnDIEWithCrossCUReferencing, + AbstractOriginVars); + for (auto Offset : AbstractOriginVars) { + LocStats.NumVarParam++; + LocStats.VarParamLocStats[ZeroCoverageBucket]++; + auto Tag = (AbstractOriginFnCUs[FnCopyRawUValue]) + ->getDIEForOffset(Offset) + .getTag(); + if (Tag == dwarf::DW_TAG_formal_parameter) { + LocStats.NumParam++; + LocStats.ParamLocStats[ZeroCoverageBucket]++; + } else if (Tag == dwarf::DW_TAG_variable) { + LocStats.NumVar++; + LocStats.LocalVarLocStats[ZeroCoverageBucket]++; + } + } + } +} + +/// \} + +/// Collect debug info quality metrics for an entire DIContext. +/// +/// Do the impossible and reduce the quality of the debug info down to a few +/// numbers. The idea is to condense the data into numbers that can be tracked +/// over time to identify trends in newer compiler versions and gauge the effect +/// of particular optimizations. The raw numbers themselves are not particularly +/// useful, only the delta between compiling the same program with different +/// compilers is. +bool dwarfdump::collectStatsForObjectFile(ObjectFile &Obj, DWARFContext &DICtx, + const Twine &Filename, + raw_ostream &OS) { + StringRef FormatName = Obj.getFileFormatName(); + GlobalStats GlobalStats; + LocationStats LocStats; + StringMap<PerFunctionStats> Statistics; + // This variable holds variable information for functions with + // abstract_origin globally, across all CUs. + AbstractOriginVarsTyMap GlobalAbstractOriginFnInfo; + // This variable holds information about the CU of a function with + // abstract_origin. + FunctionDIECUTyMap AbstractOriginFnCUs; + CrossCUReferencingDIELocationTy CrossCUReferencesToBeResolved; + for (const auto &CU : static_cast<DWARFContext *>(&DICtx)->compile_units()) { + if (DWARFDie CUDie = CU->getNonSkeletonUnitDIE(false)) { + // This variable holds variable information for functions with + // abstract_origin, but just for the current CU. + AbstractOriginVarsTyMap LocalAbstractOriginFnInfo; + FunctionsWithAbstractOriginTy FnsWithAbstractOriginToBeProcessed; + + collectStatsRecursive( + CUDie, "/", "g", 0, 0, Statistics, GlobalStats, LocStats, + AbstractOriginFnCUs, GlobalAbstractOriginFnInfo, + LocalAbstractOriginFnInfo, FnsWithAbstractOriginToBeProcessed); + + // collectZeroLocCovForVarsWithAbstractOrigin will filter out all + // out-of-order DWARF functions that have been processed within it, + // leaving FnsWithAbstractOriginToBeProcessed with only CrossCU + // references. + collectZeroLocCovForVarsWithAbstractOrigin( + CUDie.getDwarfUnit(), GlobalStats, LocStats, + LocalAbstractOriginFnInfo, FnsWithAbstractOriginToBeProcessed); + + // Collect all CrossCU references into CrossCUReferencesToBeResolved. + for (auto CrossCUReferencingDIEOffset : + FnsWithAbstractOriginToBeProcessed) + CrossCUReferencesToBeResolved.push_back( + DIELocation(CUDie.getDwarfUnit(), CrossCUReferencingDIEOffset)); + } + } + + /// Resolve CrossCU references. + collectZeroLocCovForVarsWithCrossCUReferencingAbstractOrigin( + LocStats, AbstractOriginFnCUs, GlobalAbstractOriginFnInfo, + CrossCUReferencesToBeResolved); + + /// Collect the sizes of debug sections. + SectionSizes Sizes; + calculateSectionSizes(Obj, Sizes, Filename); + + /// The version number should be increased every time the algorithm is changed + /// (including bug fixes). New metrics may be added without increasing the + /// version. + unsigned Version = 9; + SaturatingUINT64 VarParamTotal = 0; + SaturatingUINT64 VarParamUnique = 0; + SaturatingUINT64 VarParamWithLoc = 0; + SaturatingUINT64 NumFunctions = 0; + SaturatingUINT64 NumInlinedFunctions = 0; + SaturatingUINT64 NumFuncsWithSrcLoc = 0; + SaturatingUINT64 NumAbstractOrigins = 0; + SaturatingUINT64 ParamTotal = 0; + SaturatingUINT64 ParamWithType = 0; + SaturatingUINT64 ParamWithLoc = 0; + SaturatingUINT64 ParamWithSrcLoc = 0; + SaturatingUINT64 LocalVarTotal = 0; + SaturatingUINT64 LocalVarWithType = 0; + SaturatingUINT64 LocalVarWithSrcLoc = 0; + SaturatingUINT64 LocalVarWithLoc = 0; + for (auto &Entry : Statistics) { + PerFunctionStats &Stats = Entry.getValue(); + uint64_t TotalVars = Stats.VarsInFunction.size() * + (Stats.NumFnInlined + Stats.NumFnOutOfLine); + // Count variables in global scope. + if (!Stats.IsFunction) + TotalVars = + Stats.NumLocalVars + Stats.ConstantMembers + Stats.NumArtificial; + uint64_t Constants = Stats.ConstantMembers; + VarParamWithLoc += Stats.TotalVarWithLoc + Constants; + VarParamTotal += TotalVars; + VarParamUnique += Stats.VarsInFunction.size(); + LLVM_DEBUG(for (auto &V + : Stats.VarsInFunction) llvm::dbgs() + << Entry.getKey() << ": " << V.getKey() << "\n"); + NumFunctions += Stats.IsFunction; + NumFuncsWithSrcLoc += Stats.HasSourceLocation; + NumInlinedFunctions += Stats.IsFunction * Stats.NumFnInlined; + NumAbstractOrigins += Stats.IsFunction * Stats.NumAbstractOrigins; + ParamTotal += Stats.NumParams; + ParamWithType += Stats.NumParamTypes; + ParamWithLoc += Stats.NumParamLocations; + ParamWithSrcLoc += Stats.NumParamSourceLocations; + LocalVarTotal += Stats.NumLocalVars; + LocalVarWithType += Stats.NumLocalVarTypes; + LocalVarWithLoc += Stats.NumLocalVarLocations; + LocalVarWithSrcLoc += Stats.NumLocalVarSourceLocations; + } + + // Print summary. + OS.SetBufferSize(1024); + json::OStream J(OS, 2); + J.objectBegin(); + J.attribute("version", Version); + LLVM_DEBUG(llvm::dbgs() << "Variable location quality metrics\n"; + llvm::dbgs() << "---------------------------------\n"); + + printDatum(J, "file", Filename.str()); + printDatum(J, "format", FormatName); + + printDatum(J, "#functions", NumFunctions.Value); + printDatum(J, "#functions with location", NumFuncsWithSrcLoc.Value); + printDatum(J, "#inlined functions", NumInlinedFunctions.Value); + printDatum(J, "#inlined functions with abstract origins", + NumAbstractOrigins.Value); + + // This includes local variables and formal parameters. + printDatum(J, "#unique source variables", VarParamUnique.Value); + printDatum(J, "#source variables", VarParamTotal.Value); + printDatum(J, "#source variables with location", VarParamWithLoc.Value); + + printDatum(J, "#call site entries", GlobalStats.CallSiteEntries.Value); + printDatum(J, "#call site DIEs", GlobalStats.CallSiteDIEs.Value); + printDatum(J, "#call site parameter DIEs", + GlobalStats.CallSiteParamDIEs.Value); + + printDatum(J, "sum_all_variables(#bytes in parent scope)", + GlobalStats.ScopeBytes.Value); + printDatum(J, + "sum_all_variables(#bytes in any scope covered by DW_AT_location)", + GlobalStats.TotalBytesCovered.Value); + printDatum(J, + "sum_all_variables(#bytes in parent scope covered by " + "DW_AT_location)", + GlobalStats.ScopeBytesCovered.Value); + printDatum(J, + "sum_all_variables(#bytes in parent scope covered by " + "DW_OP_entry_value)", + GlobalStats.ScopeEntryValueBytesCovered.Value); + + printDatum(J, "sum_all_params(#bytes in parent scope)", + GlobalStats.ParamScopeBytes.Value); + printDatum(J, + "sum_all_params(#bytes in parent scope covered by DW_AT_location)", + GlobalStats.ParamScopeBytesCovered.Value); + printDatum(J, + "sum_all_params(#bytes in parent scope covered by " + "DW_OP_entry_value)", + GlobalStats.ParamScopeEntryValueBytesCovered.Value); + + printDatum(J, "sum_all_local_vars(#bytes in parent scope)", + GlobalStats.LocalVarScopeBytes.Value); + printDatum(J, + "sum_all_local_vars(#bytes in parent scope covered by " + "DW_AT_location)", + GlobalStats.LocalVarScopeBytesCovered.Value); + printDatum(J, + "sum_all_local_vars(#bytes in parent scope covered by " + "DW_OP_entry_value)", + GlobalStats.LocalVarScopeEntryValueBytesCovered.Value); + + printDatum(J, "#bytes within functions", GlobalStats.FunctionSize.Value); + printDatum(J, "#bytes within inlined functions", + GlobalStats.InlineFunctionSize.Value); + + // Print the summary for formal parameters. + printDatum(J, "#params", ParamTotal.Value); + printDatum(J, "#params with source location", ParamWithSrcLoc.Value); + printDatum(J, "#params with type", ParamWithType.Value); + printDatum(J, "#params with binary location", ParamWithLoc.Value); + + // Print the summary for local variables. + printDatum(J, "#local vars", LocalVarTotal.Value); + printDatum(J, "#local vars with source location", LocalVarWithSrcLoc.Value); + printDatum(J, "#local vars with type", LocalVarWithType.Value); + printDatum(J, "#local vars with binary location", LocalVarWithLoc.Value); + + // Print the debug section sizes. + printSectionSizes(J, Sizes); + + // Print the location statistics for variables (includes local variables + // and formal parameters). + printDatum(J, "#variables processed by location statistics", + LocStats.NumVarParam.Value); + printLocationStats(J, "#variables", LocStats.VarParamLocStats); + printLocationStats(J, "#variables - entry values", + LocStats.VarParamNonEntryValLocStats); + + // Print the location statistics for formal parameters. + printDatum(J, "#params processed by location statistics", + LocStats.NumParam.Value); + printLocationStats(J, "#params", LocStats.ParamLocStats); + printLocationStats(J, "#params - entry values", + LocStats.ParamNonEntryValLocStats); + + // Print the location statistics for local variables. + printDatum(J, "#local vars processed by location statistics", + LocStats.NumVar.Value); + printLocationStats(J, "#local vars", LocStats.LocalVarLocStats); + printLocationStats(J, "#local vars - entry values", + LocStats.LocalVarNonEntryValLocStats); + J.objectEnd(); + OS << '\n'; + LLVM_DEBUG( + llvm::dbgs() << "Total Availability: " + << (VarParamTotal.Value + ? (int)std::round((VarParamWithLoc.Value * 100.0) / + VarParamTotal.Value) + : 0) + << "%\n"; + llvm::dbgs() << "PC Ranges covered: " + << (GlobalStats.ScopeBytes.Value + ? (int)std::round( + (GlobalStats.ScopeBytesCovered.Value * 100.0) / + GlobalStats.ScopeBytes.Value) + : 0) + << "%\n"); + return true; +} |