diff options
| author | vvvv <[email protected]> | 2024-02-06 20:01:22 +0300 |
|---|---|---|
| committer | vvvv <[email protected]> | 2024-02-06 20:22:16 +0300 |
| commit | 0203b7a9a40828bb2bd4c32029b79ff0ea3d1f8f (patch) | |
| tree | e630d0d5bd0bd29fc8c2d2842ed2cfde781b993a /contrib/libs/llvm16/lib/Transforms/Vectorize/SLPVectorizer.cpp | |
| parent | ba27db76d99d12a4f1c06960b5449423218614c4 (diff) | |
llvm16 targets
Diffstat (limited to 'contrib/libs/llvm16/lib/Transforms/Vectorize/SLPVectorizer.cpp')
| -rw-r--r-- | contrib/libs/llvm16/lib/Transforms/Vectorize/SLPVectorizer.cpp | 13972 |
1 files changed, 13972 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Transforms/Vectorize/SLPVectorizer.cpp b/contrib/libs/llvm16/lib/Transforms/Vectorize/SLPVectorizer.cpp new file mode 100644 index 00000000000..e3eb6b1804e --- /dev/null +++ b/contrib/libs/llvm16/lib/Transforms/Vectorize/SLPVectorizer.cpp @@ -0,0 +1,13972 @@ +//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass implements the Bottom Up SLP vectorizer. It detects consecutive +// stores that can be put together into vector-stores. Next, it attempts to +// construct vectorizable tree using the use-def chains. If a profitable tree +// was found, the SLP vectorizer performs vectorization on the tree. +// +// The pass is inspired by the work described in the paper: +// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Vectorize/SLPVectorizer.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/PriorityQueue.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetOperations.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallBitVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/iterator.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/CodeMetrics.h" +#include "llvm/Analysis/DemandedBits.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/IVDescriptors.h" +#include "llvm/Analysis/LoopAccessAnalysis.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#ifdef EXPENSIVE_CHECKS +#include "llvm/IR/Verifier.h" +#endif +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/DOTGraphTraits.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/GraphWriter.h" +#include "llvm/Support/InstructionCost.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/InjectTLIMappings.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +#include "llvm/Transforms/Vectorize.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <iterator> +#include <memory> +#include <optional> +#include <set> +#include <string> +#include <tuple> +#include <utility> +#include <vector> + +using namespace llvm; +using namespace llvm::PatternMatch; +using namespace slpvectorizer; + +#define SV_NAME "slp-vectorizer" +#define DEBUG_TYPE "SLP" + +STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); + +cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, + cl::desc("Run the SLP vectorization passes")); + +static cl::opt<int> + SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, + cl::desc("Only vectorize if you gain more than this " + "number ")); + +static cl::opt<bool> +ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, + cl::desc("Attempt to vectorize horizontal reductions")); + +static cl::opt<bool> ShouldStartVectorizeHorAtStore( + "slp-vectorize-hor-store", cl::init(false), cl::Hidden, + cl::desc( + "Attempt to vectorize horizontal reductions feeding into a store")); + +static cl::opt<int> +MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, + cl::desc("Attempt to vectorize for this register size in bits")); + +static cl::opt<unsigned> +MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, + cl::desc("Maximum SLP vectorization factor (0=unlimited)")); + +static cl::opt<int> +MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, + cl::desc("Maximum depth of the lookup for consecutive stores.")); + +/// Limits the size of scheduling regions in a block. +/// It avoid long compile times for _very_ large blocks where vector +/// instructions are spread over a wide range. +/// This limit is way higher than needed by real-world functions. +static cl::opt<int> +ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, + cl::desc("Limit the size of the SLP scheduling region per block")); + +static cl::opt<int> MinVectorRegSizeOption( + "slp-min-reg-size", cl::init(128), cl::Hidden, + cl::desc("Attempt to vectorize for this register size in bits")); + +static cl::opt<unsigned> RecursionMaxDepth( + "slp-recursion-max-depth", cl::init(12), cl::Hidden, + cl::desc("Limit the recursion depth when building a vectorizable tree")); + +static cl::opt<unsigned> MinTreeSize( + "slp-min-tree-size", cl::init(3), cl::Hidden, + cl::desc("Only vectorize small trees if they are fully vectorizable")); + +// The maximum depth that the look-ahead score heuristic will explore. +// The higher this value, the higher the compilation time overhead. +static cl::opt<int> LookAheadMaxDepth( + "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, + cl::desc("The maximum look-ahead depth for operand reordering scores")); + +// The maximum depth that the look-ahead score heuristic will explore +// when it probing among candidates for vectorization tree roots. +// The higher this value, the higher the compilation time overhead but unlike +// similar limit for operands ordering this is less frequently used, hence +// impact of higher value is less noticeable. +static cl::opt<int> RootLookAheadMaxDepth( + "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden, + cl::desc("The maximum look-ahead depth for searching best rooting option")); + +static cl::opt<bool> + ViewSLPTree("view-slp-tree", cl::Hidden, + cl::desc("Display the SLP trees with Graphviz")); + +// Limit the number of alias checks. The limit is chosen so that +// it has no negative effect on the llvm benchmarks. +static const unsigned AliasedCheckLimit = 10; + +// Another limit for the alias checks: The maximum distance between load/store +// instructions where alias checks are done. +// This limit is useful for very large basic blocks. +static const unsigned MaxMemDepDistance = 160; + +/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling +/// regions to be handled. +static const int MinScheduleRegionSize = 16; + +/// Predicate for the element types that the SLP vectorizer supports. +/// +/// The most important thing to filter here are types which are invalid in LLVM +/// vectors. We also filter target specific types which have absolutely no +/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just +/// avoids spending time checking the cost model and realizing that they will +/// be inevitably scalarized. +static bool isValidElementType(Type *Ty) { + return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && + !Ty->isPPC_FP128Ty(); +} + +/// \returns True if the value is a constant (but not globals/constant +/// expressions). +static bool isConstant(Value *V) { + return isa<Constant>(V) && !isa<ConstantExpr, GlobalValue>(V); +} + +/// Checks if \p V is one of vector-like instructions, i.e. undef, +/// insertelement/extractelement with constant indices for fixed vector type or +/// extractvalue instruction. +static bool isVectorLikeInstWithConstOps(Value *V) { + if (!isa<InsertElementInst, ExtractElementInst>(V) && + !isa<ExtractValueInst, UndefValue>(V)) + return false; + auto *I = dyn_cast<Instruction>(V); + if (!I || isa<ExtractValueInst>(I)) + return true; + if (!isa<FixedVectorType>(I->getOperand(0)->getType())) + return false; + if (isa<ExtractElementInst>(I)) + return isConstant(I->getOperand(1)); + assert(isa<InsertElementInst>(V) && "Expected only insertelement."); + return isConstant(I->getOperand(2)); +} + +/// \returns true if all of the instructions in \p VL are in the same block or +/// false otherwise. +static bool allSameBlock(ArrayRef<Value *> VL) { + Instruction *I0 = dyn_cast<Instruction>(VL[0]); + if (!I0) + return false; + if (all_of(VL, isVectorLikeInstWithConstOps)) + return true; + + BasicBlock *BB = I0->getParent(); + for (int I = 1, E = VL.size(); I < E; I++) { + auto *II = dyn_cast<Instruction>(VL[I]); + if (!II) + return false; + + if (BB != II->getParent()) + return false; + } + return true; +} + +/// \returns True if all of the values in \p VL are constants (but not +/// globals/constant expressions). +static bool allConstant(ArrayRef<Value *> VL) { + // Constant expressions and globals can't be vectorized like normal integer/FP + // constants. + return all_of(VL, isConstant); +} + +/// \returns True if all of the values in \p VL are identical or some of them +/// are UndefValue. +static bool isSplat(ArrayRef<Value *> VL) { + Value *FirstNonUndef = nullptr; + for (Value *V : VL) { + if (isa<UndefValue>(V)) + continue; + if (!FirstNonUndef) { + FirstNonUndef = V; + continue; + } + if (V != FirstNonUndef) + return false; + } + return FirstNonUndef != nullptr; +} + +/// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. +static bool isCommutative(Instruction *I) { + if (auto *Cmp = dyn_cast<CmpInst>(I)) + return Cmp->isCommutative(); + if (auto *BO = dyn_cast<BinaryOperator>(I)) + return BO->isCommutative(); + // TODO: This should check for generic Instruction::isCommutative(), but + // we need to confirm that the caller code correctly handles Intrinsics + // for example (does not have 2 operands). + return false; +} + +/// \returns inserting index of InsertElement or InsertValue instruction, +/// using Offset as base offset for index. +static std::optional<unsigned> getInsertIndex(const Value *InsertInst, + unsigned Offset = 0) { + int Index = Offset; + if (const auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { + const auto *VT = dyn_cast<FixedVectorType>(IE->getType()); + if (!VT) + return std::nullopt; + const auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); + if (!CI) + return std::nullopt; + if (CI->getValue().uge(VT->getNumElements())) + return std::nullopt; + Index *= VT->getNumElements(); + Index += CI->getZExtValue(); + return Index; + } + + const auto *IV = cast<InsertValueInst>(InsertInst); + Type *CurrentType = IV->getType(); + for (unsigned I : IV->indices()) { + if (const auto *ST = dyn_cast<StructType>(CurrentType)) { + Index *= ST->getNumElements(); + CurrentType = ST->getElementType(I); + } else if (const auto *AT = dyn_cast<ArrayType>(CurrentType)) { + Index *= AT->getNumElements(); + CurrentType = AT->getElementType(); + } else { + return std::nullopt; + } + Index += I; + } + return Index; +} + +namespace { +/// Specifies the way the mask should be analyzed for undefs/poisonous elements +/// in the shuffle mask. +enum class UseMask { + FirstArg, ///< The mask is expected to be for permutation of 1-2 vectors, + ///< check for the mask elements for the first argument (mask + ///< indices are in range [0:VF)). + SecondArg, ///< The mask is expected to be for permutation of 2 vectors, check + ///< for the mask elements for the second argument (mask indices + ///< are in range [VF:2*VF)) + UndefsAsMask ///< Consider undef mask elements (-1) as placeholders for + ///< future shuffle elements and mark them as ones as being used + ///< in future. Non-undef elements are considered as unused since + ///< they're already marked as used in the mask. +}; +} // namespace + +/// Prepares a use bitset for the given mask either for the first argument or +/// for the second. +static SmallBitVector buildUseMask(int VF, ArrayRef<int> Mask, + UseMask MaskArg) { + SmallBitVector UseMask(VF, true); + for (auto P : enumerate(Mask)) { + if (P.value() == UndefMaskElem) { + if (MaskArg == UseMask::UndefsAsMask) + UseMask.reset(P.index()); + continue; + } + if (MaskArg == UseMask::FirstArg && P.value() < VF) + UseMask.reset(P.value()); + else if (MaskArg == UseMask::SecondArg && P.value() >= VF) + UseMask.reset(P.value() - VF); + } + return UseMask; +} + +/// Checks if the given value is actually an undefined constant vector. +/// Also, if the \p UseMask is not empty, tries to check if the non-masked +/// elements actually mask the insertelement buildvector, if any. +template <bool IsPoisonOnly = false> +static SmallBitVector isUndefVector(const Value *V, + const SmallBitVector &UseMask = {}) { + SmallBitVector Res(UseMask.empty() ? 1 : UseMask.size(), true); + using T = std::conditional_t<IsPoisonOnly, PoisonValue, UndefValue>; + if (isa<T>(V)) + return Res; + auto *VecTy = dyn_cast<FixedVectorType>(V->getType()); + if (!VecTy) + return Res.reset(); + auto *C = dyn_cast<Constant>(V); + if (!C) { + if (!UseMask.empty()) { + const Value *Base = V; + while (auto *II = dyn_cast<InsertElementInst>(Base)) { + if (isa<T>(II->getOperand(1))) + continue; + Base = II->getOperand(0); + std::optional<unsigned> Idx = getInsertIndex(II); + if (!Idx) + continue; + if (*Idx < UseMask.size() && !UseMask.test(*Idx)) + Res.reset(*Idx); + } + // TODO: Add analysis for shuffles here too. + if (V == Base) { + Res.reset(); + } else { + SmallBitVector SubMask(UseMask.size(), false); + Res &= isUndefVector<IsPoisonOnly>(Base, SubMask); + } + } else { + Res.reset(); + } + return Res; + } + for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { + if (Constant *Elem = C->getAggregateElement(I)) + if (!isa<T>(Elem) && + (UseMask.empty() || (I < UseMask.size() && !UseMask.test(I)))) + Res.reset(I); + } + return Res; +} + +/// Checks if the vector of instructions can be represented as a shuffle, like: +/// %x0 = extractelement <4 x i8> %x, i32 0 +/// %x3 = extractelement <4 x i8> %x, i32 3 +/// %y1 = extractelement <4 x i8> %y, i32 1 +/// %y2 = extractelement <4 x i8> %y, i32 2 +/// %x0x0 = mul i8 %x0, %x0 +/// %x3x3 = mul i8 %x3, %x3 +/// %y1y1 = mul i8 %y1, %y1 +/// %y2y2 = mul i8 %y2, %y2 +/// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 +/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 +/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 +/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 +/// ret <4 x i8> %ins4 +/// can be transformed into: +/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, +/// i32 6> +/// %2 = mul <4 x i8> %1, %1 +/// ret <4 x i8> %2 +/// We convert this initially to something like: +/// %x0 = extractelement <4 x i8> %x, i32 0 +/// %x3 = extractelement <4 x i8> %x, i32 3 +/// %y1 = extractelement <4 x i8> %y, i32 1 +/// %y2 = extractelement <4 x i8> %y, i32 2 +/// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 +/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 +/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 +/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 +/// %5 = mul <4 x i8> %4, %4 +/// %6 = extractelement <4 x i8> %5, i32 0 +/// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 +/// %7 = extractelement <4 x i8> %5, i32 1 +/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 +/// %8 = extractelement <4 x i8> %5, i32 2 +/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 +/// %9 = extractelement <4 x i8> %5, i32 3 +/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 +/// ret <4 x i8> %ins4 +/// InstCombiner transforms this into a shuffle and vector mul +/// Mask will return the Shuffle Mask equivalent to the extracted elements. +/// TODO: Can we split off and reuse the shuffle mask detection from +/// ShuffleVectorInst/getShuffleCost? +static std::optional<TargetTransformInfo::ShuffleKind> +isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { + const auto *It = + find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); + if (It == VL.end()) + return std::nullopt; + auto *EI0 = cast<ExtractElementInst>(*It); + if (isa<ScalableVectorType>(EI0->getVectorOperandType())) + return std::nullopt; + unsigned Size = + cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); + Value *Vec1 = nullptr; + Value *Vec2 = nullptr; + enum ShuffleMode { Unknown, Select, Permute }; + ShuffleMode CommonShuffleMode = Unknown; + Mask.assign(VL.size(), UndefMaskElem); + for (unsigned I = 0, E = VL.size(); I < E; ++I) { + // Undef can be represented as an undef element in a vector. + if (isa<UndefValue>(VL[I])) + continue; + auto *EI = cast<ExtractElementInst>(VL[I]); + if (isa<ScalableVectorType>(EI->getVectorOperandType())) + return std::nullopt; + auto *Vec = EI->getVectorOperand(); + // We can extractelement from undef or poison vector. + if (isUndefVector(Vec).all()) + continue; + // All vector operands must have the same number of vector elements. + if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) + return std::nullopt; + if (isa<UndefValue>(EI->getIndexOperand())) + continue; + auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); + if (!Idx) + return std::nullopt; + // Undefined behavior if Idx is negative or >= Size. + if (Idx->getValue().uge(Size)) + continue; + unsigned IntIdx = Idx->getValue().getZExtValue(); + Mask[I] = IntIdx; + // For correct shuffling we have to have at most 2 different vector operands + // in all extractelement instructions. + if (!Vec1 || Vec1 == Vec) { + Vec1 = Vec; + } else if (!Vec2 || Vec2 == Vec) { + Vec2 = Vec; + Mask[I] += Size; + } else { + return std::nullopt; + } + if (CommonShuffleMode == Permute) + continue; + // If the extract index is not the same as the operation number, it is a + // permutation. + if (IntIdx != I) { + CommonShuffleMode = Permute; + continue; + } + CommonShuffleMode = Select; + } + // If we're not crossing lanes in different vectors, consider it as blending. + if (CommonShuffleMode == Select && Vec2) + return TargetTransformInfo::SK_Select; + // If Vec2 was never used, we have a permutation of a single vector, otherwise + // we have permutation of 2 vectors. + return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc + : TargetTransformInfo::SK_PermuteSingleSrc; +} + +/// \returns True if Extract{Value,Element} instruction extracts element Idx. +static std::optional<unsigned> getExtractIndex(Instruction *E) { + unsigned Opcode = E->getOpcode(); + assert((Opcode == Instruction::ExtractElement || + Opcode == Instruction::ExtractValue) && + "Expected extractelement or extractvalue instruction."); + if (Opcode == Instruction::ExtractElement) { + auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); + if (!CI) + return std::nullopt; + return CI->getZExtValue(); + } + auto *EI = cast<ExtractValueInst>(E); + if (EI->getNumIndices() != 1) + return std::nullopt; + return *EI->idx_begin(); +} + +namespace { + +/// Main data required for vectorization of instructions. +struct InstructionsState { + /// The very first instruction in the list with the main opcode. + Value *OpValue = nullptr; + + /// The main/alternate instruction. + Instruction *MainOp = nullptr; + Instruction *AltOp = nullptr; + + /// The main/alternate opcodes for the list of instructions. + unsigned getOpcode() const { + return MainOp ? MainOp->getOpcode() : 0; + } + + unsigned getAltOpcode() const { + return AltOp ? AltOp->getOpcode() : 0; + } + + /// Some of the instructions in the list have alternate opcodes. + bool isAltShuffle() const { return AltOp != MainOp; } + + bool isOpcodeOrAlt(Instruction *I) const { + unsigned CheckedOpcode = I->getOpcode(); + return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; + } + + InstructionsState() = delete; + InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) + : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} +}; + +} // end anonymous namespace + +/// Chooses the correct key for scheduling data. If \p Op has the same (or +/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p +/// OpValue. +static Value *isOneOf(const InstructionsState &S, Value *Op) { + auto *I = dyn_cast<Instruction>(Op); + if (I && S.isOpcodeOrAlt(I)) + return Op; + return S.OpValue; +} + +/// \returns true if \p Opcode is allowed as part of of the main/alternate +/// instruction for SLP vectorization. +/// +/// Example of unsupported opcode is SDIV that can potentially cause UB if the +/// "shuffled out" lane would result in division by zero. +static bool isValidForAlternation(unsigned Opcode) { + if (Instruction::isIntDivRem(Opcode)) + return false; + + return true; +} + +static InstructionsState getSameOpcode(ArrayRef<Value *> VL, + const TargetLibraryInfo &TLI, + unsigned BaseIndex = 0); + +/// Checks if the provided operands of 2 cmp instructions are compatible, i.e. +/// compatible instructions or constants, or just some other regular values. +static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, + Value *Op1, const TargetLibraryInfo &TLI) { + return (isConstant(BaseOp0) && isConstant(Op0)) || + (isConstant(BaseOp1) && isConstant(Op1)) || + (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && + !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || + BaseOp0 == Op0 || BaseOp1 == Op1 || + getSameOpcode({BaseOp0, Op0}, TLI).getOpcode() || + getSameOpcode({BaseOp1, Op1}, TLI).getOpcode(); +} + +/// \returns true if a compare instruction \p CI has similar "look" and +/// same predicate as \p BaseCI, "as is" or with its operands and predicate +/// swapped, false otherwise. +static bool isCmpSameOrSwapped(const CmpInst *BaseCI, const CmpInst *CI, + const TargetLibraryInfo &TLI) { + assert(BaseCI->getOperand(0)->getType() == CI->getOperand(0)->getType() && + "Assessing comparisons of different types?"); + CmpInst::Predicate BasePred = BaseCI->getPredicate(); + CmpInst::Predicate Pred = CI->getPredicate(); + CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(Pred); + + Value *BaseOp0 = BaseCI->getOperand(0); + Value *BaseOp1 = BaseCI->getOperand(1); + Value *Op0 = CI->getOperand(0); + Value *Op1 = CI->getOperand(1); + + return (BasePred == Pred && + areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1, TLI)) || + (BasePred == SwappedPred && + areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0, TLI)); +} + +/// \returns analysis of the Instructions in \p VL described in +/// InstructionsState, the Opcode that we suppose the whole list +/// could be vectorized even if its structure is diverse. +static InstructionsState getSameOpcode(ArrayRef<Value *> VL, + const TargetLibraryInfo &TLI, + unsigned BaseIndex) { + // Make sure these are all Instructions. + if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) + return InstructionsState(VL[BaseIndex], nullptr, nullptr); + + bool IsCastOp = isa<CastInst>(VL[BaseIndex]); + bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); + bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); + CmpInst::Predicate BasePred = + IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() + : CmpInst::BAD_ICMP_PREDICATE; + unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); + unsigned AltOpcode = Opcode; + unsigned AltIndex = BaseIndex; + + // Check for one alternate opcode from another BinaryOperator. + // TODO - generalize to support all operators (types, calls etc.). + auto *IBase = cast<Instruction>(VL[BaseIndex]); + Intrinsic::ID BaseID = 0; + SmallVector<VFInfo> BaseMappings; + if (auto *CallBase = dyn_cast<CallInst>(IBase)) { + BaseID = getVectorIntrinsicIDForCall(CallBase, &TLI); + BaseMappings = VFDatabase(*CallBase).getMappings(*CallBase); + if (!isTriviallyVectorizable(BaseID) && BaseMappings.empty()) + return InstructionsState(VL[BaseIndex], nullptr, nullptr); + } + for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { + auto *I = cast<Instruction>(VL[Cnt]); + unsigned InstOpcode = I->getOpcode(); + if (IsBinOp && isa<BinaryOperator>(I)) { + if (InstOpcode == Opcode || InstOpcode == AltOpcode) + continue; + if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && + isValidForAlternation(Opcode)) { + AltOpcode = InstOpcode; + AltIndex = Cnt; + continue; + } + } else if (IsCastOp && isa<CastInst>(I)) { + Value *Op0 = IBase->getOperand(0); + Type *Ty0 = Op0->getType(); + Value *Op1 = I->getOperand(0); + Type *Ty1 = Op1->getType(); + if (Ty0 == Ty1) { + if (InstOpcode == Opcode || InstOpcode == AltOpcode) + continue; + if (Opcode == AltOpcode) { + assert(isValidForAlternation(Opcode) && + isValidForAlternation(InstOpcode) && + "Cast isn't safe for alternation, logic needs to be updated!"); + AltOpcode = InstOpcode; + AltIndex = Cnt; + continue; + } + } + } else if (auto *Inst = dyn_cast<CmpInst>(VL[Cnt]); Inst && IsCmpOp) { + auto *BaseInst = cast<CmpInst>(VL[BaseIndex]); + Type *Ty0 = BaseInst->getOperand(0)->getType(); + Type *Ty1 = Inst->getOperand(0)->getType(); + if (Ty0 == Ty1) { + assert(InstOpcode == Opcode && "Expected same CmpInst opcode."); + // Check for compatible operands. If the corresponding operands are not + // compatible - need to perform alternate vectorization. + CmpInst::Predicate CurrentPred = Inst->getPredicate(); + CmpInst::Predicate SwappedCurrentPred = + CmpInst::getSwappedPredicate(CurrentPred); + + if (E == 2 && + (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) + continue; + + if (isCmpSameOrSwapped(BaseInst, Inst, TLI)) + continue; + auto *AltInst = cast<CmpInst>(VL[AltIndex]); + if (AltIndex != BaseIndex) { + if (isCmpSameOrSwapped(AltInst, Inst, TLI)) + continue; + } else if (BasePred != CurrentPred) { + assert( + isValidForAlternation(InstOpcode) && + "CmpInst isn't safe for alternation, logic needs to be updated!"); + AltIndex = Cnt; + continue; + } + CmpInst::Predicate AltPred = AltInst->getPredicate(); + if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || + AltPred == CurrentPred || AltPred == SwappedCurrentPred) + continue; + } + } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) { + if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { + if (Gep->getNumOperands() != 2 || + Gep->getOperand(0)->getType() != IBase->getOperand(0)->getType()) + return InstructionsState(VL[BaseIndex], nullptr, nullptr); + } else if (auto *EI = dyn_cast<ExtractElementInst>(I)) { + if (!isVectorLikeInstWithConstOps(EI)) + return InstructionsState(VL[BaseIndex], nullptr, nullptr); + } else if (auto *LI = dyn_cast<LoadInst>(I)) { + auto *BaseLI = cast<LoadInst>(IBase); + if (!LI->isSimple() || !BaseLI->isSimple()) + return InstructionsState(VL[BaseIndex], nullptr, nullptr); + } else if (auto *Call = dyn_cast<CallInst>(I)) { + auto *CallBase = cast<CallInst>(IBase); + if (Call->getCalledFunction() != CallBase->getCalledFunction()) + return InstructionsState(VL[BaseIndex], nullptr, nullptr); + if (Call->hasOperandBundles() && + !std::equal(Call->op_begin() + Call->getBundleOperandsStartIndex(), + Call->op_begin() + Call->getBundleOperandsEndIndex(), + CallBase->op_begin() + + CallBase->getBundleOperandsStartIndex())) + return InstructionsState(VL[BaseIndex], nullptr, nullptr); + Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, &TLI); + if (ID != BaseID) + return InstructionsState(VL[BaseIndex], nullptr, nullptr); + if (!ID) { + SmallVector<VFInfo> Mappings = VFDatabase(*Call).getMappings(*Call); + if (Mappings.size() != BaseMappings.size() || + Mappings.front().ISA != BaseMappings.front().ISA || + Mappings.front().ScalarName != BaseMappings.front().ScalarName || + Mappings.front().VectorName != BaseMappings.front().VectorName || + Mappings.front().Shape.VF != BaseMappings.front().Shape.VF || + Mappings.front().Shape.Parameters != + BaseMappings.front().Shape.Parameters) + return InstructionsState(VL[BaseIndex], nullptr, nullptr); + } + } + continue; + } + return InstructionsState(VL[BaseIndex], nullptr, nullptr); + } + + return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), + cast<Instruction>(VL[AltIndex])); +} + +/// \returns true if all of the values in \p VL have the same type or false +/// otherwise. +static bool allSameType(ArrayRef<Value *> VL) { + Type *Ty = VL[0]->getType(); + for (int i = 1, e = VL.size(); i < e; i++) + if (VL[i]->getType() != Ty) + return false; + + return true; +} + +/// \returns True if in-tree use also needs extract. This refers to +/// possible scalar operand in vectorized instruction. +static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, + TargetLibraryInfo *TLI) { + unsigned Opcode = UserInst->getOpcode(); + switch (Opcode) { + case Instruction::Load: { + LoadInst *LI = cast<LoadInst>(UserInst); + return (LI->getPointerOperand() == Scalar); + } + case Instruction::Store: { + StoreInst *SI = cast<StoreInst>(UserInst); + return (SI->getPointerOperand() == Scalar); + } + case Instruction::Call: { + CallInst *CI = cast<CallInst>(UserInst); + Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); + for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { + if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) + return (CI->getArgOperand(i) == Scalar); + } + [[fallthrough]]; + } + default: + return false; + } +} + +/// \returns the AA location that is being access by the instruction. +static MemoryLocation getLocation(Instruction *I) { + if (StoreInst *SI = dyn_cast<StoreInst>(I)) + return MemoryLocation::get(SI); + if (LoadInst *LI = dyn_cast<LoadInst>(I)) + return MemoryLocation::get(LI); + return MemoryLocation(); +} + +/// \returns True if the instruction is not a volatile or atomic load/store. +static bool isSimple(Instruction *I) { + if (LoadInst *LI = dyn_cast<LoadInst>(I)) + return LI->isSimple(); + if (StoreInst *SI = dyn_cast<StoreInst>(I)) + return SI->isSimple(); + if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) + return !MI->isVolatile(); + return true; +} + +/// Shuffles \p Mask in accordance with the given \p SubMask. +static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { + if (SubMask.empty()) + return; + if (Mask.empty()) { + Mask.append(SubMask.begin(), SubMask.end()); + return; + } + SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); + int TermValue = std::min(Mask.size(), SubMask.size()); + for (int I = 0, E = SubMask.size(); I < E; ++I) { + if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || + Mask[SubMask[I]] >= TermValue) + continue; + NewMask[I] = Mask[SubMask[I]]; + } + Mask.swap(NewMask); +} + +/// Order may have elements assigned special value (size) which is out of +/// bounds. Such indices only appear on places which correspond to undef values +/// (see canReuseExtract for details) and used in order to avoid undef values +/// have effect on operands ordering. +/// The first loop below simply finds all unused indices and then the next loop +/// nest assigns these indices for undef values positions. +/// As an example below Order has two undef positions and they have assigned +/// values 3 and 7 respectively: +/// before: 6 9 5 4 9 2 1 0 +/// after: 6 3 5 4 7 2 1 0 +static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { + const unsigned Sz = Order.size(); + SmallBitVector UnusedIndices(Sz, /*t=*/true); + SmallBitVector MaskedIndices(Sz); + for (unsigned I = 0; I < Sz; ++I) { + if (Order[I] < Sz) + UnusedIndices.reset(Order[I]); + else + MaskedIndices.set(I); + } + if (MaskedIndices.none()) + return; + assert(UnusedIndices.count() == MaskedIndices.count() && + "Non-synced masked/available indices."); + int Idx = UnusedIndices.find_first(); + int MIdx = MaskedIndices.find_first(); + while (MIdx >= 0) { + assert(Idx >= 0 && "Indices must be synced."); + Order[MIdx] = Idx; + Idx = UnusedIndices.find_next(Idx); + MIdx = MaskedIndices.find_next(MIdx); + } +} + +namespace llvm { + +static void inversePermutation(ArrayRef<unsigned> Indices, + SmallVectorImpl<int> &Mask) { + Mask.clear(); + const unsigned E = Indices.size(); + Mask.resize(E, UndefMaskElem); + for (unsigned I = 0; I < E; ++I) + Mask[Indices[I]] = I; +} + +/// Reorders the list of scalars in accordance with the given \p Mask. +static void reorderScalars(SmallVectorImpl<Value *> &Scalars, + ArrayRef<int> Mask) { + assert(!Mask.empty() && "Expected non-empty mask."); + SmallVector<Value *> Prev(Scalars.size(), + UndefValue::get(Scalars.front()->getType())); + Prev.swap(Scalars); + for (unsigned I = 0, E = Prev.size(); I < E; ++I) + if (Mask[I] != UndefMaskElem) + Scalars[Mask[I]] = Prev[I]; +} + +/// Checks if the provided value does not require scheduling. It does not +/// require scheduling if this is not an instruction or it is an instruction +/// that does not read/write memory and all operands are either not instructions +/// or phi nodes or instructions from different blocks. +static bool areAllOperandsNonInsts(Value *V) { + auto *I = dyn_cast<Instruction>(V); + if (!I) + return true; + return !mayHaveNonDefUseDependency(*I) && + all_of(I->operands(), [I](Value *V) { + auto *IO = dyn_cast<Instruction>(V); + if (!IO) + return true; + return isa<PHINode>(IO) || IO->getParent() != I->getParent(); + }); +} + +/// Checks if the provided value does not require scheduling. It does not +/// require scheduling if this is not an instruction or it is an instruction +/// that does not read/write memory and all users are phi nodes or instructions +/// from the different blocks. +static bool isUsedOutsideBlock(Value *V) { + auto *I = dyn_cast<Instruction>(V); + if (!I) + return true; + // Limits the number of uses to save compile time. + constexpr int UsesLimit = 8; + return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && + all_of(I->users(), [I](User *U) { + auto *IU = dyn_cast<Instruction>(U); + if (!IU) + return true; + return IU->getParent() != I->getParent() || isa<PHINode>(IU); + }); +} + +/// Checks if the specified value does not require scheduling. It does not +/// require scheduling if all operands and all users do not need to be scheduled +/// in the current basic block. +static bool doesNotNeedToBeScheduled(Value *V) { + return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); +} + +/// Checks if the specified array of instructions does not require scheduling. +/// It is so if all either instructions have operands that do not require +/// scheduling or their users do not require scheduling since they are phis or +/// in other basic blocks. +static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { + return !VL.empty() && + (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); +} + +namespace slpvectorizer { + +/// Bottom Up SLP Vectorizer. +class BoUpSLP { + struct TreeEntry; + struct ScheduleData; + class ShuffleInstructionBuilder; + +public: + using ValueList = SmallVector<Value *, 8>; + using InstrList = SmallVector<Instruction *, 16>; + using ValueSet = SmallPtrSet<Value *, 16>; + using StoreList = SmallVector<StoreInst *, 8>; + using ExtraValueToDebugLocsMap = + MapVector<Value *, SmallVector<Instruction *, 2>>; + using OrdersType = SmallVector<unsigned, 4>; + + BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, + TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, + DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, + const DataLayout *DL, OptimizationRemarkEmitter *ORE) + : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), + DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { + CodeMetrics::collectEphemeralValues(F, AC, EphValues); + // Use the vector register size specified by the target unless overridden + // by a command-line option. + // TODO: It would be better to limit the vectorization factor based on + // data type rather than just register size. For example, x86 AVX has + // 256-bit registers, but it does not support integer operations + // at that width (that requires AVX2). + if (MaxVectorRegSizeOption.getNumOccurrences()) + MaxVecRegSize = MaxVectorRegSizeOption; + else + MaxVecRegSize = + TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) + .getFixedValue(); + + if (MinVectorRegSizeOption.getNumOccurrences()) + MinVecRegSize = MinVectorRegSizeOption; + else + MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); + } + + /// Vectorize the tree that starts with the elements in \p VL. + /// Returns the vectorized root. + Value *vectorizeTree(); + + /// Vectorize the tree but with the list of externally used values \p + /// ExternallyUsedValues. Values in this MapVector can be replaced but the + /// generated extractvalue instructions. + Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues, + Instruction *ReductionRoot = nullptr); + + /// \returns the cost incurred by unwanted spills and fills, caused by + /// holding live values over call sites. + InstructionCost getSpillCost() const; + + /// \returns the vectorization cost of the subtree that starts at \p VL. + /// A negative number means that this is profitable. + InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = std::nullopt); + + /// Construct a vectorizable tree that starts at \p Roots, ignoring users for + /// the purpose of scheduling and extraction in the \p UserIgnoreLst. + void buildTree(ArrayRef<Value *> Roots, + const SmallDenseSet<Value *> &UserIgnoreLst); + + /// Construct a vectorizable tree that starts at \p Roots. + void buildTree(ArrayRef<Value *> Roots); + + /// Checks if the very first tree node is going to be vectorized. + bool isVectorizedFirstNode() const { + return !VectorizableTree.empty() && + VectorizableTree.front()->State == TreeEntry::Vectorize; + } + + /// Returns the main instruction for the very first node. + Instruction *getFirstNodeMainOp() const { + assert(!VectorizableTree.empty() && "No tree to get the first node from"); + return VectorizableTree.front()->getMainOp(); + } + + /// Returns whether the root node has in-tree uses. + bool doesRootHaveInTreeUses() const { + return !VectorizableTree.empty() && + !VectorizableTree.front()->UserTreeIndices.empty(); + } + + /// Builds external uses of the vectorized scalars, i.e. the list of + /// vectorized scalars to be extracted, their lanes and their scalar users. \p + /// ExternallyUsedValues contains additional list of external uses to handle + /// vectorization of reductions. + void + buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); + + /// Clear the internal data structures that are created by 'buildTree'. + void deleteTree() { + VectorizableTree.clear(); + ScalarToTreeEntry.clear(); + MustGather.clear(); + EntryToLastInstruction.clear(); + ExternalUses.clear(); + for (auto &Iter : BlocksSchedules) { + BlockScheduling *BS = Iter.second.get(); + BS->clear(); + } + MinBWs.clear(); + InstrElementSize.clear(); + UserIgnoreList = nullptr; + } + + unsigned getTreeSize() const { return VectorizableTree.size(); } + + /// Perform LICM and CSE on the newly generated gather sequences. + void optimizeGatherSequence(); + + /// Checks if the specified gather tree entry \p TE can be represented as a + /// shuffled vector entry + (possibly) permutation with other gathers. It + /// implements the checks only for possibly ordered scalars (Loads, + /// ExtractElement, ExtractValue), which can be part of the graph. + std::optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); + + /// Sort loads into increasing pointers offsets to allow greater clustering. + std::optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE); + + /// Gets reordering data for the given tree entry. If the entry is vectorized + /// - just return ReorderIndices, otherwise check if the scalars can be + /// reordered and return the most optimal order. + /// \param TopToBottom If true, include the order of vectorized stores and + /// insertelement nodes, otherwise skip them. + std::optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); + + /// Reorders the current graph to the most profitable order starting from the + /// root node to the leaf nodes. The best order is chosen only from the nodes + /// of the same size (vectorization factor). Smaller nodes are considered + /// parts of subgraph with smaller VF and they are reordered independently. We + /// can make it because we still need to extend smaller nodes to the wider VF + /// and we can merge reordering shuffles with the widening shuffles. + void reorderTopToBottom(); + + /// Reorders the current graph to the most profitable order starting from + /// leaves to the root. It allows to rotate small subgraphs and reduce the + /// number of reshuffles if the leaf nodes use the same order. In this case we + /// can merge the orders and just shuffle user node instead of shuffling its + /// operands. Plus, even the leaf nodes have different orders, it allows to + /// sink reordering in the graph closer to the root node and merge it later + /// during analysis. + void reorderBottomToTop(bool IgnoreReorder = false); + + /// \return The vector element size in bits to use when vectorizing the + /// expression tree ending at \p V. If V is a store, the size is the width of + /// the stored value. Otherwise, the size is the width of the largest loaded + /// value reaching V. This method is used by the vectorizer to calculate + /// vectorization factors. + unsigned getVectorElementSize(Value *V); + + /// Compute the minimum type sizes required to represent the entries in a + /// vectorizable tree. + void computeMinimumValueSizes(); + + // \returns maximum vector register size as set by TTI or overridden by cl::opt. + unsigned getMaxVecRegSize() const { + return MaxVecRegSize; + } + + // \returns minimum vector register size as set by cl::opt. + unsigned getMinVecRegSize() const { + return MinVecRegSize; + } + + unsigned getMinVF(unsigned Sz) const { + return std::max(2U, getMinVecRegSize() / Sz); + } + + unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { + unsigned MaxVF = MaxVFOption.getNumOccurrences() ? + MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); + return MaxVF ? MaxVF : UINT_MAX; + } + + /// Check if homogeneous aggregate is isomorphic to some VectorType. + /// Accepts homogeneous multidimensional aggregate of scalars/vectors like + /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, + /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. + /// + /// \returns number of elements in vector if isomorphism exists, 0 otherwise. + unsigned canMapToVector(Type *T, const DataLayout &DL) const; + + /// \returns True if the VectorizableTree is both tiny and not fully + /// vectorizable. We do not vectorize such trees. + bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; + + /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values + /// can be load combined in the backend. Load combining may not be allowed in + /// the IR optimizer, so we do not want to alter the pattern. For example, + /// partially transforming a scalar bswap() pattern into vector code is + /// effectively impossible for the backend to undo. + /// TODO: If load combining is allowed in the IR optimizer, this analysis + /// may not be necessary. + bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; + + /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values + /// can be load combined in the backend. Load combining may not be allowed in + /// the IR optimizer, so we do not want to alter the pattern. For example, + /// partially transforming a scalar bswap() pattern into vector code is + /// effectively impossible for the backend to undo. + /// TODO: If load combining is allowed in the IR optimizer, this analysis + /// may not be necessary. + bool isLoadCombineCandidate() const; + + OptimizationRemarkEmitter *getORE() { return ORE; } + + /// This structure holds any data we need about the edges being traversed + /// during buildTree_rec(). We keep track of: + /// (i) the user TreeEntry index, and + /// (ii) the index of the edge. + struct EdgeInfo { + EdgeInfo() = default; + EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) + : UserTE(UserTE), EdgeIdx(EdgeIdx) {} + /// The user TreeEntry. + TreeEntry *UserTE = nullptr; + /// The operand index of the use. + unsigned EdgeIdx = UINT_MAX; +#ifndef NDEBUG + friend inline raw_ostream &operator<<(raw_ostream &OS, + const BoUpSLP::EdgeInfo &EI) { + EI.dump(OS); + return OS; + } + /// Debug print. + void dump(raw_ostream &OS) const { + OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") + << " EdgeIdx:" << EdgeIdx << "}"; + } + LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } +#endif + }; + + /// A helper class used for scoring candidates for two consecutive lanes. + class LookAheadHeuristics { + const TargetLibraryInfo &TLI; + const DataLayout &DL; + ScalarEvolution &SE; + const BoUpSLP &R; + int NumLanes; // Total number of lanes (aka vectorization factor). + int MaxLevel; // The maximum recursion depth for accumulating score. + + public: + LookAheadHeuristics(const TargetLibraryInfo &TLI, const DataLayout &DL, + ScalarEvolution &SE, const BoUpSLP &R, int NumLanes, + int MaxLevel) + : TLI(TLI), DL(DL), SE(SE), R(R), NumLanes(NumLanes), + MaxLevel(MaxLevel) {} + + // The hard-coded scores listed here are not very important, though it shall + // be higher for better matches to improve the resulting cost. When + // computing the scores of matching one sub-tree with another, we are + // basically counting the number of values that are matching. So even if all + // scores are set to 1, we would still get a decent matching result. + // However, sometimes we have to break ties. For example we may have to + // choose between matching loads vs matching opcodes. This is what these + // scores are helping us with: they provide the order of preference. Also, + // this is important if the scalar is externally used or used in another + // tree entry node in the different lane. + + /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). + static const int ScoreConsecutiveLoads = 4; + /// The same load multiple times. This should have a better score than + /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it + /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for + /// a vector load and 1.0 for a broadcast. + static const int ScoreSplatLoads = 3; + /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). + static const int ScoreReversedLoads = 3; + /// A load candidate for masked gather. + static const int ScoreMaskedGatherCandidate = 1; + /// ExtractElementInst from same vector and consecutive indexes. + static const int ScoreConsecutiveExtracts = 4; + /// ExtractElementInst from same vector and reversed indices. + static const int ScoreReversedExtracts = 3; + /// Constants. + static const int ScoreConstants = 2; + /// Instructions with the same opcode. + static const int ScoreSameOpcode = 2; + /// Instructions with alt opcodes (e.g, add + sub). + static const int ScoreAltOpcodes = 1; + /// Identical instructions (a.k.a. splat or broadcast). + static const int ScoreSplat = 1; + /// Matching with an undef is preferable to failing. + static const int ScoreUndef = 1; + /// Score for failing to find a decent match. + static const int ScoreFail = 0; + /// Score if all users are vectorized. + static const int ScoreAllUserVectorized = 1; + + /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. + /// \p U1 and \p U2 are the users of \p V1 and \p V2. + /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p + /// MainAltOps. + int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2, + ArrayRef<Value *> MainAltOps) const { + if (!isValidElementType(V1->getType()) || + !isValidElementType(V2->getType())) + return LookAheadHeuristics::ScoreFail; + + if (V1 == V2) { + if (isa<LoadInst>(V1)) { + // Retruns true if the users of V1 and V2 won't need to be extracted. + auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) { + // Bail out if we have too many uses to save compilation time. + static constexpr unsigned Limit = 8; + if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit)) + return false; + + auto AllUsersVectorized = [U1, U2, this](Value *V) { + return llvm::all_of(V->users(), [U1, U2, this](Value *U) { + return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr; + }); + }; + return AllUsersVectorized(V1) && AllUsersVectorized(V2); + }; + // A broadcast of a load can be cheaper on some targets. + if (R.TTI->isLegalBroadcastLoad(V1->getType(), + ElementCount::getFixed(NumLanes)) && + ((int)V1->getNumUses() == NumLanes || + AllUsersAreInternal(V1, V2))) + return LookAheadHeuristics::ScoreSplatLoads; + } + return LookAheadHeuristics::ScoreSplat; + } + + auto *LI1 = dyn_cast<LoadInst>(V1); + auto *LI2 = dyn_cast<LoadInst>(V2); + if (LI1 && LI2) { + if (LI1->getParent() != LI2->getParent() || !LI1->isSimple() || + !LI2->isSimple()) + return LookAheadHeuristics::ScoreFail; + + std::optional<int> Dist = getPointersDiff( + LI1->getType(), LI1->getPointerOperand(), LI2->getType(), + LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); + if (!Dist || *Dist == 0) { + if (getUnderlyingObject(LI1->getPointerOperand()) == + getUnderlyingObject(LI2->getPointerOperand()) && + R.TTI->isLegalMaskedGather( + FixedVectorType::get(LI1->getType(), NumLanes), + LI1->getAlign())) + return LookAheadHeuristics::ScoreMaskedGatherCandidate; + return LookAheadHeuristics::ScoreFail; + } + // The distance is too large - still may be profitable to use masked + // loads/gathers. + if (std::abs(*Dist) > NumLanes / 2) + return LookAheadHeuristics::ScoreMaskedGatherCandidate; + // This still will detect consecutive loads, but we might have "holes" + // in some cases. It is ok for non-power-2 vectorization and may produce + // better results. It should not affect current vectorization. + return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads + : LookAheadHeuristics::ScoreReversedLoads; + } + + auto *C1 = dyn_cast<Constant>(V1); + auto *C2 = dyn_cast<Constant>(V2); + if (C1 && C2) + return LookAheadHeuristics::ScoreConstants; + + // Extracts from consecutive indexes of the same vector better score as + // the extracts could be optimized away. + Value *EV1; + ConstantInt *Ex1Idx; + if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { + // Undefs are always profitable for extractelements. + if (isa<UndefValue>(V2)) + return LookAheadHeuristics::ScoreConsecutiveExtracts; + Value *EV2 = nullptr; + ConstantInt *Ex2Idx = nullptr; + if (match(V2, + m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), + m_Undef())))) { + // Undefs are always profitable for extractelements. + if (!Ex2Idx) + return LookAheadHeuristics::ScoreConsecutiveExtracts; + if (isUndefVector(EV2).all() && EV2->getType() == EV1->getType()) + return LookAheadHeuristics::ScoreConsecutiveExtracts; + if (EV2 == EV1) { + int Idx1 = Ex1Idx->getZExtValue(); + int Idx2 = Ex2Idx->getZExtValue(); + int Dist = Idx2 - Idx1; + // The distance is too large - still may be profitable to use + // shuffles. + if (std::abs(Dist) == 0) + return LookAheadHeuristics::ScoreSplat; + if (std::abs(Dist) > NumLanes / 2) + return LookAheadHeuristics::ScoreSameOpcode; + return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts + : LookAheadHeuristics::ScoreReversedExtracts; + } + return LookAheadHeuristics::ScoreAltOpcodes; + } + return LookAheadHeuristics::ScoreFail; + } + + auto *I1 = dyn_cast<Instruction>(V1); + auto *I2 = dyn_cast<Instruction>(V2); + if (I1 && I2) { + if (I1->getParent() != I2->getParent()) + return LookAheadHeuristics::ScoreFail; + SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); + Ops.push_back(I1); + Ops.push_back(I2); + InstructionsState S = getSameOpcode(Ops, TLI); + // Note: Only consider instructions with <= 2 operands to avoid + // complexity explosion. + if (S.getOpcode() && + (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || + !S.isAltShuffle()) && + all_of(Ops, [&S](Value *V) { + return cast<Instruction>(V)->getNumOperands() == + S.MainOp->getNumOperands(); + })) + return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes + : LookAheadHeuristics::ScoreSameOpcode; + } + + if (isa<UndefValue>(V2)) + return LookAheadHeuristics::ScoreUndef; + + return LookAheadHeuristics::ScoreFail; + } + + /// Go through the operands of \p LHS and \p RHS recursively until + /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are + /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands + /// of \p U1 and \p U2), except at the beginning of the recursion where + /// these are set to nullptr. + /// + /// For example: + /// \verbatim + /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] + /// \ / \ / \ / \ / + /// + + + + + /// G1 G2 G3 G4 + /// \endverbatim + /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at + /// each level recursively, accumulating the score. It starts from matching + /// the additions at level 0, then moves on to the loads (level 1). The + /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and + /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while + /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail. + /// Please note that the order of the operands does not matter, as we + /// evaluate the score of all profitable combinations of operands. In + /// other words the score of G1 and G4 is the same as G1 and G2. This + /// heuristic is based on ideas described in: + /// Look-ahead SLP: Auto-vectorization in the presence of commutative + /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, + /// LuÃs F. W. Góes + int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1, + Instruction *U2, int CurrLevel, + ArrayRef<Value *> MainAltOps) const { + + // Get the shallow score of V1 and V2. + int ShallowScoreAtThisLevel = + getShallowScore(LHS, RHS, U1, U2, MainAltOps); + + // If reached MaxLevel, + // or if V1 and V2 are not instructions, + // or if they are SPLAT, + // or if they are not consecutive, + // or if profitable to vectorize loads or extractelements, early return + // the current cost. + auto *I1 = dyn_cast<Instruction>(LHS); + auto *I2 = dyn_cast<Instruction>(RHS); + if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || + ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail || + (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || + (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || + (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && + ShallowScoreAtThisLevel)) + return ShallowScoreAtThisLevel; + assert(I1 && I2 && "Should have early exited."); + + // Contains the I2 operand indexes that got matched with I1 operands. + SmallSet<unsigned, 4> Op2Used; + + // Recursion towards the operands of I1 and I2. We are trying all possible + // operand pairs, and keeping track of the best score. + for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); + OpIdx1 != NumOperands1; ++OpIdx1) { + // Try to pair op1I with the best operand of I2. + int MaxTmpScore = 0; + unsigned MaxOpIdx2 = 0; + bool FoundBest = false; + // If I2 is commutative try all combinations. + unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; + unsigned ToIdx = isCommutative(I2) + ? I2->getNumOperands() + : std::min(I2->getNumOperands(), OpIdx1 + 1); + assert(FromIdx <= ToIdx && "Bad index"); + for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { + // Skip operands already paired with OpIdx1. + if (Op2Used.count(OpIdx2)) + continue; + // Recursively calculate the cost at each level + int TmpScore = + getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), + I1, I2, CurrLevel + 1, std::nullopt); + // Look for the best score. + if (TmpScore > LookAheadHeuristics::ScoreFail && + TmpScore > MaxTmpScore) { + MaxTmpScore = TmpScore; + MaxOpIdx2 = OpIdx2; + FoundBest = true; + } + } + if (FoundBest) { + // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. + Op2Used.insert(MaxOpIdx2); + ShallowScoreAtThisLevel += MaxTmpScore; + } + } + return ShallowScoreAtThisLevel; + } + }; + /// A helper data structure to hold the operands of a vector of instructions. + /// This supports a fixed vector length for all operand vectors. + class VLOperands { + /// For each operand we need (i) the value, and (ii) the opcode that it + /// would be attached to if the expression was in a left-linearized form. + /// This is required to avoid illegal operand reordering. + /// For example: + /// \verbatim + /// 0 Op1 + /// |/ + /// Op1 Op2 Linearized + Op2 + /// \ / ----------> |/ + /// - - + /// + /// Op1 - Op2 (0 + Op1) - Op2 + /// \endverbatim + /// + /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. + /// + /// Another way to think of this is to track all the operations across the + /// path from the operand all the way to the root of the tree and to + /// calculate the operation that corresponds to this path. For example, the + /// path from Op2 to the root crosses the RHS of the '-', therefore the + /// corresponding operation is a '-' (which matches the one in the + /// linearized tree, as shown above). + /// + /// For lack of a better term, we refer to this operation as Accumulated + /// Path Operation (APO). + struct OperandData { + OperandData() = default; + OperandData(Value *V, bool APO, bool IsUsed) + : V(V), APO(APO), IsUsed(IsUsed) {} + /// The operand value. + Value *V = nullptr; + /// TreeEntries only allow a single opcode, or an alternate sequence of + /// them (e.g, +, -). Therefore, we can safely use a boolean value for the + /// APO. It is set to 'true' if 'V' is attached to an inverse operation + /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise + /// (e.g., Add/Mul) + bool APO = false; + /// Helper data for the reordering function. + bool IsUsed = false; + }; + + /// During operand reordering, we are trying to select the operand at lane + /// that matches best with the operand at the neighboring lane. Our + /// selection is based on the type of value we are looking for. For example, + /// if the neighboring lane has a load, we need to look for a load that is + /// accessing a consecutive address. These strategies are summarized in the + /// 'ReorderingMode' enumerator. + enum class ReorderingMode { + Load, ///< Matching loads to consecutive memory addresses + Opcode, ///< Matching instructions based on opcode (same or alternate) + Constant, ///< Matching constants + Splat, ///< Matching the same instruction multiple times (broadcast) + Failed, ///< We failed to create a vectorizable group + }; + + using OperandDataVec = SmallVector<OperandData, 2>; + + /// A vector of operand vectors. + SmallVector<OperandDataVec, 4> OpsVec; + + const TargetLibraryInfo &TLI; + const DataLayout &DL; + ScalarEvolution &SE; + const BoUpSLP &R; + + /// \returns the operand data at \p OpIdx and \p Lane. + OperandData &getData(unsigned OpIdx, unsigned Lane) { + return OpsVec[OpIdx][Lane]; + } + + /// \returns the operand data at \p OpIdx and \p Lane. Const version. + const OperandData &getData(unsigned OpIdx, unsigned Lane) const { + return OpsVec[OpIdx][Lane]; + } + + /// Clears the used flag for all entries. + void clearUsed() { + for (unsigned OpIdx = 0, NumOperands = getNumOperands(); + OpIdx != NumOperands; ++OpIdx) + for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; + ++Lane) + OpsVec[OpIdx][Lane].IsUsed = false; + } + + /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. + void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { + std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); + } + + /// \param Lane lane of the operands under analysis. + /// \param OpIdx operand index in \p Lane lane we're looking the best + /// candidate for. + /// \param Idx operand index of the current candidate value. + /// \returns The additional score due to possible broadcasting of the + /// elements in the lane. It is more profitable to have power-of-2 unique + /// elements in the lane, it will be vectorized with higher probability + /// after removing duplicates. Currently the SLP vectorizer supports only + /// vectorization of the power-of-2 number of unique scalars. + int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { + Value *IdxLaneV = getData(Idx, Lane).V; + if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) + return 0; + SmallPtrSet<Value *, 4> Uniques; + for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { + if (Ln == Lane) + continue; + Value *OpIdxLnV = getData(OpIdx, Ln).V; + if (!isa<Instruction>(OpIdxLnV)) + return 0; + Uniques.insert(OpIdxLnV); + } + int UniquesCount = Uniques.size(); + int UniquesCntWithIdxLaneV = + Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; + Value *OpIdxLaneV = getData(OpIdx, Lane).V; + int UniquesCntWithOpIdxLaneV = + Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; + if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) + return 0; + return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - + UniquesCntWithOpIdxLaneV) - + (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); + } + + /// \param Lane lane of the operands under analysis. + /// \param OpIdx operand index in \p Lane lane we're looking the best + /// candidate for. + /// \param Idx operand index of the current candidate value. + /// \returns The additional score for the scalar which users are all + /// vectorized. + int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { + Value *IdxLaneV = getData(Idx, Lane).V; + Value *OpIdxLaneV = getData(OpIdx, Lane).V; + // Do not care about number of uses for vector-like instructions + // (extractelement/extractvalue with constant indices), they are extracts + // themselves and already externally used. Vectorization of such + // instructions does not add extra extractelement instruction, just may + // remove it. + if (isVectorLikeInstWithConstOps(IdxLaneV) && + isVectorLikeInstWithConstOps(OpIdxLaneV)) + return LookAheadHeuristics::ScoreAllUserVectorized; + auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); + if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) + return 0; + return R.areAllUsersVectorized(IdxLaneI, std::nullopt) + ? LookAheadHeuristics::ScoreAllUserVectorized + : 0; + } + + /// Score scaling factor for fully compatible instructions but with + /// different number of external uses. Allows better selection of the + /// instructions with less external uses. + static const int ScoreScaleFactor = 10; + + /// \Returns the look-ahead score, which tells us how much the sub-trees + /// rooted at \p LHS and \p RHS match, the more they match the higher the + /// score. This helps break ties in an informed way when we cannot decide on + /// the order of the operands by just considering the immediate + /// predecessors. + int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, + int Lane, unsigned OpIdx, unsigned Idx, + bool &IsUsed) { + LookAheadHeuristics LookAhead(TLI, DL, SE, R, getNumLanes(), + LookAheadMaxDepth); + // Keep track of the instruction stack as we recurse into the operands + // during the look-ahead score exploration. + int Score = + LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr, + /*CurrLevel=*/1, MainAltOps); + if (Score) { + int SplatScore = getSplatScore(Lane, OpIdx, Idx); + if (Score <= -SplatScore) { + // Set the minimum score for splat-like sequence to avoid setting + // failed state. + Score = 1; + } else { + Score += SplatScore; + // Scale score to see the difference between different operands + // and similar operands but all vectorized/not all vectorized + // uses. It does not affect actual selection of the best + // compatible operand in general, just allows to select the + // operand with all vectorized uses. + Score *= ScoreScaleFactor; + Score += getExternalUseScore(Lane, OpIdx, Idx); + IsUsed = true; + } + } + return Score; + } + + /// Best defined scores per lanes between the passes. Used to choose the + /// best operand (with the highest score) between the passes. + /// The key - {Operand Index, Lane}. + /// The value - the best score between the passes for the lane and the + /// operand. + SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> + BestScoresPerLanes; + + // Search all operands in Ops[*][Lane] for the one that matches best + // Ops[OpIdx][LastLane] and return its opreand index. + // If no good match can be found, return std::nullopt. + std::optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, + ArrayRef<ReorderingMode> ReorderingModes, + ArrayRef<Value *> MainAltOps) { + unsigned NumOperands = getNumOperands(); + + // The operand of the previous lane at OpIdx. + Value *OpLastLane = getData(OpIdx, LastLane).V; + + // Our strategy mode for OpIdx. + ReorderingMode RMode = ReorderingModes[OpIdx]; + if (RMode == ReorderingMode::Failed) + return std::nullopt; + + // The linearized opcode of the operand at OpIdx, Lane. + bool OpIdxAPO = getData(OpIdx, Lane).APO; + + // The best operand index and its score. + // Sometimes we have more than one option (e.g., Opcode and Undefs), so we + // are using the score to differentiate between the two. + struct BestOpData { + std::optional<unsigned> Idx; + unsigned Score = 0; + } BestOp; + BestOp.Score = + BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) + .first->second; + + // Track if the operand must be marked as used. If the operand is set to + // Score 1 explicitly (because of non power-of-2 unique scalars, we may + // want to reestimate the operands again on the following iterations). + bool IsUsed = + RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; + // Iterate through all unused operands and look for the best. + for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { + // Get the operand at Idx and Lane. + OperandData &OpData = getData(Idx, Lane); + Value *Op = OpData.V; + bool OpAPO = OpData.APO; + + // Skip already selected operands. + if (OpData.IsUsed) + continue; + + // Skip if we are trying to move the operand to a position with a + // different opcode in the linearized tree form. This would break the + // semantics. + if (OpAPO != OpIdxAPO) + continue; + + // Look for an operand that matches the current mode. + switch (RMode) { + case ReorderingMode::Load: + case ReorderingMode::Constant: + case ReorderingMode::Opcode: { + bool LeftToRight = Lane > LastLane; + Value *OpLeft = (LeftToRight) ? OpLastLane : Op; + Value *OpRight = (LeftToRight) ? Op : OpLastLane; + int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, + OpIdx, Idx, IsUsed); + if (Score > static_cast<int>(BestOp.Score)) { + BestOp.Idx = Idx; + BestOp.Score = Score; + BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; + } + break; + } + case ReorderingMode::Splat: + if (Op == OpLastLane) + BestOp.Idx = Idx; + break; + case ReorderingMode::Failed: + llvm_unreachable("Not expected Failed reordering mode."); + } + } + + if (BestOp.Idx) { + getData(*BestOp.Idx, Lane).IsUsed = IsUsed; + return BestOp.Idx; + } + // If we could not find a good match return std::nullopt. + return std::nullopt; + } + + /// Helper for reorderOperandVecs. + /// \returns the lane that we should start reordering from. This is the one + /// which has the least number of operands that can freely move about or + /// less profitable because it already has the most optimal set of operands. + unsigned getBestLaneToStartReordering() const { + unsigned Min = UINT_MAX; + unsigned SameOpNumber = 0; + // std::pair<unsigned, unsigned> is used to implement a simple voting + // algorithm and choose the lane with the least number of operands that + // can freely move about or less profitable because it already has the + // most optimal set of operands. The first unsigned is a counter for + // voting, the second unsigned is the counter of lanes with instructions + // with same/alternate opcodes and same parent basic block. + MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; + // Try to be closer to the original results, if we have multiple lanes + // with same cost. If 2 lanes have the same cost, use the one with the + // lowest index. + for (int I = getNumLanes(); I > 0; --I) { + unsigned Lane = I - 1; + OperandsOrderData NumFreeOpsHash = + getMaxNumOperandsThatCanBeReordered(Lane); + // Compare the number of operands that can move and choose the one with + // the least number. + if (NumFreeOpsHash.NumOfAPOs < Min) { + Min = NumFreeOpsHash.NumOfAPOs; + SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; + HashMap.clear(); + HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); + } else if (NumFreeOpsHash.NumOfAPOs == Min && + NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { + // Select the most optimal lane in terms of number of operands that + // should be moved around. + SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; + HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); + } else if (NumFreeOpsHash.NumOfAPOs == Min && + NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { + auto It = HashMap.find(NumFreeOpsHash.Hash); + if (It == HashMap.end()) + HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); + else + ++It->second.first; + } + } + // Select the lane with the minimum counter. + unsigned BestLane = 0; + unsigned CntMin = UINT_MAX; + for (const auto &Data : reverse(HashMap)) { + if (Data.second.first < CntMin) { + CntMin = Data.second.first; + BestLane = Data.second.second; + } + } + return BestLane; + } + + /// Data structure that helps to reorder operands. + struct OperandsOrderData { + /// The best number of operands with the same APOs, which can be + /// reordered. + unsigned NumOfAPOs = UINT_MAX; + /// Number of operands with the same/alternate instruction opcode and + /// parent. + unsigned NumOpsWithSameOpcodeParent = 0; + /// Hash for the actual operands ordering. + /// Used to count operands, actually their position id and opcode + /// value. It is used in the voting mechanism to find the lane with the + /// least number of operands that can freely move about or less profitable + /// because it already has the most optimal set of operands. Can be + /// replaced with SmallVector<unsigned> instead but hash code is faster + /// and requires less memory. + unsigned Hash = 0; + }; + /// \returns the maximum number of operands that are allowed to be reordered + /// for \p Lane and the number of compatible instructions(with the same + /// parent/opcode). This is used as a heuristic for selecting the first lane + /// to start operand reordering. + OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { + unsigned CntTrue = 0; + unsigned NumOperands = getNumOperands(); + // Operands with the same APO can be reordered. We therefore need to count + // how many of them we have for each APO, like this: Cnt[APO] = x. + // Since we only have two APOs, namely true and false, we can avoid using + // a map. Instead we can simply count the number of operands that + // correspond to one of them (in this case the 'true' APO), and calculate + // the other by subtracting it from the total number of operands. + // Operands with the same instruction opcode and parent are more + // profitable since we don't need to move them in many cases, with a high + // probability such lane already can be vectorized effectively. + bool AllUndefs = true; + unsigned NumOpsWithSameOpcodeParent = 0; + Instruction *OpcodeI = nullptr; + BasicBlock *Parent = nullptr; + unsigned Hash = 0; + for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { + const OperandData &OpData = getData(OpIdx, Lane); + if (OpData.APO) + ++CntTrue; + // Use Boyer-Moore majority voting for finding the majority opcode and + // the number of times it occurs. + if (auto *I = dyn_cast<Instruction>(OpData.V)) { + if (!OpcodeI || !getSameOpcode({OpcodeI, I}, TLI).getOpcode() || + I->getParent() != Parent) { + if (NumOpsWithSameOpcodeParent == 0) { + NumOpsWithSameOpcodeParent = 1; + OpcodeI = I; + Parent = I->getParent(); + } else { + --NumOpsWithSameOpcodeParent; + } + } else { + ++NumOpsWithSameOpcodeParent; + } + } + Hash = hash_combine( + Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); + AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); + } + if (AllUndefs) + return {}; + OperandsOrderData Data; + Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); + Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; + Data.Hash = Hash; + return Data; + } + + /// Go through the instructions in VL and append their operands. + void appendOperandsOfVL(ArrayRef<Value *> VL) { + assert(!VL.empty() && "Bad VL"); + assert((empty() || VL.size() == getNumLanes()) && + "Expected same number of lanes"); + assert(isa<Instruction>(VL[0]) && "Expected instruction"); + unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); + OpsVec.resize(NumOperands); + unsigned NumLanes = VL.size(); + for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { + OpsVec[OpIdx].resize(NumLanes); + for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { + assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); + // Our tree has just 3 nodes: the root and two operands. + // It is therefore trivial to get the APO. We only need to check the + // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or + // RHS operand. The LHS operand of both add and sub is never attached + // to an inversese operation in the linearized form, therefore its APO + // is false. The RHS is true only if VL[Lane] is an inverse operation. + + // Since operand reordering is performed on groups of commutative + // operations or alternating sequences (e.g., +, -), we can safely + // tell the inverse operations by checking commutativity. + bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); + bool APO = (OpIdx == 0) ? false : IsInverseOperation; + OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), + APO, false}; + } + } + } + + /// \returns the number of operands. + unsigned getNumOperands() const { return OpsVec.size(); } + + /// \returns the number of lanes. + unsigned getNumLanes() const { return OpsVec[0].size(); } + + /// \returns the operand value at \p OpIdx and \p Lane. + Value *getValue(unsigned OpIdx, unsigned Lane) const { + return getData(OpIdx, Lane).V; + } + + /// \returns true if the data structure is empty. + bool empty() const { return OpsVec.empty(); } + + /// Clears the data. + void clear() { OpsVec.clear(); } + + /// \Returns true if there are enough operands identical to \p Op to fill + /// the whole vector. + /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. + bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { + bool OpAPO = getData(OpIdx, Lane).APO; + for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { + if (Ln == Lane) + continue; + // This is set to true if we found a candidate for broadcast at Lane. + bool FoundCandidate = false; + for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { + OperandData &Data = getData(OpI, Ln); + if (Data.APO != OpAPO || Data.IsUsed) + continue; + if (Data.V == Op) { + FoundCandidate = true; + Data.IsUsed = true; + break; + } + } + if (!FoundCandidate) + return false; + } + return true; + } + + public: + /// Initialize with all the operands of the instruction vector \p RootVL. + VLOperands(ArrayRef<Value *> RootVL, const TargetLibraryInfo &TLI, + const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R) + : TLI(TLI), DL(DL), SE(SE), R(R) { + // Append all the operands of RootVL. + appendOperandsOfVL(RootVL); + } + + /// \Returns a value vector with the operands across all lanes for the + /// opearnd at \p OpIdx. + ValueList getVL(unsigned OpIdx) const { + ValueList OpVL(OpsVec[OpIdx].size()); + assert(OpsVec[OpIdx].size() == getNumLanes() && + "Expected same num of lanes across all operands"); + for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) + OpVL[Lane] = OpsVec[OpIdx][Lane].V; + return OpVL; + } + + // Performs operand reordering for 2 or more operands. + // The original operands are in OrigOps[OpIdx][Lane]. + // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. + void reorder() { + unsigned NumOperands = getNumOperands(); + unsigned NumLanes = getNumLanes(); + // Each operand has its own mode. We are using this mode to help us select + // the instructions for each lane, so that they match best with the ones + // we have selected so far. + SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); + + // This is a greedy single-pass algorithm. We are going over each lane + // once and deciding on the best order right away with no back-tracking. + // However, in order to increase its effectiveness, we start with the lane + // that has operands that can move the least. For example, given the + // following lanes: + // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd + // Lane 1 : A[1] = C[1] - B[1] // Visited 1st + // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd + // Lane 3 : A[3] = C[3] - B[3] // Visited 4th + // we will start at Lane 1, since the operands of the subtraction cannot + // be reordered. Then we will visit the rest of the lanes in a circular + // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. + + // Find the first lane that we will start our search from. + unsigned FirstLane = getBestLaneToStartReordering(); + + // Initialize the modes. + for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { + Value *OpLane0 = getValue(OpIdx, FirstLane); + // Keep track if we have instructions with all the same opcode on one + // side. + if (isa<LoadInst>(OpLane0)) + ReorderingModes[OpIdx] = ReorderingMode::Load; + else if (isa<Instruction>(OpLane0)) { + // Check if OpLane0 should be broadcast. + if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) + ReorderingModes[OpIdx] = ReorderingMode::Splat; + else + ReorderingModes[OpIdx] = ReorderingMode::Opcode; + } + else if (isa<Constant>(OpLane0)) + ReorderingModes[OpIdx] = ReorderingMode::Constant; + else if (isa<Argument>(OpLane0)) + // Our best hope is a Splat. It may save some cost in some cases. + ReorderingModes[OpIdx] = ReorderingMode::Splat; + else + // NOTE: This should be unreachable. + ReorderingModes[OpIdx] = ReorderingMode::Failed; + } + + // Check that we don't have same operands. No need to reorder if operands + // are just perfect diamond or shuffled diamond match. Do not do it only + // for possible broadcasts or non-power of 2 number of scalars (just for + // now). + auto &&SkipReordering = [this]() { + SmallPtrSet<Value *, 4> UniqueValues; + ArrayRef<OperandData> Op0 = OpsVec.front(); + for (const OperandData &Data : Op0) + UniqueValues.insert(Data.V); + for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { + if (any_of(Op, [&UniqueValues](const OperandData &Data) { + return !UniqueValues.contains(Data.V); + })) + return false; + } + // TODO: Check if we can remove a check for non-power-2 number of + // scalars after full support of non-power-2 vectorization. + return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); + }; + + // If the initial strategy fails for any of the operand indexes, then we + // perform reordering again in a second pass. This helps avoid assigning + // high priority to the failed strategy, and should improve reordering for + // the non-failed operand indexes. + for (int Pass = 0; Pass != 2; ++Pass) { + // Check if no need to reorder operands since they're are perfect or + // shuffled diamond match. + // Need to to do it to avoid extra external use cost counting for + // shuffled matches, which may cause regressions. + if (SkipReordering()) + break; + // Skip the second pass if the first pass did not fail. + bool StrategyFailed = false; + // Mark all operand data as free to use. + clearUsed(); + // We keep the original operand order for the FirstLane, so reorder the + // rest of the lanes. We are visiting the nodes in a circular fashion, + // using FirstLane as the center point and increasing the radius + // distance. + SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); + for (unsigned I = 0; I < NumOperands; ++I) + MainAltOps[I].push_back(getData(I, FirstLane).V); + + for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { + // Visit the lane on the right and then the lane on the left. + for (int Direction : {+1, -1}) { + int Lane = FirstLane + Direction * Distance; + if (Lane < 0 || Lane >= (int)NumLanes) + continue; + int LastLane = Lane - Direction; + assert(LastLane >= 0 && LastLane < (int)NumLanes && + "Out of bounds"); + // Look for a good match for each operand. + for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { + // Search for the operand that matches SortedOps[OpIdx][Lane-1]. + std::optional<unsigned> BestIdx = getBestOperand( + OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); + // By not selecting a value, we allow the operands that follow to + // select a better matching value. We will get a non-null value in + // the next run of getBestOperand(). + if (BestIdx) { + // Swap the current operand with the one returned by + // getBestOperand(). + swap(OpIdx, *BestIdx, Lane); + } else { + // We failed to find a best operand, set mode to 'Failed'. + ReorderingModes[OpIdx] = ReorderingMode::Failed; + // Enable the second pass. + StrategyFailed = true; + } + // Try to get the alternate opcode and follow it during analysis. + if (MainAltOps[OpIdx].size() != 2) { + OperandData &AltOp = getData(OpIdx, Lane); + InstructionsState OpS = + getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}, TLI); + if (OpS.getOpcode() && OpS.isAltShuffle()) + MainAltOps[OpIdx].push_back(AltOp.V); + } + } + } + } + // Skip second pass if the strategy did not fail. + if (!StrategyFailed) + break; + } + } + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) + LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { + switch (RMode) { + case ReorderingMode::Load: + return "Load"; + case ReorderingMode::Opcode: + return "Opcode"; + case ReorderingMode::Constant: + return "Constant"; + case ReorderingMode::Splat: + return "Splat"; + case ReorderingMode::Failed: + return "Failed"; + } + llvm_unreachable("Unimplemented Reordering Type"); + } + + LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, + raw_ostream &OS) { + return OS << getModeStr(RMode); + } + + /// Debug print. + LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { + printMode(RMode, dbgs()); + } + + friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { + return printMode(RMode, OS); + } + + LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { + const unsigned Indent = 2; + unsigned Cnt = 0; + for (const OperandDataVec &OpDataVec : OpsVec) { + OS << "Operand " << Cnt++ << "\n"; + for (const OperandData &OpData : OpDataVec) { + OS.indent(Indent) << "{"; + if (Value *V = OpData.V) + OS << *V; + else + OS << "null"; + OS << ", APO:" << OpData.APO << "}\n"; + } + OS << "\n"; + } + return OS; + } + + /// Debug print. + LLVM_DUMP_METHOD void dump() const { print(dbgs()); } +#endif + }; + + /// Evaluate each pair in \p Candidates and return index into \p Candidates + /// for a pair which have highest score deemed to have best chance to form + /// root of profitable tree to vectorize. Return std::nullopt if no candidate + /// scored above the LookAheadHeuristics::ScoreFail. \param Limit Lower limit + /// of the cost, considered to be good enough score. + std::optional<int> + findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates, + int Limit = LookAheadHeuristics::ScoreFail) { + LookAheadHeuristics LookAhead(*TLI, *DL, *SE, *this, /*NumLanes=*/2, + RootLookAheadMaxDepth); + int BestScore = Limit; + std::optional<int> Index; + for (int I : seq<int>(0, Candidates.size())) { + int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first, + Candidates[I].second, + /*U1=*/nullptr, /*U2=*/nullptr, + /*Level=*/1, std::nullopt); + if (Score > BestScore) { + BestScore = Score; + Index = I; + } + } + return Index; + } + + /// Checks if the instruction is marked for deletion. + bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } + + /// Removes an instruction from its block and eventually deletes it. + /// It's like Instruction::eraseFromParent() except that the actual deletion + /// is delayed until BoUpSLP is destructed. + void eraseInstruction(Instruction *I) { + DeletedInstructions.insert(I); + } + + /// Checks if the instruction was already analyzed for being possible + /// reduction root. + bool isAnalyzedReductionRoot(Instruction *I) const { + return AnalyzedReductionsRoots.count(I); + } + /// Register given instruction as already analyzed for being possible + /// reduction root. + void analyzedReductionRoot(Instruction *I) { + AnalyzedReductionsRoots.insert(I); + } + /// Checks if the provided list of reduced values was checked already for + /// vectorization. + bool areAnalyzedReductionVals(ArrayRef<Value *> VL) const { + return AnalyzedReductionVals.contains(hash_value(VL)); + } + /// Adds the list of reduced values to list of already checked values for the + /// vectorization. + void analyzedReductionVals(ArrayRef<Value *> VL) { + AnalyzedReductionVals.insert(hash_value(VL)); + } + /// Clear the list of the analyzed reduction root instructions. + void clearReductionData() { + AnalyzedReductionsRoots.clear(); + AnalyzedReductionVals.clear(); + } + /// Checks if the given value is gathered in one of the nodes. + bool isAnyGathered(const SmallDenseSet<Value *> &Vals) const { + return any_of(MustGather, [&](Value *V) { return Vals.contains(V); }); + } + + /// Check if the value is vectorized in the tree. + bool isVectorized(Value *V) const { return getTreeEntry(V); } + + ~BoUpSLP(); + +private: + /// Check if the operands on the edges \p Edges of the \p UserTE allows + /// reordering (i.e. the operands can be reordered because they have only one + /// user and reordarable). + /// \param ReorderableGathers List of all gather nodes that require reordering + /// (e.g., gather of extractlements or partially vectorizable loads). + /// \param GatherOps List of gather operand nodes for \p UserTE that require + /// reordering, subset of \p NonVectorized. + bool + canReorderOperands(TreeEntry *UserTE, + SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, + ArrayRef<TreeEntry *> ReorderableGathers, + SmallVectorImpl<TreeEntry *> &GatherOps); + + /// Checks if the given \p TE is a gather node with clustered reused scalars + /// and reorders it per given \p Mask. + void reorderNodeWithReuses(TreeEntry &TE, ArrayRef<int> Mask) const; + + /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, + /// if any. If it is not vectorized (gather node), returns nullptr. + TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { + ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); + TreeEntry *TE = nullptr; + const auto *It = find_if(VL, [this, &TE](Value *V) { + TE = getTreeEntry(V); + return TE; + }); + if (It != VL.end() && TE->isSame(VL)) + return TE; + return nullptr; + } + + /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, + /// if any. If it is not vectorized (gather node), returns nullptr. + const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, + unsigned OpIdx) const { + return const_cast<BoUpSLP *>(this)->getVectorizedOperand( + const_cast<TreeEntry *>(UserTE), OpIdx); + } + + /// Checks if all users of \p I are the part of the vectorization tree. + bool areAllUsersVectorized(Instruction *I, + ArrayRef<Value *> VectorizedVals) const; + + /// Return information about the vector formed for the specified index + /// of a vector of (the same) instruction. + TargetTransformInfo::OperandValueInfo getOperandInfo(ArrayRef<Value *> VL, + unsigned OpIdx); + + /// \returns the cost of the vectorizable entry. + InstructionCost getEntryCost(const TreeEntry *E, + ArrayRef<Value *> VectorizedVals); + + /// This is the recursive part of buildTree. + void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, + const EdgeInfo &EI); + + /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can + /// be vectorized to use the original vector (or aggregate "bitcast" to a + /// vector) and sets \p CurrentOrder to the identity permutation; otherwise + /// returns false, setting \p CurrentOrder to either an empty vector or a + /// non-identity permutation that allows to reuse extract instructions. + bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, + SmallVectorImpl<unsigned> &CurrentOrder) const; + + /// Vectorize a single entry in the tree. + Value *vectorizeTree(TreeEntry *E); + + /// Vectorize a single entry in the tree, the \p Idx-th operand of the entry + /// \p E. + Value *vectorizeOperand(TreeEntry *E, unsigned NodeIdx); + + /// Create a new vector from a list of scalar values. Produces a sequence + /// which exploits values reused across lanes, and arranges the inserts + /// for ease of later optimization. + Value *createBuildVector(const TreeEntry *E); + + /// \returns the scalarization cost for this type. Scalarization in this + /// context means the creation of vectors from a group of scalars. If \p + /// NeedToShuffle is true, need to add a cost of reshuffling some of the + /// vector elements. + InstructionCost getGatherCost(FixedVectorType *Ty, + const APInt &ShuffledIndices, + bool NeedToShuffle) const; + + /// Returns the instruction in the bundle, which can be used as a base point + /// for scheduling. Usually it is the last instruction in the bundle, except + /// for the case when all operands are external (in this case, it is the first + /// instruction in the list). + Instruction &getLastInstructionInBundle(const TreeEntry *E); + + /// Checks if the gathered \p VL can be represented as shuffle(s) of previous + /// tree entries. + /// \param TE Tree entry checked for permutation. + /// \param VL List of scalars (a subset of the TE scalar), checked for + /// permutations. + /// \returns ShuffleKind, if gathered values can be represented as shuffles of + /// previous tree entries. \p Mask is filled with the shuffle mask. + std::optional<TargetTransformInfo::ShuffleKind> + isGatherShuffledEntry(const TreeEntry *TE, ArrayRef<Value *> VL, + SmallVectorImpl<int> &Mask, + SmallVectorImpl<const TreeEntry *> &Entries); + + /// \returns the scalarization cost for this list of values. Assuming that + /// this subtree gets vectorized, we may need to extract the values from the + /// roots. This method calculates the cost of extracting the values. + InstructionCost getGatherCost(ArrayRef<Value *> VL) const; + + /// Set the Builder insert point to one after the last instruction in + /// the bundle + void setInsertPointAfterBundle(const TreeEntry *E); + + /// \returns a vector from a collection of scalars in \p VL. + Value *gather(ArrayRef<Value *> VL); + + /// \returns whether the VectorizableTree is fully vectorizable and will + /// be beneficial even the tree height is tiny. + bool isFullyVectorizableTinyTree(bool ForReduction) const; + + /// Reorder commutative or alt operands to get better probability of + /// generating vectorized code. + static void reorderInputsAccordingToOpcode( + ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, + SmallVectorImpl<Value *> &Right, const TargetLibraryInfo &TLI, + const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R); + + /// Helper for `findExternalStoreUsersReorderIndices()`. It iterates over the + /// users of \p TE and collects the stores. It returns the map from the store + /// pointers to the collected stores. + DenseMap<Value *, SmallVector<StoreInst *, 4>> + collectUserStores(const BoUpSLP::TreeEntry *TE) const; + + /// Helper for `findExternalStoreUsersReorderIndices()`. It checks if the + /// stores in \p StoresVec can form a vector instruction. If so it returns true + /// and populates \p ReorderIndices with the shuffle indices of the the stores + /// when compared to the sorted vector. + bool canFormVector(const SmallVector<StoreInst *, 4> &StoresVec, + OrdersType &ReorderIndices) const; + + /// Iterates through the users of \p TE, looking for scalar stores that can be + /// potentially vectorized in a future SLP-tree. If found, it keeps track of + /// their order and builds an order index vector for each store bundle. It + /// returns all these order vectors found. + /// We run this after the tree has formed, otherwise we may come across user + /// instructions that are not yet in the tree. + SmallVector<OrdersType, 1> + findExternalStoreUsersReorderIndices(TreeEntry *TE) const; + + struct TreeEntry { + using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; + TreeEntry(VecTreeTy &Container) : Container(Container) {} + + /// \returns true if the scalars in VL are equal to this entry. + bool isSame(ArrayRef<Value *> VL) const { + auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { + if (Mask.size() != VL.size() && VL.size() == Scalars.size()) + return std::equal(VL.begin(), VL.end(), Scalars.begin()); + return VL.size() == Mask.size() && + std::equal(VL.begin(), VL.end(), Mask.begin(), + [Scalars](Value *V, int Idx) { + return (isa<UndefValue>(V) && + Idx == UndefMaskElem) || + (Idx != UndefMaskElem && V == Scalars[Idx]); + }); + }; + if (!ReorderIndices.empty()) { + // TODO: implement matching if the nodes are just reordered, still can + // treat the vector as the same if the list of scalars matches VL + // directly, without reordering. + SmallVector<int> Mask; + inversePermutation(ReorderIndices, Mask); + if (VL.size() == Scalars.size()) + return IsSame(Scalars, Mask); + if (VL.size() == ReuseShuffleIndices.size()) { + ::addMask(Mask, ReuseShuffleIndices); + return IsSame(Scalars, Mask); + } + return false; + } + return IsSame(Scalars, ReuseShuffleIndices); + } + + bool isOperandGatherNode(const EdgeInfo &UserEI) const { + return State == TreeEntry::NeedToGather && + UserTreeIndices.front().EdgeIdx == UserEI.EdgeIdx && + UserTreeIndices.front().UserTE == UserEI.UserTE; + } + + /// \returns true if current entry has same operands as \p TE. + bool hasEqualOperands(const TreeEntry &TE) const { + if (TE.getNumOperands() != getNumOperands()) + return false; + SmallBitVector Used(getNumOperands()); + for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { + unsigned PrevCount = Used.count(); + for (unsigned K = 0; K < E; ++K) { + if (Used.test(K)) + continue; + if (getOperand(K) == TE.getOperand(I)) { + Used.set(K); + break; + } + } + // Check if we actually found the matching operand. + if (PrevCount == Used.count()) + return false; + } + return true; + } + + /// \return Final vectorization factor for the node. Defined by the total + /// number of vectorized scalars, including those, used several times in the + /// entry and counted in the \a ReuseShuffleIndices, if any. + unsigned getVectorFactor() const { + if (!ReuseShuffleIndices.empty()) + return ReuseShuffleIndices.size(); + return Scalars.size(); + }; + + /// A vector of scalars. + ValueList Scalars; + + /// The Scalars are vectorized into this value. It is initialized to Null. + Value *VectorizedValue = nullptr; + + /// Do we need to gather this sequence or vectorize it + /// (either with vector instruction or with scatter/gather + /// intrinsics for store/load)? + enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; + EntryState State; + + /// Does this sequence require some shuffling? + SmallVector<int, 4> ReuseShuffleIndices; + + /// Does this entry require reordering? + SmallVector<unsigned, 4> ReorderIndices; + + /// Points back to the VectorizableTree. + /// + /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has + /// to be a pointer and needs to be able to initialize the child iterator. + /// Thus we need a reference back to the container to translate the indices + /// to entries. + VecTreeTy &Container; + + /// The TreeEntry index containing the user of this entry. We can actually + /// have multiple users so the data structure is not truly a tree. + SmallVector<EdgeInfo, 1> UserTreeIndices; + + /// The index of this treeEntry in VectorizableTree. + int Idx = -1; + + private: + /// The operands of each instruction in each lane Operands[op_index][lane]. + /// Note: This helps avoid the replication of the code that performs the + /// reordering of operands during buildTree_rec() and vectorizeTree(). + SmallVector<ValueList, 2> Operands; + + /// The main/alternate instruction. + Instruction *MainOp = nullptr; + Instruction *AltOp = nullptr; + + public: + /// Set this bundle's \p OpIdx'th operand to \p OpVL. + void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { + if (Operands.size() < OpIdx + 1) + Operands.resize(OpIdx + 1); + assert(Operands[OpIdx].empty() && "Already resized?"); + assert(OpVL.size() <= Scalars.size() && + "Number of operands is greater than the number of scalars."); + Operands[OpIdx].resize(OpVL.size()); + copy(OpVL, Operands[OpIdx].begin()); + } + + /// Set the operands of this bundle in their original order. + void setOperandsInOrder() { + assert(Operands.empty() && "Already initialized?"); + auto *I0 = cast<Instruction>(Scalars[0]); + Operands.resize(I0->getNumOperands()); + unsigned NumLanes = Scalars.size(); + for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); + OpIdx != NumOperands; ++OpIdx) { + Operands[OpIdx].resize(NumLanes); + for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { + auto *I = cast<Instruction>(Scalars[Lane]); + assert(I->getNumOperands() == NumOperands && + "Expected same number of operands"); + Operands[OpIdx][Lane] = I->getOperand(OpIdx); + } + } + } + + /// Reorders operands of the node to the given mask \p Mask. + void reorderOperands(ArrayRef<int> Mask) { + for (ValueList &Operand : Operands) + reorderScalars(Operand, Mask); + } + + /// \returns the \p OpIdx operand of this TreeEntry. + ValueList &getOperand(unsigned OpIdx) { + assert(OpIdx < Operands.size() && "Off bounds"); + return Operands[OpIdx]; + } + + /// \returns the \p OpIdx operand of this TreeEntry. + ArrayRef<Value *> getOperand(unsigned OpIdx) const { + assert(OpIdx < Operands.size() && "Off bounds"); + return Operands[OpIdx]; + } + + /// \returns the number of operands. + unsigned getNumOperands() const { return Operands.size(); } + + /// \return the single \p OpIdx operand. + Value *getSingleOperand(unsigned OpIdx) const { + assert(OpIdx < Operands.size() && "Off bounds"); + assert(!Operands[OpIdx].empty() && "No operand available"); + return Operands[OpIdx][0]; + } + + /// Some of the instructions in the list have alternate opcodes. + bool isAltShuffle() const { return MainOp != AltOp; } + + bool isOpcodeOrAlt(Instruction *I) const { + unsigned CheckedOpcode = I->getOpcode(); + return (getOpcode() == CheckedOpcode || + getAltOpcode() == CheckedOpcode); + } + + /// Chooses the correct key for scheduling data. If \p Op has the same (or + /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is + /// \p OpValue. + Value *isOneOf(Value *Op) const { + auto *I = dyn_cast<Instruction>(Op); + if (I && isOpcodeOrAlt(I)) + return Op; + return MainOp; + } + + void setOperations(const InstructionsState &S) { + MainOp = S.MainOp; + AltOp = S.AltOp; + } + + Instruction *getMainOp() const { + return MainOp; + } + + Instruction *getAltOp() const { + return AltOp; + } + + /// The main/alternate opcodes for the list of instructions. + unsigned getOpcode() const { + return MainOp ? MainOp->getOpcode() : 0; + } + + unsigned getAltOpcode() const { + return AltOp ? AltOp->getOpcode() : 0; + } + + /// When ReuseReorderShuffleIndices is empty it just returns position of \p + /// V within vector of Scalars. Otherwise, try to remap on its reuse index. + int findLaneForValue(Value *V) const { + unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); + assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); + if (!ReorderIndices.empty()) + FoundLane = ReorderIndices[FoundLane]; + assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); + if (!ReuseShuffleIndices.empty()) { + FoundLane = std::distance(ReuseShuffleIndices.begin(), + find(ReuseShuffleIndices, FoundLane)); + } + return FoundLane; + } + +#ifndef NDEBUG + /// Debug printer. + LLVM_DUMP_METHOD void dump() const { + dbgs() << Idx << ".\n"; + for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { + dbgs() << "Operand " << OpI << ":\n"; + for (const Value *V : Operands[OpI]) + dbgs().indent(2) << *V << "\n"; + } + dbgs() << "Scalars: \n"; + for (Value *V : Scalars) + dbgs().indent(2) << *V << "\n"; + dbgs() << "State: "; + switch (State) { + case Vectorize: + dbgs() << "Vectorize\n"; + break; + case ScatterVectorize: + dbgs() << "ScatterVectorize\n"; + break; + case NeedToGather: + dbgs() << "NeedToGather\n"; + break; + } + dbgs() << "MainOp: "; + if (MainOp) + dbgs() << *MainOp << "\n"; + else + dbgs() << "NULL\n"; + dbgs() << "AltOp: "; + if (AltOp) + dbgs() << *AltOp << "\n"; + else + dbgs() << "NULL\n"; + dbgs() << "VectorizedValue: "; + if (VectorizedValue) + dbgs() << *VectorizedValue << "\n"; + else + dbgs() << "NULL\n"; + dbgs() << "ReuseShuffleIndices: "; + if (ReuseShuffleIndices.empty()) + dbgs() << "Empty"; + else + for (int ReuseIdx : ReuseShuffleIndices) + dbgs() << ReuseIdx << ", "; + dbgs() << "\n"; + dbgs() << "ReorderIndices: "; + for (unsigned ReorderIdx : ReorderIndices) + dbgs() << ReorderIdx << ", "; + dbgs() << "\n"; + dbgs() << "UserTreeIndices: "; + for (const auto &EInfo : UserTreeIndices) + dbgs() << EInfo << ", "; + dbgs() << "\n"; + } +#endif + }; + +#ifndef NDEBUG + void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, + InstructionCost VecCost, + InstructionCost ScalarCost) const { + dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); + dbgs() << "SLP: Costs:\n"; + dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; + dbgs() << "SLP: VectorCost = " << VecCost << "\n"; + dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; + dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << + ReuseShuffleCost + VecCost - ScalarCost << "\n"; + } +#endif + + /// Create a new VectorizableTree entry. + TreeEntry *newTreeEntry(ArrayRef<Value *> VL, std::optional<ScheduleData *> Bundle, + const InstructionsState &S, + const EdgeInfo &UserTreeIdx, + ArrayRef<int> ReuseShuffleIndices = std::nullopt, + ArrayRef<unsigned> ReorderIndices = std::nullopt) { + TreeEntry::EntryState EntryState = + Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; + return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, + ReuseShuffleIndices, ReorderIndices); + } + + TreeEntry *newTreeEntry(ArrayRef<Value *> VL, + TreeEntry::EntryState EntryState, + std::optional<ScheduleData *> Bundle, + const InstructionsState &S, + const EdgeInfo &UserTreeIdx, + ArrayRef<int> ReuseShuffleIndices = std::nullopt, + ArrayRef<unsigned> ReorderIndices = std::nullopt) { + assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || + (Bundle && EntryState != TreeEntry::NeedToGather)) && + "Need to vectorize gather entry?"); + VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); + TreeEntry *Last = VectorizableTree.back().get(); + Last->Idx = VectorizableTree.size() - 1; + Last->State = EntryState; + Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), + ReuseShuffleIndices.end()); + if (ReorderIndices.empty()) { + Last->Scalars.assign(VL.begin(), VL.end()); + Last->setOperations(S); + } else { + // Reorder scalars and build final mask. + Last->Scalars.assign(VL.size(), nullptr); + transform(ReorderIndices, Last->Scalars.begin(), + [VL](unsigned Idx) -> Value * { + if (Idx >= VL.size()) + return UndefValue::get(VL.front()->getType()); + return VL[Idx]; + }); + InstructionsState S = getSameOpcode(Last->Scalars, *TLI); + Last->setOperations(S); + Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); + } + if (Last->State != TreeEntry::NeedToGather) { + for (Value *V : VL) { + assert(!getTreeEntry(V) && "Scalar already in tree!"); + ScalarToTreeEntry[V] = Last; + } + // Update the scheduler bundle to point to this TreeEntry. + ScheduleData *BundleMember = *Bundle; + assert((BundleMember || isa<PHINode>(S.MainOp) || + isVectorLikeInstWithConstOps(S.MainOp) || + doesNotNeedToSchedule(VL)) && + "Bundle and VL out of sync"); + if (BundleMember) { + for (Value *V : VL) { + if (doesNotNeedToBeScheduled(V)) + continue; + assert(BundleMember && "Unexpected end of bundle."); + BundleMember->TE = Last; + BundleMember = BundleMember->NextInBundle; + } + } + assert(!BundleMember && "Bundle and VL out of sync"); + } else { + MustGather.insert(VL.begin(), VL.end()); + } + + if (UserTreeIdx.UserTE) + Last->UserTreeIndices.push_back(UserTreeIdx); + + return Last; + } + + /// -- Vectorization State -- + /// Holds all of the tree entries. + TreeEntry::VecTreeTy VectorizableTree; + +#ifndef NDEBUG + /// Debug printer. + LLVM_DUMP_METHOD void dumpVectorizableTree() const { + for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { + VectorizableTree[Id]->dump(); + dbgs() << "\n"; + } + } +#endif + + TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } + + const TreeEntry *getTreeEntry(Value *V) const { + return ScalarToTreeEntry.lookup(V); + } + + /// Maps a specific scalar to its tree entry. + SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; + + /// Maps a value to the proposed vectorizable size. + SmallDenseMap<Value *, unsigned> InstrElementSize; + + /// A list of scalars that we found that we need to keep as scalars. + ValueSet MustGather; + + /// A map between the vectorized entries and the last instructions in the + /// bundles. The bundles are built in use order, not in the def order of the + /// instructions. So, we cannot rely directly on the last instruction in the + /// bundle being the last instruction in the program order during + /// vectorization process since the basic blocks are affected, need to + /// pre-gather them before. + DenseMap<const TreeEntry *, Instruction *> EntryToLastInstruction; + + /// This POD struct describes one external user in the vectorized tree. + struct ExternalUser { + ExternalUser(Value *S, llvm::User *U, int L) + : Scalar(S), User(U), Lane(L) {} + + // Which scalar in our function. + Value *Scalar; + + // Which user that uses the scalar. + llvm::User *User; + + // Which lane does the scalar belong to. + int Lane; + }; + using UserList = SmallVector<ExternalUser, 16>; + + /// Checks if two instructions may access the same memory. + /// + /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it + /// is invariant in the calling loop. + bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, + Instruction *Inst2) { + // First check if the result is already in the cache. + AliasCacheKey key = std::make_pair(Inst1, Inst2); + std::optional<bool> &result = AliasCache[key]; + if (result) { + return *result; + } + bool aliased = true; + if (Loc1.Ptr && isSimple(Inst1)) + aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); + // Store the result in the cache. + result = aliased; + return aliased; + } + + using AliasCacheKey = std::pair<Instruction *, Instruction *>; + + /// Cache for alias results. + /// TODO: consider moving this to the AliasAnalysis itself. + DenseMap<AliasCacheKey, std::optional<bool>> AliasCache; + + // Cache for pointerMayBeCaptured calls inside AA. This is preserved + // globally through SLP because we don't perform any action which + // invalidates capture results. + BatchAAResults BatchAA; + + /// Temporary store for deleted instructions. Instructions will be deleted + /// eventually when the BoUpSLP is destructed. The deferral is required to + /// ensure that there are no incorrect collisions in the AliasCache, which + /// can happen if a new instruction is allocated at the same address as a + /// previously deleted instruction. + DenseSet<Instruction *> DeletedInstructions; + + /// Set of the instruction, being analyzed already for reductions. + SmallPtrSet<Instruction *, 16> AnalyzedReductionsRoots; + + /// Set of hashes for the list of reduction values already being analyzed. + DenseSet<size_t> AnalyzedReductionVals; + + /// A list of values that need to extracted out of the tree. + /// This list holds pairs of (Internal Scalar : External User). External User + /// can be nullptr, it means that this Internal Scalar will be used later, + /// after vectorization. + UserList ExternalUses; + + /// Values used only by @llvm.assume calls. + SmallPtrSet<const Value *, 32> EphValues; + + /// Holds all of the instructions that we gathered, shuffle instructions and + /// extractelements. + SetVector<Instruction *> GatherShuffleExtractSeq; + + /// A list of blocks that we are going to CSE. + SetVector<BasicBlock *> CSEBlocks; + + /// Contains all scheduling relevant data for an instruction. + /// A ScheduleData either represents a single instruction or a member of an + /// instruction bundle (= a group of instructions which is combined into a + /// vector instruction). + struct ScheduleData { + // The initial value for the dependency counters. It means that the + // dependencies are not calculated yet. + enum { InvalidDeps = -1 }; + + ScheduleData() = default; + + void init(int BlockSchedulingRegionID, Value *OpVal) { + FirstInBundle = this; + NextInBundle = nullptr; + NextLoadStore = nullptr; + IsScheduled = false; + SchedulingRegionID = BlockSchedulingRegionID; + clearDependencies(); + OpValue = OpVal; + TE = nullptr; + } + + /// Verify basic self consistency properties + void verify() { + if (hasValidDependencies()) { + assert(UnscheduledDeps <= Dependencies && "invariant"); + } else { + assert(UnscheduledDeps == Dependencies && "invariant"); + } + + if (IsScheduled) { + assert(isSchedulingEntity() && + "unexpected scheduled state"); + for (const ScheduleData *BundleMember = this; BundleMember; + BundleMember = BundleMember->NextInBundle) { + assert(BundleMember->hasValidDependencies() && + BundleMember->UnscheduledDeps == 0 && + "unexpected scheduled state"); + assert((BundleMember == this || !BundleMember->IsScheduled) && + "only bundle is marked scheduled"); + } + } + + assert(Inst->getParent() == FirstInBundle->Inst->getParent() && + "all bundle members must be in same basic block"); + } + + /// Returns true if the dependency information has been calculated. + /// Note that depenendency validity can vary between instructions within + /// a single bundle. + bool hasValidDependencies() const { return Dependencies != InvalidDeps; } + + /// Returns true for single instructions and for bundle representatives + /// (= the head of a bundle). + bool isSchedulingEntity() const { return FirstInBundle == this; } + + /// Returns true if it represents an instruction bundle and not only a + /// single instruction. + bool isPartOfBundle() const { + return NextInBundle != nullptr || FirstInBundle != this || TE; + } + + /// Returns true if it is ready for scheduling, i.e. it has no more + /// unscheduled depending instructions/bundles. + bool isReady() const { + assert(isSchedulingEntity() && + "can't consider non-scheduling entity for ready list"); + return unscheduledDepsInBundle() == 0 && !IsScheduled; + } + + /// Modifies the number of unscheduled dependencies for this instruction, + /// and returns the number of remaining dependencies for the containing + /// bundle. + int incrementUnscheduledDeps(int Incr) { + assert(hasValidDependencies() && + "increment of unscheduled deps would be meaningless"); + UnscheduledDeps += Incr; + return FirstInBundle->unscheduledDepsInBundle(); + } + + /// Sets the number of unscheduled dependencies to the number of + /// dependencies. + void resetUnscheduledDeps() { + UnscheduledDeps = Dependencies; + } + + /// Clears all dependency information. + void clearDependencies() { + Dependencies = InvalidDeps; + resetUnscheduledDeps(); + MemoryDependencies.clear(); + ControlDependencies.clear(); + } + + int unscheduledDepsInBundle() const { + assert(isSchedulingEntity() && "only meaningful on the bundle"); + int Sum = 0; + for (const ScheduleData *BundleMember = this; BundleMember; + BundleMember = BundleMember->NextInBundle) { + if (BundleMember->UnscheduledDeps == InvalidDeps) + return InvalidDeps; + Sum += BundleMember->UnscheduledDeps; + } + return Sum; + } + + void dump(raw_ostream &os) const { + if (!isSchedulingEntity()) { + os << "/ " << *Inst; + } else if (NextInBundle) { + os << '[' << *Inst; + ScheduleData *SD = NextInBundle; + while (SD) { + os << ';' << *SD->Inst; + SD = SD->NextInBundle; + } + os << ']'; + } else { + os << *Inst; + } + } + + Instruction *Inst = nullptr; + + /// Opcode of the current instruction in the schedule data. + Value *OpValue = nullptr; + + /// The TreeEntry that this instruction corresponds to. + TreeEntry *TE = nullptr; + + /// Points to the head in an instruction bundle (and always to this for + /// single instructions). + ScheduleData *FirstInBundle = nullptr; + + /// Single linked list of all instructions in a bundle. Null if it is a + /// single instruction. + ScheduleData *NextInBundle = nullptr; + + /// Single linked list of all memory instructions (e.g. load, store, call) + /// in the block - until the end of the scheduling region. + ScheduleData *NextLoadStore = nullptr; + + /// The dependent memory instructions. + /// This list is derived on demand in calculateDependencies(). + SmallVector<ScheduleData *, 4> MemoryDependencies; + + /// List of instructions which this instruction could be control dependent + /// on. Allowing such nodes to be scheduled below this one could introduce + /// a runtime fault which didn't exist in the original program. + /// ex: this is a load or udiv following a readonly call which inf loops + SmallVector<ScheduleData *, 4> ControlDependencies; + + /// This ScheduleData is in the current scheduling region if this matches + /// the current SchedulingRegionID of BlockScheduling. + int SchedulingRegionID = 0; + + /// Used for getting a "good" final ordering of instructions. + int SchedulingPriority = 0; + + /// The number of dependencies. Constitutes of the number of users of the + /// instruction plus the number of dependent memory instructions (if any). + /// This value is calculated on demand. + /// If InvalidDeps, the number of dependencies is not calculated yet. + int Dependencies = InvalidDeps; + + /// The number of dependencies minus the number of dependencies of scheduled + /// instructions. As soon as this is zero, the instruction/bundle gets ready + /// for scheduling. + /// Note that this is negative as long as Dependencies is not calculated. + int UnscheduledDeps = InvalidDeps; + + /// True if this instruction is scheduled (or considered as scheduled in the + /// dry-run). + bool IsScheduled = false; + }; + +#ifndef NDEBUG + friend inline raw_ostream &operator<<(raw_ostream &os, + const BoUpSLP::ScheduleData &SD) { + SD.dump(os); + return os; + } +#endif + + friend struct GraphTraits<BoUpSLP *>; + friend struct DOTGraphTraits<BoUpSLP *>; + + /// Contains all scheduling data for a basic block. + /// It does not schedules instructions, which are not memory read/write + /// instructions and their operands are either constants, or arguments, or + /// phis, or instructions from others blocks, or their users are phis or from + /// the other blocks. The resulting vector instructions can be placed at the + /// beginning of the basic block without scheduling (if operands does not need + /// to be scheduled) or at the end of the block (if users are outside of the + /// block). It allows to save some compile time and memory used by the + /// compiler. + /// ScheduleData is assigned for each instruction in between the boundaries of + /// the tree entry, even for those, which are not part of the graph. It is + /// required to correctly follow the dependencies between the instructions and + /// their correct scheduling. The ScheduleData is not allocated for the + /// instructions, which do not require scheduling, like phis, nodes with + /// extractelements/insertelements only or nodes with instructions, with + /// uses/operands outside of the block. + struct BlockScheduling { + BlockScheduling(BasicBlock *BB) + : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} + + void clear() { + ReadyInsts.clear(); + ScheduleStart = nullptr; + ScheduleEnd = nullptr; + FirstLoadStoreInRegion = nullptr; + LastLoadStoreInRegion = nullptr; + RegionHasStackSave = false; + + // Reduce the maximum schedule region size by the size of the + // previous scheduling run. + ScheduleRegionSizeLimit -= ScheduleRegionSize; + if (ScheduleRegionSizeLimit < MinScheduleRegionSize) + ScheduleRegionSizeLimit = MinScheduleRegionSize; + ScheduleRegionSize = 0; + + // Make a new scheduling region, i.e. all existing ScheduleData is not + // in the new region yet. + ++SchedulingRegionID; + } + + ScheduleData *getScheduleData(Instruction *I) { + if (BB != I->getParent()) + // Avoid lookup if can't possibly be in map. + return nullptr; + ScheduleData *SD = ScheduleDataMap.lookup(I); + if (SD && isInSchedulingRegion(SD)) + return SD; + return nullptr; + } + + ScheduleData *getScheduleData(Value *V) { + if (auto *I = dyn_cast<Instruction>(V)) + return getScheduleData(I); + return nullptr; + } + + ScheduleData *getScheduleData(Value *V, Value *Key) { + if (V == Key) + return getScheduleData(V); + auto I = ExtraScheduleDataMap.find(V); + if (I != ExtraScheduleDataMap.end()) { + ScheduleData *SD = I->second.lookup(Key); + if (SD && isInSchedulingRegion(SD)) + return SD; + } + return nullptr; + } + + bool isInSchedulingRegion(ScheduleData *SD) const { + return SD->SchedulingRegionID == SchedulingRegionID; + } + + /// Marks an instruction as scheduled and puts all dependent ready + /// instructions into the ready-list. + template <typename ReadyListType> + void schedule(ScheduleData *SD, ReadyListType &ReadyList) { + SD->IsScheduled = true; + LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); + + for (ScheduleData *BundleMember = SD; BundleMember; + BundleMember = BundleMember->NextInBundle) { + if (BundleMember->Inst != BundleMember->OpValue) + continue; + + // Handle the def-use chain dependencies. + + // Decrement the unscheduled counter and insert to ready list if ready. + auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { + doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { + if (OpDef && OpDef->hasValidDependencies() && + OpDef->incrementUnscheduledDeps(-1) == 0) { + // There are no more unscheduled dependencies after + // decrementing, so we can put the dependent instruction + // into the ready list. + ScheduleData *DepBundle = OpDef->FirstInBundle; + assert(!DepBundle->IsScheduled && + "already scheduled bundle gets ready"); + ReadyList.insert(DepBundle); + LLVM_DEBUG(dbgs() + << "SLP: gets ready (def): " << *DepBundle << "\n"); + } + }); + }; + + // If BundleMember is a vector bundle, its operands may have been + // reordered during buildTree(). We therefore need to get its operands + // through the TreeEntry. + if (TreeEntry *TE = BundleMember->TE) { + // Need to search for the lane since the tree entry can be reordered. + int Lane = std::distance(TE->Scalars.begin(), + find(TE->Scalars, BundleMember->Inst)); + assert(Lane >= 0 && "Lane not set"); + + // Since vectorization tree is being built recursively this assertion + // ensures that the tree entry has all operands set before reaching + // this code. Couple of exceptions known at the moment are extracts + // where their second (immediate) operand is not added. Since + // immediates do not affect scheduler behavior this is considered + // okay. + auto *In = BundleMember->Inst; + assert(In && + (isa<ExtractValueInst, ExtractElementInst>(In) || + In->getNumOperands() == TE->getNumOperands()) && + "Missed TreeEntry operands?"); + (void)In; // fake use to avoid build failure when assertions disabled + + for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); + OpIdx != NumOperands; ++OpIdx) + if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) + DecrUnsched(I); + } else { + // If BundleMember is a stand-alone instruction, no operand reordering + // has taken place, so we directly access its operands. + for (Use &U : BundleMember->Inst->operands()) + if (auto *I = dyn_cast<Instruction>(U.get())) + DecrUnsched(I); + } + // Handle the memory dependencies. + for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { + if (MemoryDepSD->hasValidDependencies() && + MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { + // There are no more unscheduled dependencies after decrementing, + // so we can put the dependent instruction into the ready list. + ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; + assert(!DepBundle->IsScheduled && + "already scheduled bundle gets ready"); + ReadyList.insert(DepBundle); + LLVM_DEBUG(dbgs() + << "SLP: gets ready (mem): " << *DepBundle << "\n"); + } + } + // Handle the control dependencies. + for (ScheduleData *DepSD : BundleMember->ControlDependencies) { + if (DepSD->incrementUnscheduledDeps(-1) == 0) { + // There are no more unscheduled dependencies after decrementing, + // so we can put the dependent instruction into the ready list. + ScheduleData *DepBundle = DepSD->FirstInBundle; + assert(!DepBundle->IsScheduled && + "already scheduled bundle gets ready"); + ReadyList.insert(DepBundle); + LLVM_DEBUG(dbgs() + << "SLP: gets ready (ctl): " << *DepBundle << "\n"); + } + } + + } + } + + /// Verify basic self consistency properties of the data structure. + void verify() { + if (!ScheduleStart) + return; + + assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && + ScheduleStart->comesBefore(ScheduleEnd) && + "Not a valid scheduling region?"); + + for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { + auto *SD = getScheduleData(I); + if (!SD) + continue; + assert(isInSchedulingRegion(SD) && + "primary schedule data not in window?"); + assert(isInSchedulingRegion(SD->FirstInBundle) && + "entire bundle in window!"); + (void)SD; + doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); + } + + for (auto *SD : ReadyInsts) { + assert(SD->isSchedulingEntity() && SD->isReady() && + "item in ready list not ready?"); + (void)SD; + } + } + + void doForAllOpcodes(Value *V, + function_ref<void(ScheduleData *SD)> Action) { + if (ScheduleData *SD = getScheduleData(V)) + Action(SD); + auto I = ExtraScheduleDataMap.find(V); + if (I != ExtraScheduleDataMap.end()) + for (auto &P : I->second) + if (isInSchedulingRegion(P.second)) + Action(P.second); + } + + /// Put all instructions into the ReadyList which are ready for scheduling. + template <typename ReadyListType> + void initialFillReadyList(ReadyListType &ReadyList) { + for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { + doForAllOpcodes(I, [&](ScheduleData *SD) { + if (SD->isSchedulingEntity() && SD->hasValidDependencies() && + SD->isReady()) { + ReadyList.insert(SD); + LLVM_DEBUG(dbgs() + << "SLP: initially in ready list: " << *SD << "\n"); + } + }); + } + } + + /// Build a bundle from the ScheduleData nodes corresponding to the + /// scalar instruction for each lane. + ScheduleData *buildBundle(ArrayRef<Value *> VL); + + /// Checks if a bundle of instructions can be scheduled, i.e. has no + /// cyclic dependencies. This is only a dry-run, no instructions are + /// actually moved at this stage. + /// \returns the scheduling bundle. The returned Optional value is not + /// std::nullopt if \p VL is allowed to be scheduled. + std::optional<ScheduleData *> + tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, + const InstructionsState &S); + + /// Un-bundles a group of instructions. + void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); + + /// Allocates schedule data chunk. + ScheduleData *allocateScheduleDataChunks(); + + /// Extends the scheduling region so that V is inside the region. + /// \returns true if the region size is within the limit. + bool extendSchedulingRegion(Value *V, const InstructionsState &S); + + /// Initialize the ScheduleData structures for new instructions in the + /// scheduling region. + void initScheduleData(Instruction *FromI, Instruction *ToI, + ScheduleData *PrevLoadStore, + ScheduleData *NextLoadStore); + + /// Updates the dependency information of a bundle and of all instructions/ + /// bundles which depend on the original bundle. + void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, + BoUpSLP *SLP); + + /// Sets all instruction in the scheduling region to un-scheduled. + void resetSchedule(); + + BasicBlock *BB; + + /// Simple memory allocation for ScheduleData. + std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; + + /// The size of a ScheduleData array in ScheduleDataChunks. + int ChunkSize; + + /// The allocator position in the current chunk, which is the last entry + /// of ScheduleDataChunks. + int ChunkPos; + + /// Attaches ScheduleData to Instruction. + /// Note that the mapping survives during all vectorization iterations, i.e. + /// ScheduleData structures are recycled. + DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; + + /// Attaches ScheduleData to Instruction with the leading key. + DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> + ExtraScheduleDataMap; + + /// The ready-list for scheduling (only used for the dry-run). + SetVector<ScheduleData *> ReadyInsts; + + /// The first instruction of the scheduling region. + Instruction *ScheduleStart = nullptr; + + /// The first instruction _after_ the scheduling region. + Instruction *ScheduleEnd = nullptr; + + /// The first memory accessing instruction in the scheduling region + /// (can be null). + ScheduleData *FirstLoadStoreInRegion = nullptr; + + /// The last memory accessing instruction in the scheduling region + /// (can be null). + ScheduleData *LastLoadStoreInRegion = nullptr; + + /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling + /// region? Used to optimize the dependence calculation for the + /// common case where there isn't. + bool RegionHasStackSave = false; + + /// The current size of the scheduling region. + int ScheduleRegionSize = 0; + + /// The maximum size allowed for the scheduling region. + int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; + + /// The ID of the scheduling region. For a new vectorization iteration this + /// is incremented which "removes" all ScheduleData from the region. + /// Make sure that the initial SchedulingRegionID is greater than the + /// initial SchedulingRegionID in ScheduleData (which is 0). + int SchedulingRegionID = 1; + }; + + /// Attaches the BlockScheduling structures to basic blocks. + MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; + + /// Performs the "real" scheduling. Done before vectorization is actually + /// performed in a basic block. + void scheduleBlock(BlockScheduling *BS); + + /// List of users to ignore during scheduling and that don't need extracting. + const SmallDenseSet<Value *> *UserIgnoreList = nullptr; + + /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of + /// sorted SmallVectors of unsigned. + struct OrdersTypeDenseMapInfo { + static OrdersType getEmptyKey() { + OrdersType V; + V.push_back(~1U); + return V; + } + + static OrdersType getTombstoneKey() { + OrdersType V; + V.push_back(~2U); + return V; + } + + static unsigned getHashValue(const OrdersType &V) { + return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); + } + + static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { + return LHS == RHS; + } + }; + + // Analysis and block reference. + Function *F; + ScalarEvolution *SE; + TargetTransformInfo *TTI; + TargetLibraryInfo *TLI; + LoopInfo *LI; + DominatorTree *DT; + AssumptionCache *AC; + DemandedBits *DB; + const DataLayout *DL; + OptimizationRemarkEmitter *ORE; + + unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. + unsigned MinVecRegSize; // Set by cl::opt (default: 128). + + /// Instruction builder to construct the vectorized tree. + IRBuilder<> Builder; + + /// A map of scalar integer values to the smallest bit width with which they + /// can legally be represented. The values map to (width, signed) pairs, + /// where "width" indicates the minimum bit width and "signed" is True if the + /// value must be signed-extended, rather than zero-extended, back to its + /// original width. + MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; +}; + +} // end namespace slpvectorizer + +template <> struct GraphTraits<BoUpSLP *> { + using TreeEntry = BoUpSLP::TreeEntry; + + /// NodeRef has to be a pointer per the GraphWriter. + using NodeRef = TreeEntry *; + + using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; + + /// Add the VectorizableTree to the index iterator to be able to return + /// TreeEntry pointers. + struct ChildIteratorType + : public iterator_adaptor_base< + ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { + ContainerTy &VectorizableTree; + + ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, + ContainerTy &VT) + : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} + + NodeRef operator*() { return I->UserTE; } + }; + + static NodeRef getEntryNode(BoUpSLP &R) { + return R.VectorizableTree[0].get(); + } + + static ChildIteratorType child_begin(NodeRef N) { + return {N->UserTreeIndices.begin(), N->Container}; + } + + static ChildIteratorType child_end(NodeRef N) { + return {N->UserTreeIndices.end(), N->Container}; + } + + /// For the node iterator we just need to turn the TreeEntry iterator into a + /// TreeEntry* iterator so that it dereferences to NodeRef. + class nodes_iterator { + using ItTy = ContainerTy::iterator; + ItTy It; + + public: + nodes_iterator(const ItTy &It2) : It(It2) {} + NodeRef operator*() { return It->get(); } + nodes_iterator operator++() { + ++It; + return *this; + } + bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } + }; + + static nodes_iterator nodes_begin(BoUpSLP *R) { + return nodes_iterator(R->VectorizableTree.begin()); + } + + static nodes_iterator nodes_end(BoUpSLP *R) { + return nodes_iterator(R->VectorizableTree.end()); + } + + static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } +}; + +template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { + using TreeEntry = BoUpSLP::TreeEntry; + + DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} + + std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { + std::string Str; + raw_string_ostream OS(Str); + OS << Entry->Idx << ".\n"; + if (isSplat(Entry->Scalars)) + OS << "<splat> "; + for (auto *V : Entry->Scalars) { + OS << *V; + if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { + return EU.Scalar == V; + })) + OS << " <extract>"; + OS << "\n"; + } + return Str; + } + + static std::string getNodeAttributes(const TreeEntry *Entry, + const BoUpSLP *) { + if (Entry->State == TreeEntry::NeedToGather) + return "color=red"; + if (Entry->State == TreeEntry::ScatterVectorize) + return "color=blue"; + return ""; + } +}; + +} // end namespace llvm + +BoUpSLP::~BoUpSLP() { + SmallVector<WeakTrackingVH> DeadInsts; + for (auto *I : DeletedInstructions) { + for (Use &U : I->operands()) { + auto *Op = dyn_cast<Instruction>(U.get()); + if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && + wouldInstructionBeTriviallyDead(Op, TLI)) + DeadInsts.emplace_back(Op); + } + I->dropAllReferences(); + } + for (auto *I : DeletedInstructions) { + assert(I->use_empty() && + "trying to erase instruction with users."); + I->eraseFromParent(); + } + + // Cleanup any dead scalar code feeding the vectorized instructions + RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); + +#ifdef EXPENSIVE_CHECKS + // If we could guarantee that this call is not extremely slow, we could + // remove the ifdef limitation (see PR47712). + assert(!verifyFunction(*F, &dbgs())); +#endif +} + +/// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses +/// contains original mask for the scalars reused in the node. Procedure +/// transform this mask in accordance with the given \p Mask. +static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { + assert(!Mask.empty() && Reuses.size() == Mask.size() && + "Expected non-empty mask."); + SmallVector<int> Prev(Reuses.begin(), Reuses.end()); + Prev.swap(Reuses); + for (unsigned I = 0, E = Prev.size(); I < E; ++I) + if (Mask[I] != UndefMaskElem) + Reuses[Mask[I]] = Prev[I]; +} + +/// Reorders the given \p Order according to the given \p Mask. \p Order - is +/// the original order of the scalars. Procedure transforms the provided order +/// in accordance with the given \p Mask. If the resulting \p Order is just an +/// identity order, \p Order is cleared. +static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { + assert(!Mask.empty() && "Expected non-empty mask."); + SmallVector<int> MaskOrder; + if (Order.empty()) { + MaskOrder.resize(Mask.size()); + std::iota(MaskOrder.begin(), MaskOrder.end(), 0); + } else { + inversePermutation(Order, MaskOrder); + } + reorderReuses(MaskOrder, Mask); + if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { + Order.clear(); + return; + } + Order.assign(Mask.size(), Mask.size()); + for (unsigned I = 0, E = Mask.size(); I < E; ++I) + if (MaskOrder[I] != UndefMaskElem) + Order[MaskOrder[I]] = I; + fixupOrderingIndices(Order); +} + +std::optional<BoUpSLP::OrdersType> +BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { + assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); + unsigned NumScalars = TE.Scalars.size(); + OrdersType CurrentOrder(NumScalars, NumScalars); + SmallVector<int> Positions; + SmallBitVector UsedPositions(NumScalars); + const TreeEntry *STE = nullptr; + // Try to find all gathered scalars that are gets vectorized in other + // vectorize node. Here we can have only one single tree vector node to + // correctly identify order of the gathered scalars. + for (unsigned I = 0; I < NumScalars; ++I) { + Value *V = TE.Scalars[I]; + if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) + continue; + if (const auto *LocalSTE = getTreeEntry(V)) { + if (!STE) + STE = LocalSTE; + else if (STE != LocalSTE) + // Take the order only from the single vector node. + return std::nullopt; + unsigned Lane = + std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); + if (Lane >= NumScalars) + return std::nullopt; + if (CurrentOrder[Lane] != NumScalars) { + if (Lane != I) + continue; + UsedPositions.reset(CurrentOrder[Lane]); + } + // The partial identity (where only some elements of the gather node are + // in the identity order) is good. + CurrentOrder[Lane] = I; + UsedPositions.set(I); + } + } + // Need to keep the order if we have a vector entry and at least 2 scalars or + // the vectorized entry has just 2 scalars. + if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { + auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { + for (unsigned I = 0; I < NumScalars; ++I) + if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) + return false; + return true; + }; + if (IsIdentityOrder(CurrentOrder)) { + CurrentOrder.clear(); + return CurrentOrder; + } + auto *It = CurrentOrder.begin(); + for (unsigned I = 0; I < NumScalars;) { + if (UsedPositions.test(I)) { + ++I; + continue; + } + if (*It == NumScalars) { + *It = I; + ++I; + } + ++It; + } + return CurrentOrder; + } + return std::nullopt; +} + +namespace { +/// Tracks the state we can represent the loads in the given sequence. +enum class LoadsState { Gather, Vectorize, ScatterVectorize }; +} // anonymous namespace + +static bool arePointersCompatible(Value *Ptr1, Value *Ptr2, + const TargetLibraryInfo &TLI, + bool CompareOpcodes = true) { + if (getUnderlyingObject(Ptr1) != getUnderlyingObject(Ptr2)) + return false; + auto *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1); + if (!GEP1) + return false; + auto *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2); + if (!GEP2) + return false; + return GEP1->getNumOperands() == 2 && GEP2->getNumOperands() == 2 && + ((isConstant(GEP1->getOperand(1)) && + isConstant(GEP2->getOperand(1))) || + !CompareOpcodes || + getSameOpcode({GEP1->getOperand(1), GEP2->getOperand(1)}, TLI) + .getOpcode()); +} + +/// Checks if the given array of loads can be represented as a vectorized, +/// scatter or just simple gather. +static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, + const TargetTransformInfo &TTI, + const DataLayout &DL, ScalarEvolution &SE, + LoopInfo &LI, const TargetLibraryInfo &TLI, + SmallVectorImpl<unsigned> &Order, + SmallVectorImpl<Value *> &PointerOps) { + // Check that a vectorized load would load the same memory as a scalar + // load. For example, we don't want to vectorize loads that are smaller + // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM + // treats loading/storing it as an i8 struct. If we vectorize loads/stores + // from such a struct, we read/write packed bits disagreeing with the + // unvectorized version. + Type *ScalarTy = VL0->getType(); + + if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) + return LoadsState::Gather; + + // Make sure all loads in the bundle are simple - we can't vectorize + // atomic or volatile loads. + PointerOps.clear(); + PointerOps.resize(VL.size()); + auto *POIter = PointerOps.begin(); + for (Value *V : VL) { + auto *L = cast<LoadInst>(V); + if (!L->isSimple()) + return LoadsState::Gather; + *POIter = L->getPointerOperand(); + ++POIter; + } + + Order.clear(); + // Check the order of pointer operands or that all pointers are the same. + bool IsSorted = sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order); + if (IsSorted || all_of(PointerOps, [&](Value *P) { + return arePointersCompatible(P, PointerOps.front(), TLI); + })) { + if (IsSorted) { + Value *Ptr0; + Value *PtrN; + if (Order.empty()) { + Ptr0 = PointerOps.front(); + PtrN = PointerOps.back(); + } else { + Ptr0 = PointerOps[Order.front()]; + PtrN = PointerOps[Order.back()]; + } + std::optional<int> Diff = + getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); + // Check that the sorted loads are consecutive. + if (static_cast<unsigned>(*Diff) == VL.size() - 1) + return LoadsState::Vectorize; + } + // TODO: need to improve analysis of the pointers, if not all of them are + // GEPs or have > 2 operands, we end up with a gather node, which just + // increases the cost. + Loop *L = LI.getLoopFor(cast<LoadInst>(VL0)->getParent()); + bool ProfitableGatherPointers = + static_cast<unsigned>(count_if(PointerOps, [L](Value *V) { + return L && L->isLoopInvariant(V); + })) <= VL.size() / 2 && VL.size() > 2; + if (ProfitableGatherPointers || all_of(PointerOps, [IsSorted](Value *P) { + auto *GEP = dyn_cast<GetElementPtrInst>(P); + return (IsSorted && !GEP && doesNotNeedToBeScheduled(P)) || + (GEP && GEP->getNumOperands() == 2); + })) { + Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); + for (Value *V : VL) + CommonAlignment = + std::min(CommonAlignment, cast<LoadInst>(V)->getAlign()); + auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); + if (TTI.isLegalMaskedGather(VecTy, CommonAlignment) && + !TTI.forceScalarizeMaskedGather(VecTy, CommonAlignment)) + return LoadsState::ScatterVectorize; + } + } + + return LoadsState::Gather; +} + +bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, + const DataLayout &DL, ScalarEvolution &SE, + SmallVectorImpl<unsigned> &SortedIndices) { + assert(llvm::all_of( + VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && + "Expected list of pointer operands."); + // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each + // Ptr into, sort and return the sorted indices with values next to one + // another. + MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases; + Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U)); + + unsigned Cnt = 1; + for (Value *Ptr : VL.drop_front()) { + bool Found = any_of(Bases, [&](auto &Base) { + std::optional<int> Diff = + getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE, + /*StrictCheck=*/true); + if (!Diff) + return false; + + Base.second.emplace_back(Ptr, *Diff, Cnt++); + return true; + }); + + if (!Found) { + // If we haven't found enough to usefully cluster, return early. + if (Bases.size() > VL.size() / 2 - 1) + return false; + + // Not found already - add a new Base + Bases[Ptr].emplace_back(Ptr, 0, Cnt++); + } + } + + // For each of the bases sort the pointers by Offset and check if any of the + // base become consecutively allocated. + bool AnyConsecutive = false; + for (auto &Base : Bases) { + auto &Vec = Base.second; + if (Vec.size() > 1) { + llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X, + const std::tuple<Value *, int, unsigned> &Y) { + return std::get<1>(X) < std::get<1>(Y); + }); + int InitialOffset = std::get<1>(Vec[0]); + AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](auto &P) { + return std::get<1>(P.value()) == int(P.index()) + InitialOffset; + }); + } + } + + // Fill SortedIndices array only if it looks worth-while to sort the ptrs. + SortedIndices.clear(); + if (!AnyConsecutive) + return false; + + for (auto &Base : Bases) { + for (auto &T : Base.second) + SortedIndices.push_back(std::get<2>(T)); + } + + assert(SortedIndices.size() == VL.size() && + "Expected SortedIndices to be the size of VL"); + return true; +} + +std::optional<BoUpSLP::OrdersType> +BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) { + assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); + Type *ScalarTy = TE.Scalars[0]->getType(); + + SmallVector<Value *> Ptrs; + Ptrs.reserve(TE.Scalars.size()); + for (Value *V : TE.Scalars) { + auto *L = dyn_cast<LoadInst>(V); + if (!L || !L->isSimple()) + return std::nullopt; + Ptrs.push_back(L->getPointerOperand()); + } + + BoUpSLP::OrdersType Order; + if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order)) + return Order; + return std::nullopt; +} + +/// Check if two insertelement instructions are from the same buildvector. +static bool areTwoInsertFromSameBuildVector( + InsertElementInst *VU, InsertElementInst *V, + function_ref<Value *(InsertElementInst *)> GetBaseOperand) { + // Instructions must be from the same basic blocks. + if (VU->getParent() != V->getParent()) + return false; + // Checks if 2 insertelements are from the same buildvector. + if (VU->getType() != V->getType()) + return false; + // Multiple used inserts are separate nodes. + if (!VU->hasOneUse() && !V->hasOneUse()) + return false; + auto *IE1 = VU; + auto *IE2 = V; + std::optional<unsigned> Idx1 = getInsertIndex(IE1); + std::optional<unsigned> Idx2 = getInsertIndex(IE2); + if (Idx1 == std::nullopt || Idx2 == std::nullopt) + return false; + // Go through the vector operand of insertelement instructions trying to find + // either VU as the original vector for IE2 or V as the original vector for + // IE1. + do { + if (IE2 == VU) + return VU->hasOneUse(); + if (IE1 == V) + return V->hasOneUse(); + if (IE1) { + if ((IE1 != VU && !IE1->hasOneUse()) || + getInsertIndex(IE1).value_or(*Idx2) == *Idx2) + IE1 = nullptr; + else + IE1 = dyn_cast_or_null<InsertElementInst>(GetBaseOperand(IE1)); + } + if (IE2) { + if ((IE2 != V && !IE2->hasOneUse()) || + getInsertIndex(IE2).value_or(*Idx1) == *Idx1) + IE2 = nullptr; + else + IE2 = dyn_cast_or_null<InsertElementInst>(GetBaseOperand(IE2)); + } + } while (IE1 || IE2); + return false; +} + +std::optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, + bool TopToBottom) { + // No need to reorder if need to shuffle reuses, still need to shuffle the + // node. + if (!TE.ReuseShuffleIndices.empty()) { + // Check if reuse shuffle indices can be improved by reordering. + // For this, check that reuse mask is "clustered", i.e. each scalar values + // is used once in each submask of size <number_of_scalars>. + // Example: 4 scalar values. + // ReuseShuffleIndices mask: 0, 1, 2, 3, 3, 2, 0, 1 - clustered. + // 0, 1, 2, 3, 3, 3, 1, 0 - not clustered, because + // element 3 is used twice in the second submask. + unsigned Sz = TE.Scalars.size(); + if (!ShuffleVectorInst::isOneUseSingleSourceMask(TE.ReuseShuffleIndices, + Sz)) + return std::nullopt; + unsigned VF = TE.getVectorFactor(); + // Try build correct order for extractelement instructions. + SmallVector<int> ReusedMask(TE.ReuseShuffleIndices.begin(), + TE.ReuseShuffleIndices.end()); + if (TE.getOpcode() == Instruction::ExtractElement && !TE.isAltShuffle() && + all_of(TE.Scalars, [Sz](Value *V) { + std::optional<unsigned> Idx = getExtractIndex(cast<Instruction>(V)); + return Idx && *Idx < Sz; + })) { + SmallVector<int> ReorderMask(Sz, UndefMaskElem); + if (TE.ReorderIndices.empty()) + std::iota(ReorderMask.begin(), ReorderMask.end(), 0); + else + inversePermutation(TE.ReorderIndices, ReorderMask); + for (unsigned I = 0; I < VF; ++I) { + int &Idx = ReusedMask[I]; + if (Idx == UndefMaskElem) + continue; + Value *V = TE.Scalars[ReorderMask[Idx]]; + std::optional<unsigned> EI = getExtractIndex(cast<Instruction>(V)); + Idx = std::distance(ReorderMask.begin(), find(ReorderMask, *EI)); + } + } + // Build the order of the VF size, need to reorder reuses shuffles, they are + // always of VF size. + OrdersType ResOrder(VF); + std::iota(ResOrder.begin(), ResOrder.end(), 0); + auto *It = ResOrder.begin(); + for (unsigned K = 0; K < VF; K += Sz) { + OrdersType CurrentOrder(TE.ReorderIndices); + SmallVector<int> SubMask{ArrayRef(ReusedMask).slice(K, Sz)}; + if (SubMask.front() == UndefMaskElem) + std::iota(SubMask.begin(), SubMask.end(), 0); + reorderOrder(CurrentOrder, SubMask); + transform(CurrentOrder, It, [K](unsigned Pos) { return Pos + K; }); + std::advance(It, Sz); + } + if (all_of(enumerate(ResOrder), + [](const auto &Data) { return Data.index() == Data.value(); })) + return {}; // Use identity order. + return ResOrder; + } + if (TE.State == TreeEntry::Vectorize && + (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || + (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && + !TE.isAltShuffle()) + return TE.ReorderIndices; + if (TE.State == TreeEntry::Vectorize && TE.getOpcode() == Instruction::PHI) { + auto PHICompare = [](llvm::Value *V1, llvm::Value *V2) { + if (!V1->hasOneUse() || !V2->hasOneUse()) + return false; + auto *FirstUserOfPhi1 = cast<Instruction>(*V1->user_begin()); + auto *FirstUserOfPhi2 = cast<Instruction>(*V2->user_begin()); + if (auto *IE1 = dyn_cast<InsertElementInst>(FirstUserOfPhi1)) + if (auto *IE2 = dyn_cast<InsertElementInst>(FirstUserOfPhi2)) { + if (!areTwoInsertFromSameBuildVector( + IE1, IE2, + [](InsertElementInst *II) { return II->getOperand(0); })) + return false; + std::optional<unsigned> Idx1 = getInsertIndex(IE1); + std::optional<unsigned> Idx2 = getInsertIndex(IE2); + if (Idx1 == std::nullopt || Idx2 == std::nullopt) + return false; + return *Idx1 < *Idx2; + } + if (auto *EE1 = dyn_cast<ExtractElementInst>(FirstUserOfPhi1)) + if (auto *EE2 = dyn_cast<ExtractElementInst>(FirstUserOfPhi2)) { + if (EE1->getOperand(0) != EE2->getOperand(0)) + return false; + std::optional<unsigned> Idx1 = getExtractIndex(EE1); + std::optional<unsigned> Idx2 = getExtractIndex(EE2); + if (Idx1 == std::nullopt || Idx2 == std::nullopt) + return false; + return *Idx1 < *Idx2; + } + return false; + }; + auto IsIdentityOrder = [](const OrdersType &Order) { + for (unsigned Idx : seq<unsigned>(0, Order.size())) + if (Idx != Order[Idx]) + return false; + return true; + }; + if (!TE.ReorderIndices.empty()) + return TE.ReorderIndices; + DenseMap<Value *, unsigned> PhiToId; + SmallVector<Value *, 4> Phis; + OrdersType ResOrder(TE.Scalars.size()); + for (unsigned Id = 0, Sz = TE.Scalars.size(); Id < Sz; ++Id) { + PhiToId[TE.Scalars[Id]] = Id; + Phis.push_back(TE.Scalars[Id]); + } + llvm::stable_sort(Phis, PHICompare); + for (unsigned Id = 0, Sz = Phis.size(); Id < Sz; ++Id) + ResOrder[Id] = PhiToId[Phis[Id]]; + if (IsIdentityOrder(ResOrder)) + return {}; + return ResOrder; + } + if (TE.State == TreeEntry::NeedToGather) { + // TODO: add analysis of other gather nodes with extractelement + // instructions and other values/instructions, not only undefs. + if (((TE.getOpcode() == Instruction::ExtractElement && + !TE.isAltShuffle()) || + (all_of(TE.Scalars, + [](Value *V) { + return isa<UndefValue, ExtractElementInst>(V); + }) && + any_of(TE.Scalars, + [](Value *V) { return isa<ExtractElementInst>(V); }))) && + all_of(TE.Scalars, + [](Value *V) { + auto *EE = dyn_cast<ExtractElementInst>(V); + return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); + }) && + allSameType(TE.Scalars)) { + // Check that gather of extractelements can be represented as + // just a shuffle of a single vector. + OrdersType CurrentOrder; + bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); + if (Reuse || !CurrentOrder.empty()) { + if (!CurrentOrder.empty()) + fixupOrderingIndices(CurrentOrder); + return CurrentOrder; + } + } + if (std::optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) + return CurrentOrder; + if (TE.Scalars.size() >= 4) + if (std::optional<OrdersType> Order = findPartiallyOrderedLoads(TE)) + return Order; + } + return std::nullopt; +} + +/// Checks if the given mask is a "clustered" mask with the same clusters of +/// size \p Sz, which are not identity submasks. +static bool isRepeatedNonIdentityClusteredMask(ArrayRef<int> Mask, + unsigned Sz) { + ArrayRef<int> FirstCluster = Mask.slice(0, Sz); + if (ShuffleVectorInst::isIdentityMask(FirstCluster)) + return false; + for (unsigned I = Sz, E = Mask.size(); I < E; I += Sz) { + ArrayRef<int> Cluster = Mask.slice(I, Sz); + if (Cluster != FirstCluster) + return false; + } + return true; +} + +void BoUpSLP::reorderNodeWithReuses(TreeEntry &TE, ArrayRef<int> Mask) const { + // Reorder reuses mask. + reorderReuses(TE.ReuseShuffleIndices, Mask); + const unsigned Sz = TE.Scalars.size(); + // For vectorized and non-clustered reused no need to do anything else. + if (TE.State != TreeEntry::NeedToGather || + !ShuffleVectorInst::isOneUseSingleSourceMask(TE.ReuseShuffleIndices, + Sz) || + !isRepeatedNonIdentityClusteredMask(TE.ReuseShuffleIndices, Sz)) + return; + SmallVector<int> NewMask; + inversePermutation(TE.ReorderIndices, NewMask); + addMask(NewMask, TE.ReuseShuffleIndices); + // Clear reorder since it is going to be applied to the new mask. + TE.ReorderIndices.clear(); + // Try to improve gathered nodes with clustered reuses, if possible. + ArrayRef<int> Slice = ArrayRef(NewMask).slice(0, Sz); + SmallVector<unsigned> NewOrder(Slice.begin(), Slice.end()); + inversePermutation(NewOrder, NewMask); + reorderScalars(TE.Scalars, NewMask); + // Fill the reuses mask with the identity submasks. + for (auto *It = TE.ReuseShuffleIndices.begin(), + *End = TE.ReuseShuffleIndices.end(); + It != End; std::advance(It, Sz)) + std::iota(It, std::next(It, Sz), 0); +} + +void BoUpSLP::reorderTopToBottom() { + // Maps VF to the graph nodes. + DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; + // ExtractElement gather nodes which can be vectorized and need to handle + // their ordering. + DenseMap<const TreeEntry *, OrdersType> GathersToOrders; + + // Phi nodes can have preferred ordering based on their result users + DenseMap<const TreeEntry *, OrdersType> PhisToOrders; + + // AltShuffles can also have a preferred ordering that leads to fewer + // instructions, e.g., the addsub instruction in x86. + DenseMap<const TreeEntry *, OrdersType> AltShufflesToOrders; + + // Maps a TreeEntry to the reorder indices of external users. + DenseMap<const TreeEntry *, SmallVector<OrdersType, 1>> + ExternalUserReorderMap; + // FIXME: Workaround for syntax error reported by MSVC buildbots. + TargetTransformInfo &TTIRef = *TTI; + // Find all reorderable nodes with the given VF. + // Currently the are vectorized stores,loads,extracts + some gathering of + // extracts. + for_each(VectorizableTree, [this, &TTIRef, &VFToOrderedEntries, + &GathersToOrders, &ExternalUserReorderMap, + &AltShufflesToOrders, &PhisToOrders]( + const std::unique_ptr<TreeEntry> &TE) { + // Look for external users that will probably be vectorized. + SmallVector<OrdersType, 1> ExternalUserReorderIndices = + findExternalStoreUsersReorderIndices(TE.get()); + if (!ExternalUserReorderIndices.empty()) { + VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get()); + ExternalUserReorderMap.try_emplace(TE.get(), + std::move(ExternalUserReorderIndices)); + } + + // Patterns like [fadd,fsub] can be combined into a single instruction in + // x86. Reordering them into [fsub,fadd] blocks this pattern. So we need + // to take into account their order when looking for the most used order. + if (TE->isAltShuffle()) { + VectorType *VecTy = + FixedVectorType::get(TE->Scalars[0]->getType(), TE->Scalars.size()); + unsigned Opcode0 = TE->getOpcode(); + unsigned Opcode1 = TE->getAltOpcode(); + // The opcode mask selects between the two opcodes. + SmallBitVector OpcodeMask(TE->Scalars.size(), false); + for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) + if (cast<Instruction>(TE->Scalars[Lane])->getOpcode() == Opcode1) + OpcodeMask.set(Lane); + // If this pattern is supported by the target then we consider the order. + if (TTIRef.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask)) { + VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get()); + AltShufflesToOrders.try_emplace(TE.get(), OrdersType()); + } + // TODO: Check the reverse order too. + } + + if (std::optional<OrdersType> CurrentOrder = + getReorderingData(*TE, /*TopToBottom=*/true)) { + // Do not include ordering for nodes used in the alt opcode vectorization, + // better to reorder them during bottom-to-top stage. If follow the order + // here, it causes reordering of the whole graph though actually it is + // profitable just to reorder the subgraph that starts from the alternate + // opcode vectorization node. Such nodes already end-up with the shuffle + // instruction and it is just enough to change this shuffle rather than + // rotate the scalars for the whole graph. + unsigned Cnt = 0; + const TreeEntry *UserTE = TE.get(); + while (UserTE && Cnt < RecursionMaxDepth) { + if (UserTE->UserTreeIndices.size() != 1) + break; + if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { + return EI.UserTE->State == TreeEntry::Vectorize && + EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; + })) + return; + UserTE = UserTE->UserTreeIndices.back().UserTE; + ++Cnt; + } + VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get()); + if (TE->State != TreeEntry::Vectorize || !TE->ReuseShuffleIndices.empty()) + GathersToOrders.try_emplace(TE.get(), *CurrentOrder); + if (TE->State == TreeEntry::Vectorize && + TE->getOpcode() == Instruction::PHI) + PhisToOrders.try_emplace(TE.get(), *CurrentOrder); + } + }); + + // Reorder the graph nodes according to their vectorization factor. + for (unsigned VF = VectorizableTree.front()->getVectorFactor(); VF > 1; + VF /= 2) { + auto It = VFToOrderedEntries.find(VF); + if (It == VFToOrderedEntries.end()) + continue; + // Try to find the most profitable order. We just are looking for the most + // used order and reorder scalar elements in the nodes according to this + // mostly used order. + ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); + // All operands are reordered and used only in this node - propagate the + // most used order to the user node. + MapVector<OrdersType, unsigned, + DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> + OrdersUses; + SmallPtrSet<const TreeEntry *, 4> VisitedOps; + for (const TreeEntry *OpTE : OrderedEntries) { + // No need to reorder this nodes, still need to extend and to use shuffle, + // just need to merge reordering shuffle and the reuse shuffle. + if (!OpTE->ReuseShuffleIndices.empty() && !GathersToOrders.count(OpTE)) + continue; + // Count number of orders uses. + const auto &Order = [OpTE, &GathersToOrders, &AltShufflesToOrders, + &PhisToOrders]() -> const OrdersType & { + if (OpTE->State == TreeEntry::NeedToGather || + !OpTE->ReuseShuffleIndices.empty()) { + auto It = GathersToOrders.find(OpTE); + if (It != GathersToOrders.end()) + return It->second; + } + if (OpTE->isAltShuffle()) { + auto It = AltShufflesToOrders.find(OpTE); + if (It != AltShufflesToOrders.end()) + return It->second; + } + if (OpTE->State == TreeEntry::Vectorize && + OpTE->getOpcode() == Instruction::PHI) { + auto It = PhisToOrders.find(OpTE); + if (It != PhisToOrders.end()) + return It->second; + } + return OpTE->ReorderIndices; + }(); + // First consider the order of the external scalar users. + auto It = ExternalUserReorderMap.find(OpTE); + if (It != ExternalUserReorderMap.end()) { + const auto &ExternalUserReorderIndices = It->second; + // If the OpTE vector factor != number of scalars - use natural order, + // it is an attempt to reorder node with reused scalars but with + // external uses. + if (OpTE->getVectorFactor() != OpTE->Scalars.size()) { + OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += + ExternalUserReorderIndices.size(); + } else { + for (const OrdersType &ExtOrder : ExternalUserReorderIndices) + ++OrdersUses.insert(std::make_pair(ExtOrder, 0)).first->second; + } + // No other useful reorder data in this entry. + if (Order.empty()) + continue; + } + // Stores actually store the mask, not the order, need to invert. + if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && + OpTE->getOpcode() == Instruction::Store && !Order.empty()) { + SmallVector<int> Mask; + inversePermutation(Order, Mask); + unsigned E = Order.size(); + OrdersType CurrentOrder(E, E); + transform(Mask, CurrentOrder.begin(), [E](int Idx) { + return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); + }); + fixupOrderingIndices(CurrentOrder); + ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; + } else { + ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; + } + } + // Set order of the user node. + if (OrdersUses.empty()) + continue; + // Choose the most used order. + ArrayRef<unsigned> BestOrder = OrdersUses.front().first; + unsigned Cnt = OrdersUses.front().second; + for (const auto &Pair : drop_begin(OrdersUses)) { + if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { + BestOrder = Pair.first; + Cnt = Pair.second; + } + } + // Set order of the user node. + if (BestOrder.empty()) + continue; + SmallVector<int> Mask; + inversePermutation(BestOrder, Mask); + SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); + unsigned E = BestOrder.size(); + transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { + return I < E ? static_cast<int>(I) : UndefMaskElem; + }); + // Do an actual reordering, if profitable. + for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { + // Just do the reordering for the nodes with the given VF. + if (TE->Scalars.size() != VF) { + if (TE->ReuseShuffleIndices.size() == VF) { + // Need to reorder the reuses masks of the operands with smaller VF to + // be able to find the match between the graph nodes and scalar + // operands of the given node during vectorization/cost estimation. + assert(all_of(TE->UserTreeIndices, + [VF, &TE](const EdgeInfo &EI) { + return EI.UserTE->Scalars.size() == VF || + EI.UserTE->Scalars.size() == + TE->Scalars.size(); + }) && + "All users must be of VF size."); + // Update ordering of the operands with the smaller VF than the given + // one. + reorderNodeWithReuses(*TE, Mask); + } + continue; + } + if (TE->State == TreeEntry::Vectorize && + isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, + InsertElementInst>(TE->getMainOp()) && + !TE->isAltShuffle()) { + // Build correct orders for extract{element,value}, loads and + // stores. + reorderOrder(TE->ReorderIndices, Mask); + if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) + TE->reorderOperands(Mask); + } else { + // Reorder the node and its operands. + TE->reorderOperands(Mask); + assert(TE->ReorderIndices.empty() && + "Expected empty reorder sequence."); + reorderScalars(TE->Scalars, Mask); + } + if (!TE->ReuseShuffleIndices.empty()) { + // Apply reversed order to keep the original ordering of the reused + // elements to avoid extra reorder indices shuffling. + OrdersType CurrentOrder; + reorderOrder(CurrentOrder, MaskOrder); + SmallVector<int> NewReuses; + inversePermutation(CurrentOrder, NewReuses); + addMask(NewReuses, TE->ReuseShuffleIndices); + TE->ReuseShuffleIndices.swap(NewReuses); + } + } + } +} + +bool BoUpSLP::canReorderOperands( + TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, + ArrayRef<TreeEntry *> ReorderableGathers, + SmallVectorImpl<TreeEntry *> &GatherOps) { + for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { + if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { + return OpData.first == I && + OpData.second->State == TreeEntry::Vectorize; + })) + continue; + if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { + // Do not reorder if operand node is used by many user nodes. + if (any_of(TE->UserTreeIndices, + [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) + return false; + // Add the node to the list of the ordered nodes with the identity + // order. + Edges.emplace_back(I, TE); + // Add ScatterVectorize nodes to the list of operands, where just + // reordering of the scalars is required. Similar to the gathers, so + // simply add to the list of gathered ops. + // If there are reused scalars, process this node as a regular vectorize + // node, just reorder reuses mask. + if (TE->State != TreeEntry::Vectorize && TE->ReuseShuffleIndices.empty()) + GatherOps.push_back(TE); + continue; + } + TreeEntry *Gather = nullptr; + if (count_if(ReorderableGathers, + [&Gather, UserTE, I](TreeEntry *TE) { + assert(TE->State != TreeEntry::Vectorize && + "Only non-vectorized nodes are expected."); + if (any_of(TE->UserTreeIndices, + [UserTE, I](const EdgeInfo &EI) { + return EI.UserTE == UserTE && EI.EdgeIdx == I; + })) { + assert(TE->isSame(UserTE->getOperand(I)) && + "Operand entry does not match operands."); + Gather = TE; + return true; + } + return false; + }) > 1 && + !all_of(UserTE->getOperand(I), isConstant)) + return false; + if (Gather) + GatherOps.push_back(Gather); + } + return true; +} + +void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { + SetVector<TreeEntry *> OrderedEntries; + DenseMap<const TreeEntry *, OrdersType> GathersToOrders; + // Find all reorderable leaf nodes with the given VF. + // Currently the are vectorized loads,extracts without alternate operands + + // some gathering of extracts. + SmallVector<TreeEntry *> NonVectorized; + for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, + &NonVectorized]( + const std::unique_ptr<TreeEntry> &TE) { + if (TE->State != TreeEntry::Vectorize) + NonVectorized.push_back(TE.get()); + if (std::optional<OrdersType> CurrentOrder = + getReorderingData(*TE, /*TopToBottom=*/false)) { + OrderedEntries.insert(TE.get()); + if (TE->State != TreeEntry::Vectorize || !TE->ReuseShuffleIndices.empty()) + GathersToOrders.try_emplace(TE.get(), *CurrentOrder); + } + }); + + // 1. Propagate order to the graph nodes, which use only reordered nodes. + // I.e., if the node has operands, that are reordered, try to make at least + // one operand order in the natural order and reorder others + reorder the + // user node itself. + SmallPtrSet<const TreeEntry *, 4> Visited; + while (!OrderedEntries.empty()) { + // 1. Filter out only reordered nodes. + // 2. If the entry has multiple uses - skip it and jump to the next node. + DenseMap<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; + SmallVector<TreeEntry *> Filtered; + for (TreeEntry *TE : OrderedEntries) { + if (!(TE->State == TreeEntry::Vectorize || + (TE->State == TreeEntry::NeedToGather && + GathersToOrders.count(TE))) || + TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || + !all_of(drop_begin(TE->UserTreeIndices), + [TE](const EdgeInfo &EI) { + return EI.UserTE == TE->UserTreeIndices.front().UserTE; + }) || + !Visited.insert(TE).second) { + Filtered.push_back(TE); + continue; + } + // Build a map between user nodes and their operands order to speedup + // search. The graph currently does not provide this dependency directly. + for (EdgeInfo &EI : TE->UserTreeIndices) { + TreeEntry *UserTE = EI.UserTE; + auto It = Users.find(UserTE); + if (It == Users.end()) + It = Users.insert({UserTE, {}}).first; + It->second.emplace_back(EI.EdgeIdx, TE); + } + } + // Erase filtered entries. + for_each(Filtered, + [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); + SmallVector< + std::pair<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>>> + UsersVec(Users.begin(), Users.end()); + sort(UsersVec, [](const auto &Data1, const auto &Data2) { + return Data1.first->Idx > Data2.first->Idx; + }); + for (auto &Data : UsersVec) { + // Check that operands are used only in the User node. + SmallVector<TreeEntry *> GatherOps; + if (!canReorderOperands(Data.first, Data.second, NonVectorized, + GatherOps)) { + for_each(Data.second, + [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { + OrderedEntries.remove(Op.second); + }); + continue; + } + // All operands are reordered and used only in this node - propagate the + // most used order to the user node. + MapVector<OrdersType, unsigned, + DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> + OrdersUses; + // Do the analysis for each tree entry only once, otherwise the order of + // the same node my be considered several times, though might be not + // profitable. + SmallPtrSet<const TreeEntry *, 4> VisitedOps; + SmallPtrSet<const TreeEntry *, 4> VisitedUsers; + for (const auto &Op : Data.second) { + TreeEntry *OpTE = Op.second; + if (!VisitedOps.insert(OpTE).second) + continue; + if (!OpTE->ReuseShuffleIndices.empty() && !GathersToOrders.count(OpTE)) + continue; + const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { + if (OpTE->State == TreeEntry::NeedToGather || + !OpTE->ReuseShuffleIndices.empty()) + return GathersToOrders.find(OpTE)->second; + return OpTE->ReorderIndices; + }(); + unsigned NumOps = count_if( + Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { + return P.second == OpTE; + }); + // Stores actually store the mask, not the order, need to invert. + if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && + OpTE->getOpcode() == Instruction::Store && !Order.empty()) { + SmallVector<int> Mask; + inversePermutation(Order, Mask); + unsigned E = Order.size(); + OrdersType CurrentOrder(E, E); + transform(Mask, CurrentOrder.begin(), [E](int Idx) { + return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); + }); + fixupOrderingIndices(CurrentOrder); + OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += + NumOps; + } else { + OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; + } + auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); + const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( + const TreeEntry *TE) { + if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || + (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || + (IgnoreReorder && TE->Idx == 0)) + return true; + if (TE->State == TreeEntry::NeedToGather) { + auto It = GathersToOrders.find(TE); + if (It != GathersToOrders.end()) + return !It->second.empty(); + return true; + } + return false; + }; + for (const EdgeInfo &EI : OpTE->UserTreeIndices) { + TreeEntry *UserTE = EI.UserTE; + if (!VisitedUsers.insert(UserTE).second) + continue; + // May reorder user node if it requires reordering, has reused + // scalars, is an alternate op vectorize node or its op nodes require + // reordering. + if (AllowsReordering(UserTE)) + continue; + // Check if users allow reordering. + // Currently look up just 1 level of operands to avoid increase of + // the compile time. + // Profitable to reorder if definitely more operands allow + // reordering rather than those with natural order. + ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; + if (static_cast<unsigned>(count_if( + Ops, [UserTE, &AllowsReordering]( + const std::pair<unsigned, TreeEntry *> &Op) { + return AllowsReordering(Op.second) && + all_of(Op.second->UserTreeIndices, + [UserTE](const EdgeInfo &EI) { + return EI.UserTE == UserTE; + }); + })) <= Ops.size() / 2) + ++Res.first->second; + } + } + // If no orders - skip current nodes and jump to the next one, if any. + if (OrdersUses.empty()) { + for_each(Data.second, + [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { + OrderedEntries.remove(Op.second); + }); + continue; + } + // Choose the best order. + ArrayRef<unsigned> BestOrder = OrdersUses.front().first; + unsigned Cnt = OrdersUses.front().second; + for (const auto &Pair : drop_begin(OrdersUses)) { + if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { + BestOrder = Pair.first; + Cnt = Pair.second; + } + } + // Set order of the user node (reordering of operands and user nodes). + if (BestOrder.empty()) { + for_each(Data.second, + [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { + OrderedEntries.remove(Op.second); + }); + continue; + } + // Erase operands from OrderedEntries list and adjust their orders. + VisitedOps.clear(); + SmallVector<int> Mask; + inversePermutation(BestOrder, Mask); + SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); + unsigned E = BestOrder.size(); + transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { + return I < E ? static_cast<int>(I) : UndefMaskElem; + }); + for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { + TreeEntry *TE = Op.second; + OrderedEntries.remove(TE); + if (!VisitedOps.insert(TE).second) + continue; + if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { + reorderNodeWithReuses(*TE, Mask); + continue; + } + // Gathers are processed separately. + if (TE->State != TreeEntry::Vectorize) + continue; + assert((BestOrder.size() == TE->ReorderIndices.size() || + TE->ReorderIndices.empty()) && + "Non-matching sizes of user/operand entries."); + reorderOrder(TE->ReorderIndices, Mask); + if (IgnoreReorder && TE == VectorizableTree.front().get()) + IgnoreReorder = false; + } + // For gathers just need to reorder its scalars. + for (TreeEntry *Gather : GatherOps) { + assert(Gather->ReorderIndices.empty() && + "Unexpected reordering of gathers."); + if (!Gather->ReuseShuffleIndices.empty()) { + // Just reorder reuses indices. + reorderReuses(Gather->ReuseShuffleIndices, Mask); + continue; + } + reorderScalars(Gather->Scalars, Mask); + OrderedEntries.remove(Gather); + } + // Reorder operands of the user node and set the ordering for the user + // node itself. + if (Data.first->State != TreeEntry::Vectorize || + !isa<ExtractElementInst, ExtractValueInst, LoadInst>( + Data.first->getMainOp()) || + Data.first->isAltShuffle()) + Data.first->reorderOperands(Mask); + if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || + Data.first->isAltShuffle()) { + reorderScalars(Data.first->Scalars, Mask); + reorderOrder(Data.first->ReorderIndices, MaskOrder); + if (Data.first->ReuseShuffleIndices.empty() && + !Data.first->ReorderIndices.empty() && + !Data.first->isAltShuffle()) { + // Insert user node to the list to try to sink reordering deeper in + // the graph. + OrderedEntries.insert(Data.first); + } + } else { + reorderOrder(Data.first->ReorderIndices, Mask); + } + } + } + // If the reordering is unnecessary, just remove the reorder. + if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && + VectorizableTree.front()->ReuseShuffleIndices.empty()) + VectorizableTree.front()->ReorderIndices.clear(); +} + +void BoUpSLP::buildExternalUses( + const ExtraValueToDebugLocsMap &ExternallyUsedValues) { + // Collect the values that we need to extract from the tree. + for (auto &TEPtr : VectorizableTree) { + TreeEntry *Entry = TEPtr.get(); + + // No need to handle users of gathered values. + if (Entry->State == TreeEntry::NeedToGather) + continue; + + // For each lane: + for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { + Value *Scalar = Entry->Scalars[Lane]; + int FoundLane = Entry->findLaneForValue(Scalar); + + // Check if the scalar is externally used as an extra arg. + auto ExtI = ExternallyUsedValues.find(Scalar); + if (ExtI != ExternallyUsedValues.end()) { + LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " + << Lane << " from " << *Scalar << ".\n"); + ExternalUses.emplace_back(Scalar, nullptr, FoundLane); + } + for (User *U : Scalar->users()) { + LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); + + Instruction *UserInst = dyn_cast<Instruction>(U); + if (!UserInst) + continue; + + if (isDeleted(UserInst)) + continue; + + // Skip in-tree scalars that become vectors + if (TreeEntry *UseEntry = getTreeEntry(U)) { + Value *UseScalar = UseEntry->Scalars[0]; + // Some in-tree scalars will remain as scalar in vectorized + // instructions. If that is the case, the one in Lane 0 will + // be used. + if (UseScalar != U || + UseEntry->State == TreeEntry::ScatterVectorize || + !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { + LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U + << ".\n"); + assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); + continue; + } + } + + // Ignore users in the user ignore list. + if (UserIgnoreList && UserIgnoreList->contains(UserInst)) + continue; + + LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " + << Lane << " from " << *Scalar << ".\n"); + ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); + } + } + } +} + +DenseMap<Value *, SmallVector<StoreInst *, 4>> +BoUpSLP::collectUserStores(const BoUpSLP::TreeEntry *TE) const { + DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap; + for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) { + Value *V = TE->Scalars[Lane]; + // To save compilation time we don't visit if we have too many users. + static constexpr unsigned UsersLimit = 4; + if (V->hasNUsesOrMore(UsersLimit)) + break; + + // Collect stores per pointer object. + for (User *U : V->users()) { + auto *SI = dyn_cast<StoreInst>(U); + if (SI == nullptr || !SI->isSimple() || + !isValidElementType(SI->getValueOperand()->getType())) + continue; + // Skip entry if already + if (getTreeEntry(U)) + continue; + + Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); + auto &StoresVec = PtrToStoresMap[Ptr]; + // For now just keep one store per pointer object per lane. + // TODO: Extend this to support multiple stores per pointer per lane + if (StoresVec.size() > Lane) + continue; + // Skip if in different BBs. + if (!StoresVec.empty() && + SI->getParent() != StoresVec.back()->getParent()) + continue; + // Make sure that the stores are of the same type. + if (!StoresVec.empty() && + SI->getValueOperand()->getType() != + StoresVec.back()->getValueOperand()->getType()) + continue; + StoresVec.push_back(SI); + } + } + return PtrToStoresMap; +} + +bool BoUpSLP::canFormVector(const SmallVector<StoreInst *, 4> &StoresVec, + OrdersType &ReorderIndices) const { + // We check whether the stores in StoreVec can form a vector by sorting them + // and checking whether they are consecutive. + + // To avoid calling getPointersDiff() while sorting we create a vector of + // pairs {store, offset from first} and sort this instead. + SmallVector<std::pair<StoreInst *, int>, 4> StoreOffsetVec(StoresVec.size()); + StoreInst *S0 = StoresVec[0]; + StoreOffsetVec[0] = {S0, 0}; + Type *S0Ty = S0->getValueOperand()->getType(); + Value *S0Ptr = S0->getPointerOperand(); + for (unsigned Idx : seq<unsigned>(1, StoresVec.size())) { + StoreInst *SI = StoresVec[Idx]; + std::optional<int> Diff = + getPointersDiff(S0Ty, S0Ptr, SI->getValueOperand()->getType(), + SI->getPointerOperand(), *DL, *SE, + /*StrictCheck=*/true); + // We failed to compare the pointers so just abandon this StoresVec. + if (!Diff) + return false; + StoreOffsetVec[Idx] = {StoresVec[Idx], *Diff}; + } + + // Sort the vector based on the pointers. We create a copy because we may + // need the original later for calculating the reorder (shuffle) indices. + stable_sort(StoreOffsetVec, [](const std::pair<StoreInst *, int> &Pair1, + const std::pair<StoreInst *, int> &Pair2) { + int Offset1 = Pair1.second; + int Offset2 = Pair2.second; + return Offset1 < Offset2; + }); + + // Check if the stores are consecutive by checking if their difference is 1. + for (unsigned Idx : seq<unsigned>(1, StoreOffsetVec.size())) + if (StoreOffsetVec[Idx].second != StoreOffsetVec[Idx-1].second + 1) + return false; + + // Calculate the shuffle indices according to their offset against the sorted + // StoreOffsetVec. + ReorderIndices.reserve(StoresVec.size()); + for (StoreInst *SI : StoresVec) { + unsigned Idx = find_if(StoreOffsetVec, + [SI](const std::pair<StoreInst *, int> &Pair) { + return Pair.first == SI; + }) - + StoreOffsetVec.begin(); + ReorderIndices.push_back(Idx); + } + // Identity order (e.g., {0,1,2,3}) is modeled as an empty OrdersType in + // reorderTopToBottom() and reorderBottomToTop(), so we are following the + // same convention here. + auto IsIdentityOrder = [](const OrdersType &Order) { + for (unsigned Idx : seq<unsigned>(0, Order.size())) + if (Idx != Order[Idx]) + return false; + return true; + }; + if (IsIdentityOrder(ReorderIndices)) + ReorderIndices.clear(); + + return true; +} + +#ifndef NDEBUG +LLVM_DUMP_METHOD static void dumpOrder(const BoUpSLP::OrdersType &Order) { + for (unsigned Idx : Order) + dbgs() << Idx << ", "; + dbgs() << "\n"; +} +#endif + +SmallVector<BoUpSLP::OrdersType, 1> +BoUpSLP::findExternalStoreUsersReorderIndices(TreeEntry *TE) const { + unsigned NumLanes = TE->Scalars.size(); + + DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap = + collectUserStores(TE); + + // Holds the reorder indices for each candidate store vector that is a user of + // the current TreeEntry. + SmallVector<OrdersType, 1> ExternalReorderIndices; + + // Now inspect the stores collected per pointer and look for vectorization + // candidates. For each candidate calculate the reorder index vector and push + // it into `ExternalReorderIndices` + for (const auto &Pair : PtrToStoresMap) { + auto &StoresVec = Pair.second; + // If we have fewer than NumLanes stores, then we can't form a vector. + if (StoresVec.size() != NumLanes) + continue; + + // If the stores are not consecutive then abandon this StoresVec. + OrdersType ReorderIndices; + if (!canFormVector(StoresVec, ReorderIndices)) + continue; + + // We now know that the scalars in StoresVec can form a vector instruction, + // so set the reorder indices. + ExternalReorderIndices.push_back(ReorderIndices); + } + return ExternalReorderIndices; +} + +void BoUpSLP::buildTree(ArrayRef<Value *> Roots, + const SmallDenseSet<Value *> &UserIgnoreLst) { + deleteTree(); + UserIgnoreList = &UserIgnoreLst; + if (!allSameType(Roots)) + return; + buildTree_rec(Roots, 0, EdgeInfo()); +} + +void BoUpSLP::buildTree(ArrayRef<Value *> Roots) { + deleteTree(); + if (!allSameType(Roots)) + return; + buildTree_rec(Roots, 0, EdgeInfo()); +} + +/// \return true if the specified list of values has only one instruction that +/// requires scheduling, false otherwise. +#ifndef NDEBUG +static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { + Value *NeedsScheduling = nullptr; + for (Value *V : VL) { + if (doesNotNeedToBeScheduled(V)) + continue; + if (!NeedsScheduling) { + NeedsScheduling = V; + continue; + } + return false; + } + return NeedsScheduling; +} +#endif + +/// Generates key/subkey pair for the given value to provide effective sorting +/// of the values and better detection of the vectorizable values sequences. The +/// keys/subkeys can be used for better sorting of the values themselves (keys) +/// and in values subgroups (subkeys). +static std::pair<size_t, size_t> generateKeySubkey( + Value *V, const TargetLibraryInfo *TLI, + function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator, + bool AllowAlternate) { + hash_code Key = hash_value(V->getValueID() + 2); + hash_code SubKey = hash_value(0); + // Sort the loads by the distance between the pointers. + if (auto *LI = dyn_cast<LoadInst>(V)) { + Key = hash_combine(LI->getType(), hash_value(Instruction::Load), Key); + if (LI->isSimple()) + SubKey = hash_value(LoadsSubkeyGenerator(Key, LI)); + else + Key = SubKey = hash_value(LI); + } else if (isVectorLikeInstWithConstOps(V)) { + // Sort extracts by the vector operands. + if (isa<ExtractElementInst, UndefValue>(V)) + Key = hash_value(Value::UndefValueVal + 1); + if (auto *EI = dyn_cast<ExtractElementInst>(V)) { + if (!isUndefVector(EI->getVectorOperand()).all() && + !isa<UndefValue>(EI->getIndexOperand())) + SubKey = hash_value(EI->getVectorOperand()); + } + } else if (auto *I = dyn_cast<Instruction>(V)) { + // Sort other instructions just by the opcodes except for CMPInst. + // For CMP also sort by the predicate kind. + if ((isa<BinaryOperator, CastInst>(I)) && + isValidForAlternation(I->getOpcode())) { + if (AllowAlternate) + Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0); + else + Key = hash_combine(hash_value(I->getOpcode()), Key); + SubKey = hash_combine( + hash_value(I->getOpcode()), hash_value(I->getType()), + hash_value(isa<BinaryOperator>(I) + ? I->getType() + : cast<CastInst>(I)->getOperand(0)->getType())); + // For casts, look through the only operand to improve compile time. + if (isa<CastInst>(I)) { + std::pair<size_t, size_t> OpVals = + generateKeySubkey(I->getOperand(0), TLI, LoadsSubkeyGenerator, + /*AllowAlternate=*/true); + Key = hash_combine(OpVals.first, Key); + SubKey = hash_combine(OpVals.first, SubKey); + } + } else if (auto *CI = dyn_cast<CmpInst>(I)) { + CmpInst::Predicate Pred = CI->getPredicate(); + if (CI->isCommutative()) + Pred = std::min(Pred, CmpInst::getInversePredicate(Pred)); + CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred); + SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred), + hash_value(SwapPred), + hash_value(CI->getOperand(0)->getType())); + } else if (auto *Call = dyn_cast<CallInst>(I)) { + Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI); + if (isTriviallyVectorizable(ID)) { + SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID)); + } else if (!VFDatabase(*Call).getMappings(*Call).empty()) { + SubKey = hash_combine(hash_value(I->getOpcode()), + hash_value(Call->getCalledFunction())); + } else { + Key = hash_combine(hash_value(Call), Key); + SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call)); + } + for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos()) + SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End), + hash_value(Op.Tag), SubKey); + } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { + if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1))) + SubKey = hash_value(Gep->getPointerOperand()); + else + SubKey = hash_value(Gep); + } else if (BinaryOperator::isIntDivRem(I->getOpcode()) && + !isa<ConstantInt>(I->getOperand(1))) { + // Do not try to vectorize instructions with potentially high cost. + SubKey = hash_value(I); + } else { + SubKey = hash_value(I->getOpcode()); + } + Key = hash_combine(hash_value(I->getParent()), Key); + } + return std::make_pair(Key, SubKey); +} + +/// Checks if the specified instruction \p I is an alternate operation for +/// the given \p MainOp and \p AltOp instructions. +static bool isAlternateInstruction(const Instruction *I, + const Instruction *MainOp, + const Instruction *AltOp, + const TargetLibraryInfo &TLI); + +void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, + const EdgeInfo &UserTreeIdx) { + assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); + + SmallVector<int> ReuseShuffleIndicies; + SmallVector<Value *> UniqueValues; + auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, + &UserTreeIdx, + this](const InstructionsState &S) { + // Check that every instruction appears once in this bundle. + DenseMap<Value *, unsigned> UniquePositions(VL.size()); + for (Value *V : VL) { + if (isConstant(V)) { + ReuseShuffleIndicies.emplace_back( + isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); + UniqueValues.emplace_back(V); + continue; + } + auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); + ReuseShuffleIndicies.emplace_back(Res.first->second); + if (Res.second) + UniqueValues.emplace_back(V); + } + size_t NumUniqueScalarValues = UniqueValues.size(); + if (NumUniqueScalarValues == VL.size()) { + ReuseShuffleIndicies.clear(); + } else { + LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); + if (NumUniqueScalarValues <= 1 || + (UniquePositions.size() == 1 && all_of(UniqueValues, + [](Value *V) { + return isa<UndefValue>(V) || + !isConstant(V); + })) || + !llvm::isPowerOf2_32(NumUniqueScalarValues)) { + LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); + return false; + } + VL = UniqueValues; + } + return true; + }; + + InstructionsState S = getSameOpcode(VL, *TLI); + + // Gather if we hit the RecursionMaxDepth, unless this is a load (or z/sext of + // a load), in which case peek through to include it in the tree, without + // ballooning over-budget. + if (Depth >= RecursionMaxDepth && + !(S.MainOp && isa<Instruction>(S.MainOp) && S.MainOp == S.AltOp && + VL.size() >= 4 && + (match(S.MainOp, m_Load(m_Value())) || all_of(VL, [&S](const Value *I) { + return match(I, + m_OneUse(m_ZExtOrSExt(m_OneUse(m_Load(m_Value()))))) && + cast<Instruction>(I)->getOpcode() == + cast<Instruction>(S.MainOp)->getOpcode(); + })))) { + LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); + if (TryToFindDuplicates(S)) + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + return; + } + + // Don't handle scalable vectors + if (S.getOpcode() == Instruction::ExtractElement && + isa<ScalableVectorType>( + cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { + LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); + if (TryToFindDuplicates(S)) + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + return; + } + + // Don't handle vectors. + if (S.OpValue->getType()->isVectorTy() && + !isa<InsertElementInst>(S.OpValue)) { + LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); + return; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) + if (SI->getValueOperand()->getType()->isVectorTy()) { + LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); + return; + } + + // If all of the operands are identical or constant we have a simple solution. + // If we deal with insert/extract instructions, they all must have constant + // indices, otherwise we should gather them, not try to vectorize. + // If alternate op node with 2 elements with gathered operands - do not + // vectorize. + auto &&NotProfitableForVectorization = [&S, this, + Depth](ArrayRef<Value *> VL) { + if (!S.getOpcode() || !S.isAltShuffle() || VL.size() > 2) + return false; + if (VectorizableTree.size() < MinTreeSize) + return false; + if (Depth >= RecursionMaxDepth - 1) + return true; + // Check if all operands are extracts, part of vector node or can build a + // regular vectorize node. + SmallVector<unsigned, 2> InstsCount(VL.size(), 0); + for (Value *V : VL) { + auto *I = cast<Instruction>(V); + InstsCount.push_back(count_if(I->operand_values(), [](Value *Op) { + return isa<Instruction>(Op) || isVectorLikeInstWithConstOps(Op); + })); + } + bool IsCommutative = isCommutative(S.MainOp) || isCommutative(S.AltOp); + if ((IsCommutative && + std::accumulate(InstsCount.begin(), InstsCount.end(), 0) < 2) || + (!IsCommutative && + all_of(InstsCount, [](unsigned ICnt) { return ICnt < 2; }))) + return true; + assert(VL.size() == 2 && "Expected only 2 alternate op instructions."); + SmallVector<SmallVector<std::pair<Value *, Value *>>> Candidates; + auto *I1 = cast<Instruction>(VL.front()); + auto *I2 = cast<Instruction>(VL.back()); + for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) + Candidates.emplace_back().emplace_back(I1->getOperand(Op), + I2->getOperand(Op)); + if (static_cast<unsigned>(count_if( + Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { + return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); + })) >= S.MainOp->getNumOperands() / 2) + return false; + if (S.MainOp->getNumOperands() > 2) + return true; + if (IsCommutative) { + // Check permuted operands. + Candidates.clear(); + for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) + Candidates.emplace_back().emplace_back(I1->getOperand(Op), + I2->getOperand((Op + 1) % E)); + if (any_of( + Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { + return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); + })) + return false; + } + return true; + }; + SmallVector<unsigned> SortedIndices; + BasicBlock *BB = nullptr; + bool IsScatterVectorizeUserTE = + UserTreeIdx.UserTE && + UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize; + bool AreAllSameInsts = + (S.getOpcode() && allSameBlock(VL)) || + (S.OpValue->getType()->isPointerTy() && IsScatterVectorizeUserTE && + VL.size() > 2 && + all_of(VL, + [&BB](Value *V) { + auto *I = dyn_cast<GetElementPtrInst>(V); + if (!I) + return doesNotNeedToBeScheduled(V); + if (!BB) + BB = I->getParent(); + return BB == I->getParent() && I->getNumOperands() == 2; + }) && + BB && + sortPtrAccesses(VL, UserTreeIdx.UserTE->getMainOp()->getType(), *DL, *SE, + SortedIndices)); + if (!AreAllSameInsts || allConstant(VL) || isSplat(VL) || + (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>( + S.OpValue) && + !all_of(VL, isVectorLikeInstWithConstOps)) || + NotProfitableForVectorization(VL)) { + LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O, small shuffle. \n"); + if (TryToFindDuplicates(S)) + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + return; + } + + // We now know that this is a vector of instructions of the same type from + // the same block. + + // Don't vectorize ephemeral values. + if (!EphValues.empty()) { + for (Value *V : VL) { + if (EphValues.count(V)) { + LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V + << ") is ephemeral.\n"); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); + return; + } + } + } + + // Check if this is a duplicate of another entry. + if (TreeEntry *E = getTreeEntry(S.OpValue)) { + LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); + if (!E->isSame(VL)) { + LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); + if (TryToFindDuplicates(S)) + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + return; + } + // Record the reuse of the tree node. FIXME, currently this is only used to + // properly draw the graph rather than for the actual vectorization. + E->UserTreeIndices.push_back(UserTreeIdx); + LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue + << ".\n"); + return; + } + + // Check that none of the instructions in the bundle are already in the tree. + for (Value *V : VL) { + if (!IsScatterVectorizeUserTE && !isa<Instruction>(V)) + continue; + if (getTreeEntry(V)) { + LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V + << ") is already in tree.\n"); + if (TryToFindDuplicates(S)) + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + return; + } + } + + // The reduction nodes (stored in UserIgnoreList) also should stay scalar. + if (UserIgnoreList && !UserIgnoreList->empty()) { + for (Value *V : VL) { + if (UserIgnoreList && UserIgnoreList->contains(V)) { + LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); + if (TryToFindDuplicates(S)) + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + return; + } + } + } + + // Special processing for sorted pointers for ScatterVectorize node with + // constant indeces only. + if (AreAllSameInsts && UserTreeIdx.UserTE && + UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize && + !(S.getOpcode() && allSameBlock(VL))) { + assert(S.OpValue->getType()->isPointerTy() && + count_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }) >= + 2 && + "Expected pointers only."); + // Reset S to make it GetElementPtr kind of node. + const auto *It = find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }); + assert(It != VL.end() && "Expected at least one GEP."); + S = getSameOpcode(*It, *TLI); + } + + // Check that all of the users of the scalars that we want to vectorize are + // schedulable. + auto *VL0 = cast<Instruction>(S.OpValue); + BB = VL0->getParent(); + + if (!DT->isReachableFromEntry(BB)) { + // Don't go into unreachable blocks. They may contain instructions with + // dependency cycles which confuse the final scheduling. + LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); + return; + } + + // Don't go into catchswitch blocks, which can happen with PHIs. + // Such blocks can only have PHIs and the catchswitch. There is no + // place to insert a shuffle if we need to, so just avoid that issue. + if (isa<CatchSwitchInst>(BB->getTerminator())) { + LLVM_DEBUG(dbgs() << "SLP: bundle in catchswitch block.\n"); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); + return; + } + + // Check that every instruction appears once in this bundle. + if (!TryToFindDuplicates(S)) + return; + + auto &BSRef = BlocksSchedules[BB]; + if (!BSRef) + BSRef = std::make_unique<BlockScheduling>(BB); + + BlockScheduling &BS = *BSRef; + + std::optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); +#ifdef EXPENSIVE_CHECKS + // Make sure we didn't break any internal invariants + BS.verify(); +#endif + if (!Bundle) { + LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); + assert((!BS.getScheduleData(VL0) || + !BS.getScheduleData(VL0)->isPartOfBundle()) && + "tryScheduleBundle should cancelScheduling on failure"); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + return; + } + LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); + + unsigned ShuffleOrOp = S.isAltShuffle() ? + (unsigned) Instruction::ShuffleVector : S.getOpcode(); + switch (ShuffleOrOp) { + case Instruction::PHI: { + auto *PH = cast<PHINode>(VL0); + + // Check for terminator values (e.g. invoke). + for (Value *V : VL) + for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { + Instruction *Term = dyn_cast<Instruction>(Incoming); + if (Term && Term->isTerminator()) { + LLVM_DEBUG(dbgs() + << "SLP: Need to swizzle PHINodes (terminator use).\n"); + BS.cancelScheduling(VL, VL0); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + return; + } + } + + TreeEntry *TE = + newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); + LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); + + // Keeps the reordered operands to avoid code duplication. + SmallVector<ValueList, 2> OperandsVec; + for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { + if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { + ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); + TE->setOperand(I, Operands); + OperandsVec.push_back(Operands); + continue; + } + ValueList Operands; + // Prepare the operand vector. + for (Value *V : VL) + Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( + PH->getIncomingBlock(I))); + TE->setOperand(I, Operands); + OperandsVec.push_back(Operands); + } + for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) + buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); + return; + } + case Instruction::ExtractValue: + case Instruction::ExtractElement: { + OrdersType CurrentOrder; + bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); + if (Reuse) { + LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); + newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + // This is a special case, as it does not gather, but at the same time + // we are not extending buildTree_rec() towards the operands. + ValueList Op0; + Op0.assign(VL.size(), VL0->getOperand(0)); + VectorizableTree.back()->setOperand(0, Op0); + return; + } + if (!CurrentOrder.empty()) { + LLVM_DEBUG({ + dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " + "with order"; + for (unsigned Idx : CurrentOrder) + dbgs() << " " << Idx; + dbgs() << "\n"; + }); + fixupOrderingIndices(CurrentOrder); + // Insert new order with initial value 0, if it does not exist, + // otherwise return the iterator to the existing one. + newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies, CurrentOrder); + // This is a special case, as it does not gather, but at the same time + // we are not extending buildTree_rec() towards the operands. + ValueList Op0; + Op0.assign(VL.size(), VL0->getOperand(0)); + VectorizableTree.back()->setOperand(0, Op0); + return; + } + LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + BS.cancelScheduling(VL, VL0); + return; + } + case Instruction::InsertElement: { + assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); + + // Check that we have a buildvector and not a shuffle of 2 or more + // different vectors. + ValueSet SourceVectors; + for (Value *V : VL) { + SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); + assert(getInsertIndex(V) != std::nullopt && + "Non-constant or undef index?"); + } + + if (count_if(VL, [&SourceVectors](Value *V) { + return !SourceVectors.contains(V); + }) >= 2) { + // Found 2nd source vector - cancel. + LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " + "different source vectors.\n"); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); + BS.cancelScheduling(VL, VL0); + return; + } + + auto OrdCompare = [](const std::pair<int, int> &P1, + const std::pair<int, int> &P2) { + return P1.first > P2.first; + }; + PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, + decltype(OrdCompare)> + Indices(OrdCompare); + for (int I = 0, E = VL.size(); I < E; ++I) { + unsigned Idx = *getInsertIndex(VL[I]); + Indices.emplace(Idx, I); + } + OrdersType CurrentOrder(VL.size(), VL.size()); + bool IsIdentity = true; + for (int I = 0, E = VL.size(); I < E; ++I) { + CurrentOrder[Indices.top().second] = I; + IsIdentity &= Indices.top().second == I; + Indices.pop(); + } + if (IsIdentity) + CurrentOrder.clear(); + TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, + std::nullopt, CurrentOrder); + LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); + + constexpr int NumOps = 2; + ValueList VectorOperands[NumOps]; + for (int I = 0; I < NumOps; ++I) { + for (Value *V : VL) + VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); + + TE->setOperand(I, VectorOperands[I]); + } + buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); + return; + } + case Instruction::Load: { + // Check that a vectorized load would load the same memory as a scalar + // load. For example, we don't want to vectorize loads that are smaller + // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM + // treats loading/storing it as an i8 struct. If we vectorize loads/stores + // from such a struct, we read/write packed bits disagreeing with the + // unvectorized version. + SmallVector<Value *> PointerOps; + OrdersType CurrentOrder; + TreeEntry *TE = nullptr; + switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, *LI, *TLI, + CurrentOrder, PointerOps)) { + case LoadsState::Vectorize: + if (CurrentOrder.empty()) { + // Original loads are consecutive and does not require reordering. + TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); + } else { + fixupOrderingIndices(CurrentOrder); + // Need to reorder. + TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies, CurrentOrder); + LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); + } + TE->setOperandsInOrder(); + break; + case LoadsState::ScatterVectorize: + // Vectorizing non-consecutive loads with `llvm.masked.gather`. + TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, + UserTreeIdx, ReuseShuffleIndicies); + TE->setOperandsInOrder(); + buildTree_rec(PointerOps, Depth + 1, {TE, 0}); + LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); + break; + case LoadsState::Gather: + BS.cancelScheduling(VL, VL0); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); +#ifndef NDEBUG + Type *ScalarTy = VL0->getType(); + if (DL->getTypeSizeInBits(ScalarTy) != + DL->getTypeAllocSizeInBits(ScalarTy)) + LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); + else if (any_of(VL, [](Value *V) { + return !cast<LoadInst>(V)->isSimple(); + })) + LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); + else + LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); +#endif // NDEBUG + break; + } + return; + } + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::FPExt: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::SIToFP: + case Instruction::UIToFP: + case Instruction::Trunc: + case Instruction::FPTrunc: + case Instruction::BitCast: { + Type *SrcTy = VL0->getOperand(0)->getType(); + for (Value *V : VL) { + Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); + if (Ty != SrcTy || !isValidElementType(Ty)) { + BS.cancelScheduling(VL, VL0); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + LLVM_DEBUG(dbgs() + << "SLP: Gathering casts with different src types.\n"); + return; + } + } + TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); + + TE->setOperandsInOrder(); + for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { + ValueList Operands; + // Prepare the operand vector. + for (Value *V : VL) + Operands.push_back(cast<Instruction>(V)->getOperand(i)); + + buildTree_rec(Operands, Depth + 1, {TE, i}); + } + return; + } + case Instruction::ICmp: + case Instruction::FCmp: { + // Check that all of the compares have the same predicate. + CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); + CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); + Type *ComparedTy = VL0->getOperand(0)->getType(); + for (Value *V : VL) { + CmpInst *Cmp = cast<CmpInst>(V); + if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || + Cmp->getOperand(0)->getType() != ComparedTy) { + BS.cancelScheduling(VL, VL0); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + LLVM_DEBUG(dbgs() + << "SLP: Gathering cmp with different predicate.\n"); + return; + } + } + + TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); + + ValueList Left, Right; + if (cast<CmpInst>(VL0)->isCommutative()) { + // Commutative predicate - collect + sort operands of the instructions + // so that each side is more likely to have the same opcode. + assert(P0 == SwapP0 && "Commutative Predicate mismatch"); + reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE, *this); + } else { + // Collect operands - commute if it uses the swapped predicate. + for (Value *V : VL) { + auto *Cmp = cast<CmpInst>(V); + Value *LHS = Cmp->getOperand(0); + Value *RHS = Cmp->getOperand(1); + if (Cmp->getPredicate() != P0) + std::swap(LHS, RHS); + Left.push_back(LHS); + Right.push_back(RHS); + } + } + TE->setOperand(0, Left); + TE->setOperand(1, Right); + buildTree_rec(Left, Depth + 1, {TE, 0}); + buildTree_rec(Right, Depth + 1, {TE, 1}); + return; + } + case Instruction::Select: + case Instruction::FNeg: + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); + + // Sort operands of the instructions so that each side is more likely to + // have the same opcode. + if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { + ValueList Left, Right; + reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE, *this); + TE->setOperand(0, Left); + TE->setOperand(1, Right); + buildTree_rec(Left, Depth + 1, {TE, 0}); + buildTree_rec(Right, Depth + 1, {TE, 1}); + return; + } + + TE->setOperandsInOrder(); + for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { + ValueList Operands; + // Prepare the operand vector. + for (Value *V : VL) + Operands.push_back(cast<Instruction>(V)->getOperand(i)); + + buildTree_rec(Operands, Depth + 1, {TE, i}); + } + return; + } + case Instruction::GetElementPtr: { + // We don't combine GEPs with complicated (nested) indexing. + for (Value *V : VL) { + auto *I = dyn_cast<GetElementPtrInst>(V); + if (!I) + continue; + if (I->getNumOperands() != 2) { + LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); + BS.cancelScheduling(VL, VL0); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + return; + } + } + + // We can't combine several GEPs into one vector if they operate on + // different types. + Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); + for (Value *V : VL) { + auto *GEP = dyn_cast<GEPOperator>(V); + if (!GEP) + continue; + Type *CurTy = GEP->getSourceElementType(); + if (Ty0 != CurTy) { + LLVM_DEBUG(dbgs() + << "SLP: not-vectorizable GEP (different types).\n"); + BS.cancelScheduling(VL, VL0); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + return; + } + } + + // We don't combine GEPs with non-constant indexes. + Type *Ty1 = VL0->getOperand(1)->getType(); + for (Value *V : VL) { + auto *I = dyn_cast<GetElementPtrInst>(V); + if (!I) + continue; + auto *Op = I->getOperand(1); + if ((!IsScatterVectorizeUserTE && !isa<ConstantInt>(Op)) || + (Op->getType() != Ty1 && + ((IsScatterVectorizeUserTE && !isa<ConstantInt>(Op)) || + Op->getType()->getScalarSizeInBits() > + DL->getIndexSizeInBits( + V->getType()->getPointerAddressSpace())))) { + LLVM_DEBUG(dbgs() + << "SLP: not-vectorizable GEP (non-constant indexes).\n"); + BS.cancelScheduling(VL, VL0); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + return; + } + } + + TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); + SmallVector<ValueList, 2> Operands(2); + // Prepare the operand vector for pointer operands. + for (Value *V : VL) { + auto *GEP = dyn_cast<GetElementPtrInst>(V); + if (!GEP) { + Operands.front().push_back(V); + continue; + } + Operands.front().push_back(GEP->getPointerOperand()); + } + TE->setOperand(0, Operands.front()); + // Need to cast all indices to the same type before vectorization to + // avoid crash. + // Required to be able to find correct matches between different gather + // nodes and reuse the vectorized values rather than trying to gather them + // again. + int IndexIdx = 1; + Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); + Type *Ty = all_of(VL, + [VL0Ty, IndexIdx](Value *V) { + auto *GEP = dyn_cast<GetElementPtrInst>(V); + if (!GEP) + return true; + return VL0Ty == GEP->getOperand(IndexIdx)->getType(); + }) + ? VL0Ty + : DL->getIndexType(cast<GetElementPtrInst>(VL0) + ->getPointerOperandType() + ->getScalarType()); + // Prepare the operand vector. + for (Value *V : VL) { + auto *I = dyn_cast<GetElementPtrInst>(V); + if (!I) { + Operands.back().push_back( + ConstantInt::get(Ty, 0, /*isSigned=*/false)); + continue; + } + auto *Op = I->getOperand(IndexIdx); + auto *CI = dyn_cast<ConstantInt>(Op); + if (!CI) + Operands.back().push_back(Op); + else + Operands.back().push_back(ConstantExpr::getIntegerCast( + CI, Ty, CI->getValue().isSignBitSet())); + } + TE->setOperand(IndexIdx, Operands.back()); + + for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) + buildTree_rec(Operands[I], Depth + 1, {TE, I}); + return; + } + case Instruction::Store: { + // Check if the stores are consecutive or if we need to swizzle them. + llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); + // Avoid types that are padded when being allocated as scalars, while + // being packed together in a vector (such as i1). + if (DL->getTypeSizeInBits(ScalarTy) != + DL->getTypeAllocSizeInBits(ScalarTy)) { + BS.cancelScheduling(VL, VL0); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); + return; + } + // Make sure all stores in the bundle are simple - we can't vectorize + // atomic or volatile stores. + SmallVector<Value *, 4> PointerOps(VL.size()); + ValueList Operands(VL.size()); + auto POIter = PointerOps.begin(); + auto OIter = Operands.begin(); + for (Value *V : VL) { + auto *SI = cast<StoreInst>(V); + if (!SI->isSimple()) { + BS.cancelScheduling(VL, VL0); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); + return; + } + *POIter = SI->getPointerOperand(); + *OIter = SI->getValueOperand(); + ++POIter; + ++OIter; + } + + OrdersType CurrentOrder; + // Check the order of pointer operands. + if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { + Value *Ptr0; + Value *PtrN; + if (CurrentOrder.empty()) { + Ptr0 = PointerOps.front(); + PtrN = PointerOps.back(); + } else { + Ptr0 = PointerOps[CurrentOrder.front()]; + PtrN = PointerOps[CurrentOrder.back()]; + } + std::optional<int> Dist = + getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); + // Check that the sorted pointer operands are consecutive. + if (static_cast<unsigned>(*Dist) == VL.size() - 1) { + if (CurrentOrder.empty()) { + // Original stores are consecutive and does not require reordering. + TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, + UserTreeIdx, ReuseShuffleIndicies); + TE->setOperandsInOrder(); + buildTree_rec(Operands, Depth + 1, {TE, 0}); + LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); + } else { + fixupOrderingIndices(CurrentOrder); + TreeEntry *TE = + newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies, CurrentOrder); + TE->setOperandsInOrder(); + buildTree_rec(Operands, Depth + 1, {TE, 0}); + LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); + } + return; + } + } + + BS.cancelScheduling(VL, VL0); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); + return; + } + case Instruction::Call: { + // Check if the calls are all to the same vectorizable intrinsic or + // library function. + CallInst *CI = cast<CallInst>(VL0); + Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); + + VFShape Shape = VFShape::get( + *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), + false /*HasGlobalPred*/); + Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); + + if (!VecFunc && !isTriviallyVectorizable(ID)) { + BS.cancelScheduling(VL, VL0); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); + return; + } + Function *F = CI->getCalledFunction(); + unsigned NumArgs = CI->arg_size(); + SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); + for (unsigned j = 0; j != NumArgs; ++j) + if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) + ScalarArgs[j] = CI->getArgOperand(j); + for (Value *V : VL) { + CallInst *CI2 = dyn_cast<CallInst>(V); + if (!CI2 || CI2->getCalledFunction() != F || + getVectorIntrinsicIDForCall(CI2, TLI) != ID || + (VecFunc && + VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || + !CI->hasIdenticalOperandBundleSchema(*CI2)) { + BS.cancelScheduling(VL, VL0); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V + << "\n"); + return; + } + // Some intrinsics have scalar arguments and should be same in order for + // them to be vectorized. + for (unsigned j = 0; j != NumArgs; ++j) { + if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) { + Value *A1J = CI2->getArgOperand(j); + if (ScalarArgs[j] != A1J) { + BS.cancelScheduling(VL, VL0); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI + << " argument " << ScalarArgs[j] << "!=" << A1J + << "\n"); + return; + } + } + } + // Verify that the bundle operands are identical between the two calls. + if (CI->hasOperandBundles() && + !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), + CI->op_begin() + CI->getBundleOperandsEndIndex(), + CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { + BS.cancelScheduling(VL, VL0); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" + << *CI << "!=" << *V << '\n'); + return; + } + } + + TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + TE->setOperandsInOrder(); + for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { + // For scalar operands no need to to create an entry since no need to + // vectorize it. + if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) + continue; + ValueList Operands; + // Prepare the operand vector. + for (Value *V : VL) { + auto *CI2 = cast<CallInst>(V); + Operands.push_back(CI2->getArgOperand(i)); + } + buildTree_rec(Operands, Depth + 1, {TE, i}); + } + return; + } + case Instruction::ShuffleVector: { + // If this is not an alternate sequence of opcode like add-sub + // then do not vectorize this instruction. + if (!S.isAltShuffle()) { + BS.cancelScheduling(VL, VL0); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); + return; + } + TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); + + // Reorder operands if reordering would enable vectorization. + auto *CI = dyn_cast<CmpInst>(VL0); + if (isa<BinaryOperator>(VL0) || CI) { + ValueList Left, Right; + if (!CI || all_of(VL, [](Value *V) { + return cast<CmpInst>(V)->isCommutative(); + })) { + reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE, + *this); + } else { + auto *MainCI = cast<CmpInst>(S.MainOp); + auto *AltCI = cast<CmpInst>(S.AltOp); + CmpInst::Predicate MainP = MainCI->getPredicate(); + CmpInst::Predicate AltP = AltCI->getPredicate(); + assert(MainP != AltP && + "Expected different main/alternate predicates."); + // Collect operands - commute if it uses the swapped predicate or + // alternate operation. + for (Value *V : VL) { + auto *Cmp = cast<CmpInst>(V); + Value *LHS = Cmp->getOperand(0); + Value *RHS = Cmp->getOperand(1); + + if (isAlternateInstruction(Cmp, MainCI, AltCI, *TLI)) { + if (AltP == CmpInst::getSwappedPredicate(Cmp->getPredicate())) + std::swap(LHS, RHS); + } else { + if (MainP == CmpInst::getSwappedPredicate(Cmp->getPredicate())) + std::swap(LHS, RHS); + } + Left.push_back(LHS); + Right.push_back(RHS); + } + } + TE->setOperand(0, Left); + TE->setOperand(1, Right); + buildTree_rec(Left, Depth + 1, {TE, 0}); + buildTree_rec(Right, Depth + 1, {TE, 1}); + return; + } + + TE->setOperandsInOrder(); + for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { + ValueList Operands; + // Prepare the operand vector. + for (Value *V : VL) + Operands.push_back(cast<Instruction>(V)->getOperand(i)); + + buildTree_rec(Operands, Depth + 1, {TE, i}); + } + return; + } + default: + BS.cancelScheduling(VL, VL0); + newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, + ReuseShuffleIndicies); + LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); + return; + } +} + +unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { + unsigned N = 1; + Type *EltTy = T; + + while (isa<StructType, ArrayType, VectorType>(EltTy)) { + if (auto *ST = dyn_cast<StructType>(EltTy)) { + // Check that struct is homogeneous. + for (const auto *Ty : ST->elements()) + if (Ty != *ST->element_begin()) + return 0; + N *= ST->getNumElements(); + EltTy = *ST->element_begin(); + } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { + N *= AT->getNumElements(); + EltTy = AT->getElementType(); + } else { + auto *VT = cast<FixedVectorType>(EltTy); + N *= VT->getNumElements(); + EltTy = VT->getElementType(); + } + } + + if (!isValidElementType(EltTy)) + return 0; + uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); + if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) + return 0; + return N; +} + +bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, + SmallVectorImpl<unsigned> &CurrentOrder) const { + const auto *It = find_if(VL, [](Value *V) { + return isa<ExtractElementInst, ExtractValueInst>(V); + }); + assert(It != VL.end() && "Expected at least one extract instruction."); + auto *E0 = cast<Instruction>(*It); + assert(all_of(VL, + [](Value *V) { + return isa<UndefValue, ExtractElementInst, ExtractValueInst>( + V); + }) && + "Invalid opcode"); + // Check if all of the extracts come from the same vector and from the + // correct offset. + Value *Vec = E0->getOperand(0); + + CurrentOrder.clear(); + + // We have to extract from a vector/aggregate with the same number of elements. + unsigned NElts; + if (E0->getOpcode() == Instruction::ExtractValue) { + const DataLayout &DL = E0->getModule()->getDataLayout(); + NElts = canMapToVector(Vec->getType(), DL); + if (!NElts) + return false; + // Check if load can be rewritten as load of vector. + LoadInst *LI = dyn_cast<LoadInst>(Vec); + if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) + return false; + } else { + NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); + } + + if (NElts != VL.size()) + return false; + + // Check that all of the indices extract from the correct offset. + bool ShouldKeepOrder = true; + unsigned E = VL.size(); + // Assign to all items the initial value E + 1 so we can check if the extract + // instruction index was used already. + // Also, later we can check that all the indices are used and we have a + // consecutive access in the extract instructions, by checking that no + // element of CurrentOrder still has value E + 1. + CurrentOrder.assign(E, E); + unsigned I = 0; + for (; I < E; ++I) { + auto *Inst = dyn_cast<Instruction>(VL[I]); + if (!Inst) + continue; + if (Inst->getOperand(0) != Vec) + break; + if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) + if (isa<UndefValue>(EE->getIndexOperand())) + continue; + std::optional<unsigned> Idx = getExtractIndex(Inst); + if (!Idx) + break; + const unsigned ExtIdx = *Idx; + if (ExtIdx != I) { + if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) + break; + ShouldKeepOrder = false; + CurrentOrder[ExtIdx] = I; + } else { + if (CurrentOrder[I] != E) + break; + CurrentOrder[I] = I; + } + } + if (I < E) { + CurrentOrder.clear(); + return false; + } + if (ShouldKeepOrder) + CurrentOrder.clear(); + + return ShouldKeepOrder; +} + +bool BoUpSLP::areAllUsersVectorized(Instruction *I, + ArrayRef<Value *> VectorizedVals) const { + return (I->hasOneUse() && is_contained(VectorizedVals, I)) || + all_of(I->users(), [this](User *U) { + return ScalarToTreeEntry.count(U) > 0 || + isVectorLikeInstWithConstOps(U) || + (isa<ExtractElementInst>(U) && MustGather.contains(U)); + }); +} + +static std::pair<InstructionCost, InstructionCost> +getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, + TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { + Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); + + // Calculate the cost of the scalar and vector calls. + SmallVector<Type *, 4> VecTys; + for (Use &Arg : CI->args()) + VecTys.push_back( + FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); + FastMathFlags FMF; + if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) + FMF = FPCI->getFastMathFlags(); + SmallVector<const Value *> Arguments(CI->args()); + IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, + dyn_cast<IntrinsicInst>(CI)); + auto IntrinsicCost = + TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); + + auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( + VecTy->getNumElements())), + false /*HasGlobalPred*/); + Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); + auto LibCost = IntrinsicCost; + if (!CI->isNoBuiltin() && VecFunc) { + // Calculate the cost of the vector library call. + // If the corresponding vector call is cheaper, return its cost. + LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, + TTI::TCK_RecipThroughput); + } + return {IntrinsicCost, LibCost}; +} + +/// Compute the cost of creating a vector of type \p VecTy containing the +/// extracted values from \p VL. +static InstructionCost +computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, + TargetTransformInfo::ShuffleKind ShuffleKind, + ArrayRef<int> Mask, TargetTransformInfo &TTI) { + unsigned NumOfParts = TTI.getNumberOfParts(VecTy); + + if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || + VecTy->getNumElements() < NumOfParts) + return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); + + bool AllConsecutive = true; + unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; + unsigned Idx = -1; + InstructionCost Cost = 0; + + // Process extracts in blocks of EltsPerVector to check if the source vector + // operand can be re-used directly. If not, add the cost of creating a shuffle + // to extract the values into a vector register. + SmallVector<int> RegMask(EltsPerVector, UndefMaskElem); + for (auto *V : VL) { + ++Idx; + + // Reached the start of a new vector registers. + if (Idx % EltsPerVector == 0) { + RegMask.assign(EltsPerVector, UndefMaskElem); + AllConsecutive = true; + continue; + } + + // Need to exclude undefs from analysis. + if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) + continue; + + // Check all extracts for a vector register on the target directly + // extract values in order. + unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); + if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { + unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); + AllConsecutive &= PrevIdx + 1 == CurrentIdx && + CurrentIdx % EltsPerVector == Idx % EltsPerVector; + RegMask[Idx % EltsPerVector] = CurrentIdx % EltsPerVector; + } + + if (AllConsecutive) + continue; + + // Skip all indices, except for the last index per vector block. + if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) + continue; + + // If we have a series of extracts which are not consecutive and hence + // cannot re-use the source vector register directly, compute the shuffle + // cost to extract the vector with EltsPerVector elements. + Cost += TTI.getShuffleCost( + TargetTransformInfo::SK_PermuteSingleSrc, + FixedVectorType::get(VecTy->getElementType(), EltsPerVector), RegMask); + } + return Cost; +} + +/// Build shuffle mask for shuffle graph entries and lists of main and alternate +/// operations operands. +static void +buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, + ArrayRef<int> ReusesIndices, + const function_ref<bool(Instruction *)> IsAltOp, + SmallVectorImpl<int> &Mask, + SmallVectorImpl<Value *> *OpScalars = nullptr, + SmallVectorImpl<Value *> *AltScalars = nullptr) { + unsigned Sz = VL.size(); + Mask.assign(Sz, UndefMaskElem); + SmallVector<int> OrderMask; + if (!ReorderIndices.empty()) + inversePermutation(ReorderIndices, OrderMask); + for (unsigned I = 0; I < Sz; ++I) { + unsigned Idx = I; + if (!ReorderIndices.empty()) + Idx = OrderMask[I]; + auto *OpInst = cast<Instruction>(VL[Idx]); + if (IsAltOp(OpInst)) { + Mask[I] = Sz + Idx; + if (AltScalars) + AltScalars->push_back(OpInst); + } else { + Mask[I] = Idx; + if (OpScalars) + OpScalars->push_back(OpInst); + } + } + if (!ReusesIndices.empty()) { + SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); + transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { + return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; + }); + Mask.swap(NewMask); + } +} + +static bool isAlternateInstruction(const Instruction *I, + const Instruction *MainOp, + const Instruction *AltOp, + const TargetLibraryInfo &TLI) { + if (auto *MainCI = dyn_cast<CmpInst>(MainOp)) { + auto *AltCI = cast<CmpInst>(AltOp); + CmpInst::Predicate MainP = MainCI->getPredicate(); + CmpInst::Predicate AltP = AltCI->getPredicate(); + assert(MainP != AltP && "Expected different main/alternate predicates."); + auto *CI = cast<CmpInst>(I); + if (isCmpSameOrSwapped(MainCI, CI, TLI)) + return false; + if (isCmpSameOrSwapped(AltCI, CI, TLI)) + return true; + CmpInst::Predicate P = CI->getPredicate(); + CmpInst::Predicate SwappedP = CmpInst::getSwappedPredicate(P); + + assert((MainP == P || AltP == P || MainP == SwappedP || AltP == SwappedP) && + "CmpInst expected to match either main or alternate predicate or " + "their swap."); + (void)AltP; + return MainP != P && MainP != SwappedP; + } + return I->getOpcode() == AltOp->getOpcode(); +} + +TTI::OperandValueInfo BoUpSLP::getOperandInfo(ArrayRef<Value *> VL, + unsigned OpIdx) { + assert(!VL.empty()); + const auto *I0 = cast<Instruction>(*find_if(VL, Instruction::classof)); + const auto *Op0 = I0->getOperand(OpIdx); + + const bool IsConstant = all_of(VL, [&](Value *V) { + // TODO: We should allow undef elements here + const auto *I = dyn_cast<Instruction>(V); + if (!I) + return true; + auto *Op = I->getOperand(OpIdx); + return isConstant(Op) && !isa<UndefValue>(Op); + }); + const bool IsUniform = all_of(VL, [&](Value *V) { + // TODO: We should allow undef elements here + const auto *I = dyn_cast<Instruction>(V); + if (!I) + return false; + return I->getOperand(OpIdx) == Op0; + }); + const bool IsPowerOfTwo = all_of(VL, [&](Value *V) { + // TODO: We should allow undef elements here + const auto *I = dyn_cast<Instruction>(V); + if (!I) { + assert((isa<UndefValue>(V) || + I0->getOpcode() == Instruction::GetElementPtr) && + "Expected undef or GEP."); + return true; + } + auto *Op = I->getOperand(OpIdx); + if (auto *CI = dyn_cast<ConstantInt>(Op)) + return CI->getValue().isPowerOf2(); + return false; + }); + const bool IsNegatedPowerOfTwo = all_of(VL, [&](Value *V) { + // TODO: We should allow undef elements here + const auto *I = dyn_cast<Instruction>(V); + if (!I) { + assert((isa<UndefValue>(V) || + I0->getOpcode() == Instruction::GetElementPtr) && + "Expected undef or GEP."); + return true; + } + const auto *Op = I->getOperand(OpIdx); + if (auto *CI = dyn_cast<ConstantInt>(Op)) + return CI->getValue().isNegatedPowerOf2(); + return false; + }); + + TTI::OperandValueKind VK = TTI::OK_AnyValue; + if (IsConstant && IsUniform) + VK = TTI::OK_UniformConstantValue; + else if (IsConstant) + VK = TTI::OK_NonUniformConstantValue; + else if (IsUniform) + VK = TTI::OK_UniformValue; + + TTI::OperandValueProperties VP = TTI::OP_None; + VP = IsPowerOfTwo ? TTI::OP_PowerOf2 : VP; + VP = IsNegatedPowerOfTwo ? TTI::OP_NegatedPowerOf2 : VP; + + return {VK, VP}; +} + +namespace { +/// The base class for shuffle instruction emission and shuffle cost estimation. +class BaseShuffleAnalysis { +protected: + /// Checks if the mask is an identity mask. + /// \param IsStrict if is true the function returns false if mask size does + /// not match vector size. + static bool isIdentityMask(ArrayRef<int> Mask, const FixedVectorType *VecTy, + bool IsStrict) { + int Limit = Mask.size(); + int VF = VecTy->getNumElements(); + return (VF == Limit || !IsStrict) && + all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) && + ShuffleVectorInst::isIdentityMask(Mask); + } + + /// Tries to combine 2 different masks into single one. + /// \param LocalVF Vector length of the permuted input vector. \p Mask may + /// change the size of the vector, \p LocalVF is the original size of the + /// shuffled vector. + static void combineMasks(unsigned LocalVF, SmallVectorImpl<int> &Mask, + ArrayRef<int> ExtMask) { + unsigned VF = Mask.size(); + SmallVector<int> NewMask(ExtMask.size(), UndefMaskElem); + for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) { + if (ExtMask[I] == UndefMaskElem) + continue; + int MaskedIdx = Mask[ExtMask[I] % VF]; + NewMask[I] = + MaskedIdx == UndefMaskElem ? UndefMaskElem : MaskedIdx % LocalVF; + } + Mask.swap(NewMask); + } + + /// Looks through shuffles trying to reduce final number of shuffles in the + /// code. The function looks through the previously emitted shuffle + /// instructions and properly mark indices in mask as undef. + /// For example, given the code + /// \code + /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0> + /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0> + /// \endcode + /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 3, 2>, it will + /// look through %s1 and %s2 and select vectors %0 and %1 with mask + /// <0, 1, 2, 3> for the shuffle. + /// If 2 operands are of different size, the smallest one will be resized and + /// the mask recalculated properly. + /// For example, given the code + /// \code + /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0, 1, 0> + /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0, 1, 0> + /// \endcode + /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 5, 4>, it will + /// look through %s1 and %s2 and select vectors %0 and %1 with mask + /// <0, 1, 2, 3> for the shuffle. + /// So, it tries to transform permutations to simple vector merge, if + /// possible. + /// \param V The input vector which must be shuffled using the given \p Mask. + /// If the better candidate is found, \p V is set to this best candidate + /// vector. + /// \param Mask The input mask for the shuffle. If the best candidate is found + /// during looking-through-shuffles attempt, it is updated accordingly. + /// \param SinglePermute true if the shuffle operation is originally a + /// single-value-permutation. In this case the look-through-shuffles procedure + /// may look for resizing shuffles as the best candidates. + /// \return true if the shuffle results in the non-resizing identity shuffle + /// (and thus can be ignored), false - otherwise. + static bool peekThroughShuffles(Value *&V, SmallVectorImpl<int> &Mask, + bool SinglePermute) { + Value *Op = V; + ShuffleVectorInst *IdentityOp = nullptr; + SmallVector<int> IdentityMask; + while (auto *SV = dyn_cast<ShuffleVectorInst>(Op)) { + // Exit if not a fixed vector type or changing size shuffle. + auto *SVTy = dyn_cast<FixedVectorType>(SV->getType()); + if (!SVTy) + break; + // Remember the identity or broadcast mask, if it is not a resizing + // shuffle. If no better candidates are found, this Op and Mask will be + // used in the final shuffle. + if (isIdentityMask(Mask, SVTy, /*IsStrict=*/false)) { + if (!IdentityOp || !SinglePermute || + (isIdentityMask(Mask, SVTy, /*IsStrict=*/true) && + !ShuffleVectorInst::isZeroEltSplatMask(IdentityMask))) { + IdentityOp = SV; + // Store current mask in the IdentityMask so later we did not lost + // this info if IdentityOp is selected as the best candidate for the + // permutation. + IdentityMask.assign(Mask); + } + } + // Remember the broadcast mask. If no better candidates are found, this Op + // and Mask will be used in the final shuffle. + // Zero splat can be used as identity too, since it might be used with + // mask <0, 1, 2, ...>, i.e. identity mask without extra reshuffling. + // E.g. if need to shuffle the vector with the mask <3, 1, 2, 0>, which is + // expensive, the analysis founds out, that the source vector is just a + // broadcast, this original mask can be transformed to identity mask <0, + // 1, 2, 3>. + // \code + // %0 = shuffle %v, poison, zeroinitalizer + // %res = shuffle %0, poison, <3, 1, 2, 0> + // \endcode + // may be transformed to + // \code + // %0 = shuffle %v, poison, zeroinitalizer + // %res = shuffle %0, poison, <0, 1, 2, 3> + // \endcode + if (SV->isZeroEltSplat()) { + IdentityOp = SV; + IdentityMask.assign(Mask); + } + int LocalVF = Mask.size(); + if (auto *SVOpTy = + dyn_cast<FixedVectorType>(SV->getOperand(0)->getType())) + LocalVF = SVOpTy->getNumElements(); + SmallVector<int> ExtMask(Mask.size(), UndefMaskElem); + for (auto [Idx, I] : enumerate(Mask)) { + if (I == UndefMaskElem) + continue; + ExtMask[Idx] = SV->getMaskValue(I); + } + bool IsOp1Undef = + isUndefVector(SV->getOperand(0), + buildUseMask(LocalVF, ExtMask, UseMask::FirstArg)) + .all(); + bool IsOp2Undef = + isUndefVector(SV->getOperand(1), + buildUseMask(LocalVF, ExtMask, UseMask::SecondArg)) + .all(); + if (!IsOp1Undef && !IsOp2Undef) { + // Update mask and mark undef elems. + for (int &I : Mask) { + if (I == UndefMaskElem) + continue; + if (SV->getMaskValue(I % SV->getShuffleMask().size()) == + UndefMaskElem) + I = UndefMaskElem; + } + break; + } + SmallVector<int> ShuffleMask(SV->getShuffleMask().begin(), + SV->getShuffleMask().end()); + combineMasks(LocalVF, ShuffleMask, Mask); + Mask.swap(ShuffleMask); + if (IsOp2Undef) + Op = SV->getOperand(0); + else + Op = SV->getOperand(1); + } + if (auto *OpTy = dyn_cast<FixedVectorType>(Op->getType()); + !OpTy || !isIdentityMask(Mask, OpTy, SinglePermute)) { + if (IdentityOp) { + V = IdentityOp; + assert(Mask.size() == IdentityMask.size() && + "Expected masks of same sizes."); + // Clear known poison elements. + for (auto [I, Idx] : enumerate(Mask)) + if (Idx == UndefMaskElem) + IdentityMask[I] = UndefMaskElem; + Mask.swap(IdentityMask); + auto *Shuffle = dyn_cast<ShuffleVectorInst>(V); + return SinglePermute && + (isIdentityMask(Mask, cast<FixedVectorType>(V->getType()), + /*IsStrict=*/true) || + (Shuffle && Mask.size() == Shuffle->getShuffleMask().size() && + Shuffle->isZeroEltSplat() && + ShuffleVectorInst::isZeroEltSplatMask(Mask))); + } + V = Op; + return false; + } + V = Op; + return true; + } + + /// Smart shuffle instruction emission, walks through shuffles trees and + /// tries to find the best matching vector for the actual shuffle + /// instruction. + template <typename ShuffleBuilderTy> + static Value *createShuffle(Value *V1, Value *V2, ArrayRef<int> Mask, + ShuffleBuilderTy &Builder) { + assert(V1 && "Expected at least one vector value."); + int VF = Mask.size(); + if (auto *FTy = dyn_cast<FixedVectorType>(V1->getType())) + VF = FTy->getNumElements(); + if (V2 && + !isUndefVector(V2, buildUseMask(VF, Mask, UseMask::SecondArg)).all()) { + // Peek through shuffles. + Value *Op1 = V1; + Value *Op2 = V2; + int VF = + cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue(); + SmallVector<int> CombinedMask1(Mask.size(), UndefMaskElem); + SmallVector<int> CombinedMask2(Mask.size(), UndefMaskElem); + for (int I = 0, E = Mask.size(); I < E; ++I) { + if (Mask[I] < VF) + CombinedMask1[I] = Mask[I]; + else + CombinedMask2[I] = Mask[I] - VF; + } + Value *PrevOp1; + Value *PrevOp2; + do { + PrevOp1 = Op1; + PrevOp2 = Op2; + (void)peekThroughShuffles(Op1, CombinedMask1, /*SinglePermute=*/false); + (void)peekThroughShuffles(Op2, CombinedMask2, /*SinglePermute=*/false); + // Check if we have 2 resizing shuffles - need to peek through operands + // again. + if (auto *SV1 = dyn_cast<ShuffleVectorInst>(Op1)) + if (auto *SV2 = dyn_cast<ShuffleVectorInst>(Op2)) { + SmallVector<int> ExtMask1(Mask.size(), UndefMaskElem); + for (auto [Idx, I] : enumerate(CombinedMask1)) { + if (I == UndefMaskElem) + continue; + ExtMask1[Idx] = SV1->getMaskValue(I); + } + SmallBitVector UseMask1 = buildUseMask( + cast<FixedVectorType>(SV1->getOperand(1)->getType()) + ->getNumElements(), + ExtMask1, UseMask::SecondArg); + SmallVector<int> ExtMask2(CombinedMask2.size(), UndefMaskElem); + for (auto [Idx, I] : enumerate(CombinedMask2)) { + if (I == UndefMaskElem) + continue; + ExtMask2[Idx] = SV2->getMaskValue(I); + } + SmallBitVector UseMask2 = buildUseMask( + cast<FixedVectorType>(SV2->getOperand(1)->getType()) + ->getNumElements(), + ExtMask2, UseMask::SecondArg); + if (SV1->getOperand(0)->getType() == + SV2->getOperand(0)->getType() && + SV1->getOperand(0)->getType() != SV1->getType() && + isUndefVector(SV1->getOperand(1), UseMask1).all() && + isUndefVector(SV2->getOperand(1), UseMask2).all()) { + Op1 = SV1->getOperand(0); + Op2 = SV2->getOperand(0); + SmallVector<int> ShuffleMask1(SV1->getShuffleMask().begin(), + SV1->getShuffleMask().end()); + int LocalVF = ShuffleMask1.size(); + if (auto *FTy = dyn_cast<FixedVectorType>(Op1->getType())) + LocalVF = FTy->getNumElements(); + combineMasks(LocalVF, ShuffleMask1, CombinedMask1); + CombinedMask1.swap(ShuffleMask1); + SmallVector<int> ShuffleMask2(SV2->getShuffleMask().begin(), + SV2->getShuffleMask().end()); + LocalVF = ShuffleMask2.size(); + if (auto *FTy = dyn_cast<FixedVectorType>(Op2->getType())) + LocalVF = FTy->getNumElements(); + combineMasks(LocalVF, ShuffleMask2, CombinedMask2); + CombinedMask2.swap(ShuffleMask2); + } + } + } while (PrevOp1 != Op1 || PrevOp2 != Op2); + Builder.resizeToMatch(Op1, Op2); + VF = std::max(cast<VectorType>(Op1->getType()) + ->getElementCount() + .getKnownMinValue(), + cast<VectorType>(Op2->getType()) + ->getElementCount() + .getKnownMinValue()); + for (int I = 0, E = Mask.size(); I < E; ++I) { + if (CombinedMask2[I] != UndefMaskElem) { + assert(CombinedMask1[I] == UndefMaskElem && + "Expected undefined mask element"); + CombinedMask1[I] = CombinedMask2[I] + (Op1 == Op2 ? 0 : VF); + } + } + return Builder.createShuffleVector( + Op1, Op1 == Op2 ? PoisonValue::get(Op1->getType()) : Op2, + CombinedMask1); + } + if (isa<PoisonValue>(V1)) + return PoisonValue::get(FixedVectorType::get( + cast<VectorType>(V1->getType())->getElementType(), Mask.size())); + SmallVector<int> NewMask(Mask.begin(), Mask.end()); + bool IsIdentity = peekThroughShuffles(V1, NewMask, /*SinglePermute=*/true); + assert(V1 && "Expected non-null value after looking through shuffles."); + + if (!IsIdentity) + return Builder.createShuffleVector(V1, NewMask); + return V1; + } +}; +} // namespace + +InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, + ArrayRef<Value *> VectorizedVals) { + ArrayRef<Value *> VL = E->Scalars; + + Type *ScalarTy = VL[0]->getType(); + if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) + ScalarTy = SI->getValueOperand()->getType(); + else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) + ScalarTy = CI->getOperand(0)->getType(); + else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) + ScalarTy = IE->getOperand(1)->getType(); + auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); + TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; + + // If we have computed a smaller type for the expression, update VecTy so + // that the costs will be accurate. + if (MinBWs.count(VL[0])) + VecTy = FixedVectorType::get( + IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); + unsigned EntryVF = E->getVectorFactor(); + auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); + + bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); + // FIXME: it tries to fix a problem with MSVC buildbots. + TargetTransformInfo *TTI = this->TTI; + auto AdjustExtractsCost = [=](InstructionCost &Cost) { + // If the resulting type is scalarized, do not adjust the cost. + unsigned VecNumParts = TTI->getNumberOfParts(VecTy); + if (VecNumParts == VecTy->getNumElements()) + return; + DenseMap<Value *, int> ExtractVectorsTys; + SmallPtrSet<Value *, 4> CheckedExtracts; + for (auto *V : VL) { + if (isa<UndefValue>(V)) + continue; + // If all users of instruction are going to be vectorized and this + // instruction itself is not going to be vectorized, consider this + // instruction as dead and remove its cost from the final cost of the + // vectorized tree. + // Also, avoid adjusting the cost for extractelements with multiple uses + // in different graph entries. + const TreeEntry *VE = getTreeEntry(V); + if (!CheckedExtracts.insert(V).second || + !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || + (VE && VE != E)) + continue; + auto *EE = cast<ExtractElementInst>(V); + std::optional<unsigned> EEIdx = getExtractIndex(EE); + if (!EEIdx) + continue; + unsigned Idx = *EEIdx; + if (VecNumParts != TTI->getNumberOfParts(EE->getVectorOperandType())) { + auto It = + ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; + It->getSecond() = std::min<int>(It->second, Idx); + } + // Take credit for instruction that will become dead. + if (EE->hasOneUse()) { + Instruction *Ext = EE->user_back(); + if (isa<SExtInst, ZExtInst>(Ext) && all_of(Ext->users(), [](User *U) { + return isa<GetElementPtrInst>(U); + })) { + // Use getExtractWithExtendCost() to calculate the cost of + // extractelement/ext pair. + Cost -= + TTI->getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), + EE->getVectorOperandType(), Idx); + // Add back the cost of s|zext which is subtracted separately. + Cost += TTI->getCastInstrCost( + Ext->getOpcode(), Ext->getType(), EE->getType(), + TTI::getCastContextHint(Ext), CostKind, Ext); + continue; + } + } + Cost -= TTI->getVectorInstrCost(*EE, EE->getVectorOperandType(), CostKind, + Idx); + } + // Add a cost for subvector extracts/inserts if required. + for (const auto &Data : ExtractVectorsTys) { + auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); + unsigned NumElts = VecTy->getNumElements(); + if (Data.second % NumElts == 0) + continue; + if (TTI->getNumberOfParts(EEVTy) > VecNumParts) { + unsigned Idx = (Data.second / NumElts) * NumElts; + unsigned EENumElts = EEVTy->getNumElements(); + if (Idx + NumElts <= EENumElts) { + Cost += + TTI->getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, + EEVTy, std::nullopt, CostKind, Idx, VecTy); + } else { + // Need to round up the subvector type vectorization factor to avoid a + // crash in cost model functions. Make SubVT so that Idx + VF of SubVT + // <= EENumElts. + auto *SubVT = + FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); + Cost += + TTI->getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, + EEVTy, std::nullopt, CostKind, Idx, SubVT); + } + } else { + Cost += TTI->getShuffleCost(TargetTransformInfo::SK_InsertSubvector, + VecTy, std::nullopt, CostKind, 0, EEVTy); + } + } + }; + if (E->State == TreeEntry::NeedToGather) { + if (allConstant(VL)) + return 0; + if (isa<InsertElementInst>(VL[0])) + return InstructionCost::getInvalid(); + SmallVector<Value *> GatheredScalars(E->Scalars.begin(), E->Scalars.end()); + // Build a mask out of the reorder indices and reorder scalars per this + // mask. + SmallVector<int> ReorderMask; + inversePermutation(E->ReorderIndices, ReorderMask); + if (!ReorderMask.empty()) + reorderScalars(GatheredScalars, ReorderMask); + SmallVector<int> Mask; + std::optional<TargetTransformInfo::ShuffleKind> GatherShuffle; + SmallVector<const TreeEntry *> Entries; + // Do not try to look for reshuffled loads for gathered loads (they will be + // handled later), for vectorized scalars, and cases, which are definitely + // not profitable (splats and small gather nodes.) + if (E->getOpcode() != Instruction::Load || E->isAltShuffle() || + all_of(E->Scalars, [this](Value *V) { return getTreeEntry(V); }) || + isSplat(E->Scalars) || + (E->Scalars != GatheredScalars && GatheredScalars.size() <= 2)) + GatherShuffle = isGatherShuffledEntry(E, GatheredScalars, Mask, Entries); + if (GatherShuffle) { + // Remove shuffled elements from list of gathers. + for (int I = 0, Sz = Mask.size(); I < Sz; ++I) { + if (Mask[I] != UndefMaskElem) + GatheredScalars[I] = PoisonValue::get(ScalarTy); + } + assert((Entries.size() == 1 || Entries.size() == 2) && + "Expected shuffle of 1 or 2 entries."); + InstructionCost GatherCost = 0; + int Limit = Mask.size() * 2; + if (all_of(Mask, [=](int Idx) { return Idx < Limit; }) && + ShuffleVectorInst::isIdentityMask(Mask)) { + // Perfect match in the graph, will reuse the previously vectorized + // node. Cost is 0. + LLVM_DEBUG( + dbgs() + << "SLP: perfect diamond match for gather bundle that starts with " + << *VL.front() << ".\n"); + if (NeedToShuffleReuses) + GatherCost = + TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, + FinalVecTy, E->ReuseShuffleIndices); + } else { + LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() + << " entries for bundle that starts with " + << *VL.front() << ".\n"); + // Detected that instead of gather we can emit a shuffle of single/two + // previously vectorized nodes. Add the cost of the permutation rather + // than gather. + ::addMask(Mask, E->ReuseShuffleIndices); + GatherCost = TTI->getShuffleCost(*GatherShuffle, FinalVecTy, Mask); + } + if (!all_of(GatheredScalars, UndefValue::classof)) + GatherCost += getGatherCost(GatheredScalars); + return GatherCost; + } + if ((E->getOpcode() == Instruction::ExtractElement || + all_of(E->Scalars, + [](Value *V) { + return isa<ExtractElementInst, UndefValue>(V); + })) && + allSameType(VL)) { + // Check that gather of extractelements can be represented as just a + // shuffle of a single/two vectors the scalars are extracted from. + SmallVector<int> Mask; + std::optional<TargetTransformInfo::ShuffleKind> ShuffleKind = + isFixedVectorShuffle(VL, Mask); + if (ShuffleKind) { + // Found the bunch of extractelement instructions that must be gathered + // into a vector and can be represented as a permutation elements in a + // single input vector or of 2 input vectors. + InstructionCost Cost = + computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); + AdjustExtractsCost(Cost); + if (NeedToShuffleReuses) + Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, + FinalVecTy, E->ReuseShuffleIndices); + return Cost; + } + } + if (isSplat(VL)) { + // Found the broadcasting of the single scalar, calculate the cost as the + // broadcast. + assert(VecTy == FinalVecTy && + "No reused scalars expected for broadcast."); + const auto *It = + find_if(VL, [](Value *V) { return !isa<UndefValue>(V); }); + // If all values are undefs - consider cost free. + if (It == VL.end()) + return TTI::TCC_Free; + // Add broadcast for non-identity shuffle only. + bool NeedShuffle = + VL.front() != *It || !all_of(VL.drop_front(), UndefValue::classof); + InstructionCost InsertCost = + TTI->getVectorInstrCost(Instruction::InsertElement, VecTy, CostKind, + /*Index=*/0, PoisonValue::get(VecTy), *It); + return InsertCost + (NeedShuffle + ? TTI->getShuffleCost( + TargetTransformInfo::SK_Broadcast, VecTy, + /*Mask=*/std::nullopt, CostKind, + /*Index=*/0, + /*SubTp=*/nullptr, /*Args=*/VL[0]) + : TTI::TCC_Free); + } + InstructionCost ReuseShuffleCost = 0; + if (NeedToShuffleReuses) + ReuseShuffleCost = TTI->getShuffleCost( + TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); + // Improve gather cost for gather of loads, if we can group some of the + // loads into vector loads. + if (VL.size() > 2 && E->getOpcode() == Instruction::Load && + !E->isAltShuffle()) { + BoUpSLP::ValueSet VectorizedLoads; + unsigned StartIdx = 0; + unsigned VF = VL.size() / 2; + unsigned VectorizedCnt = 0; + unsigned ScatterVectorizeCnt = 0; + const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); + for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { + for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; + Cnt += VF) { + ArrayRef<Value *> Slice = VL.slice(Cnt, VF); + if (!VectorizedLoads.count(Slice.front()) && + !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { + SmallVector<Value *> PointerOps; + OrdersType CurrentOrder; + LoadsState LS = + canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, *SE, *LI, + *TLI, CurrentOrder, PointerOps); + switch (LS) { + case LoadsState::Vectorize: + case LoadsState::ScatterVectorize: + // Mark the vectorized loads so that we don't vectorize them + // again. + if (LS == LoadsState::Vectorize) + ++VectorizedCnt; + else + ++ScatterVectorizeCnt; + VectorizedLoads.insert(Slice.begin(), Slice.end()); + // If we vectorized initial block, no need to try to vectorize it + // again. + if (Cnt == StartIdx) + StartIdx += VF; + break; + case LoadsState::Gather: + break; + } + } + } + // Check if the whole array was vectorized already - exit. + if (StartIdx >= VL.size()) + break; + // Found vectorizable parts - exit. + if (!VectorizedLoads.empty()) + break; + } + if (!VectorizedLoads.empty()) { + InstructionCost GatherCost = 0; + unsigned NumParts = TTI->getNumberOfParts(VecTy); + bool NeedInsertSubvectorAnalysis = + !NumParts || (VL.size() / VF) > NumParts; + // Get the cost for gathered loads. + for (unsigned I = 0, End = VL.size(); I < End; I += VF) { + if (VectorizedLoads.contains(VL[I])) + continue; + GatherCost += getGatherCost(VL.slice(I, VF)); + } + // The cost for vectorized loads. + InstructionCost ScalarsCost = 0; + for (Value *V : VectorizedLoads) { + auto *LI = cast<LoadInst>(V); + ScalarsCost += + TTI->getMemoryOpCost(Instruction::Load, LI->getType(), + LI->getAlign(), LI->getPointerAddressSpace(), + CostKind, TTI::OperandValueInfo(), LI); + } + auto *LI = cast<LoadInst>(E->getMainOp()); + auto *LoadTy = FixedVectorType::get(LI->getType(), VF); + Align Alignment = LI->getAlign(); + GatherCost += + VectorizedCnt * + TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, + LI->getPointerAddressSpace(), CostKind, + TTI::OperandValueInfo(), LI); + GatherCost += ScatterVectorizeCnt * + TTI->getGatherScatterOpCost( + Instruction::Load, LoadTy, LI->getPointerOperand(), + /*VariableMask=*/false, Alignment, CostKind, LI); + if (NeedInsertSubvectorAnalysis) { + // Add the cost for the subvectors insert. + for (int I = VF, E = VL.size(); I < E; I += VF) + GatherCost += + TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, + std::nullopt, CostKind, I, LoadTy); + } + return ReuseShuffleCost + GatherCost - ScalarsCost; + } + } + return ReuseShuffleCost + getGatherCost(VL); + } + InstructionCost CommonCost = 0; + SmallVector<int> Mask; + if (!E->ReorderIndices.empty()) { + SmallVector<int> NewMask; + if (E->getOpcode() == Instruction::Store) { + // For stores the order is actually a mask. + NewMask.resize(E->ReorderIndices.size()); + copy(E->ReorderIndices, NewMask.begin()); + } else { + inversePermutation(E->ReorderIndices, NewMask); + } + ::addMask(Mask, NewMask); + } + if (NeedToShuffleReuses) + ::addMask(Mask, E->ReuseShuffleIndices); + if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) + CommonCost = + TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); + assert((E->State == TreeEntry::Vectorize || + E->State == TreeEntry::ScatterVectorize) && + "Unhandled state"); + assert(E->getOpcode() && + ((allSameType(VL) && allSameBlock(VL)) || + (E->getOpcode() == Instruction::GetElementPtr && + E->getMainOp()->getType()->isPointerTy())) && + "Invalid VL"); + Instruction *VL0 = E->getMainOp(); + unsigned ShuffleOrOp = + E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); + const unsigned Sz = VL.size(); + auto GetCostDiff = + [=](function_ref<InstructionCost(unsigned)> ScalarEltCost, + function_ref<InstructionCost(InstructionCost)> VectorCost) { + // Calculate the cost of this instruction. + InstructionCost ScalarCost = 0; + if (isa<CastInst, CmpInst, SelectInst, CallInst>(VL0)) { + // For some of the instructions no need to calculate cost for each + // particular instruction, we can use the cost of the single + // instruction x total number of scalar instructions. + ScalarCost = Sz * ScalarEltCost(0); + } else { + for (unsigned I = 0; I < Sz; ++I) + ScalarCost += ScalarEltCost(I); + } + + InstructionCost VecCost = VectorCost(CommonCost); + LLVM_DEBUG( + dumpTreeCosts(E, CommonCost, VecCost - CommonCost, ScalarCost)); + // Disable warnings for `this` and `E` are unused. Required for + // `dumpTreeCosts`. + (void)this; + (void)E; + return VecCost - ScalarCost; + }; + // Calculate cost difference from vectorizing set of GEPs. + // Negative value means vectorizing is profitable. + auto GetGEPCostDiff = [=](ArrayRef<Value *> Ptrs, Value *BasePtr) { + InstructionCost CostSavings = 0; + for (Value *V : Ptrs) { + if (V == BasePtr) + continue; + auto *Ptr = dyn_cast<GetElementPtrInst>(V); + // GEPs may contain just addresses without instructions, considered free. + // GEPs with all constant indices also considered to have zero cost. + if (!Ptr || Ptr->hasAllConstantIndices()) + continue; + + // Here we differentiate two cases: when GEPs represent a regular + // vectorization tree node (and hence vectorized) and when the set is + // arguments of a set of loads or stores being vectorized. In the former + // case all the scalar GEPs will be removed as a result of vectorization. + // For any external uses of some lanes extract element instructions will + // be generated (which cost is estimated separately). For the latter case + // since the set of GEPs itself is not vectorized those used more than + // once will remain staying in vectorized code as well. So we should not + // count them as savings. + if (!Ptr->hasOneUse() && isa<LoadInst, StoreInst>(VL0)) + continue; + + // TODO: it is target dependent, so need to implement and then use a TTI + // interface. + CostSavings += TTI->getArithmeticInstrCost(Instruction::Add, + Ptr->getType(), CostKind); + } + LLVM_DEBUG(dbgs() << "SLP: Calculated GEPs cost savings or Tree:\n"; + E->dump()); + LLVM_DEBUG(dbgs() << "SLP: GEP cost saving = " << CostSavings << "\n"); + return InstructionCost() - CostSavings; + }; + + switch (ShuffleOrOp) { + case Instruction::PHI: { + // Count reused scalars. + InstructionCost ScalarCost = 0; + SmallPtrSet<const TreeEntry *, 4> CountedOps; + for (Value *V : VL) { + auto *PHI = dyn_cast<PHINode>(V); + if (!PHI) + continue; + + ValueList Operands(PHI->getNumIncomingValues(), nullptr); + for (unsigned I = 0, N = PHI->getNumIncomingValues(); I < N; ++I) { + Value *Op = PHI->getIncomingValue(I); + Operands[I] = Op; + } + if (const TreeEntry *OpTE = getTreeEntry(Operands.front())) + if (OpTE->isSame(Operands) && CountedOps.insert(OpTE).second) + if (!OpTE->ReuseShuffleIndices.empty()) + ScalarCost += TTI::TCC_Basic * (OpTE->ReuseShuffleIndices.size() - + OpTE->Scalars.size()); + } + + return CommonCost - ScalarCost; + } + case Instruction::ExtractValue: + case Instruction::ExtractElement: { + auto GetScalarCost = [=](unsigned Idx) { + auto *I = cast<Instruction>(VL[Idx]); + VectorType *SrcVecTy; + if (ShuffleOrOp == Instruction::ExtractElement) { + auto *EE = cast<ExtractElementInst>(I); + SrcVecTy = EE->getVectorOperandType(); + } else { + auto *EV = cast<ExtractValueInst>(I); + Type *AggregateTy = EV->getAggregateOperand()->getType(); + unsigned NumElts; + if (auto *ATy = dyn_cast<ArrayType>(AggregateTy)) + NumElts = ATy->getNumElements(); + else + NumElts = AggregateTy->getStructNumElements(); + SrcVecTy = FixedVectorType::get(ScalarTy, NumElts); + } + if (I->hasOneUse()) { + Instruction *Ext = I->user_back(); + if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && + all_of(Ext->users(), + [](User *U) { return isa<GetElementPtrInst>(U); })) { + // Use getExtractWithExtendCost() to calculate the cost of + // extractelement/ext pair. + InstructionCost Cost = TTI->getExtractWithExtendCost( + Ext->getOpcode(), Ext->getType(), SrcVecTy, *getExtractIndex(I)); + // Subtract the cost of s|zext which is subtracted separately. + Cost -= TTI->getCastInstrCost( + Ext->getOpcode(), Ext->getType(), I->getType(), + TTI::getCastContextHint(Ext), CostKind, Ext); + return Cost; + } + } + return TTI->getVectorInstrCost(Instruction::ExtractElement, SrcVecTy, + CostKind, *getExtractIndex(I)); + }; + auto GetVectorCost = [](InstructionCost CommonCost) { return CommonCost; }; + return GetCostDiff(GetScalarCost, GetVectorCost); + } + case Instruction::InsertElement: { + assert(E->ReuseShuffleIndices.empty() && + "Unique insertelements only are expected."); + auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); + unsigned const NumElts = SrcVecTy->getNumElements(); + unsigned const NumScalars = VL.size(); + + unsigned NumOfParts = TTI->getNumberOfParts(SrcVecTy); + + SmallVector<int> InsertMask(NumElts, UndefMaskElem); + unsigned OffsetBeg = *getInsertIndex(VL.front()); + unsigned OffsetEnd = OffsetBeg; + InsertMask[OffsetBeg] = 0; + for (auto [I, V] : enumerate(VL.drop_front())) { + unsigned Idx = *getInsertIndex(V); + if (OffsetBeg > Idx) + OffsetBeg = Idx; + else if (OffsetEnd < Idx) + OffsetEnd = Idx; + InsertMask[Idx] = I + 1; + } + unsigned VecScalarsSz = PowerOf2Ceil(NumElts); + if (NumOfParts > 0) + VecScalarsSz = PowerOf2Ceil((NumElts + NumOfParts - 1) / NumOfParts); + unsigned VecSz = (1 + OffsetEnd / VecScalarsSz - OffsetBeg / VecScalarsSz) * + VecScalarsSz; + unsigned Offset = VecScalarsSz * (OffsetBeg / VecScalarsSz); + unsigned InsertVecSz = std::min<unsigned>( + PowerOf2Ceil(OffsetEnd - OffsetBeg + 1), + ((OffsetEnd - OffsetBeg + VecScalarsSz) / VecScalarsSz) * VecScalarsSz); + bool IsWholeSubvector = + OffsetBeg == Offset && ((OffsetEnd + 1) % VecScalarsSz == 0); + // Check if we can safely insert a subvector. If it is not possible, just + // generate a whole-sized vector and shuffle the source vector and the new + // subvector. + if (OffsetBeg + InsertVecSz > VecSz) { + // Align OffsetBeg to generate correct mask. + OffsetBeg = alignDown(OffsetBeg, VecSz, Offset); + InsertVecSz = VecSz; + } + + APInt DemandedElts = APInt::getZero(NumElts); + // TODO: Add support for Instruction::InsertValue. + SmallVector<int> Mask; + if (!E->ReorderIndices.empty()) { + inversePermutation(E->ReorderIndices, Mask); + Mask.append(InsertVecSz - Mask.size(), UndefMaskElem); + } else { + Mask.assign(VecSz, UndefMaskElem); + std::iota(Mask.begin(), std::next(Mask.begin(), InsertVecSz), 0); + } + bool IsIdentity = true; + SmallVector<int> PrevMask(InsertVecSz, UndefMaskElem); + Mask.swap(PrevMask); + for (unsigned I = 0; I < NumScalars; ++I) { + unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); + DemandedElts.setBit(InsertIdx); + IsIdentity &= InsertIdx - OffsetBeg == I; + Mask[InsertIdx - OffsetBeg] = I; + } + assert(Offset < NumElts && "Failed to find vector index offset"); + + InstructionCost Cost = 0; + Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, + /*Insert*/ true, /*Extract*/ false, + CostKind); + + // First cost - resize to actual vector size if not identity shuffle or + // need to shift the vector. + // Do not calculate the cost if the actual size is the register size and + // we can merge this shuffle with the following SK_Select. + auto *InsertVecTy = + FixedVectorType::get(SrcVecTy->getElementType(), InsertVecSz); + if (!IsIdentity) + Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, + InsertVecTy, Mask); + auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { + return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); + })); + // Second cost - permutation with subvector, if some elements are from the + // initial vector or inserting a subvector. + // TODO: Implement the analysis of the FirstInsert->getOperand(0) + // subvector of ActualVecTy. + SmallBitVector InMask = + isUndefVector(FirstInsert->getOperand(0), + buildUseMask(NumElts, InsertMask, UseMask::UndefsAsMask)); + if (!InMask.all() && NumScalars != NumElts && !IsWholeSubvector) { + if (InsertVecSz != VecSz) { + auto *ActualVecTy = + FixedVectorType::get(SrcVecTy->getElementType(), VecSz); + Cost += TTI->getShuffleCost(TTI::SK_InsertSubvector, ActualVecTy, + std::nullopt, CostKind, OffsetBeg - Offset, + InsertVecTy); + } else { + for (unsigned I = 0, End = OffsetBeg - Offset; I < End; ++I) + Mask[I] = InMask.test(I) ? UndefMaskElem : I; + for (unsigned I = OffsetBeg - Offset, End = OffsetEnd - Offset; + I <= End; ++I) + if (Mask[I] != UndefMaskElem) + Mask[I] = I + VecSz; + for (unsigned I = OffsetEnd + 1 - Offset; I < VecSz; ++I) + Mask[I] = + ((I >= InMask.size()) || InMask.test(I)) ? UndefMaskElem : I; + Cost += TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, InsertVecTy, Mask); + } + } + return Cost; + } + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::FPExt: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::SIToFP: + case Instruction::UIToFP: + case Instruction::Trunc: + case Instruction::FPTrunc: + case Instruction::BitCast: { + auto GetScalarCost = [=](unsigned Idx) { + auto *VI = cast<Instruction>(VL[Idx]); + return TTI->getCastInstrCost(E->getOpcode(), ScalarTy, + VI->getOperand(0)->getType(), + TTI::getCastContextHint(VI), CostKind, VI); + }; + auto GetVectorCost = [=](InstructionCost CommonCost) { + Type *SrcTy = VL0->getOperand(0)->getType(); + auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); + InstructionCost VecCost = CommonCost; + // Check if the values are candidates to demote. + if (!MinBWs.count(VL0) || VecTy != SrcVecTy) + VecCost += + TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, + TTI::getCastContextHint(VL0), CostKind, VL0); + return VecCost; + }; + return GetCostDiff(GetScalarCost, GetVectorCost); + } + case Instruction::FCmp: + case Instruction::ICmp: + case Instruction::Select: { + CmpInst::Predicate VecPred, SwappedVecPred; + auto MatchCmp = m_Cmp(VecPred, m_Value(), m_Value()); + if (match(VL0, m_Select(MatchCmp, m_Value(), m_Value())) || + match(VL0, MatchCmp)) + SwappedVecPred = CmpInst::getSwappedPredicate(VecPred); + else + SwappedVecPred = VecPred = ScalarTy->isFloatingPointTy() + ? CmpInst::BAD_FCMP_PREDICATE + : CmpInst::BAD_ICMP_PREDICATE; + auto GetScalarCost = [&](unsigned Idx) { + auto *VI = cast<Instruction>(VL[Idx]); + CmpInst::Predicate CurrentPred = ScalarTy->isFloatingPointTy() + ? CmpInst::BAD_FCMP_PREDICATE + : CmpInst::BAD_ICMP_PREDICATE; + auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); + if ((!match(VI, m_Select(MatchCmp, m_Value(), m_Value())) && + !match(VI, MatchCmp)) || + (CurrentPred != VecPred && CurrentPred != SwappedVecPred)) + VecPred = SwappedVecPred = ScalarTy->isFloatingPointTy() + ? CmpInst::BAD_FCMP_PREDICATE + : CmpInst::BAD_ICMP_PREDICATE; + + return TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, + Builder.getInt1Ty(), CurrentPred, CostKind, + VI); + }; + auto GetVectorCost = [&](InstructionCost CommonCost) { + auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); + + InstructionCost VecCost = TTI->getCmpSelInstrCost( + E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); + // Check if it is possible and profitable to use min/max for selects + // in VL. + // + auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); + if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { + IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, + {VecTy, VecTy}); + InstructionCost IntrinsicCost = + TTI->getIntrinsicInstrCost(CostAttrs, CostKind); + // If the selects are the only uses of the compares, they will be + // dead and we can adjust the cost by removing their cost. + if (IntrinsicAndUse.second) + IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, + MaskTy, VecPred, CostKind); + VecCost = std::min(VecCost, IntrinsicCost); + } + return VecCost + CommonCost; + }; + return GetCostDiff(GetScalarCost, GetVectorCost); + } + case Instruction::FNeg: + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + auto GetScalarCost = [=](unsigned Idx) { + auto *VI = cast<Instruction>(VL[Idx]); + unsigned OpIdx = isa<UnaryOperator>(VI) ? 0 : 1; + TTI::OperandValueInfo Op1Info = TTI::getOperandInfo(VI->getOperand(0)); + TTI::OperandValueInfo Op2Info = + TTI::getOperandInfo(VI->getOperand(OpIdx)); + SmallVector<const Value *> Operands(VI->operand_values()); + return TTI->getArithmeticInstrCost(ShuffleOrOp, ScalarTy, CostKind, + Op1Info, Op2Info, Operands, VI); + }; + auto GetVectorCost = [=](InstructionCost CommonCost) { + unsigned OpIdx = isa<UnaryOperator>(VL0) ? 0 : 1; + TTI::OperandValueInfo Op1Info = getOperandInfo(VL, 0); + TTI::OperandValueInfo Op2Info = getOperandInfo(VL, OpIdx); + return TTI->getArithmeticInstrCost(ShuffleOrOp, VecTy, CostKind, Op1Info, + Op2Info) + + CommonCost; + }; + return GetCostDiff(GetScalarCost, GetVectorCost); + } + case Instruction::GetElementPtr: { + return CommonCost + GetGEPCostDiff(VL, VL0); + } + case Instruction::Load: { + auto GetScalarCost = [=](unsigned Idx) { + auto *VI = cast<LoadInst>(VL[Idx]); + return TTI->getMemoryOpCost(Instruction::Load, ScalarTy, VI->getAlign(), + VI->getPointerAddressSpace(), CostKind, + TTI::OperandValueInfo(), VI); + }; + auto *LI0 = cast<LoadInst>(VL0); + auto GetVectorCost = [=](InstructionCost CommonCost) { + InstructionCost VecLdCost; + if (E->State == TreeEntry::Vectorize) { + VecLdCost = TTI->getMemoryOpCost( + Instruction::Load, VecTy, LI0->getAlign(), + LI0->getPointerAddressSpace(), CostKind, TTI::OperandValueInfo()); + } else { + assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); + Align CommonAlignment = LI0->getAlign(); + for (Value *V : VL) + CommonAlignment = + std::min(CommonAlignment, cast<LoadInst>(V)->getAlign()); + VecLdCost = TTI->getGatherScatterOpCost( + Instruction::Load, VecTy, LI0->getPointerOperand(), + /*VariableMask=*/false, CommonAlignment, CostKind); + } + return VecLdCost + CommonCost; + }; + + InstructionCost Cost = GetCostDiff(GetScalarCost, GetVectorCost); + // If this node generates masked gather load then it is not a terminal node. + // Hence address operand cost is estimated separately. + if (E->State == TreeEntry::ScatterVectorize) + return Cost; + + // Estimate cost of GEPs since this tree node is a terminator. + SmallVector<Value *> PointerOps(VL.size()); + for (auto [I, V] : enumerate(VL)) + PointerOps[I] = cast<LoadInst>(V)->getPointerOperand(); + return Cost + GetGEPCostDiff(PointerOps, LI0->getPointerOperand()); + } + case Instruction::Store: { + bool IsReorder = !E->ReorderIndices.empty(); + auto GetScalarCost = [=](unsigned Idx) { + auto *VI = cast<StoreInst>(VL[Idx]); + TTI::OperandValueInfo OpInfo = getOperandInfo(VI, 0); + return TTI->getMemoryOpCost(Instruction::Store, ScalarTy, VI->getAlign(), + VI->getPointerAddressSpace(), CostKind, + OpInfo, VI); + }; + auto *BaseSI = + cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); + auto GetVectorCost = [=](InstructionCost CommonCost) { + // We know that we can merge the stores. Calculate the cost. + TTI::OperandValueInfo OpInfo = getOperandInfo(VL, 0); + return TTI->getMemoryOpCost(Instruction::Store, VecTy, BaseSI->getAlign(), + BaseSI->getPointerAddressSpace(), CostKind, + OpInfo) + + CommonCost; + }; + SmallVector<Value *> PointerOps(VL.size()); + for (auto [I, V] : enumerate(VL)) { + unsigned Idx = IsReorder ? E->ReorderIndices[I] : I; + PointerOps[Idx] = cast<StoreInst>(V)->getPointerOperand(); + } + + return GetCostDiff(GetScalarCost, GetVectorCost) + + GetGEPCostDiff(PointerOps, BaseSI->getPointerOperand()); + } + case Instruction::Call: { + auto GetScalarCost = [=](unsigned Idx) { + auto *CI = cast<CallInst>(VL[Idx]); + Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); + if (ID != Intrinsic::not_intrinsic) { + IntrinsicCostAttributes CostAttrs(ID, *CI, 1); + return TTI->getIntrinsicInstrCost(CostAttrs, CostKind); + } + return TTI->getCallInstrCost(CI->getCalledFunction(), + CI->getFunctionType()->getReturnType(), + CI->getFunctionType()->params(), CostKind); + }; + auto GetVectorCost = [=](InstructionCost CommonCost) { + auto *CI = cast<CallInst>(VL0); + auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); + return std::min(VecCallCosts.first, VecCallCosts.second) + CommonCost; + }; + return GetCostDiff(GetScalarCost, GetVectorCost); + } + case Instruction::ShuffleVector: { + assert(E->isAltShuffle() && + ((Instruction::isBinaryOp(E->getOpcode()) && + Instruction::isBinaryOp(E->getAltOpcode())) || + (Instruction::isCast(E->getOpcode()) && + Instruction::isCast(E->getAltOpcode())) || + (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && + "Invalid Shuffle Vector Operand"); + // Try to find the previous shuffle node with the same operands and same + // main/alternate ops. + auto TryFindNodeWithEqualOperands = [=]() { + for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { + if (TE.get() == E) + break; + if (TE->isAltShuffle() && + ((TE->getOpcode() == E->getOpcode() && + TE->getAltOpcode() == E->getAltOpcode()) || + (TE->getOpcode() == E->getAltOpcode() && + TE->getAltOpcode() == E->getOpcode())) && + TE->hasEqualOperands(*E)) + return true; + } + return false; + }; + auto GetScalarCost = [=](unsigned Idx) { + auto *VI = cast<Instruction>(VL[Idx]); + assert(E->isOpcodeOrAlt(VI) && "Unexpected main/alternate opcode"); + (void)E; + return TTI->getInstructionCost(VI, CostKind); + }; + // Need to clear CommonCost since the final shuffle cost is included into + // vector cost. + auto GetVectorCost = [&](InstructionCost) { + // VecCost is equal to sum of the cost of creating 2 vectors + // and the cost of creating shuffle. + InstructionCost VecCost = 0; + if (TryFindNodeWithEqualOperands()) { + LLVM_DEBUG({ + dbgs() << "SLP: diamond match for alternate node found.\n"; + E->dump(); + }); + // No need to add new vector costs here since we're going to reuse + // same main/alternate vector ops, just do different shuffling. + } else if (Instruction::isBinaryOp(E->getOpcode())) { + VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); + VecCost += + TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, CostKind); + } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { + VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, + Builder.getInt1Ty(), + CI0->getPredicate(), CostKind, VL0); + VecCost += TTI->getCmpSelInstrCost( + E->getOpcode(), ScalarTy, Builder.getInt1Ty(), + cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, + E->getAltOp()); + } else { + Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); + Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); + auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); + auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); + VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, + TTI::CastContextHint::None, CostKind); + VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, + TTI::CastContextHint::None, CostKind); + } + if (E->ReuseShuffleIndices.empty()) { + VecCost += + TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy); + } else { + SmallVector<int> Mask; + buildShuffleEntryMask( + E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, + [E](Instruction *I) { + assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); + return I->getOpcode() == E->getAltOpcode(); + }, + Mask); + VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, + FinalVecTy, Mask); + } + return VecCost; + }; + return GetCostDiff(GetScalarCost, GetVectorCost); + } + default: + llvm_unreachable("Unknown instruction"); + } +} + +bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { + LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " + << VectorizableTree.size() << " is fully vectorizable .\n"); + + auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { + SmallVector<int> Mask; + return TE->State == TreeEntry::NeedToGather && + !any_of(TE->Scalars, + [this](Value *V) { return EphValues.contains(V); }) && + (allConstant(TE->Scalars) || isSplat(TE->Scalars) || + TE->Scalars.size() < Limit || + ((TE->getOpcode() == Instruction::ExtractElement || + all_of(TE->Scalars, + [](Value *V) { + return isa<ExtractElementInst, UndefValue>(V); + })) && + isFixedVectorShuffle(TE->Scalars, Mask)) || + (TE->State == TreeEntry::NeedToGather && + TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); + }; + + // We only handle trees of heights 1 and 2. + if (VectorizableTree.size() == 1 && + (VectorizableTree[0]->State == TreeEntry::Vectorize || + (ForReduction && + AreVectorizableGathers(VectorizableTree[0].get(), + VectorizableTree[0]->Scalars.size()) && + VectorizableTree[0]->getVectorFactor() > 2))) + return true; + + if (VectorizableTree.size() != 2) + return false; + + // Handle splat and all-constants stores. Also try to vectorize tiny trees + // with the second gather nodes if they have less scalar operands rather than + // the initial tree element (may be profitable to shuffle the second gather) + // or they are extractelements, which form shuffle. + SmallVector<int> Mask; + if (VectorizableTree[0]->State == TreeEntry::Vectorize && + AreVectorizableGathers(VectorizableTree[1].get(), + VectorizableTree[0]->Scalars.size())) + return true; + + // Gathering cost would be too much for tiny trees. + if (VectorizableTree[0]->State == TreeEntry::NeedToGather || + (VectorizableTree[1]->State == TreeEntry::NeedToGather && + VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) + return false; + + return true; +} + +static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, + TargetTransformInfo *TTI, + bool MustMatchOrInst) { + // Look past the root to find a source value. Arbitrarily follow the + // path through operand 0 of any 'or'. Also, peek through optional + // shift-left-by-multiple-of-8-bits. + Value *ZextLoad = Root; + const APInt *ShAmtC; + bool FoundOr = false; + while (!isa<ConstantExpr>(ZextLoad) && + (match(ZextLoad, m_Or(m_Value(), m_Value())) || + (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && + ShAmtC->urem(8) == 0))) { + auto *BinOp = cast<BinaryOperator>(ZextLoad); + ZextLoad = BinOp->getOperand(0); + if (BinOp->getOpcode() == Instruction::Or) + FoundOr = true; + } + // Check if the input is an extended load of the required or/shift expression. + Value *Load; + if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || + !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) + return false; + + // Require that the total load bit width is a legal integer type. + // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. + // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. + Type *SrcTy = Load->getType(); + unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; + if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) + return false; + + // Everything matched - assume that we can fold the whole sequence using + // load combining. + LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " + << *(cast<Instruction>(Root)) << "\n"); + + return true; +} + +bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { + if (RdxKind != RecurKind::Or) + return false; + + unsigned NumElts = VectorizableTree[0]->Scalars.size(); + Value *FirstReduced = VectorizableTree[0]->Scalars[0]; + return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, + /* MatchOr */ false); +} + +bool BoUpSLP::isLoadCombineCandidate() const { + // Peek through a final sequence of stores and check if all operations are + // likely to be load-combined. + unsigned NumElts = VectorizableTree[0]->Scalars.size(); + for (Value *Scalar : VectorizableTree[0]->Scalars) { + Value *X; + if (!match(Scalar, m_Store(m_Value(X), m_Value())) || + !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) + return false; + } + return true; +} + +bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { + // No need to vectorize inserts of gathered values. + if (VectorizableTree.size() == 2 && + isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && + VectorizableTree[1]->State == TreeEntry::NeedToGather && + (VectorizableTree[1]->getVectorFactor() <= 2 || + !(isSplat(VectorizableTree[1]->Scalars) || + allConstant(VectorizableTree[1]->Scalars)))) + return true; + + // We can vectorize the tree if its size is greater than or equal to the + // minimum size specified by the MinTreeSize command line option. + if (VectorizableTree.size() >= MinTreeSize) + return false; + + // If we have a tiny tree (a tree whose size is less than MinTreeSize), we + // can vectorize it if we can prove it fully vectorizable. + if (isFullyVectorizableTinyTree(ForReduction)) + return false; + + assert(VectorizableTree.empty() + ? ExternalUses.empty() + : true && "We shouldn't have any external users"); + + // Otherwise, we can't vectorize the tree. It is both tiny and not fully + // vectorizable. + return true; +} + +InstructionCost BoUpSLP::getSpillCost() const { + // Walk from the bottom of the tree to the top, tracking which values are + // live. When we see a call instruction that is not part of our tree, + // query TTI to see if there is a cost to keeping values live over it + // (for example, if spills and fills are required). + unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); + InstructionCost Cost = 0; + + SmallPtrSet<Instruction*, 4> LiveValues; + Instruction *PrevInst = nullptr; + + // The entries in VectorizableTree are not necessarily ordered by their + // position in basic blocks. Collect them and order them by dominance so later + // instructions are guaranteed to be visited first. For instructions in + // different basic blocks, we only scan to the beginning of the block, so + // their order does not matter, as long as all instructions in a basic block + // are grouped together. Using dominance ensures a deterministic order. + SmallVector<Instruction *, 16> OrderedScalars; + for (const auto &TEPtr : VectorizableTree) { + Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); + if (!Inst) + continue; + OrderedScalars.push_back(Inst); + } + llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { + auto *NodeA = DT->getNode(A->getParent()); + auto *NodeB = DT->getNode(B->getParent()); + assert(NodeA && "Should only process reachable instructions"); + assert(NodeB && "Should only process reachable instructions"); + assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && + "Different nodes should have different DFS numbers"); + if (NodeA != NodeB) + return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); + return B->comesBefore(A); + }); + + for (Instruction *Inst : OrderedScalars) { + if (!PrevInst) { + PrevInst = Inst; + continue; + } + + // Update LiveValues. + LiveValues.erase(PrevInst); + for (auto &J : PrevInst->operands()) { + if (isa<Instruction>(&*J) && getTreeEntry(&*J)) + LiveValues.insert(cast<Instruction>(&*J)); + } + + LLVM_DEBUG({ + dbgs() << "SLP: #LV: " << LiveValues.size(); + for (auto *X : LiveValues) + dbgs() << " " << X->getName(); + dbgs() << ", Looking at "; + Inst->dump(); + }); + + // Now find the sequence of instructions between PrevInst and Inst. + unsigned NumCalls = 0; + BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), + PrevInstIt = + PrevInst->getIterator().getReverse(); + while (InstIt != PrevInstIt) { + if (PrevInstIt == PrevInst->getParent()->rend()) { + PrevInstIt = Inst->getParent()->rbegin(); + continue; + } + + auto NoCallIntrinsic = [this](Instruction *I) { + if (auto *II = dyn_cast<IntrinsicInst>(I)) { + if (II->isAssumeLikeIntrinsic()) + return true; + FastMathFlags FMF; + SmallVector<Type *, 4> Tys; + for (auto &ArgOp : II->args()) + Tys.push_back(ArgOp->getType()); + if (auto *FPMO = dyn_cast<FPMathOperator>(II)) + FMF = FPMO->getFastMathFlags(); + IntrinsicCostAttributes ICA(II->getIntrinsicID(), II->getType(), Tys, + FMF); + InstructionCost IntrCost = + TTI->getIntrinsicInstrCost(ICA, TTI::TCK_RecipThroughput); + InstructionCost CallCost = TTI->getCallInstrCost( + nullptr, II->getType(), Tys, TTI::TCK_RecipThroughput); + if (IntrCost < CallCost) + return true; + } + return false; + }; + + // Debug information does not impact spill cost. + if (isa<CallInst>(&*PrevInstIt) && !NoCallIntrinsic(&*PrevInstIt) && + &*PrevInstIt != PrevInst) + NumCalls++; + + ++PrevInstIt; + } + + if (NumCalls) { + SmallVector<Type*, 4> V; + for (auto *II : LiveValues) { + auto *ScalarTy = II->getType(); + if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) + ScalarTy = VectorTy->getElementType(); + V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); + } + Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); + } + + PrevInst = Inst; + } + + return Cost; +} + +/// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the +/// buildvector sequence. +static bool isFirstInsertElement(const InsertElementInst *IE1, + const InsertElementInst *IE2) { + if (IE1 == IE2) + return false; + const auto *I1 = IE1; + const auto *I2 = IE2; + const InsertElementInst *PrevI1; + const InsertElementInst *PrevI2; + unsigned Idx1 = *getInsertIndex(IE1); + unsigned Idx2 = *getInsertIndex(IE2); + do { + if (I2 == IE1) + return true; + if (I1 == IE2) + return false; + PrevI1 = I1; + PrevI2 = I2; + if (I1 && (I1 == IE1 || I1->hasOneUse()) && + getInsertIndex(I1).value_or(Idx2) != Idx2) + I1 = dyn_cast<InsertElementInst>(I1->getOperand(0)); + if (I2 && ((I2 == IE2 || I2->hasOneUse())) && + getInsertIndex(I2).value_or(Idx1) != Idx1) + I2 = dyn_cast<InsertElementInst>(I2->getOperand(0)); + } while ((I1 && PrevI1 != I1) || (I2 && PrevI2 != I2)); + llvm_unreachable("Two different buildvectors not expected."); +} + +namespace { +/// Returns incoming Value *, if the requested type is Value * too, or a default +/// value, otherwise. +struct ValueSelect { + template <typename U> + static std::enable_if_t<std::is_same_v<Value *, U>, Value *> get(Value *V) { + return V; + } + template <typename U> + static std::enable_if_t<!std::is_same_v<Value *, U>, U> get(Value *) { + return U(); + } +}; +} // namespace + +/// Does the analysis of the provided shuffle masks and performs the requested +/// actions on the vectors with the given shuffle masks. It tries to do it in +/// several steps. +/// 1. If the Base vector is not undef vector, resizing the very first mask to +/// have common VF and perform action for 2 input vectors (including non-undef +/// Base). Other shuffle masks are combined with the resulting after the 1 stage +/// and processed as a shuffle of 2 elements. +/// 2. If the Base is undef vector and have only 1 shuffle mask, perform the +/// action only for 1 vector with the given mask, if it is not the identity +/// mask. +/// 3. If > 2 masks are used, perform the remaining shuffle actions for 2 +/// vectors, combing the masks properly between the steps. +template <typename T> +static T *performExtractsShuffleAction( + MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base, + function_ref<unsigned(T *)> GetVF, + function_ref<std::pair<T *, bool>(T *, ArrayRef<int>, bool)> ResizeAction, + function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) { + assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts."); + SmallVector<int> Mask(ShuffleMask.begin()->second); + auto VMIt = std::next(ShuffleMask.begin()); + T *Prev = nullptr; + SmallBitVector UseMask = + buildUseMask(Mask.size(), Mask, UseMask::UndefsAsMask); + SmallBitVector IsBaseUndef = isUndefVector(Base, UseMask); + if (!IsBaseUndef.all()) { + // Base is not undef, need to combine it with the next subvectors. + std::pair<T *, bool> Res = + ResizeAction(ShuffleMask.begin()->first, Mask, /*ForSingleMask=*/false); + SmallBitVector IsBasePoison = isUndefVector<true>(Base, UseMask); + for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { + if (Mask[Idx] == UndefMaskElem) + Mask[Idx] = IsBasePoison.test(Idx) ? UndefMaskElem : Idx; + else + Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF; + } + auto *V = ValueSelect::get<T *>(Base); + (void)V; + assert((!V || GetVF(V) == Mask.size()) && + "Expected base vector of VF number of elements."); + Prev = Action(Mask, {nullptr, Res.first}); + } else if (ShuffleMask.size() == 1) { + // Base is undef and only 1 vector is shuffled - perform the action only for + // single vector, if the mask is not the identity mask. + std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask, + /*ForSingleMask=*/true); + if (Res.second) + // Identity mask is found. + Prev = Res.first; + else + Prev = Action(Mask, {ShuffleMask.begin()->first}); + } else { + // Base is undef and at least 2 input vectors shuffled - perform 2 vectors + // shuffles step by step, combining shuffle between the steps. + unsigned Vec1VF = GetVF(ShuffleMask.begin()->first); + unsigned Vec2VF = GetVF(VMIt->first); + if (Vec1VF == Vec2VF) { + // No need to resize the input vectors since they are of the same size, we + // can shuffle them directly. + ArrayRef<int> SecMask = VMIt->second; + for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { + if (SecMask[I] != UndefMaskElem) { + assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); + Mask[I] = SecMask[I] + Vec1VF; + } + } + Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first}); + } else { + // Vectors of different sizes - resize and reshuffle. + std::pair<T *, bool> Res1 = ResizeAction(ShuffleMask.begin()->first, Mask, + /*ForSingleMask=*/false); + std::pair<T *, bool> Res2 = + ResizeAction(VMIt->first, VMIt->second, /*ForSingleMask=*/false); + ArrayRef<int> SecMask = VMIt->second; + for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { + if (Mask[I] != UndefMaskElem) { + assert(SecMask[I] == UndefMaskElem && "Multiple uses of scalars."); + if (Res1.second) + Mask[I] = I; + } else if (SecMask[I] != UndefMaskElem) { + assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); + Mask[I] = (Res2.second ? I : SecMask[I]) + VF; + } + } + Prev = Action(Mask, {Res1.first, Res2.first}); + } + VMIt = std::next(VMIt); + } + bool IsBaseNotUndef = !IsBaseUndef.all(); + (void)IsBaseNotUndef; + // Perform requested actions for the remaining masks/vectors. + for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) { + // Shuffle other input vectors, if any. + std::pair<T *, bool> Res = + ResizeAction(VMIt->first, VMIt->second, /*ForSingleMask=*/false); + ArrayRef<int> SecMask = VMIt->second; + for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { + if (SecMask[I] != UndefMaskElem) { + assert((Mask[I] == UndefMaskElem || IsBaseNotUndef) && + "Multiple uses of scalars."); + Mask[I] = (Res.second ? I : SecMask[I]) + VF; + } else if (Mask[I] != UndefMaskElem) { + Mask[I] = I; + } + } + Prev = Action(Mask, {Prev, Res.first}); + } + return Prev; +} + +InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { + InstructionCost Cost = 0; + LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " + << VectorizableTree.size() << ".\n"); + + unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); + + for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { + TreeEntry &TE = *VectorizableTree[I]; + if (TE.State == TreeEntry::NeedToGather) { + if (const TreeEntry *E = getTreeEntry(TE.getMainOp()); + E && E->getVectorFactor() == TE.getVectorFactor() && + E->isSame(TE.Scalars)) { + // Some gather nodes might be absolutely the same as some vectorizable + // nodes after reordering, need to handle it. + LLVM_DEBUG(dbgs() << "SLP: Adding cost 0 for bundle that starts with " + << *TE.Scalars[0] << ".\n" + << "SLP: Current total cost = " << Cost << "\n"); + continue; + } + } + + InstructionCost C = getEntryCost(&TE, VectorizedVals); + Cost += C; + LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C + << " for bundle that starts with " << *TE.Scalars[0] + << ".\n" + << "SLP: Current total cost = " << Cost << "\n"); + } + + SmallPtrSet<Value *, 16> ExtractCostCalculated; + InstructionCost ExtractCost = 0; + SmallVector<MapVector<const TreeEntry *, SmallVector<int>>> ShuffleMasks; + SmallVector<std::pair<Value *, const TreeEntry *>> FirstUsers; + SmallVector<APInt> DemandedElts; + for (ExternalUser &EU : ExternalUses) { + // We only add extract cost once for the same scalar. + if (!isa_and_nonnull<InsertElementInst>(EU.User) && + !ExtractCostCalculated.insert(EU.Scalar).second) + continue; + + // Uses by ephemeral values are free (because the ephemeral value will be + // removed prior to code generation, and so the extraction will be + // removed as well). + if (EphValues.count(EU.User)) + continue; + + // No extract cost for vector "scalar" + if (isa<FixedVectorType>(EU.Scalar->getType())) + continue; + + // If found user is an insertelement, do not calculate extract cost but try + // to detect it as a final shuffled/identity match. + if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { + if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { + std::optional<unsigned> InsertIdx = getInsertIndex(VU); + if (InsertIdx) { + const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar); + auto *It = find_if( + FirstUsers, + [this, VU](const std::pair<Value *, const TreeEntry *> &Pair) { + return areTwoInsertFromSameBuildVector( + VU, cast<InsertElementInst>(Pair.first), + [this](InsertElementInst *II) -> Value * { + Value *Op0 = II->getOperand(0); + if (getTreeEntry(II) && !getTreeEntry(Op0)) + return nullptr; + return Op0; + }); + }); + int VecId = -1; + if (It == FirstUsers.end()) { + (void)ShuffleMasks.emplace_back(); + SmallVectorImpl<int> &Mask = ShuffleMasks.back()[ScalarTE]; + if (Mask.empty()) + Mask.assign(FTy->getNumElements(), UndefMaskElem); + // Find the insertvector, vectorized in tree, if any. + Value *Base = VU; + while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { + if (IEBase != EU.User && + (!IEBase->hasOneUse() || + getInsertIndex(IEBase).value_or(*InsertIdx) == *InsertIdx)) + break; + // Build the mask for the vectorized insertelement instructions. + if (const TreeEntry *E = getTreeEntry(IEBase)) { + VU = IEBase; + do { + IEBase = cast<InsertElementInst>(Base); + int Idx = *getInsertIndex(IEBase); + assert(Mask[Idx] == UndefMaskElem && + "InsertElementInstruction used already."); + Mask[Idx] = Idx; + Base = IEBase->getOperand(0); + } while (E == getTreeEntry(Base)); + break; + } + Base = cast<InsertElementInst>(Base)->getOperand(0); + } + FirstUsers.emplace_back(VU, ScalarTE); + DemandedElts.push_back(APInt::getZero(FTy->getNumElements())); + VecId = FirstUsers.size() - 1; + } else { + if (isFirstInsertElement(VU, cast<InsertElementInst>(It->first))) + It->first = VU; + VecId = std::distance(FirstUsers.begin(), It); + } + int InIdx = *InsertIdx; + SmallVectorImpl<int> &Mask = ShuffleMasks[VecId][ScalarTE]; + if (Mask.empty()) + Mask.assign(FTy->getNumElements(), UndefMaskElem); + Mask[InIdx] = EU.Lane; + DemandedElts[VecId].setBit(InIdx); + continue; + } + } + } + + // If we plan to rewrite the tree in a smaller type, we will need to sign + // extend the extracted value back to the original type. Here, we account + // for the extract and the added cost of the sign extend if needed. + auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); + TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; + auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; + if (MinBWs.count(ScalarRoot)) { + auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); + auto Extend = + MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; + VecTy = FixedVectorType::get(MinTy, BundleWidth); + ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), + VecTy, EU.Lane); + } else { + ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, + CostKind, EU.Lane); + } + } + + InstructionCost SpillCost = getSpillCost(); + Cost += SpillCost + ExtractCost; + auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask, + bool) { + InstructionCost C = 0; + unsigned VF = Mask.size(); + unsigned VecVF = TE->getVectorFactor(); + if (VF != VecVF && + (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) || + (all_of(Mask, + [VF](int Idx) { return Idx < 2 * static_cast<int>(VF); }) && + !ShuffleVectorInst::isIdentityMask(Mask)))) { + SmallVector<int> OrigMask(VecVF, UndefMaskElem); + std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)), + OrigMask.begin()); + C = TTI->getShuffleCost( + TTI::SK_PermuteSingleSrc, + FixedVectorType::get(TE->getMainOp()->getType(), VecVF), OrigMask); + LLVM_DEBUG( + dbgs() << "SLP: Adding cost " << C + << " for final shuffle of insertelement external users.\n"; + TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n"); + Cost += C; + return std::make_pair(TE, true); + } + return std::make_pair(TE, false); + }; + // Calculate the cost of the reshuffled vectors, if any. + for (int I = 0, E = FirstUsers.size(); I < E; ++I) { + Value *Base = cast<Instruction>(FirstUsers[I].first)->getOperand(0); + unsigned VF = ShuffleMasks[I].begin()->second.size(); + auto *FTy = FixedVectorType::get( + cast<VectorType>(FirstUsers[I].first->getType())->getElementType(), VF); + auto Vector = ShuffleMasks[I].takeVector(); + auto &&EstimateShufflesCost = [this, FTy, + &Cost](ArrayRef<int> Mask, + ArrayRef<const TreeEntry *> TEs) { + assert((TEs.size() == 1 || TEs.size() == 2) && + "Expected exactly 1 or 2 tree entries."); + if (TEs.size() == 1) { + int Limit = 2 * Mask.size(); + if (!all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) || + !ShuffleVectorInst::isIdentityMask(Mask)) { + InstructionCost C = + TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FTy, Mask); + LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C + << " for final shuffle of insertelement " + "external users.\n"; + TEs.front()->dump(); + dbgs() << "SLP: Current total cost = " << Cost << "\n"); + Cost += C; + } + } else { + InstructionCost C = + TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, FTy, Mask); + LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C + << " for final shuffle of vector node and external " + "insertelement users.\n"; + if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump(); + dbgs() << "SLP: Current total cost = " << Cost << "\n"); + Cost += C; + } + return TEs.back(); + }; + (void)performExtractsShuffleAction<const TreeEntry>( + MutableArrayRef(Vector.data(), Vector.size()), Base, + [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF, + EstimateShufflesCost); + InstructionCost InsertCost = TTI->getScalarizationOverhead( + cast<FixedVectorType>(FirstUsers[I].first->getType()), DemandedElts[I], + /*Insert*/ true, /*Extract*/ false, TTI::TCK_RecipThroughput); + Cost -= InsertCost; + } + +#ifndef NDEBUG + SmallString<256> Str; + { + raw_svector_ostream OS(Str); + OS << "SLP: Spill Cost = " << SpillCost << ".\n" + << "SLP: Extract Cost = " << ExtractCost << ".\n" + << "SLP: Total Cost = " << Cost << ".\n"; + } + LLVM_DEBUG(dbgs() << Str); + if (ViewSLPTree) + ViewGraph(this, "SLP" + F->getName(), false, Str); +#endif + + return Cost; +} + +std::optional<TargetTransformInfo::ShuffleKind> +BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, ArrayRef<Value *> VL, + SmallVectorImpl<int> &Mask, + SmallVectorImpl<const TreeEntry *> &Entries) { + Entries.clear(); + // No need to check for the topmost gather node. + if (TE == VectorizableTree.front().get()) + return std::nullopt; + Mask.assign(VL.size(), UndefMaskElem); + assert(TE->UserTreeIndices.size() == 1 && + "Expected only single user of the gather node."); + // TODO: currently checking only for Scalars in the tree entry, need to count + // reused elements too for better cost estimation. + Instruction &UserInst = + getLastInstructionInBundle(TE->UserTreeIndices.front().UserTE); + auto *PHI = dyn_cast<PHINode>(&UserInst); + auto *NodeUI = DT->getNode( + PHI ? PHI->getIncomingBlock(TE->UserTreeIndices.front().EdgeIdx) + : UserInst.getParent()); + assert(NodeUI && "Should only process reachable instructions"); + SmallPtrSet<Value *, 4> GatheredScalars(VL.begin(), VL.end()); + auto CheckOrdering = [&](Instruction *LastEI) { + // Check if the user node of the TE comes after user node of EntryPtr, + // otherwise EntryPtr depends on TE. + // Gather nodes usually are not scheduled and inserted before their first + // user node. So, instead of checking dependency between the gather nodes + // themselves, we check the dependency between their user nodes. + // If one user node comes before the second one, we cannot use the second + // gather node as the source vector for the first gather node, because in + // the list of instructions it will be emitted later. + auto *EntryParent = LastEI->getParent(); + auto *NodeEUI = DT->getNode(EntryParent); + if (!NodeEUI) + return false; + assert((NodeUI == NodeEUI) == + (NodeUI->getDFSNumIn() == NodeEUI->getDFSNumIn()) && + "Different nodes should have different DFS numbers"); + // Check the order of the gather nodes users. + if (UserInst.getParent() != EntryParent && + (DT->dominates(NodeUI, NodeEUI) || !DT->dominates(NodeEUI, NodeUI))) + return false; + if (UserInst.getParent() == EntryParent && UserInst.comesBefore(LastEI)) + return false; + return true; + }; + // Build a lists of values to tree entries. + DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; + for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { + if (EntryPtr.get() == TE) + continue; + if (EntryPtr->State != TreeEntry::NeedToGather) + continue; + if (!any_of(EntryPtr->Scalars, [&GatheredScalars](Value *V) { + return GatheredScalars.contains(V); + })) + continue; + assert(EntryPtr->UserTreeIndices.size() == 1 && + "Expected only single user of the gather node."); + Instruction &EntryUserInst = + getLastInstructionInBundle(EntryPtr->UserTreeIndices.front().UserTE); + if (&UserInst == &EntryUserInst) { + // If 2 gathers are operands of the same entry, compare operands indices, + // use the earlier one as the base. + if (TE->UserTreeIndices.front().UserTE == + EntryPtr->UserTreeIndices.front().UserTE && + TE->UserTreeIndices.front().EdgeIdx < + EntryPtr->UserTreeIndices.front().EdgeIdx) + continue; + } + // Check if the user node of the TE comes after user node of EntryPtr, + // otherwise EntryPtr depends on TE. + auto *EntryPHI = dyn_cast<PHINode>(&EntryUserInst); + auto *EntryI = + EntryPHI + ? EntryPHI + ->getIncomingBlock(EntryPtr->UserTreeIndices.front().EdgeIdx) + ->getTerminator() + : &EntryUserInst; + if (!CheckOrdering(EntryI)) + continue; + for (Value *V : EntryPtr->Scalars) + if (!isConstant(V)) + ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); + } + // Find all tree entries used by the gathered values. If no common entries + // found - not a shuffle. + // Here we build a set of tree nodes for each gathered value and trying to + // find the intersection between these sets. If we have at least one common + // tree node for each gathered value - we have just a permutation of the + // single vector. If we have 2 different sets, we're in situation where we + // have a permutation of 2 input vectors. + SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; + DenseMap<Value *, int> UsedValuesEntry; + for (Value *V : TE->Scalars) { + if (isConstant(V)) + continue; + // Build a list of tree entries where V is used. + SmallPtrSet<const TreeEntry *, 4> VToTEs; + auto It = ValueToTEs.find(V); + if (It != ValueToTEs.end()) + VToTEs = It->second; + if (const TreeEntry *VTE = getTreeEntry(V)) + VToTEs.insert(VTE); + if (VToTEs.empty()) + continue; + if (UsedTEs.empty()) { + // The first iteration, just insert the list of nodes to vector. + UsedTEs.push_back(VToTEs); + UsedValuesEntry.try_emplace(V, 0); + } else { + // Need to check if there are any previously used tree nodes which use V. + // If there are no such nodes, consider that we have another one input + // vector. + SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); + unsigned Idx = 0; + for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { + // Do we have a non-empty intersection of previously listed tree entries + // and tree entries using current V? + set_intersect(VToTEs, Set); + if (!VToTEs.empty()) { + // Yes, write the new subset and continue analysis for the next + // scalar. + Set.swap(VToTEs); + break; + } + VToTEs = SavedVToTEs; + ++Idx; + } + // No non-empty intersection found - need to add a second set of possible + // source vectors. + if (Idx == UsedTEs.size()) { + // If the number of input vectors is greater than 2 - not a permutation, + // fallback to the regular gather. + // TODO: support multiple reshuffled nodes. + if (UsedTEs.size() == 2) + continue; + UsedTEs.push_back(SavedVToTEs); + Idx = UsedTEs.size() - 1; + } + UsedValuesEntry.try_emplace(V, Idx); + } + } + + if (UsedTEs.empty()) + return std::nullopt; + + unsigned VF = 0; + if (UsedTEs.size() == 1) { + // Keep the order to avoid non-determinism. + SmallVector<const TreeEntry *> FirstEntries(UsedTEs.front().begin(), + UsedTEs.front().end()); + sort(FirstEntries, [](const TreeEntry *TE1, const TreeEntry *TE2) { + return TE1->Idx < TE2->Idx; + }); + // Try to find the perfect match in another gather node at first. + auto *It = find_if(FirstEntries, [=](const TreeEntry *EntryPtr) { + return EntryPtr->isSame(VL) || EntryPtr->isSame(TE->Scalars); + }); + if (It != FirstEntries.end()) { + Entries.push_back(*It); + std::iota(Mask.begin(), Mask.end(), 0); + // Clear undef scalars. + for (int I = 0, Sz = VL.size(); I < Sz; ++I) + if (isa<PoisonValue>(TE->Scalars[I])) + Mask[I] = UndefMaskElem; + return TargetTransformInfo::SK_PermuteSingleSrc; + } + // No perfect match, just shuffle, so choose the first tree node from the + // tree. + Entries.push_back(FirstEntries.front()); + } else { + // Try to find nodes with the same vector factor. + assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); + // Keep the order of tree nodes to avoid non-determinism. + DenseMap<int, const TreeEntry *> VFToTE; + for (const TreeEntry *TE : UsedTEs.front()) { + unsigned VF = TE->getVectorFactor(); + auto It = VFToTE.find(VF); + if (It != VFToTE.end()) { + if (It->second->Idx > TE->Idx) + It->getSecond() = TE; + continue; + } + VFToTE.try_emplace(VF, TE); + } + // Same, keep the order to avoid non-determinism. + SmallVector<const TreeEntry *> SecondEntries(UsedTEs.back().begin(), + UsedTEs.back().end()); + sort(SecondEntries, [](const TreeEntry *TE1, const TreeEntry *TE2) { + return TE1->Idx < TE2->Idx; + }); + for (const TreeEntry *TE : SecondEntries) { + auto It = VFToTE.find(TE->getVectorFactor()); + if (It != VFToTE.end()) { + VF = It->first; + Entries.push_back(It->second); + Entries.push_back(TE); + break; + } + } + // No 2 source vectors with the same vector factor - give up and do regular + // gather. + if (Entries.empty()) + return std::nullopt; + } + + bool IsSplatOrUndefs = isSplat(VL) || all_of(VL, UndefValue::classof); + // Checks if the 2 PHIs are compatible in terms of high possibility to be + // vectorized. + auto AreCompatiblePHIs = [&](Value *V, Value *V1) { + auto *PHI = cast<PHINode>(V); + auto *PHI1 = cast<PHINode>(V1); + // Check that all incoming values are compatible/from same parent (if they + // are instructions). + // The incoming values are compatible if they all are constants, or + // instruction with the same/alternate opcodes from the same basic block. + for (int I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { + Value *In = PHI->getIncomingValue(I); + Value *In1 = PHI1->getIncomingValue(I); + if (isConstant(In) && isConstant(In1)) + continue; + if (!getSameOpcode({In, In1}, *TLI).getOpcode()) + return false; + if (cast<Instruction>(In)->getParent() != + cast<Instruction>(In1)->getParent()) + return false; + } + return true; + }; + // Check if the value can be ignored during analysis for shuffled gathers. + // We suppose it is better to ignore instruction, which do not form splats, + // are not vectorized/not extractelements (these instructions will be handled + // by extractelements processing) or may form vector node in future. + auto MightBeIgnored = [=](Value *V) { + auto *I = dyn_cast<Instruction>(V); + SmallVector<Value *> IgnoredVals; + if (UserIgnoreList) + IgnoredVals.assign(UserIgnoreList->begin(), UserIgnoreList->end()); + return I && !IsSplatOrUndefs && !ScalarToTreeEntry.count(I) && + !isVectorLikeInstWithConstOps(I) && + !areAllUsersVectorized(I, IgnoredVals) && isSimple(I); + }; + // Check that the neighbor instruction may form a full vector node with the + // current instruction V. It is possible, if they have same/alternate opcode + // and same parent basic block. + auto NeighborMightBeIgnored = [&](Value *V, int Idx) { + Value *V1 = VL[Idx]; + bool UsedInSameVTE = false; + auto It = UsedValuesEntry.find(V1); + if (It != UsedValuesEntry.end()) + UsedInSameVTE = It->second == UsedValuesEntry.find(V)->second; + return V != V1 && MightBeIgnored(V1) && !UsedInSameVTE && + getSameOpcode({V, V1}, *TLI).getOpcode() && + cast<Instruction>(V)->getParent() == + cast<Instruction>(V1)->getParent() && + (!isa<PHINode>(V1) || AreCompatiblePHIs(V, V1)); + }; + // Build a shuffle mask for better cost estimation and vector emission. + SmallBitVector UsedIdxs(Entries.size()); + SmallVector<std::pair<unsigned, int>> EntryLanes; + for (int I = 0, E = VL.size(); I < E; ++I) { + Value *V = VL[I]; + auto It = UsedValuesEntry.find(V); + if (It == UsedValuesEntry.end()) + continue; + // Do not try to shuffle scalars, if they are constants, or instructions + // that can be vectorized as a result of the following vector build + // vectorization. + if (isConstant(V) || (MightBeIgnored(V) && + ((I > 0 && NeighborMightBeIgnored(V, I - 1)) || + (I != E - 1 && NeighborMightBeIgnored(V, I + 1))))) + continue; + unsigned Idx = It->second; + EntryLanes.emplace_back(Idx, I); + UsedIdxs.set(Idx); + } + // Iterate through all shuffled scalars and select entries, which can be used + // for final shuffle. + SmallVector<const TreeEntry *> TempEntries; + for (unsigned I = 0, Sz = Entries.size(); I < Sz; ++I) { + if (!UsedIdxs.test(I)) + continue; + // Fix the entry number for the given scalar. If it is the first entry, set + // Pair.first to 0, otherwise to 1 (currently select at max 2 nodes). + // These indices are used when calculating final shuffle mask as the vector + // offset. + for (std::pair<unsigned, int> &Pair : EntryLanes) + if (Pair.first == I) + Pair.first = TempEntries.size(); + TempEntries.push_back(Entries[I]); + } + Entries.swap(TempEntries); + if (EntryLanes.size() == Entries.size() && !VL.equals(TE->Scalars)) { + // We may have here 1 or 2 entries only. If the number of scalars is equal + // to the number of entries, no need to do the analysis, it is not very + // profitable. Since VL is not the same as TE->Scalars, it means we already + // have some shuffles before. Cut off not profitable case. + Entries.clear(); + return std::nullopt; + } + // Build the final mask, check for the identity shuffle, if possible. + bool IsIdentity = Entries.size() == 1; + // Pair.first is the offset to the vector, while Pair.second is the index of + // scalar in the list. + for (const std::pair<unsigned, int> &Pair : EntryLanes) { + Mask[Pair.second] = Pair.first * VF + + Entries[Pair.first]->findLaneForValue(VL[Pair.second]); + IsIdentity &= Mask[Pair.second] == Pair.second; + } + switch (Entries.size()) { + case 1: + if (IsIdentity || EntryLanes.size() > 1 || VL.size() <= 2) + return TargetTransformInfo::SK_PermuteSingleSrc; + break; + case 2: + if (EntryLanes.size() > 2 || VL.size() <= 2) + return TargetTransformInfo::SK_PermuteTwoSrc; + break; + default: + break; + } + Entries.clear(); + return std::nullopt; +} + +InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, + const APInt &ShuffledIndices, + bool NeedToShuffle) const { + TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; + InstructionCost Cost = + TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, + /*Extract*/ false, CostKind); + if (NeedToShuffle) + Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); + return Cost; +} + +InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { + // Find the type of the operands in VL. + Type *ScalarTy = VL[0]->getType(); + if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) + ScalarTy = SI->getValueOperand()->getType(); + auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); + bool DuplicateNonConst = false; + // Find the cost of inserting/extracting values from the vector. + // Check if the same elements are inserted several times and count them as + // shuffle candidates. + APInt ShuffledElements = APInt::getZero(VL.size()); + DenseSet<Value *> UniqueElements; + // Iterate in reverse order to consider insert elements with the high cost. + for (unsigned I = VL.size(); I > 0; --I) { + unsigned Idx = I - 1; + // No need to shuffle duplicates for constants. + if (isConstant(VL[Idx])) { + ShuffledElements.setBit(Idx); + continue; + } + if (!UniqueElements.insert(VL[Idx]).second) { + DuplicateNonConst = true; + ShuffledElements.setBit(Idx); + } + } + return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); +} + +// Perform operand reordering on the instructions in VL and return the reordered +// operands in Left and Right. +void BoUpSLP::reorderInputsAccordingToOpcode( + ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, + SmallVectorImpl<Value *> &Right, const TargetLibraryInfo &TLI, + const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R) { + if (VL.empty()) + return; + VLOperands Ops(VL, TLI, DL, SE, R); + // Reorder the operands in place. + Ops.reorder(); + Left = Ops.getVL(0); + Right = Ops.getVL(1); +} + +Instruction &BoUpSLP::getLastInstructionInBundle(const TreeEntry *E) { + // Get the basic block this bundle is in. All instructions in the bundle + // should be in this block (except for extractelement-like instructions with + // constant indeces). + auto *Front = E->getMainOp(); + auto *BB = Front->getParent(); + assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { + if (E->getOpcode() == Instruction::GetElementPtr && + !isa<GetElementPtrInst>(V)) + return true; + auto *I = cast<Instruction>(V); + return !E->isOpcodeOrAlt(I) || I->getParent() == BB || + isVectorLikeInstWithConstOps(I); + })); + + auto &&FindLastInst = [E, Front, this, &BB]() { + Instruction *LastInst = Front; + for (Value *V : E->Scalars) { + auto *I = dyn_cast<Instruction>(V); + if (!I) + continue; + if (LastInst->getParent() == I->getParent()) { + if (LastInst->comesBefore(I)) + LastInst = I; + continue; + } + assert(isVectorLikeInstWithConstOps(LastInst) && + isVectorLikeInstWithConstOps(I) && + "Expected vector-like insts only."); + if (!DT->isReachableFromEntry(LastInst->getParent())) { + LastInst = I; + continue; + } + if (!DT->isReachableFromEntry(I->getParent())) + continue; + auto *NodeA = DT->getNode(LastInst->getParent()); + auto *NodeB = DT->getNode(I->getParent()); + assert(NodeA && "Should only process reachable instructions"); + assert(NodeB && "Should only process reachable instructions"); + assert((NodeA == NodeB) == + (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && + "Different nodes should have different DFS numbers"); + if (NodeA->getDFSNumIn() < NodeB->getDFSNumIn()) + LastInst = I; + } + BB = LastInst->getParent(); + return LastInst; + }; + + auto &&FindFirstInst = [E, Front, this]() { + Instruction *FirstInst = Front; + for (Value *V : E->Scalars) { + auto *I = dyn_cast<Instruction>(V); + if (!I) + continue; + if (FirstInst->getParent() == I->getParent()) { + if (I->comesBefore(FirstInst)) + FirstInst = I; + continue; + } + assert(isVectorLikeInstWithConstOps(FirstInst) && + isVectorLikeInstWithConstOps(I) && + "Expected vector-like insts only."); + if (!DT->isReachableFromEntry(FirstInst->getParent())) { + FirstInst = I; + continue; + } + if (!DT->isReachableFromEntry(I->getParent())) + continue; + auto *NodeA = DT->getNode(FirstInst->getParent()); + auto *NodeB = DT->getNode(I->getParent()); + assert(NodeA && "Should only process reachable instructions"); + assert(NodeB && "Should only process reachable instructions"); + assert((NodeA == NodeB) == + (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && + "Different nodes should have different DFS numbers"); + if (NodeA->getDFSNumIn() > NodeB->getDFSNumIn()) + FirstInst = I; + } + return FirstInst; + }; + + // Set the insert point to the beginning of the basic block if the entry + // should not be scheduled. + if (E->State != TreeEntry::NeedToGather && + (doesNotNeedToSchedule(E->Scalars) || + all_of(E->Scalars, isVectorLikeInstWithConstOps))) { + Instruction *InsertInst; + if (all_of(E->Scalars, [](Value *V) { + return !isVectorLikeInstWithConstOps(V) && isUsedOutsideBlock(V); + })) + InsertInst = FindLastInst(); + else + InsertInst = FindFirstInst(); + return *InsertInst; + } + + // The last instruction in the bundle in program order. + Instruction *LastInst = nullptr; + + // Find the last instruction. The common case should be that BB has been + // scheduled, and the last instruction is VL.back(). So we start with + // VL.back() and iterate over schedule data until we reach the end of the + // bundle. The end of the bundle is marked by null ScheduleData. + if (BlocksSchedules.count(BB)) { + Value *V = E->isOneOf(E->Scalars.back()); + if (doesNotNeedToBeScheduled(V)) + V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); + auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); + if (Bundle && Bundle->isPartOfBundle()) + for (; Bundle; Bundle = Bundle->NextInBundle) + if (Bundle->OpValue == Bundle->Inst) + LastInst = Bundle->Inst; + } + + // LastInst can still be null at this point if there's either not an entry + // for BB in BlocksSchedules or there's no ScheduleData available for + // VL.back(). This can be the case if buildTree_rec aborts for various + // reasons (e.g., the maximum recursion depth is reached, the maximum region + // size is reached, etc.). ScheduleData is initialized in the scheduling + // "dry-run". + // + // If this happens, we can still find the last instruction by brute force. We + // iterate forwards from Front (inclusive) until we either see all + // instructions in the bundle or reach the end of the block. If Front is the + // last instruction in program order, LastInst will be set to Front, and we + // will visit all the remaining instructions in the block. + // + // One of the reasons we exit early from buildTree_rec is to place an upper + // bound on compile-time. Thus, taking an additional compile-time hit here is + // not ideal. However, this should be exceedingly rare since it requires that + // we both exit early from buildTree_rec and that the bundle be out-of-order + // (causing us to iterate all the way to the end of the block). + if (!LastInst) + LastInst = FindLastInst(); + assert(LastInst && "Failed to find last instruction in bundle"); + return *LastInst; +} + +void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { + auto *Front = E->getMainOp(); + Instruction *LastInst = EntryToLastInstruction.lookup(E); + assert(LastInst && "Failed to find last instruction in bundle"); + // If the instruction is PHI, set the insert point after all the PHIs. + bool IsPHI = isa<PHINode>(LastInst); + if (IsPHI) + LastInst = LastInst->getParent()->getFirstNonPHI(); + if (IsPHI || (E->State != TreeEntry::NeedToGather && + doesNotNeedToSchedule(E->Scalars))) { + Builder.SetInsertPoint(LastInst); + } else { + // Set the insertion point after the last instruction in the bundle. Set the + // debug location to Front. + Builder.SetInsertPoint(LastInst->getParent(), + std::next(LastInst->getIterator())); + } + Builder.SetCurrentDebugLocation(Front->getDebugLoc()); +} + +Value *BoUpSLP::gather(ArrayRef<Value *> VL) { + // List of instructions/lanes from current block and/or the blocks which are + // part of the current loop. These instructions will be inserted at the end to + // make it possible to optimize loops and hoist invariant instructions out of + // the loops body with better chances for success. + SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; + SmallSet<int, 4> PostponedIndices; + Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); + auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { + SmallPtrSet<BasicBlock *, 4> Visited; + while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) + InsertBB = InsertBB->getSinglePredecessor(); + return InsertBB && InsertBB == InstBB; + }; + for (int I = 0, E = VL.size(); I < E; ++I) { + if (auto *Inst = dyn_cast<Instruction>(VL[I])) + if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || + getTreeEntry(Inst) || (L && (L->contains(Inst)))) && + PostponedIndices.insert(I).second) + PostponedInsts.emplace_back(Inst, I); + } + + auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { + Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); + auto *InsElt = dyn_cast<InsertElementInst>(Vec); + if (!InsElt) + return Vec; + GatherShuffleExtractSeq.insert(InsElt); + CSEBlocks.insert(InsElt->getParent()); + // Add to our 'need-to-extract' list. + if (TreeEntry *Entry = getTreeEntry(V)) { + // Find which lane we need to extract. + unsigned FoundLane = Entry->findLaneForValue(V); + ExternalUses.emplace_back(V, InsElt, FoundLane); + } + return Vec; + }; + Value *Val0 = + isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; + FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); + Value *Vec = PoisonValue::get(VecTy); + SmallVector<int> NonConsts; + // Insert constant values at first. + for (int I = 0, E = VL.size(); I < E; ++I) { + if (PostponedIndices.contains(I)) + continue; + if (!isConstant(VL[I])) { + NonConsts.push_back(I); + continue; + } + Vec = CreateInsertElement(Vec, VL[I], I); + } + // Insert non-constant values. + for (int I : NonConsts) + Vec = CreateInsertElement(Vec, VL[I], I); + // Append instructions, which are/may be part of the loop, in the end to make + // it possible to hoist non-loop-based instructions. + for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) + Vec = CreateInsertElement(Vec, Pair.first, Pair.second); + + return Vec; +} + +/// Merges shuffle masks and emits final shuffle instruction, if required. It +/// supports shuffling of 2 input vectors. It implements lazy shuffles emission, +/// when the actual shuffle instruction is generated only if this is actually +/// required. Otherwise, the shuffle instruction emission is delayed till the +/// end of the process, to reduce the number of emitted instructions and further +/// analysis/transformations. +/// The class also will look through the previously emitted shuffle instructions +/// and properly mark indices in mask as undef. +/// For example, given the code +/// \code +/// %s1 = shufflevector <2 x ty> %0, poison, <1, 0> +/// %s2 = shufflevector <2 x ty> %1, poison, <1, 0> +/// \endcode +/// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 3, 2>, it will +/// look through %s1 and %s2 and emit +/// \code +/// %res = shufflevector <2 x ty> %0, %1, <0, 1, 2, 3> +/// \endcode +/// instead. +/// If 2 operands are of different size, the smallest one will be resized and +/// the mask recalculated properly. +/// For example, given the code +/// \code +/// %s1 = shufflevector <2 x ty> %0, poison, <1, 0, 1, 0> +/// %s2 = shufflevector <2 x ty> %1, poison, <1, 0, 1, 0> +/// \endcode +/// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 5, 4>, it will +/// look through %s1 and %s2 and emit +/// \code +/// %res = shufflevector <2 x ty> %0, %1, <0, 1, 2, 3> +/// \endcode +/// instead. +class BoUpSLP::ShuffleInstructionBuilder final : public BaseShuffleAnalysis { + bool IsFinalized = false; + /// Combined mask for all applied operands and masks. It is built during + /// analysis and actual emission of shuffle vector instructions. + SmallVector<int> CommonMask; + /// List of operands for the shuffle vector instruction. It hold at max 2 + /// operands, if the 3rd is going to be added, the first 2 are combined into + /// shuffle with \p CommonMask mask, the first operand sets to be the + /// resulting shuffle and the second operand sets to be the newly added + /// operand. The \p CommonMask is transformed in the proper way after that. + SmallVector<Value *, 2> InVectors; + IRBuilderBase &Builder; + BoUpSLP &R; + + class ShuffleIRBuilder { + IRBuilderBase &Builder; + /// Holds all of the instructions that we gathered. + SetVector<Instruction *> &GatherShuffleExtractSeq; + /// A list of blocks that we are going to CSE. + SetVector<BasicBlock *> &CSEBlocks; + + public: + ShuffleIRBuilder(IRBuilderBase &Builder, + SetVector<Instruction *> &GatherShuffleExtractSeq, + SetVector<BasicBlock *> &CSEBlocks) + : Builder(Builder), GatherShuffleExtractSeq(GatherShuffleExtractSeq), + CSEBlocks(CSEBlocks) {} + ~ShuffleIRBuilder() = default; + /// Creates shufflevector for the 2 operands with the given mask. + Value *createShuffleVector(Value *V1, Value *V2, ArrayRef<int> Mask) { + Value *Vec = Builder.CreateShuffleVector(V1, V2, Mask); + if (auto *I = dyn_cast<Instruction>(Vec)) { + GatherShuffleExtractSeq.insert(I); + CSEBlocks.insert(I->getParent()); + } + return Vec; + } + /// Creates permutation of the single vector operand with the given mask, if + /// it is not identity mask. + Value *createShuffleVector(Value *V1, ArrayRef<int> Mask) { + if (Mask.empty()) + return V1; + unsigned VF = Mask.size(); + unsigned LocalVF = cast<FixedVectorType>(V1->getType())->getNumElements(); + if (VF == LocalVF && ShuffleVectorInst::isIdentityMask(Mask)) + return V1; + Value *Vec = Builder.CreateShuffleVector(V1, Mask); + if (auto *I = dyn_cast<Instruction>(Vec)) { + GatherShuffleExtractSeq.insert(I); + CSEBlocks.insert(I->getParent()); + } + return Vec; + } + /// Resizes 2 input vector to match the sizes, if the they are not equal + /// yet. The smallest vector is resized to the size of the larger vector. + void resizeToMatch(Value *&V1, Value *&V2) { + if (V1->getType() == V2->getType()) + return; + int V1VF = cast<FixedVectorType>(V1->getType())->getNumElements(); + int V2VF = cast<FixedVectorType>(V2->getType())->getNumElements(); + int VF = std::max(V1VF, V2VF); + int MinVF = std::min(V1VF, V2VF); + SmallVector<int> IdentityMask(VF, UndefMaskElem); + std::iota(IdentityMask.begin(), std::next(IdentityMask.begin(), MinVF), + 0); + Value *&Op = MinVF == V1VF ? V1 : V2; + Op = Builder.CreateShuffleVector(Op, IdentityMask); + if (auto *I = dyn_cast<Instruction>(Op)) { + GatherShuffleExtractSeq.insert(I); + CSEBlocks.insert(I->getParent()); + } + if (MinVF == V1VF) + V1 = Op; + else + V2 = Op; + } + }; + + /// Smart shuffle instruction emission, walks through shuffles trees and + /// tries to find the best matching vector for the actual shuffle + /// instruction. + Value *createShuffle(Value *V1, Value *V2, ArrayRef<int> Mask) { + assert(V1 && "Expected at least one vector value."); + ShuffleIRBuilder ShuffleBuilder(Builder, R.GatherShuffleExtractSeq, + R.CSEBlocks); + return BaseShuffleAnalysis::createShuffle(V1, V2, Mask, ShuffleBuilder); + } + + /// Transforms mask \p CommonMask per given \p Mask to make proper set after + /// shuffle emission. + static void transformMaskAfterShuffle(MutableArrayRef<int> CommonMask, + ArrayRef<int> Mask) { + for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) + if (Mask[Idx] != UndefMaskElem) + CommonMask[Idx] = Idx; + } + +public: + ShuffleInstructionBuilder(IRBuilderBase &Builder, BoUpSLP &R) + : Builder(Builder), R(R) {} + + /// Adds 2 input vectors and the mask for their shuffling. + void add(Value *V1, Value *V2, ArrayRef<int> Mask) { + assert(V1 && V2 && !Mask.empty() && "Expected non-empty input vectors."); + if (InVectors.empty()) { + InVectors.push_back(V1); + InVectors.push_back(V2); + CommonMask.assign(Mask.begin(), Mask.end()); + return; + } + Value *Vec = InVectors.front(); + if (InVectors.size() == 2) { + Vec = createShuffle(Vec, InVectors.back(), CommonMask); + transformMaskAfterShuffle(CommonMask, Mask); + } else if (cast<FixedVectorType>(Vec->getType())->getNumElements() != + Mask.size()) { + Vec = createShuffle(Vec, nullptr, CommonMask); + transformMaskAfterShuffle(CommonMask, Mask); + } + V1 = createShuffle(V1, V2, Mask); + for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) + if (Mask[Idx] != UndefMaskElem) + CommonMask[Idx] = Idx + Sz; + InVectors.front() = Vec; + if (InVectors.size() == 2) + InVectors.back() = V1; + else + InVectors.push_back(V1); + } + /// Adds another one input vector and the mask for the shuffling. + void add(Value *V1, ArrayRef<int> Mask) { + if (InVectors.empty()) { + if (!isa<FixedVectorType>(V1->getType())) { + V1 = createShuffle(V1, nullptr, CommonMask); + CommonMask.assign(Mask.size(), UndefMaskElem); + transformMaskAfterShuffle(CommonMask, Mask); + } + InVectors.push_back(V1); + CommonMask.assign(Mask.begin(), Mask.end()); + return; + } + const auto *It = find(InVectors, V1); + if (It == InVectors.end()) { + if (InVectors.size() == 2 || + InVectors.front()->getType() != V1->getType() || + !isa<FixedVectorType>(V1->getType())) { + Value *V = InVectors.front(); + if (InVectors.size() == 2) { + V = createShuffle(InVectors.front(), InVectors.back(), CommonMask); + transformMaskAfterShuffle(CommonMask, CommonMask); + } else if (cast<FixedVectorType>(V->getType())->getNumElements() != + CommonMask.size()) { + V = createShuffle(InVectors.front(), nullptr, CommonMask); + transformMaskAfterShuffle(CommonMask, CommonMask); + } + for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) + if (CommonMask[Idx] == UndefMaskElem && Mask[Idx] != UndefMaskElem) + CommonMask[Idx] = + V->getType() != V1->getType() + ? Idx + Sz + : Mask[Idx] + cast<FixedVectorType>(V1->getType()) + ->getNumElements(); + if (V->getType() != V1->getType()) + V1 = createShuffle(V1, nullptr, Mask); + InVectors.front() = V; + if (InVectors.size() == 2) + InVectors.back() = V1; + else + InVectors.push_back(V1); + return; + } + // Check if second vector is required if the used elements are already + // used from the first one. + for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) + if (Mask[Idx] != UndefMaskElem && CommonMask[Idx] == UndefMaskElem) { + InVectors.push_back(V1); + break; + } + } + int VF = CommonMask.size(); + if (auto *FTy = dyn_cast<FixedVectorType>(V1->getType())) + VF = FTy->getNumElements(); + for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) + if (Mask[Idx] != UndefMaskElem && CommonMask[Idx] == UndefMaskElem) + CommonMask[Idx] = Mask[Idx] + (It == InVectors.begin() ? 0 : VF); + } + /// Adds another one input vector and the mask for the shuffling. + void addOrdered(Value *V1, ArrayRef<unsigned> Order) { + SmallVector<int> NewMask; + inversePermutation(Order, NewMask); + add(V1, NewMask); + } + /// Finalize emission of the shuffles. + Value * + finalize(ArrayRef<int> ExtMask = std::nullopt) { + IsFinalized = true; + if (!ExtMask.empty()) { + if (CommonMask.empty()) { + CommonMask.assign(ExtMask.begin(), ExtMask.end()); + } else { + SmallVector<int> NewMask(ExtMask.size(), UndefMaskElem); + for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) { + if (ExtMask[I] == UndefMaskElem) + continue; + NewMask[I] = CommonMask[ExtMask[I]]; + } + CommonMask.swap(NewMask); + } + } + if (CommonMask.empty()) { + assert(InVectors.size() == 1 && "Expected only one vector with no mask"); + return InVectors.front(); + } + if (InVectors.size() == 2) + return createShuffle(InVectors.front(), InVectors.back(), CommonMask); + return createShuffle(InVectors.front(), nullptr, CommonMask); + } + + ~ShuffleInstructionBuilder() { + assert((IsFinalized || CommonMask.empty()) && + "Shuffle construction must be finalized."); + } +}; + +Value *BoUpSLP::vectorizeOperand(TreeEntry *E, unsigned NodeIdx) { + ArrayRef<Value *> VL = E->getOperand(NodeIdx); + const unsigned VF = VL.size(); + InstructionsState S = getSameOpcode(VL, *TLI); + // Special processing for GEPs bundle, which may include non-gep values. + if (!S.getOpcode() && VL.front()->getType()->isPointerTy()) { + const auto *It = + find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }); + if (It != VL.end()) + S = getSameOpcode(*It, *TLI); + } + if (S.getOpcode()) { + if (TreeEntry *VE = getTreeEntry(S.OpValue); + VE && VE->isSame(VL) && + (any_of(VE->UserTreeIndices, + [E, NodeIdx](const EdgeInfo &EI) { + return EI.UserTE == E && EI.EdgeIdx == NodeIdx; + }) || + any_of(VectorizableTree, + [E, NodeIdx, VE](const std::unique_ptr<TreeEntry> &TE) { + return TE->isOperandGatherNode({E, NodeIdx}) && + VE->isSame(TE->Scalars); + }))) { + auto FinalShuffle = [&](Value *V, ArrayRef<int> Mask) { + ShuffleInstructionBuilder ShuffleBuilder(Builder, *this); + ShuffleBuilder.add(V, Mask); + return ShuffleBuilder.finalize(std::nullopt); + }; + Value *V = vectorizeTree(VE); + if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { + if (!VE->ReuseShuffleIndices.empty()) { + // Reshuffle to get only unique values. + // If some of the scalars are duplicated in the vectorization + // tree entry, we do not vectorize them but instead generate a + // mask for the reuses. But if there are several users of the + // same entry, they may have different vectorization factors. + // This is especially important for PHI nodes. In this case, we + // need to adapt the resulting instruction for the user + // vectorization factor and have to reshuffle it again to take + // only unique elements of the vector. Without this code the + // function incorrectly returns reduced vector instruction with + // the same elements, not with the unique ones. + + // block: + // %phi = phi <2 x > { .., %entry} {%shuffle, %block} + // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> + // ... (use %2) + // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} + // br %block + SmallVector<int> UniqueIdxs(VF, UndefMaskElem); + SmallSet<int, 4> UsedIdxs; + int Pos = 0; + for (int Idx : VE->ReuseShuffleIndices) { + if (Idx != static_cast<int>(VF) && Idx != UndefMaskElem && + UsedIdxs.insert(Idx).second) + UniqueIdxs[Idx] = Pos; + ++Pos; + } + assert(VF >= UsedIdxs.size() && "Expected vectorization factor " + "less than original vector size."); + UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); + V = FinalShuffle(V, UniqueIdxs); + } else { + assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && + "Expected vectorization factor less " + "than original vector size."); + SmallVector<int> UniformMask(VF, 0); + std::iota(UniformMask.begin(), UniformMask.end(), 0); + V = FinalShuffle(V, UniformMask); + } + } + return V; + } + } + + // Find the corresponding gather entry and vectorize it. + // Allows to be more accurate with tree/graph transformations, checks for the + // correctness of the transformations in many cases. + auto *I = find_if(VectorizableTree, + [E, NodeIdx](const std::unique_ptr<TreeEntry> &TE) { + return TE->isOperandGatherNode({E, NodeIdx}); + }); + assert(I != VectorizableTree.end() && "Gather node is not in the graph."); + assert(I->get()->UserTreeIndices.size() == 1 && + "Expected only single user for the gather node."); + assert(I->get()->isSame(VL) && "Expected same list of scalars."); + IRBuilder<>::InsertPointGuard Guard(Builder); + if (E->getOpcode() != Instruction::InsertElement && + E->getOpcode() != Instruction::PHI) { + Instruction *LastInst = EntryToLastInstruction.lookup(E); + assert(LastInst && "Failed to find last instruction in bundle"); + Builder.SetInsertPoint(LastInst); + } + return vectorizeTree(I->get()); +} + +Value *BoUpSLP::createBuildVector(const TreeEntry *E) { + assert(E->State == TreeEntry::NeedToGather && "Expected gather node."); + unsigned VF = E->getVectorFactor(); + + ShuffleInstructionBuilder ShuffleBuilder(Builder, *this); + SmallVector<Value *> Gathered( + VF, PoisonValue::get(E->Scalars.front()->getType())); + bool NeedFreeze = false; + SmallVector<Value *> VL(E->Scalars.begin(), E->Scalars.end()); + // Build a mask out of the redorder indices and reorder scalars per this mask. + SmallVector<int> ReorderMask; + inversePermutation(E->ReorderIndices, ReorderMask); + if (!ReorderMask.empty()) + reorderScalars(VL, ReorderMask); + SmallVector<int> ReuseMask(VF, UndefMaskElem); + if (!allConstant(VL)) { + // For splats with can emit broadcasts instead of gathers, so try to find + // such sequences. + bool IsSplat = isSplat(VL) && (VL.size() > 2 || VL.front() == VL.back()); + SmallVector<int> UndefPos; + DenseMap<Value *, unsigned> UniquePositions; + // Gather unique non-const values and all constant values. + // For repeated values, just shuffle them. + for (auto [I, V] : enumerate(VL)) { + if (isa<UndefValue>(V)) { + if (!isa<PoisonValue>(V)) { + Gathered[I] = V; + ReuseMask[I] = I; + UndefPos.push_back(I); + } + continue; + } + if (isConstant(V)) { + Gathered[I] = V; + ReuseMask[I] = I; + continue; + } + if (IsSplat) { + Gathered.front() = V; + ReuseMask[I] = 0; + } else { + const auto Res = UniquePositions.try_emplace(V, I); + Gathered[Res.first->second] = V; + ReuseMask[I] = Res.first->second; + } + } + if (!UndefPos.empty() && IsSplat) { + // For undef values, try to replace them with the simple broadcast. + // We can do it if the broadcasted value is guaranteed to be + // non-poisonous, or by freezing the incoming scalar value first. + auto *It = find_if(Gathered, [this, E](Value *V) { + return !isa<UndefValue>(V) && + (getTreeEntry(V) || isGuaranteedNotToBePoison(V) || + any_of(V->uses(), [E](const Use &U) { + // Check if the value already used in the same operation in + // one of the nodes already. + return E->UserTreeIndices.size() == 1 && + is_contained( + E->UserTreeIndices.front().UserTE->Scalars, + U.getUser()) && + E->UserTreeIndices.front().EdgeIdx != U.getOperandNo(); + })); + }); + if (It != Gathered.end()) { + // Replace undefs by the non-poisoned scalars and emit broadcast. + int Pos = std::distance(Gathered.begin(), It); + for_each(UndefPos, [&](int I) { + // Set the undef position to the non-poisoned scalar. + ReuseMask[I] = Pos; + // Replace the undef by the poison, in the mask it is replaced by non-poisoned scalar already. + if (I != Pos) + Gathered[I] = PoisonValue::get(Gathered[I]->getType()); + }); + } else { + // Replace undefs by the poisons, emit broadcast and then emit + // freeze. + for_each(UndefPos, [&](int I) { + ReuseMask[I] = UndefMaskElem; + if (isa<UndefValue>(Gathered[I])) + Gathered[I] = PoisonValue::get(Gathered[I]->getType()); + }); + NeedFreeze = true; + } + } + } else { + ReuseMask.clear(); + copy(VL, Gathered.begin()); + } + // Gather unique scalars and all constants. + Value *Vec = gather(Gathered); + ShuffleBuilder.add(Vec, ReuseMask); + Vec = ShuffleBuilder.finalize(E->ReuseShuffleIndices); + if (NeedFreeze) + Vec = Builder.CreateFreeze(Vec); + return Vec; +} + +Value *BoUpSLP::vectorizeTree(TreeEntry *E) { + IRBuilder<>::InsertPointGuard Guard(Builder); + + if (E->VectorizedValue) { + LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); + return E->VectorizedValue; + } + + auto FinalShuffle = [&](Value *V, const TreeEntry *E) { + ShuffleInstructionBuilder ShuffleBuilder(Builder, *this); + if (E->State != TreeEntry::NeedToGather && + E->getOpcode() == Instruction::Store) { + ArrayRef<int> Mask = + ArrayRef(reinterpret_cast<const int *>(E->ReorderIndices.begin()), + E->ReorderIndices.size()); + ShuffleBuilder.add(V, Mask); + } else { + ShuffleBuilder.addOrdered(V, E->ReorderIndices); + } + return ShuffleBuilder.finalize(E->ReuseShuffleIndices); + }; + + if (E->State == TreeEntry::NeedToGather) { + if (E->Idx > 0) { + // We are in the middle of a vectorizable chain. We need to gather the + // scalars from the users. + Value *Vec = createBuildVector(E); + E->VectorizedValue = Vec; + return Vec; + } + if (E->getMainOp()) + setInsertPointAfterBundle(E); + SmallVector<Value *> GatheredScalars(E->Scalars.begin(), E->Scalars.end()); + // Build a mask out of the reorder indices and reorder scalars per this + // mask. + SmallVector<int> ReorderMask; + inversePermutation(E->ReorderIndices, ReorderMask); + if (!ReorderMask.empty()) + reorderScalars(GatheredScalars, ReorderMask); + Value *Vec; + SmallVector<int> Mask; + SmallVector<const TreeEntry *> Entries; + std::optional<TargetTransformInfo::ShuffleKind> Shuffle = + isGatherShuffledEntry(E, GatheredScalars, Mask, Entries); + if (Shuffle) { + assert((Entries.size() == 1 || Entries.size() == 2) && + "Expected shuffle of 1 or 2 entries."); + Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, + Entries.back()->VectorizedValue, Mask); + if (auto *I = dyn_cast<Instruction>(Vec)) { + GatherShuffleExtractSeq.insert(I); + CSEBlocks.insert(I->getParent()); + } + } else { + Vec = gather(E->Scalars); + } + Vec = FinalShuffle(Vec, E); + E->VectorizedValue = Vec; + return Vec; + } + + assert((E->State == TreeEntry::Vectorize || + E->State == TreeEntry::ScatterVectorize) && + "Unhandled state"); + unsigned ShuffleOrOp = + E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); + Instruction *VL0 = E->getMainOp(); + Type *ScalarTy = VL0->getType(); + if (auto *Store = dyn_cast<StoreInst>(VL0)) + ScalarTy = Store->getValueOperand()->getType(); + else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) + ScalarTy = IE->getOperand(1)->getType(); + auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); + switch (ShuffleOrOp) { + case Instruction::PHI: { + assert((E->ReorderIndices.empty() || + E != VectorizableTree.front().get() || + !E->UserTreeIndices.empty()) && + "PHI reordering is free."); + auto *PH = cast<PHINode>(VL0); + Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); + Builder.SetCurrentDebugLocation(PH->getDebugLoc()); + PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); + Value *V = NewPhi; + + // Adjust insertion point once all PHI's have been generated. + Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); + Builder.SetCurrentDebugLocation(PH->getDebugLoc()); + + V = FinalShuffle(V, E); + + E->VectorizedValue = V; + + // PHINodes may have multiple entries from the same block. We want to + // visit every block once. + SmallPtrSet<BasicBlock*, 4> VisitedBBs; + + for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { + ValueList Operands; + BasicBlock *IBB = PH->getIncomingBlock(i); + + // Stop emission if all incoming values are generated. + if (NewPhi->getNumIncomingValues() == PH->getNumIncomingValues()) { + LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); + return V; + } + + if (!VisitedBBs.insert(IBB).second) { + NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); + continue; + } + + Builder.SetInsertPoint(IBB->getTerminator()); + Builder.SetCurrentDebugLocation(PH->getDebugLoc()); + Value *Vec = vectorizeOperand(E, i); + NewPhi->addIncoming(Vec, IBB); + } + + assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && + "Invalid number of incoming values"); + return V; + } + + case Instruction::ExtractElement: { + Value *V = E->getSingleOperand(0); + setInsertPointAfterBundle(E); + V = FinalShuffle(V, E); + E->VectorizedValue = V; + return V; + } + case Instruction::ExtractValue: { + auto *LI = cast<LoadInst>(E->getSingleOperand(0)); + Builder.SetInsertPoint(LI); + auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); + Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); + LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); + Value *NewV = propagateMetadata(V, E->Scalars); + NewV = FinalShuffle(NewV, E); + E->VectorizedValue = NewV; + return NewV; + } + case Instruction::InsertElement: { + assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); + Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); + Value *V = vectorizeOperand(E, 1); + + // Create InsertVector shuffle if necessary + auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { + return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); + })); + const unsigned NumElts = + cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); + const unsigned NumScalars = E->Scalars.size(); + + unsigned Offset = *getInsertIndex(VL0); + assert(Offset < NumElts && "Failed to find vector index offset"); + + // Create shuffle to resize vector + SmallVector<int> Mask; + if (!E->ReorderIndices.empty()) { + inversePermutation(E->ReorderIndices, Mask); + Mask.append(NumElts - NumScalars, UndefMaskElem); + } else { + Mask.assign(NumElts, UndefMaskElem); + std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); + } + // Create InsertVector shuffle if necessary + bool IsIdentity = true; + SmallVector<int> PrevMask(NumElts, UndefMaskElem); + Mask.swap(PrevMask); + for (unsigned I = 0; I < NumScalars; ++I) { + Value *Scalar = E->Scalars[PrevMask[I]]; + unsigned InsertIdx = *getInsertIndex(Scalar); + IsIdentity &= InsertIdx - Offset == I; + Mask[InsertIdx - Offset] = I; + } + if (!IsIdentity || NumElts != NumScalars) { + V = Builder.CreateShuffleVector(V, Mask); + if (auto *I = dyn_cast<Instruction>(V)) { + GatherShuffleExtractSeq.insert(I); + CSEBlocks.insert(I->getParent()); + } + } + + SmallVector<int> InsertMask(NumElts, UndefMaskElem); + for (unsigned I = 0; I < NumElts; I++) { + if (Mask[I] != UndefMaskElem) + InsertMask[Offset + I] = I; + } + SmallBitVector UseMask = + buildUseMask(NumElts, InsertMask, UseMask::UndefsAsMask); + SmallBitVector IsFirstUndef = + isUndefVector(FirstInsert->getOperand(0), UseMask); + if ((!IsIdentity || Offset != 0 || !IsFirstUndef.all()) && + NumElts != NumScalars) { + if (IsFirstUndef.all()) { + if (!ShuffleVectorInst::isIdentityMask(InsertMask)) { + SmallBitVector IsFirstPoison = + isUndefVector<true>(FirstInsert->getOperand(0), UseMask); + if (!IsFirstPoison.all()) { + for (unsigned I = 0; I < NumElts; I++) { + if (InsertMask[I] == UndefMaskElem && !IsFirstPoison.test(I)) + InsertMask[I] = I + NumElts; + } + } + V = Builder.CreateShuffleVector( + V, + IsFirstPoison.all() ? PoisonValue::get(V->getType()) + : FirstInsert->getOperand(0), + InsertMask, cast<Instruction>(E->Scalars.back())->getName()); + if (auto *I = dyn_cast<Instruction>(V)) { + GatherShuffleExtractSeq.insert(I); + CSEBlocks.insert(I->getParent()); + } + } + } else { + SmallBitVector IsFirstPoison = + isUndefVector<true>(FirstInsert->getOperand(0), UseMask); + for (unsigned I = 0; I < NumElts; I++) { + if (InsertMask[I] == UndefMaskElem) + InsertMask[I] = IsFirstPoison.test(I) ? UndefMaskElem : I; + else + InsertMask[I] += NumElts; + } + V = Builder.CreateShuffleVector( + FirstInsert->getOperand(0), V, InsertMask, + cast<Instruction>(E->Scalars.back())->getName()); + if (auto *I = dyn_cast<Instruction>(V)) { + GatherShuffleExtractSeq.insert(I); + CSEBlocks.insert(I->getParent()); + } + } + } + + ++NumVectorInstructions; + E->VectorizedValue = V; + return V; + } + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::FPExt: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::SIToFP: + case Instruction::UIToFP: + case Instruction::Trunc: + case Instruction::FPTrunc: + case Instruction::BitCast: { + setInsertPointAfterBundle(E); + + Value *InVec = vectorizeOperand(E, 0); + if (E->VectorizedValue) { + LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); + return E->VectorizedValue; + } + + auto *CI = cast<CastInst>(VL0); + Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); + V = FinalShuffle(V, E); + + E->VectorizedValue = V; + ++NumVectorInstructions; + return V; + } + case Instruction::FCmp: + case Instruction::ICmp: { + setInsertPointAfterBundle(E); + + Value *L = vectorizeOperand(E, 0); + if (E->VectorizedValue) { + LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); + return E->VectorizedValue; + } + Value *R = vectorizeOperand(E, 1); + if (E->VectorizedValue) { + LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); + return E->VectorizedValue; + } + + CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); + Value *V = Builder.CreateCmp(P0, L, R); + propagateIRFlags(V, E->Scalars, VL0); + V = FinalShuffle(V, E); + + E->VectorizedValue = V; + ++NumVectorInstructions; + return V; + } + case Instruction::Select: { + setInsertPointAfterBundle(E); + + Value *Cond = vectorizeOperand(E, 0); + if (E->VectorizedValue) { + LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); + return E->VectorizedValue; + } + Value *True = vectorizeOperand(E, 1); + if (E->VectorizedValue) { + LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); + return E->VectorizedValue; + } + Value *False = vectorizeOperand(E, 2); + if (E->VectorizedValue) { + LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); + return E->VectorizedValue; + } + + Value *V = Builder.CreateSelect(Cond, True, False); + V = FinalShuffle(V, E); + + E->VectorizedValue = V; + ++NumVectorInstructions; + return V; + } + case Instruction::FNeg: { + setInsertPointAfterBundle(E); + + Value *Op = vectorizeOperand(E, 0); + + if (E->VectorizedValue) { + LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); + return E->VectorizedValue; + } + + Value *V = Builder.CreateUnOp( + static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); + propagateIRFlags(V, E->Scalars, VL0); + if (auto *I = dyn_cast<Instruction>(V)) + V = propagateMetadata(I, E->Scalars); + + V = FinalShuffle(V, E); + + E->VectorizedValue = V; + ++NumVectorInstructions; + + return V; + } + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + setInsertPointAfterBundle(E); + + Value *LHS = vectorizeOperand(E, 0); + if (E->VectorizedValue) { + LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); + return E->VectorizedValue; + } + Value *RHS = vectorizeOperand(E, 1); + if (E->VectorizedValue) { + LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); + return E->VectorizedValue; + } + + Value *V = Builder.CreateBinOp( + static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, + RHS); + propagateIRFlags(V, E->Scalars, VL0); + if (auto *I = dyn_cast<Instruction>(V)) + V = propagateMetadata(I, E->Scalars); + + V = FinalShuffle(V, E); + + E->VectorizedValue = V; + ++NumVectorInstructions; + + return V; + } + case Instruction::Load: { + // Loads are inserted at the head of the tree because we don't want to + // sink them all the way down past store instructions. + setInsertPointAfterBundle(E); + + LoadInst *LI = cast<LoadInst>(VL0); + Instruction *NewLI; + unsigned AS = LI->getPointerAddressSpace(); + Value *PO = LI->getPointerOperand(); + if (E->State == TreeEntry::Vectorize) { + Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); + NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); + + // The pointer operand uses an in-tree scalar so we add the new BitCast + // or LoadInst to ExternalUses list to make sure that an extract will + // be generated in the future. + if (TreeEntry *Entry = getTreeEntry(PO)) { + // Find which lane we need to extract. + unsigned FoundLane = Entry->findLaneForValue(PO); + ExternalUses.emplace_back( + PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); + } + } else { + assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); + Value *VecPtr = vectorizeOperand(E, 0); + if (E->VectorizedValue) { + LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); + return E->VectorizedValue; + } + // Use the minimum alignment of the gathered loads. + Align CommonAlignment = LI->getAlign(); + for (Value *V : E->Scalars) + CommonAlignment = + std::min(CommonAlignment, cast<LoadInst>(V)->getAlign()); + NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); + } + Value *V = propagateMetadata(NewLI, E->Scalars); + + V = FinalShuffle(V, E); + E->VectorizedValue = V; + ++NumVectorInstructions; + return V; + } + case Instruction::Store: { + auto *SI = cast<StoreInst>(VL0); + unsigned AS = SI->getPointerAddressSpace(); + + setInsertPointAfterBundle(E); + + Value *VecValue = vectorizeOperand(E, 0); + VecValue = FinalShuffle(VecValue, E); + + Value *ScalarPtr = SI->getPointerOperand(); + Value *VecPtr = Builder.CreateBitCast( + ScalarPtr, VecValue->getType()->getPointerTo(AS)); + StoreInst *ST = + Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); + + // The pointer operand uses an in-tree scalar, so add the new BitCast or + // StoreInst to ExternalUses to make sure that an extract will be + // generated in the future. + if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { + // Find which lane we need to extract. + unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); + ExternalUses.push_back(ExternalUser( + ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, + FoundLane)); + } + + Value *V = propagateMetadata(ST, E->Scalars); + + E->VectorizedValue = V; + ++NumVectorInstructions; + return V; + } + case Instruction::GetElementPtr: { + auto *GEP0 = cast<GetElementPtrInst>(VL0); + setInsertPointAfterBundle(E); + + Value *Op0 = vectorizeOperand(E, 0); + if (E->VectorizedValue) { + LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); + return E->VectorizedValue; + } + + SmallVector<Value *> OpVecs; + for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { + Value *OpVec = vectorizeOperand(E, J); + if (E->VectorizedValue) { + LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); + return E->VectorizedValue; + } + OpVecs.push_back(OpVec); + } + + Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); + if (Instruction *I = dyn_cast<GetElementPtrInst>(V)) { + SmallVector<Value *> GEPs; + for (Value *V : E->Scalars) { + if (isa<GetElementPtrInst>(V)) + GEPs.push_back(V); + } + V = propagateMetadata(I, GEPs); + } + + V = FinalShuffle(V, E); + + E->VectorizedValue = V; + ++NumVectorInstructions; + + return V; + } + case Instruction::Call: { + CallInst *CI = cast<CallInst>(VL0); + setInsertPointAfterBundle(E); + + Intrinsic::ID IID = Intrinsic::not_intrinsic; + if (Function *FI = CI->getCalledFunction()) + IID = FI->getIntrinsicID(); + + Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); + + auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); + bool UseIntrinsic = ID != Intrinsic::not_intrinsic && + VecCallCosts.first <= VecCallCosts.second; + + Value *ScalarArg = nullptr; + std::vector<Value *> OpVecs; + SmallVector<Type *, 2> TysForDecl = + {FixedVectorType::get(CI->getType(), E->Scalars.size())}; + for (int j = 0, e = CI->arg_size(); j < e; ++j) { + ValueList OpVL; + // Some intrinsics have scalar arguments. This argument should not be + // vectorized. + if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(IID, j)) { + CallInst *CEI = cast<CallInst>(VL0); + ScalarArg = CEI->getArgOperand(j); + OpVecs.push_back(CEI->getArgOperand(j)); + if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) + TysForDecl.push_back(ScalarArg->getType()); + continue; + } + + Value *OpVec = vectorizeOperand(E, j); + if (E->VectorizedValue) { + LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); + return E->VectorizedValue; + } + LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); + OpVecs.push_back(OpVec); + if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) + TysForDecl.push_back(OpVec->getType()); + } + + Function *CF; + if (!UseIntrinsic) { + VFShape Shape = + VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( + VecTy->getNumElements())), + false /*HasGlobalPred*/); + CF = VFDatabase(*CI).getVectorizedFunction(Shape); + } else { + CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); + } + + SmallVector<OperandBundleDef, 1> OpBundles; + CI->getOperandBundlesAsDefs(OpBundles); + Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); + + // The scalar argument uses an in-tree scalar so we add the new vectorized + // call to ExternalUses list to make sure that an extract will be + // generated in the future. + if (ScalarArg) { + if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { + // Find which lane we need to extract. + unsigned FoundLane = Entry->findLaneForValue(ScalarArg); + ExternalUses.push_back( + ExternalUser(ScalarArg, cast<User>(V), FoundLane)); + } + } + + propagateIRFlags(V, E->Scalars, VL0); + V = FinalShuffle(V, E); + + E->VectorizedValue = V; + ++NumVectorInstructions; + return V; + } + case Instruction::ShuffleVector: { + assert(E->isAltShuffle() && + ((Instruction::isBinaryOp(E->getOpcode()) && + Instruction::isBinaryOp(E->getAltOpcode())) || + (Instruction::isCast(E->getOpcode()) && + Instruction::isCast(E->getAltOpcode())) || + (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && + "Invalid Shuffle Vector Operand"); + + Value *LHS = nullptr, *RHS = nullptr; + if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { + setInsertPointAfterBundle(E); + LHS = vectorizeOperand(E, 0); + if (E->VectorizedValue) { + LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); + return E->VectorizedValue; + } + RHS = vectorizeOperand(E, 1); + } else { + setInsertPointAfterBundle(E); + LHS = vectorizeOperand(E, 0); + } + if (E->VectorizedValue) { + LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); + return E->VectorizedValue; + } + + Value *V0, *V1; + if (Instruction::isBinaryOp(E->getOpcode())) { + V0 = Builder.CreateBinOp( + static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); + V1 = Builder.CreateBinOp( + static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); + } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { + V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); + auto *AltCI = cast<CmpInst>(E->getAltOp()); + CmpInst::Predicate AltPred = AltCI->getPredicate(); + V1 = Builder.CreateCmp(AltPred, LHS, RHS); + } else { + V0 = Builder.CreateCast( + static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); + V1 = Builder.CreateCast( + static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); + } + // Add V0 and V1 to later analysis to try to find and remove matching + // instruction, if any. + for (Value *V : {V0, V1}) { + if (auto *I = dyn_cast<Instruction>(V)) { + GatherShuffleExtractSeq.insert(I); + CSEBlocks.insert(I->getParent()); + } + } + + // Create shuffle to take alternate operations from the vector. + // Also, gather up main and alt scalar ops to propagate IR flags to + // each vector operation. + ValueList OpScalars, AltScalars; + SmallVector<int> Mask; + buildShuffleEntryMask( + E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, + [E, this](Instruction *I) { + assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); + return isAlternateInstruction(I, E->getMainOp(), E->getAltOp(), + *TLI); + }, + Mask, &OpScalars, &AltScalars); + + propagateIRFlags(V0, OpScalars); + propagateIRFlags(V1, AltScalars); + + Value *V = Builder.CreateShuffleVector(V0, V1, Mask); + if (auto *I = dyn_cast<Instruction>(V)) { + V = propagateMetadata(I, E->Scalars); + GatherShuffleExtractSeq.insert(I); + CSEBlocks.insert(I->getParent()); + } + + E->VectorizedValue = V; + ++NumVectorInstructions; + + return V; + } + default: + llvm_unreachable("unknown inst"); + } + return nullptr; +} + +Value *BoUpSLP::vectorizeTree() { + ExtraValueToDebugLocsMap ExternallyUsedValues; + return vectorizeTree(ExternallyUsedValues); +} + +namespace { +/// Data type for handling buildvector sequences with the reused scalars from +/// other tree entries. +struct ShuffledInsertData { + /// List of insertelements to be replaced by shuffles. + SmallVector<InsertElementInst *> InsertElements; + /// The parent vectors and shuffle mask for the given list of inserts. + MapVector<Value *, SmallVector<int>> ValueMasks; +}; +} // namespace + +Value *BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues, + Instruction *ReductionRoot) { + // All blocks must be scheduled before any instructions are inserted. + for (auto &BSIter : BlocksSchedules) { + scheduleBlock(BSIter.second.get()); + } + + // Pre-gather last instructions. + for (const std::unique_ptr<TreeEntry> &E : VectorizableTree) { + if ((E->State == TreeEntry::NeedToGather && + (!E->getMainOp() || E->Idx > 0)) || + (E->State != TreeEntry::NeedToGather && + E->getOpcode() == Instruction::ExtractValue) || + E->getOpcode() == Instruction::InsertElement) + continue; + Instruction *LastInst = &getLastInstructionInBundle(E.get()); + EntryToLastInstruction.try_emplace(E.get(), LastInst); + } + + Builder.SetInsertPoint(ReductionRoot ? ReductionRoot + : &F->getEntryBlock().front()); + auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); + + // If the vectorized tree can be rewritten in a smaller type, we truncate the + // vectorized root. InstCombine will then rewrite the entire expression. We + // sign extend the extracted values below. + auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; + if (MinBWs.count(ScalarRoot)) { + if (auto *I = dyn_cast<Instruction>(VectorRoot)) { + // If current instr is a phi and not the last phi, insert it after the + // last phi node. + if (isa<PHINode>(I)) + Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); + else + Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); + } + auto BundleWidth = VectorizableTree[0]->Scalars.size(); + auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); + auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); + auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); + VectorizableTree[0]->VectorizedValue = Trunc; + } + + LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() + << " values .\n"); + + SmallVector<ShuffledInsertData> ShuffledInserts; + // Maps vector instruction to original insertelement instruction + DenseMap<Value *, InsertElementInst *> VectorToInsertElement; + // Maps extract Scalar to the corresponding extractelement instruction in the + // basic block. Only one extractelement per block should be emitted. + DenseMap<Value *, DenseMap<BasicBlock *, Instruction *>> ScalarToEEs; + // Extract all of the elements with the external uses. + for (const auto &ExternalUse : ExternalUses) { + Value *Scalar = ExternalUse.Scalar; + llvm::User *User = ExternalUse.User; + + // Skip users that we already RAUW. This happens when one instruction + // has multiple uses of the same value. + if (User && !is_contained(Scalar->users(), User)) + continue; + TreeEntry *E = getTreeEntry(Scalar); + assert(E && "Invalid scalar"); + assert(E->State != TreeEntry::NeedToGather && + "Extracting from a gather list"); + // Non-instruction pointers are not deleted, just skip them. + if (E->getOpcode() == Instruction::GetElementPtr && + !isa<GetElementPtrInst>(Scalar)) + continue; + + Value *Vec = E->VectorizedValue; + assert(Vec && "Can't find vectorizable value"); + + Value *Lane = Builder.getInt32(ExternalUse.Lane); + auto ExtractAndExtendIfNeeded = [&](Value *Vec) { + if (Scalar->getType() != Vec->getType()) { + Value *Ex = nullptr; + auto It = ScalarToEEs.find(Scalar); + if (It != ScalarToEEs.end()) { + // No need to emit many extracts, just move the only one in the + // current block. + auto EEIt = It->second.find(Builder.GetInsertBlock()); + if (EEIt != It->second.end()) { + Instruction *I = EEIt->second; + if (Builder.GetInsertPoint() != Builder.GetInsertBlock()->end() && + Builder.GetInsertPoint()->comesBefore(I)) + I->moveBefore(&*Builder.GetInsertPoint()); + Ex = I; + } + } + if (!Ex) { + // "Reuse" the existing extract to improve final codegen. + if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { + Ex = Builder.CreateExtractElement(ES->getOperand(0), + ES->getOperand(1)); + } else { + Ex = Builder.CreateExtractElement(Vec, Lane); + } + if (auto *I = dyn_cast<Instruction>(Ex)) + ScalarToEEs[Scalar].try_emplace(Builder.GetInsertBlock(), I); + } + // The then branch of the previous if may produce constants, since 0 + // operand might be a constant. + if (auto *ExI = dyn_cast<Instruction>(Ex)) { + GatherShuffleExtractSeq.insert(ExI); + CSEBlocks.insert(ExI->getParent()); + } + // If necessary, sign-extend or zero-extend ScalarRoot + // to the larger type. + if (!MinBWs.count(ScalarRoot)) + return Ex; + if (MinBWs[ScalarRoot].second) + return Builder.CreateSExt(Ex, Scalar->getType()); + return Builder.CreateZExt(Ex, Scalar->getType()); + } + assert(isa<FixedVectorType>(Scalar->getType()) && + isa<InsertElementInst>(Scalar) && + "In-tree scalar of vector type is not insertelement?"); + auto *IE = cast<InsertElementInst>(Scalar); + VectorToInsertElement.try_emplace(Vec, IE); + return Vec; + }; + // If User == nullptr, the Scalar is used as extra arg. Generate + // ExtractElement instruction and update the record for this scalar in + // ExternallyUsedValues. + if (!User) { + assert(ExternallyUsedValues.count(Scalar) && + "Scalar with nullptr as an external user must be registered in " + "ExternallyUsedValues map"); + if (auto *VecI = dyn_cast<Instruction>(Vec)) { + if (auto *PHI = dyn_cast<PHINode>(VecI)) + Builder.SetInsertPoint(PHI->getParent()->getFirstNonPHI()); + else + Builder.SetInsertPoint(VecI->getParent(), + std::next(VecI->getIterator())); + } else { + Builder.SetInsertPoint(&F->getEntryBlock().front()); + } + Value *NewInst = ExtractAndExtendIfNeeded(Vec); + auto &NewInstLocs = ExternallyUsedValues[NewInst]; + auto It = ExternallyUsedValues.find(Scalar); + assert(It != ExternallyUsedValues.end() && + "Externally used scalar is not found in ExternallyUsedValues"); + NewInstLocs.append(It->second); + ExternallyUsedValues.erase(Scalar); + // Required to update internally referenced instructions. + Scalar->replaceAllUsesWith(NewInst); + continue; + } + + if (auto *VU = dyn_cast<InsertElementInst>(User)) { + // Skip if the scalar is another vector op or Vec is not an instruction. + if (!Scalar->getType()->isVectorTy() && isa<Instruction>(Vec)) { + if (auto *FTy = dyn_cast<FixedVectorType>(User->getType())) { + std::optional<unsigned> InsertIdx = getInsertIndex(VU); + if (InsertIdx) { + // Need to use original vector, if the root is truncated. + if (MinBWs.count(Scalar) && + VectorizableTree[0]->VectorizedValue == Vec) + Vec = VectorRoot; + auto *It = + find_if(ShuffledInserts, [VU](const ShuffledInsertData &Data) { + // Checks if 2 insertelements are from the same buildvector. + InsertElementInst *VecInsert = Data.InsertElements.front(); + return areTwoInsertFromSameBuildVector( + VU, VecInsert, + [](InsertElementInst *II) { return II->getOperand(0); }); + }); + unsigned Idx = *InsertIdx; + if (It == ShuffledInserts.end()) { + (void)ShuffledInserts.emplace_back(); + It = std::next(ShuffledInserts.begin(), + ShuffledInserts.size() - 1); + SmallVectorImpl<int> &Mask = It->ValueMasks[Vec]; + if (Mask.empty()) + Mask.assign(FTy->getNumElements(), UndefMaskElem); + // Find the insertvector, vectorized in tree, if any. + Value *Base = VU; + while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { + if (IEBase != User && + (!IEBase->hasOneUse() || + getInsertIndex(IEBase).value_or(Idx) == Idx)) + break; + // Build the mask for the vectorized insertelement instructions. + if (const TreeEntry *E = getTreeEntry(IEBase)) { + do { + IEBase = cast<InsertElementInst>(Base); + int IEIdx = *getInsertIndex(IEBase); + assert(Mask[Idx] == UndefMaskElem && + "InsertElementInstruction used already."); + Mask[IEIdx] = IEIdx; + Base = IEBase->getOperand(0); + } while (E == getTreeEntry(Base)); + break; + } + Base = cast<InsertElementInst>(Base)->getOperand(0); + // After the vectorization the def-use chain has changed, need + // to look through original insertelement instructions, if they + // get replaced by vector instructions. + auto It = VectorToInsertElement.find(Base); + if (It != VectorToInsertElement.end()) + Base = It->second; + } + } + SmallVectorImpl<int> &Mask = It->ValueMasks[Vec]; + if (Mask.empty()) + Mask.assign(FTy->getNumElements(), UndefMaskElem); + Mask[Idx] = ExternalUse.Lane; + It->InsertElements.push_back(cast<InsertElementInst>(User)); + continue; + } + } + } + } + + // Generate extracts for out-of-tree users. + // Find the insertion point for the extractelement lane. + if (auto *VecI = dyn_cast<Instruction>(Vec)) { + if (PHINode *PH = dyn_cast<PHINode>(User)) { + for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { + if (PH->getIncomingValue(i) == Scalar) { + Instruction *IncomingTerminator = + PH->getIncomingBlock(i)->getTerminator(); + if (isa<CatchSwitchInst>(IncomingTerminator)) { + Builder.SetInsertPoint(VecI->getParent(), + std::next(VecI->getIterator())); + } else { + Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); + } + Value *NewInst = ExtractAndExtendIfNeeded(Vec); + PH->setOperand(i, NewInst); + } + } + } else { + Builder.SetInsertPoint(cast<Instruction>(User)); + Value *NewInst = ExtractAndExtendIfNeeded(Vec); + User->replaceUsesOfWith(Scalar, NewInst); + } + } else { + Builder.SetInsertPoint(&F->getEntryBlock().front()); + Value *NewInst = ExtractAndExtendIfNeeded(Vec); + User->replaceUsesOfWith(Scalar, NewInst); + } + + LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); + } + + auto CreateShuffle = [&](Value *V1, Value *V2, ArrayRef<int> Mask) { + SmallVector<int> CombinedMask1(Mask.size(), UndefMaskElem); + SmallVector<int> CombinedMask2(Mask.size(), UndefMaskElem); + int VF = cast<FixedVectorType>(V1->getType())->getNumElements(); + for (int I = 0, E = Mask.size(); I < E; ++I) { + if (Mask[I] < VF) + CombinedMask1[I] = Mask[I]; + else + CombinedMask2[I] = Mask[I] - VF; + } + ShuffleInstructionBuilder ShuffleBuilder(Builder, *this); + ShuffleBuilder.add(V1, CombinedMask1); + if (V2) + ShuffleBuilder.add(V2, CombinedMask2); + return ShuffleBuilder.finalize(std::nullopt); + }; + + auto &&ResizeToVF = [&CreateShuffle](Value *Vec, ArrayRef<int> Mask, + bool ForSingleMask) { + unsigned VF = Mask.size(); + unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements(); + if (VF != VecVF) { + if (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); })) { + Vec = CreateShuffle(Vec, nullptr, Mask); + return std::make_pair(Vec, true); + } + if (!ForSingleMask) { + SmallVector<int> ResizeMask(VF, UndefMaskElem); + for (unsigned I = 0; I < VF; ++I) { + if (Mask[I] != UndefMaskElem) + ResizeMask[Mask[I]] = Mask[I]; + } + Vec = CreateShuffle(Vec, nullptr, ResizeMask); + } + } + + return std::make_pair(Vec, false); + }; + // Perform shuffling of the vectorize tree entries for better handling of + // external extracts. + for (int I = 0, E = ShuffledInserts.size(); I < E; ++I) { + // Find the first and the last instruction in the list of insertelements. + sort(ShuffledInserts[I].InsertElements, isFirstInsertElement); + InsertElementInst *FirstInsert = ShuffledInserts[I].InsertElements.front(); + InsertElementInst *LastInsert = ShuffledInserts[I].InsertElements.back(); + Builder.SetInsertPoint(LastInsert); + auto Vector = ShuffledInserts[I].ValueMasks.takeVector(); + Value *NewInst = performExtractsShuffleAction<Value>( + MutableArrayRef(Vector.data(), Vector.size()), + FirstInsert->getOperand(0), + [](Value *Vec) { + return cast<VectorType>(Vec->getType()) + ->getElementCount() + .getKnownMinValue(); + }, + ResizeToVF, + [FirstInsert, &CreateShuffle](ArrayRef<int> Mask, + ArrayRef<Value *> Vals) { + assert((Vals.size() == 1 || Vals.size() == 2) && + "Expected exactly 1 or 2 input values."); + if (Vals.size() == 1) { + // Do not create shuffle if the mask is a simple identity + // non-resizing mask. + if (Mask.size() != cast<FixedVectorType>(Vals.front()->getType()) + ->getNumElements() || + !ShuffleVectorInst::isIdentityMask(Mask)) + return CreateShuffle(Vals.front(), nullptr, Mask); + return Vals.front(); + } + return CreateShuffle(Vals.front() ? Vals.front() + : FirstInsert->getOperand(0), + Vals.back(), Mask); + }); + auto It = ShuffledInserts[I].InsertElements.rbegin(); + // Rebuild buildvector chain. + InsertElementInst *II = nullptr; + if (It != ShuffledInserts[I].InsertElements.rend()) + II = *It; + SmallVector<Instruction *> Inserts; + while (It != ShuffledInserts[I].InsertElements.rend()) { + assert(II && "Must be an insertelement instruction."); + if (*It == II) + ++It; + else + Inserts.push_back(cast<Instruction>(II)); + II = dyn_cast<InsertElementInst>(II->getOperand(0)); + } + for (Instruction *II : reverse(Inserts)) { + II->replaceUsesOfWith(II->getOperand(0), NewInst); + if (auto *NewI = dyn_cast<Instruction>(NewInst)) + if (II->getParent() == NewI->getParent() && II->comesBefore(NewI)) + II->moveAfter(NewI); + NewInst = II; + } + LastInsert->replaceAllUsesWith(NewInst); + for (InsertElementInst *IE : reverse(ShuffledInserts[I].InsertElements)) { + IE->replaceUsesOfWith(IE->getOperand(0), + PoisonValue::get(IE->getOperand(0)->getType())); + IE->replaceUsesOfWith(IE->getOperand(1), + PoisonValue::get(IE->getOperand(1)->getType())); + eraseInstruction(IE); + } + CSEBlocks.insert(LastInsert->getParent()); + } + + SmallVector<Instruction *> RemovedInsts; + // For each vectorized value: + for (auto &TEPtr : VectorizableTree) { + TreeEntry *Entry = TEPtr.get(); + + // No need to handle users of gathered values. + if (Entry->State == TreeEntry::NeedToGather) + continue; + + assert(Entry->VectorizedValue && "Can't find vectorizable value"); + + // For each lane: + for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { + Value *Scalar = Entry->Scalars[Lane]; + + if (Entry->getOpcode() == Instruction::GetElementPtr && + !isa<GetElementPtrInst>(Scalar)) + continue; +#ifndef NDEBUG + Type *Ty = Scalar->getType(); + if (!Ty->isVoidTy()) { + for (User *U : Scalar->users()) { + LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); + + // It is legal to delete users in the ignorelist. + assert((getTreeEntry(U) || + (UserIgnoreList && UserIgnoreList->contains(U)) || + (isa_and_nonnull<Instruction>(U) && + isDeleted(cast<Instruction>(U)))) && + "Deleting out-of-tree value"); + } + } +#endif + LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); + eraseInstruction(cast<Instruction>(Scalar)); + // Retain to-be-deleted instructions for some debug-info + // bookkeeping. NOTE: eraseInstruction only marks the instruction for + // deletion - instructions are not deleted until later. + RemovedInsts.push_back(cast<Instruction>(Scalar)); + } + } + + // Merge the DIAssignIDs from the about-to-be-deleted instructions into the + // new vector instruction. + if (auto *V = dyn_cast<Instruction>(VectorizableTree[0]->VectorizedValue)) + V->mergeDIAssignID(RemovedInsts); + + Builder.ClearInsertionPoint(); + InstrElementSize.clear(); + + return VectorizableTree[0]->VectorizedValue; +} + +void BoUpSLP::optimizeGatherSequence() { + LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleExtractSeq.size() + << " gather sequences instructions.\n"); + // LICM InsertElementInst sequences. + for (Instruction *I : GatherShuffleExtractSeq) { + if (isDeleted(I)) + continue; + + // Check if this block is inside a loop. + Loop *L = LI->getLoopFor(I->getParent()); + if (!L) + continue; + + // Check if it has a preheader. + BasicBlock *PreHeader = L->getLoopPreheader(); + if (!PreHeader) + continue; + + // If the vector or the element that we insert into it are + // instructions that are defined in this basic block then we can't + // hoist this instruction. + if (any_of(I->operands(), [L](Value *V) { + auto *OpI = dyn_cast<Instruction>(V); + return OpI && L->contains(OpI); + })) + continue; + + // We can hoist this instruction. Move it to the pre-header. + I->moveBefore(PreHeader->getTerminator()); + CSEBlocks.insert(PreHeader); + } + + // Make a list of all reachable blocks in our CSE queue. + SmallVector<const DomTreeNode *, 8> CSEWorkList; + CSEWorkList.reserve(CSEBlocks.size()); + for (BasicBlock *BB : CSEBlocks) + if (DomTreeNode *N = DT->getNode(BB)) { + assert(DT->isReachableFromEntry(N)); + CSEWorkList.push_back(N); + } + + // Sort blocks by domination. This ensures we visit a block after all blocks + // dominating it are visited. + llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { + assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && + "Different nodes should have different DFS numbers"); + return A->getDFSNumIn() < B->getDFSNumIn(); + }); + + // Less defined shuffles can be replaced by the more defined copies. + // Between two shuffles one is less defined if it has the same vector operands + // and its mask indeces are the same as in the first one or undefs. E.g. + // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, + // poison, <0, 0, 0, 0>. + auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, + SmallVectorImpl<int> &NewMask) { + if (I1->getType() != I2->getType()) + return false; + auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); + auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); + if (!SI1 || !SI2) + return I1->isIdenticalTo(I2); + if (SI1->isIdenticalTo(SI2)) + return true; + for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) + if (SI1->getOperand(I) != SI2->getOperand(I)) + return false; + // Check if the second instruction is more defined than the first one. + NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); + ArrayRef<int> SM1 = SI1->getShuffleMask(); + // Count trailing undefs in the mask to check the final number of used + // registers. + unsigned LastUndefsCnt = 0; + for (int I = 0, E = NewMask.size(); I < E; ++I) { + if (SM1[I] == UndefMaskElem) + ++LastUndefsCnt; + else + LastUndefsCnt = 0; + if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && + NewMask[I] != SM1[I]) + return false; + if (NewMask[I] == UndefMaskElem) + NewMask[I] = SM1[I]; + } + // Check if the last undefs actually change the final number of used vector + // registers. + return SM1.size() - LastUndefsCnt > 1 && + TTI->getNumberOfParts(SI1->getType()) == + TTI->getNumberOfParts( + FixedVectorType::get(SI1->getType()->getElementType(), + SM1.size() - LastUndefsCnt)); + }; + // Perform O(N^2) search over the gather/shuffle sequences and merge identical + // instructions. TODO: We can further optimize this scan if we split the + // instructions into different buckets based on the insert lane. + SmallVector<Instruction *, 16> Visited; + for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { + assert(*I && + (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && + "Worklist not sorted properly!"); + BasicBlock *BB = (*I)->getBlock(); + // For all instructions in blocks containing gather sequences: + for (Instruction &In : llvm::make_early_inc_range(*BB)) { + if (isDeleted(&In)) + continue; + if (!isa<InsertElementInst, ExtractElementInst, ShuffleVectorInst>(&In) && + !GatherShuffleExtractSeq.contains(&In)) + continue; + + // Check if we can replace this instruction with any of the + // visited instructions. + bool Replaced = false; + for (Instruction *&V : Visited) { + SmallVector<int> NewMask; + if (IsIdenticalOrLessDefined(&In, V, NewMask) && + DT->dominates(V->getParent(), In.getParent())) { + In.replaceAllUsesWith(V); + eraseInstruction(&In); + if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) + if (!NewMask.empty()) + SI->setShuffleMask(NewMask); + Replaced = true; + break; + } + if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && + GatherShuffleExtractSeq.contains(V) && + IsIdenticalOrLessDefined(V, &In, NewMask) && + DT->dominates(In.getParent(), V->getParent())) { + In.moveAfter(V); + V->replaceAllUsesWith(&In); + eraseInstruction(V); + if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) + if (!NewMask.empty()) + SI->setShuffleMask(NewMask); + V = &In; + Replaced = true; + break; + } + } + if (!Replaced) { + assert(!is_contained(Visited, &In)); + Visited.push_back(&In); + } + } + } + CSEBlocks.clear(); + GatherShuffleExtractSeq.clear(); +} + +BoUpSLP::ScheduleData * +BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { + ScheduleData *Bundle = nullptr; + ScheduleData *PrevInBundle = nullptr; + for (Value *V : VL) { + if (doesNotNeedToBeScheduled(V)) + continue; + ScheduleData *BundleMember = getScheduleData(V); + assert(BundleMember && + "no ScheduleData for bundle member " + "(maybe not in same basic block)"); + assert(BundleMember->isSchedulingEntity() && + "bundle member already part of other bundle"); + if (PrevInBundle) { + PrevInBundle->NextInBundle = BundleMember; + } else { + Bundle = BundleMember; + } + + // Group the instructions to a bundle. + BundleMember->FirstInBundle = Bundle; + PrevInBundle = BundleMember; + } + assert(Bundle && "Failed to find schedule bundle"); + return Bundle; +} + +// Groups the instructions to a bundle (which is then a single scheduling entity) +// and schedules instructions until the bundle gets ready. +std::optional<BoUpSLP::ScheduleData *> +BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, + const InstructionsState &S) { + // No need to schedule PHIs, insertelement, extractelement and extractvalue + // instructions. + if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || + doesNotNeedToSchedule(VL)) + return nullptr; + + // Initialize the instruction bundle. + Instruction *OldScheduleEnd = ScheduleEnd; + LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); + + auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, + ScheduleData *Bundle) { + // The scheduling region got new instructions at the lower end (or it is a + // new region for the first bundle). This makes it necessary to + // recalculate all dependencies. + // It is seldom that this needs to be done a second time after adding the + // initial bundle to the region. + if (ScheduleEnd != OldScheduleEnd) { + for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) + doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); + ReSchedule = true; + } + if (Bundle) { + LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle + << " in block " << BB->getName() << "\n"); + calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); + } + + if (ReSchedule) { + resetSchedule(); + initialFillReadyList(ReadyInsts); + } + + // Now try to schedule the new bundle or (if no bundle) just calculate + // dependencies. As soon as the bundle is "ready" it means that there are no + // cyclic dependencies and we can schedule it. Note that's important that we + // don't "schedule" the bundle yet (see cancelScheduling). + while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && + !ReadyInsts.empty()) { + ScheduleData *Picked = ReadyInsts.pop_back_val(); + assert(Picked->isSchedulingEntity() && Picked->isReady() && + "must be ready to schedule"); + schedule(Picked, ReadyInsts); + } + }; + + // Make sure that the scheduling region contains all + // instructions of the bundle. + for (Value *V : VL) { + if (doesNotNeedToBeScheduled(V)) + continue; + if (!extendSchedulingRegion(V, S)) { + // If the scheduling region got new instructions at the lower end (or it + // is a new region for the first bundle). This makes it necessary to + // recalculate all dependencies. + // Otherwise the compiler may crash trying to incorrectly calculate + // dependencies and emit instruction in the wrong order at the actual + // scheduling. + TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); + return std::nullopt; + } + } + + bool ReSchedule = false; + for (Value *V : VL) { + if (doesNotNeedToBeScheduled(V)) + continue; + ScheduleData *BundleMember = getScheduleData(V); + assert(BundleMember && + "no ScheduleData for bundle member (maybe not in same basic block)"); + + // Make sure we don't leave the pieces of the bundle in the ready list when + // whole bundle might not be ready. + ReadyInsts.remove(BundleMember); + + if (!BundleMember->IsScheduled) + continue; + // A bundle member was scheduled as single instruction before and now + // needs to be scheduled as part of the bundle. We just get rid of the + // existing schedule. + LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember + << " was already scheduled\n"); + ReSchedule = true; + } + + auto *Bundle = buildBundle(VL); + TryScheduleBundleImpl(ReSchedule, Bundle); + if (!Bundle->isReady()) { + cancelScheduling(VL, S.OpValue); + return std::nullopt; + } + return Bundle; +} + +void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, + Value *OpValue) { + if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || + doesNotNeedToSchedule(VL)) + return; + + if (doesNotNeedToBeScheduled(OpValue)) + OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); + ScheduleData *Bundle = getScheduleData(OpValue); + LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); + assert(!Bundle->IsScheduled && + "Can't cancel bundle which is already scheduled"); + assert(Bundle->isSchedulingEntity() && + (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && + "tried to unbundle something which is not a bundle"); + + // Remove the bundle from the ready list. + if (Bundle->isReady()) + ReadyInsts.remove(Bundle); + + // Un-bundle: make single instructions out of the bundle. + ScheduleData *BundleMember = Bundle; + while (BundleMember) { + assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); + BundleMember->FirstInBundle = BundleMember; + ScheduleData *Next = BundleMember->NextInBundle; + BundleMember->NextInBundle = nullptr; + BundleMember->TE = nullptr; + if (BundleMember->unscheduledDepsInBundle() == 0) { + ReadyInsts.insert(BundleMember); + } + BundleMember = Next; + } +} + +BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { + // Allocate a new ScheduleData for the instruction. + if (ChunkPos >= ChunkSize) { + ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); + ChunkPos = 0; + } + return &(ScheduleDataChunks.back()[ChunkPos++]); +} + +bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, + const InstructionsState &S) { + if (getScheduleData(V, isOneOf(S, V))) + return true; + Instruction *I = dyn_cast<Instruction>(V); + assert(I && "bundle member must be an instruction"); + assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && + !doesNotNeedToBeScheduled(I) && + "phi nodes/insertelements/extractelements/extractvalues don't need to " + "be scheduled"); + auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { + ScheduleData *ISD = getScheduleData(I); + if (!ISD) + return false; + assert(isInSchedulingRegion(ISD) && + "ScheduleData not in scheduling region"); + ScheduleData *SD = allocateScheduleDataChunks(); + SD->Inst = I; + SD->init(SchedulingRegionID, S.OpValue); + ExtraScheduleDataMap[I][S.OpValue] = SD; + return true; + }; + if (CheckScheduleForI(I)) + return true; + if (!ScheduleStart) { + // It's the first instruction in the new region. + initScheduleData(I, I->getNextNode(), nullptr, nullptr); + ScheduleStart = I; + ScheduleEnd = I->getNextNode(); + if (isOneOf(S, I) != I) + CheckScheduleForI(I); + assert(ScheduleEnd && "tried to vectorize a terminator?"); + LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); + return true; + } + // Search up and down at the same time, because we don't know if the new + // instruction is above or below the existing scheduling region. + BasicBlock::reverse_iterator UpIter = + ++ScheduleStart->getIterator().getReverse(); + BasicBlock::reverse_iterator UpperEnd = BB->rend(); + BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); + BasicBlock::iterator LowerEnd = BB->end(); + while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && + &*DownIter != I) { + if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { + LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); + return false; + } + + ++UpIter; + ++DownIter; + } + if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { + assert(I->getParent() == ScheduleStart->getParent() && + "Instruction is in wrong basic block."); + initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); + ScheduleStart = I; + if (isOneOf(S, I) != I) + CheckScheduleForI(I); + LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I + << "\n"); + return true; + } + assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && + "Expected to reach top of the basic block or instruction down the " + "lower end."); + assert(I->getParent() == ScheduleEnd->getParent() && + "Instruction is in wrong basic block."); + initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, + nullptr); + ScheduleEnd = I->getNextNode(); + if (isOneOf(S, I) != I) + CheckScheduleForI(I); + assert(ScheduleEnd && "tried to vectorize a terminator?"); + LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); + return true; +} + +void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, + Instruction *ToI, + ScheduleData *PrevLoadStore, + ScheduleData *NextLoadStore) { + ScheduleData *CurrentLoadStore = PrevLoadStore; + for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { + // No need to allocate data for non-schedulable instructions. + if (doesNotNeedToBeScheduled(I)) + continue; + ScheduleData *SD = ScheduleDataMap.lookup(I); + if (!SD) { + SD = allocateScheduleDataChunks(); + ScheduleDataMap[I] = SD; + SD->Inst = I; + } + assert(!isInSchedulingRegion(SD) && + "new ScheduleData already in scheduling region"); + SD->init(SchedulingRegionID, I); + + if (I->mayReadOrWriteMemory() && + (!isa<IntrinsicInst>(I) || + (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && + cast<IntrinsicInst>(I)->getIntrinsicID() != + Intrinsic::pseudoprobe))) { + // Update the linked list of memory accessing instructions. + if (CurrentLoadStore) { + CurrentLoadStore->NextLoadStore = SD; + } else { + FirstLoadStoreInRegion = SD; + } + CurrentLoadStore = SD; + } + + if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || + match(I, m_Intrinsic<Intrinsic::stackrestore>())) + RegionHasStackSave = true; + } + if (NextLoadStore) { + if (CurrentLoadStore) + CurrentLoadStore->NextLoadStore = NextLoadStore; + } else { + LastLoadStoreInRegion = CurrentLoadStore; + } +} + +void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, + bool InsertInReadyList, + BoUpSLP *SLP) { + assert(SD->isSchedulingEntity()); + + SmallVector<ScheduleData *, 10> WorkList; + WorkList.push_back(SD); + + while (!WorkList.empty()) { + ScheduleData *SD = WorkList.pop_back_val(); + for (ScheduleData *BundleMember = SD; BundleMember; + BundleMember = BundleMember->NextInBundle) { + assert(isInSchedulingRegion(BundleMember)); + if (BundleMember->hasValidDependencies()) + continue; + + LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember + << "\n"); + BundleMember->Dependencies = 0; + BundleMember->resetUnscheduledDeps(); + + // Handle def-use chain dependencies. + if (BundleMember->OpValue != BundleMember->Inst) { + if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { + BundleMember->Dependencies++; + ScheduleData *DestBundle = UseSD->FirstInBundle; + if (!DestBundle->IsScheduled) + BundleMember->incrementUnscheduledDeps(1); + if (!DestBundle->hasValidDependencies()) + WorkList.push_back(DestBundle); + } + } else { + for (User *U : BundleMember->Inst->users()) { + if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { + BundleMember->Dependencies++; + ScheduleData *DestBundle = UseSD->FirstInBundle; + if (!DestBundle->IsScheduled) + BundleMember->incrementUnscheduledDeps(1); + if (!DestBundle->hasValidDependencies()) + WorkList.push_back(DestBundle); + } + } + } + + auto makeControlDependent = [&](Instruction *I) { + auto *DepDest = getScheduleData(I); + assert(DepDest && "must be in schedule window"); + DepDest->ControlDependencies.push_back(BundleMember); + BundleMember->Dependencies++; + ScheduleData *DestBundle = DepDest->FirstInBundle; + if (!DestBundle->IsScheduled) + BundleMember->incrementUnscheduledDeps(1); + if (!DestBundle->hasValidDependencies()) + WorkList.push_back(DestBundle); + }; + + // Any instruction which isn't safe to speculate at the beginning of the + // block is control dependend on any early exit or non-willreturn call + // which proceeds it. + if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { + for (Instruction *I = BundleMember->Inst->getNextNode(); + I != ScheduleEnd; I = I->getNextNode()) { + if (isSafeToSpeculativelyExecute(I, &*BB->begin(), SLP->AC)) + continue; + + // Add the dependency + makeControlDependent(I); + + if (!isGuaranteedToTransferExecutionToSuccessor(I)) + // Everything past here must be control dependent on I. + break; + } + } + + if (RegionHasStackSave) { + // If we have an inalloc alloca instruction, it needs to be scheduled + // after any preceeding stacksave. We also need to prevent any alloca + // from reordering above a preceeding stackrestore. + if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || + match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { + for (Instruction *I = BundleMember->Inst->getNextNode(); + I != ScheduleEnd; I = I->getNextNode()) { + if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || + match(I, m_Intrinsic<Intrinsic::stackrestore>())) + // Any allocas past here must be control dependent on I, and I + // must be memory dependend on BundleMember->Inst. + break; + + if (!isa<AllocaInst>(I)) + continue; + + // Add the dependency + makeControlDependent(I); + } + } + + // In addition to the cases handle just above, we need to prevent + // allocas and loads/stores from moving below a stacksave or a + // stackrestore. Avoiding moving allocas below stackrestore is currently + // thought to be conservatism. Moving loads/stores below a stackrestore + // can lead to incorrect code. + if (isa<AllocaInst>(BundleMember->Inst) || + BundleMember->Inst->mayReadOrWriteMemory()) { + for (Instruction *I = BundleMember->Inst->getNextNode(); + I != ScheduleEnd; I = I->getNextNode()) { + if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && + !match(I, m_Intrinsic<Intrinsic::stackrestore>())) + continue; + + // Add the dependency + makeControlDependent(I); + break; + } + } + } + + // Handle the memory dependencies (if any). + ScheduleData *DepDest = BundleMember->NextLoadStore; + if (!DepDest) + continue; + Instruction *SrcInst = BundleMember->Inst; + assert(SrcInst->mayReadOrWriteMemory() && + "NextLoadStore list for non memory effecting bundle?"); + MemoryLocation SrcLoc = getLocation(SrcInst); + bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); + unsigned numAliased = 0; + unsigned DistToSrc = 1; + + for ( ; DepDest; DepDest = DepDest->NextLoadStore) { + assert(isInSchedulingRegion(DepDest)); + + // We have two limits to reduce the complexity: + // 1) AliasedCheckLimit: It's a small limit to reduce calls to + // SLP->isAliased (which is the expensive part in this loop). + // 2) MaxMemDepDistance: It's for very large blocks and it aborts + // the whole loop (even if the loop is fast, it's quadratic). + // It's important for the loop break condition (see below) to + // check this limit even between two read-only instructions. + if (DistToSrc >= MaxMemDepDistance || + ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && + (numAliased >= AliasedCheckLimit || + SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { + + // We increment the counter only if the locations are aliased + // (instead of counting all alias checks). This gives a better + // balance between reduced runtime and accurate dependencies. + numAliased++; + + DepDest->MemoryDependencies.push_back(BundleMember); + BundleMember->Dependencies++; + ScheduleData *DestBundle = DepDest->FirstInBundle; + if (!DestBundle->IsScheduled) { + BundleMember->incrementUnscheduledDeps(1); + } + if (!DestBundle->hasValidDependencies()) { + WorkList.push_back(DestBundle); + } + } + + // Example, explaining the loop break condition: Let's assume our + // starting instruction is i0 and MaxMemDepDistance = 3. + // + // +--------v--v--v + // i0,i1,i2,i3,i4,i5,i6,i7,i8 + // +--------^--^--^ + // + // MaxMemDepDistance let us stop alias-checking at i3 and we add + // dependencies from i0 to i3,i4,.. (even if they are not aliased). + // Previously we already added dependencies from i3 to i6,i7,i8 + // (because of MaxMemDepDistance). As we added a dependency from + // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 + // and we can abort this loop at i6. + if (DistToSrc >= 2 * MaxMemDepDistance) + break; + DistToSrc++; + } + } + if (InsertInReadyList && SD->isReady()) { + ReadyInsts.insert(SD); + LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst + << "\n"); + } + } +} + +void BoUpSLP::BlockScheduling::resetSchedule() { + assert(ScheduleStart && + "tried to reset schedule on block which has not been scheduled"); + for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { + doForAllOpcodes(I, [&](ScheduleData *SD) { + assert(isInSchedulingRegion(SD) && + "ScheduleData not in scheduling region"); + SD->IsScheduled = false; + SD->resetUnscheduledDeps(); + }); + } + ReadyInsts.clear(); +} + +void BoUpSLP::scheduleBlock(BlockScheduling *BS) { + if (!BS->ScheduleStart) + return; + + LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); + + // A key point - if we got here, pre-scheduling was able to find a valid + // scheduling of the sub-graph of the scheduling window which consists + // of all vector bundles and their transitive users. As such, we do not + // need to reschedule anything *outside of* that subgraph. + + BS->resetSchedule(); + + // For the real scheduling we use a more sophisticated ready-list: it is + // sorted by the original instruction location. This lets the final schedule + // be as close as possible to the original instruction order. + // WARNING: If changing this order causes a correctness issue, that means + // there is some missing dependence edge in the schedule data graph. + struct ScheduleDataCompare { + bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { + return SD2->SchedulingPriority < SD1->SchedulingPriority; + } + }; + std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; + + // Ensure that all dependency data is updated (for nodes in the sub-graph) + // and fill the ready-list with initial instructions. + int Idx = 0; + for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; + I = I->getNextNode()) { + BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { + TreeEntry *SDTE = getTreeEntry(SD->Inst); + (void)SDTE; + assert((isVectorLikeInstWithConstOps(SD->Inst) || + SD->isPartOfBundle() == + (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && + "scheduler and vectorizer bundle mismatch"); + SD->FirstInBundle->SchedulingPriority = Idx++; + + if (SD->isSchedulingEntity() && SD->isPartOfBundle()) + BS->calculateDependencies(SD, false, this); + }); + } + BS->initialFillReadyList(ReadyInsts); + + Instruction *LastScheduledInst = BS->ScheduleEnd; + + // Do the "real" scheduling. + while (!ReadyInsts.empty()) { + ScheduleData *picked = *ReadyInsts.begin(); + ReadyInsts.erase(ReadyInsts.begin()); + + // Move the scheduled instruction(s) to their dedicated places, if not + // there yet. + for (ScheduleData *BundleMember = picked; BundleMember; + BundleMember = BundleMember->NextInBundle) { + Instruction *pickedInst = BundleMember->Inst; + if (pickedInst->getNextNode() != LastScheduledInst) + pickedInst->moveBefore(LastScheduledInst); + LastScheduledInst = pickedInst; + } + + BS->schedule(picked, ReadyInsts); + } + + // Check that we didn't break any of our invariants. +#ifdef EXPENSIVE_CHECKS + BS->verify(); +#endif + +#if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) + // Check that all schedulable entities got scheduled + for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { + BS->doForAllOpcodes(I, [&](ScheduleData *SD) { + if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { + assert(SD->IsScheduled && "must be scheduled at this point"); + } + }); + } +#endif + + // Avoid duplicate scheduling of the block. + BS->ScheduleStart = nullptr; +} + +unsigned BoUpSLP::getVectorElementSize(Value *V) { + // If V is a store, just return the width of the stored value (or value + // truncated just before storing) without traversing the expression tree. + // This is the common case. + if (auto *Store = dyn_cast<StoreInst>(V)) + return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); + + if (auto *IEI = dyn_cast<InsertElementInst>(V)) + return getVectorElementSize(IEI->getOperand(1)); + + auto E = InstrElementSize.find(V); + if (E != InstrElementSize.end()) + return E->second; + + // If V is not a store, we can traverse the expression tree to find loads + // that feed it. The type of the loaded value may indicate a more suitable + // width than V's type. We want to base the vector element size on the width + // of memory operations where possible. + SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; + SmallPtrSet<Instruction *, 16> Visited; + if (auto *I = dyn_cast<Instruction>(V)) { + Worklist.emplace_back(I, I->getParent()); + Visited.insert(I); + } + + // Traverse the expression tree in bottom-up order looking for loads. If we + // encounter an instruction we don't yet handle, we give up. + auto Width = 0u; + while (!Worklist.empty()) { + Instruction *I; + BasicBlock *Parent; + std::tie(I, Parent) = Worklist.pop_back_val(); + + // We should only be looking at scalar instructions here. If the current + // instruction has a vector type, skip. + auto *Ty = I->getType(); + if (isa<VectorType>(Ty)) + continue; + + // If the current instruction is a load, update MaxWidth to reflect the + // width of the loaded value. + if (isa<LoadInst, ExtractElementInst, ExtractValueInst>(I)) + Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); + + // Otherwise, we need to visit the operands of the instruction. We only + // handle the interesting cases from buildTree here. If an operand is an + // instruction we haven't yet visited and from the same basic block as the + // user or the use is a PHI node, we add it to the worklist. + else if (isa<PHINode, CastInst, GetElementPtrInst, CmpInst, SelectInst, + BinaryOperator, UnaryOperator>(I)) { + for (Use &U : I->operands()) + if (auto *J = dyn_cast<Instruction>(U.get())) + if (Visited.insert(J).second && + (isa<PHINode>(I) || J->getParent() == Parent)) + Worklist.emplace_back(J, J->getParent()); + } else { + break; + } + } + + // If we didn't encounter a memory access in the expression tree, or if we + // gave up for some reason, just return the width of V. Otherwise, return the + // maximum width we found. + if (!Width) { + if (auto *CI = dyn_cast<CmpInst>(V)) + V = CI->getOperand(0); + Width = DL->getTypeSizeInBits(V->getType()); + } + + for (Instruction *I : Visited) + InstrElementSize[I] = Width; + + return Width; +} + +// Determine if a value V in a vectorizable expression Expr can be demoted to a +// smaller type with a truncation. We collect the values that will be demoted +// in ToDemote and additional roots that require investigating in Roots. +static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, + SmallVectorImpl<Value *> &ToDemote, + SmallVectorImpl<Value *> &Roots) { + // We can always demote constants. + if (isa<Constant>(V)) { + ToDemote.push_back(V); + return true; + } + + // If the value is not an instruction in the expression with only one use, it + // cannot be demoted. + auto *I = dyn_cast<Instruction>(V); + if (!I || !I->hasOneUse() || !Expr.count(I)) + return false; + + switch (I->getOpcode()) { + + // We can always demote truncations and extensions. Since truncations can + // seed additional demotion, we save the truncated value. + case Instruction::Trunc: + Roots.push_back(I->getOperand(0)); + break; + case Instruction::ZExt: + case Instruction::SExt: + if (isa<ExtractElementInst, InsertElementInst>(I->getOperand(0))) + return false; + break; + + // We can demote certain binary operations if we can demote both of their + // operands. + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || + !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) + return false; + break; + + // We can demote selects if we can demote their true and false values. + case Instruction::Select: { + SelectInst *SI = cast<SelectInst>(I); + if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || + !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) + return false; + break; + } + + // We can demote phis if we can demote all their incoming operands. Note that + // we don't need to worry about cycles since we ensure single use above. + case Instruction::PHI: { + PHINode *PN = cast<PHINode>(I); + for (Value *IncValue : PN->incoming_values()) + if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) + return false; + break; + } + + // Otherwise, conservatively give up. + default: + return false; + } + + // Record the value that we can demote. + ToDemote.push_back(V); + return true; +} + +void BoUpSLP::computeMinimumValueSizes() { + // If there are no external uses, the expression tree must be rooted by a + // store. We can't demote in-memory values, so there is nothing to do here. + if (ExternalUses.empty()) + return; + + // We only attempt to truncate integer expressions. + auto &TreeRoot = VectorizableTree[0]->Scalars; + auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); + if (!TreeRootIT) + return; + + // If the expression is not rooted by a store, these roots should have + // external uses. We will rely on InstCombine to rewrite the expression in + // the narrower type. However, InstCombine only rewrites single-use values. + // This means that if a tree entry other than a root is used externally, it + // must have multiple uses and InstCombine will not rewrite it. The code + // below ensures that only the roots are used externally. + SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); + for (auto &EU : ExternalUses) + if (!Expr.erase(EU.Scalar)) + return; + if (!Expr.empty()) + return; + + // Collect the scalar values of the vectorizable expression. We will use this + // context to determine which values can be demoted. If we see a truncation, + // we mark it as seeding another demotion. + for (auto &EntryPtr : VectorizableTree) + Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); + + // Ensure the roots of the vectorizable tree don't form a cycle. They must + // have a single external user that is not in the vectorizable tree. + for (auto *Root : TreeRoot) + if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) + return; + + // Conservatively determine if we can actually truncate the roots of the + // expression. Collect the values that can be demoted in ToDemote and + // additional roots that require investigating in Roots. + SmallVector<Value *, 32> ToDemote; + SmallVector<Value *, 4> Roots; + for (auto *Root : TreeRoot) + if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) + return; + + // The maximum bit width required to represent all the values that can be + // demoted without loss of precision. It would be safe to truncate the roots + // of the expression to this width. + auto MaxBitWidth = 8u; + + // We first check if all the bits of the roots are demanded. If they're not, + // we can truncate the roots to this narrower type. + for (auto *Root : TreeRoot) { + auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); + MaxBitWidth = std::max<unsigned>( + Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); + } + + // True if the roots can be zero-extended back to their original type, rather + // than sign-extended. We know that if the leading bits are not demanded, we + // can safely zero-extend. So we initialize IsKnownPositive to True. + bool IsKnownPositive = true; + + // If all the bits of the roots are demanded, we can try a little harder to + // compute a narrower type. This can happen, for example, if the roots are + // getelementptr indices. InstCombine promotes these indices to the pointer + // width. Thus, all their bits are technically demanded even though the + // address computation might be vectorized in a smaller type. + // + // We start by looking at each entry that can be demoted. We compute the + // maximum bit width required to store the scalar by using ValueTracking to + // compute the number of high-order bits we can truncate. + if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && + llvm::all_of(TreeRoot, [](Value *R) { + assert(R->hasOneUse() && "Root should have only one use!"); + return isa<GetElementPtrInst>(R->user_back()); + })) { + MaxBitWidth = 8u; + + // Determine if the sign bit of all the roots is known to be zero. If not, + // IsKnownPositive is set to False. + IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { + KnownBits Known = computeKnownBits(R, *DL); + return Known.isNonNegative(); + }); + + // Determine the maximum number of bits required to store the scalar + // values. + for (auto *Scalar : ToDemote) { + auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); + auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); + MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); + } + + // If we can't prove that the sign bit is zero, we must add one to the + // maximum bit width to account for the unknown sign bit. This preserves + // the existing sign bit so we can safely sign-extend the root back to the + // original type. Otherwise, if we know the sign bit is zero, we will + // zero-extend the root instead. + // + // FIXME: This is somewhat suboptimal, as there will be cases where adding + // one to the maximum bit width will yield a larger-than-necessary + // type. In general, we need to add an extra bit only if we can't + // prove that the upper bit of the original type is equal to the + // upper bit of the proposed smaller type. If these two bits are the + // same (either zero or one) we know that sign-extending from the + // smaller type will result in the same value. Here, since we can't + // yet prove this, we are just making the proposed smaller type + // larger to ensure correctness. + if (!IsKnownPositive) + ++MaxBitWidth; + } + + // Round MaxBitWidth up to the next power-of-two. + if (!isPowerOf2_64(MaxBitWidth)) + MaxBitWidth = NextPowerOf2(MaxBitWidth); + + // If the maximum bit width we compute is less than the with of the roots' + // type, we can proceed with the narrowing. Otherwise, do nothing. + if (MaxBitWidth >= TreeRootIT->getBitWidth()) + return; + + // If we can truncate the root, we must collect additional values that might + // be demoted as a result. That is, those seeded by truncations we will + // modify. + while (!Roots.empty()) + collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); + + // Finally, map the values we can demote to the maximum bit with we computed. + for (auto *Scalar : ToDemote) + MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); +} + +namespace { + +/// The SLPVectorizer Pass. +struct SLPVectorizer : public FunctionPass { + SLPVectorizerPass Impl; + + /// Pass identification, replacement for typeid + static char ID; + + explicit SLPVectorizer() : FunctionPass(ID) { + initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); + } + + bool doInitialization(Module &M) override { return false; } + + bool runOnFunction(Function &F) override { + if (skipFunction(F)) + return false; + + auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); + auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; + auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); + auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); + auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); + + return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + FunctionPass::getAnalysisUsage(AU); + AU.addRequired<AssumptionCacheTracker>(); + AU.addRequired<ScalarEvolutionWrapperPass>(); + AU.addRequired<AAResultsWrapperPass>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + AU.addRequired<LoopInfoWrapperPass>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<DemandedBitsWrapperPass>(); + AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); + AU.addRequired<InjectTLIMappingsLegacy>(); + AU.addPreserved<LoopInfoWrapperPass>(); + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addPreserved<AAResultsWrapperPass>(); + AU.addPreserved<GlobalsAAWrapperPass>(); + AU.setPreservesCFG(); + } +}; + +} // end anonymous namespace + +PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { + auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); + auto *TTI = &AM.getResult<TargetIRAnalysis>(F); + auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); + auto *AA = &AM.getResult<AAManager>(F); + auto *LI = &AM.getResult<LoopAnalysis>(F); + auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); + auto *AC = &AM.getResult<AssumptionAnalysis>(F); + auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); + auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); + + bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); + if (!Changed) + return PreservedAnalyses::all(); + + PreservedAnalyses PA; + PA.preserveSet<CFGAnalyses>(); + return PA; +} + +bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, + TargetTransformInfo *TTI_, + TargetLibraryInfo *TLI_, AAResults *AA_, + LoopInfo *LI_, DominatorTree *DT_, + AssumptionCache *AC_, DemandedBits *DB_, + OptimizationRemarkEmitter *ORE_) { + if (!RunSLPVectorization) + return false; + SE = SE_; + TTI = TTI_; + TLI = TLI_; + AA = AA_; + LI = LI_; + DT = DT_; + AC = AC_; + DB = DB_; + DL = &F.getParent()->getDataLayout(); + + Stores.clear(); + GEPs.clear(); + bool Changed = false; + + // If the target claims to have no vector registers don't attempt + // vectorization. + if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { + LLVM_DEBUG( + dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); + return false; + } + + // Don't vectorize when the attribute NoImplicitFloat is used. + if (F.hasFnAttribute(Attribute::NoImplicitFloat)) + return false; + + LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); + + // Use the bottom up slp vectorizer to construct chains that start with + // store instructions. + BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); + + // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to + // delete instructions. + + // Update DFS numbers now so that we can use them for ordering. + DT->updateDFSNumbers(); + + // Scan the blocks in the function in post order. + for (auto *BB : post_order(&F.getEntryBlock())) { + // Start new block - clear the list of reduction roots. + R.clearReductionData(); + collectSeedInstructions(BB); + + // Vectorize trees that end at stores. + if (!Stores.empty()) { + LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() + << " underlying objects.\n"); + Changed |= vectorizeStoreChains(R); + } + + // Vectorize trees that end at reductions. + Changed |= vectorizeChainsInBlock(BB, R); + + // Vectorize the index computations of getelementptr instructions. This + // is primarily intended to catch gather-like idioms ending at + // non-consecutive loads. + if (!GEPs.empty()) { + LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() + << " underlying objects.\n"); + Changed |= vectorizeGEPIndices(BB, R); + } + } + + if (Changed) { + R.optimizeGatherSequence(); + LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); + } + return Changed; +} + +bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, + unsigned Idx, unsigned MinVF) { + LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() + << "\n"); + const unsigned Sz = R.getVectorElementSize(Chain[0]); + unsigned VF = Chain.size(); + + if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) + return false; + + LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx + << "\n"); + + R.buildTree(Chain); + if (R.isTreeTinyAndNotFullyVectorizable()) + return false; + if (R.isLoadCombineCandidate()) + return false; + R.reorderTopToBottom(); + R.reorderBottomToTop(); + R.buildExternalUses(); + + R.computeMinimumValueSizes(); + + InstructionCost Cost = R.getTreeCost(); + + LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF=" << VF << "\n"); + if (Cost < -SLPCostThreshold) { + LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); + + using namespace ore; + + R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", + cast<StoreInst>(Chain[0])) + << "Stores SLP vectorized with cost " << NV("Cost", Cost) + << " and with tree size " + << NV("TreeSize", R.getTreeSize())); + + R.vectorizeTree(); + return true; + } + + return false; +} + +bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, + BoUpSLP &R) { + // We may run into multiple chains that merge into a single chain. We mark the + // stores that we vectorized so that we don't visit the same store twice. + BoUpSLP::ValueSet VectorizedStores; + bool Changed = false; + + int E = Stores.size(); + SmallBitVector Tails(E, false); + int MaxIter = MaxStoreLookup.getValue(); + SmallVector<std::pair<int, int>, 16> ConsecutiveChain( + E, std::make_pair(E, INT_MAX)); + SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); + int IterCnt; + auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, + &CheckedPairs, + &ConsecutiveChain](int K, int Idx) { + if (IterCnt >= MaxIter) + return true; + if (CheckedPairs[Idx].test(K)) + return ConsecutiveChain[K].second == 1 && + ConsecutiveChain[K].first == Idx; + ++IterCnt; + CheckedPairs[Idx].set(K); + CheckedPairs[K].set(Idx); + std::optional<int> Diff = getPointersDiff( + Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), + Stores[Idx]->getValueOperand()->getType(), + Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); + if (!Diff || *Diff == 0) + return false; + int Val = *Diff; + if (Val < 0) { + if (ConsecutiveChain[Idx].second > -Val) { + Tails.set(K); + ConsecutiveChain[Idx] = std::make_pair(K, -Val); + } + return false; + } + if (ConsecutiveChain[K].second <= Val) + return false; + + Tails.set(Idx); + ConsecutiveChain[K] = std::make_pair(Idx, Val); + return Val == 1; + }; + // Do a quadratic search on all of the given stores in reverse order and find + // all of the pairs of stores that follow each other. + for (int Idx = E - 1; Idx >= 0; --Idx) { + // If a store has multiple consecutive store candidates, search according + // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... + // This is because usually pairing with immediate succeeding or preceding + // candidate create the best chance to find slp vectorization opportunity. + const int MaxLookDepth = std::max(E - Idx, Idx + 1); + IterCnt = 0; + for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) + if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || + (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) + break; + } + + // Tracks if we tried to vectorize stores starting from the given tail + // already. + SmallBitVector TriedTails(E, false); + // For stores that start but don't end a link in the chain: + for (int Cnt = E; Cnt > 0; --Cnt) { + int I = Cnt - 1; + if (ConsecutiveChain[I].first == E || Tails.test(I)) + continue; + // We found a store instr that starts a chain. Now follow the chain and try + // to vectorize it. + BoUpSLP::ValueList Operands; + // Collect the chain into a list. + while (I != E && !VectorizedStores.count(Stores[I])) { + Operands.push_back(Stores[I]); + Tails.set(I); + if (ConsecutiveChain[I].second != 1) { + // Mark the new end in the chain and go back, if required. It might be + // required if the original stores come in reversed order, for example. + if (ConsecutiveChain[I].first != E && + Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && + !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { + TriedTails.set(I); + Tails.reset(ConsecutiveChain[I].first); + if (Cnt < ConsecutiveChain[I].first + 2) + Cnt = ConsecutiveChain[I].first + 2; + } + break; + } + // Move to the next value in the chain. + I = ConsecutiveChain[I].first; + } + assert(!Operands.empty() && "Expected non-empty list of stores."); + + unsigned MaxVecRegSize = R.getMaxVecRegSize(); + unsigned EltSize = R.getVectorElementSize(Operands[0]); + unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); + + unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), + MaxElts); + auto *Store = cast<StoreInst>(Operands[0]); + Type *StoreTy = Store->getValueOperand()->getType(); + Type *ValueTy = StoreTy; + if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) + ValueTy = Trunc->getSrcTy(); + unsigned MinVF = TTI->getStoreMinimumVF( + R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy); + + if (MaxVF <= MinVF) { + LLVM_DEBUG(dbgs() << "SLP: Vectorization infeasible as MaxVF (" << MaxVF << ") <= " + << "MinVF (" << MinVF << ")\n"); + } + + // FIXME: Is division-by-2 the correct step? Should we assert that the + // register size is a power-of-2? + unsigned StartIdx = 0; + for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { + for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { + ArrayRef<Value *> Slice = ArrayRef(Operands).slice(Cnt, Size); + if (!VectorizedStores.count(Slice.front()) && + !VectorizedStores.count(Slice.back()) && + vectorizeStoreChain(Slice, R, Cnt, MinVF)) { + // Mark the vectorized stores so that we don't vectorize them again. + VectorizedStores.insert(Slice.begin(), Slice.end()); + Changed = true; + // If we vectorized initial block, no need to try to vectorize it + // again. + if (Cnt == StartIdx) + StartIdx += Size; + Cnt += Size; + continue; + } + ++Cnt; + } + // Check if the whole array was vectorized already - exit. + if (StartIdx >= Operands.size()) + break; + } + } + + return Changed; +} + +void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { + // Initialize the collections. We will make a single pass over the block. + Stores.clear(); + GEPs.clear(); + + // Visit the store and getelementptr instructions in BB and organize them in + // Stores and GEPs according to the underlying objects of their pointer + // operands. + for (Instruction &I : *BB) { + // Ignore store instructions that are volatile or have a pointer operand + // that doesn't point to a scalar type. + if (auto *SI = dyn_cast<StoreInst>(&I)) { + if (!SI->isSimple()) + continue; + if (!isValidElementType(SI->getValueOperand()->getType())) + continue; + Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); + } + + // Ignore getelementptr instructions that have more than one index, a + // constant index, or a pointer operand that doesn't point to a scalar + // type. + else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { + auto Idx = GEP->idx_begin()->get(); + if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) + continue; + if (!isValidElementType(Idx->getType())) + continue; + if (GEP->getType()->isVectorTy()) + continue; + GEPs[GEP->getPointerOperand()].push_back(GEP); + } + } +} + +bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { + if (!A || !B) + return false; + if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) + return false; + Value *VL[] = {A, B}; + return tryToVectorizeList(VL, R); +} + +bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, + bool LimitForRegisterSize) { + if (VL.size() < 2) + return false; + + LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " + << VL.size() << ".\n"); + + // Check that all of the parts are instructions of the same type, + // we permit an alternate opcode via InstructionsState. + InstructionsState S = getSameOpcode(VL, *TLI); + if (!S.getOpcode()) + return false; + + Instruction *I0 = cast<Instruction>(S.OpValue); + // Make sure invalid types (including vector type) are rejected before + // determining vectorization factor for scalar instructions. + for (Value *V : VL) { + Type *Ty = V->getType(); + if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { + // NOTE: the following will give user internal llvm type name, which may + // not be useful. + R.getORE()->emit([&]() { + std::string type_str; + llvm::raw_string_ostream rso(type_str); + Ty->print(rso); + return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) + << "Cannot SLP vectorize list: type " + << rso.str() + " is unsupported by vectorizer"; + }); + return false; + } + } + + unsigned Sz = R.getVectorElementSize(I0); + unsigned MinVF = R.getMinVF(Sz); + unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); + MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); + if (MaxVF < 2) { + R.getORE()->emit([&]() { + return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) + << "Cannot SLP vectorize list: vectorization factor " + << "less than 2 is not supported"; + }); + return false; + } + + bool Changed = false; + bool CandidateFound = false; + InstructionCost MinCost = SLPCostThreshold.getValue(); + Type *ScalarTy = VL[0]->getType(); + if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) + ScalarTy = IE->getOperand(1)->getType(); + + unsigned NextInst = 0, MaxInst = VL.size(); + for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { + // No actual vectorization should happen, if number of parts is the same as + // provided vectorization factor (i.e. the scalar type is used for vector + // code during codegen). + auto *VecTy = FixedVectorType::get(ScalarTy, VF); + if (TTI->getNumberOfParts(VecTy) == VF) + continue; + for (unsigned I = NextInst; I < MaxInst; ++I) { + unsigned OpsWidth = 0; + + if (I + VF > MaxInst) + OpsWidth = MaxInst - I; + else + OpsWidth = VF; + + if (!isPowerOf2_32(OpsWidth)) + continue; + + if ((LimitForRegisterSize && OpsWidth < MaxVF) || + (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) + break; + + ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); + // Check that a previous iteration of this loop did not delete the Value. + if (llvm::any_of(Ops, [&R](Value *V) { + auto *I = dyn_cast<Instruction>(V); + return I && R.isDeleted(I); + })) + continue; + + LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " + << "\n"); + + R.buildTree(Ops); + if (R.isTreeTinyAndNotFullyVectorizable()) + continue; + R.reorderTopToBottom(); + R.reorderBottomToTop( + /*IgnoreReorder=*/!isa<InsertElementInst>(Ops.front()) && + !R.doesRootHaveInTreeUses()); + R.buildExternalUses(); + + R.computeMinimumValueSizes(); + InstructionCost Cost = R.getTreeCost(); + CandidateFound = true; + MinCost = std::min(MinCost, Cost); + + LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost + << " for VF=" << OpsWidth << "\n"); + if (Cost < -SLPCostThreshold) { + LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); + R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", + cast<Instruction>(Ops[0])) + << "SLP vectorized with cost " << ore::NV("Cost", Cost) + << " and with tree size " + << ore::NV("TreeSize", R.getTreeSize())); + + R.vectorizeTree(); + // Move to the next bundle. + I += VF - 1; + NextInst = I + 1; + Changed = true; + } + } + } + + if (!Changed && CandidateFound) { + R.getORE()->emit([&]() { + return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) + << "List vectorization was possible but not beneficial with cost " + << ore::NV("Cost", MinCost) << " >= " + << ore::NV("Treshold", -SLPCostThreshold); + }); + } else if (!Changed) { + R.getORE()->emit([&]() { + return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) + << "Cannot SLP vectorize list: vectorization was impossible" + << " with available vectorization factors"; + }); + } + return Changed; +} + +bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { + if (!I) + return false; + + if (!isa<BinaryOperator, CmpInst>(I) || isa<VectorType>(I->getType())) + return false; + + Value *P = I->getParent(); + + // Vectorize in current basic block only. + auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); + auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); + if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) + return false; + + // First collect all possible candidates + SmallVector<std::pair<Value *, Value *>, 4> Candidates; + Candidates.emplace_back(Op0, Op1); + + auto *A = dyn_cast<BinaryOperator>(Op0); + auto *B = dyn_cast<BinaryOperator>(Op1); + // Try to skip B. + if (A && B && B->hasOneUse()) { + auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); + auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); + if (B0 && B0->getParent() == P) + Candidates.emplace_back(A, B0); + if (B1 && B1->getParent() == P) + Candidates.emplace_back(A, B1); + } + // Try to skip A. + if (B && A && A->hasOneUse()) { + auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); + auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); + if (A0 && A0->getParent() == P) + Candidates.emplace_back(A0, B); + if (A1 && A1->getParent() == P) + Candidates.emplace_back(A1, B); + } + + if (Candidates.size() == 1) + return tryToVectorizePair(Op0, Op1, R); + + // We have multiple options. Try to pick the single best. + std::optional<int> BestCandidate = R.findBestRootPair(Candidates); + if (!BestCandidate) + return false; + return tryToVectorizePair(Candidates[*BestCandidate].first, + Candidates[*BestCandidate].second, R); +} + +namespace { + +/// Model horizontal reductions. +/// +/// A horizontal reduction is a tree of reduction instructions that has values +/// that can be put into a vector as its leaves. For example: +/// +/// mul mul mul mul +/// \ / \ / +/// + + +/// \ / +/// + +/// This tree has "mul" as its leaf values and "+" as its reduction +/// instructions. A reduction can feed into a store or a binary operation +/// feeding a phi. +/// ... +/// \ / +/// + +/// | +/// phi += +/// +/// Or: +/// ... +/// \ / +/// + +/// | +/// *p = +/// +class HorizontalReduction { + using ReductionOpsType = SmallVector<Value *, 16>; + using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; + ReductionOpsListType ReductionOps; + /// List of possibly reduced values. + SmallVector<SmallVector<Value *>> ReducedVals; + /// Maps reduced value to the corresponding reduction operation. + DenseMap<Value *, SmallVector<Instruction *>> ReducedValsToOps; + // Use map vector to make stable output. + MapVector<Instruction *, Value *> ExtraArgs; + WeakTrackingVH ReductionRoot; + /// The type of reduction operation. + RecurKind RdxKind; + + static bool isCmpSelMinMax(Instruction *I) { + return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && + RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); + } + + // And/or are potentially poison-safe logical patterns like: + // select x, y, false + // select x, true, y + static bool isBoolLogicOp(Instruction *I) { + return isa<SelectInst>(I) && + (match(I, m_LogicalAnd()) || match(I, m_LogicalOr())); + } + + /// Checks if instruction is associative and can be vectorized. + static bool isVectorizable(RecurKind Kind, Instruction *I) { + if (Kind == RecurKind::None) + return false; + + // Integer ops that map to select instructions or intrinsics are fine. + if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || + isBoolLogicOp(I)) + return true; + + if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { + // FP min/max are associative except for NaN and -0.0. We do not + // have to rule out -0.0 here because the intrinsic semantics do not + // specify a fixed result for it. + return I->getFastMathFlags().noNaNs(); + } + + return I->isAssociative(); + } + + static Value *getRdxOperand(Instruction *I, unsigned Index) { + // Poison-safe 'or' takes the form: select X, true, Y + // To make that work with the normal operand processing, we skip the + // true value operand. + // TODO: Change the code and data structures to handle this without a hack. + if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) + return I->getOperand(2); + return I->getOperand(Index); + } + + /// Creates reduction operation with the current opcode. + static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, + Value *RHS, const Twine &Name, bool UseSelect) { + unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); + switch (Kind) { + case RecurKind::Or: + if (UseSelect && + LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) + return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); + return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, + Name); + case RecurKind::And: + if (UseSelect && + LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) + return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); + return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, + Name); + case RecurKind::Add: + case RecurKind::Mul: + case RecurKind::Xor: + case RecurKind::FAdd: + case RecurKind::FMul: + return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, + Name); + case RecurKind::FMax: + return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); + case RecurKind::FMin: + return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); + case RecurKind::SMax: + if (UseSelect) { + Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); + return Builder.CreateSelect(Cmp, LHS, RHS, Name); + } + return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); + case RecurKind::SMin: + if (UseSelect) { + Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); + return Builder.CreateSelect(Cmp, LHS, RHS, Name); + } + return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); + case RecurKind::UMax: + if (UseSelect) { + Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); + return Builder.CreateSelect(Cmp, LHS, RHS, Name); + } + return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); + case RecurKind::UMin: + if (UseSelect) { + Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); + return Builder.CreateSelect(Cmp, LHS, RHS, Name); + } + return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); + default: + llvm_unreachable("Unknown reduction operation."); + } + } + + /// Creates reduction operation with the current opcode with the IR flags + /// from \p ReductionOps, dropping nuw/nsw flags. + static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, + Value *RHS, const Twine &Name, + const ReductionOpsListType &ReductionOps) { + bool UseSelect = ReductionOps.size() == 2 || + // Logical or/and. + (ReductionOps.size() == 1 && + isa<SelectInst>(ReductionOps.front().front())); + assert((!UseSelect || ReductionOps.size() != 2 || + isa<SelectInst>(ReductionOps[1][0])) && + "Expected cmp + select pairs for reduction"); + Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); + if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { + if (auto *Sel = dyn_cast<SelectInst>(Op)) { + propagateIRFlags(Sel->getCondition(), ReductionOps[0], nullptr, + /*IncludeWrapFlags=*/false); + propagateIRFlags(Op, ReductionOps[1], nullptr, + /*IncludeWrapFlags=*/false); + return Op; + } + } + propagateIRFlags(Op, ReductionOps[0], nullptr, /*IncludeWrapFlags=*/false); + return Op; + } + + static RecurKind getRdxKind(Value *V) { + auto *I = dyn_cast<Instruction>(V); + if (!I) + return RecurKind::None; + if (match(I, m_Add(m_Value(), m_Value()))) + return RecurKind::Add; + if (match(I, m_Mul(m_Value(), m_Value()))) + return RecurKind::Mul; + if (match(I, m_And(m_Value(), m_Value())) || + match(I, m_LogicalAnd(m_Value(), m_Value()))) + return RecurKind::And; + if (match(I, m_Or(m_Value(), m_Value())) || + match(I, m_LogicalOr(m_Value(), m_Value()))) + return RecurKind::Or; + if (match(I, m_Xor(m_Value(), m_Value()))) + return RecurKind::Xor; + if (match(I, m_FAdd(m_Value(), m_Value()))) + return RecurKind::FAdd; + if (match(I, m_FMul(m_Value(), m_Value()))) + return RecurKind::FMul; + + if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) + return RecurKind::FMax; + if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) + return RecurKind::FMin; + + // This matches either cmp+select or intrinsics. SLP is expected to handle + // either form. + // TODO: If we are canonicalizing to intrinsics, we can remove several + // special-case paths that deal with selects. + if (match(I, m_SMax(m_Value(), m_Value()))) + return RecurKind::SMax; + if (match(I, m_SMin(m_Value(), m_Value()))) + return RecurKind::SMin; + if (match(I, m_UMax(m_Value(), m_Value()))) + return RecurKind::UMax; + if (match(I, m_UMin(m_Value(), m_Value()))) + return RecurKind::UMin; + + if (auto *Select = dyn_cast<SelectInst>(I)) { + // Try harder: look for min/max pattern based on instructions producing + // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). + // During the intermediate stages of SLP, it's very common to have + // pattern like this (since optimizeGatherSequence is run only once + // at the end): + // %1 = extractelement <2 x i32> %a, i32 0 + // %2 = extractelement <2 x i32> %a, i32 1 + // %cond = icmp sgt i32 %1, %2 + // %3 = extractelement <2 x i32> %a, i32 0 + // %4 = extractelement <2 x i32> %a, i32 1 + // %select = select i1 %cond, i32 %3, i32 %4 + CmpInst::Predicate Pred; + Instruction *L1; + Instruction *L2; + + Value *LHS = Select->getTrueValue(); + Value *RHS = Select->getFalseValue(); + Value *Cond = Select->getCondition(); + + // TODO: Support inverse predicates. + if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { + if (!isa<ExtractElementInst>(RHS) || + !L2->isIdenticalTo(cast<Instruction>(RHS))) + return RecurKind::None; + } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { + if (!isa<ExtractElementInst>(LHS) || + !L1->isIdenticalTo(cast<Instruction>(LHS))) + return RecurKind::None; + } else { + if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) + return RecurKind::None; + if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || + !L1->isIdenticalTo(cast<Instruction>(LHS)) || + !L2->isIdenticalTo(cast<Instruction>(RHS))) + return RecurKind::None; + } + + switch (Pred) { + default: + return RecurKind::None; + case CmpInst::ICMP_SGT: + case CmpInst::ICMP_SGE: + return RecurKind::SMax; + case CmpInst::ICMP_SLT: + case CmpInst::ICMP_SLE: + return RecurKind::SMin; + case CmpInst::ICMP_UGT: + case CmpInst::ICMP_UGE: + return RecurKind::UMax; + case CmpInst::ICMP_ULT: + case CmpInst::ICMP_ULE: + return RecurKind::UMin; + } + } + return RecurKind::None; + } + + /// Get the index of the first operand. + static unsigned getFirstOperandIndex(Instruction *I) { + return isCmpSelMinMax(I) ? 1 : 0; + } + + /// Total number of operands in the reduction operation. + static unsigned getNumberOfOperands(Instruction *I) { + return isCmpSelMinMax(I) ? 3 : 2; + } + + /// Checks if the instruction is in basic block \p BB. + /// For a cmp+sel min/max reduction check that both ops are in \p BB. + static bool hasSameParent(Instruction *I, BasicBlock *BB) { + if (isCmpSelMinMax(I) || isBoolLogicOp(I)) { + auto *Sel = cast<SelectInst>(I); + auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); + return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; + } + return I->getParent() == BB; + } + + /// Expected number of uses for reduction operations/reduced values. + static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { + if (IsCmpSelMinMax) { + // SelectInst must be used twice while the condition op must have single + // use only. + if (auto *Sel = dyn_cast<SelectInst>(I)) + return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); + return I->hasNUses(2); + } + + // Arithmetic reduction operation must be used once only. + return I->hasOneUse(); + } + + /// Initializes the list of reduction operations. + void initReductionOps(Instruction *I) { + if (isCmpSelMinMax(I)) + ReductionOps.assign(2, ReductionOpsType()); + else + ReductionOps.assign(1, ReductionOpsType()); + } + + /// Add all reduction operations for the reduction instruction \p I. + void addReductionOps(Instruction *I) { + if (isCmpSelMinMax(I)) { + ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); + ReductionOps[1].emplace_back(I); + } else { + ReductionOps[0].emplace_back(I); + } + } + + static Value *getLHS(RecurKind Kind, Instruction *I) { + if (Kind == RecurKind::None) + return nullptr; + return I->getOperand(getFirstOperandIndex(I)); + } + static Value *getRHS(RecurKind Kind, Instruction *I) { + if (Kind == RecurKind::None) + return nullptr; + return I->getOperand(getFirstOperandIndex(I) + 1); + } + + static bool isGoodForReduction(ArrayRef<Value *> Data) { + int Sz = Data.size(); + auto *I = dyn_cast<Instruction>(Data.front()); + return Sz > 1 || isConstant(Data.front()) || + (I && !isa<LoadInst>(I) && isValidForAlternation(I->getOpcode())); + } + +public: + HorizontalReduction() = default; + + /// Try to find a reduction tree. + bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst, + ScalarEvolution &SE, const DataLayout &DL, + const TargetLibraryInfo &TLI) { + assert((!Phi || is_contained(Phi->operands(), Inst)) && + "Phi needs to use the binary operator"); + assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || + isa<IntrinsicInst>(Inst)) && + "Expected binop, select, or intrinsic for reduction matching"); + RdxKind = getRdxKind(Inst); + + // We could have a initial reductions that is not an add. + // r *= v1 + v2 + v3 + v4 + // In such a case start looking for a tree rooted in the first '+'. + if (Phi) { + if (getLHS(RdxKind, Inst) == Phi) { + Phi = nullptr; + Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); + if (!Inst) + return false; + RdxKind = getRdxKind(Inst); + } else if (getRHS(RdxKind, Inst) == Phi) { + Phi = nullptr; + Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); + if (!Inst) + return false; + RdxKind = getRdxKind(Inst); + } + } + + if (!isVectorizable(RdxKind, Inst)) + return false; + + // Analyze "regular" integer/FP types for reductions - no target-specific + // types or pointers. + Type *Ty = Inst->getType(); + if (!isValidElementType(Ty) || Ty->isPointerTy()) + return false; + + // Though the ultimate reduction may have multiple uses, its condition must + // have only single use. + if (auto *Sel = dyn_cast<SelectInst>(Inst)) + if (!Sel->getCondition()->hasOneUse()) + return false; + + ReductionRoot = Inst; + + // Iterate through all the operands of the possible reduction tree and + // gather all the reduced values, sorting them by their value id. + BasicBlock *BB = Inst->getParent(); + bool IsCmpSelMinMax = isCmpSelMinMax(Inst); + SmallVector<Instruction *> Worklist(1, Inst); + // Checks if the operands of the \p TreeN instruction are also reduction + // operations or should be treated as reduced values or an extra argument, + // which is not part of the reduction. + auto &&CheckOperands = [this, IsCmpSelMinMax, + BB](Instruction *TreeN, + SmallVectorImpl<Value *> &ExtraArgs, + SmallVectorImpl<Value *> &PossibleReducedVals, + SmallVectorImpl<Instruction *> &ReductionOps) { + for (int I = getFirstOperandIndex(TreeN), + End = getNumberOfOperands(TreeN); + I < End; ++I) { + Value *EdgeVal = getRdxOperand(TreeN, I); + ReducedValsToOps[EdgeVal].push_back(TreeN); + auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); + // Edge has wrong parent - mark as an extra argument. + if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) && + !hasSameParent(EdgeInst, BB)) { + ExtraArgs.push_back(EdgeVal); + continue; + } + // If the edge is not an instruction, or it is different from the main + // reduction opcode or has too many uses - possible reduced value. + if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind || + IsCmpSelMinMax != isCmpSelMinMax(EdgeInst) || + !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) || + !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) { + PossibleReducedVals.push_back(EdgeVal); + continue; + } + ReductionOps.push_back(EdgeInst); + } + }; + // Try to regroup reduced values so that it gets more profitable to try to + // reduce them. Values are grouped by their value ids, instructions - by + // instruction op id and/or alternate op id, plus do extra analysis for + // loads (grouping them by the distabce between pointers) and cmp + // instructions (grouping them by the predicate). + MapVector<size_t, MapVector<size_t, MapVector<Value *, unsigned>>> + PossibleReducedVals; + initReductionOps(Inst); + DenseMap<Value *, SmallVector<LoadInst *>> LoadsMap; + SmallSet<size_t, 2> LoadKeyUsed; + SmallPtrSet<Value *, 4> DoNotReverseVals; + while (!Worklist.empty()) { + Instruction *TreeN = Worklist.pop_back_val(); + SmallVector<Value *> Args; + SmallVector<Value *> PossibleRedVals; + SmallVector<Instruction *> PossibleReductionOps; + CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps); + // If too many extra args - mark the instruction itself as a reduction + // value, not a reduction operation. + if (Args.size() < 2) { + addReductionOps(TreeN); + // Add extra args. + if (!Args.empty()) { + assert(Args.size() == 1 && "Expected only single argument."); + ExtraArgs[TreeN] = Args.front(); + } + // Add reduction values. The values are sorted for better vectorization + // results. + for (Value *V : PossibleRedVals) { + size_t Key, Idx; + std::tie(Key, Idx) = generateKeySubkey( + V, &TLI, + [&](size_t Key, LoadInst *LI) { + Value *Ptr = getUnderlyingObject(LI->getPointerOperand()); + if (LoadKeyUsed.contains(Key)) { + auto LIt = LoadsMap.find(Ptr); + if (LIt != LoadsMap.end()) { + for (LoadInst *RLI: LIt->second) { + if (getPointersDiff( + RLI->getType(), RLI->getPointerOperand(), + LI->getType(), LI->getPointerOperand(), DL, SE, + /*StrictCheck=*/true)) + return hash_value(RLI->getPointerOperand()); + } + for (LoadInst *RLI : LIt->second) { + if (arePointersCompatible(RLI->getPointerOperand(), + LI->getPointerOperand(), TLI)) { + hash_code SubKey = hash_value(RLI->getPointerOperand()); + DoNotReverseVals.insert(RLI); + return SubKey; + } + } + if (LIt->second.size() > 2) { + hash_code SubKey = + hash_value(LIt->second.back()->getPointerOperand()); + DoNotReverseVals.insert(LIt->second.back()); + return SubKey; + } + } + } + LoadKeyUsed.insert(Key); + LoadsMap.try_emplace(Ptr).first->second.push_back(LI); + return hash_value(LI->getPointerOperand()); + }, + /*AllowAlternate=*/false); + ++PossibleReducedVals[Key][Idx] + .insert(std::make_pair(V, 0)) + .first->second; + } + Worklist.append(PossibleReductionOps.rbegin(), + PossibleReductionOps.rend()); + } else { + size_t Key, Idx; + std::tie(Key, Idx) = generateKeySubkey( + TreeN, &TLI, + [&](size_t Key, LoadInst *LI) { + Value *Ptr = getUnderlyingObject(LI->getPointerOperand()); + if (LoadKeyUsed.contains(Key)) { + auto LIt = LoadsMap.find(Ptr); + if (LIt != LoadsMap.end()) { + for (LoadInst *RLI: LIt->second) { + if (getPointersDiff(RLI->getType(), + RLI->getPointerOperand(), LI->getType(), + LI->getPointerOperand(), DL, SE, + /*StrictCheck=*/true)) + return hash_value(RLI->getPointerOperand()); + } + for (LoadInst *RLI : LIt->second) { + if (arePointersCompatible(RLI->getPointerOperand(), + LI->getPointerOperand(), TLI)) { + hash_code SubKey = hash_value(RLI->getPointerOperand()); + DoNotReverseVals.insert(RLI); + return SubKey; + } + } + if (LIt->second.size() > 2) { + hash_code SubKey = hash_value(LIt->second.back()->getPointerOperand()); + DoNotReverseVals.insert(LIt->second.back()); + return SubKey; + } + } + } + LoadKeyUsed.insert(Key); + LoadsMap.try_emplace(Ptr).first->second.push_back(LI); + return hash_value(LI->getPointerOperand()); + }, + /*AllowAlternate=*/false); + ++PossibleReducedVals[Key][Idx] + .insert(std::make_pair(TreeN, 0)) + .first->second; + } + } + auto PossibleReducedValsVect = PossibleReducedVals.takeVector(); + // Sort values by the total number of values kinds to start the reduction + // from the longest possible reduced values sequences. + for (auto &PossibleReducedVals : PossibleReducedValsVect) { + auto PossibleRedVals = PossibleReducedVals.second.takeVector(); + SmallVector<SmallVector<Value *>> PossibleRedValsVect; + for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end(); + It != E; ++It) { + PossibleRedValsVect.emplace_back(); + auto RedValsVect = It->second.takeVector(); + stable_sort(RedValsVect, llvm::less_second()); + for (const std::pair<Value *, unsigned> &Data : RedValsVect) + PossibleRedValsVect.back().append(Data.second, Data.first); + } + stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) { + return P1.size() > P2.size(); + }); + int NewIdx = -1; + for (ArrayRef<Value *> Data : PossibleRedValsVect) { + if (isGoodForReduction(Data) || + (isa<LoadInst>(Data.front()) && NewIdx >= 0 && + isa<LoadInst>(ReducedVals[NewIdx].front()) && + getUnderlyingObject( + cast<LoadInst>(Data.front())->getPointerOperand()) == + getUnderlyingObject(cast<LoadInst>(ReducedVals[NewIdx].front()) + ->getPointerOperand()))) { + if (NewIdx < 0) { + NewIdx = ReducedVals.size(); + ReducedVals.emplace_back(); + } + if (DoNotReverseVals.contains(Data.front())) + ReducedVals[NewIdx].append(Data.begin(), Data.end()); + else + ReducedVals[NewIdx].append(Data.rbegin(), Data.rend()); + } else { + ReducedVals.emplace_back().append(Data.rbegin(), Data.rend()); + } + } + } + // Sort the reduced values by number of same/alternate opcode and/or pointer + // operand. + stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) { + return P1.size() > P2.size(); + }); + return true; + } + + /// Attempt to vectorize the tree found by matchAssociativeReduction. + Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI, + const TargetLibraryInfo &TLI) { + constexpr int ReductionLimit = 4; + constexpr unsigned RegMaxNumber = 4; + constexpr unsigned RedValsMaxNumber = 128; + // If there are a sufficient number of reduction values, reduce + // to a nearby power-of-2. We can safely generate oversized + // vectors and rely on the backend to split them to legal sizes. + size_t NumReducedVals = + std::accumulate(ReducedVals.begin(), ReducedVals.end(), 0, + [](size_t Num, ArrayRef<Value *> Vals) { + if (!isGoodForReduction(Vals)) + return Num; + return Num + Vals.size(); + }); + if (NumReducedVals < ReductionLimit) { + for (ReductionOpsType &RdxOps : ReductionOps) + for (Value *RdxOp : RdxOps) + V.analyzedReductionRoot(cast<Instruction>(RdxOp)); + return nullptr; + } + + IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); + + // Track the reduced values in case if they are replaced by extractelement + // because of the vectorization. + DenseMap<Value *, WeakTrackingVH> TrackedVals( + ReducedVals.size() * ReducedVals.front().size() + ExtraArgs.size()); + BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; + ExternallyUsedValues.reserve(ExtraArgs.size() + 1); + // The same extra argument may be used several times, so log each attempt + // to use it. + for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { + assert(Pair.first && "DebugLoc must be set."); + ExternallyUsedValues[Pair.second].push_back(Pair.first); + TrackedVals.try_emplace(Pair.second, Pair.second); + } + + // The compare instruction of a min/max is the insertion point for new + // instructions and may be replaced with a new compare instruction. + auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) { + assert(isa<SelectInst>(RdxRootInst) && + "Expected min/max reduction to have select root instruction"); + Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); + assert(isa<Instruction>(ScalarCond) && + "Expected min/max reduction to have compare condition"); + return cast<Instruction>(ScalarCond); + }; + + // The reduction root is used as the insertion point for new instructions, + // so set it as externally used to prevent it from being deleted. + ExternallyUsedValues[ReductionRoot]; + SmallDenseSet<Value *> IgnoreList(ReductionOps.size() * + ReductionOps.front().size()); + for (ReductionOpsType &RdxOps : ReductionOps) + for (Value *RdxOp : RdxOps) { + if (!RdxOp) + continue; + IgnoreList.insert(RdxOp); + } + bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot)); + + // Need to track reduced vals, they may be changed during vectorization of + // subvectors. + for (ArrayRef<Value *> Candidates : ReducedVals) + for (Value *V : Candidates) + TrackedVals.try_emplace(V, V); + + DenseMap<Value *, unsigned> VectorizedVals(ReducedVals.size()); + // List of the values that were reduced in other trees as part of gather + // nodes and thus requiring extract if fully vectorized in other trees. + SmallPtrSet<Value *, 4> RequiredExtract; + Value *VectorizedTree = nullptr; + bool CheckForReusedReductionOps = false; + // Try to vectorize elements based on their type. + for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { + ArrayRef<Value *> OrigReducedVals = ReducedVals[I]; + InstructionsState S = getSameOpcode(OrigReducedVals, TLI); + SmallVector<Value *> Candidates; + Candidates.reserve(2 * OrigReducedVals.size()); + DenseMap<Value *, Value *> TrackedToOrig(2 * OrigReducedVals.size()); + for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) { + Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second; + // Check if the reduction value was not overriden by the extractelement + // instruction because of the vectorization and exclude it, if it is not + // compatible with other values. + if (auto *Inst = dyn_cast<Instruction>(RdxVal)) + if (isVectorLikeInstWithConstOps(Inst) && + (!S.getOpcode() || !S.isOpcodeOrAlt(Inst))) + continue; + Candidates.push_back(RdxVal); + TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]); + } + bool ShuffledExtracts = false; + // Try to handle shuffled extractelements. + if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() && + I + 1 < E) { + InstructionsState NextS = getSameOpcode(ReducedVals[I + 1], TLI); + if (NextS.getOpcode() == Instruction::ExtractElement && + !NextS.isAltShuffle()) { + SmallVector<Value *> CommonCandidates(Candidates); + for (Value *RV : ReducedVals[I + 1]) { + Value *RdxVal = TrackedVals.find(RV)->second; + // Check if the reduction value was not overriden by the + // extractelement instruction because of the vectorization and + // exclude it, if it is not compatible with other values. + if (auto *Inst = dyn_cast<Instruction>(RdxVal)) + if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst)) + continue; + CommonCandidates.push_back(RdxVal); + TrackedToOrig.try_emplace(RdxVal, RV); + } + SmallVector<int> Mask; + if (isFixedVectorShuffle(CommonCandidates, Mask)) { + ++I; + Candidates.swap(CommonCandidates); + ShuffledExtracts = true; + } + } + } + unsigned NumReducedVals = Candidates.size(); + if (NumReducedVals < ReductionLimit) + continue; + + unsigned MaxVecRegSize = V.getMaxVecRegSize(); + unsigned EltSize = V.getVectorElementSize(Candidates[0]); + unsigned MaxElts = RegMaxNumber * PowerOf2Floor(MaxVecRegSize / EltSize); + + unsigned ReduxWidth = std::min<unsigned>( + PowerOf2Floor(NumReducedVals), std::max(RedValsMaxNumber, MaxElts)); + unsigned Start = 0; + unsigned Pos = Start; + // Restarts vectorization attempt with lower vector factor. + unsigned PrevReduxWidth = ReduxWidth; + bool CheckForReusedReductionOpsLocal = false; + auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals, + &CheckForReusedReductionOpsLocal, + &PrevReduxWidth, &V, + &IgnoreList](bool IgnoreVL = false) { + bool IsAnyRedOpGathered = !IgnoreVL && V.isAnyGathered(IgnoreList); + if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) { + // Check if any of the reduction ops are gathered. If so, worth + // trying again with less number of reduction ops. + CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered; + } + ++Pos; + if (Pos < NumReducedVals - ReduxWidth + 1) + return IsAnyRedOpGathered; + Pos = Start; + ReduxWidth /= 2; + return IsAnyRedOpGathered; + }; + while (Pos < NumReducedVals - ReduxWidth + 1 && + ReduxWidth >= ReductionLimit) { + // Dependency in tree of the reduction ops - drop this attempt, try + // later. + if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth && + Start == 0) { + CheckForReusedReductionOps = true; + break; + } + PrevReduxWidth = ReduxWidth; + ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth); + // Beeing analyzed already - skip. + if (V.areAnalyzedReductionVals(VL)) { + (void)AdjustReducedVals(/*IgnoreVL=*/true); + continue; + } + // Early exit if any of the reduction values were deleted during + // previous vectorization attempts. + if (any_of(VL, [&V](Value *RedVal) { + auto *RedValI = dyn_cast<Instruction>(RedVal); + if (!RedValI) + return false; + return V.isDeleted(RedValI); + })) + break; + V.buildTree(VL, IgnoreList); + if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) { + if (!AdjustReducedVals()) + V.analyzedReductionVals(VL); + continue; + } + if (V.isLoadCombineReductionCandidate(RdxKind)) { + if (!AdjustReducedVals()) + V.analyzedReductionVals(VL); + continue; + } + V.reorderTopToBottom(); + // No need to reorder the root node at all. + V.reorderBottomToTop(/*IgnoreReorder=*/true); + // Keep extracted other reduction values, if they are used in the + // vectorization trees. + BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues( + ExternallyUsedValues); + for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) { + if (Cnt == I || (ShuffledExtracts && Cnt == I - 1)) + continue; + for_each(ReducedVals[Cnt], + [&LocalExternallyUsedValues, &TrackedVals](Value *V) { + if (isa<Instruction>(V)) + LocalExternallyUsedValues[TrackedVals[V]]; + }); + } + // Number of uses of the candidates in the vector of values. + SmallDenseMap<Value *, unsigned> NumUses(Candidates.size()); + for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) { + Value *V = Candidates[Cnt]; + ++NumUses.try_emplace(V, 0).first->getSecond(); + } + for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) { + Value *V = Candidates[Cnt]; + ++NumUses.try_emplace(V, 0).first->getSecond(); + } + SmallPtrSet<Value *, 4> VLScalars(VL.begin(), VL.end()); + // Gather externally used values. + SmallPtrSet<Value *, 4> Visited; + for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) { + Value *RdxVal = Candidates[Cnt]; + if (!Visited.insert(RdxVal).second) + continue; + // Check if the scalar was vectorized as part of the vectorization + // tree but not the top node. + if (!VLScalars.contains(RdxVal) && V.isVectorized(RdxVal)) { + LocalExternallyUsedValues[RdxVal]; + continue; + } + unsigned NumOps = VectorizedVals.lookup(RdxVal) + NumUses[RdxVal]; + if (NumOps != ReducedValsToOps.find(RdxVal)->second.size()) + LocalExternallyUsedValues[RdxVal]; + } + for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) { + Value *RdxVal = Candidates[Cnt]; + if (!Visited.insert(RdxVal).second) + continue; + // Check if the scalar was vectorized as part of the vectorization + // tree but not the top node. + if (!VLScalars.contains(RdxVal) && V.isVectorized(RdxVal)) { + LocalExternallyUsedValues[RdxVal]; + continue; + } + unsigned NumOps = VectorizedVals.lookup(RdxVal) + NumUses[RdxVal]; + if (NumOps != ReducedValsToOps.find(RdxVal)->second.size()) + LocalExternallyUsedValues[RdxVal]; + } + for (Value *RdxVal : VL) + if (RequiredExtract.contains(RdxVal)) + LocalExternallyUsedValues[RdxVal]; + V.buildExternalUses(LocalExternallyUsedValues); + + V.computeMinimumValueSizes(); + + // Intersect the fast-math-flags from all reduction operations. + FastMathFlags RdxFMF; + RdxFMF.set(); + for (Value *U : IgnoreList) + if (auto *FPMO = dyn_cast<FPMathOperator>(U)) + RdxFMF &= FPMO->getFastMathFlags(); + // Estimate cost. + InstructionCost TreeCost = V.getTreeCost(VL); + InstructionCost ReductionCost = + getReductionCost(TTI, VL, ReduxWidth, RdxFMF); + if (V.isVectorizedFirstNode() && isa<LoadInst>(VL.front())) { + Instruction *MainOp = V.getFirstNodeMainOp(); + for (Value *V : VL) { + auto *VI = dyn_cast<LoadInst>(V); + // Add the costs of scalar GEP pointers, to be removed from the + // code. + if (!VI || VI == MainOp) + continue; + auto *Ptr = dyn_cast<GetElementPtrInst>(VI->getPointerOperand()); + if (!Ptr || !Ptr->hasOneUse() || Ptr->hasAllConstantIndices()) + continue; + TreeCost -= TTI->getArithmeticInstrCost( + Instruction::Add, Ptr->getType(), TTI::TCK_RecipThroughput); + } + } + InstructionCost Cost = TreeCost + ReductionCost; + LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for reduction\n"); + if (!Cost.isValid()) + return nullptr; + if (Cost >= -SLPCostThreshold) { + V.getORE()->emit([&]() { + return OptimizationRemarkMissed( + SV_NAME, "HorSLPNotBeneficial", + ReducedValsToOps.find(VL[0])->second.front()) + << "Vectorizing horizontal reduction is possible " + << "but not beneficial with cost " << ore::NV("Cost", Cost) + << " and threshold " + << ore::NV("Threshold", -SLPCostThreshold); + }); + if (!AdjustReducedVals()) + V.analyzedReductionVals(VL); + continue; + } + + LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" + << Cost << ". (HorRdx)\n"); + V.getORE()->emit([&]() { + return OptimizationRemark( + SV_NAME, "VectorizedHorizontalReduction", + ReducedValsToOps.find(VL[0])->second.front()) + << "Vectorized horizontal reduction with cost " + << ore::NV("Cost", Cost) << " and with tree size " + << ore::NV("TreeSize", V.getTreeSize()); + }); + + Builder.setFastMathFlags(RdxFMF); + + // Emit a reduction. If the root is a select (min/max idiom), the insert + // point is the compare condition of that select. + Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); + Instruction *InsertPt = RdxRootInst; + if (IsCmpSelMinMax) + InsertPt = GetCmpForMinMaxReduction(RdxRootInst); + + // Vectorize a tree. + Value *VectorizedRoot = + V.vectorizeTree(LocalExternallyUsedValues, InsertPt); + + Builder.SetInsertPoint(InsertPt); + + // To prevent poison from leaking across what used to be sequential, + // safe, scalar boolean logic operations, the reduction operand must be + // frozen. + if (isBoolLogicOp(RdxRootInst)) + VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); + + Value *ReducedSubTree = + emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); + + if (!VectorizedTree) { + // Initialize the final value in the reduction. + VectorizedTree = ReducedSubTree; + } else { + // Update the final value in the reduction. + Builder.SetCurrentDebugLocation( + cast<Instruction>(ReductionOps.front().front())->getDebugLoc()); + VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, + ReducedSubTree, "op.rdx", ReductionOps); + } + // Count vectorized reduced values to exclude them from final reduction. + for (Value *RdxVal : VL) { + ++VectorizedVals.try_emplace(TrackedToOrig.find(RdxVal)->second, 0) + .first->getSecond(); + if (!V.isVectorized(RdxVal)) + RequiredExtract.insert(RdxVal); + } + Pos += ReduxWidth; + Start = Pos; + ReduxWidth = PowerOf2Floor(NumReducedVals - Pos); + } + } + if (VectorizedTree) { + // Reorder operands of bool logical op in the natural order to avoid + // possible problem with poison propagation. If not possible to reorder + // (both operands are originally RHS), emit an extra freeze instruction + // for the LHS operand. + //I.e., if we have original code like this: + // RedOp1 = select i1 ?, i1 LHS, i1 false + // RedOp2 = select i1 RHS, i1 ?, i1 false + + // Then, we swap LHS/RHS to create a new op that matches the poison + // semantics of the original code. + + // If we have original code like this and both values could be poison: + // RedOp1 = select i1 ?, i1 LHS, i1 false + // RedOp2 = select i1 ?, i1 RHS, i1 false + + // Then, we must freeze LHS in the new op. + auto &&FixBoolLogicalOps = + [&Builder, VectorizedTree](Value *&LHS, Value *&RHS, + Instruction *RedOp1, Instruction *RedOp2) { + if (!isBoolLogicOp(RedOp1)) + return; + if (LHS == VectorizedTree || getRdxOperand(RedOp1, 0) == LHS || + isGuaranteedNotToBePoison(LHS)) + return; + if (!isBoolLogicOp(RedOp2)) + return; + if (RHS == VectorizedTree || getRdxOperand(RedOp2, 0) == RHS || + isGuaranteedNotToBePoison(RHS)) { + std::swap(LHS, RHS); + return; + } + LHS = Builder.CreateFreeze(LHS); + }; + // Finish the reduction. + // Need to add extra arguments and not vectorized possible reduction + // values. + // Try to avoid dependencies between the scalar remainders after + // reductions. + auto &&FinalGen = + [this, &Builder, &TrackedVals, &FixBoolLogicalOps]( + ArrayRef<std::pair<Instruction *, Value *>> InstVals) { + unsigned Sz = InstVals.size(); + SmallVector<std::pair<Instruction *, Value *>> ExtraReds(Sz / 2 + + Sz % 2); + for (unsigned I = 0, E = (Sz / 2) * 2; I < E; I += 2) { + Instruction *RedOp = InstVals[I + 1].first; + Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); + Value *RdxVal1 = InstVals[I].second; + Value *StableRdxVal1 = RdxVal1; + auto It1 = TrackedVals.find(RdxVal1); + if (It1 != TrackedVals.end()) + StableRdxVal1 = It1->second; + Value *RdxVal2 = InstVals[I + 1].second; + Value *StableRdxVal2 = RdxVal2; + auto It2 = TrackedVals.find(RdxVal2); + if (It2 != TrackedVals.end()) + StableRdxVal2 = It2->second; + // To prevent poison from leaking across what used to be + // sequential, safe, scalar boolean logic operations, the + // reduction operand must be frozen. + FixBoolLogicalOps(StableRdxVal1, StableRdxVal2, InstVals[I].first, + RedOp); + Value *ExtraRed = createOp(Builder, RdxKind, StableRdxVal1, + StableRdxVal2, "op.rdx", ReductionOps); + ExtraReds[I / 2] = std::make_pair(InstVals[I].first, ExtraRed); + } + if (Sz % 2 == 1) + ExtraReds[Sz / 2] = InstVals.back(); + return ExtraReds; + }; + SmallVector<std::pair<Instruction *, Value *>> ExtraReductions; + ExtraReductions.emplace_back(cast<Instruction>(ReductionRoot), + VectorizedTree); + SmallPtrSet<Value *, 8> Visited; + for (ArrayRef<Value *> Candidates : ReducedVals) { + for (Value *RdxVal : Candidates) { + if (!Visited.insert(RdxVal).second) + continue; + unsigned NumOps = VectorizedVals.lookup(RdxVal); + for (Instruction *RedOp : + ArrayRef(ReducedValsToOps.find(RdxVal)->second) + .drop_back(NumOps)) + ExtraReductions.emplace_back(RedOp, RdxVal); + } + } + for (auto &Pair : ExternallyUsedValues) { + // Add each externally used value to the final reduction. + for (auto *I : Pair.second) + ExtraReductions.emplace_back(I, Pair.first); + } + // Iterate through all not-vectorized reduction values/extra arguments. + while (ExtraReductions.size() > 1) { + VectorizedTree = ExtraReductions.front().second; + SmallVector<std::pair<Instruction *, Value *>> NewReds = + FinalGen(ExtraReductions); + ExtraReductions.swap(NewReds); + } + VectorizedTree = ExtraReductions.front().second; + + ReductionRoot->replaceAllUsesWith(VectorizedTree); + + // The original scalar reduction is expected to have no remaining + // uses outside the reduction tree itself. Assert that we got this + // correct, replace internal uses with undef, and mark for eventual + // deletion. +#ifndef NDEBUG + SmallSet<Value *, 4> IgnoreSet; + for (ArrayRef<Value *> RdxOps : ReductionOps) + IgnoreSet.insert(RdxOps.begin(), RdxOps.end()); +#endif + for (ArrayRef<Value *> RdxOps : ReductionOps) { + for (Value *Ignore : RdxOps) { + if (!Ignore) + continue; +#ifndef NDEBUG + for (auto *U : Ignore->users()) { + assert(IgnoreSet.count(U) && + "All users must be either in the reduction ops list."); + } +#endif + if (!Ignore->use_empty()) { + Value *Undef = UndefValue::get(Ignore->getType()); + Ignore->replaceAllUsesWith(Undef); + } + V.eraseInstruction(cast<Instruction>(Ignore)); + } + } + } else if (!CheckForReusedReductionOps) { + for (ReductionOpsType &RdxOps : ReductionOps) + for (Value *RdxOp : RdxOps) + V.analyzedReductionRoot(cast<Instruction>(RdxOp)); + } + return VectorizedTree; + } + +private: + /// Calculate the cost of a reduction. + InstructionCost getReductionCost(TargetTransformInfo *TTI, + ArrayRef<Value *> ReducedVals, + unsigned ReduxWidth, FastMathFlags FMF) { + TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; + Value *FirstReducedVal = ReducedVals.front(); + Type *ScalarTy = FirstReducedVal->getType(); + FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); + InstructionCost VectorCost = 0, ScalarCost; + // If all of the reduced values are constant, the vector cost is 0, since + // the reduction value can be calculated at the compile time. + bool AllConsts = all_of(ReducedVals, isConstant); + switch (RdxKind) { + case RecurKind::Add: + case RecurKind::Mul: + case RecurKind::Or: + case RecurKind::And: + case RecurKind::Xor: + case RecurKind::FAdd: + case RecurKind::FMul: { + unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); + if (!AllConsts) + VectorCost = + TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); + ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); + break; + } + case RecurKind::FMax: + case RecurKind::FMin: { + auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); + if (!AllConsts) { + auto *VecCondTy = + cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); + VectorCost = + TTI->getMinMaxReductionCost(VectorTy, VecCondTy, + /*IsUnsigned=*/false, CostKind); + } + CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); + ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, + SclCondTy, RdxPred, CostKind) + + TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, + SclCondTy, RdxPred, CostKind); + break; + } + case RecurKind::SMax: + case RecurKind::SMin: + case RecurKind::UMax: + case RecurKind::UMin: { + auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); + if (!AllConsts) { + auto *VecCondTy = + cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); + bool IsUnsigned = + RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; + VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, + IsUnsigned, CostKind); + } + CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); + ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, + SclCondTy, RdxPred, CostKind) + + TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, + SclCondTy, RdxPred, CostKind); + break; + } + default: + llvm_unreachable("Expected arithmetic or min/max reduction operation"); + } + + // Scalar cost is repeated for N-1 elements. + ScalarCost *= (ReduxWidth - 1); + LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost + << " for reduction that starts with " << *FirstReducedVal + << " (It is a splitting reduction)\n"); + return VectorCost - ScalarCost; + } + + /// Emit a horizontal reduction of the vectorized value. + Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, + unsigned ReduxWidth, const TargetTransformInfo *TTI) { + assert(VectorizedValue && "Need to have a vectorized tree node"); + assert(isPowerOf2_32(ReduxWidth) && + "We only handle power-of-two reductions for now"); + assert(RdxKind != RecurKind::FMulAdd && + "A call to the llvm.fmuladd intrinsic is not handled yet"); + + ++NumVectorInstructions; + return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); + } +}; + +} // end anonymous namespace + +static std::optional<unsigned> getAggregateSize(Instruction *InsertInst) { + if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) + return cast<FixedVectorType>(IE->getType())->getNumElements(); + + unsigned AggregateSize = 1; + auto *IV = cast<InsertValueInst>(InsertInst); + Type *CurrentType = IV->getType(); + do { + if (auto *ST = dyn_cast<StructType>(CurrentType)) { + for (auto *Elt : ST->elements()) + if (Elt != ST->getElementType(0)) // check homogeneity + return std::nullopt; + AggregateSize *= ST->getNumElements(); + CurrentType = ST->getElementType(0); + } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { + AggregateSize *= AT->getNumElements(); + CurrentType = AT->getElementType(); + } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { + AggregateSize *= VT->getNumElements(); + return AggregateSize; + } else if (CurrentType->isSingleValueType()) { + return AggregateSize; + } else { + return std::nullopt; + } + } while (true); +} + +static void findBuildAggregate_rec(Instruction *LastInsertInst, + TargetTransformInfo *TTI, + SmallVectorImpl<Value *> &BuildVectorOpds, + SmallVectorImpl<Value *> &InsertElts, + unsigned OperandOffset) { + do { + Value *InsertedOperand = LastInsertInst->getOperand(1); + std::optional<unsigned> OperandIndex = + getInsertIndex(LastInsertInst, OperandOffset); + if (!OperandIndex) + return; + if (isa<InsertElementInst, InsertValueInst>(InsertedOperand)) { + findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, + BuildVectorOpds, InsertElts, *OperandIndex); + + } else { + BuildVectorOpds[*OperandIndex] = InsertedOperand; + InsertElts[*OperandIndex] = LastInsertInst; + } + LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); + } while (LastInsertInst != nullptr && + isa<InsertValueInst, InsertElementInst>(LastInsertInst) && + LastInsertInst->hasOneUse()); +} + +/// Recognize construction of vectors like +/// %ra = insertelement <4 x float> poison, float %s0, i32 0 +/// %rb = insertelement <4 x float> %ra, float %s1, i32 1 +/// %rc = insertelement <4 x float> %rb, float %s2, i32 2 +/// %rd = insertelement <4 x float> %rc, float %s3, i32 3 +/// starting from the last insertelement or insertvalue instruction. +/// +/// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, +/// {{float, float}, {float, float}}, [2 x {float, float}] and so on. +/// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. +/// +/// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. +/// +/// \return true if it matches. +static bool findBuildAggregate(Instruction *LastInsertInst, + TargetTransformInfo *TTI, + SmallVectorImpl<Value *> &BuildVectorOpds, + SmallVectorImpl<Value *> &InsertElts) { + + assert((isa<InsertElementInst>(LastInsertInst) || + isa<InsertValueInst>(LastInsertInst)) && + "Expected insertelement or insertvalue instruction!"); + + assert((BuildVectorOpds.empty() && InsertElts.empty()) && + "Expected empty result vectors!"); + + std::optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); + if (!AggregateSize) + return false; + BuildVectorOpds.resize(*AggregateSize); + InsertElts.resize(*AggregateSize); + + findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); + llvm::erase_value(BuildVectorOpds, nullptr); + llvm::erase_value(InsertElts, nullptr); + if (BuildVectorOpds.size() >= 2) + return true; + + return false; +} + +/// Try and get a reduction value from a phi node. +/// +/// Given a phi node \p P in a block \p ParentBB, consider possible reductions +/// if they come from either \p ParentBB or a containing loop latch. +/// +/// \returns A candidate reduction value if possible, or \code nullptr \endcode +/// if not possible. +static Value *getReductionValue(const DominatorTree *DT, PHINode *P, + BasicBlock *ParentBB, LoopInfo *LI) { + // There are situations where the reduction value is not dominated by the + // reduction phi. Vectorizing such cases has been reported to cause + // miscompiles. See PR25787. + auto DominatedReduxValue = [&](Value *R) { + return isa<Instruction>(R) && + DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); + }; + + Value *Rdx = nullptr; + + // Return the incoming value if it comes from the same BB as the phi node. + if (P->getIncomingBlock(0) == ParentBB) { + Rdx = P->getIncomingValue(0); + } else if (P->getIncomingBlock(1) == ParentBB) { + Rdx = P->getIncomingValue(1); + } + + if (Rdx && DominatedReduxValue(Rdx)) + return Rdx; + + // Otherwise, check whether we have a loop latch to look at. + Loop *BBL = LI->getLoopFor(ParentBB); + if (!BBL) + return nullptr; + BasicBlock *BBLatch = BBL->getLoopLatch(); + if (!BBLatch) + return nullptr; + + // There is a loop latch, return the incoming value if it comes from + // that. This reduction pattern occasionally turns up. + if (P->getIncomingBlock(0) == BBLatch) { + Rdx = P->getIncomingValue(0); + } else if (P->getIncomingBlock(1) == BBLatch) { + Rdx = P->getIncomingValue(1); + } + + if (Rdx && DominatedReduxValue(Rdx)) + return Rdx; + + return nullptr; +} + +static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { + if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) + return true; + if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) + return true; + if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) + return true; + if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) + return true; + if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) + return true; + if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) + return true; + if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) + return true; + return false; +} + +bool SLPVectorizerPass::vectorizeHorReduction( + PHINode *P, Value *V, BasicBlock *BB, BoUpSLP &R, TargetTransformInfo *TTI, + SmallVectorImpl<WeakTrackingVH> &PostponedInsts) { + if (!ShouldVectorizeHor) + return false; + + auto *Root = dyn_cast_or_null<Instruction>(V); + if (!Root) + return false; + + if (!isa<BinaryOperator>(Root)) + P = nullptr; + + if (Root->getParent() != BB || isa<PHINode>(Root)) + return false; + // Start analysis starting from Root instruction. If horizontal reduction is + // found, try to vectorize it. If it is not a horizontal reduction or + // vectorization is not possible or not effective, and currently analyzed + // instruction is a binary operation, try to vectorize the operands, using + // pre-order DFS traversal order. If the operands were not vectorized, repeat + // the same procedure considering each operand as a possible root of the + // horizontal reduction. + // Interrupt the process if the Root instruction itself was vectorized or all + // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. + // If a horizintal reduction was not matched or vectorized we collect + // instructions for possible later attempts for vectorization. + std::queue<std::pair<Instruction *, unsigned>> Stack; + Stack.emplace(Root, 0); + SmallPtrSet<Value *, 8> VisitedInstrs; + bool Res = false; + auto &&TryToReduce = [this, TTI, &P, &R](Instruction *Inst, Value *&B0, + Value *&B1) -> Value * { + if (R.isAnalyzedReductionRoot(Inst)) + return nullptr; + bool IsBinop = matchRdxBop(Inst, B0, B1); + bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); + if (IsBinop || IsSelect) { + HorizontalReduction HorRdx; + if (HorRdx.matchAssociativeReduction(P, Inst, *SE, *DL, *TLI)) + return HorRdx.tryToReduce(R, TTI, *TLI); + } + return nullptr; + }; + while (!Stack.empty()) { + Instruction *Inst; + unsigned Level; + std::tie(Inst, Level) = Stack.front(); + Stack.pop(); + // Do not try to analyze instruction that has already been vectorized. + // This may happen when we vectorize instruction operands on a previous + // iteration while stack was populated before that happened. + if (R.isDeleted(Inst)) + continue; + Value *B0 = nullptr, *B1 = nullptr; + if (Value *V = TryToReduce(Inst, B0, B1)) { + Res = true; + // Set P to nullptr to avoid re-analysis of phi node in + // matchAssociativeReduction function unless this is the root node. + P = nullptr; + if (auto *I = dyn_cast<Instruction>(V)) { + // Try to find another reduction. + Stack.emplace(I, Level); + continue; + } + } else { + bool IsBinop = B0 && B1; + if (P && IsBinop) { + Inst = dyn_cast<Instruction>(B0); + if (Inst == P) + Inst = dyn_cast<Instruction>(B1); + if (!Inst) { + // Set P to nullptr to avoid re-analysis of phi node in + // matchAssociativeReduction function unless this is the root node. + P = nullptr; + continue; + } + } + // Set P to nullptr to avoid re-analysis of phi node in + // matchAssociativeReduction function unless this is the root node. + P = nullptr; + // Do not collect CmpInst or InsertElementInst/InsertValueInst as their + // analysis is done separately. + if (!isa<CmpInst, InsertElementInst, InsertValueInst>(Inst)) + PostponedInsts.push_back(Inst); + } + + // Try to vectorize operands. + // Continue analysis for the instruction from the same basic block only to + // save compile time. + if (++Level < RecursionMaxDepth) + for (auto *Op : Inst->operand_values()) + if (VisitedInstrs.insert(Op).second) + if (auto *I = dyn_cast<Instruction>(Op)) + // Do not try to vectorize CmpInst operands, this is done + // separately. + if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) && + !R.isDeleted(I) && I->getParent() == BB) + Stack.emplace(I, Level); + } + return Res; +} + +bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, + BasicBlock *BB, BoUpSLP &R, + TargetTransformInfo *TTI) { + SmallVector<WeakTrackingVH> PostponedInsts; + bool Res = vectorizeHorReduction(P, V, BB, R, TTI, PostponedInsts); + Res |= tryToVectorize(PostponedInsts, R); + return Res; +} + +bool SLPVectorizerPass::tryToVectorize(ArrayRef<WeakTrackingVH> Insts, + BoUpSLP &R) { + bool Res = false; + for (Value *V : Insts) + if (auto *Inst = dyn_cast<Instruction>(V); Inst && !R.isDeleted(Inst)) + Res |= tryToVectorize(Inst, R); + return Res; +} + +bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, + BasicBlock *BB, BoUpSLP &R) { + const DataLayout &DL = BB->getModule()->getDataLayout(); + if (!R.canMapToVector(IVI->getType(), DL)) + return false; + + SmallVector<Value *, 16> BuildVectorOpds; + SmallVector<Value *, 16> BuildVectorInsts; + if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) + return false; + + LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); + // Aggregate value is unlikely to be processed in vector register. + return tryToVectorizeList(BuildVectorOpds, R); +} + +bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, + BasicBlock *BB, BoUpSLP &R) { + SmallVector<Value *, 16> BuildVectorInsts; + SmallVector<Value *, 16> BuildVectorOpds; + SmallVector<int> Mask; + if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || + (llvm::all_of( + BuildVectorOpds, + [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && + isFixedVectorShuffle(BuildVectorOpds, Mask))) + return false; + + LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); + return tryToVectorizeList(BuildVectorInsts, R); +} + +template <typename T> +static bool +tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, + function_ref<unsigned(T *)> Limit, + function_ref<bool(T *, T *)> Comparator, + function_ref<bool(T *, T *)> AreCompatible, + function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, + bool LimitForRegisterSize) { + bool Changed = false; + // Sort by type, parent, operands. + stable_sort(Incoming, Comparator); + + // Try to vectorize elements base on their type. + SmallVector<T *> Candidates; + for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { + // Look for the next elements with the same type, parent and operand + // kinds. + auto *SameTypeIt = IncIt; + while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) + ++SameTypeIt; + + // Try to vectorize them. + unsigned NumElts = (SameTypeIt - IncIt); + LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" + << NumElts << ")\n"); + // The vectorization is a 3-state attempt: + // 1. Try to vectorize instructions with the same/alternate opcodes with the + // size of maximal register at first. + // 2. Try to vectorize remaining instructions with the same type, if + // possible. This may result in the better vectorization results rather than + // if we try just to vectorize instructions with the same/alternate opcodes. + // 3. Final attempt to try to vectorize all instructions with the + // same/alternate ops only, this may result in some extra final + // vectorization. + if (NumElts > 1 && + TryToVectorizeHelper(ArrayRef(IncIt, NumElts), LimitForRegisterSize)) { + // Success start over because instructions might have been changed. + Changed = true; + } else if (NumElts < Limit(*IncIt) && + (Candidates.empty() || + Candidates.front()->getType() == (*IncIt)->getType())) { + Candidates.append(IncIt, std::next(IncIt, NumElts)); + } + // Final attempt to vectorize instructions with the same types. + if (Candidates.size() > 1 && + (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { + if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { + // Success start over because instructions might have been changed. + Changed = true; + } else if (LimitForRegisterSize) { + // Try to vectorize using small vectors. + for (auto *It = Candidates.begin(), *End = Candidates.end(); + It != End;) { + auto *SameTypeIt = It; + while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) + ++SameTypeIt; + unsigned NumElts = (SameTypeIt - It); + if (NumElts > 1 && + TryToVectorizeHelper(ArrayRef(It, NumElts), + /*LimitForRegisterSize=*/false)) + Changed = true; + It = SameTypeIt; + } + } + Candidates.clear(); + } + + // Start over at the next instruction of a different type (or the end). + IncIt = SameTypeIt; + } + return Changed; +} + +/// Compare two cmp instructions. If IsCompatibility is true, function returns +/// true if 2 cmps have same/swapped predicates and mos compatible corresponding +/// operands. If IsCompatibility is false, function implements strict weak +/// ordering relation between two cmp instructions, returning true if the first +/// instruction is "less" than the second, i.e. its predicate is less than the +/// predicate of the second or the operands IDs are less than the operands IDs +/// of the second cmp instruction. +template <bool IsCompatibility> +static bool compareCmp(Value *V, Value *V2, TargetLibraryInfo &TLI, + function_ref<bool(Instruction *)> IsDeleted) { + auto *CI1 = cast<CmpInst>(V); + auto *CI2 = cast<CmpInst>(V2); + if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) + return false; + if (CI1->getOperand(0)->getType()->getTypeID() < + CI2->getOperand(0)->getType()->getTypeID()) + return !IsCompatibility; + if (CI1->getOperand(0)->getType()->getTypeID() > + CI2->getOperand(0)->getType()->getTypeID()) + return false; + CmpInst::Predicate Pred1 = CI1->getPredicate(); + CmpInst::Predicate Pred2 = CI2->getPredicate(); + CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); + CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); + CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); + CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); + if (BasePred1 < BasePred2) + return !IsCompatibility; + if (BasePred1 > BasePred2) + return false; + // Compare operands. + bool LEPreds = Pred1 <= Pred2; + bool GEPreds = Pred1 >= Pred2; + for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { + auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); + auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); + if (Op1->getValueID() < Op2->getValueID()) + return !IsCompatibility; + if (Op1->getValueID() > Op2->getValueID()) + return false; + if (auto *I1 = dyn_cast<Instruction>(Op1)) + if (auto *I2 = dyn_cast<Instruction>(Op2)) { + if (I1->getParent() != I2->getParent()) + return false; + InstructionsState S = getSameOpcode({I1, I2}, TLI); + if (S.getOpcode()) + continue; + return false; + } + } + return IsCompatibility; +} + +bool SLPVectorizerPass::vectorizeSimpleInstructions(InstSetVector &Instructions, + BasicBlock *BB, BoUpSLP &R, + bool AtTerminator) { + bool OpsChanged = false; + SmallVector<Instruction *, 4> PostponedCmps; + SmallVector<WeakTrackingVH> PostponedInsts; + // pass1 - try to vectorize reductions only + for (auto *I : reverse(Instructions)) { + if (R.isDeleted(I)) + continue; + if (isa<CmpInst>(I)) { + PostponedCmps.push_back(I); + continue; + } + OpsChanged |= vectorizeHorReduction(nullptr, I, BB, R, TTI, PostponedInsts); + } + // pass2 - try to match and vectorize a buildvector sequence. + for (auto *I : reverse(Instructions)) { + if (R.isDeleted(I) || isa<CmpInst>(I)) + continue; + if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) { + OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); + } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) { + OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); + } + } + // Now try to vectorize postponed instructions. + OpsChanged |= tryToVectorize(PostponedInsts, R); + + if (AtTerminator) { + // Try to find reductions first. + for (Instruction *I : PostponedCmps) { + if (R.isDeleted(I)) + continue; + for (Value *Op : I->operands()) + OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); + } + // Try to vectorize operands as vector bundles. + for (Instruction *I : PostponedCmps) { + if (R.isDeleted(I)) + continue; + OpsChanged |= tryToVectorize(I, R); + } + // Try to vectorize list of compares. + // Sort by type, compare predicate, etc. + auto CompareSorter = [&](Value *V, Value *V2) { + return compareCmp<false>(V, V2, *TLI, + [&R](Instruction *I) { return R.isDeleted(I); }); + }; + + auto AreCompatibleCompares = [&](Value *V1, Value *V2) { + if (V1 == V2) + return true; + return compareCmp<true>(V1, V2, *TLI, + [&R](Instruction *I) { return R.isDeleted(I); }); + }; + auto Limit = [&R](Value *V) { + unsigned EltSize = R.getVectorElementSize(V); + return std::max(2U, R.getMaxVecRegSize() / EltSize); + }; + + SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); + OpsChanged |= tryToVectorizeSequence<Value>( + Vals, Limit, CompareSorter, AreCompatibleCompares, + [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { + // Exclude possible reductions from other blocks. + bool ArePossiblyReducedInOtherBlock = + any_of(Candidates, [](Value *V) { + return any_of(V->users(), [V](User *U) { + return isa<SelectInst>(U) && + cast<SelectInst>(U)->getParent() != + cast<Instruction>(V)->getParent(); + }); + }); + if (ArePossiblyReducedInOtherBlock) + return false; + return tryToVectorizeList(Candidates, R, LimitForRegisterSize); + }, + /*LimitForRegisterSize=*/true); + Instructions.clear(); + } else { + Instructions.clear(); + // Insert in reverse order since the PostponedCmps vector was filled in + // reverse order. + Instructions.insert(PostponedCmps.rbegin(), PostponedCmps.rend()); + } + return OpsChanged; +} + +bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { + bool Changed = false; + SmallVector<Value *, 4> Incoming; + SmallPtrSet<Value *, 16> VisitedInstrs; + // Maps phi nodes to the non-phi nodes found in the use tree for each phi + // node. Allows better to identify the chains that can be vectorized in the + // better way. + DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; + auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { + assert(isValidElementType(V1->getType()) && + isValidElementType(V2->getType()) && + "Expected vectorizable types only."); + // It is fine to compare type IDs here, since we expect only vectorizable + // types, like ints, floats and pointers, we don't care about other type. + if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) + return true; + if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) + return false; + ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; + ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; + if (Opcodes1.size() < Opcodes2.size()) + return true; + if (Opcodes1.size() > Opcodes2.size()) + return false; + std::optional<bool> ConstOrder; + for (int I = 0, E = Opcodes1.size(); I < E; ++I) { + // Undefs are compatible with any other value. + if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { + if (!ConstOrder) + ConstOrder = + !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); + continue; + } + if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) + if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { + DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); + DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); + if (!NodeI1) + return NodeI2 != nullptr; + if (!NodeI2) + return false; + assert((NodeI1 == NodeI2) == + (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && + "Different nodes should have different DFS numbers"); + if (NodeI1 != NodeI2) + return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); + InstructionsState S = getSameOpcode({I1, I2}, *TLI); + if (S.getOpcode()) + continue; + return I1->getOpcode() < I2->getOpcode(); + } + if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { + if (!ConstOrder) + ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); + continue; + } + if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) + return true; + if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) + return false; + } + return ConstOrder && *ConstOrder; + }; + auto AreCompatiblePHIs = [&PHIToOpcodes, this](Value *V1, Value *V2) { + if (V1 == V2) + return true; + if (V1->getType() != V2->getType()) + return false; + ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; + ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; + if (Opcodes1.size() != Opcodes2.size()) + return false; + for (int I = 0, E = Opcodes1.size(); I < E; ++I) { + // Undefs are compatible with any other value. + if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) + continue; + if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) + if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { + if (I1->getParent() != I2->getParent()) + return false; + InstructionsState S = getSameOpcode({I1, I2}, *TLI); + if (S.getOpcode()) + continue; + return false; + } + if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) + continue; + if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) + return false; + } + return true; + }; + auto Limit = [&R](Value *V) { + unsigned EltSize = R.getVectorElementSize(V); + return std::max(2U, R.getMaxVecRegSize() / EltSize); + }; + + bool HaveVectorizedPhiNodes = false; + do { + // Collect the incoming values from the PHIs. + Incoming.clear(); + for (Instruction &I : *BB) { + PHINode *P = dyn_cast<PHINode>(&I); + if (!P) + break; + + // No need to analyze deleted, vectorized and non-vectorizable + // instructions. + if (!VisitedInstrs.count(P) && !R.isDeleted(P) && + isValidElementType(P->getType())) + Incoming.push_back(P); + } + + // Find the corresponding non-phi nodes for better matching when trying to + // build the tree. + for (Value *V : Incoming) { + SmallVectorImpl<Value *> &Opcodes = + PHIToOpcodes.try_emplace(V).first->getSecond(); + if (!Opcodes.empty()) + continue; + SmallVector<Value *, 4> Nodes(1, V); + SmallPtrSet<Value *, 4> Visited; + while (!Nodes.empty()) { + auto *PHI = cast<PHINode>(Nodes.pop_back_val()); + if (!Visited.insert(PHI).second) + continue; + for (Value *V : PHI->incoming_values()) { + if (auto *PHI1 = dyn_cast<PHINode>((V))) { + Nodes.push_back(PHI1); + continue; + } + Opcodes.emplace_back(V); + } + } + } + + HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( + Incoming, Limit, PHICompare, AreCompatiblePHIs, + [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { + return tryToVectorizeList(Candidates, R, LimitForRegisterSize); + }, + /*LimitForRegisterSize=*/true); + Changed |= HaveVectorizedPhiNodes; + VisitedInstrs.insert(Incoming.begin(), Incoming.end()); + } while (HaveVectorizedPhiNodes); + + VisitedInstrs.clear(); + + InstSetVector PostProcessInstructions; + SmallDenseSet<Instruction *, 4> KeyNodes; + for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { + // Skip instructions with scalable type. The num of elements is unknown at + // compile-time for scalable type. + if (isa<ScalableVectorType>(it->getType())) + continue; + + // Skip instructions marked for the deletion. + if (R.isDeleted(&*it)) + continue; + // We may go through BB multiple times so skip the one we have checked. + if (!VisitedInstrs.insert(&*it).second) { + if (it->use_empty() && KeyNodes.contains(&*it) && + vectorizeSimpleInstructions(PostProcessInstructions, BB, R, + it->isTerminator())) { + // We would like to start over since some instructions are deleted + // and the iterator may become invalid value. + Changed = true; + it = BB->begin(); + e = BB->end(); + } + continue; + } + + if (isa<DbgInfoIntrinsic>(it)) + continue; + + // Try to vectorize reductions that use PHINodes. + if (PHINode *P = dyn_cast<PHINode>(it)) { + // Check that the PHI is a reduction PHI. + if (P->getNumIncomingValues() == 2) { + // Try to match and vectorize a horizontal reduction. + if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, + TTI)) { + Changed = true; + it = BB->begin(); + e = BB->end(); + continue; + } + } + // Try to vectorize the incoming values of the PHI, to catch reductions + // that feed into PHIs. + for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { + // Skip if the incoming block is the current BB for now. Also, bypass + // unreachable IR for efficiency and to avoid crashing. + // TODO: Collect the skipped incoming values and try to vectorize them + // after processing BB. + if (BB == P->getIncomingBlock(I) || + !DT->isReachableFromEntry(P->getIncomingBlock(I))) + continue; + + // Postponed instructions should not be vectorized here, delay their + // vectorization. + if (auto *PI = dyn_cast<Instruction>(P->getIncomingValue(I)); + PI && !PostProcessInstructions.contains(PI)) + Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), + P->getIncomingBlock(I), R, TTI); + } + continue; + } + + // Ran into an instruction without users, like terminator, or function call + // with ignored return value, store. Ignore unused instructions (basing on + // instruction type, except for CallInst and InvokeInst). + if (it->use_empty() && + (it->getType()->isVoidTy() || isa<CallInst, InvokeInst>(it))) { + KeyNodes.insert(&*it); + bool OpsChanged = false; + auto *SI = dyn_cast<StoreInst>(it); + bool TryToVectorizeRoot = ShouldStartVectorizeHorAtStore || !SI; + if (SI) { + auto I = Stores.find(getUnderlyingObject(SI->getPointerOperand())); + // Try to vectorize chain in store, if this is the only store to the + // address in the block. + // TODO: This is just a temporarily solution to save compile time. Need + // to investigate if we can safely turn on slp-vectorize-hor-store + // instead to allow lookup for reduction chains in all non-vectorized + // stores (need to check side effects and compile time). + TryToVectorizeRoot = (I == Stores.end() || I->second.size() == 1) && + SI->getValueOperand()->hasOneUse(); + } + if (TryToVectorizeRoot) { + for (auto *V : it->operand_values()) { + // Postponed instructions should not be vectorized here, delay their + // vectorization. + if (auto *VI = dyn_cast<Instruction>(V); + VI && !PostProcessInstructions.contains(VI)) + // Try to match and vectorize a horizontal reduction. + OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); + } + } + // Start vectorization of post-process list of instructions from the + // top-tree instructions to try to vectorize as many instructions as + // possible. + OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, + it->isTerminator()); + if (OpsChanged) { + // We would like to start over since some instructions are deleted + // and the iterator may become invalid value. + Changed = true; + it = BB->begin(); + e = BB->end(); + continue; + } + } + + if (isa<CmpInst, InsertElementInst, InsertValueInst>(it)) + PostProcessInstructions.insert(&*it); + } + + return Changed; +} + +bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { + auto Changed = false; + for (auto &Entry : GEPs) { + // If the getelementptr list has fewer than two elements, there's nothing + // to do. + if (Entry.second.size() < 2) + continue; + + LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " + << Entry.second.size() << ".\n"); + + // Process the GEP list in chunks suitable for the target's supported + // vector size. If a vector register can't hold 1 element, we are done. We + // are trying to vectorize the index computations, so the maximum number of + // elements is based on the size of the index expression, rather than the + // size of the GEP itself (the target's pointer size). + unsigned MaxVecRegSize = R.getMaxVecRegSize(); + unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); + if (MaxVecRegSize < EltSize) + continue; + + unsigned MaxElts = MaxVecRegSize / EltSize; + for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { + auto Len = std::min<unsigned>(BE - BI, MaxElts); + ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); + + // Initialize a set a candidate getelementptrs. Note that we use a + // SetVector here to preserve program order. If the index computations + // are vectorizable and begin with loads, we want to minimize the chance + // of having to reorder them later. + SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); + + // Some of the candidates may have already been vectorized after we + // initially collected them. If so, they are marked as deleted, so remove + // them from the set of candidates. + Candidates.remove_if( + [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); + + // Remove from the set of candidates all pairs of getelementptrs with + // constant differences. Such getelementptrs are likely not good + // candidates for vectorization in a bottom-up phase since one can be + // computed from the other. We also ensure all candidate getelementptr + // indices are unique. + for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { + auto *GEPI = GEPList[I]; + if (!Candidates.count(GEPI)) + continue; + auto *SCEVI = SE->getSCEV(GEPList[I]); + for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { + auto *GEPJ = GEPList[J]; + auto *SCEVJ = SE->getSCEV(GEPList[J]); + if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { + Candidates.remove(GEPI); + Candidates.remove(GEPJ); + } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { + Candidates.remove(GEPJ); + } + } + } + + // We break out of the above computation as soon as we know there are + // fewer than two candidates remaining. + if (Candidates.size() < 2) + continue; + + // Add the single, non-constant index of each candidate to the bundle. We + // ensured the indices met these constraints when we originally collected + // the getelementptrs. + SmallVector<Value *, 16> Bundle(Candidates.size()); + auto BundleIndex = 0u; + for (auto *V : Candidates) { + auto *GEP = cast<GetElementPtrInst>(V); + auto *GEPIdx = GEP->idx_begin()->get(); + assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); + Bundle[BundleIndex++] = GEPIdx; + } + + // Try and vectorize the indices. We are currently only interested in + // gather-like cases of the form: + // + // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... + // + // where the loads of "a", the loads of "b", and the subtractions can be + // performed in parallel. It's likely that detecting this pattern in a + // bottom-up phase will be simpler and less costly than building a + // full-blown top-down phase beginning at the consecutive loads. + Changed |= tryToVectorizeList(Bundle, R); + } + } + return Changed; +} + +bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { + bool Changed = false; + // Sort by type, base pointers and values operand. Value operands must be + // compatible (have the same opcode, same parent), otherwise it is + // definitely not profitable to try to vectorize them. + auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { + if (V->getPointerOperandType()->getTypeID() < + V2->getPointerOperandType()->getTypeID()) + return true; + if (V->getPointerOperandType()->getTypeID() > + V2->getPointerOperandType()->getTypeID()) + return false; + // UndefValues are compatible with all other values. + if (isa<UndefValue>(V->getValueOperand()) || + isa<UndefValue>(V2->getValueOperand())) + return false; + if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) + if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { + DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = + DT->getNode(I1->getParent()); + DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = + DT->getNode(I2->getParent()); + assert(NodeI1 && "Should only process reachable instructions"); + assert(NodeI2 && "Should only process reachable instructions"); + assert((NodeI1 == NodeI2) == + (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && + "Different nodes should have different DFS numbers"); + if (NodeI1 != NodeI2) + return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); + InstructionsState S = getSameOpcode({I1, I2}, *TLI); + if (S.getOpcode()) + return false; + return I1->getOpcode() < I2->getOpcode(); + } + if (isa<Constant>(V->getValueOperand()) && + isa<Constant>(V2->getValueOperand())) + return false; + return V->getValueOperand()->getValueID() < + V2->getValueOperand()->getValueID(); + }; + + auto &&AreCompatibleStores = [this](StoreInst *V1, StoreInst *V2) { + if (V1 == V2) + return true; + if (V1->getPointerOperandType() != V2->getPointerOperandType()) + return false; + // Undefs are compatible with any other value. + if (isa<UndefValue>(V1->getValueOperand()) || + isa<UndefValue>(V2->getValueOperand())) + return true; + if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) + if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { + if (I1->getParent() != I2->getParent()) + return false; + InstructionsState S = getSameOpcode({I1, I2}, *TLI); + return S.getOpcode() > 0; + } + if (isa<Constant>(V1->getValueOperand()) && + isa<Constant>(V2->getValueOperand())) + return true; + return V1->getValueOperand()->getValueID() == + V2->getValueOperand()->getValueID(); + }; + auto Limit = [&R, this](StoreInst *SI) { + unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); + return R.getMinVF(EltSize); + }; + + // Attempt to sort and vectorize each of the store-groups. + for (auto &Pair : Stores) { + if (Pair.second.size() < 2) + continue; + + LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " + << Pair.second.size() << ".\n"); + + if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) + continue; + + Changed |= tryToVectorizeSequence<StoreInst>( + Pair.second, Limit, StoreSorter, AreCompatibleStores, + [this, &R](ArrayRef<StoreInst *> Candidates, bool) { + return vectorizeStores(Candidates, R); + }, + /*LimitForRegisterSize=*/false); + } + return Changed; +} + +char SLPVectorizer::ID = 0; + +static const char lv_name[] = "SLP Vectorizer"; + +INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopSimplify) +INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) +INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) +INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) + +Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } |
