aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/tools/llvm-diff/lib/DifferenceEngine.cpp
diff options
context:
space:
mode:
authorvvvv <vvvv@ydb.tech>2024-02-06 20:01:22 +0300
committervvvv <vvvv@ydb.tech>2024-02-06 20:22:16 +0300
commit0203b7a9a40828bb2bd4c32029b79ff0ea3d1f8f (patch)
treee630d0d5bd0bd29fc8c2d2842ed2cfde781b993a /contrib/libs/llvm16/tools/llvm-diff/lib/DifferenceEngine.cpp
parentba27db76d99d12a4f1c06960b5449423218614c4 (diff)
downloadydb-0203b7a9a40828bb2bd4c32029b79ff0ea3d1f8f.tar.gz
llvm16 targets
Diffstat (limited to 'contrib/libs/llvm16/tools/llvm-diff/lib/DifferenceEngine.cpp')
-rw-r--r--contrib/libs/llvm16/tools/llvm-diff/lib/DifferenceEngine.cpp1038
1 files changed, 1038 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/tools/llvm-diff/lib/DifferenceEngine.cpp b/contrib/libs/llvm16/tools/llvm-diff/lib/DifferenceEngine.cpp
new file mode 100644
index 0000000000..6573bf010c
--- /dev/null
+++ b/contrib/libs/llvm16/tools/llvm-diff/lib/DifferenceEngine.cpp
@@ -0,0 +1,1038 @@
+//===-- DifferenceEngine.cpp - Structural function/module comparison ------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This header defines the implementation of the LLVM difference
+// engine, which structurally compares global values within a module.
+//
+//===----------------------------------------------------------------------===//
+
+#include "DifferenceEngine.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/type_traits.h"
+#include <utility>
+
+using namespace llvm;
+
+namespace {
+
+/// A priority queue, implemented as a heap.
+template <class T, class Sorter, unsigned InlineCapacity>
+class PriorityQueue {
+ Sorter Precedes;
+ llvm::SmallVector<T, InlineCapacity> Storage;
+
+public:
+ PriorityQueue(const Sorter &Precedes) : Precedes(Precedes) {}
+
+ /// Checks whether the heap is empty.
+ bool empty() const { return Storage.empty(); }
+
+ /// Insert a new value on the heap.
+ void insert(const T &V) {
+ unsigned Index = Storage.size();
+ Storage.push_back(V);
+ if (Index == 0) return;
+
+ T *data = Storage.data();
+ while (true) {
+ unsigned Target = (Index + 1) / 2 - 1;
+ if (!Precedes(data[Index], data[Target])) return;
+ std::swap(data[Index], data[Target]);
+ if (Target == 0) return;
+ Index = Target;
+ }
+ }
+
+ /// Remove the minimum value in the heap. Only valid on a non-empty heap.
+ T remove_min() {
+ assert(!empty());
+ T tmp = Storage[0];
+
+ unsigned NewSize = Storage.size() - 1;
+ if (NewSize) {
+ // Move the slot at the end to the beginning.
+ if (std::is_trivially_copyable<T>::value)
+ Storage[0] = Storage[NewSize];
+ else
+ std::swap(Storage[0], Storage[NewSize]);
+
+ // Bubble the root up as necessary.
+ unsigned Index = 0;
+ while (true) {
+ // With a 1-based index, the children would be Index*2 and Index*2+1.
+ unsigned R = (Index + 1) * 2;
+ unsigned L = R - 1;
+
+ // If R is out of bounds, we're done after this in any case.
+ if (R >= NewSize) {
+ // If L is also out of bounds, we're done immediately.
+ if (L >= NewSize) break;
+
+ // Otherwise, test whether we should swap L and Index.
+ if (Precedes(Storage[L], Storage[Index]))
+ std::swap(Storage[L], Storage[Index]);
+ break;
+ }
+
+ // Otherwise, we need to compare with the smaller of L and R.
+ // Prefer R because it's closer to the end of the array.
+ unsigned IndexToTest = (Precedes(Storage[L], Storage[R]) ? L : R);
+
+ // If Index is >= the min of L and R, then heap ordering is restored.
+ if (!Precedes(Storage[IndexToTest], Storage[Index]))
+ break;
+
+ // Otherwise, keep bubbling up.
+ std::swap(Storage[IndexToTest], Storage[Index]);
+ Index = IndexToTest;
+ }
+ }
+ Storage.pop_back();
+
+ return tmp;
+ }
+};
+
+/// A function-scope difference engine.
+class FunctionDifferenceEngine {
+ DifferenceEngine &Engine;
+
+ // Some initializers may reference the variable we're currently checking. This
+ // can cause an infinite loop. The Saved[LR]HS ivars can be checked to prevent
+ // recursing.
+ const Value *SavedLHS;
+ const Value *SavedRHS;
+
+ // The current mapping from old local values to new local values.
+ DenseMap<const Value *, const Value *> Values;
+
+ // The current mapping from old blocks to new blocks.
+ DenseMap<const BasicBlock *, const BasicBlock *> Blocks;
+
+ // The tentative mapping from old local values while comparing a pair of
+ // basic blocks. Once the pair has been processed, the tentative mapping is
+ // committed to the Values map.
+ DenseSet<std::pair<const Value *, const Value *>> TentativeValues;
+
+ // Equivalence Assumptions
+ //
+ // For basic blocks in loops, some values in phi nodes may depend on
+ // values from not yet processed basic blocks in the loop. When encountering
+ // such values, we optimistically asssume their equivalence and store this
+ // assumption in a BlockDiffCandidate for the pair of compared BBs.
+ //
+ // Once we have diffed all BBs, for every BlockDiffCandidate, we check all
+ // stored assumptions using the Values map that stores proven equivalences
+ // between the old and new values, and report a diff if an assumption cannot
+ // be proven to be true.
+ //
+ // Note that after having made an assumption, all further determined
+ // equivalences implicitly depend on that assumption. These will not be
+ // reverted or reported if the assumption proves to be false, because these
+ // are considered indirect diffs caused by earlier direct diffs.
+ //
+ // We aim to avoid false negatives in llvm-diff, that is, ensure that
+ // whenever no diff is reported, the functions are indeed equal. If
+ // assumptions were made, this is not entirely clear, because in principle we
+ // could end up with a circular proof where the proof of equivalence of two
+ // nodes is depending on the assumption of their equivalence.
+ //
+ // To see that assumptions do not add false negatives, note that if we do not
+ // report a diff, this means that there is an equivalence mapping between old
+ // and new values that is consistent with all assumptions made. The circular
+ // dependency that exists on an IR value level does not exist at run time,
+ // because the values selected by the phi nodes must always already have been
+ // computed. Hence, we can prove equivalence of the old and new functions by
+ // considering step-wise parallel execution, and incrementally proving
+ // equivalence of every new computed value. Another way to think about it is
+ // to imagine cloning the loop BBs for every iteration, turning the loops
+ // into (possibly infinite) DAGs, and proving equivalence by induction on the
+ // iteration, using the computed value mapping.
+
+ // The class BlockDiffCandidate stores pairs which either have already been
+ // proven to differ, or pairs whose equivalence depends on assumptions to be
+ // verified later.
+ struct BlockDiffCandidate {
+ const BasicBlock *LBB;
+ const BasicBlock *RBB;
+ // Maps old values to assumed-to-be-equivalent new values
+ SmallDenseMap<const Value *, const Value *> EquivalenceAssumptions;
+ // If set, we already know the blocks differ.
+ bool KnownToDiffer;
+ };
+
+ // List of block diff candidates in the order found by processing.
+ // We generate reports in this order.
+ // For every LBB, there may only be one corresponding RBB.
+ SmallVector<BlockDiffCandidate> BlockDiffCandidates;
+ // Maps LBB to the index of its BlockDiffCandidate, if existing.
+ DenseMap<const BasicBlock *, uint64_t> BlockDiffCandidateIndices;
+
+ // Note: Every LBB must always be queried together with the same RBB.
+ // The returned reference is not permanently valid and should not be stored.
+ BlockDiffCandidate &getOrCreateBlockDiffCandidate(const BasicBlock *LBB,
+ const BasicBlock *RBB) {
+ auto It = BlockDiffCandidateIndices.find(LBB);
+ // Check if LBB already has a diff candidate
+ if (It == BlockDiffCandidateIndices.end()) {
+ // Add new one
+ BlockDiffCandidateIndices[LBB] = BlockDiffCandidates.size();
+ BlockDiffCandidates.push_back(
+ {LBB, RBB, SmallDenseMap<const Value *, const Value *>(), false});
+ return BlockDiffCandidates.back();
+ }
+ // Use existing one
+ BlockDiffCandidate &Result = BlockDiffCandidates[It->second];
+ assert(Result.RBB == RBB && "Inconsistent basic block pairing!");
+ return Result;
+ }
+
+ // Optionally passed to equivalence checker functions, so these can add
+ // assumptions in BlockDiffCandidates. Its presence controls whether
+ // assumptions are generated.
+ struct AssumptionContext {
+ // The two basic blocks that need the two compared values to be equivalent.
+ const BasicBlock *LBB;
+ const BasicBlock *RBB;
+ };
+
+ unsigned getUnprocPredCount(const BasicBlock *Block) const {
+ unsigned Count = 0;
+ for (const_pred_iterator I = pred_begin(Block), E = pred_end(Block); I != E;
+ ++I)
+ if (!Blocks.count(*I)) Count++;
+ return Count;
+ }
+
+ typedef std::pair<const BasicBlock *, const BasicBlock *> BlockPair;
+
+ /// A type which sorts a priority queue by the number of unprocessed
+ /// predecessor blocks it has remaining.
+ ///
+ /// This is actually really expensive to calculate.
+ struct QueueSorter {
+ const FunctionDifferenceEngine &fde;
+ explicit QueueSorter(const FunctionDifferenceEngine &fde) : fde(fde) {}
+
+ bool operator()(BlockPair &Old, BlockPair &New) {
+ return fde.getUnprocPredCount(Old.first)
+ < fde.getUnprocPredCount(New.first);
+ }
+ };
+
+ /// A queue of unified blocks to process.
+ PriorityQueue<BlockPair, QueueSorter, 20> Queue;
+
+ /// Try to unify the given two blocks. Enqueues them for processing
+ /// if they haven't already been processed.
+ ///
+ /// Returns true if there was a problem unifying them.
+ bool tryUnify(const BasicBlock *L, const BasicBlock *R) {
+ const BasicBlock *&Ref = Blocks[L];
+
+ if (Ref) {
+ if (Ref == R) return false;
+
+ Engine.logf("successor %l cannot be equivalent to %r; "
+ "it's already equivalent to %r")
+ << L << R << Ref;
+ return true;
+ }
+
+ Ref = R;
+ Queue.insert(BlockPair(L, R));
+ return false;
+ }
+
+ /// Unifies two instructions, given that they're known not to have
+ /// structural differences.
+ void unify(const Instruction *L, const Instruction *R) {
+ DifferenceEngine::Context C(Engine, L, R);
+
+ bool Result = diff(L, R, true, true, true);
+ assert(!Result && "structural differences second time around?");
+ (void) Result;
+ if (!L->use_empty())
+ Values[L] = R;
+ }
+
+ void processQueue() {
+ while (!Queue.empty()) {
+ BlockPair Pair = Queue.remove_min();
+ diff(Pair.first, Pair.second);
+ }
+ }
+
+ void checkAndReportDiffCandidates() {
+ for (BlockDiffCandidate &BDC : BlockDiffCandidates) {
+
+ // Check assumptions
+ for (const auto &[L, R] : BDC.EquivalenceAssumptions) {
+ auto It = Values.find(L);
+ if (It == Values.end() || It->second != R) {
+ BDC.KnownToDiffer = true;
+ break;
+ }
+ }
+
+ // Run block diff if the BBs differ
+ if (BDC.KnownToDiffer) {
+ DifferenceEngine::Context C(Engine, BDC.LBB, BDC.RBB);
+ runBlockDiff(BDC.LBB->begin(), BDC.RBB->begin());
+ }
+ }
+ }
+
+ void diff(const BasicBlock *L, const BasicBlock *R) {
+ DifferenceEngine::Context C(Engine, L, R);
+
+ BasicBlock::const_iterator LI = L->begin(), LE = L->end();
+ BasicBlock::const_iterator RI = R->begin();
+
+ do {
+ assert(LI != LE && RI != R->end());
+ const Instruction *LeftI = &*LI, *RightI = &*RI;
+
+ // If the instructions differ, start the more sophisticated diff
+ // algorithm at the start of the block.
+ if (diff(LeftI, RightI, false, false, true)) {
+ TentativeValues.clear();
+ // Register (L, R) as diffing pair. Note that we could directly emit a
+ // block diff here, but this way we ensure all diffs are emitted in one
+ // consistent order, independent of whether the diffs were detected
+ // immediately or via invalid assumptions.
+ getOrCreateBlockDiffCandidate(L, R).KnownToDiffer = true;
+ return;
+ }
+
+ // Otherwise, tentatively unify them.
+ if (!LeftI->use_empty())
+ TentativeValues.insert(std::make_pair(LeftI, RightI));
+
+ ++LI;
+ ++RI;
+ } while (LI != LE); // This is sufficient: we can't get equality of
+ // terminators if there are residual instructions.
+
+ // Unify everything in the block, non-tentatively this time.
+ TentativeValues.clear();
+ for (LI = L->begin(), RI = R->begin(); LI != LE; ++LI, ++RI)
+ unify(&*LI, &*RI);
+ }
+
+ bool matchForBlockDiff(const Instruction *L, const Instruction *R);
+ void runBlockDiff(BasicBlock::const_iterator LI,
+ BasicBlock::const_iterator RI);
+
+ bool diffCallSites(const CallBase &L, const CallBase &R, bool Complain) {
+ // FIXME: call attributes
+ AssumptionContext AC = {L.getParent(), R.getParent()};
+ if (!equivalentAsOperands(L.getCalledOperand(), R.getCalledOperand(),
+ &AC)) {
+ if (Complain) Engine.log("called functions differ");
+ return true;
+ }
+ if (L.arg_size() != R.arg_size()) {
+ if (Complain) Engine.log("argument counts differ");
+ return true;
+ }
+ for (unsigned I = 0, E = L.arg_size(); I != E; ++I)
+ if (!equivalentAsOperands(L.getArgOperand(I), R.getArgOperand(I), &AC)) {
+ if (Complain)
+ Engine.logf("arguments %l and %r differ")
+ << L.getArgOperand(I) << R.getArgOperand(I);
+ return true;
+ }
+ return false;
+ }
+
+ // If AllowAssumptions is enabled, whenever we encounter a pair of values
+ // that we cannot prove to be equivalent, we assume equivalence and store that
+ // assumption to be checked later in BlockDiffCandidates.
+ bool diff(const Instruction *L, const Instruction *R, bool Complain,
+ bool TryUnify, bool AllowAssumptions) {
+ // FIXME: metadata (if Complain is set)
+ AssumptionContext ACValue = {L->getParent(), R->getParent()};
+ // nullptr AssumptionContext disables assumption generation.
+ const AssumptionContext *AC = AllowAssumptions ? &ACValue : nullptr;
+
+ // Different opcodes always imply different operations.
+ if (L->getOpcode() != R->getOpcode()) {
+ if (Complain) Engine.log("different instruction types");
+ return true;
+ }
+
+ if (isa<CmpInst>(L)) {
+ if (cast<CmpInst>(L)->getPredicate()
+ != cast<CmpInst>(R)->getPredicate()) {
+ if (Complain) Engine.log("different predicates");
+ return true;
+ }
+ } else if (isa<CallInst>(L)) {
+ return diffCallSites(cast<CallInst>(*L), cast<CallInst>(*R), Complain);
+ } else if (isa<PHINode>(L)) {
+ const PHINode &LI = cast<PHINode>(*L);
+ const PHINode &RI = cast<PHINode>(*R);
+
+ // This is really weird; type uniquing is broken?
+ if (LI.getType() != RI.getType()) {
+ if (!LI.getType()->isPointerTy() || !RI.getType()->isPointerTy()) {
+ if (Complain) Engine.log("different phi types");
+ return true;
+ }
+ }
+
+ if (LI.getNumIncomingValues() != RI.getNumIncomingValues()) {
+ if (Complain)
+ Engine.log("PHI node # of incoming values differ");
+ return true;
+ }
+
+ for (unsigned I = 0; I < LI.getNumIncomingValues(); ++I) {
+ if (TryUnify)
+ tryUnify(LI.getIncomingBlock(I), RI.getIncomingBlock(I));
+
+ if (!equivalentAsOperands(LI.getIncomingValue(I),
+ RI.getIncomingValue(I), AC)) {
+ if (Complain)
+ Engine.log("PHI node incoming values differ");
+ return true;
+ }
+ }
+
+ return false;
+
+ // Terminators.
+ } else if (isa<InvokeInst>(L)) {
+ const InvokeInst &LI = cast<InvokeInst>(*L);
+ const InvokeInst &RI = cast<InvokeInst>(*R);
+ if (diffCallSites(LI, RI, Complain))
+ return true;
+
+ if (TryUnify) {
+ tryUnify(LI.getNormalDest(), RI.getNormalDest());
+ tryUnify(LI.getUnwindDest(), RI.getUnwindDest());
+ }
+ return false;
+
+ } else if (isa<CallBrInst>(L)) {
+ const CallBrInst &LI = cast<CallBrInst>(*L);
+ const CallBrInst &RI = cast<CallBrInst>(*R);
+ if (LI.getNumIndirectDests() != RI.getNumIndirectDests()) {
+ if (Complain)
+ Engine.log("callbr # of indirect destinations differ");
+ return true;
+ }
+
+ // Perform the "try unify" step so that we can equate the indirect
+ // destinations before checking the call site.
+ for (unsigned I = 0; I < LI.getNumIndirectDests(); I++)
+ tryUnify(LI.getIndirectDest(I), RI.getIndirectDest(I));
+
+ if (diffCallSites(LI, RI, Complain))
+ return true;
+
+ if (TryUnify)
+ tryUnify(LI.getDefaultDest(), RI.getDefaultDest());
+ return false;
+
+ } else if (isa<BranchInst>(L)) {
+ const BranchInst *LI = cast<BranchInst>(L);
+ const BranchInst *RI = cast<BranchInst>(R);
+ if (LI->isConditional() != RI->isConditional()) {
+ if (Complain) Engine.log("branch conditionality differs");
+ return true;
+ }
+
+ if (LI->isConditional()) {
+ if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
+ if (Complain) Engine.log("branch conditions differ");
+ return true;
+ }
+ if (TryUnify) tryUnify(LI->getSuccessor(1), RI->getSuccessor(1));
+ }
+ if (TryUnify) tryUnify(LI->getSuccessor(0), RI->getSuccessor(0));
+ return false;
+
+ } else if (isa<IndirectBrInst>(L)) {
+ const IndirectBrInst *LI = cast<IndirectBrInst>(L);
+ const IndirectBrInst *RI = cast<IndirectBrInst>(R);
+ if (LI->getNumDestinations() != RI->getNumDestinations()) {
+ if (Complain) Engine.log("indirectbr # of destinations differ");
+ return true;
+ }
+
+ if (!equivalentAsOperands(LI->getAddress(), RI->getAddress(), AC)) {
+ if (Complain) Engine.log("indirectbr addresses differ");
+ return true;
+ }
+
+ if (TryUnify) {
+ for (unsigned i = 0; i < LI->getNumDestinations(); i++) {
+ tryUnify(LI->getDestination(i), RI->getDestination(i));
+ }
+ }
+ return false;
+
+ } else if (isa<SwitchInst>(L)) {
+ const SwitchInst *LI = cast<SwitchInst>(L);
+ const SwitchInst *RI = cast<SwitchInst>(R);
+ if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
+ if (Complain) Engine.log("switch conditions differ");
+ return true;
+ }
+ if (TryUnify) tryUnify(LI->getDefaultDest(), RI->getDefaultDest());
+
+ bool Difference = false;
+
+ DenseMap<const ConstantInt *, const BasicBlock *> LCases;
+ for (auto Case : LI->cases())
+ LCases[Case.getCaseValue()] = Case.getCaseSuccessor();
+
+ for (auto Case : RI->cases()) {
+ const ConstantInt *CaseValue = Case.getCaseValue();
+ const BasicBlock *LCase = LCases[CaseValue];
+ if (LCase) {
+ if (TryUnify)
+ tryUnify(LCase, Case.getCaseSuccessor());
+ LCases.erase(CaseValue);
+ } else if (Complain || !Difference) {
+ if (Complain)
+ Engine.logf("right switch has extra case %r") << CaseValue;
+ Difference = true;
+ }
+ }
+ if (!Difference)
+ for (DenseMap<const ConstantInt *, const BasicBlock *>::iterator
+ I = LCases.begin(),
+ E = LCases.end();
+ I != E; ++I) {
+ if (Complain)
+ Engine.logf("left switch has extra case %l") << I->first;
+ Difference = true;
+ }
+ return Difference;
+ } else if (isa<UnreachableInst>(L)) {
+ return false;
+ }
+
+ if (L->getNumOperands() != R->getNumOperands()) {
+ if (Complain) Engine.log("instructions have different operand counts");
+ return true;
+ }
+
+ for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
+ Value *LO = L->getOperand(I), *RO = R->getOperand(I);
+ if (!equivalentAsOperands(LO, RO, AC)) {
+ if (Complain) Engine.logf("operands %l and %r differ") << LO << RO;
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+public:
+ bool equivalentAsOperands(const Constant *L, const Constant *R,
+ const AssumptionContext *AC) {
+ // Use equality as a preliminary filter.
+ if (L == R)
+ return true;
+
+ if (L->getValueID() != R->getValueID())
+ return false;
+
+ // Ask the engine about global values.
+ if (isa<GlobalValue>(L))
+ return Engine.equivalentAsOperands(cast<GlobalValue>(L),
+ cast<GlobalValue>(R));
+
+ // Compare constant expressions structurally.
+ if (isa<ConstantExpr>(L))
+ return equivalentAsOperands(cast<ConstantExpr>(L), cast<ConstantExpr>(R),
+ AC);
+
+ // Constants of the "same type" don't always actually have the same
+ // type; I don't know why. Just white-list them.
+ if (isa<ConstantPointerNull>(L) || isa<UndefValue>(L) || isa<ConstantAggregateZero>(L))
+ return true;
+
+ // Block addresses only match if we've already encountered the
+ // block. FIXME: tentative matches?
+ if (isa<BlockAddress>(L))
+ return Blocks[cast<BlockAddress>(L)->getBasicBlock()]
+ == cast<BlockAddress>(R)->getBasicBlock();
+
+ // If L and R are ConstantVectors, compare each element
+ if (isa<ConstantVector>(L)) {
+ const ConstantVector *CVL = cast<ConstantVector>(L);
+ const ConstantVector *CVR = cast<ConstantVector>(R);
+ if (CVL->getType()->getNumElements() != CVR->getType()->getNumElements())
+ return false;
+ for (unsigned i = 0; i < CVL->getType()->getNumElements(); i++) {
+ if (!equivalentAsOperands(CVL->getOperand(i), CVR->getOperand(i), AC))
+ return false;
+ }
+ return true;
+ }
+
+ // If L and R are ConstantArrays, compare the element count and types.
+ if (isa<ConstantArray>(L)) {
+ const ConstantArray *CAL = cast<ConstantArray>(L);
+ const ConstantArray *CAR = cast<ConstantArray>(R);
+ // Sometimes a type may be equivalent, but not uniquified---e.g. it may
+ // contain a GEP instruction. Do a deeper comparison of the types.
+ if (CAL->getType()->getNumElements() != CAR->getType()->getNumElements())
+ return false;
+
+ for (unsigned I = 0; I < CAL->getType()->getNumElements(); ++I) {
+ if (!equivalentAsOperands(CAL->getAggregateElement(I),
+ CAR->getAggregateElement(I), AC))
+ return false;
+ }
+
+ return true;
+ }
+
+ // If L and R are ConstantStructs, compare each field and type.
+ if (isa<ConstantStruct>(L)) {
+ const ConstantStruct *CSL = cast<ConstantStruct>(L);
+ const ConstantStruct *CSR = cast<ConstantStruct>(R);
+
+ const StructType *LTy = cast<StructType>(CSL->getType());
+ const StructType *RTy = cast<StructType>(CSR->getType());
+
+ // The StructTypes should have the same attributes. Don't use
+ // isLayoutIdentical(), because that just checks the element pointers,
+ // which may not work here.
+ if (LTy->getNumElements() != RTy->getNumElements() ||
+ LTy->isPacked() != RTy->isPacked())
+ return false;
+
+ for (unsigned I = 0; I < LTy->getNumElements(); I++) {
+ const Value *LAgg = CSL->getAggregateElement(I);
+ const Value *RAgg = CSR->getAggregateElement(I);
+
+ if (LAgg == SavedLHS || RAgg == SavedRHS) {
+ if (LAgg != SavedLHS || RAgg != SavedRHS)
+ // If the left and right operands aren't both re-analyzing the
+ // variable, then the initialiers don't match, so report "false".
+ // Otherwise, we skip these operands..
+ return false;
+
+ continue;
+ }
+
+ if (!equivalentAsOperands(LAgg, RAgg, AC)) {
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ return false;
+ }
+
+ bool equivalentAsOperands(const ConstantExpr *L, const ConstantExpr *R,
+ const AssumptionContext *AC) {
+ if (L == R)
+ return true;
+
+ if (L->getOpcode() != R->getOpcode())
+ return false;
+
+ switch (L->getOpcode()) {
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ if (L->getPredicate() != R->getPredicate())
+ return false;
+ break;
+
+ case Instruction::GetElementPtr:
+ // FIXME: inbounds?
+ break;
+
+ default:
+ break;
+ }
+
+ if (L->getNumOperands() != R->getNumOperands())
+ return false;
+
+ for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
+ const auto *LOp = L->getOperand(I);
+ const auto *ROp = R->getOperand(I);
+
+ if (LOp == SavedLHS || ROp == SavedRHS) {
+ if (LOp != SavedLHS || ROp != SavedRHS)
+ // If the left and right operands aren't both re-analyzing the
+ // variable, then the initialiers don't match, so report "false".
+ // Otherwise, we skip these operands..
+ return false;
+
+ continue;
+ }
+
+ if (!equivalentAsOperands(LOp, ROp, AC))
+ return false;
+ }
+
+ return true;
+ }
+
+ // There are cases where we cannot determine whether two values are
+ // equivalent, because it depends on not yet processed basic blocks -- see the
+ // documentation on assumptions.
+ //
+ // AC is the context in which we are currently performing a diff.
+ // When we encounter a pair of values for which we can neither prove
+ // equivalence nor the opposite, we do the following:
+ // * If AC is nullptr, we treat the pair as non-equivalent.
+ // * If AC is set, we add an assumption for the basic blocks given by AC,
+ // and treat the pair as equivalent. The assumption is checked later.
+ bool equivalentAsOperands(const Value *L, const Value *R,
+ const AssumptionContext *AC) {
+ // Fall out if the values have different kind.
+ // This possibly shouldn't take priority over oracles.
+ if (L->getValueID() != R->getValueID())
+ return false;
+
+ // Value subtypes: Argument, Constant, Instruction, BasicBlock,
+ // InlineAsm, MDNode, MDString, PseudoSourceValue
+
+ if (isa<Constant>(L))
+ return equivalentAsOperands(cast<Constant>(L), cast<Constant>(R), AC);
+
+ if (isa<Instruction>(L)) {
+ auto It = Values.find(L);
+ if (It != Values.end())
+ return It->second == R;
+
+ if (TentativeValues.count(std::make_pair(L, R)))
+ return true;
+
+ // L and R might be equivalent, this could depend on not yet processed
+ // basic blocks, so we cannot decide here.
+ if (AC) {
+ // Add an assumption, unless there is a conflict with an existing one
+ BlockDiffCandidate &BDC =
+ getOrCreateBlockDiffCandidate(AC->LBB, AC->RBB);
+ auto InsertionResult = BDC.EquivalenceAssumptions.insert({L, R});
+ if (!InsertionResult.second && InsertionResult.first->second != R) {
+ // We already have a conflicting equivalence assumption for L, so at
+ // least one must be wrong, and we know that there is a diff.
+ BDC.KnownToDiffer = true;
+ BDC.EquivalenceAssumptions.clear();
+ return false;
+ }
+ // Optimistically assume equivalence, and check later once all BBs
+ // have been processed.
+ return true;
+ }
+
+ // Assumptions disabled, so pessimistically assume non-equivalence.
+ return false;
+ }
+
+ if (isa<Argument>(L))
+ return Values[L] == R;
+
+ if (isa<BasicBlock>(L))
+ return Blocks[cast<BasicBlock>(L)] != R;
+
+ // Pretend everything else is identical.
+ return true;
+ }
+
+ // Avoid a gcc warning about accessing 'this' in an initializer.
+ FunctionDifferenceEngine *this_() { return this; }
+
+public:
+ FunctionDifferenceEngine(DifferenceEngine &Engine,
+ const Value *SavedLHS = nullptr,
+ const Value *SavedRHS = nullptr)
+ : Engine(Engine), SavedLHS(SavedLHS), SavedRHS(SavedRHS),
+ Queue(QueueSorter(*this_())) {}
+
+ void diff(const Function *L, const Function *R) {
+ assert(Values.empty() && "Multiple diffs per engine are not supported!");
+
+ if (L->arg_size() != R->arg_size())
+ Engine.log("different argument counts");
+
+ // Map the arguments.
+ for (Function::const_arg_iterator LI = L->arg_begin(), LE = L->arg_end(),
+ RI = R->arg_begin(), RE = R->arg_end();
+ LI != LE && RI != RE; ++LI, ++RI)
+ Values[&*LI] = &*RI;
+
+ tryUnify(&*L->begin(), &*R->begin());
+ processQueue();
+ checkAndReportDiffCandidates();
+ }
+};
+
+struct DiffEntry {
+ DiffEntry() : Cost(0) {}
+
+ unsigned Cost;
+ llvm::SmallVector<char, 8> Path; // actually of DifferenceEngine::DiffChange
+};
+
+bool FunctionDifferenceEngine::matchForBlockDiff(const Instruction *L,
+ const Instruction *R) {
+ return !diff(L, R, false, false, false);
+}
+
+void FunctionDifferenceEngine::runBlockDiff(BasicBlock::const_iterator LStart,
+ BasicBlock::const_iterator RStart) {
+ BasicBlock::const_iterator LE = LStart->getParent()->end();
+ BasicBlock::const_iterator RE = RStart->getParent()->end();
+
+ unsigned NL = std::distance(LStart, LE);
+
+ SmallVector<DiffEntry, 20> Paths1(NL+1);
+ SmallVector<DiffEntry, 20> Paths2(NL+1);
+
+ DiffEntry *Cur = Paths1.data();
+ DiffEntry *Next = Paths2.data();
+
+ const unsigned LeftCost = 2;
+ const unsigned RightCost = 2;
+ const unsigned MatchCost = 0;
+
+ assert(TentativeValues.empty());
+
+ // Initialize the first column.
+ for (unsigned I = 0; I != NL+1; ++I) {
+ Cur[I].Cost = I * LeftCost;
+ for (unsigned J = 0; J != I; ++J)
+ Cur[I].Path.push_back(DC_left);
+ }
+
+ for (BasicBlock::const_iterator RI = RStart; RI != RE; ++RI) {
+ // Initialize the first row.
+ Next[0] = Cur[0];
+ Next[0].Cost += RightCost;
+ Next[0].Path.push_back(DC_right);
+
+ unsigned Index = 1;
+ for (BasicBlock::const_iterator LI = LStart; LI != LE; ++LI, ++Index) {
+ if (matchForBlockDiff(&*LI, &*RI)) {
+ Next[Index] = Cur[Index-1];
+ Next[Index].Cost += MatchCost;
+ Next[Index].Path.push_back(DC_match);
+ TentativeValues.insert(std::make_pair(&*LI, &*RI));
+ } else if (Next[Index-1].Cost <= Cur[Index].Cost) {
+ Next[Index] = Next[Index-1];
+ Next[Index].Cost += LeftCost;
+ Next[Index].Path.push_back(DC_left);
+ } else {
+ Next[Index] = Cur[Index];
+ Next[Index].Cost += RightCost;
+ Next[Index].Path.push_back(DC_right);
+ }
+ }
+
+ std::swap(Cur, Next);
+ }
+
+ // We don't need the tentative values anymore; everything from here
+ // on out should be non-tentative.
+ TentativeValues.clear();
+
+ SmallVectorImpl<char> &Path = Cur[NL].Path;
+ BasicBlock::const_iterator LI = LStart, RI = RStart;
+
+ DiffLogBuilder Diff(Engine.getConsumer());
+
+ // Drop trailing matches.
+ while (Path.size() && Path.back() == DC_match)
+ Path.pop_back();
+
+ // Skip leading matches.
+ SmallVectorImpl<char>::iterator
+ PI = Path.begin(), PE = Path.end();
+ while (PI != PE && *PI == DC_match) {
+ unify(&*LI, &*RI);
+ ++PI;
+ ++LI;
+ ++RI;
+ }
+
+ for (; PI != PE; ++PI) {
+ switch (static_cast<DiffChange>(*PI)) {
+ case DC_match:
+ assert(LI != LE && RI != RE);
+ {
+ const Instruction *L = &*LI, *R = &*RI;
+ unify(L, R);
+ Diff.addMatch(L, R);
+ }
+ ++LI; ++RI;
+ break;
+
+ case DC_left:
+ assert(LI != LE);
+ Diff.addLeft(&*LI);
+ ++LI;
+ break;
+
+ case DC_right:
+ assert(RI != RE);
+ Diff.addRight(&*RI);
+ ++RI;
+ break;
+ }
+ }
+
+ // Finishing unifying and complaining about the tails of the block,
+ // which should be matches all the way through.
+ while (LI != LE) {
+ assert(RI != RE);
+ unify(&*LI, &*RI);
+ ++LI;
+ ++RI;
+ }
+
+ // If the terminators have different kinds, but one is an invoke and the
+ // other is an unconditional branch immediately following a call, unify
+ // the results and the destinations.
+ const Instruction *LTerm = LStart->getParent()->getTerminator();
+ const Instruction *RTerm = RStart->getParent()->getTerminator();
+ if (isa<BranchInst>(LTerm) && isa<InvokeInst>(RTerm)) {
+ if (cast<BranchInst>(LTerm)->isConditional()) return;
+ BasicBlock::const_iterator I = LTerm->getIterator();
+ if (I == LStart->getParent()->begin()) return;
+ --I;
+ if (!isa<CallInst>(*I)) return;
+ const CallInst *LCall = cast<CallInst>(&*I);
+ const InvokeInst *RInvoke = cast<InvokeInst>(RTerm);
+ if (!equivalentAsOperands(LCall->getCalledOperand(),
+ RInvoke->getCalledOperand(), nullptr))
+ return;
+ if (!LCall->use_empty())
+ Values[LCall] = RInvoke;
+ tryUnify(LTerm->getSuccessor(0), RInvoke->getNormalDest());
+ } else if (isa<InvokeInst>(LTerm) && isa<BranchInst>(RTerm)) {
+ if (cast<BranchInst>(RTerm)->isConditional()) return;
+ BasicBlock::const_iterator I = RTerm->getIterator();
+ if (I == RStart->getParent()->begin()) return;
+ --I;
+ if (!isa<CallInst>(*I)) return;
+ const CallInst *RCall = cast<CallInst>(I);
+ const InvokeInst *LInvoke = cast<InvokeInst>(LTerm);
+ if (!equivalentAsOperands(LInvoke->getCalledOperand(),
+ RCall->getCalledOperand(), nullptr))
+ return;
+ if (!LInvoke->use_empty())
+ Values[LInvoke] = RCall;
+ tryUnify(LInvoke->getNormalDest(), RTerm->getSuccessor(0));
+ }
+}
+}
+
+void DifferenceEngine::Oracle::anchor() { }
+
+void DifferenceEngine::diff(const Function *L, const Function *R) {
+ Context C(*this, L, R);
+
+ // FIXME: types
+ // FIXME: attributes and CC
+ // FIXME: parameter attributes
+
+ // If both are declarations, we're done.
+ if (L->empty() && R->empty())
+ return;
+ else if (L->empty())
+ log("left function is declaration, right function is definition");
+ else if (R->empty())
+ log("right function is declaration, left function is definition");
+ else
+ FunctionDifferenceEngine(*this).diff(L, R);
+}
+
+void DifferenceEngine::diff(const Module *L, const Module *R) {
+ StringSet<> LNames;
+ SmallVector<std::pair<const Function *, const Function *>, 20> Queue;
+
+ unsigned LeftAnonCount = 0;
+ unsigned RightAnonCount = 0;
+
+ for (Module::const_iterator I = L->begin(), E = L->end(); I != E; ++I) {
+ const Function *LFn = &*I;
+ StringRef Name = LFn->getName();
+ if (Name.empty()) {
+ ++LeftAnonCount;
+ continue;
+ }
+
+ LNames.insert(Name);
+
+ if (Function *RFn = R->getFunction(LFn->getName()))
+ Queue.push_back(std::make_pair(LFn, RFn));
+ else
+ logf("function %l exists only in left module") << LFn;
+ }
+
+ for (Module::const_iterator I = R->begin(), E = R->end(); I != E; ++I) {
+ const Function *RFn = &*I;
+ StringRef Name = RFn->getName();
+ if (Name.empty()) {
+ ++RightAnonCount;
+ continue;
+ }
+
+ if (!LNames.count(Name))
+ logf("function %r exists only in right module") << RFn;
+ }
+
+ if (LeftAnonCount != 0 || RightAnonCount != 0) {
+ SmallString<32> Tmp;
+ logf(("not comparing " + Twine(LeftAnonCount) +
+ " anonymous functions in the left module and " +
+ Twine(RightAnonCount) + " in the right module")
+ .toStringRef(Tmp));
+ }
+
+ for (SmallVectorImpl<std::pair<const Function *, const Function *>>::iterator
+ I = Queue.begin(),
+ E = Queue.end();
+ I != E; ++I)
+ diff(I->first, I->second);
+}
+
+bool DifferenceEngine::equivalentAsOperands(const GlobalValue *L,
+ const GlobalValue *R) {
+ if (globalValueOracle) return (*globalValueOracle)(L, R);
+
+ if (isa<GlobalVariable>(L) && isa<GlobalVariable>(R)) {
+ const GlobalVariable *GVL = cast<GlobalVariable>(L);
+ const GlobalVariable *GVR = cast<GlobalVariable>(R);
+ if (GVL->hasLocalLinkage() && GVL->hasUniqueInitializer() &&
+ GVR->hasLocalLinkage() && GVR->hasUniqueInitializer())
+ return FunctionDifferenceEngine(*this, GVL, GVR)
+ .equivalentAsOperands(GVL->getInitializer(), GVR->getInitializer(),
+ nullptr);
+ }
+
+ return L->getName() == R->getName();
+}