summaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Transforms/Vectorize/SLPVectorizer.cpp
diff options
context:
space:
mode:
authorvvvv <[email protected]>2024-02-06 20:01:22 +0300
committervvvv <[email protected]>2024-02-06 20:22:16 +0300
commit0203b7a9a40828bb2bd4c32029b79ff0ea3d1f8f (patch)
treee630d0d5bd0bd29fc8c2d2842ed2cfde781b993a /contrib/libs/llvm16/lib/Transforms/Vectorize/SLPVectorizer.cpp
parentba27db76d99d12a4f1c06960b5449423218614c4 (diff)
llvm16 targets
Diffstat (limited to 'contrib/libs/llvm16/lib/Transforms/Vectorize/SLPVectorizer.cpp')
-rw-r--r--contrib/libs/llvm16/lib/Transforms/Vectorize/SLPVectorizer.cpp13972
1 files changed, 13972 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Transforms/Vectorize/SLPVectorizer.cpp b/contrib/libs/llvm16/lib/Transforms/Vectorize/SLPVectorizer.cpp
new file mode 100644
index 00000000000..e3eb6b1804e
--- /dev/null
+++ b/contrib/libs/llvm16/lib/Transforms/Vectorize/SLPVectorizer.cpp
@@ -0,0 +1,13972 @@
+//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
+// stores that can be put together into vector-stores. Next, it attempts to
+// construct vectorizable tree using the use-def chains. If a profitable tree
+// was found, the SLP vectorizer performs vectorization on the tree.
+//
+// The pass is inspired by the work described in the paper:
+// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/PriorityQueue.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/iterator.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/DemandedBits.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/IVDescriptors.h"
+#include "llvm/Analysis/LoopAccessAnalysis.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/MemoryLocation.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueHandle.h"
+#ifdef EXPENSIVE_CHECKS
+#include "llvm/IR/Verifier.h"
+#endif
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/DOTGraphTraits.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/GraphWriter.h"
+#include "llvm/Support/InstructionCost.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/InjectTLIMappings.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/Transforms/Vectorize.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <memory>
+#include <optional>
+#include <set>
+#include <string>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+using namespace slpvectorizer;
+
+#define SV_NAME "slp-vectorizer"
+#define DEBUG_TYPE "SLP"
+
+STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
+
+cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
+ cl::desc("Run the SLP vectorization passes"));
+
+static cl::opt<int>
+ SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
+ cl::desc("Only vectorize if you gain more than this "
+ "number "));
+
+static cl::opt<bool>
+ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
+ cl::desc("Attempt to vectorize horizontal reductions"));
+
+static cl::opt<bool> ShouldStartVectorizeHorAtStore(
+ "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
+ cl::desc(
+ "Attempt to vectorize horizontal reductions feeding into a store"));
+
+static cl::opt<int>
+MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
+ cl::desc("Attempt to vectorize for this register size in bits"));
+
+static cl::opt<unsigned>
+MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
+ cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
+
+static cl::opt<int>
+MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
+ cl::desc("Maximum depth of the lookup for consecutive stores."));
+
+/// Limits the size of scheduling regions in a block.
+/// It avoid long compile times for _very_ large blocks where vector
+/// instructions are spread over a wide range.
+/// This limit is way higher than needed by real-world functions.
+static cl::opt<int>
+ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
+ cl::desc("Limit the size of the SLP scheduling region per block"));
+
+static cl::opt<int> MinVectorRegSizeOption(
+ "slp-min-reg-size", cl::init(128), cl::Hidden,
+ cl::desc("Attempt to vectorize for this register size in bits"));
+
+static cl::opt<unsigned> RecursionMaxDepth(
+ "slp-recursion-max-depth", cl::init(12), cl::Hidden,
+ cl::desc("Limit the recursion depth when building a vectorizable tree"));
+
+static cl::opt<unsigned> MinTreeSize(
+ "slp-min-tree-size", cl::init(3), cl::Hidden,
+ cl::desc("Only vectorize small trees if they are fully vectorizable"));
+
+// The maximum depth that the look-ahead score heuristic will explore.
+// The higher this value, the higher the compilation time overhead.
+static cl::opt<int> LookAheadMaxDepth(
+ "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
+ cl::desc("The maximum look-ahead depth for operand reordering scores"));
+
+// The maximum depth that the look-ahead score heuristic will explore
+// when it probing among candidates for vectorization tree roots.
+// The higher this value, the higher the compilation time overhead but unlike
+// similar limit for operands ordering this is less frequently used, hence
+// impact of higher value is less noticeable.
+static cl::opt<int> RootLookAheadMaxDepth(
+ "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden,
+ cl::desc("The maximum look-ahead depth for searching best rooting option"));
+
+static cl::opt<bool>
+ ViewSLPTree("view-slp-tree", cl::Hidden,
+ cl::desc("Display the SLP trees with Graphviz"));
+
+// Limit the number of alias checks. The limit is chosen so that
+// it has no negative effect on the llvm benchmarks.
+static const unsigned AliasedCheckLimit = 10;
+
+// Another limit for the alias checks: The maximum distance between load/store
+// instructions where alias checks are done.
+// This limit is useful for very large basic blocks.
+static const unsigned MaxMemDepDistance = 160;
+
+/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
+/// regions to be handled.
+static const int MinScheduleRegionSize = 16;
+
+/// Predicate for the element types that the SLP vectorizer supports.
+///
+/// The most important thing to filter here are types which are invalid in LLVM
+/// vectors. We also filter target specific types which have absolutely no
+/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
+/// avoids spending time checking the cost model and realizing that they will
+/// be inevitably scalarized.
+static bool isValidElementType(Type *Ty) {
+ return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
+ !Ty->isPPC_FP128Ty();
+}
+
+/// \returns True if the value is a constant (but not globals/constant
+/// expressions).
+static bool isConstant(Value *V) {
+ return isa<Constant>(V) && !isa<ConstantExpr, GlobalValue>(V);
+}
+
+/// Checks if \p V is one of vector-like instructions, i.e. undef,
+/// insertelement/extractelement with constant indices for fixed vector type or
+/// extractvalue instruction.
+static bool isVectorLikeInstWithConstOps(Value *V) {
+ if (!isa<InsertElementInst, ExtractElementInst>(V) &&
+ !isa<ExtractValueInst, UndefValue>(V))
+ return false;
+ auto *I = dyn_cast<Instruction>(V);
+ if (!I || isa<ExtractValueInst>(I))
+ return true;
+ if (!isa<FixedVectorType>(I->getOperand(0)->getType()))
+ return false;
+ if (isa<ExtractElementInst>(I))
+ return isConstant(I->getOperand(1));
+ assert(isa<InsertElementInst>(V) && "Expected only insertelement.");
+ return isConstant(I->getOperand(2));
+}
+
+/// \returns true if all of the instructions in \p VL are in the same block or
+/// false otherwise.
+static bool allSameBlock(ArrayRef<Value *> VL) {
+ Instruction *I0 = dyn_cast<Instruction>(VL[0]);
+ if (!I0)
+ return false;
+ if (all_of(VL, isVectorLikeInstWithConstOps))
+ return true;
+
+ BasicBlock *BB = I0->getParent();
+ for (int I = 1, E = VL.size(); I < E; I++) {
+ auto *II = dyn_cast<Instruction>(VL[I]);
+ if (!II)
+ return false;
+
+ if (BB != II->getParent())
+ return false;
+ }
+ return true;
+}
+
+/// \returns True if all of the values in \p VL are constants (but not
+/// globals/constant expressions).
+static bool allConstant(ArrayRef<Value *> VL) {
+ // Constant expressions and globals can't be vectorized like normal integer/FP
+ // constants.
+ return all_of(VL, isConstant);
+}
+
+/// \returns True if all of the values in \p VL are identical or some of them
+/// are UndefValue.
+static bool isSplat(ArrayRef<Value *> VL) {
+ Value *FirstNonUndef = nullptr;
+ for (Value *V : VL) {
+ if (isa<UndefValue>(V))
+ continue;
+ if (!FirstNonUndef) {
+ FirstNonUndef = V;
+ continue;
+ }
+ if (V != FirstNonUndef)
+ return false;
+ }
+ return FirstNonUndef != nullptr;
+}
+
+/// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
+static bool isCommutative(Instruction *I) {
+ if (auto *Cmp = dyn_cast<CmpInst>(I))
+ return Cmp->isCommutative();
+ if (auto *BO = dyn_cast<BinaryOperator>(I))
+ return BO->isCommutative();
+ // TODO: This should check for generic Instruction::isCommutative(), but
+ // we need to confirm that the caller code correctly handles Intrinsics
+ // for example (does not have 2 operands).
+ return false;
+}
+
+/// \returns inserting index of InsertElement or InsertValue instruction,
+/// using Offset as base offset for index.
+static std::optional<unsigned> getInsertIndex(const Value *InsertInst,
+ unsigned Offset = 0) {
+ int Index = Offset;
+ if (const auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
+ const auto *VT = dyn_cast<FixedVectorType>(IE->getType());
+ if (!VT)
+ return std::nullopt;
+ const auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
+ if (!CI)
+ return std::nullopt;
+ if (CI->getValue().uge(VT->getNumElements()))
+ return std::nullopt;
+ Index *= VT->getNumElements();
+ Index += CI->getZExtValue();
+ return Index;
+ }
+
+ const auto *IV = cast<InsertValueInst>(InsertInst);
+ Type *CurrentType = IV->getType();
+ for (unsigned I : IV->indices()) {
+ if (const auto *ST = dyn_cast<StructType>(CurrentType)) {
+ Index *= ST->getNumElements();
+ CurrentType = ST->getElementType(I);
+ } else if (const auto *AT = dyn_cast<ArrayType>(CurrentType)) {
+ Index *= AT->getNumElements();
+ CurrentType = AT->getElementType();
+ } else {
+ return std::nullopt;
+ }
+ Index += I;
+ }
+ return Index;
+}
+
+namespace {
+/// Specifies the way the mask should be analyzed for undefs/poisonous elements
+/// in the shuffle mask.
+enum class UseMask {
+ FirstArg, ///< The mask is expected to be for permutation of 1-2 vectors,
+ ///< check for the mask elements for the first argument (mask
+ ///< indices are in range [0:VF)).
+ SecondArg, ///< The mask is expected to be for permutation of 2 vectors, check
+ ///< for the mask elements for the second argument (mask indices
+ ///< are in range [VF:2*VF))
+ UndefsAsMask ///< Consider undef mask elements (-1) as placeholders for
+ ///< future shuffle elements and mark them as ones as being used
+ ///< in future. Non-undef elements are considered as unused since
+ ///< they're already marked as used in the mask.
+};
+} // namespace
+
+/// Prepares a use bitset for the given mask either for the first argument or
+/// for the second.
+static SmallBitVector buildUseMask(int VF, ArrayRef<int> Mask,
+ UseMask MaskArg) {
+ SmallBitVector UseMask(VF, true);
+ for (auto P : enumerate(Mask)) {
+ if (P.value() == UndefMaskElem) {
+ if (MaskArg == UseMask::UndefsAsMask)
+ UseMask.reset(P.index());
+ continue;
+ }
+ if (MaskArg == UseMask::FirstArg && P.value() < VF)
+ UseMask.reset(P.value());
+ else if (MaskArg == UseMask::SecondArg && P.value() >= VF)
+ UseMask.reset(P.value() - VF);
+ }
+ return UseMask;
+}
+
+/// Checks if the given value is actually an undefined constant vector.
+/// Also, if the \p UseMask is not empty, tries to check if the non-masked
+/// elements actually mask the insertelement buildvector, if any.
+template <bool IsPoisonOnly = false>
+static SmallBitVector isUndefVector(const Value *V,
+ const SmallBitVector &UseMask = {}) {
+ SmallBitVector Res(UseMask.empty() ? 1 : UseMask.size(), true);
+ using T = std::conditional_t<IsPoisonOnly, PoisonValue, UndefValue>;
+ if (isa<T>(V))
+ return Res;
+ auto *VecTy = dyn_cast<FixedVectorType>(V->getType());
+ if (!VecTy)
+ return Res.reset();
+ auto *C = dyn_cast<Constant>(V);
+ if (!C) {
+ if (!UseMask.empty()) {
+ const Value *Base = V;
+ while (auto *II = dyn_cast<InsertElementInst>(Base)) {
+ if (isa<T>(II->getOperand(1)))
+ continue;
+ Base = II->getOperand(0);
+ std::optional<unsigned> Idx = getInsertIndex(II);
+ if (!Idx)
+ continue;
+ if (*Idx < UseMask.size() && !UseMask.test(*Idx))
+ Res.reset(*Idx);
+ }
+ // TODO: Add analysis for shuffles here too.
+ if (V == Base) {
+ Res.reset();
+ } else {
+ SmallBitVector SubMask(UseMask.size(), false);
+ Res &= isUndefVector<IsPoisonOnly>(Base, SubMask);
+ }
+ } else {
+ Res.reset();
+ }
+ return Res;
+ }
+ for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
+ if (Constant *Elem = C->getAggregateElement(I))
+ if (!isa<T>(Elem) &&
+ (UseMask.empty() || (I < UseMask.size() && !UseMask.test(I))))
+ Res.reset(I);
+ }
+ return Res;
+}
+
+/// Checks if the vector of instructions can be represented as a shuffle, like:
+/// %x0 = extractelement <4 x i8> %x, i32 0
+/// %x3 = extractelement <4 x i8> %x, i32 3
+/// %y1 = extractelement <4 x i8> %y, i32 1
+/// %y2 = extractelement <4 x i8> %y, i32 2
+/// %x0x0 = mul i8 %x0, %x0
+/// %x3x3 = mul i8 %x3, %x3
+/// %y1y1 = mul i8 %y1, %y1
+/// %y2y2 = mul i8 %y2, %y2
+/// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
+/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
+/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
+/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
+/// ret <4 x i8> %ins4
+/// can be transformed into:
+/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
+/// i32 6>
+/// %2 = mul <4 x i8> %1, %1
+/// ret <4 x i8> %2
+/// We convert this initially to something like:
+/// %x0 = extractelement <4 x i8> %x, i32 0
+/// %x3 = extractelement <4 x i8> %x, i32 3
+/// %y1 = extractelement <4 x i8> %y, i32 1
+/// %y2 = extractelement <4 x i8> %y, i32 2
+/// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
+/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
+/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
+/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
+/// %5 = mul <4 x i8> %4, %4
+/// %6 = extractelement <4 x i8> %5, i32 0
+/// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
+/// %7 = extractelement <4 x i8> %5, i32 1
+/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
+/// %8 = extractelement <4 x i8> %5, i32 2
+/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
+/// %9 = extractelement <4 x i8> %5, i32 3
+/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
+/// ret <4 x i8> %ins4
+/// InstCombiner transforms this into a shuffle and vector mul
+/// Mask will return the Shuffle Mask equivalent to the extracted elements.
+/// TODO: Can we split off and reuse the shuffle mask detection from
+/// ShuffleVectorInst/getShuffleCost?
+static std::optional<TargetTransformInfo::ShuffleKind>
+isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
+ const auto *It =
+ find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); });
+ if (It == VL.end())
+ return std::nullopt;
+ auto *EI0 = cast<ExtractElementInst>(*It);
+ if (isa<ScalableVectorType>(EI0->getVectorOperandType()))
+ return std::nullopt;
+ unsigned Size =
+ cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
+ Value *Vec1 = nullptr;
+ Value *Vec2 = nullptr;
+ enum ShuffleMode { Unknown, Select, Permute };
+ ShuffleMode CommonShuffleMode = Unknown;
+ Mask.assign(VL.size(), UndefMaskElem);
+ for (unsigned I = 0, E = VL.size(); I < E; ++I) {
+ // Undef can be represented as an undef element in a vector.
+ if (isa<UndefValue>(VL[I]))
+ continue;
+ auto *EI = cast<ExtractElementInst>(VL[I]);
+ if (isa<ScalableVectorType>(EI->getVectorOperandType()))
+ return std::nullopt;
+ auto *Vec = EI->getVectorOperand();
+ // We can extractelement from undef or poison vector.
+ if (isUndefVector(Vec).all())
+ continue;
+ // All vector operands must have the same number of vector elements.
+ if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
+ return std::nullopt;
+ if (isa<UndefValue>(EI->getIndexOperand()))
+ continue;
+ auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
+ if (!Idx)
+ return std::nullopt;
+ // Undefined behavior if Idx is negative or >= Size.
+ if (Idx->getValue().uge(Size))
+ continue;
+ unsigned IntIdx = Idx->getValue().getZExtValue();
+ Mask[I] = IntIdx;
+ // For correct shuffling we have to have at most 2 different vector operands
+ // in all extractelement instructions.
+ if (!Vec1 || Vec1 == Vec) {
+ Vec1 = Vec;
+ } else if (!Vec2 || Vec2 == Vec) {
+ Vec2 = Vec;
+ Mask[I] += Size;
+ } else {
+ return std::nullopt;
+ }
+ if (CommonShuffleMode == Permute)
+ continue;
+ // If the extract index is not the same as the operation number, it is a
+ // permutation.
+ if (IntIdx != I) {
+ CommonShuffleMode = Permute;
+ continue;
+ }
+ CommonShuffleMode = Select;
+ }
+ // If we're not crossing lanes in different vectors, consider it as blending.
+ if (CommonShuffleMode == Select && Vec2)
+ return TargetTransformInfo::SK_Select;
+ // If Vec2 was never used, we have a permutation of a single vector, otherwise
+ // we have permutation of 2 vectors.
+ return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
+ : TargetTransformInfo::SK_PermuteSingleSrc;
+}
+
+/// \returns True if Extract{Value,Element} instruction extracts element Idx.
+static std::optional<unsigned> getExtractIndex(Instruction *E) {
+ unsigned Opcode = E->getOpcode();
+ assert((Opcode == Instruction::ExtractElement ||
+ Opcode == Instruction::ExtractValue) &&
+ "Expected extractelement or extractvalue instruction.");
+ if (Opcode == Instruction::ExtractElement) {
+ auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
+ if (!CI)
+ return std::nullopt;
+ return CI->getZExtValue();
+ }
+ auto *EI = cast<ExtractValueInst>(E);
+ if (EI->getNumIndices() != 1)
+ return std::nullopt;
+ return *EI->idx_begin();
+}
+
+namespace {
+
+/// Main data required for vectorization of instructions.
+struct InstructionsState {
+ /// The very first instruction in the list with the main opcode.
+ Value *OpValue = nullptr;
+
+ /// The main/alternate instruction.
+ Instruction *MainOp = nullptr;
+ Instruction *AltOp = nullptr;
+
+ /// The main/alternate opcodes for the list of instructions.
+ unsigned getOpcode() const {
+ return MainOp ? MainOp->getOpcode() : 0;
+ }
+
+ unsigned getAltOpcode() const {
+ return AltOp ? AltOp->getOpcode() : 0;
+ }
+
+ /// Some of the instructions in the list have alternate opcodes.
+ bool isAltShuffle() const { return AltOp != MainOp; }
+
+ bool isOpcodeOrAlt(Instruction *I) const {
+ unsigned CheckedOpcode = I->getOpcode();
+ return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
+ }
+
+ InstructionsState() = delete;
+ InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
+ : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
+};
+
+} // end anonymous namespace
+
+/// Chooses the correct key for scheduling data. If \p Op has the same (or
+/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
+/// OpValue.
+static Value *isOneOf(const InstructionsState &S, Value *Op) {
+ auto *I = dyn_cast<Instruction>(Op);
+ if (I && S.isOpcodeOrAlt(I))
+ return Op;
+ return S.OpValue;
+}
+
+/// \returns true if \p Opcode is allowed as part of of the main/alternate
+/// instruction for SLP vectorization.
+///
+/// Example of unsupported opcode is SDIV that can potentially cause UB if the
+/// "shuffled out" lane would result in division by zero.
+static bool isValidForAlternation(unsigned Opcode) {
+ if (Instruction::isIntDivRem(Opcode))
+ return false;
+
+ return true;
+}
+
+static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
+ const TargetLibraryInfo &TLI,
+ unsigned BaseIndex = 0);
+
+/// Checks if the provided operands of 2 cmp instructions are compatible, i.e.
+/// compatible instructions or constants, or just some other regular values.
+static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0,
+ Value *Op1, const TargetLibraryInfo &TLI) {
+ return (isConstant(BaseOp0) && isConstant(Op0)) ||
+ (isConstant(BaseOp1) && isConstant(Op1)) ||
+ (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) &&
+ !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) ||
+ BaseOp0 == Op0 || BaseOp1 == Op1 ||
+ getSameOpcode({BaseOp0, Op0}, TLI).getOpcode() ||
+ getSameOpcode({BaseOp1, Op1}, TLI).getOpcode();
+}
+
+/// \returns true if a compare instruction \p CI has similar "look" and
+/// same predicate as \p BaseCI, "as is" or with its operands and predicate
+/// swapped, false otherwise.
+static bool isCmpSameOrSwapped(const CmpInst *BaseCI, const CmpInst *CI,
+ const TargetLibraryInfo &TLI) {
+ assert(BaseCI->getOperand(0)->getType() == CI->getOperand(0)->getType() &&
+ "Assessing comparisons of different types?");
+ CmpInst::Predicate BasePred = BaseCI->getPredicate();
+ CmpInst::Predicate Pred = CI->getPredicate();
+ CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(Pred);
+
+ Value *BaseOp0 = BaseCI->getOperand(0);
+ Value *BaseOp1 = BaseCI->getOperand(1);
+ Value *Op0 = CI->getOperand(0);
+ Value *Op1 = CI->getOperand(1);
+
+ return (BasePred == Pred &&
+ areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1, TLI)) ||
+ (BasePred == SwappedPred &&
+ areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0, TLI));
+}
+
+/// \returns analysis of the Instructions in \p VL described in
+/// InstructionsState, the Opcode that we suppose the whole list
+/// could be vectorized even if its structure is diverse.
+static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
+ const TargetLibraryInfo &TLI,
+ unsigned BaseIndex) {
+ // Make sure these are all Instructions.
+ if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
+ return InstructionsState(VL[BaseIndex], nullptr, nullptr);
+
+ bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
+ bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
+ bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]);
+ CmpInst::Predicate BasePred =
+ IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate()
+ : CmpInst::BAD_ICMP_PREDICATE;
+ unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
+ unsigned AltOpcode = Opcode;
+ unsigned AltIndex = BaseIndex;
+
+ // Check for one alternate opcode from another BinaryOperator.
+ // TODO - generalize to support all operators (types, calls etc.).
+ auto *IBase = cast<Instruction>(VL[BaseIndex]);
+ Intrinsic::ID BaseID = 0;
+ SmallVector<VFInfo> BaseMappings;
+ if (auto *CallBase = dyn_cast<CallInst>(IBase)) {
+ BaseID = getVectorIntrinsicIDForCall(CallBase, &TLI);
+ BaseMappings = VFDatabase(*CallBase).getMappings(*CallBase);
+ if (!isTriviallyVectorizable(BaseID) && BaseMappings.empty())
+ return InstructionsState(VL[BaseIndex], nullptr, nullptr);
+ }
+ for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
+ auto *I = cast<Instruction>(VL[Cnt]);
+ unsigned InstOpcode = I->getOpcode();
+ if (IsBinOp && isa<BinaryOperator>(I)) {
+ if (InstOpcode == Opcode || InstOpcode == AltOpcode)
+ continue;
+ if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
+ isValidForAlternation(Opcode)) {
+ AltOpcode = InstOpcode;
+ AltIndex = Cnt;
+ continue;
+ }
+ } else if (IsCastOp && isa<CastInst>(I)) {
+ Value *Op0 = IBase->getOperand(0);
+ Type *Ty0 = Op0->getType();
+ Value *Op1 = I->getOperand(0);
+ Type *Ty1 = Op1->getType();
+ if (Ty0 == Ty1) {
+ if (InstOpcode == Opcode || InstOpcode == AltOpcode)
+ continue;
+ if (Opcode == AltOpcode) {
+ assert(isValidForAlternation(Opcode) &&
+ isValidForAlternation(InstOpcode) &&
+ "Cast isn't safe for alternation, logic needs to be updated!");
+ AltOpcode = InstOpcode;
+ AltIndex = Cnt;
+ continue;
+ }
+ }
+ } else if (auto *Inst = dyn_cast<CmpInst>(VL[Cnt]); Inst && IsCmpOp) {
+ auto *BaseInst = cast<CmpInst>(VL[BaseIndex]);
+ Type *Ty0 = BaseInst->getOperand(0)->getType();
+ Type *Ty1 = Inst->getOperand(0)->getType();
+ if (Ty0 == Ty1) {
+ assert(InstOpcode == Opcode && "Expected same CmpInst opcode.");
+ // Check for compatible operands. If the corresponding operands are not
+ // compatible - need to perform alternate vectorization.
+ CmpInst::Predicate CurrentPred = Inst->getPredicate();
+ CmpInst::Predicate SwappedCurrentPred =
+ CmpInst::getSwappedPredicate(CurrentPred);
+
+ if (E == 2 &&
+ (BasePred == CurrentPred || BasePred == SwappedCurrentPred))
+ continue;
+
+ if (isCmpSameOrSwapped(BaseInst, Inst, TLI))
+ continue;
+ auto *AltInst = cast<CmpInst>(VL[AltIndex]);
+ if (AltIndex != BaseIndex) {
+ if (isCmpSameOrSwapped(AltInst, Inst, TLI))
+ continue;
+ } else if (BasePred != CurrentPred) {
+ assert(
+ isValidForAlternation(InstOpcode) &&
+ "CmpInst isn't safe for alternation, logic needs to be updated!");
+ AltIndex = Cnt;
+ continue;
+ }
+ CmpInst::Predicate AltPred = AltInst->getPredicate();
+ if (BasePred == CurrentPred || BasePred == SwappedCurrentPred ||
+ AltPred == CurrentPred || AltPred == SwappedCurrentPred)
+ continue;
+ }
+ } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) {
+ if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) {
+ if (Gep->getNumOperands() != 2 ||
+ Gep->getOperand(0)->getType() != IBase->getOperand(0)->getType())
+ return InstructionsState(VL[BaseIndex], nullptr, nullptr);
+ } else if (auto *EI = dyn_cast<ExtractElementInst>(I)) {
+ if (!isVectorLikeInstWithConstOps(EI))
+ return InstructionsState(VL[BaseIndex], nullptr, nullptr);
+ } else if (auto *LI = dyn_cast<LoadInst>(I)) {
+ auto *BaseLI = cast<LoadInst>(IBase);
+ if (!LI->isSimple() || !BaseLI->isSimple())
+ return InstructionsState(VL[BaseIndex], nullptr, nullptr);
+ } else if (auto *Call = dyn_cast<CallInst>(I)) {
+ auto *CallBase = cast<CallInst>(IBase);
+ if (Call->getCalledFunction() != CallBase->getCalledFunction())
+ return InstructionsState(VL[BaseIndex], nullptr, nullptr);
+ if (Call->hasOperandBundles() &&
+ !std::equal(Call->op_begin() + Call->getBundleOperandsStartIndex(),
+ Call->op_begin() + Call->getBundleOperandsEndIndex(),
+ CallBase->op_begin() +
+ CallBase->getBundleOperandsStartIndex()))
+ return InstructionsState(VL[BaseIndex], nullptr, nullptr);
+ Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, &TLI);
+ if (ID != BaseID)
+ return InstructionsState(VL[BaseIndex], nullptr, nullptr);
+ if (!ID) {
+ SmallVector<VFInfo> Mappings = VFDatabase(*Call).getMappings(*Call);
+ if (Mappings.size() != BaseMappings.size() ||
+ Mappings.front().ISA != BaseMappings.front().ISA ||
+ Mappings.front().ScalarName != BaseMappings.front().ScalarName ||
+ Mappings.front().VectorName != BaseMappings.front().VectorName ||
+ Mappings.front().Shape.VF != BaseMappings.front().Shape.VF ||
+ Mappings.front().Shape.Parameters !=
+ BaseMappings.front().Shape.Parameters)
+ return InstructionsState(VL[BaseIndex], nullptr, nullptr);
+ }
+ }
+ continue;
+ }
+ return InstructionsState(VL[BaseIndex], nullptr, nullptr);
+ }
+
+ return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
+ cast<Instruction>(VL[AltIndex]));
+}
+
+/// \returns true if all of the values in \p VL have the same type or false
+/// otherwise.
+static bool allSameType(ArrayRef<Value *> VL) {
+ Type *Ty = VL[0]->getType();
+ for (int i = 1, e = VL.size(); i < e; i++)
+ if (VL[i]->getType() != Ty)
+ return false;
+
+ return true;
+}
+
+/// \returns True if in-tree use also needs extract. This refers to
+/// possible scalar operand in vectorized instruction.
+static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
+ TargetLibraryInfo *TLI) {
+ unsigned Opcode = UserInst->getOpcode();
+ switch (Opcode) {
+ case Instruction::Load: {
+ LoadInst *LI = cast<LoadInst>(UserInst);
+ return (LI->getPointerOperand() == Scalar);
+ }
+ case Instruction::Store: {
+ StoreInst *SI = cast<StoreInst>(UserInst);
+ return (SI->getPointerOperand() == Scalar);
+ }
+ case Instruction::Call: {
+ CallInst *CI = cast<CallInst>(UserInst);
+ Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
+ for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
+ if (isVectorIntrinsicWithScalarOpAtArg(ID, i))
+ return (CI->getArgOperand(i) == Scalar);
+ }
+ [[fallthrough]];
+ }
+ default:
+ return false;
+ }
+}
+
+/// \returns the AA location that is being access by the instruction.
+static MemoryLocation getLocation(Instruction *I) {
+ if (StoreInst *SI = dyn_cast<StoreInst>(I))
+ return MemoryLocation::get(SI);
+ if (LoadInst *LI = dyn_cast<LoadInst>(I))
+ return MemoryLocation::get(LI);
+ return MemoryLocation();
+}
+
+/// \returns True if the instruction is not a volatile or atomic load/store.
+static bool isSimple(Instruction *I) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(I))
+ return LI->isSimple();
+ if (StoreInst *SI = dyn_cast<StoreInst>(I))
+ return SI->isSimple();
+ if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
+ return !MI->isVolatile();
+ return true;
+}
+
+/// Shuffles \p Mask in accordance with the given \p SubMask.
+static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) {
+ if (SubMask.empty())
+ return;
+ if (Mask.empty()) {
+ Mask.append(SubMask.begin(), SubMask.end());
+ return;
+ }
+ SmallVector<int> NewMask(SubMask.size(), UndefMaskElem);
+ int TermValue = std::min(Mask.size(), SubMask.size());
+ for (int I = 0, E = SubMask.size(); I < E; ++I) {
+ if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem ||
+ Mask[SubMask[I]] >= TermValue)
+ continue;
+ NewMask[I] = Mask[SubMask[I]];
+ }
+ Mask.swap(NewMask);
+}
+
+/// Order may have elements assigned special value (size) which is out of
+/// bounds. Such indices only appear on places which correspond to undef values
+/// (see canReuseExtract for details) and used in order to avoid undef values
+/// have effect on operands ordering.
+/// The first loop below simply finds all unused indices and then the next loop
+/// nest assigns these indices for undef values positions.
+/// As an example below Order has two undef positions and they have assigned
+/// values 3 and 7 respectively:
+/// before: 6 9 5 4 9 2 1 0
+/// after: 6 3 5 4 7 2 1 0
+static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) {
+ const unsigned Sz = Order.size();
+ SmallBitVector UnusedIndices(Sz, /*t=*/true);
+ SmallBitVector MaskedIndices(Sz);
+ for (unsigned I = 0; I < Sz; ++I) {
+ if (Order[I] < Sz)
+ UnusedIndices.reset(Order[I]);
+ else
+ MaskedIndices.set(I);
+ }
+ if (MaskedIndices.none())
+ return;
+ assert(UnusedIndices.count() == MaskedIndices.count() &&
+ "Non-synced masked/available indices.");
+ int Idx = UnusedIndices.find_first();
+ int MIdx = MaskedIndices.find_first();
+ while (MIdx >= 0) {
+ assert(Idx >= 0 && "Indices must be synced.");
+ Order[MIdx] = Idx;
+ Idx = UnusedIndices.find_next(Idx);
+ MIdx = MaskedIndices.find_next(MIdx);
+ }
+}
+
+namespace llvm {
+
+static void inversePermutation(ArrayRef<unsigned> Indices,
+ SmallVectorImpl<int> &Mask) {
+ Mask.clear();
+ const unsigned E = Indices.size();
+ Mask.resize(E, UndefMaskElem);
+ for (unsigned I = 0; I < E; ++I)
+ Mask[Indices[I]] = I;
+}
+
+/// Reorders the list of scalars in accordance with the given \p Mask.
+static void reorderScalars(SmallVectorImpl<Value *> &Scalars,
+ ArrayRef<int> Mask) {
+ assert(!Mask.empty() && "Expected non-empty mask.");
+ SmallVector<Value *> Prev(Scalars.size(),
+ UndefValue::get(Scalars.front()->getType()));
+ Prev.swap(Scalars);
+ for (unsigned I = 0, E = Prev.size(); I < E; ++I)
+ if (Mask[I] != UndefMaskElem)
+ Scalars[Mask[I]] = Prev[I];
+}
+
+/// Checks if the provided value does not require scheduling. It does not
+/// require scheduling if this is not an instruction or it is an instruction
+/// that does not read/write memory and all operands are either not instructions
+/// or phi nodes or instructions from different blocks.
+static bool areAllOperandsNonInsts(Value *V) {
+ auto *I = dyn_cast<Instruction>(V);
+ if (!I)
+ return true;
+ return !mayHaveNonDefUseDependency(*I) &&
+ all_of(I->operands(), [I](Value *V) {
+ auto *IO = dyn_cast<Instruction>(V);
+ if (!IO)
+ return true;
+ return isa<PHINode>(IO) || IO->getParent() != I->getParent();
+ });
+}
+
+/// Checks if the provided value does not require scheduling. It does not
+/// require scheduling if this is not an instruction or it is an instruction
+/// that does not read/write memory and all users are phi nodes or instructions
+/// from the different blocks.
+static bool isUsedOutsideBlock(Value *V) {
+ auto *I = dyn_cast<Instruction>(V);
+ if (!I)
+ return true;
+ // Limits the number of uses to save compile time.
+ constexpr int UsesLimit = 8;
+ return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) &&
+ all_of(I->users(), [I](User *U) {
+ auto *IU = dyn_cast<Instruction>(U);
+ if (!IU)
+ return true;
+ return IU->getParent() != I->getParent() || isa<PHINode>(IU);
+ });
+}
+
+/// Checks if the specified value does not require scheduling. It does not
+/// require scheduling if all operands and all users do not need to be scheduled
+/// in the current basic block.
+static bool doesNotNeedToBeScheduled(Value *V) {
+ return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V);
+}
+
+/// Checks if the specified array of instructions does not require scheduling.
+/// It is so if all either instructions have operands that do not require
+/// scheduling or their users do not require scheduling since they are phis or
+/// in other basic blocks.
+static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) {
+ return !VL.empty() &&
+ (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts));
+}
+
+namespace slpvectorizer {
+
+/// Bottom Up SLP Vectorizer.
+class BoUpSLP {
+ struct TreeEntry;
+ struct ScheduleData;
+ class ShuffleInstructionBuilder;
+
+public:
+ using ValueList = SmallVector<Value *, 8>;
+ using InstrList = SmallVector<Instruction *, 16>;
+ using ValueSet = SmallPtrSet<Value *, 16>;
+ using StoreList = SmallVector<StoreInst *, 8>;
+ using ExtraValueToDebugLocsMap =
+ MapVector<Value *, SmallVector<Instruction *, 2>>;
+ using OrdersType = SmallVector<unsigned, 4>;
+
+ BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
+ TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
+ DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
+ const DataLayout *DL, OptimizationRemarkEmitter *ORE)
+ : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li),
+ DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
+ CodeMetrics::collectEphemeralValues(F, AC, EphValues);
+ // Use the vector register size specified by the target unless overridden
+ // by a command-line option.
+ // TODO: It would be better to limit the vectorization factor based on
+ // data type rather than just register size. For example, x86 AVX has
+ // 256-bit registers, but it does not support integer operations
+ // at that width (that requires AVX2).
+ if (MaxVectorRegSizeOption.getNumOccurrences())
+ MaxVecRegSize = MaxVectorRegSizeOption;
+ else
+ MaxVecRegSize =
+ TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
+ .getFixedValue();
+
+ if (MinVectorRegSizeOption.getNumOccurrences())
+ MinVecRegSize = MinVectorRegSizeOption;
+ else
+ MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
+ }
+
+ /// Vectorize the tree that starts with the elements in \p VL.
+ /// Returns the vectorized root.
+ Value *vectorizeTree();
+
+ /// Vectorize the tree but with the list of externally used values \p
+ /// ExternallyUsedValues. Values in this MapVector can be replaced but the
+ /// generated extractvalue instructions.
+ Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues,
+ Instruction *ReductionRoot = nullptr);
+
+ /// \returns the cost incurred by unwanted spills and fills, caused by
+ /// holding live values over call sites.
+ InstructionCost getSpillCost() const;
+
+ /// \returns the vectorization cost of the subtree that starts at \p VL.
+ /// A negative number means that this is profitable.
+ InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = std::nullopt);
+
+ /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
+ /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
+ void buildTree(ArrayRef<Value *> Roots,
+ const SmallDenseSet<Value *> &UserIgnoreLst);
+
+ /// Construct a vectorizable tree that starts at \p Roots.
+ void buildTree(ArrayRef<Value *> Roots);
+
+ /// Checks if the very first tree node is going to be vectorized.
+ bool isVectorizedFirstNode() const {
+ return !VectorizableTree.empty() &&
+ VectorizableTree.front()->State == TreeEntry::Vectorize;
+ }
+
+ /// Returns the main instruction for the very first node.
+ Instruction *getFirstNodeMainOp() const {
+ assert(!VectorizableTree.empty() && "No tree to get the first node from");
+ return VectorizableTree.front()->getMainOp();
+ }
+
+ /// Returns whether the root node has in-tree uses.
+ bool doesRootHaveInTreeUses() const {
+ return !VectorizableTree.empty() &&
+ !VectorizableTree.front()->UserTreeIndices.empty();
+ }
+
+ /// Builds external uses of the vectorized scalars, i.e. the list of
+ /// vectorized scalars to be extracted, their lanes and their scalar users. \p
+ /// ExternallyUsedValues contains additional list of external uses to handle
+ /// vectorization of reductions.
+ void
+ buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {});
+
+ /// Clear the internal data structures that are created by 'buildTree'.
+ void deleteTree() {
+ VectorizableTree.clear();
+ ScalarToTreeEntry.clear();
+ MustGather.clear();
+ EntryToLastInstruction.clear();
+ ExternalUses.clear();
+ for (auto &Iter : BlocksSchedules) {
+ BlockScheduling *BS = Iter.second.get();
+ BS->clear();
+ }
+ MinBWs.clear();
+ InstrElementSize.clear();
+ UserIgnoreList = nullptr;
+ }
+
+ unsigned getTreeSize() const { return VectorizableTree.size(); }
+
+ /// Perform LICM and CSE on the newly generated gather sequences.
+ void optimizeGatherSequence();
+
+ /// Checks if the specified gather tree entry \p TE can be represented as a
+ /// shuffled vector entry + (possibly) permutation with other gathers. It
+ /// implements the checks only for possibly ordered scalars (Loads,
+ /// ExtractElement, ExtractValue), which can be part of the graph.
+ std::optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE);
+
+ /// Sort loads into increasing pointers offsets to allow greater clustering.
+ std::optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE);
+
+ /// Gets reordering data for the given tree entry. If the entry is vectorized
+ /// - just return ReorderIndices, otherwise check if the scalars can be
+ /// reordered and return the most optimal order.
+ /// \param TopToBottom If true, include the order of vectorized stores and
+ /// insertelement nodes, otherwise skip them.
+ std::optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom);
+
+ /// Reorders the current graph to the most profitable order starting from the
+ /// root node to the leaf nodes. The best order is chosen only from the nodes
+ /// of the same size (vectorization factor). Smaller nodes are considered
+ /// parts of subgraph with smaller VF and they are reordered independently. We
+ /// can make it because we still need to extend smaller nodes to the wider VF
+ /// and we can merge reordering shuffles with the widening shuffles.
+ void reorderTopToBottom();
+
+ /// Reorders the current graph to the most profitable order starting from
+ /// leaves to the root. It allows to rotate small subgraphs and reduce the
+ /// number of reshuffles if the leaf nodes use the same order. In this case we
+ /// can merge the orders and just shuffle user node instead of shuffling its
+ /// operands. Plus, even the leaf nodes have different orders, it allows to
+ /// sink reordering in the graph closer to the root node and merge it later
+ /// during analysis.
+ void reorderBottomToTop(bool IgnoreReorder = false);
+
+ /// \return The vector element size in bits to use when vectorizing the
+ /// expression tree ending at \p V. If V is a store, the size is the width of
+ /// the stored value. Otherwise, the size is the width of the largest loaded
+ /// value reaching V. This method is used by the vectorizer to calculate
+ /// vectorization factors.
+ unsigned getVectorElementSize(Value *V);
+
+ /// Compute the minimum type sizes required to represent the entries in a
+ /// vectorizable tree.
+ void computeMinimumValueSizes();
+
+ // \returns maximum vector register size as set by TTI or overridden by cl::opt.
+ unsigned getMaxVecRegSize() const {
+ return MaxVecRegSize;
+ }
+
+ // \returns minimum vector register size as set by cl::opt.
+ unsigned getMinVecRegSize() const {
+ return MinVecRegSize;
+ }
+
+ unsigned getMinVF(unsigned Sz) const {
+ return std::max(2U, getMinVecRegSize() / Sz);
+ }
+
+ unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
+ unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
+ MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
+ return MaxVF ? MaxVF : UINT_MAX;
+ }
+
+ /// Check if homogeneous aggregate is isomorphic to some VectorType.
+ /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
+ /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
+ /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
+ ///
+ /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
+ unsigned canMapToVector(Type *T, const DataLayout &DL) const;
+
+ /// \returns True if the VectorizableTree is both tiny and not fully
+ /// vectorizable. We do not vectorize such trees.
+ bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const;
+
+ /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
+ /// can be load combined in the backend. Load combining may not be allowed in
+ /// the IR optimizer, so we do not want to alter the pattern. For example,
+ /// partially transforming a scalar bswap() pattern into vector code is
+ /// effectively impossible for the backend to undo.
+ /// TODO: If load combining is allowed in the IR optimizer, this analysis
+ /// may not be necessary.
+ bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
+
+ /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
+ /// can be load combined in the backend. Load combining may not be allowed in
+ /// the IR optimizer, so we do not want to alter the pattern. For example,
+ /// partially transforming a scalar bswap() pattern into vector code is
+ /// effectively impossible for the backend to undo.
+ /// TODO: If load combining is allowed in the IR optimizer, this analysis
+ /// may not be necessary.
+ bool isLoadCombineCandidate() const;
+
+ OptimizationRemarkEmitter *getORE() { return ORE; }
+
+ /// This structure holds any data we need about the edges being traversed
+ /// during buildTree_rec(). We keep track of:
+ /// (i) the user TreeEntry index, and
+ /// (ii) the index of the edge.
+ struct EdgeInfo {
+ EdgeInfo() = default;
+ EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
+ : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
+ /// The user TreeEntry.
+ TreeEntry *UserTE = nullptr;
+ /// The operand index of the use.
+ unsigned EdgeIdx = UINT_MAX;
+#ifndef NDEBUG
+ friend inline raw_ostream &operator<<(raw_ostream &OS,
+ const BoUpSLP::EdgeInfo &EI) {
+ EI.dump(OS);
+ return OS;
+ }
+ /// Debug print.
+ void dump(raw_ostream &OS) const {
+ OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
+ << " EdgeIdx:" << EdgeIdx << "}";
+ }
+ LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
+#endif
+ };
+
+ /// A helper class used for scoring candidates for two consecutive lanes.
+ class LookAheadHeuristics {
+ const TargetLibraryInfo &TLI;
+ const DataLayout &DL;
+ ScalarEvolution &SE;
+ const BoUpSLP &R;
+ int NumLanes; // Total number of lanes (aka vectorization factor).
+ int MaxLevel; // The maximum recursion depth for accumulating score.
+
+ public:
+ LookAheadHeuristics(const TargetLibraryInfo &TLI, const DataLayout &DL,
+ ScalarEvolution &SE, const BoUpSLP &R, int NumLanes,
+ int MaxLevel)
+ : TLI(TLI), DL(DL), SE(SE), R(R), NumLanes(NumLanes),
+ MaxLevel(MaxLevel) {}
+
+ // The hard-coded scores listed here are not very important, though it shall
+ // be higher for better matches to improve the resulting cost. When
+ // computing the scores of matching one sub-tree with another, we are
+ // basically counting the number of values that are matching. So even if all
+ // scores are set to 1, we would still get a decent matching result.
+ // However, sometimes we have to break ties. For example we may have to
+ // choose between matching loads vs matching opcodes. This is what these
+ // scores are helping us with: they provide the order of preference. Also,
+ // this is important if the scalar is externally used or used in another
+ // tree entry node in the different lane.
+
+ /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
+ static const int ScoreConsecutiveLoads = 4;
+ /// The same load multiple times. This should have a better score than
+ /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it
+ /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for
+ /// a vector load and 1.0 for a broadcast.
+ static const int ScoreSplatLoads = 3;
+ /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]).
+ static const int ScoreReversedLoads = 3;
+ /// A load candidate for masked gather.
+ static const int ScoreMaskedGatherCandidate = 1;
+ /// ExtractElementInst from same vector and consecutive indexes.
+ static const int ScoreConsecutiveExtracts = 4;
+ /// ExtractElementInst from same vector and reversed indices.
+ static const int ScoreReversedExtracts = 3;
+ /// Constants.
+ static const int ScoreConstants = 2;
+ /// Instructions with the same opcode.
+ static const int ScoreSameOpcode = 2;
+ /// Instructions with alt opcodes (e.g, add + sub).
+ static const int ScoreAltOpcodes = 1;
+ /// Identical instructions (a.k.a. splat or broadcast).
+ static const int ScoreSplat = 1;
+ /// Matching with an undef is preferable to failing.
+ static const int ScoreUndef = 1;
+ /// Score for failing to find a decent match.
+ static const int ScoreFail = 0;
+ /// Score if all users are vectorized.
+ static const int ScoreAllUserVectorized = 1;
+
+ /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
+ /// \p U1 and \p U2 are the users of \p V1 and \p V2.
+ /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p
+ /// MainAltOps.
+ int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2,
+ ArrayRef<Value *> MainAltOps) const {
+ if (!isValidElementType(V1->getType()) ||
+ !isValidElementType(V2->getType()))
+ return LookAheadHeuristics::ScoreFail;
+
+ if (V1 == V2) {
+ if (isa<LoadInst>(V1)) {
+ // Retruns true if the users of V1 and V2 won't need to be extracted.
+ auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) {
+ // Bail out if we have too many uses to save compilation time.
+ static constexpr unsigned Limit = 8;
+ if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit))
+ return false;
+
+ auto AllUsersVectorized = [U1, U2, this](Value *V) {
+ return llvm::all_of(V->users(), [U1, U2, this](Value *U) {
+ return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr;
+ });
+ };
+ return AllUsersVectorized(V1) && AllUsersVectorized(V2);
+ };
+ // A broadcast of a load can be cheaper on some targets.
+ if (R.TTI->isLegalBroadcastLoad(V1->getType(),
+ ElementCount::getFixed(NumLanes)) &&
+ ((int)V1->getNumUses() == NumLanes ||
+ AllUsersAreInternal(V1, V2)))
+ return LookAheadHeuristics::ScoreSplatLoads;
+ }
+ return LookAheadHeuristics::ScoreSplat;
+ }
+
+ auto *LI1 = dyn_cast<LoadInst>(V1);
+ auto *LI2 = dyn_cast<LoadInst>(V2);
+ if (LI1 && LI2) {
+ if (LI1->getParent() != LI2->getParent() || !LI1->isSimple() ||
+ !LI2->isSimple())
+ return LookAheadHeuristics::ScoreFail;
+
+ std::optional<int> Dist = getPointersDiff(
+ LI1->getType(), LI1->getPointerOperand(), LI2->getType(),
+ LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true);
+ if (!Dist || *Dist == 0) {
+ if (getUnderlyingObject(LI1->getPointerOperand()) ==
+ getUnderlyingObject(LI2->getPointerOperand()) &&
+ R.TTI->isLegalMaskedGather(
+ FixedVectorType::get(LI1->getType(), NumLanes),
+ LI1->getAlign()))
+ return LookAheadHeuristics::ScoreMaskedGatherCandidate;
+ return LookAheadHeuristics::ScoreFail;
+ }
+ // The distance is too large - still may be profitable to use masked
+ // loads/gathers.
+ if (std::abs(*Dist) > NumLanes / 2)
+ return LookAheadHeuristics::ScoreMaskedGatherCandidate;
+ // This still will detect consecutive loads, but we might have "holes"
+ // in some cases. It is ok for non-power-2 vectorization and may produce
+ // better results. It should not affect current vectorization.
+ return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads
+ : LookAheadHeuristics::ScoreReversedLoads;
+ }
+
+ auto *C1 = dyn_cast<Constant>(V1);
+ auto *C2 = dyn_cast<Constant>(V2);
+ if (C1 && C2)
+ return LookAheadHeuristics::ScoreConstants;
+
+ // Extracts from consecutive indexes of the same vector better score as
+ // the extracts could be optimized away.
+ Value *EV1;
+ ConstantInt *Ex1Idx;
+ if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) {
+ // Undefs are always profitable for extractelements.
+ if (isa<UndefValue>(V2))
+ return LookAheadHeuristics::ScoreConsecutiveExtracts;
+ Value *EV2 = nullptr;
+ ConstantInt *Ex2Idx = nullptr;
+ if (match(V2,
+ m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx),
+ m_Undef())))) {
+ // Undefs are always profitable for extractelements.
+ if (!Ex2Idx)
+ return LookAheadHeuristics::ScoreConsecutiveExtracts;
+ if (isUndefVector(EV2).all() && EV2->getType() == EV1->getType())
+ return LookAheadHeuristics::ScoreConsecutiveExtracts;
+ if (EV2 == EV1) {
+ int Idx1 = Ex1Idx->getZExtValue();
+ int Idx2 = Ex2Idx->getZExtValue();
+ int Dist = Idx2 - Idx1;
+ // The distance is too large - still may be profitable to use
+ // shuffles.
+ if (std::abs(Dist) == 0)
+ return LookAheadHeuristics::ScoreSplat;
+ if (std::abs(Dist) > NumLanes / 2)
+ return LookAheadHeuristics::ScoreSameOpcode;
+ return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts
+ : LookAheadHeuristics::ScoreReversedExtracts;
+ }
+ return LookAheadHeuristics::ScoreAltOpcodes;
+ }
+ return LookAheadHeuristics::ScoreFail;
+ }
+
+ auto *I1 = dyn_cast<Instruction>(V1);
+ auto *I2 = dyn_cast<Instruction>(V2);
+ if (I1 && I2) {
+ if (I1->getParent() != I2->getParent())
+ return LookAheadHeuristics::ScoreFail;
+ SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end());
+ Ops.push_back(I1);
+ Ops.push_back(I2);
+ InstructionsState S = getSameOpcode(Ops, TLI);
+ // Note: Only consider instructions with <= 2 operands to avoid
+ // complexity explosion.
+ if (S.getOpcode() &&
+ (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() ||
+ !S.isAltShuffle()) &&
+ all_of(Ops, [&S](Value *V) {
+ return cast<Instruction>(V)->getNumOperands() ==
+ S.MainOp->getNumOperands();
+ }))
+ return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes
+ : LookAheadHeuristics::ScoreSameOpcode;
+ }
+
+ if (isa<UndefValue>(V2))
+ return LookAheadHeuristics::ScoreUndef;
+
+ return LookAheadHeuristics::ScoreFail;
+ }
+
+ /// Go through the operands of \p LHS and \p RHS recursively until
+ /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are
+ /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands
+ /// of \p U1 and \p U2), except at the beginning of the recursion where
+ /// these are set to nullptr.
+ ///
+ /// For example:
+ /// \verbatim
+ /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1]
+ /// \ / \ / \ / \ /
+ /// + + + +
+ /// G1 G2 G3 G4
+ /// \endverbatim
+ /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
+ /// each level recursively, accumulating the score. It starts from matching
+ /// the additions at level 0, then moves on to the loads (level 1). The
+ /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
+ /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while
+ /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail.
+ /// Please note that the order of the operands does not matter, as we
+ /// evaluate the score of all profitable combinations of operands. In
+ /// other words the score of G1 and G4 is the same as G1 and G2. This
+ /// heuristic is based on ideas described in:
+ /// Look-ahead SLP: Auto-vectorization in the presence of commutative
+ /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
+ /// Luís F. W. Góes
+ int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1,
+ Instruction *U2, int CurrLevel,
+ ArrayRef<Value *> MainAltOps) const {
+
+ // Get the shallow score of V1 and V2.
+ int ShallowScoreAtThisLevel =
+ getShallowScore(LHS, RHS, U1, U2, MainAltOps);
+
+ // If reached MaxLevel,
+ // or if V1 and V2 are not instructions,
+ // or if they are SPLAT,
+ // or if they are not consecutive,
+ // or if profitable to vectorize loads or extractelements, early return
+ // the current cost.
+ auto *I1 = dyn_cast<Instruction>(LHS);
+ auto *I2 = dyn_cast<Instruction>(RHS);
+ if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
+ ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail ||
+ (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) ||
+ (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) ||
+ (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) &&
+ ShallowScoreAtThisLevel))
+ return ShallowScoreAtThisLevel;
+ assert(I1 && I2 && "Should have early exited.");
+
+ // Contains the I2 operand indexes that got matched with I1 operands.
+ SmallSet<unsigned, 4> Op2Used;
+
+ // Recursion towards the operands of I1 and I2. We are trying all possible
+ // operand pairs, and keeping track of the best score.
+ for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
+ OpIdx1 != NumOperands1; ++OpIdx1) {
+ // Try to pair op1I with the best operand of I2.
+ int MaxTmpScore = 0;
+ unsigned MaxOpIdx2 = 0;
+ bool FoundBest = false;
+ // If I2 is commutative try all combinations.
+ unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
+ unsigned ToIdx = isCommutative(I2)
+ ? I2->getNumOperands()
+ : std::min(I2->getNumOperands(), OpIdx1 + 1);
+ assert(FromIdx <= ToIdx && "Bad index");
+ for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
+ // Skip operands already paired with OpIdx1.
+ if (Op2Used.count(OpIdx2))
+ continue;
+ // Recursively calculate the cost at each level
+ int TmpScore =
+ getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2),
+ I1, I2, CurrLevel + 1, std::nullopt);
+ // Look for the best score.
+ if (TmpScore > LookAheadHeuristics::ScoreFail &&
+ TmpScore > MaxTmpScore) {
+ MaxTmpScore = TmpScore;
+ MaxOpIdx2 = OpIdx2;
+ FoundBest = true;
+ }
+ }
+ if (FoundBest) {
+ // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
+ Op2Used.insert(MaxOpIdx2);
+ ShallowScoreAtThisLevel += MaxTmpScore;
+ }
+ }
+ return ShallowScoreAtThisLevel;
+ }
+ };
+ /// A helper data structure to hold the operands of a vector of instructions.
+ /// This supports a fixed vector length for all operand vectors.
+ class VLOperands {
+ /// For each operand we need (i) the value, and (ii) the opcode that it
+ /// would be attached to if the expression was in a left-linearized form.
+ /// This is required to avoid illegal operand reordering.
+ /// For example:
+ /// \verbatim
+ /// 0 Op1
+ /// |/
+ /// Op1 Op2 Linearized + Op2
+ /// \ / ----------> |/
+ /// - -
+ ///
+ /// Op1 - Op2 (0 + Op1) - Op2
+ /// \endverbatim
+ ///
+ /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
+ ///
+ /// Another way to think of this is to track all the operations across the
+ /// path from the operand all the way to the root of the tree and to
+ /// calculate the operation that corresponds to this path. For example, the
+ /// path from Op2 to the root crosses the RHS of the '-', therefore the
+ /// corresponding operation is a '-' (which matches the one in the
+ /// linearized tree, as shown above).
+ ///
+ /// For lack of a better term, we refer to this operation as Accumulated
+ /// Path Operation (APO).
+ struct OperandData {
+ OperandData() = default;
+ OperandData(Value *V, bool APO, bool IsUsed)
+ : V(V), APO(APO), IsUsed(IsUsed) {}
+ /// The operand value.
+ Value *V = nullptr;
+ /// TreeEntries only allow a single opcode, or an alternate sequence of
+ /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
+ /// APO. It is set to 'true' if 'V' is attached to an inverse operation
+ /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
+ /// (e.g., Add/Mul)
+ bool APO = false;
+ /// Helper data for the reordering function.
+ bool IsUsed = false;
+ };
+
+ /// During operand reordering, we are trying to select the operand at lane
+ /// that matches best with the operand at the neighboring lane. Our
+ /// selection is based on the type of value we are looking for. For example,
+ /// if the neighboring lane has a load, we need to look for a load that is
+ /// accessing a consecutive address. These strategies are summarized in the
+ /// 'ReorderingMode' enumerator.
+ enum class ReorderingMode {
+ Load, ///< Matching loads to consecutive memory addresses
+ Opcode, ///< Matching instructions based on opcode (same or alternate)
+ Constant, ///< Matching constants
+ Splat, ///< Matching the same instruction multiple times (broadcast)
+ Failed, ///< We failed to create a vectorizable group
+ };
+
+ using OperandDataVec = SmallVector<OperandData, 2>;
+
+ /// A vector of operand vectors.
+ SmallVector<OperandDataVec, 4> OpsVec;
+
+ const TargetLibraryInfo &TLI;
+ const DataLayout &DL;
+ ScalarEvolution &SE;
+ const BoUpSLP &R;
+
+ /// \returns the operand data at \p OpIdx and \p Lane.
+ OperandData &getData(unsigned OpIdx, unsigned Lane) {
+ return OpsVec[OpIdx][Lane];
+ }
+
+ /// \returns the operand data at \p OpIdx and \p Lane. Const version.
+ const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
+ return OpsVec[OpIdx][Lane];
+ }
+
+ /// Clears the used flag for all entries.
+ void clearUsed() {
+ for (unsigned OpIdx = 0, NumOperands = getNumOperands();
+ OpIdx != NumOperands; ++OpIdx)
+ for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
+ ++Lane)
+ OpsVec[OpIdx][Lane].IsUsed = false;
+ }
+
+ /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
+ void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
+ std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
+ }
+
+ /// \param Lane lane of the operands under analysis.
+ /// \param OpIdx operand index in \p Lane lane we're looking the best
+ /// candidate for.
+ /// \param Idx operand index of the current candidate value.
+ /// \returns The additional score due to possible broadcasting of the
+ /// elements in the lane. It is more profitable to have power-of-2 unique
+ /// elements in the lane, it will be vectorized with higher probability
+ /// after removing duplicates. Currently the SLP vectorizer supports only
+ /// vectorization of the power-of-2 number of unique scalars.
+ int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
+ Value *IdxLaneV = getData(Idx, Lane).V;
+ if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V)
+ return 0;
+ SmallPtrSet<Value *, 4> Uniques;
+ for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) {
+ if (Ln == Lane)
+ continue;
+ Value *OpIdxLnV = getData(OpIdx, Ln).V;
+ if (!isa<Instruction>(OpIdxLnV))
+ return 0;
+ Uniques.insert(OpIdxLnV);
+ }
+ int UniquesCount = Uniques.size();
+ int UniquesCntWithIdxLaneV =
+ Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1;
+ Value *OpIdxLaneV = getData(OpIdx, Lane).V;
+ int UniquesCntWithOpIdxLaneV =
+ Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1;
+ if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV)
+ return 0;
+ return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) -
+ UniquesCntWithOpIdxLaneV) -
+ (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV);
+ }
+
+ /// \param Lane lane of the operands under analysis.
+ /// \param OpIdx operand index in \p Lane lane we're looking the best
+ /// candidate for.
+ /// \param Idx operand index of the current candidate value.
+ /// \returns The additional score for the scalar which users are all
+ /// vectorized.
+ int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
+ Value *IdxLaneV = getData(Idx, Lane).V;
+ Value *OpIdxLaneV = getData(OpIdx, Lane).V;
+ // Do not care about number of uses for vector-like instructions
+ // (extractelement/extractvalue with constant indices), they are extracts
+ // themselves and already externally used. Vectorization of such
+ // instructions does not add extra extractelement instruction, just may
+ // remove it.
+ if (isVectorLikeInstWithConstOps(IdxLaneV) &&
+ isVectorLikeInstWithConstOps(OpIdxLaneV))
+ return LookAheadHeuristics::ScoreAllUserVectorized;
+ auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV);
+ if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV))
+ return 0;
+ return R.areAllUsersVectorized(IdxLaneI, std::nullopt)
+ ? LookAheadHeuristics::ScoreAllUserVectorized
+ : 0;
+ }
+
+ /// Score scaling factor for fully compatible instructions but with
+ /// different number of external uses. Allows better selection of the
+ /// instructions with less external uses.
+ static const int ScoreScaleFactor = 10;
+
+ /// \Returns the look-ahead score, which tells us how much the sub-trees
+ /// rooted at \p LHS and \p RHS match, the more they match the higher the
+ /// score. This helps break ties in an informed way when we cannot decide on
+ /// the order of the operands by just considering the immediate
+ /// predecessors.
+ int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps,
+ int Lane, unsigned OpIdx, unsigned Idx,
+ bool &IsUsed) {
+ LookAheadHeuristics LookAhead(TLI, DL, SE, R, getNumLanes(),
+ LookAheadMaxDepth);
+ // Keep track of the instruction stack as we recurse into the operands
+ // during the look-ahead score exploration.
+ int Score =
+ LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr,
+ /*CurrLevel=*/1, MainAltOps);
+ if (Score) {
+ int SplatScore = getSplatScore(Lane, OpIdx, Idx);
+ if (Score <= -SplatScore) {
+ // Set the minimum score for splat-like sequence to avoid setting
+ // failed state.
+ Score = 1;
+ } else {
+ Score += SplatScore;
+ // Scale score to see the difference between different operands
+ // and similar operands but all vectorized/not all vectorized
+ // uses. It does not affect actual selection of the best
+ // compatible operand in general, just allows to select the
+ // operand with all vectorized uses.
+ Score *= ScoreScaleFactor;
+ Score += getExternalUseScore(Lane, OpIdx, Idx);
+ IsUsed = true;
+ }
+ }
+ return Score;
+ }
+
+ /// Best defined scores per lanes between the passes. Used to choose the
+ /// best operand (with the highest score) between the passes.
+ /// The key - {Operand Index, Lane}.
+ /// The value - the best score between the passes for the lane and the
+ /// operand.
+ SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8>
+ BestScoresPerLanes;
+
+ // Search all operands in Ops[*][Lane] for the one that matches best
+ // Ops[OpIdx][LastLane] and return its opreand index.
+ // If no good match can be found, return std::nullopt.
+ std::optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane,
+ ArrayRef<ReorderingMode> ReorderingModes,
+ ArrayRef<Value *> MainAltOps) {
+ unsigned NumOperands = getNumOperands();
+
+ // The operand of the previous lane at OpIdx.
+ Value *OpLastLane = getData(OpIdx, LastLane).V;
+
+ // Our strategy mode for OpIdx.
+ ReorderingMode RMode = ReorderingModes[OpIdx];
+ if (RMode == ReorderingMode::Failed)
+ return std::nullopt;
+
+ // The linearized opcode of the operand at OpIdx, Lane.
+ bool OpIdxAPO = getData(OpIdx, Lane).APO;
+
+ // The best operand index and its score.
+ // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
+ // are using the score to differentiate between the two.
+ struct BestOpData {
+ std::optional<unsigned> Idx;
+ unsigned Score = 0;
+ } BestOp;
+ BestOp.Score =
+ BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0)
+ .first->second;
+
+ // Track if the operand must be marked as used. If the operand is set to
+ // Score 1 explicitly (because of non power-of-2 unique scalars, we may
+ // want to reestimate the operands again on the following iterations).
+ bool IsUsed =
+ RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant;
+ // Iterate through all unused operands and look for the best.
+ for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
+ // Get the operand at Idx and Lane.
+ OperandData &OpData = getData(Idx, Lane);
+ Value *Op = OpData.V;
+ bool OpAPO = OpData.APO;
+
+ // Skip already selected operands.
+ if (OpData.IsUsed)
+ continue;
+
+ // Skip if we are trying to move the operand to a position with a
+ // different opcode in the linearized tree form. This would break the
+ // semantics.
+ if (OpAPO != OpIdxAPO)
+ continue;
+
+ // Look for an operand that matches the current mode.
+ switch (RMode) {
+ case ReorderingMode::Load:
+ case ReorderingMode::Constant:
+ case ReorderingMode::Opcode: {
+ bool LeftToRight = Lane > LastLane;
+ Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
+ Value *OpRight = (LeftToRight) ? Op : OpLastLane;
+ int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane,
+ OpIdx, Idx, IsUsed);
+ if (Score > static_cast<int>(BestOp.Score)) {
+ BestOp.Idx = Idx;
+ BestOp.Score = Score;
+ BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score;
+ }
+ break;
+ }
+ case ReorderingMode::Splat:
+ if (Op == OpLastLane)
+ BestOp.Idx = Idx;
+ break;
+ case ReorderingMode::Failed:
+ llvm_unreachable("Not expected Failed reordering mode.");
+ }
+ }
+
+ if (BestOp.Idx) {
+ getData(*BestOp.Idx, Lane).IsUsed = IsUsed;
+ return BestOp.Idx;
+ }
+ // If we could not find a good match return std::nullopt.
+ return std::nullopt;
+ }
+
+ /// Helper for reorderOperandVecs.
+ /// \returns the lane that we should start reordering from. This is the one
+ /// which has the least number of operands that can freely move about or
+ /// less profitable because it already has the most optimal set of operands.
+ unsigned getBestLaneToStartReordering() const {
+ unsigned Min = UINT_MAX;
+ unsigned SameOpNumber = 0;
+ // std::pair<unsigned, unsigned> is used to implement a simple voting
+ // algorithm and choose the lane with the least number of operands that
+ // can freely move about or less profitable because it already has the
+ // most optimal set of operands. The first unsigned is a counter for
+ // voting, the second unsigned is the counter of lanes with instructions
+ // with same/alternate opcodes and same parent basic block.
+ MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap;
+ // Try to be closer to the original results, if we have multiple lanes
+ // with same cost. If 2 lanes have the same cost, use the one with the
+ // lowest index.
+ for (int I = getNumLanes(); I > 0; --I) {
+ unsigned Lane = I - 1;
+ OperandsOrderData NumFreeOpsHash =
+ getMaxNumOperandsThatCanBeReordered(Lane);
+ // Compare the number of operands that can move and choose the one with
+ // the least number.
+ if (NumFreeOpsHash.NumOfAPOs < Min) {
+ Min = NumFreeOpsHash.NumOfAPOs;
+ SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
+ HashMap.clear();
+ HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
+ } else if (NumFreeOpsHash.NumOfAPOs == Min &&
+ NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) {
+ // Select the most optimal lane in terms of number of operands that
+ // should be moved around.
+ SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
+ HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
+ } else if (NumFreeOpsHash.NumOfAPOs == Min &&
+ NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) {
+ auto It = HashMap.find(NumFreeOpsHash.Hash);
+ if (It == HashMap.end())
+ HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
+ else
+ ++It->second.first;
+ }
+ }
+ // Select the lane with the minimum counter.
+ unsigned BestLane = 0;
+ unsigned CntMin = UINT_MAX;
+ for (const auto &Data : reverse(HashMap)) {
+ if (Data.second.first < CntMin) {
+ CntMin = Data.second.first;
+ BestLane = Data.second.second;
+ }
+ }
+ return BestLane;
+ }
+
+ /// Data structure that helps to reorder operands.
+ struct OperandsOrderData {
+ /// The best number of operands with the same APOs, which can be
+ /// reordered.
+ unsigned NumOfAPOs = UINT_MAX;
+ /// Number of operands with the same/alternate instruction opcode and
+ /// parent.
+ unsigned NumOpsWithSameOpcodeParent = 0;
+ /// Hash for the actual operands ordering.
+ /// Used to count operands, actually their position id and opcode
+ /// value. It is used in the voting mechanism to find the lane with the
+ /// least number of operands that can freely move about or less profitable
+ /// because it already has the most optimal set of operands. Can be
+ /// replaced with SmallVector<unsigned> instead but hash code is faster
+ /// and requires less memory.
+ unsigned Hash = 0;
+ };
+ /// \returns the maximum number of operands that are allowed to be reordered
+ /// for \p Lane and the number of compatible instructions(with the same
+ /// parent/opcode). This is used as a heuristic for selecting the first lane
+ /// to start operand reordering.
+ OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
+ unsigned CntTrue = 0;
+ unsigned NumOperands = getNumOperands();
+ // Operands with the same APO can be reordered. We therefore need to count
+ // how many of them we have for each APO, like this: Cnt[APO] = x.
+ // Since we only have two APOs, namely true and false, we can avoid using
+ // a map. Instead we can simply count the number of operands that
+ // correspond to one of them (in this case the 'true' APO), and calculate
+ // the other by subtracting it from the total number of operands.
+ // Operands with the same instruction opcode and parent are more
+ // profitable since we don't need to move them in many cases, with a high
+ // probability such lane already can be vectorized effectively.
+ bool AllUndefs = true;
+ unsigned NumOpsWithSameOpcodeParent = 0;
+ Instruction *OpcodeI = nullptr;
+ BasicBlock *Parent = nullptr;
+ unsigned Hash = 0;
+ for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
+ const OperandData &OpData = getData(OpIdx, Lane);
+ if (OpData.APO)
+ ++CntTrue;
+ // Use Boyer-Moore majority voting for finding the majority opcode and
+ // the number of times it occurs.
+ if (auto *I = dyn_cast<Instruction>(OpData.V)) {
+ if (!OpcodeI || !getSameOpcode({OpcodeI, I}, TLI).getOpcode() ||
+ I->getParent() != Parent) {
+ if (NumOpsWithSameOpcodeParent == 0) {
+ NumOpsWithSameOpcodeParent = 1;
+ OpcodeI = I;
+ Parent = I->getParent();
+ } else {
+ --NumOpsWithSameOpcodeParent;
+ }
+ } else {
+ ++NumOpsWithSameOpcodeParent;
+ }
+ }
+ Hash = hash_combine(
+ Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1)));
+ AllUndefs = AllUndefs && isa<UndefValue>(OpData.V);
+ }
+ if (AllUndefs)
+ return {};
+ OperandsOrderData Data;
+ Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue);
+ Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent;
+ Data.Hash = Hash;
+ return Data;
+ }
+
+ /// Go through the instructions in VL and append their operands.
+ void appendOperandsOfVL(ArrayRef<Value *> VL) {
+ assert(!VL.empty() && "Bad VL");
+ assert((empty() || VL.size() == getNumLanes()) &&
+ "Expected same number of lanes");
+ assert(isa<Instruction>(VL[0]) && "Expected instruction");
+ unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
+ OpsVec.resize(NumOperands);
+ unsigned NumLanes = VL.size();
+ for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
+ OpsVec[OpIdx].resize(NumLanes);
+ for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
+ assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
+ // Our tree has just 3 nodes: the root and two operands.
+ // It is therefore trivial to get the APO. We only need to check the
+ // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
+ // RHS operand. The LHS operand of both add and sub is never attached
+ // to an inversese operation in the linearized form, therefore its APO
+ // is false. The RHS is true only if VL[Lane] is an inverse operation.
+
+ // Since operand reordering is performed on groups of commutative
+ // operations or alternating sequences (e.g., +, -), we can safely
+ // tell the inverse operations by checking commutativity.
+ bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
+ bool APO = (OpIdx == 0) ? false : IsInverseOperation;
+ OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
+ APO, false};
+ }
+ }
+ }
+
+ /// \returns the number of operands.
+ unsigned getNumOperands() const { return OpsVec.size(); }
+
+ /// \returns the number of lanes.
+ unsigned getNumLanes() const { return OpsVec[0].size(); }
+
+ /// \returns the operand value at \p OpIdx and \p Lane.
+ Value *getValue(unsigned OpIdx, unsigned Lane) const {
+ return getData(OpIdx, Lane).V;
+ }
+
+ /// \returns true if the data structure is empty.
+ bool empty() const { return OpsVec.empty(); }
+
+ /// Clears the data.
+ void clear() { OpsVec.clear(); }
+
+ /// \Returns true if there are enough operands identical to \p Op to fill
+ /// the whole vector.
+ /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
+ bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
+ bool OpAPO = getData(OpIdx, Lane).APO;
+ for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
+ if (Ln == Lane)
+ continue;
+ // This is set to true if we found a candidate for broadcast at Lane.
+ bool FoundCandidate = false;
+ for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
+ OperandData &Data = getData(OpI, Ln);
+ if (Data.APO != OpAPO || Data.IsUsed)
+ continue;
+ if (Data.V == Op) {
+ FoundCandidate = true;
+ Data.IsUsed = true;
+ break;
+ }
+ }
+ if (!FoundCandidate)
+ return false;
+ }
+ return true;
+ }
+
+ public:
+ /// Initialize with all the operands of the instruction vector \p RootVL.
+ VLOperands(ArrayRef<Value *> RootVL, const TargetLibraryInfo &TLI,
+ const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R)
+ : TLI(TLI), DL(DL), SE(SE), R(R) {
+ // Append all the operands of RootVL.
+ appendOperandsOfVL(RootVL);
+ }
+
+ /// \Returns a value vector with the operands across all lanes for the
+ /// opearnd at \p OpIdx.
+ ValueList getVL(unsigned OpIdx) const {
+ ValueList OpVL(OpsVec[OpIdx].size());
+ assert(OpsVec[OpIdx].size() == getNumLanes() &&
+ "Expected same num of lanes across all operands");
+ for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
+ OpVL[Lane] = OpsVec[OpIdx][Lane].V;
+ return OpVL;
+ }
+
+ // Performs operand reordering for 2 or more operands.
+ // The original operands are in OrigOps[OpIdx][Lane].
+ // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
+ void reorder() {
+ unsigned NumOperands = getNumOperands();
+ unsigned NumLanes = getNumLanes();
+ // Each operand has its own mode. We are using this mode to help us select
+ // the instructions for each lane, so that they match best with the ones
+ // we have selected so far.
+ SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
+
+ // This is a greedy single-pass algorithm. We are going over each lane
+ // once and deciding on the best order right away with no back-tracking.
+ // However, in order to increase its effectiveness, we start with the lane
+ // that has operands that can move the least. For example, given the
+ // following lanes:
+ // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
+ // Lane 1 : A[1] = C[1] - B[1] // Visited 1st
+ // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
+ // Lane 3 : A[3] = C[3] - B[3] // Visited 4th
+ // we will start at Lane 1, since the operands of the subtraction cannot
+ // be reordered. Then we will visit the rest of the lanes in a circular
+ // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
+
+ // Find the first lane that we will start our search from.
+ unsigned FirstLane = getBestLaneToStartReordering();
+
+ // Initialize the modes.
+ for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
+ Value *OpLane0 = getValue(OpIdx, FirstLane);
+ // Keep track if we have instructions with all the same opcode on one
+ // side.
+ if (isa<LoadInst>(OpLane0))
+ ReorderingModes[OpIdx] = ReorderingMode::Load;
+ else if (isa<Instruction>(OpLane0)) {
+ // Check if OpLane0 should be broadcast.
+ if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
+ ReorderingModes[OpIdx] = ReorderingMode::Splat;
+ else
+ ReorderingModes[OpIdx] = ReorderingMode::Opcode;
+ }
+ else if (isa<Constant>(OpLane0))
+ ReorderingModes[OpIdx] = ReorderingMode::Constant;
+ else if (isa<Argument>(OpLane0))
+ // Our best hope is a Splat. It may save some cost in some cases.
+ ReorderingModes[OpIdx] = ReorderingMode::Splat;
+ else
+ // NOTE: This should be unreachable.
+ ReorderingModes[OpIdx] = ReorderingMode::Failed;
+ }
+
+ // Check that we don't have same operands. No need to reorder if operands
+ // are just perfect diamond or shuffled diamond match. Do not do it only
+ // for possible broadcasts or non-power of 2 number of scalars (just for
+ // now).
+ auto &&SkipReordering = [this]() {
+ SmallPtrSet<Value *, 4> UniqueValues;
+ ArrayRef<OperandData> Op0 = OpsVec.front();
+ for (const OperandData &Data : Op0)
+ UniqueValues.insert(Data.V);
+ for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) {
+ if (any_of(Op, [&UniqueValues](const OperandData &Data) {
+ return !UniqueValues.contains(Data.V);
+ }))
+ return false;
+ }
+ // TODO: Check if we can remove a check for non-power-2 number of
+ // scalars after full support of non-power-2 vectorization.
+ return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size());
+ };
+
+ // If the initial strategy fails for any of the operand indexes, then we
+ // perform reordering again in a second pass. This helps avoid assigning
+ // high priority to the failed strategy, and should improve reordering for
+ // the non-failed operand indexes.
+ for (int Pass = 0; Pass != 2; ++Pass) {
+ // Check if no need to reorder operands since they're are perfect or
+ // shuffled diamond match.
+ // Need to to do it to avoid extra external use cost counting for
+ // shuffled matches, which may cause regressions.
+ if (SkipReordering())
+ break;
+ // Skip the second pass if the first pass did not fail.
+ bool StrategyFailed = false;
+ // Mark all operand data as free to use.
+ clearUsed();
+ // We keep the original operand order for the FirstLane, so reorder the
+ // rest of the lanes. We are visiting the nodes in a circular fashion,
+ // using FirstLane as the center point and increasing the radius
+ // distance.
+ SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands);
+ for (unsigned I = 0; I < NumOperands; ++I)
+ MainAltOps[I].push_back(getData(I, FirstLane).V);
+
+ for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
+ // Visit the lane on the right and then the lane on the left.
+ for (int Direction : {+1, -1}) {
+ int Lane = FirstLane + Direction * Distance;
+ if (Lane < 0 || Lane >= (int)NumLanes)
+ continue;
+ int LastLane = Lane - Direction;
+ assert(LastLane >= 0 && LastLane < (int)NumLanes &&
+ "Out of bounds");
+ // Look for a good match for each operand.
+ for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
+ // Search for the operand that matches SortedOps[OpIdx][Lane-1].
+ std::optional<unsigned> BestIdx = getBestOperand(
+ OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]);
+ // By not selecting a value, we allow the operands that follow to
+ // select a better matching value. We will get a non-null value in
+ // the next run of getBestOperand().
+ if (BestIdx) {
+ // Swap the current operand with the one returned by
+ // getBestOperand().
+ swap(OpIdx, *BestIdx, Lane);
+ } else {
+ // We failed to find a best operand, set mode to 'Failed'.
+ ReorderingModes[OpIdx] = ReorderingMode::Failed;
+ // Enable the second pass.
+ StrategyFailed = true;
+ }
+ // Try to get the alternate opcode and follow it during analysis.
+ if (MainAltOps[OpIdx].size() != 2) {
+ OperandData &AltOp = getData(OpIdx, Lane);
+ InstructionsState OpS =
+ getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}, TLI);
+ if (OpS.getOpcode() && OpS.isAltShuffle())
+ MainAltOps[OpIdx].push_back(AltOp.V);
+ }
+ }
+ }
+ }
+ // Skip second pass if the strategy did not fail.
+ if (!StrategyFailed)
+ break;
+ }
+ }
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
+ switch (RMode) {
+ case ReorderingMode::Load:
+ return "Load";
+ case ReorderingMode::Opcode:
+ return "Opcode";
+ case ReorderingMode::Constant:
+ return "Constant";
+ case ReorderingMode::Splat:
+ return "Splat";
+ case ReorderingMode::Failed:
+ return "Failed";
+ }
+ llvm_unreachable("Unimplemented Reordering Type");
+ }
+
+ LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
+ raw_ostream &OS) {
+ return OS << getModeStr(RMode);
+ }
+
+ /// Debug print.
+ LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
+ printMode(RMode, dbgs());
+ }
+
+ friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
+ return printMode(RMode, OS);
+ }
+
+ LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
+ const unsigned Indent = 2;
+ unsigned Cnt = 0;
+ for (const OperandDataVec &OpDataVec : OpsVec) {
+ OS << "Operand " << Cnt++ << "\n";
+ for (const OperandData &OpData : OpDataVec) {
+ OS.indent(Indent) << "{";
+ if (Value *V = OpData.V)
+ OS << *V;
+ else
+ OS << "null";
+ OS << ", APO:" << OpData.APO << "}\n";
+ }
+ OS << "\n";
+ }
+ return OS;
+ }
+
+ /// Debug print.
+ LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
+#endif
+ };
+
+ /// Evaluate each pair in \p Candidates and return index into \p Candidates
+ /// for a pair which have highest score deemed to have best chance to form
+ /// root of profitable tree to vectorize. Return std::nullopt if no candidate
+ /// scored above the LookAheadHeuristics::ScoreFail. \param Limit Lower limit
+ /// of the cost, considered to be good enough score.
+ std::optional<int>
+ findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates,
+ int Limit = LookAheadHeuristics::ScoreFail) {
+ LookAheadHeuristics LookAhead(*TLI, *DL, *SE, *this, /*NumLanes=*/2,
+ RootLookAheadMaxDepth);
+ int BestScore = Limit;
+ std::optional<int> Index;
+ for (int I : seq<int>(0, Candidates.size())) {
+ int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first,
+ Candidates[I].second,
+ /*U1=*/nullptr, /*U2=*/nullptr,
+ /*Level=*/1, std::nullopt);
+ if (Score > BestScore) {
+ BestScore = Score;
+ Index = I;
+ }
+ }
+ return Index;
+ }
+
+ /// Checks if the instruction is marked for deletion.
+ bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
+
+ /// Removes an instruction from its block and eventually deletes it.
+ /// It's like Instruction::eraseFromParent() except that the actual deletion
+ /// is delayed until BoUpSLP is destructed.
+ void eraseInstruction(Instruction *I) {
+ DeletedInstructions.insert(I);
+ }
+
+ /// Checks if the instruction was already analyzed for being possible
+ /// reduction root.
+ bool isAnalyzedReductionRoot(Instruction *I) const {
+ return AnalyzedReductionsRoots.count(I);
+ }
+ /// Register given instruction as already analyzed for being possible
+ /// reduction root.
+ void analyzedReductionRoot(Instruction *I) {
+ AnalyzedReductionsRoots.insert(I);
+ }
+ /// Checks if the provided list of reduced values was checked already for
+ /// vectorization.
+ bool areAnalyzedReductionVals(ArrayRef<Value *> VL) const {
+ return AnalyzedReductionVals.contains(hash_value(VL));
+ }
+ /// Adds the list of reduced values to list of already checked values for the
+ /// vectorization.
+ void analyzedReductionVals(ArrayRef<Value *> VL) {
+ AnalyzedReductionVals.insert(hash_value(VL));
+ }
+ /// Clear the list of the analyzed reduction root instructions.
+ void clearReductionData() {
+ AnalyzedReductionsRoots.clear();
+ AnalyzedReductionVals.clear();
+ }
+ /// Checks if the given value is gathered in one of the nodes.
+ bool isAnyGathered(const SmallDenseSet<Value *> &Vals) const {
+ return any_of(MustGather, [&](Value *V) { return Vals.contains(V); });
+ }
+
+ /// Check if the value is vectorized in the tree.
+ bool isVectorized(Value *V) const { return getTreeEntry(V); }
+
+ ~BoUpSLP();
+
+private:
+ /// Check if the operands on the edges \p Edges of the \p UserTE allows
+ /// reordering (i.e. the operands can be reordered because they have only one
+ /// user and reordarable).
+ /// \param ReorderableGathers List of all gather nodes that require reordering
+ /// (e.g., gather of extractlements or partially vectorizable loads).
+ /// \param GatherOps List of gather operand nodes for \p UserTE that require
+ /// reordering, subset of \p NonVectorized.
+ bool
+ canReorderOperands(TreeEntry *UserTE,
+ SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges,
+ ArrayRef<TreeEntry *> ReorderableGathers,
+ SmallVectorImpl<TreeEntry *> &GatherOps);
+
+ /// Checks if the given \p TE is a gather node with clustered reused scalars
+ /// and reorders it per given \p Mask.
+ void reorderNodeWithReuses(TreeEntry &TE, ArrayRef<int> Mask) const;
+
+ /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph,
+ /// if any. If it is not vectorized (gather node), returns nullptr.
+ TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) {
+ ArrayRef<Value *> VL = UserTE->getOperand(OpIdx);
+ TreeEntry *TE = nullptr;
+ const auto *It = find_if(VL, [this, &TE](Value *V) {
+ TE = getTreeEntry(V);
+ return TE;
+ });
+ if (It != VL.end() && TE->isSame(VL))
+ return TE;
+ return nullptr;
+ }
+
+ /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph,
+ /// if any. If it is not vectorized (gather node), returns nullptr.
+ const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE,
+ unsigned OpIdx) const {
+ return const_cast<BoUpSLP *>(this)->getVectorizedOperand(
+ const_cast<TreeEntry *>(UserTE), OpIdx);
+ }
+
+ /// Checks if all users of \p I are the part of the vectorization tree.
+ bool areAllUsersVectorized(Instruction *I,
+ ArrayRef<Value *> VectorizedVals) const;
+
+ /// Return information about the vector formed for the specified index
+ /// of a vector of (the same) instruction.
+ TargetTransformInfo::OperandValueInfo getOperandInfo(ArrayRef<Value *> VL,
+ unsigned OpIdx);
+
+ /// \returns the cost of the vectorizable entry.
+ InstructionCost getEntryCost(const TreeEntry *E,
+ ArrayRef<Value *> VectorizedVals);
+
+ /// This is the recursive part of buildTree.
+ void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
+ const EdgeInfo &EI);
+
+ /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
+ /// be vectorized to use the original vector (or aggregate "bitcast" to a
+ /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
+ /// returns false, setting \p CurrentOrder to either an empty vector or a
+ /// non-identity permutation that allows to reuse extract instructions.
+ bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
+ SmallVectorImpl<unsigned> &CurrentOrder) const;
+
+ /// Vectorize a single entry in the tree.
+ Value *vectorizeTree(TreeEntry *E);
+
+ /// Vectorize a single entry in the tree, the \p Idx-th operand of the entry
+ /// \p E.
+ Value *vectorizeOperand(TreeEntry *E, unsigned NodeIdx);
+
+ /// Create a new vector from a list of scalar values. Produces a sequence
+ /// which exploits values reused across lanes, and arranges the inserts
+ /// for ease of later optimization.
+ Value *createBuildVector(const TreeEntry *E);
+
+ /// \returns the scalarization cost for this type. Scalarization in this
+ /// context means the creation of vectors from a group of scalars. If \p
+ /// NeedToShuffle is true, need to add a cost of reshuffling some of the
+ /// vector elements.
+ InstructionCost getGatherCost(FixedVectorType *Ty,
+ const APInt &ShuffledIndices,
+ bool NeedToShuffle) const;
+
+ /// Returns the instruction in the bundle, which can be used as a base point
+ /// for scheduling. Usually it is the last instruction in the bundle, except
+ /// for the case when all operands are external (in this case, it is the first
+ /// instruction in the list).
+ Instruction &getLastInstructionInBundle(const TreeEntry *E);
+
+ /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
+ /// tree entries.
+ /// \param TE Tree entry checked for permutation.
+ /// \param VL List of scalars (a subset of the TE scalar), checked for
+ /// permutations.
+ /// \returns ShuffleKind, if gathered values can be represented as shuffles of
+ /// previous tree entries. \p Mask is filled with the shuffle mask.
+ std::optional<TargetTransformInfo::ShuffleKind>
+ isGatherShuffledEntry(const TreeEntry *TE, ArrayRef<Value *> VL,
+ SmallVectorImpl<int> &Mask,
+ SmallVectorImpl<const TreeEntry *> &Entries);
+
+ /// \returns the scalarization cost for this list of values. Assuming that
+ /// this subtree gets vectorized, we may need to extract the values from the
+ /// roots. This method calculates the cost of extracting the values.
+ InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
+
+ /// Set the Builder insert point to one after the last instruction in
+ /// the bundle
+ void setInsertPointAfterBundle(const TreeEntry *E);
+
+ /// \returns a vector from a collection of scalars in \p VL.
+ Value *gather(ArrayRef<Value *> VL);
+
+ /// \returns whether the VectorizableTree is fully vectorizable and will
+ /// be beneficial even the tree height is tiny.
+ bool isFullyVectorizableTinyTree(bool ForReduction) const;
+
+ /// Reorder commutative or alt operands to get better probability of
+ /// generating vectorized code.
+ static void reorderInputsAccordingToOpcode(
+ ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left,
+ SmallVectorImpl<Value *> &Right, const TargetLibraryInfo &TLI,
+ const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R);
+
+ /// Helper for `findExternalStoreUsersReorderIndices()`. It iterates over the
+ /// users of \p TE and collects the stores. It returns the map from the store
+ /// pointers to the collected stores.
+ DenseMap<Value *, SmallVector<StoreInst *, 4>>
+ collectUserStores(const BoUpSLP::TreeEntry *TE) const;
+
+ /// Helper for `findExternalStoreUsersReorderIndices()`. It checks if the
+ /// stores in \p StoresVec can form a vector instruction. If so it returns true
+ /// and populates \p ReorderIndices with the shuffle indices of the the stores
+ /// when compared to the sorted vector.
+ bool canFormVector(const SmallVector<StoreInst *, 4> &StoresVec,
+ OrdersType &ReorderIndices) const;
+
+ /// Iterates through the users of \p TE, looking for scalar stores that can be
+ /// potentially vectorized in a future SLP-tree. If found, it keeps track of
+ /// their order and builds an order index vector for each store bundle. It
+ /// returns all these order vectors found.
+ /// We run this after the tree has formed, otherwise we may come across user
+ /// instructions that are not yet in the tree.
+ SmallVector<OrdersType, 1>
+ findExternalStoreUsersReorderIndices(TreeEntry *TE) const;
+
+ struct TreeEntry {
+ using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
+ TreeEntry(VecTreeTy &Container) : Container(Container) {}
+
+ /// \returns true if the scalars in VL are equal to this entry.
+ bool isSame(ArrayRef<Value *> VL) const {
+ auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) {
+ if (Mask.size() != VL.size() && VL.size() == Scalars.size())
+ return std::equal(VL.begin(), VL.end(), Scalars.begin());
+ return VL.size() == Mask.size() &&
+ std::equal(VL.begin(), VL.end(), Mask.begin(),
+ [Scalars](Value *V, int Idx) {
+ return (isa<UndefValue>(V) &&
+ Idx == UndefMaskElem) ||
+ (Idx != UndefMaskElem && V == Scalars[Idx]);
+ });
+ };
+ if (!ReorderIndices.empty()) {
+ // TODO: implement matching if the nodes are just reordered, still can
+ // treat the vector as the same if the list of scalars matches VL
+ // directly, without reordering.
+ SmallVector<int> Mask;
+ inversePermutation(ReorderIndices, Mask);
+ if (VL.size() == Scalars.size())
+ return IsSame(Scalars, Mask);
+ if (VL.size() == ReuseShuffleIndices.size()) {
+ ::addMask(Mask, ReuseShuffleIndices);
+ return IsSame(Scalars, Mask);
+ }
+ return false;
+ }
+ return IsSame(Scalars, ReuseShuffleIndices);
+ }
+
+ bool isOperandGatherNode(const EdgeInfo &UserEI) const {
+ return State == TreeEntry::NeedToGather &&
+ UserTreeIndices.front().EdgeIdx == UserEI.EdgeIdx &&
+ UserTreeIndices.front().UserTE == UserEI.UserTE;
+ }
+
+ /// \returns true if current entry has same operands as \p TE.
+ bool hasEqualOperands(const TreeEntry &TE) const {
+ if (TE.getNumOperands() != getNumOperands())
+ return false;
+ SmallBitVector Used(getNumOperands());
+ for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
+ unsigned PrevCount = Used.count();
+ for (unsigned K = 0; K < E; ++K) {
+ if (Used.test(K))
+ continue;
+ if (getOperand(K) == TE.getOperand(I)) {
+ Used.set(K);
+ break;
+ }
+ }
+ // Check if we actually found the matching operand.
+ if (PrevCount == Used.count())
+ return false;
+ }
+ return true;
+ }
+
+ /// \return Final vectorization factor for the node. Defined by the total
+ /// number of vectorized scalars, including those, used several times in the
+ /// entry and counted in the \a ReuseShuffleIndices, if any.
+ unsigned getVectorFactor() const {
+ if (!ReuseShuffleIndices.empty())
+ return ReuseShuffleIndices.size();
+ return Scalars.size();
+ };
+
+ /// A vector of scalars.
+ ValueList Scalars;
+
+ /// The Scalars are vectorized into this value. It is initialized to Null.
+ Value *VectorizedValue = nullptr;
+
+ /// Do we need to gather this sequence or vectorize it
+ /// (either with vector instruction or with scatter/gather
+ /// intrinsics for store/load)?
+ enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
+ EntryState State;
+
+ /// Does this sequence require some shuffling?
+ SmallVector<int, 4> ReuseShuffleIndices;
+
+ /// Does this entry require reordering?
+ SmallVector<unsigned, 4> ReorderIndices;
+
+ /// Points back to the VectorizableTree.
+ ///
+ /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
+ /// to be a pointer and needs to be able to initialize the child iterator.
+ /// Thus we need a reference back to the container to translate the indices
+ /// to entries.
+ VecTreeTy &Container;
+
+ /// The TreeEntry index containing the user of this entry. We can actually
+ /// have multiple users so the data structure is not truly a tree.
+ SmallVector<EdgeInfo, 1> UserTreeIndices;
+
+ /// The index of this treeEntry in VectorizableTree.
+ int Idx = -1;
+
+ private:
+ /// The operands of each instruction in each lane Operands[op_index][lane].
+ /// Note: This helps avoid the replication of the code that performs the
+ /// reordering of operands during buildTree_rec() and vectorizeTree().
+ SmallVector<ValueList, 2> Operands;
+
+ /// The main/alternate instruction.
+ Instruction *MainOp = nullptr;
+ Instruction *AltOp = nullptr;
+
+ public:
+ /// Set this bundle's \p OpIdx'th operand to \p OpVL.
+ void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
+ if (Operands.size() < OpIdx + 1)
+ Operands.resize(OpIdx + 1);
+ assert(Operands[OpIdx].empty() && "Already resized?");
+ assert(OpVL.size() <= Scalars.size() &&
+ "Number of operands is greater than the number of scalars.");
+ Operands[OpIdx].resize(OpVL.size());
+ copy(OpVL, Operands[OpIdx].begin());
+ }
+
+ /// Set the operands of this bundle in their original order.
+ void setOperandsInOrder() {
+ assert(Operands.empty() && "Already initialized?");
+ auto *I0 = cast<Instruction>(Scalars[0]);
+ Operands.resize(I0->getNumOperands());
+ unsigned NumLanes = Scalars.size();
+ for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
+ OpIdx != NumOperands; ++OpIdx) {
+ Operands[OpIdx].resize(NumLanes);
+ for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
+ auto *I = cast<Instruction>(Scalars[Lane]);
+ assert(I->getNumOperands() == NumOperands &&
+ "Expected same number of operands");
+ Operands[OpIdx][Lane] = I->getOperand(OpIdx);
+ }
+ }
+ }
+
+ /// Reorders operands of the node to the given mask \p Mask.
+ void reorderOperands(ArrayRef<int> Mask) {
+ for (ValueList &Operand : Operands)
+ reorderScalars(Operand, Mask);
+ }
+
+ /// \returns the \p OpIdx operand of this TreeEntry.
+ ValueList &getOperand(unsigned OpIdx) {
+ assert(OpIdx < Operands.size() && "Off bounds");
+ return Operands[OpIdx];
+ }
+
+ /// \returns the \p OpIdx operand of this TreeEntry.
+ ArrayRef<Value *> getOperand(unsigned OpIdx) const {
+ assert(OpIdx < Operands.size() && "Off bounds");
+ return Operands[OpIdx];
+ }
+
+ /// \returns the number of operands.
+ unsigned getNumOperands() const { return Operands.size(); }
+
+ /// \return the single \p OpIdx operand.
+ Value *getSingleOperand(unsigned OpIdx) const {
+ assert(OpIdx < Operands.size() && "Off bounds");
+ assert(!Operands[OpIdx].empty() && "No operand available");
+ return Operands[OpIdx][0];
+ }
+
+ /// Some of the instructions in the list have alternate opcodes.
+ bool isAltShuffle() const { return MainOp != AltOp; }
+
+ bool isOpcodeOrAlt(Instruction *I) const {
+ unsigned CheckedOpcode = I->getOpcode();
+ return (getOpcode() == CheckedOpcode ||
+ getAltOpcode() == CheckedOpcode);
+ }
+
+ /// Chooses the correct key for scheduling data. If \p Op has the same (or
+ /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
+ /// \p OpValue.
+ Value *isOneOf(Value *Op) const {
+ auto *I = dyn_cast<Instruction>(Op);
+ if (I && isOpcodeOrAlt(I))
+ return Op;
+ return MainOp;
+ }
+
+ void setOperations(const InstructionsState &S) {
+ MainOp = S.MainOp;
+ AltOp = S.AltOp;
+ }
+
+ Instruction *getMainOp() const {
+ return MainOp;
+ }
+
+ Instruction *getAltOp() const {
+ return AltOp;
+ }
+
+ /// The main/alternate opcodes for the list of instructions.
+ unsigned getOpcode() const {
+ return MainOp ? MainOp->getOpcode() : 0;
+ }
+
+ unsigned getAltOpcode() const {
+ return AltOp ? AltOp->getOpcode() : 0;
+ }
+
+ /// When ReuseReorderShuffleIndices is empty it just returns position of \p
+ /// V within vector of Scalars. Otherwise, try to remap on its reuse index.
+ int findLaneForValue(Value *V) const {
+ unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
+ assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
+ if (!ReorderIndices.empty())
+ FoundLane = ReorderIndices[FoundLane];
+ assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
+ if (!ReuseShuffleIndices.empty()) {
+ FoundLane = std::distance(ReuseShuffleIndices.begin(),
+ find(ReuseShuffleIndices, FoundLane));
+ }
+ return FoundLane;
+ }
+
+#ifndef NDEBUG
+ /// Debug printer.
+ LLVM_DUMP_METHOD void dump() const {
+ dbgs() << Idx << ".\n";
+ for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
+ dbgs() << "Operand " << OpI << ":\n";
+ for (const Value *V : Operands[OpI])
+ dbgs().indent(2) << *V << "\n";
+ }
+ dbgs() << "Scalars: \n";
+ for (Value *V : Scalars)
+ dbgs().indent(2) << *V << "\n";
+ dbgs() << "State: ";
+ switch (State) {
+ case Vectorize:
+ dbgs() << "Vectorize\n";
+ break;
+ case ScatterVectorize:
+ dbgs() << "ScatterVectorize\n";
+ break;
+ case NeedToGather:
+ dbgs() << "NeedToGather\n";
+ break;
+ }
+ dbgs() << "MainOp: ";
+ if (MainOp)
+ dbgs() << *MainOp << "\n";
+ else
+ dbgs() << "NULL\n";
+ dbgs() << "AltOp: ";
+ if (AltOp)
+ dbgs() << *AltOp << "\n";
+ else
+ dbgs() << "NULL\n";
+ dbgs() << "VectorizedValue: ";
+ if (VectorizedValue)
+ dbgs() << *VectorizedValue << "\n";
+ else
+ dbgs() << "NULL\n";
+ dbgs() << "ReuseShuffleIndices: ";
+ if (ReuseShuffleIndices.empty())
+ dbgs() << "Empty";
+ else
+ for (int ReuseIdx : ReuseShuffleIndices)
+ dbgs() << ReuseIdx << ", ";
+ dbgs() << "\n";
+ dbgs() << "ReorderIndices: ";
+ for (unsigned ReorderIdx : ReorderIndices)
+ dbgs() << ReorderIdx << ", ";
+ dbgs() << "\n";
+ dbgs() << "UserTreeIndices: ";
+ for (const auto &EInfo : UserTreeIndices)
+ dbgs() << EInfo << ", ";
+ dbgs() << "\n";
+ }
+#endif
+ };
+
+#ifndef NDEBUG
+ void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
+ InstructionCost VecCost,
+ InstructionCost ScalarCost) const {
+ dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
+ dbgs() << "SLP: Costs:\n";
+ dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n";
+ dbgs() << "SLP: VectorCost = " << VecCost << "\n";
+ dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n";
+ dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " <<
+ ReuseShuffleCost + VecCost - ScalarCost << "\n";
+ }
+#endif
+
+ /// Create a new VectorizableTree entry.
+ TreeEntry *newTreeEntry(ArrayRef<Value *> VL, std::optional<ScheduleData *> Bundle,
+ const InstructionsState &S,
+ const EdgeInfo &UserTreeIdx,
+ ArrayRef<int> ReuseShuffleIndices = std::nullopt,
+ ArrayRef<unsigned> ReorderIndices = std::nullopt) {
+ TreeEntry::EntryState EntryState =
+ Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
+ return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
+ ReuseShuffleIndices, ReorderIndices);
+ }
+
+ TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
+ TreeEntry::EntryState EntryState,
+ std::optional<ScheduleData *> Bundle,
+ const InstructionsState &S,
+ const EdgeInfo &UserTreeIdx,
+ ArrayRef<int> ReuseShuffleIndices = std::nullopt,
+ ArrayRef<unsigned> ReorderIndices = std::nullopt) {
+ assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
+ (Bundle && EntryState != TreeEntry::NeedToGather)) &&
+ "Need to vectorize gather entry?");
+ VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
+ TreeEntry *Last = VectorizableTree.back().get();
+ Last->Idx = VectorizableTree.size() - 1;
+ Last->State = EntryState;
+ Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
+ ReuseShuffleIndices.end());
+ if (ReorderIndices.empty()) {
+ Last->Scalars.assign(VL.begin(), VL.end());
+ Last->setOperations(S);
+ } else {
+ // Reorder scalars and build final mask.
+ Last->Scalars.assign(VL.size(), nullptr);
+ transform(ReorderIndices, Last->Scalars.begin(),
+ [VL](unsigned Idx) -> Value * {
+ if (Idx >= VL.size())
+ return UndefValue::get(VL.front()->getType());
+ return VL[Idx];
+ });
+ InstructionsState S = getSameOpcode(Last->Scalars, *TLI);
+ Last->setOperations(S);
+ Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
+ }
+ if (Last->State != TreeEntry::NeedToGather) {
+ for (Value *V : VL) {
+ assert(!getTreeEntry(V) && "Scalar already in tree!");
+ ScalarToTreeEntry[V] = Last;
+ }
+ // Update the scheduler bundle to point to this TreeEntry.
+ ScheduleData *BundleMember = *Bundle;
+ assert((BundleMember || isa<PHINode>(S.MainOp) ||
+ isVectorLikeInstWithConstOps(S.MainOp) ||
+ doesNotNeedToSchedule(VL)) &&
+ "Bundle and VL out of sync");
+ if (BundleMember) {
+ for (Value *V : VL) {
+ if (doesNotNeedToBeScheduled(V))
+ continue;
+ assert(BundleMember && "Unexpected end of bundle.");
+ BundleMember->TE = Last;
+ BundleMember = BundleMember->NextInBundle;
+ }
+ }
+ assert(!BundleMember && "Bundle and VL out of sync");
+ } else {
+ MustGather.insert(VL.begin(), VL.end());
+ }
+
+ if (UserTreeIdx.UserTE)
+ Last->UserTreeIndices.push_back(UserTreeIdx);
+
+ return Last;
+ }
+
+ /// -- Vectorization State --
+ /// Holds all of the tree entries.
+ TreeEntry::VecTreeTy VectorizableTree;
+
+#ifndef NDEBUG
+ /// Debug printer.
+ LLVM_DUMP_METHOD void dumpVectorizableTree() const {
+ for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
+ VectorizableTree[Id]->dump();
+ dbgs() << "\n";
+ }
+ }
+#endif
+
+ TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
+
+ const TreeEntry *getTreeEntry(Value *V) const {
+ return ScalarToTreeEntry.lookup(V);
+ }
+
+ /// Maps a specific scalar to its tree entry.
+ SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
+
+ /// Maps a value to the proposed vectorizable size.
+ SmallDenseMap<Value *, unsigned> InstrElementSize;
+
+ /// A list of scalars that we found that we need to keep as scalars.
+ ValueSet MustGather;
+
+ /// A map between the vectorized entries and the last instructions in the
+ /// bundles. The bundles are built in use order, not in the def order of the
+ /// instructions. So, we cannot rely directly on the last instruction in the
+ /// bundle being the last instruction in the program order during
+ /// vectorization process since the basic blocks are affected, need to
+ /// pre-gather them before.
+ DenseMap<const TreeEntry *, Instruction *> EntryToLastInstruction;
+
+ /// This POD struct describes one external user in the vectorized tree.
+ struct ExternalUser {
+ ExternalUser(Value *S, llvm::User *U, int L)
+ : Scalar(S), User(U), Lane(L) {}
+
+ // Which scalar in our function.
+ Value *Scalar;
+
+ // Which user that uses the scalar.
+ llvm::User *User;
+
+ // Which lane does the scalar belong to.
+ int Lane;
+ };
+ using UserList = SmallVector<ExternalUser, 16>;
+
+ /// Checks if two instructions may access the same memory.
+ ///
+ /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
+ /// is invariant in the calling loop.
+ bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
+ Instruction *Inst2) {
+ // First check if the result is already in the cache.
+ AliasCacheKey key = std::make_pair(Inst1, Inst2);
+ std::optional<bool> &result = AliasCache[key];
+ if (result) {
+ return *result;
+ }
+ bool aliased = true;
+ if (Loc1.Ptr && isSimple(Inst1))
+ aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1));
+ // Store the result in the cache.
+ result = aliased;
+ return aliased;
+ }
+
+ using AliasCacheKey = std::pair<Instruction *, Instruction *>;
+
+ /// Cache for alias results.
+ /// TODO: consider moving this to the AliasAnalysis itself.
+ DenseMap<AliasCacheKey, std::optional<bool>> AliasCache;
+
+ // Cache for pointerMayBeCaptured calls inside AA. This is preserved
+ // globally through SLP because we don't perform any action which
+ // invalidates capture results.
+ BatchAAResults BatchAA;
+
+ /// Temporary store for deleted instructions. Instructions will be deleted
+ /// eventually when the BoUpSLP is destructed. The deferral is required to
+ /// ensure that there are no incorrect collisions in the AliasCache, which
+ /// can happen if a new instruction is allocated at the same address as a
+ /// previously deleted instruction.
+ DenseSet<Instruction *> DeletedInstructions;
+
+ /// Set of the instruction, being analyzed already for reductions.
+ SmallPtrSet<Instruction *, 16> AnalyzedReductionsRoots;
+
+ /// Set of hashes for the list of reduction values already being analyzed.
+ DenseSet<size_t> AnalyzedReductionVals;
+
+ /// A list of values that need to extracted out of the tree.
+ /// This list holds pairs of (Internal Scalar : External User). External User
+ /// can be nullptr, it means that this Internal Scalar will be used later,
+ /// after vectorization.
+ UserList ExternalUses;
+
+ /// Values used only by @llvm.assume calls.
+ SmallPtrSet<const Value *, 32> EphValues;
+
+ /// Holds all of the instructions that we gathered, shuffle instructions and
+ /// extractelements.
+ SetVector<Instruction *> GatherShuffleExtractSeq;
+
+ /// A list of blocks that we are going to CSE.
+ SetVector<BasicBlock *> CSEBlocks;
+
+ /// Contains all scheduling relevant data for an instruction.
+ /// A ScheduleData either represents a single instruction or a member of an
+ /// instruction bundle (= a group of instructions which is combined into a
+ /// vector instruction).
+ struct ScheduleData {
+ // The initial value for the dependency counters. It means that the
+ // dependencies are not calculated yet.
+ enum { InvalidDeps = -1 };
+
+ ScheduleData() = default;
+
+ void init(int BlockSchedulingRegionID, Value *OpVal) {
+ FirstInBundle = this;
+ NextInBundle = nullptr;
+ NextLoadStore = nullptr;
+ IsScheduled = false;
+ SchedulingRegionID = BlockSchedulingRegionID;
+ clearDependencies();
+ OpValue = OpVal;
+ TE = nullptr;
+ }
+
+ /// Verify basic self consistency properties
+ void verify() {
+ if (hasValidDependencies()) {
+ assert(UnscheduledDeps <= Dependencies && "invariant");
+ } else {
+ assert(UnscheduledDeps == Dependencies && "invariant");
+ }
+
+ if (IsScheduled) {
+ assert(isSchedulingEntity() &&
+ "unexpected scheduled state");
+ for (const ScheduleData *BundleMember = this; BundleMember;
+ BundleMember = BundleMember->NextInBundle) {
+ assert(BundleMember->hasValidDependencies() &&
+ BundleMember->UnscheduledDeps == 0 &&
+ "unexpected scheduled state");
+ assert((BundleMember == this || !BundleMember->IsScheduled) &&
+ "only bundle is marked scheduled");
+ }
+ }
+
+ assert(Inst->getParent() == FirstInBundle->Inst->getParent() &&
+ "all bundle members must be in same basic block");
+ }
+
+ /// Returns true if the dependency information has been calculated.
+ /// Note that depenendency validity can vary between instructions within
+ /// a single bundle.
+ bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
+
+ /// Returns true for single instructions and for bundle representatives
+ /// (= the head of a bundle).
+ bool isSchedulingEntity() const { return FirstInBundle == this; }
+
+ /// Returns true if it represents an instruction bundle and not only a
+ /// single instruction.
+ bool isPartOfBundle() const {
+ return NextInBundle != nullptr || FirstInBundle != this || TE;
+ }
+
+ /// Returns true if it is ready for scheduling, i.e. it has no more
+ /// unscheduled depending instructions/bundles.
+ bool isReady() const {
+ assert(isSchedulingEntity() &&
+ "can't consider non-scheduling entity for ready list");
+ return unscheduledDepsInBundle() == 0 && !IsScheduled;
+ }
+
+ /// Modifies the number of unscheduled dependencies for this instruction,
+ /// and returns the number of remaining dependencies for the containing
+ /// bundle.
+ int incrementUnscheduledDeps(int Incr) {
+ assert(hasValidDependencies() &&
+ "increment of unscheduled deps would be meaningless");
+ UnscheduledDeps += Incr;
+ return FirstInBundle->unscheduledDepsInBundle();
+ }
+
+ /// Sets the number of unscheduled dependencies to the number of
+ /// dependencies.
+ void resetUnscheduledDeps() {
+ UnscheduledDeps = Dependencies;
+ }
+
+ /// Clears all dependency information.
+ void clearDependencies() {
+ Dependencies = InvalidDeps;
+ resetUnscheduledDeps();
+ MemoryDependencies.clear();
+ ControlDependencies.clear();
+ }
+
+ int unscheduledDepsInBundle() const {
+ assert(isSchedulingEntity() && "only meaningful on the bundle");
+ int Sum = 0;
+ for (const ScheduleData *BundleMember = this; BundleMember;
+ BundleMember = BundleMember->NextInBundle) {
+ if (BundleMember->UnscheduledDeps == InvalidDeps)
+ return InvalidDeps;
+ Sum += BundleMember->UnscheduledDeps;
+ }
+ return Sum;
+ }
+
+ void dump(raw_ostream &os) const {
+ if (!isSchedulingEntity()) {
+ os << "/ " << *Inst;
+ } else if (NextInBundle) {
+ os << '[' << *Inst;
+ ScheduleData *SD = NextInBundle;
+ while (SD) {
+ os << ';' << *SD->Inst;
+ SD = SD->NextInBundle;
+ }
+ os << ']';
+ } else {
+ os << *Inst;
+ }
+ }
+
+ Instruction *Inst = nullptr;
+
+ /// Opcode of the current instruction in the schedule data.
+ Value *OpValue = nullptr;
+
+ /// The TreeEntry that this instruction corresponds to.
+ TreeEntry *TE = nullptr;
+
+ /// Points to the head in an instruction bundle (and always to this for
+ /// single instructions).
+ ScheduleData *FirstInBundle = nullptr;
+
+ /// Single linked list of all instructions in a bundle. Null if it is a
+ /// single instruction.
+ ScheduleData *NextInBundle = nullptr;
+
+ /// Single linked list of all memory instructions (e.g. load, store, call)
+ /// in the block - until the end of the scheduling region.
+ ScheduleData *NextLoadStore = nullptr;
+
+ /// The dependent memory instructions.
+ /// This list is derived on demand in calculateDependencies().
+ SmallVector<ScheduleData *, 4> MemoryDependencies;
+
+ /// List of instructions which this instruction could be control dependent
+ /// on. Allowing such nodes to be scheduled below this one could introduce
+ /// a runtime fault which didn't exist in the original program.
+ /// ex: this is a load or udiv following a readonly call which inf loops
+ SmallVector<ScheduleData *, 4> ControlDependencies;
+
+ /// This ScheduleData is in the current scheduling region if this matches
+ /// the current SchedulingRegionID of BlockScheduling.
+ int SchedulingRegionID = 0;
+
+ /// Used for getting a "good" final ordering of instructions.
+ int SchedulingPriority = 0;
+
+ /// The number of dependencies. Constitutes of the number of users of the
+ /// instruction plus the number of dependent memory instructions (if any).
+ /// This value is calculated on demand.
+ /// If InvalidDeps, the number of dependencies is not calculated yet.
+ int Dependencies = InvalidDeps;
+
+ /// The number of dependencies minus the number of dependencies of scheduled
+ /// instructions. As soon as this is zero, the instruction/bundle gets ready
+ /// for scheduling.
+ /// Note that this is negative as long as Dependencies is not calculated.
+ int UnscheduledDeps = InvalidDeps;
+
+ /// True if this instruction is scheduled (or considered as scheduled in the
+ /// dry-run).
+ bool IsScheduled = false;
+ };
+
+#ifndef NDEBUG
+ friend inline raw_ostream &operator<<(raw_ostream &os,
+ const BoUpSLP::ScheduleData &SD) {
+ SD.dump(os);
+ return os;
+ }
+#endif
+
+ friend struct GraphTraits<BoUpSLP *>;
+ friend struct DOTGraphTraits<BoUpSLP *>;
+
+ /// Contains all scheduling data for a basic block.
+ /// It does not schedules instructions, which are not memory read/write
+ /// instructions and their operands are either constants, or arguments, or
+ /// phis, or instructions from others blocks, or their users are phis or from
+ /// the other blocks. The resulting vector instructions can be placed at the
+ /// beginning of the basic block without scheduling (if operands does not need
+ /// to be scheduled) or at the end of the block (if users are outside of the
+ /// block). It allows to save some compile time and memory used by the
+ /// compiler.
+ /// ScheduleData is assigned for each instruction in between the boundaries of
+ /// the tree entry, even for those, which are not part of the graph. It is
+ /// required to correctly follow the dependencies between the instructions and
+ /// their correct scheduling. The ScheduleData is not allocated for the
+ /// instructions, which do not require scheduling, like phis, nodes with
+ /// extractelements/insertelements only or nodes with instructions, with
+ /// uses/operands outside of the block.
+ struct BlockScheduling {
+ BlockScheduling(BasicBlock *BB)
+ : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
+
+ void clear() {
+ ReadyInsts.clear();
+ ScheduleStart = nullptr;
+ ScheduleEnd = nullptr;
+ FirstLoadStoreInRegion = nullptr;
+ LastLoadStoreInRegion = nullptr;
+ RegionHasStackSave = false;
+
+ // Reduce the maximum schedule region size by the size of the
+ // previous scheduling run.
+ ScheduleRegionSizeLimit -= ScheduleRegionSize;
+ if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
+ ScheduleRegionSizeLimit = MinScheduleRegionSize;
+ ScheduleRegionSize = 0;
+
+ // Make a new scheduling region, i.e. all existing ScheduleData is not
+ // in the new region yet.
+ ++SchedulingRegionID;
+ }
+
+ ScheduleData *getScheduleData(Instruction *I) {
+ if (BB != I->getParent())
+ // Avoid lookup if can't possibly be in map.
+ return nullptr;
+ ScheduleData *SD = ScheduleDataMap.lookup(I);
+ if (SD && isInSchedulingRegion(SD))
+ return SD;
+ return nullptr;
+ }
+
+ ScheduleData *getScheduleData(Value *V) {
+ if (auto *I = dyn_cast<Instruction>(V))
+ return getScheduleData(I);
+ return nullptr;
+ }
+
+ ScheduleData *getScheduleData(Value *V, Value *Key) {
+ if (V == Key)
+ return getScheduleData(V);
+ auto I = ExtraScheduleDataMap.find(V);
+ if (I != ExtraScheduleDataMap.end()) {
+ ScheduleData *SD = I->second.lookup(Key);
+ if (SD && isInSchedulingRegion(SD))
+ return SD;
+ }
+ return nullptr;
+ }
+
+ bool isInSchedulingRegion(ScheduleData *SD) const {
+ return SD->SchedulingRegionID == SchedulingRegionID;
+ }
+
+ /// Marks an instruction as scheduled and puts all dependent ready
+ /// instructions into the ready-list.
+ template <typename ReadyListType>
+ void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
+ SD->IsScheduled = true;
+ LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n");
+
+ for (ScheduleData *BundleMember = SD; BundleMember;
+ BundleMember = BundleMember->NextInBundle) {
+ if (BundleMember->Inst != BundleMember->OpValue)
+ continue;
+
+ // Handle the def-use chain dependencies.
+
+ // Decrement the unscheduled counter and insert to ready list if ready.
+ auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
+ doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
+ if (OpDef && OpDef->hasValidDependencies() &&
+ OpDef->incrementUnscheduledDeps(-1) == 0) {
+ // There are no more unscheduled dependencies after
+ // decrementing, so we can put the dependent instruction
+ // into the ready list.
+ ScheduleData *DepBundle = OpDef->FirstInBundle;
+ assert(!DepBundle->IsScheduled &&
+ "already scheduled bundle gets ready");
+ ReadyList.insert(DepBundle);
+ LLVM_DEBUG(dbgs()
+ << "SLP: gets ready (def): " << *DepBundle << "\n");
+ }
+ });
+ };
+
+ // If BundleMember is a vector bundle, its operands may have been
+ // reordered during buildTree(). We therefore need to get its operands
+ // through the TreeEntry.
+ if (TreeEntry *TE = BundleMember->TE) {
+ // Need to search for the lane since the tree entry can be reordered.
+ int Lane = std::distance(TE->Scalars.begin(),
+ find(TE->Scalars, BundleMember->Inst));
+ assert(Lane >= 0 && "Lane not set");
+
+ // Since vectorization tree is being built recursively this assertion
+ // ensures that the tree entry has all operands set before reaching
+ // this code. Couple of exceptions known at the moment are extracts
+ // where their second (immediate) operand is not added. Since
+ // immediates do not affect scheduler behavior this is considered
+ // okay.
+ auto *In = BundleMember->Inst;
+ assert(In &&
+ (isa<ExtractValueInst, ExtractElementInst>(In) ||
+ In->getNumOperands() == TE->getNumOperands()) &&
+ "Missed TreeEntry operands?");
+ (void)In; // fake use to avoid build failure when assertions disabled
+
+ for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
+ OpIdx != NumOperands; ++OpIdx)
+ if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
+ DecrUnsched(I);
+ } else {
+ // If BundleMember is a stand-alone instruction, no operand reordering
+ // has taken place, so we directly access its operands.
+ for (Use &U : BundleMember->Inst->operands())
+ if (auto *I = dyn_cast<Instruction>(U.get()))
+ DecrUnsched(I);
+ }
+ // Handle the memory dependencies.
+ for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
+ if (MemoryDepSD->hasValidDependencies() &&
+ MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
+ // There are no more unscheduled dependencies after decrementing,
+ // so we can put the dependent instruction into the ready list.
+ ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
+ assert(!DepBundle->IsScheduled &&
+ "already scheduled bundle gets ready");
+ ReadyList.insert(DepBundle);
+ LLVM_DEBUG(dbgs()
+ << "SLP: gets ready (mem): " << *DepBundle << "\n");
+ }
+ }
+ // Handle the control dependencies.
+ for (ScheduleData *DepSD : BundleMember->ControlDependencies) {
+ if (DepSD->incrementUnscheduledDeps(-1) == 0) {
+ // There are no more unscheduled dependencies after decrementing,
+ // so we can put the dependent instruction into the ready list.
+ ScheduleData *DepBundle = DepSD->FirstInBundle;
+ assert(!DepBundle->IsScheduled &&
+ "already scheduled bundle gets ready");
+ ReadyList.insert(DepBundle);
+ LLVM_DEBUG(dbgs()
+ << "SLP: gets ready (ctl): " << *DepBundle << "\n");
+ }
+ }
+
+ }
+ }
+
+ /// Verify basic self consistency properties of the data structure.
+ void verify() {
+ if (!ScheduleStart)
+ return;
+
+ assert(ScheduleStart->getParent() == ScheduleEnd->getParent() &&
+ ScheduleStart->comesBefore(ScheduleEnd) &&
+ "Not a valid scheduling region?");
+
+ for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
+ auto *SD = getScheduleData(I);
+ if (!SD)
+ continue;
+ assert(isInSchedulingRegion(SD) &&
+ "primary schedule data not in window?");
+ assert(isInSchedulingRegion(SD->FirstInBundle) &&
+ "entire bundle in window!");
+ (void)SD;
+ doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); });
+ }
+
+ for (auto *SD : ReadyInsts) {
+ assert(SD->isSchedulingEntity() && SD->isReady() &&
+ "item in ready list not ready?");
+ (void)SD;
+ }
+ }
+
+ void doForAllOpcodes(Value *V,
+ function_ref<void(ScheduleData *SD)> Action) {
+ if (ScheduleData *SD = getScheduleData(V))
+ Action(SD);
+ auto I = ExtraScheduleDataMap.find(V);
+ if (I != ExtraScheduleDataMap.end())
+ for (auto &P : I->second)
+ if (isInSchedulingRegion(P.second))
+ Action(P.second);
+ }
+
+ /// Put all instructions into the ReadyList which are ready for scheduling.
+ template <typename ReadyListType>
+ void initialFillReadyList(ReadyListType &ReadyList) {
+ for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
+ doForAllOpcodes(I, [&](ScheduleData *SD) {
+ if (SD->isSchedulingEntity() && SD->hasValidDependencies() &&
+ SD->isReady()) {
+ ReadyList.insert(SD);
+ LLVM_DEBUG(dbgs()
+ << "SLP: initially in ready list: " << *SD << "\n");
+ }
+ });
+ }
+ }
+
+ /// Build a bundle from the ScheduleData nodes corresponding to the
+ /// scalar instruction for each lane.
+ ScheduleData *buildBundle(ArrayRef<Value *> VL);
+
+ /// Checks if a bundle of instructions can be scheduled, i.e. has no
+ /// cyclic dependencies. This is only a dry-run, no instructions are
+ /// actually moved at this stage.
+ /// \returns the scheduling bundle. The returned Optional value is not
+ /// std::nullopt if \p VL is allowed to be scheduled.
+ std::optional<ScheduleData *>
+ tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
+ const InstructionsState &S);
+
+ /// Un-bundles a group of instructions.
+ void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
+
+ /// Allocates schedule data chunk.
+ ScheduleData *allocateScheduleDataChunks();
+
+ /// Extends the scheduling region so that V is inside the region.
+ /// \returns true if the region size is within the limit.
+ bool extendSchedulingRegion(Value *V, const InstructionsState &S);
+
+ /// Initialize the ScheduleData structures for new instructions in the
+ /// scheduling region.
+ void initScheduleData(Instruction *FromI, Instruction *ToI,
+ ScheduleData *PrevLoadStore,
+ ScheduleData *NextLoadStore);
+
+ /// Updates the dependency information of a bundle and of all instructions/
+ /// bundles which depend on the original bundle.
+ void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
+ BoUpSLP *SLP);
+
+ /// Sets all instruction in the scheduling region to un-scheduled.
+ void resetSchedule();
+
+ BasicBlock *BB;
+
+ /// Simple memory allocation for ScheduleData.
+ std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
+
+ /// The size of a ScheduleData array in ScheduleDataChunks.
+ int ChunkSize;
+
+ /// The allocator position in the current chunk, which is the last entry
+ /// of ScheduleDataChunks.
+ int ChunkPos;
+
+ /// Attaches ScheduleData to Instruction.
+ /// Note that the mapping survives during all vectorization iterations, i.e.
+ /// ScheduleData structures are recycled.
+ DenseMap<Instruction *, ScheduleData *> ScheduleDataMap;
+
+ /// Attaches ScheduleData to Instruction with the leading key.
+ DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
+ ExtraScheduleDataMap;
+
+ /// The ready-list for scheduling (only used for the dry-run).
+ SetVector<ScheduleData *> ReadyInsts;
+
+ /// The first instruction of the scheduling region.
+ Instruction *ScheduleStart = nullptr;
+
+ /// The first instruction _after_ the scheduling region.
+ Instruction *ScheduleEnd = nullptr;
+
+ /// The first memory accessing instruction in the scheduling region
+ /// (can be null).
+ ScheduleData *FirstLoadStoreInRegion = nullptr;
+
+ /// The last memory accessing instruction in the scheduling region
+ /// (can be null).
+ ScheduleData *LastLoadStoreInRegion = nullptr;
+
+ /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling
+ /// region? Used to optimize the dependence calculation for the
+ /// common case where there isn't.
+ bool RegionHasStackSave = false;
+
+ /// The current size of the scheduling region.
+ int ScheduleRegionSize = 0;
+
+ /// The maximum size allowed for the scheduling region.
+ int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
+
+ /// The ID of the scheduling region. For a new vectorization iteration this
+ /// is incremented which "removes" all ScheduleData from the region.
+ /// Make sure that the initial SchedulingRegionID is greater than the
+ /// initial SchedulingRegionID in ScheduleData (which is 0).
+ int SchedulingRegionID = 1;
+ };
+
+ /// Attaches the BlockScheduling structures to basic blocks.
+ MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
+
+ /// Performs the "real" scheduling. Done before vectorization is actually
+ /// performed in a basic block.
+ void scheduleBlock(BlockScheduling *BS);
+
+ /// List of users to ignore during scheduling and that don't need extracting.
+ const SmallDenseSet<Value *> *UserIgnoreList = nullptr;
+
+ /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
+ /// sorted SmallVectors of unsigned.
+ struct OrdersTypeDenseMapInfo {
+ static OrdersType getEmptyKey() {
+ OrdersType V;
+ V.push_back(~1U);
+ return V;
+ }
+
+ static OrdersType getTombstoneKey() {
+ OrdersType V;
+ V.push_back(~2U);
+ return V;
+ }
+
+ static unsigned getHashValue(const OrdersType &V) {
+ return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
+ }
+
+ static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
+ return LHS == RHS;
+ }
+ };
+
+ // Analysis and block reference.
+ Function *F;
+ ScalarEvolution *SE;
+ TargetTransformInfo *TTI;
+ TargetLibraryInfo *TLI;
+ LoopInfo *LI;
+ DominatorTree *DT;
+ AssumptionCache *AC;
+ DemandedBits *DB;
+ const DataLayout *DL;
+ OptimizationRemarkEmitter *ORE;
+
+ unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
+ unsigned MinVecRegSize; // Set by cl::opt (default: 128).
+
+ /// Instruction builder to construct the vectorized tree.
+ IRBuilder<> Builder;
+
+ /// A map of scalar integer values to the smallest bit width with which they
+ /// can legally be represented. The values map to (width, signed) pairs,
+ /// where "width" indicates the minimum bit width and "signed" is True if the
+ /// value must be signed-extended, rather than zero-extended, back to its
+ /// original width.
+ MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
+};
+
+} // end namespace slpvectorizer
+
+template <> struct GraphTraits<BoUpSLP *> {
+ using TreeEntry = BoUpSLP::TreeEntry;
+
+ /// NodeRef has to be a pointer per the GraphWriter.
+ using NodeRef = TreeEntry *;
+
+ using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
+
+ /// Add the VectorizableTree to the index iterator to be able to return
+ /// TreeEntry pointers.
+ struct ChildIteratorType
+ : public iterator_adaptor_base<
+ ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
+ ContainerTy &VectorizableTree;
+
+ ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
+ ContainerTy &VT)
+ : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
+
+ NodeRef operator*() { return I->UserTE; }
+ };
+
+ static NodeRef getEntryNode(BoUpSLP &R) {
+ return R.VectorizableTree[0].get();
+ }
+
+ static ChildIteratorType child_begin(NodeRef N) {
+ return {N->UserTreeIndices.begin(), N->Container};
+ }
+
+ static ChildIteratorType child_end(NodeRef N) {
+ return {N->UserTreeIndices.end(), N->Container};
+ }
+
+ /// For the node iterator we just need to turn the TreeEntry iterator into a
+ /// TreeEntry* iterator so that it dereferences to NodeRef.
+ class nodes_iterator {
+ using ItTy = ContainerTy::iterator;
+ ItTy It;
+
+ public:
+ nodes_iterator(const ItTy &It2) : It(It2) {}
+ NodeRef operator*() { return It->get(); }
+ nodes_iterator operator++() {
+ ++It;
+ return *this;
+ }
+ bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
+ };
+
+ static nodes_iterator nodes_begin(BoUpSLP *R) {
+ return nodes_iterator(R->VectorizableTree.begin());
+ }
+
+ static nodes_iterator nodes_end(BoUpSLP *R) {
+ return nodes_iterator(R->VectorizableTree.end());
+ }
+
+ static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
+};
+
+template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
+ using TreeEntry = BoUpSLP::TreeEntry;
+
+ DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
+
+ std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
+ std::string Str;
+ raw_string_ostream OS(Str);
+ OS << Entry->Idx << ".\n";
+ if (isSplat(Entry->Scalars))
+ OS << "<splat> ";
+ for (auto *V : Entry->Scalars) {
+ OS << *V;
+ if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
+ return EU.Scalar == V;
+ }))
+ OS << " <extract>";
+ OS << "\n";
+ }
+ return Str;
+ }
+
+ static std::string getNodeAttributes(const TreeEntry *Entry,
+ const BoUpSLP *) {
+ if (Entry->State == TreeEntry::NeedToGather)
+ return "color=red";
+ if (Entry->State == TreeEntry::ScatterVectorize)
+ return "color=blue";
+ return "";
+ }
+};
+
+} // end namespace llvm
+
+BoUpSLP::~BoUpSLP() {
+ SmallVector<WeakTrackingVH> DeadInsts;
+ for (auto *I : DeletedInstructions) {
+ for (Use &U : I->operands()) {
+ auto *Op = dyn_cast<Instruction>(U.get());
+ if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() &&
+ wouldInstructionBeTriviallyDead(Op, TLI))
+ DeadInsts.emplace_back(Op);
+ }
+ I->dropAllReferences();
+ }
+ for (auto *I : DeletedInstructions) {
+ assert(I->use_empty() &&
+ "trying to erase instruction with users.");
+ I->eraseFromParent();
+ }
+
+ // Cleanup any dead scalar code feeding the vectorized instructions
+ RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI);
+
+#ifdef EXPENSIVE_CHECKS
+ // If we could guarantee that this call is not extremely slow, we could
+ // remove the ifdef limitation (see PR47712).
+ assert(!verifyFunction(*F, &dbgs()));
+#endif
+}
+
+/// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses
+/// contains original mask for the scalars reused in the node. Procedure
+/// transform this mask in accordance with the given \p Mask.
+static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) {
+ assert(!Mask.empty() && Reuses.size() == Mask.size() &&
+ "Expected non-empty mask.");
+ SmallVector<int> Prev(Reuses.begin(), Reuses.end());
+ Prev.swap(Reuses);
+ for (unsigned I = 0, E = Prev.size(); I < E; ++I)
+ if (Mask[I] != UndefMaskElem)
+ Reuses[Mask[I]] = Prev[I];
+}
+
+/// Reorders the given \p Order according to the given \p Mask. \p Order - is
+/// the original order of the scalars. Procedure transforms the provided order
+/// in accordance with the given \p Mask. If the resulting \p Order is just an
+/// identity order, \p Order is cleared.
+static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) {
+ assert(!Mask.empty() && "Expected non-empty mask.");
+ SmallVector<int> MaskOrder;
+ if (Order.empty()) {
+ MaskOrder.resize(Mask.size());
+ std::iota(MaskOrder.begin(), MaskOrder.end(), 0);
+ } else {
+ inversePermutation(Order, MaskOrder);
+ }
+ reorderReuses(MaskOrder, Mask);
+ if (ShuffleVectorInst::isIdentityMask(MaskOrder)) {
+ Order.clear();
+ return;
+ }
+ Order.assign(Mask.size(), Mask.size());
+ for (unsigned I = 0, E = Mask.size(); I < E; ++I)
+ if (MaskOrder[I] != UndefMaskElem)
+ Order[MaskOrder[I]] = I;
+ fixupOrderingIndices(Order);
+}
+
+std::optional<BoUpSLP::OrdersType>
+BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) {
+ assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.");
+ unsigned NumScalars = TE.Scalars.size();
+ OrdersType CurrentOrder(NumScalars, NumScalars);
+ SmallVector<int> Positions;
+ SmallBitVector UsedPositions(NumScalars);
+ const TreeEntry *STE = nullptr;
+ // Try to find all gathered scalars that are gets vectorized in other
+ // vectorize node. Here we can have only one single tree vector node to
+ // correctly identify order of the gathered scalars.
+ for (unsigned I = 0; I < NumScalars; ++I) {
+ Value *V = TE.Scalars[I];
+ if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V))
+ continue;
+ if (const auto *LocalSTE = getTreeEntry(V)) {
+ if (!STE)
+ STE = LocalSTE;
+ else if (STE != LocalSTE)
+ // Take the order only from the single vector node.
+ return std::nullopt;
+ unsigned Lane =
+ std::distance(STE->Scalars.begin(), find(STE->Scalars, V));
+ if (Lane >= NumScalars)
+ return std::nullopt;
+ if (CurrentOrder[Lane] != NumScalars) {
+ if (Lane != I)
+ continue;
+ UsedPositions.reset(CurrentOrder[Lane]);
+ }
+ // The partial identity (where only some elements of the gather node are
+ // in the identity order) is good.
+ CurrentOrder[Lane] = I;
+ UsedPositions.set(I);
+ }
+ }
+ // Need to keep the order if we have a vector entry and at least 2 scalars or
+ // the vectorized entry has just 2 scalars.
+ if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) {
+ auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) {
+ for (unsigned I = 0; I < NumScalars; ++I)
+ if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars)
+ return false;
+ return true;
+ };
+ if (IsIdentityOrder(CurrentOrder)) {
+ CurrentOrder.clear();
+ return CurrentOrder;
+ }
+ auto *It = CurrentOrder.begin();
+ for (unsigned I = 0; I < NumScalars;) {
+ if (UsedPositions.test(I)) {
+ ++I;
+ continue;
+ }
+ if (*It == NumScalars) {
+ *It = I;
+ ++I;
+ }
+ ++It;
+ }
+ return CurrentOrder;
+ }
+ return std::nullopt;
+}
+
+namespace {
+/// Tracks the state we can represent the loads in the given sequence.
+enum class LoadsState { Gather, Vectorize, ScatterVectorize };
+} // anonymous namespace
+
+static bool arePointersCompatible(Value *Ptr1, Value *Ptr2,
+ const TargetLibraryInfo &TLI,
+ bool CompareOpcodes = true) {
+ if (getUnderlyingObject(Ptr1) != getUnderlyingObject(Ptr2))
+ return false;
+ auto *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
+ if (!GEP1)
+ return false;
+ auto *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
+ if (!GEP2)
+ return false;
+ return GEP1->getNumOperands() == 2 && GEP2->getNumOperands() == 2 &&
+ ((isConstant(GEP1->getOperand(1)) &&
+ isConstant(GEP2->getOperand(1))) ||
+ !CompareOpcodes ||
+ getSameOpcode({GEP1->getOperand(1), GEP2->getOperand(1)}, TLI)
+ .getOpcode());
+}
+
+/// Checks if the given array of loads can be represented as a vectorized,
+/// scatter or just simple gather.
+static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0,
+ const TargetTransformInfo &TTI,
+ const DataLayout &DL, ScalarEvolution &SE,
+ LoopInfo &LI, const TargetLibraryInfo &TLI,
+ SmallVectorImpl<unsigned> &Order,
+ SmallVectorImpl<Value *> &PointerOps) {
+ // Check that a vectorized load would load the same memory as a scalar
+ // load. For example, we don't want to vectorize loads that are smaller
+ // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
+ // treats loading/storing it as an i8 struct. If we vectorize loads/stores
+ // from such a struct, we read/write packed bits disagreeing with the
+ // unvectorized version.
+ Type *ScalarTy = VL0->getType();
+
+ if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy))
+ return LoadsState::Gather;
+
+ // Make sure all loads in the bundle are simple - we can't vectorize
+ // atomic or volatile loads.
+ PointerOps.clear();
+ PointerOps.resize(VL.size());
+ auto *POIter = PointerOps.begin();
+ for (Value *V : VL) {
+ auto *L = cast<LoadInst>(V);
+ if (!L->isSimple())
+ return LoadsState::Gather;
+ *POIter = L->getPointerOperand();
+ ++POIter;
+ }
+
+ Order.clear();
+ // Check the order of pointer operands or that all pointers are the same.
+ bool IsSorted = sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order);
+ if (IsSorted || all_of(PointerOps, [&](Value *P) {
+ return arePointersCompatible(P, PointerOps.front(), TLI);
+ })) {
+ if (IsSorted) {
+ Value *Ptr0;
+ Value *PtrN;
+ if (Order.empty()) {
+ Ptr0 = PointerOps.front();
+ PtrN = PointerOps.back();
+ } else {
+ Ptr0 = PointerOps[Order.front()];
+ PtrN = PointerOps[Order.back()];
+ }
+ std::optional<int> Diff =
+ getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE);
+ // Check that the sorted loads are consecutive.
+ if (static_cast<unsigned>(*Diff) == VL.size() - 1)
+ return LoadsState::Vectorize;
+ }
+ // TODO: need to improve analysis of the pointers, if not all of them are
+ // GEPs or have > 2 operands, we end up with a gather node, which just
+ // increases the cost.
+ Loop *L = LI.getLoopFor(cast<LoadInst>(VL0)->getParent());
+ bool ProfitableGatherPointers =
+ static_cast<unsigned>(count_if(PointerOps, [L](Value *V) {
+ return L && L->isLoopInvariant(V);
+ })) <= VL.size() / 2 && VL.size() > 2;
+ if (ProfitableGatherPointers || all_of(PointerOps, [IsSorted](Value *P) {
+ auto *GEP = dyn_cast<GetElementPtrInst>(P);
+ return (IsSorted && !GEP && doesNotNeedToBeScheduled(P)) ||
+ (GEP && GEP->getNumOperands() == 2);
+ })) {
+ Align CommonAlignment = cast<LoadInst>(VL0)->getAlign();
+ for (Value *V : VL)
+ CommonAlignment =
+ std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
+ auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
+ if (TTI.isLegalMaskedGather(VecTy, CommonAlignment) &&
+ !TTI.forceScalarizeMaskedGather(VecTy, CommonAlignment))
+ return LoadsState::ScatterVectorize;
+ }
+ }
+
+ return LoadsState::Gather;
+}
+
+bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
+ const DataLayout &DL, ScalarEvolution &SE,
+ SmallVectorImpl<unsigned> &SortedIndices) {
+ assert(llvm::all_of(
+ VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
+ "Expected list of pointer operands.");
+ // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each
+ // Ptr into, sort and return the sorted indices with values next to one
+ // another.
+ MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases;
+ Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U));
+
+ unsigned Cnt = 1;
+ for (Value *Ptr : VL.drop_front()) {
+ bool Found = any_of(Bases, [&](auto &Base) {
+ std::optional<int> Diff =
+ getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE,
+ /*StrictCheck=*/true);
+ if (!Diff)
+ return false;
+
+ Base.second.emplace_back(Ptr, *Diff, Cnt++);
+ return true;
+ });
+
+ if (!Found) {
+ // If we haven't found enough to usefully cluster, return early.
+ if (Bases.size() > VL.size() / 2 - 1)
+ return false;
+
+ // Not found already - add a new Base
+ Bases[Ptr].emplace_back(Ptr, 0, Cnt++);
+ }
+ }
+
+ // For each of the bases sort the pointers by Offset and check if any of the
+ // base become consecutively allocated.
+ bool AnyConsecutive = false;
+ for (auto &Base : Bases) {
+ auto &Vec = Base.second;
+ if (Vec.size() > 1) {
+ llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X,
+ const std::tuple<Value *, int, unsigned> &Y) {
+ return std::get<1>(X) < std::get<1>(Y);
+ });
+ int InitialOffset = std::get<1>(Vec[0]);
+ AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](auto &P) {
+ return std::get<1>(P.value()) == int(P.index()) + InitialOffset;
+ });
+ }
+ }
+
+ // Fill SortedIndices array only if it looks worth-while to sort the ptrs.
+ SortedIndices.clear();
+ if (!AnyConsecutive)
+ return false;
+
+ for (auto &Base : Bases) {
+ for (auto &T : Base.second)
+ SortedIndices.push_back(std::get<2>(T));
+ }
+
+ assert(SortedIndices.size() == VL.size() &&
+ "Expected SortedIndices to be the size of VL");
+ return true;
+}
+
+std::optional<BoUpSLP::OrdersType>
+BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) {
+ assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.");
+ Type *ScalarTy = TE.Scalars[0]->getType();
+
+ SmallVector<Value *> Ptrs;
+ Ptrs.reserve(TE.Scalars.size());
+ for (Value *V : TE.Scalars) {
+ auto *L = dyn_cast<LoadInst>(V);
+ if (!L || !L->isSimple())
+ return std::nullopt;
+ Ptrs.push_back(L->getPointerOperand());
+ }
+
+ BoUpSLP::OrdersType Order;
+ if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order))
+ return Order;
+ return std::nullopt;
+}
+
+/// Check if two insertelement instructions are from the same buildvector.
+static bool areTwoInsertFromSameBuildVector(
+ InsertElementInst *VU, InsertElementInst *V,
+ function_ref<Value *(InsertElementInst *)> GetBaseOperand) {
+ // Instructions must be from the same basic blocks.
+ if (VU->getParent() != V->getParent())
+ return false;
+ // Checks if 2 insertelements are from the same buildvector.
+ if (VU->getType() != V->getType())
+ return false;
+ // Multiple used inserts are separate nodes.
+ if (!VU->hasOneUse() && !V->hasOneUse())
+ return false;
+ auto *IE1 = VU;
+ auto *IE2 = V;
+ std::optional<unsigned> Idx1 = getInsertIndex(IE1);
+ std::optional<unsigned> Idx2 = getInsertIndex(IE2);
+ if (Idx1 == std::nullopt || Idx2 == std::nullopt)
+ return false;
+ // Go through the vector operand of insertelement instructions trying to find
+ // either VU as the original vector for IE2 or V as the original vector for
+ // IE1.
+ do {
+ if (IE2 == VU)
+ return VU->hasOneUse();
+ if (IE1 == V)
+ return V->hasOneUse();
+ if (IE1) {
+ if ((IE1 != VU && !IE1->hasOneUse()) ||
+ getInsertIndex(IE1).value_or(*Idx2) == *Idx2)
+ IE1 = nullptr;
+ else
+ IE1 = dyn_cast_or_null<InsertElementInst>(GetBaseOperand(IE1));
+ }
+ if (IE2) {
+ if ((IE2 != V && !IE2->hasOneUse()) ||
+ getInsertIndex(IE2).value_or(*Idx1) == *Idx1)
+ IE2 = nullptr;
+ else
+ IE2 = dyn_cast_or_null<InsertElementInst>(GetBaseOperand(IE2));
+ }
+ } while (IE1 || IE2);
+ return false;
+}
+
+std::optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE,
+ bool TopToBottom) {
+ // No need to reorder if need to shuffle reuses, still need to shuffle the
+ // node.
+ if (!TE.ReuseShuffleIndices.empty()) {
+ // Check if reuse shuffle indices can be improved by reordering.
+ // For this, check that reuse mask is "clustered", i.e. each scalar values
+ // is used once in each submask of size <number_of_scalars>.
+ // Example: 4 scalar values.
+ // ReuseShuffleIndices mask: 0, 1, 2, 3, 3, 2, 0, 1 - clustered.
+ // 0, 1, 2, 3, 3, 3, 1, 0 - not clustered, because
+ // element 3 is used twice in the second submask.
+ unsigned Sz = TE.Scalars.size();
+ if (!ShuffleVectorInst::isOneUseSingleSourceMask(TE.ReuseShuffleIndices,
+ Sz))
+ return std::nullopt;
+ unsigned VF = TE.getVectorFactor();
+ // Try build correct order for extractelement instructions.
+ SmallVector<int> ReusedMask(TE.ReuseShuffleIndices.begin(),
+ TE.ReuseShuffleIndices.end());
+ if (TE.getOpcode() == Instruction::ExtractElement && !TE.isAltShuffle() &&
+ all_of(TE.Scalars, [Sz](Value *V) {
+ std::optional<unsigned> Idx = getExtractIndex(cast<Instruction>(V));
+ return Idx && *Idx < Sz;
+ })) {
+ SmallVector<int> ReorderMask(Sz, UndefMaskElem);
+ if (TE.ReorderIndices.empty())
+ std::iota(ReorderMask.begin(), ReorderMask.end(), 0);
+ else
+ inversePermutation(TE.ReorderIndices, ReorderMask);
+ for (unsigned I = 0; I < VF; ++I) {
+ int &Idx = ReusedMask[I];
+ if (Idx == UndefMaskElem)
+ continue;
+ Value *V = TE.Scalars[ReorderMask[Idx]];
+ std::optional<unsigned> EI = getExtractIndex(cast<Instruction>(V));
+ Idx = std::distance(ReorderMask.begin(), find(ReorderMask, *EI));
+ }
+ }
+ // Build the order of the VF size, need to reorder reuses shuffles, they are
+ // always of VF size.
+ OrdersType ResOrder(VF);
+ std::iota(ResOrder.begin(), ResOrder.end(), 0);
+ auto *It = ResOrder.begin();
+ for (unsigned K = 0; K < VF; K += Sz) {
+ OrdersType CurrentOrder(TE.ReorderIndices);
+ SmallVector<int> SubMask{ArrayRef(ReusedMask).slice(K, Sz)};
+ if (SubMask.front() == UndefMaskElem)
+ std::iota(SubMask.begin(), SubMask.end(), 0);
+ reorderOrder(CurrentOrder, SubMask);
+ transform(CurrentOrder, It, [K](unsigned Pos) { return Pos + K; });
+ std::advance(It, Sz);
+ }
+ if (all_of(enumerate(ResOrder),
+ [](const auto &Data) { return Data.index() == Data.value(); }))
+ return {}; // Use identity order.
+ return ResOrder;
+ }
+ if (TE.State == TreeEntry::Vectorize &&
+ (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) ||
+ (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) &&
+ !TE.isAltShuffle())
+ return TE.ReorderIndices;
+ if (TE.State == TreeEntry::Vectorize && TE.getOpcode() == Instruction::PHI) {
+ auto PHICompare = [](llvm::Value *V1, llvm::Value *V2) {
+ if (!V1->hasOneUse() || !V2->hasOneUse())
+ return false;
+ auto *FirstUserOfPhi1 = cast<Instruction>(*V1->user_begin());
+ auto *FirstUserOfPhi2 = cast<Instruction>(*V2->user_begin());
+ if (auto *IE1 = dyn_cast<InsertElementInst>(FirstUserOfPhi1))
+ if (auto *IE2 = dyn_cast<InsertElementInst>(FirstUserOfPhi2)) {
+ if (!areTwoInsertFromSameBuildVector(
+ IE1, IE2,
+ [](InsertElementInst *II) { return II->getOperand(0); }))
+ return false;
+ std::optional<unsigned> Idx1 = getInsertIndex(IE1);
+ std::optional<unsigned> Idx2 = getInsertIndex(IE2);
+ if (Idx1 == std::nullopt || Idx2 == std::nullopt)
+ return false;
+ return *Idx1 < *Idx2;
+ }
+ if (auto *EE1 = dyn_cast<ExtractElementInst>(FirstUserOfPhi1))
+ if (auto *EE2 = dyn_cast<ExtractElementInst>(FirstUserOfPhi2)) {
+ if (EE1->getOperand(0) != EE2->getOperand(0))
+ return false;
+ std::optional<unsigned> Idx1 = getExtractIndex(EE1);
+ std::optional<unsigned> Idx2 = getExtractIndex(EE2);
+ if (Idx1 == std::nullopt || Idx2 == std::nullopt)
+ return false;
+ return *Idx1 < *Idx2;
+ }
+ return false;
+ };
+ auto IsIdentityOrder = [](const OrdersType &Order) {
+ for (unsigned Idx : seq<unsigned>(0, Order.size()))
+ if (Idx != Order[Idx])
+ return false;
+ return true;
+ };
+ if (!TE.ReorderIndices.empty())
+ return TE.ReorderIndices;
+ DenseMap<Value *, unsigned> PhiToId;
+ SmallVector<Value *, 4> Phis;
+ OrdersType ResOrder(TE.Scalars.size());
+ for (unsigned Id = 0, Sz = TE.Scalars.size(); Id < Sz; ++Id) {
+ PhiToId[TE.Scalars[Id]] = Id;
+ Phis.push_back(TE.Scalars[Id]);
+ }
+ llvm::stable_sort(Phis, PHICompare);
+ for (unsigned Id = 0, Sz = Phis.size(); Id < Sz; ++Id)
+ ResOrder[Id] = PhiToId[Phis[Id]];
+ if (IsIdentityOrder(ResOrder))
+ return {};
+ return ResOrder;
+ }
+ if (TE.State == TreeEntry::NeedToGather) {
+ // TODO: add analysis of other gather nodes with extractelement
+ // instructions and other values/instructions, not only undefs.
+ if (((TE.getOpcode() == Instruction::ExtractElement &&
+ !TE.isAltShuffle()) ||
+ (all_of(TE.Scalars,
+ [](Value *V) {
+ return isa<UndefValue, ExtractElementInst>(V);
+ }) &&
+ any_of(TE.Scalars,
+ [](Value *V) { return isa<ExtractElementInst>(V); }))) &&
+ all_of(TE.Scalars,
+ [](Value *V) {
+ auto *EE = dyn_cast<ExtractElementInst>(V);
+ return !EE || isa<FixedVectorType>(EE->getVectorOperandType());
+ }) &&
+ allSameType(TE.Scalars)) {
+ // Check that gather of extractelements can be represented as
+ // just a shuffle of a single vector.
+ OrdersType CurrentOrder;
+ bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder);
+ if (Reuse || !CurrentOrder.empty()) {
+ if (!CurrentOrder.empty())
+ fixupOrderingIndices(CurrentOrder);
+ return CurrentOrder;
+ }
+ }
+ if (std::optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE))
+ return CurrentOrder;
+ if (TE.Scalars.size() >= 4)
+ if (std::optional<OrdersType> Order = findPartiallyOrderedLoads(TE))
+ return Order;
+ }
+ return std::nullopt;
+}
+
+/// Checks if the given mask is a "clustered" mask with the same clusters of
+/// size \p Sz, which are not identity submasks.
+static bool isRepeatedNonIdentityClusteredMask(ArrayRef<int> Mask,
+ unsigned Sz) {
+ ArrayRef<int> FirstCluster = Mask.slice(0, Sz);
+ if (ShuffleVectorInst::isIdentityMask(FirstCluster))
+ return false;
+ for (unsigned I = Sz, E = Mask.size(); I < E; I += Sz) {
+ ArrayRef<int> Cluster = Mask.slice(I, Sz);
+ if (Cluster != FirstCluster)
+ return false;
+ }
+ return true;
+}
+
+void BoUpSLP::reorderNodeWithReuses(TreeEntry &TE, ArrayRef<int> Mask) const {
+ // Reorder reuses mask.
+ reorderReuses(TE.ReuseShuffleIndices, Mask);
+ const unsigned Sz = TE.Scalars.size();
+ // For vectorized and non-clustered reused no need to do anything else.
+ if (TE.State != TreeEntry::NeedToGather ||
+ !ShuffleVectorInst::isOneUseSingleSourceMask(TE.ReuseShuffleIndices,
+ Sz) ||
+ !isRepeatedNonIdentityClusteredMask(TE.ReuseShuffleIndices, Sz))
+ return;
+ SmallVector<int> NewMask;
+ inversePermutation(TE.ReorderIndices, NewMask);
+ addMask(NewMask, TE.ReuseShuffleIndices);
+ // Clear reorder since it is going to be applied to the new mask.
+ TE.ReorderIndices.clear();
+ // Try to improve gathered nodes with clustered reuses, if possible.
+ ArrayRef<int> Slice = ArrayRef(NewMask).slice(0, Sz);
+ SmallVector<unsigned> NewOrder(Slice.begin(), Slice.end());
+ inversePermutation(NewOrder, NewMask);
+ reorderScalars(TE.Scalars, NewMask);
+ // Fill the reuses mask with the identity submasks.
+ for (auto *It = TE.ReuseShuffleIndices.begin(),
+ *End = TE.ReuseShuffleIndices.end();
+ It != End; std::advance(It, Sz))
+ std::iota(It, std::next(It, Sz), 0);
+}
+
+void BoUpSLP::reorderTopToBottom() {
+ // Maps VF to the graph nodes.
+ DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries;
+ // ExtractElement gather nodes which can be vectorized and need to handle
+ // their ordering.
+ DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
+
+ // Phi nodes can have preferred ordering based on their result users
+ DenseMap<const TreeEntry *, OrdersType> PhisToOrders;
+
+ // AltShuffles can also have a preferred ordering that leads to fewer
+ // instructions, e.g., the addsub instruction in x86.
+ DenseMap<const TreeEntry *, OrdersType> AltShufflesToOrders;
+
+ // Maps a TreeEntry to the reorder indices of external users.
+ DenseMap<const TreeEntry *, SmallVector<OrdersType, 1>>
+ ExternalUserReorderMap;
+ // FIXME: Workaround for syntax error reported by MSVC buildbots.
+ TargetTransformInfo &TTIRef = *TTI;
+ // Find all reorderable nodes with the given VF.
+ // Currently the are vectorized stores,loads,extracts + some gathering of
+ // extracts.
+ for_each(VectorizableTree, [this, &TTIRef, &VFToOrderedEntries,
+ &GathersToOrders, &ExternalUserReorderMap,
+ &AltShufflesToOrders, &PhisToOrders](
+ const std::unique_ptr<TreeEntry> &TE) {
+ // Look for external users that will probably be vectorized.
+ SmallVector<OrdersType, 1> ExternalUserReorderIndices =
+ findExternalStoreUsersReorderIndices(TE.get());
+ if (!ExternalUserReorderIndices.empty()) {
+ VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get());
+ ExternalUserReorderMap.try_emplace(TE.get(),
+ std::move(ExternalUserReorderIndices));
+ }
+
+ // Patterns like [fadd,fsub] can be combined into a single instruction in
+ // x86. Reordering them into [fsub,fadd] blocks this pattern. So we need
+ // to take into account their order when looking for the most used order.
+ if (TE->isAltShuffle()) {
+ VectorType *VecTy =
+ FixedVectorType::get(TE->Scalars[0]->getType(), TE->Scalars.size());
+ unsigned Opcode0 = TE->getOpcode();
+ unsigned Opcode1 = TE->getAltOpcode();
+ // The opcode mask selects between the two opcodes.
+ SmallBitVector OpcodeMask(TE->Scalars.size(), false);
+ for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size()))
+ if (cast<Instruction>(TE->Scalars[Lane])->getOpcode() == Opcode1)
+ OpcodeMask.set(Lane);
+ // If this pattern is supported by the target then we consider the order.
+ if (TTIRef.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask)) {
+ VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get());
+ AltShufflesToOrders.try_emplace(TE.get(), OrdersType());
+ }
+ // TODO: Check the reverse order too.
+ }
+
+ if (std::optional<OrdersType> CurrentOrder =
+ getReorderingData(*TE, /*TopToBottom=*/true)) {
+ // Do not include ordering for nodes used in the alt opcode vectorization,
+ // better to reorder them during bottom-to-top stage. If follow the order
+ // here, it causes reordering of the whole graph though actually it is
+ // profitable just to reorder the subgraph that starts from the alternate
+ // opcode vectorization node. Such nodes already end-up with the shuffle
+ // instruction and it is just enough to change this shuffle rather than
+ // rotate the scalars for the whole graph.
+ unsigned Cnt = 0;
+ const TreeEntry *UserTE = TE.get();
+ while (UserTE && Cnt < RecursionMaxDepth) {
+ if (UserTE->UserTreeIndices.size() != 1)
+ break;
+ if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) {
+ return EI.UserTE->State == TreeEntry::Vectorize &&
+ EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0;
+ }))
+ return;
+ UserTE = UserTE->UserTreeIndices.back().UserTE;
+ ++Cnt;
+ }
+ VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get());
+ if (TE->State != TreeEntry::Vectorize || !TE->ReuseShuffleIndices.empty())
+ GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
+ if (TE->State == TreeEntry::Vectorize &&
+ TE->getOpcode() == Instruction::PHI)
+ PhisToOrders.try_emplace(TE.get(), *CurrentOrder);
+ }
+ });
+
+ // Reorder the graph nodes according to their vectorization factor.
+ for (unsigned VF = VectorizableTree.front()->getVectorFactor(); VF > 1;
+ VF /= 2) {
+ auto It = VFToOrderedEntries.find(VF);
+ if (It == VFToOrderedEntries.end())
+ continue;
+ // Try to find the most profitable order. We just are looking for the most
+ // used order and reorder scalar elements in the nodes according to this
+ // mostly used order.
+ ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef();
+ // All operands are reordered and used only in this node - propagate the
+ // most used order to the user node.
+ MapVector<OrdersType, unsigned,
+ DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
+ OrdersUses;
+ SmallPtrSet<const TreeEntry *, 4> VisitedOps;
+ for (const TreeEntry *OpTE : OrderedEntries) {
+ // No need to reorder this nodes, still need to extend and to use shuffle,
+ // just need to merge reordering shuffle and the reuse shuffle.
+ if (!OpTE->ReuseShuffleIndices.empty() && !GathersToOrders.count(OpTE))
+ continue;
+ // Count number of orders uses.
+ const auto &Order = [OpTE, &GathersToOrders, &AltShufflesToOrders,
+ &PhisToOrders]() -> const OrdersType & {
+ if (OpTE->State == TreeEntry::NeedToGather ||
+ !OpTE->ReuseShuffleIndices.empty()) {
+ auto It = GathersToOrders.find(OpTE);
+ if (It != GathersToOrders.end())
+ return It->second;
+ }
+ if (OpTE->isAltShuffle()) {
+ auto It = AltShufflesToOrders.find(OpTE);
+ if (It != AltShufflesToOrders.end())
+ return It->second;
+ }
+ if (OpTE->State == TreeEntry::Vectorize &&
+ OpTE->getOpcode() == Instruction::PHI) {
+ auto It = PhisToOrders.find(OpTE);
+ if (It != PhisToOrders.end())
+ return It->second;
+ }
+ return OpTE->ReorderIndices;
+ }();
+ // First consider the order of the external scalar users.
+ auto It = ExternalUserReorderMap.find(OpTE);
+ if (It != ExternalUserReorderMap.end()) {
+ const auto &ExternalUserReorderIndices = It->second;
+ // If the OpTE vector factor != number of scalars - use natural order,
+ // it is an attempt to reorder node with reused scalars but with
+ // external uses.
+ if (OpTE->getVectorFactor() != OpTE->Scalars.size()) {
+ OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second +=
+ ExternalUserReorderIndices.size();
+ } else {
+ for (const OrdersType &ExtOrder : ExternalUserReorderIndices)
+ ++OrdersUses.insert(std::make_pair(ExtOrder, 0)).first->second;
+ }
+ // No other useful reorder data in this entry.
+ if (Order.empty())
+ continue;
+ }
+ // Stores actually store the mask, not the order, need to invert.
+ if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
+ OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
+ SmallVector<int> Mask;
+ inversePermutation(Order, Mask);
+ unsigned E = Order.size();
+ OrdersType CurrentOrder(E, E);
+ transform(Mask, CurrentOrder.begin(), [E](int Idx) {
+ return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
+ });
+ fixupOrderingIndices(CurrentOrder);
+ ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second;
+ } else {
+ ++OrdersUses.insert(std::make_pair(Order, 0)).first->second;
+ }
+ }
+ // Set order of the user node.
+ if (OrdersUses.empty())
+ continue;
+ // Choose the most used order.
+ ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
+ unsigned Cnt = OrdersUses.front().second;
+ for (const auto &Pair : drop_begin(OrdersUses)) {
+ if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
+ BestOrder = Pair.first;
+ Cnt = Pair.second;
+ }
+ }
+ // Set order of the user node.
+ if (BestOrder.empty())
+ continue;
+ SmallVector<int> Mask;
+ inversePermutation(BestOrder, Mask);
+ SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
+ unsigned E = BestOrder.size();
+ transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
+ return I < E ? static_cast<int>(I) : UndefMaskElem;
+ });
+ // Do an actual reordering, if profitable.
+ for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
+ // Just do the reordering for the nodes with the given VF.
+ if (TE->Scalars.size() != VF) {
+ if (TE->ReuseShuffleIndices.size() == VF) {
+ // Need to reorder the reuses masks of the operands with smaller VF to
+ // be able to find the match between the graph nodes and scalar
+ // operands of the given node during vectorization/cost estimation.
+ assert(all_of(TE->UserTreeIndices,
+ [VF, &TE](const EdgeInfo &EI) {
+ return EI.UserTE->Scalars.size() == VF ||
+ EI.UserTE->Scalars.size() ==
+ TE->Scalars.size();
+ }) &&
+ "All users must be of VF size.");
+ // Update ordering of the operands with the smaller VF than the given
+ // one.
+ reorderNodeWithReuses(*TE, Mask);
+ }
+ continue;
+ }
+ if (TE->State == TreeEntry::Vectorize &&
+ isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst,
+ InsertElementInst>(TE->getMainOp()) &&
+ !TE->isAltShuffle()) {
+ // Build correct orders for extract{element,value}, loads and
+ // stores.
+ reorderOrder(TE->ReorderIndices, Mask);
+ if (isa<InsertElementInst, StoreInst>(TE->getMainOp()))
+ TE->reorderOperands(Mask);
+ } else {
+ // Reorder the node and its operands.
+ TE->reorderOperands(Mask);
+ assert(TE->ReorderIndices.empty() &&
+ "Expected empty reorder sequence.");
+ reorderScalars(TE->Scalars, Mask);
+ }
+ if (!TE->ReuseShuffleIndices.empty()) {
+ // Apply reversed order to keep the original ordering of the reused
+ // elements to avoid extra reorder indices shuffling.
+ OrdersType CurrentOrder;
+ reorderOrder(CurrentOrder, MaskOrder);
+ SmallVector<int> NewReuses;
+ inversePermutation(CurrentOrder, NewReuses);
+ addMask(NewReuses, TE->ReuseShuffleIndices);
+ TE->ReuseShuffleIndices.swap(NewReuses);
+ }
+ }
+ }
+}
+
+bool BoUpSLP::canReorderOperands(
+ TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges,
+ ArrayRef<TreeEntry *> ReorderableGathers,
+ SmallVectorImpl<TreeEntry *> &GatherOps) {
+ for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) {
+ if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) {
+ return OpData.first == I &&
+ OpData.second->State == TreeEntry::Vectorize;
+ }))
+ continue;
+ if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) {
+ // Do not reorder if operand node is used by many user nodes.
+ if (any_of(TE->UserTreeIndices,
+ [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; }))
+ return false;
+ // Add the node to the list of the ordered nodes with the identity
+ // order.
+ Edges.emplace_back(I, TE);
+ // Add ScatterVectorize nodes to the list of operands, where just
+ // reordering of the scalars is required. Similar to the gathers, so
+ // simply add to the list of gathered ops.
+ // If there are reused scalars, process this node as a regular vectorize
+ // node, just reorder reuses mask.
+ if (TE->State != TreeEntry::Vectorize && TE->ReuseShuffleIndices.empty())
+ GatherOps.push_back(TE);
+ continue;
+ }
+ TreeEntry *Gather = nullptr;
+ if (count_if(ReorderableGathers,
+ [&Gather, UserTE, I](TreeEntry *TE) {
+ assert(TE->State != TreeEntry::Vectorize &&
+ "Only non-vectorized nodes are expected.");
+ if (any_of(TE->UserTreeIndices,
+ [UserTE, I](const EdgeInfo &EI) {
+ return EI.UserTE == UserTE && EI.EdgeIdx == I;
+ })) {
+ assert(TE->isSame(UserTE->getOperand(I)) &&
+ "Operand entry does not match operands.");
+ Gather = TE;
+ return true;
+ }
+ return false;
+ }) > 1 &&
+ !all_of(UserTE->getOperand(I), isConstant))
+ return false;
+ if (Gather)
+ GatherOps.push_back(Gather);
+ }
+ return true;
+}
+
+void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) {
+ SetVector<TreeEntry *> OrderedEntries;
+ DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
+ // Find all reorderable leaf nodes with the given VF.
+ // Currently the are vectorized loads,extracts without alternate operands +
+ // some gathering of extracts.
+ SmallVector<TreeEntry *> NonVectorized;
+ for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders,
+ &NonVectorized](
+ const std::unique_ptr<TreeEntry> &TE) {
+ if (TE->State != TreeEntry::Vectorize)
+ NonVectorized.push_back(TE.get());
+ if (std::optional<OrdersType> CurrentOrder =
+ getReorderingData(*TE, /*TopToBottom=*/false)) {
+ OrderedEntries.insert(TE.get());
+ if (TE->State != TreeEntry::Vectorize || !TE->ReuseShuffleIndices.empty())
+ GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
+ }
+ });
+
+ // 1. Propagate order to the graph nodes, which use only reordered nodes.
+ // I.e., if the node has operands, that are reordered, try to make at least
+ // one operand order in the natural order and reorder others + reorder the
+ // user node itself.
+ SmallPtrSet<const TreeEntry *, 4> Visited;
+ while (!OrderedEntries.empty()) {
+ // 1. Filter out only reordered nodes.
+ // 2. If the entry has multiple uses - skip it and jump to the next node.
+ DenseMap<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users;
+ SmallVector<TreeEntry *> Filtered;
+ for (TreeEntry *TE : OrderedEntries) {
+ if (!(TE->State == TreeEntry::Vectorize ||
+ (TE->State == TreeEntry::NeedToGather &&
+ GathersToOrders.count(TE))) ||
+ TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
+ !all_of(drop_begin(TE->UserTreeIndices),
+ [TE](const EdgeInfo &EI) {
+ return EI.UserTE == TE->UserTreeIndices.front().UserTE;
+ }) ||
+ !Visited.insert(TE).second) {
+ Filtered.push_back(TE);
+ continue;
+ }
+ // Build a map between user nodes and their operands order to speedup
+ // search. The graph currently does not provide this dependency directly.
+ for (EdgeInfo &EI : TE->UserTreeIndices) {
+ TreeEntry *UserTE = EI.UserTE;
+ auto It = Users.find(UserTE);
+ if (It == Users.end())
+ It = Users.insert({UserTE, {}}).first;
+ It->second.emplace_back(EI.EdgeIdx, TE);
+ }
+ }
+ // Erase filtered entries.
+ for_each(Filtered,
+ [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); });
+ SmallVector<
+ std::pair<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>>>
+ UsersVec(Users.begin(), Users.end());
+ sort(UsersVec, [](const auto &Data1, const auto &Data2) {
+ return Data1.first->Idx > Data2.first->Idx;
+ });
+ for (auto &Data : UsersVec) {
+ // Check that operands are used only in the User node.
+ SmallVector<TreeEntry *> GatherOps;
+ if (!canReorderOperands(Data.first, Data.second, NonVectorized,
+ GatherOps)) {
+ for_each(Data.second,
+ [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
+ OrderedEntries.remove(Op.second);
+ });
+ continue;
+ }
+ // All operands are reordered and used only in this node - propagate the
+ // most used order to the user node.
+ MapVector<OrdersType, unsigned,
+ DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
+ OrdersUses;
+ // Do the analysis for each tree entry only once, otherwise the order of
+ // the same node my be considered several times, though might be not
+ // profitable.
+ SmallPtrSet<const TreeEntry *, 4> VisitedOps;
+ SmallPtrSet<const TreeEntry *, 4> VisitedUsers;
+ for (const auto &Op : Data.second) {
+ TreeEntry *OpTE = Op.second;
+ if (!VisitedOps.insert(OpTE).second)
+ continue;
+ if (!OpTE->ReuseShuffleIndices.empty() && !GathersToOrders.count(OpTE))
+ continue;
+ const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
+ if (OpTE->State == TreeEntry::NeedToGather ||
+ !OpTE->ReuseShuffleIndices.empty())
+ return GathersToOrders.find(OpTE)->second;
+ return OpTE->ReorderIndices;
+ }();
+ unsigned NumOps = count_if(
+ Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) {
+ return P.second == OpTE;
+ });
+ // Stores actually store the mask, not the order, need to invert.
+ if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
+ OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
+ SmallVector<int> Mask;
+ inversePermutation(Order, Mask);
+ unsigned E = Order.size();
+ OrdersType CurrentOrder(E, E);
+ transform(Mask, CurrentOrder.begin(), [E](int Idx) {
+ return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
+ });
+ fixupOrderingIndices(CurrentOrder);
+ OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second +=
+ NumOps;
+ } else {
+ OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps;
+ }
+ auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0));
+ const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders](
+ const TreeEntry *TE) {
+ if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
+ (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) ||
+ (IgnoreReorder && TE->Idx == 0))
+ return true;
+ if (TE->State == TreeEntry::NeedToGather) {
+ auto It = GathersToOrders.find(TE);
+ if (It != GathersToOrders.end())
+ return !It->second.empty();
+ return true;
+ }
+ return false;
+ };
+ for (const EdgeInfo &EI : OpTE->UserTreeIndices) {
+ TreeEntry *UserTE = EI.UserTE;
+ if (!VisitedUsers.insert(UserTE).second)
+ continue;
+ // May reorder user node if it requires reordering, has reused
+ // scalars, is an alternate op vectorize node or its op nodes require
+ // reordering.
+ if (AllowsReordering(UserTE))
+ continue;
+ // Check if users allow reordering.
+ // Currently look up just 1 level of operands to avoid increase of
+ // the compile time.
+ // Profitable to reorder if definitely more operands allow
+ // reordering rather than those with natural order.
+ ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE];
+ if (static_cast<unsigned>(count_if(
+ Ops, [UserTE, &AllowsReordering](
+ const std::pair<unsigned, TreeEntry *> &Op) {
+ return AllowsReordering(Op.second) &&
+ all_of(Op.second->UserTreeIndices,
+ [UserTE](const EdgeInfo &EI) {
+ return EI.UserTE == UserTE;
+ });
+ })) <= Ops.size() / 2)
+ ++Res.first->second;
+ }
+ }
+ // If no orders - skip current nodes and jump to the next one, if any.
+ if (OrdersUses.empty()) {
+ for_each(Data.second,
+ [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
+ OrderedEntries.remove(Op.second);
+ });
+ continue;
+ }
+ // Choose the best order.
+ ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
+ unsigned Cnt = OrdersUses.front().second;
+ for (const auto &Pair : drop_begin(OrdersUses)) {
+ if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
+ BestOrder = Pair.first;
+ Cnt = Pair.second;
+ }
+ }
+ // Set order of the user node (reordering of operands and user nodes).
+ if (BestOrder.empty()) {
+ for_each(Data.second,
+ [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
+ OrderedEntries.remove(Op.second);
+ });
+ continue;
+ }
+ // Erase operands from OrderedEntries list and adjust their orders.
+ VisitedOps.clear();
+ SmallVector<int> Mask;
+ inversePermutation(BestOrder, Mask);
+ SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
+ unsigned E = BestOrder.size();
+ transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
+ return I < E ? static_cast<int>(I) : UndefMaskElem;
+ });
+ for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) {
+ TreeEntry *TE = Op.second;
+ OrderedEntries.remove(TE);
+ if (!VisitedOps.insert(TE).second)
+ continue;
+ if (TE->ReuseShuffleIndices.size() == BestOrder.size()) {
+ reorderNodeWithReuses(*TE, Mask);
+ continue;
+ }
+ // Gathers are processed separately.
+ if (TE->State != TreeEntry::Vectorize)
+ continue;
+ assert((BestOrder.size() == TE->ReorderIndices.size() ||
+ TE->ReorderIndices.empty()) &&
+ "Non-matching sizes of user/operand entries.");
+ reorderOrder(TE->ReorderIndices, Mask);
+ if (IgnoreReorder && TE == VectorizableTree.front().get())
+ IgnoreReorder = false;
+ }
+ // For gathers just need to reorder its scalars.
+ for (TreeEntry *Gather : GatherOps) {
+ assert(Gather->ReorderIndices.empty() &&
+ "Unexpected reordering of gathers.");
+ if (!Gather->ReuseShuffleIndices.empty()) {
+ // Just reorder reuses indices.
+ reorderReuses(Gather->ReuseShuffleIndices, Mask);
+ continue;
+ }
+ reorderScalars(Gather->Scalars, Mask);
+ OrderedEntries.remove(Gather);
+ }
+ // Reorder operands of the user node and set the ordering for the user
+ // node itself.
+ if (Data.first->State != TreeEntry::Vectorize ||
+ !isa<ExtractElementInst, ExtractValueInst, LoadInst>(
+ Data.first->getMainOp()) ||
+ Data.first->isAltShuffle())
+ Data.first->reorderOperands(Mask);
+ if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) ||
+ Data.first->isAltShuffle()) {
+ reorderScalars(Data.first->Scalars, Mask);
+ reorderOrder(Data.first->ReorderIndices, MaskOrder);
+ if (Data.first->ReuseShuffleIndices.empty() &&
+ !Data.first->ReorderIndices.empty() &&
+ !Data.first->isAltShuffle()) {
+ // Insert user node to the list to try to sink reordering deeper in
+ // the graph.
+ OrderedEntries.insert(Data.first);
+ }
+ } else {
+ reorderOrder(Data.first->ReorderIndices, Mask);
+ }
+ }
+ }
+ // If the reordering is unnecessary, just remove the reorder.
+ if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() &&
+ VectorizableTree.front()->ReuseShuffleIndices.empty())
+ VectorizableTree.front()->ReorderIndices.clear();
+}
+
+void BoUpSLP::buildExternalUses(
+ const ExtraValueToDebugLocsMap &ExternallyUsedValues) {
+ // Collect the values that we need to extract from the tree.
+ for (auto &TEPtr : VectorizableTree) {
+ TreeEntry *Entry = TEPtr.get();
+
+ // No need to handle users of gathered values.
+ if (Entry->State == TreeEntry::NeedToGather)
+ continue;
+
+ // For each lane:
+ for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
+ Value *Scalar = Entry->Scalars[Lane];
+ int FoundLane = Entry->findLaneForValue(Scalar);
+
+ // Check if the scalar is externally used as an extra arg.
+ auto ExtI = ExternallyUsedValues.find(Scalar);
+ if (ExtI != ExternallyUsedValues.end()) {
+ LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
+ << Lane << " from " << *Scalar << ".\n");
+ ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
+ }
+ for (User *U : Scalar->users()) {
+ LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
+
+ Instruction *UserInst = dyn_cast<Instruction>(U);
+ if (!UserInst)
+ continue;
+
+ if (isDeleted(UserInst))
+ continue;
+
+ // Skip in-tree scalars that become vectors
+ if (TreeEntry *UseEntry = getTreeEntry(U)) {
+ Value *UseScalar = UseEntry->Scalars[0];
+ // Some in-tree scalars will remain as scalar in vectorized
+ // instructions. If that is the case, the one in Lane 0 will
+ // be used.
+ if (UseScalar != U ||
+ UseEntry->State == TreeEntry::ScatterVectorize ||
+ !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
+ LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
+ << ".\n");
+ assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
+ continue;
+ }
+ }
+
+ // Ignore users in the user ignore list.
+ if (UserIgnoreList && UserIgnoreList->contains(UserInst))
+ continue;
+
+ LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
+ << Lane << " from " << *Scalar << ".\n");
+ ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
+ }
+ }
+ }
+}
+
+DenseMap<Value *, SmallVector<StoreInst *, 4>>
+BoUpSLP::collectUserStores(const BoUpSLP::TreeEntry *TE) const {
+ DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap;
+ for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) {
+ Value *V = TE->Scalars[Lane];
+ // To save compilation time we don't visit if we have too many users.
+ static constexpr unsigned UsersLimit = 4;
+ if (V->hasNUsesOrMore(UsersLimit))
+ break;
+
+ // Collect stores per pointer object.
+ for (User *U : V->users()) {
+ auto *SI = dyn_cast<StoreInst>(U);
+ if (SI == nullptr || !SI->isSimple() ||
+ !isValidElementType(SI->getValueOperand()->getType()))
+ continue;
+ // Skip entry if already
+ if (getTreeEntry(U))
+ continue;
+
+ Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
+ auto &StoresVec = PtrToStoresMap[Ptr];
+ // For now just keep one store per pointer object per lane.
+ // TODO: Extend this to support multiple stores per pointer per lane
+ if (StoresVec.size() > Lane)
+ continue;
+ // Skip if in different BBs.
+ if (!StoresVec.empty() &&
+ SI->getParent() != StoresVec.back()->getParent())
+ continue;
+ // Make sure that the stores are of the same type.
+ if (!StoresVec.empty() &&
+ SI->getValueOperand()->getType() !=
+ StoresVec.back()->getValueOperand()->getType())
+ continue;
+ StoresVec.push_back(SI);
+ }
+ }
+ return PtrToStoresMap;
+}
+
+bool BoUpSLP::canFormVector(const SmallVector<StoreInst *, 4> &StoresVec,
+ OrdersType &ReorderIndices) const {
+ // We check whether the stores in StoreVec can form a vector by sorting them
+ // and checking whether they are consecutive.
+
+ // To avoid calling getPointersDiff() while sorting we create a vector of
+ // pairs {store, offset from first} and sort this instead.
+ SmallVector<std::pair<StoreInst *, int>, 4> StoreOffsetVec(StoresVec.size());
+ StoreInst *S0 = StoresVec[0];
+ StoreOffsetVec[0] = {S0, 0};
+ Type *S0Ty = S0->getValueOperand()->getType();
+ Value *S0Ptr = S0->getPointerOperand();
+ for (unsigned Idx : seq<unsigned>(1, StoresVec.size())) {
+ StoreInst *SI = StoresVec[Idx];
+ std::optional<int> Diff =
+ getPointersDiff(S0Ty, S0Ptr, SI->getValueOperand()->getType(),
+ SI->getPointerOperand(), *DL, *SE,
+ /*StrictCheck=*/true);
+ // We failed to compare the pointers so just abandon this StoresVec.
+ if (!Diff)
+ return false;
+ StoreOffsetVec[Idx] = {StoresVec[Idx], *Diff};
+ }
+
+ // Sort the vector based on the pointers. We create a copy because we may
+ // need the original later for calculating the reorder (shuffle) indices.
+ stable_sort(StoreOffsetVec, [](const std::pair<StoreInst *, int> &Pair1,
+ const std::pair<StoreInst *, int> &Pair2) {
+ int Offset1 = Pair1.second;
+ int Offset2 = Pair2.second;
+ return Offset1 < Offset2;
+ });
+
+ // Check if the stores are consecutive by checking if their difference is 1.
+ for (unsigned Idx : seq<unsigned>(1, StoreOffsetVec.size()))
+ if (StoreOffsetVec[Idx].second != StoreOffsetVec[Idx-1].second + 1)
+ return false;
+
+ // Calculate the shuffle indices according to their offset against the sorted
+ // StoreOffsetVec.
+ ReorderIndices.reserve(StoresVec.size());
+ for (StoreInst *SI : StoresVec) {
+ unsigned Idx = find_if(StoreOffsetVec,
+ [SI](const std::pair<StoreInst *, int> &Pair) {
+ return Pair.first == SI;
+ }) -
+ StoreOffsetVec.begin();
+ ReorderIndices.push_back(Idx);
+ }
+ // Identity order (e.g., {0,1,2,3}) is modeled as an empty OrdersType in
+ // reorderTopToBottom() and reorderBottomToTop(), so we are following the
+ // same convention here.
+ auto IsIdentityOrder = [](const OrdersType &Order) {
+ for (unsigned Idx : seq<unsigned>(0, Order.size()))
+ if (Idx != Order[Idx])
+ return false;
+ return true;
+ };
+ if (IsIdentityOrder(ReorderIndices))
+ ReorderIndices.clear();
+
+ return true;
+}
+
+#ifndef NDEBUG
+LLVM_DUMP_METHOD static void dumpOrder(const BoUpSLP::OrdersType &Order) {
+ for (unsigned Idx : Order)
+ dbgs() << Idx << ", ";
+ dbgs() << "\n";
+}
+#endif
+
+SmallVector<BoUpSLP::OrdersType, 1>
+BoUpSLP::findExternalStoreUsersReorderIndices(TreeEntry *TE) const {
+ unsigned NumLanes = TE->Scalars.size();
+
+ DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap =
+ collectUserStores(TE);
+
+ // Holds the reorder indices for each candidate store vector that is a user of
+ // the current TreeEntry.
+ SmallVector<OrdersType, 1> ExternalReorderIndices;
+
+ // Now inspect the stores collected per pointer and look for vectorization
+ // candidates. For each candidate calculate the reorder index vector and push
+ // it into `ExternalReorderIndices`
+ for (const auto &Pair : PtrToStoresMap) {
+ auto &StoresVec = Pair.second;
+ // If we have fewer than NumLanes stores, then we can't form a vector.
+ if (StoresVec.size() != NumLanes)
+ continue;
+
+ // If the stores are not consecutive then abandon this StoresVec.
+ OrdersType ReorderIndices;
+ if (!canFormVector(StoresVec, ReorderIndices))
+ continue;
+
+ // We now know that the scalars in StoresVec can form a vector instruction,
+ // so set the reorder indices.
+ ExternalReorderIndices.push_back(ReorderIndices);
+ }
+ return ExternalReorderIndices;
+}
+
+void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
+ const SmallDenseSet<Value *> &UserIgnoreLst) {
+ deleteTree();
+ UserIgnoreList = &UserIgnoreLst;
+ if (!allSameType(Roots))
+ return;
+ buildTree_rec(Roots, 0, EdgeInfo());
+}
+
+void BoUpSLP::buildTree(ArrayRef<Value *> Roots) {
+ deleteTree();
+ if (!allSameType(Roots))
+ return;
+ buildTree_rec(Roots, 0, EdgeInfo());
+}
+
+/// \return true if the specified list of values has only one instruction that
+/// requires scheduling, false otherwise.
+#ifndef NDEBUG
+static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) {
+ Value *NeedsScheduling = nullptr;
+ for (Value *V : VL) {
+ if (doesNotNeedToBeScheduled(V))
+ continue;
+ if (!NeedsScheduling) {
+ NeedsScheduling = V;
+ continue;
+ }
+ return false;
+ }
+ return NeedsScheduling;
+}
+#endif
+
+/// Generates key/subkey pair for the given value to provide effective sorting
+/// of the values and better detection of the vectorizable values sequences. The
+/// keys/subkeys can be used for better sorting of the values themselves (keys)
+/// and in values subgroups (subkeys).
+static std::pair<size_t, size_t> generateKeySubkey(
+ Value *V, const TargetLibraryInfo *TLI,
+ function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator,
+ bool AllowAlternate) {
+ hash_code Key = hash_value(V->getValueID() + 2);
+ hash_code SubKey = hash_value(0);
+ // Sort the loads by the distance between the pointers.
+ if (auto *LI = dyn_cast<LoadInst>(V)) {
+ Key = hash_combine(LI->getType(), hash_value(Instruction::Load), Key);
+ if (LI->isSimple())
+ SubKey = hash_value(LoadsSubkeyGenerator(Key, LI));
+ else
+ Key = SubKey = hash_value(LI);
+ } else if (isVectorLikeInstWithConstOps(V)) {
+ // Sort extracts by the vector operands.
+ if (isa<ExtractElementInst, UndefValue>(V))
+ Key = hash_value(Value::UndefValueVal + 1);
+ if (auto *EI = dyn_cast<ExtractElementInst>(V)) {
+ if (!isUndefVector(EI->getVectorOperand()).all() &&
+ !isa<UndefValue>(EI->getIndexOperand()))
+ SubKey = hash_value(EI->getVectorOperand());
+ }
+ } else if (auto *I = dyn_cast<Instruction>(V)) {
+ // Sort other instructions just by the opcodes except for CMPInst.
+ // For CMP also sort by the predicate kind.
+ if ((isa<BinaryOperator, CastInst>(I)) &&
+ isValidForAlternation(I->getOpcode())) {
+ if (AllowAlternate)
+ Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0);
+ else
+ Key = hash_combine(hash_value(I->getOpcode()), Key);
+ SubKey = hash_combine(
+ hash_value(I->getOpcode()), hash_value(I->getType()),
+ hash_value(isa<BinaryOperator>(I)
+ ? I->getType()
+ : cast<CastInst>(I)->getOperand(0)->getType()));
+ // For casts, look through the only operand to improve compile time.
+ if (isa<CastInst>(I)) {
+ std::pair<size_t, size_t> OpVals =
+ generateKeySubkey(I->getOperand(0), TLI, LoadsSubkeyGenerator,
+ /*AllowAlternate=*/true);
+ Key = hash_combine(OpVals.first, Key);
+ SubKey = hash_combine(OpVals.first, SubKey);
+ }
+ } else if (auto *CI = dyn_cast<CmpInst>(I)) {
+ CmpInst::Predicate Pred = CI->getPredicate();
+ if (CI->isCommutative())
+ Pred = std::min(Pred, CmpInst::getInversePredicate(Pred));
+ CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred);
+ SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred),
+ hash_value(SwapPred),
+ hash_value(CI->getOperand(0)->getType()));
+ } else if (auto *Call = dyn_cast<CallInst>(I)) {
+ Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI);
+ if (isTriviallyVectorizable(ID)) {
+ SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID));
+ } else if (!VFDatabase(*Call).getMappings(*Call).empty()) {
+ SubKey = hash_combine(hash_value(I->getOpcode()),
+ hash_value(Call->getCalledFunction()));
+ } else {
+ Key = hash_combine(hash_value(Call), Key);
+ SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call));
+ }
+ for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos())
+ SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End),
+ hash_value(Op.Tag), SubKey);
+ } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) {
+ if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1)))
+ SubKey = hash_value(Gep->getPointerOperand());
+ else
+ SubKey = hash_value(Gep);
+ } else if (BinaryOperator::isIntDivRem(I->getOpcode()) &&
+ !isa<ConstantInt>(I->getOperand(1))) {
+ // Do not try to vectorize instructions with potentially high cost.
+ SubKey = hash_value(I);
+ } else {
+ SubKey = hash_value(I->getOpcode());
+ }
+ Key = hash_combine(hash_value(I->getParent()), Key);
+ }
+ return std::make_pair(Key, SubKey);
+}
+
+/// Checks if the specified instruction \p I is an alternate operation for
+/// the given \p MainOp and \p AltOp instructions.
+static bool isAlternateInstruction(const Instruction *I,
+ const Instruction *MainOp,
+ const Instruction *AltOp,
+ const TargetLibraryInfo &TLI);
+
+void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
+ const EdgeInfo &UserTreeIdx) {
+ assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
+
+ SmallVector<int> ReuseShuffleIndicies;
+ SmallVector<Value *> UniqueValues;
+ auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues,
+ &UserTreeIdx,
+ this](const InstructionsState &S) {
+ // Check that every instruction appears once in this bundle.
+ DenseMap<Value *, unsigned> UniquePositions(VL.size());
+ for (Value *V : VL) {
+ if (isConstant(V)) {
+ ReuseShuffleIndicies.emplace_back(
+ isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size());
+ UniqueValues.emplace_back(V);
+ continue;
+ }
+ auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
+ ReuseShuffleIndicies.emplace_back(Res.first->second);
+ if (Res.second)
+ UniqueValues.emplace_back(V);
+ }
+ size_t NumUniqueScalarValues = UniqueValues.size();
+ if (NumUniqueScalarValues == VL.size()) {
+ ReuseShuffleIndicies.clear();
+ } else {
+ LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
+ if (NumUniqueScalarValues <= 1 ||
+ (UniquePositions.size() == 1 && all_of(UniqueValues,
+ [](Value *V) {
+ return isa<UndefValue>(V) ||
+ !isConstant(V);
+ })) ||
+ !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
+ LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx);
+ return false;
+ }
+ VL = UniqueValues;
+ }
+ return true;
+ };
+
+ InstructionsState S = getSameOpcode(VL, *TLI);
+
+ // Gather if we hit the RecursionMaxDepth, unless this is a load (or z/sext of
+ // a load), in which case peek through to include it in the tree, without
+ // ballooning over-budget.
+ if (Depth >= RecursionMaxDepth &&
+ !(S.MainOp && isa<Instruction>(S.MainOp) && S.MainOp == S.AltOp &&
+ VL.size() >= 4 &&
+ (match(S.MainOp, m_Load(m_Value())) || all_of(VL, [&S](const Value *I) {
+ return match(I,
+ m_OneUse(m_ZExtOrSExt(m_OneUse(m_Load(m_Value()))))) &&
+ cast<Instruction>(I)->getOpcode() ==
+ cast<Instruction>(S.MainOp)->getOpcode();
+ })))) {
+ LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
+ if (TryToFindDuplicates(S))
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ return;
+ }
+
+ // Don't handle scalable vectors
+ if (S.getOpcode() == Instruction::ExtractElement &&
+ isa<ScalableVectorType>(
+ cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) {
+ LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n");
+ if (TryToFindDuplicates(S))
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ return;
+ }
+
+ // Don't handle vectors.
+ if (S.OpValue->getType()->isVectorTy() &&
+ !isa<InsertElementInst>(S.OpValue)) {
+ LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx);
+ return;
+ }
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
+ if (SI->getValueOperand()->getType()->isVectorTy()) {
+ LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx);
+ return;
+ }
+
+ // If all of the operands are identical or constant we have a simple solution.
+ // If we deal with insert/extract instructions, they all must have constant
+ // indices, otherwise we should gather them, not try to vectorize.
+ // If alternate op node with 2 elements with gathered operands - do not
+ // vectorize.
+ auto &&NotProfitableForVectorization = [&S, this,
+ Depth](ArrayRef<Value *> VL) {
+ if (!S.getOpcode() || !S.isAltShuffle() || VL.size() > 2)
+ return false;
+ if (VectorizableTree.size() < MinTreeSize)
+ return false;
+ if (Depth >= RecursionMaxDepth - 1)
+ return true;
+ // Check if all operands are extracts, part of vector node or can build a
+ // regular vectorize node.
+ SmallVector<unsigned, 2> InstsCount(VL.size(), 0);
+ for (Value *V : VL) {
+ auto *I = cast<Instruction>(V);
+ InstsCount.push_back(count_if(I->operand_values(), [](Value *Op) {
+ return isa<Instruction>(Op) || isVectorLikeInstWithConstOps(Op);
+ }));
+ }
+ bool IsCommutative = isCommutative(S.MainOp) || isCommutative(S.AltOp);
+ if ((IsCommutative &&
+ std::accumulate(InstsCount.begin(), InstsCount.end(), 0) < 2) ||
+ (!IsCommutative &&
+ all_of(InstsCount, [](unsigned ICnt) { return ICnt < 2; })))
+ return true;
+ assert(VL.size() == 2 && "Expected only 2 alternate op instructions.");
+ SmallVector<SmallVector<std::pair<Value *, Value *>>> Candidates;
+ auto *I1 = cast<Instruction>(VL.front());
+ auto *I2 = cast<Instruction>(VL.back());
+ for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op)
+ Candidates.emplace_back().emplace_back(I1->getOperand(Op),
+ I2->getOperand(Op));
+ if (static_cast<unsigned>(count_if(
+ Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) {
+ return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat);
+ })) >= S.MainOp->getNumOperands() / 2)
+ return false;
+ if (S.MainOp->getNumOperands() > 2)
+ return true;
+ if (IsCommutative) {
+ // Check permuted operands.
+ Candidates.clear();
+ for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op)
+ Candidates.emplace_back().emplace_back(I1->getOperand(Op),
+ I2->getOperand((Op + 1) % E));
+ if (any_of(
+ Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) {
+ return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat);
+ }))
+ return false;
+ }
+ return true;
+ };
+ SmallVector<unsigned> SortedIndices;
+ BasicBlock *BB = nullptr;
+ bool IsScatterVectorizeUserTE =
+ UserTreeIdx.UserTE &&
+ UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize;
+ bool AreAllSameInsts =
+ (S.getOpcode() && allSameBlock(VL)) ||
+ (S.OpValue->getType()->isPointerTy() && IsScatterVectorizeUserTE &&
+ VL.size() > 2 &&
+ all_of(VL,
+ [&BB](Value *V) {
+ auto *I = dyn_cast<GetElementPtrInst>(V);
+ if (!I)
+ return doesNotNeedToBeScheduled(V);
+ if (!BB)
+ BB = I->getParent();
+ return BB == I->getParent() && I->getNumOperands() == 2;
+ }) &&
+ BB &&
+ sortPtrAccesses(VL, UserTreeIdx.UserTE->getMainOp()->getType(), *DL, *SE,
+ SortedIndices));
+ if (!AreAllSameInsts || allConstant(VL) || isSplat(VL) ||
+ (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(
+ S.OpValue) &&
+ !all_of(VL, isVectorLikeInstWithConstOps)) ||
+ NotProfitableForVectorization(VL)) {
+ LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O, small shuffle. \n");
+ if (TryToFindDuplicates(S))
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ return;
+ }
+
+ // We now know that this is a vector of instructions of the same type from
+ // the same block.
+
+ // Don't vectorize ephemeral values.
+ if (!EphValues.empty()) {
+ for (Value *V : VL) {
+ if (EphValues.count(V)) {
+ LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
+ << ") is ephemeral.\n");
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx);
+ return;
+ }
+ }
+ }
+
+ // Check if this is a duplicate of another entry.
+ if (TreeEntry *E = getTreeEntry(S.OpValue)) {
+ LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
+ if (!E->isSame(VL)) {
+ LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
+ if (TryToFindDuplicates(S))
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ return;
+ }
+ // Record the reuse of the tree node. FIXME, currently this is only used to
+ // properly draw the graph rather than for the actual vectorization.
+ E->UserTreeIndices.push_back(UserTreeIdx);
+ LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
+ << ".\n");
+ return;
+ }
+
+ // Check that none of the instructions in the bundle are already in the tree.
+ for (Value *V : VL) {
+ if (!IsScatterVectorizeUserTE && !isa<Instruction>(V))
+ continue;
+ if (getTreeEntry(V)) {
+ LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
+ << ") is already in tree.\n");
+ if (TryToFindDuplicates(S))
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ return;
+ }
+ }
+
+ // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
+ if (UserIgnoreList && !UserIgnoreList->empty()) {
+ for (Value *V : VL) {
+ if (UserIgnoreList && UserIgnoreList->contains(V)) {
+ LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
+ if (TryToFindDuplicates(S))
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ return;
+ }
+ }
+ }
+
+ // Special processing for sorted pointers for ScatterVectorize node with
+ // constant indeces only.
+ if (AreAllSameInsts && UserTreeIdx.UserTE &&
+ UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize &&
+ !(S.getOpcode() && allSameBlock(VL))) {
+ assert(S.OpValue->getType()->isPointerTy() &&
+ count_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }) >=
+ 2 &&
+ "Expected pointers only.");
+ // Reset S to make it GetElementPtr kind of node.
+ const auto *It = find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); });
+ assert(It != VL.end() && "Expected at least one GEP.");
+ S = getSameOpcode(*It, *TLI);
+ }
+
+ // Check that all of the users of the scalars that we want to vectorize are
+ // schedulable.
+ auto *VL0 = cast<Instruction>(S.OpValue);
+ BB = VL0->getParent();
+
+ if (!DT->isReachableFromEntry(BB)) {
+ // Don't go into unreachable blocks. They may contain instructions with
+ // dependency cycles which confuse the final scheduling.
+ LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx);
+ return;
+ }
+
+ // Don't go into catchswitch blocks, which can happen with PHIs.
+ // Such blocks can only have PHIs and the catchswitch. There is no
+ // place to insert a shuffle if we need to, so just avoid that issue.
+ if (isa<CatchSwitchInst>(BB->getTerminator())) {
+ LLVM_DEBUG(dbgs() << "SLP: bundle in catchswitch block.\n");
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx);
+ return;
+ }
+
+ // Check that every instruction appears once in this bundle.
+ if (!TryToFindDuplicates(S))
+ return;
+
+ auto &BSRef = BlocksSchedules[BB];
+ if (!BSRef)
+ BSRef = std::make_unique<BlockScheduling>(BB);
+
+ BlockScheduling &BS = *BSRef;
+
+ std::optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
+#ifdef EXPENSIVE_CHECKS
+ // Make sure we didn't break any internal invariants
+ BS.verify();
+#endif
+ if (!Bundle) {
+ LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
+ assert((!BS.getScheduleData(VL0) ||
+ !BS.getScheduleData(VL0)->isPartOfBundle()) &&
+ "tryScheduleBundle should cancelScheduling on failure");
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ return;
+ }
+ LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
+
+ unsigned ShuffleOrOp = S.isAltShuffle() ?
+ (unsigned) Instruction::ShuffleVector : S.getOpcode();
+ switch (ShuffleOrOp) {
+ case Instruction::PHI: {
+ auto *PH = cast<PHINode>(VL0);
+
+ // Check for terminator values (e.g. invoke).
+ for (Value *V : VL)
+ for (Value *Incoming : cast<PHINode>(V)->incoming_values()) {
+ Instruction *Term = dyn_cast<Instruction>(Incoming);
+ if (Term && Term->isTerminator()) {
+ LLVM_DEBUG(dbgs()
+ << "SLP: Need to swizzle PHINodes (terminator use).\n");
+ BS.cancelScheduling(VL, VL0);
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ return;
+ }
+ }
+
+ TreeEntry *TE =
+ newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
+ LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
+
+ // Keeps the reordered operands to avoid code duplication.
+ SmallVector<ValueList, 2> OperandsVec;
+ for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
+ if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
+ ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
+ TE->setOperand(I, Operands);
+ OperandsVec.push_back(Operands);
+ continue;
+ }
+ ValueList Operands;
+ // Prepare the operand vector.
+ for (Value *V : VL)
+ Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
+ PH->getIncomingBlock(I)));
+ TE->setOperand(I, Operands);
+ OperandsVec.push_back(Operands);
+ }
+ for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
+ buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
+ return;
+ }
+ case Instruction::ExtractValue:
+ case Instruction::ExtractElement: {
+ OrdersType CurrentOrder;
+ bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
+ if (Reuse) {
+ LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
+ newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ // This is a special case, as it does not gather, but at the same time
+ // we are not extending buildTree_rec() towards the operands.
+ ValueList Op0;
+ Op0.assign(VL.size(), VL0->getOperand(0));
+ VectorizableTree.back()->setOperand(0, Op0);
+ return;
+ }
+ if (!CurrentOrder.empty()) {
+ LLVM_DEBUG({
+ dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
+ "with order";
+ for (unsigned Idx : CurrentOrder)
+ dbgs() << " " << Idx;
+ dbgs() << "\n";
+ });
+ fixupOrderingIndices(CurrentOrder);
+ // Insert new order with initial value 0, if it does not exist,
+ // otherwise return the iterator to the existing one.
+ newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies, CurrentOrder);
+ // This is a special case, as it does not gather, but at the same time
+ // we are not extending buildTree_rec() towards the operands.
+ ValueList Op0;
+ Op0.assign(VL.size(), VL0->getOperand(0));
+ VectorizableTree.back()->setOperand(0, Op0);
+ return;
+ }
+ LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ BS.cancelScheduling(VL, VL0);
+ return;
+ }
+ case Instruction::InsertElement: {
+ assert(ReuseShuffleIndicies.empty() && "All inserts should be unique");
+
+ // Check that we have a buildvector and not a shuffle of 2 or more
+ // different vectors.
+ ValueSet SourceVectors;
+ for (Value *V : VL) {
+ SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
+ assert(getInsertIndex(V) != std::nullopt &&
+ "Non-constant or undef index?");
+ }
+
+ if (count_if(VL, [&SourceVectors](Value *V) {
+ return !SourceVectors.contains(V);
+ }) >= 2) {
+ // Found 2nd source vector - cancel.
+ LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
+ "different source vectors.\n");
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx);
+ BS.cancelScheduling(VL, VL0);
+ return;
+ }
+
+ auto OrdCompare = [](const std::pair<int, int> &P1,
+ const std::pair<int, int> &P2) {
+ return P1.first > P2.first;
+ };
+ PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>,
+ decltype(OrdCompare)>
+ Indices(OrdCompare);
+ for (int I = 0, E = VL.size(); I < E; ++I) {
+ unsigned Idx = *getInsertIndex(VL[I]);
+ Indices.emplace(Idx, I);
+ }
+ OrdersType CurrentOrder(VL.size(), VL.size());
+ bool IsIdentity = true;
+ for (int I = 0, E = VL.size(); I < E; ++I) {
+ CurrentOrder[Indices.top().second] = I;
+ IsIdentity &= Indices.top().second == I;
+ Indices.pop();
+ }
+ if (IsIdentity)
+ CurrentOrder.clear();
+ TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
+ std::nullopt, CurrentOrder);
+ LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n");
+
+ constexpr int NumOps = 2;
+ ValueList VectorOperands[NumOps];
+ for (int I = 0; I < NumOps; ++I) {
+ for (Value *V : VL)
+ VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
+
+ TE->setOperand(I, VectorOperands[I]);
+ }
+ buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1});
+ return;
+ }
+ case Instruction::Load: {
+ // Check that a vectorized load would load the same memory as a scalar
+ // load. For example, we don't want to vectorize loads that are smaller
+ // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
+ // treats loading/storing it as an i8 struct. If we vectorize loads/stores
+ // from such a struct, we read/write packed bits disagreeing with the
+ // unvectorized version.
+ SmallVector<Value *> PointerOps;
+ OrdersType CurrentOrder;
+ TreeEntry *TE = nullptr;
+ switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, *LI, *TLI,
+ CurrentOrder, PointerOps)) {
+ case LoadsState::Vectorize:
+ if (CurrentOrder.empty()) {
+ // Original loads are consecutive and does not require reordering.
+ TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
+ } else {
+ fixupOrderingIndices(CurrentOrder);
+ // Need to reorder.
+ TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies, CurrentOrder);
+ LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
+ }
+ TE->setOperandsInOrder();
+ break;
+ case LoadsState::ScatterVectorize:
+ // Vectorizing non-consecutive loads with `llvm.masked.gather`.
+ TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
+ UserTreeIdx, ReuseShuffleIndicies);
+ TE->setOperandsInOrder();
+ buildTree_rec(PointerOps, Depth + 1, {TE, 0});
+ LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
+ break;
+ case LoadsState::Gather:
+ BS.cancelScheduling(VL, VL0);
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+#ifndef NDEBUG
+ Type *ScalarTy = VL0->getType();
+ if (DL->getTypeSizeInBits(ScalarTy) !=
+ DL->getTypeAllocSizeInBits(ScalarTy))
+ LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
+ else if (any_of(VL, [](Value *V) {
+ return !cast<LoadInst>(V)->isSimple();
+ }))
+ LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
+ else
+ LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
+#endif // NDEBUG
+ break;
+ }
+ return;
+ }
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast: {
+ Type *SrcTy = VL0->getOperand(0)->getType();
+ for (Value *V : VL) {
+ Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
+ if (Ty != SrcTy || !isValidElementType(Ty)) {
+ BS.cancelScheduling(VL, VL0);
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ LLVM_DEBUG(dbgs()
+ << "SLP: Gathering casts with different src types.\n");
+ return;
+ }
+ }
+ TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
+
+ TE->setOperandsInOrder();
+ for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
+ ValueList Operands;
+ // Prepare the operand vector.
+ for (Value *V : VL)
+ Operands.push_back(cast<Instruction>(V)->getOperand(i));
+
+ buildTree_rec(Operands, Depth + 1, {TE, i});
+ }
+ return;
+ }
+ case Instruction::ICmp:
+ case Instruction::FCmp: {
+ // Check that all of the compares have the same predicate.
+ CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
+ CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
+ Type *ComparedTy = VL0->getOperand(0)->getType();
+ for (Value *V : VL) {
+ CmpInst *Cmp = cast<CmpInst>(V);
+ if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
+ Cmp->getOperand(0)->getType() != ComparedTy) {
+ BS.cancelScheduling(VL, VL0);
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ LLVM_DEBUG(dbgs()
+ << "SLP: Gathering cmp with different predicate.\n");
+ return;
+ }
+ }
+
+ TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
+
+ ValueList Left, Right;
+ if (cast<CmpInst>(VL0)->isCommutative()) {
+ // Commutative predicate - collect + sort operands of the instructions
+ // so that each side is more likely to have the same opcode.
+ assert(P0 == SwapP0 && "Commutative Predicate mismatch");
+ reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE, *this);
+ } else {
+ // Collect operands - commute if it uses the swapped predicate.
+ for (Value *V : VL) {
+ auto *Cmp = cast<CmpInst>(V);
+ Value *LHS = Cmp->getOperand(0);
+ Value *RHS = Cmp->getOperand(1);
+ if (Cmp->getPredicate() != P0)
+ std::swap(LHS, RHS);
+ Left.push_back(LHS);
+ Right.push_back(RHS);
+ }
+ }
+ TE->setOperand(0, Left);
+ TE->setOperand(1, Right);
+ buildTree_rec(Left, Depth + 1, {TE, 0});
+ buildTree_rec(Right, Depth + 1, {TE, 1});
+ return;
+ }
+ case Instruction::Select:
+ case Instruction::FNeg:
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
+
+ // Sort operands of the instructions so that each side is more likely to
+ // have the same opcode.
+ if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
+ ValueList Left, Right;
+ reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE, *this);
+ TE->setOperand(0, Left);
+ TE->setOperand(1, Right);
+ buildTree_rec(Left, Depth + 1, {TE, 0});
+ buildTree_rec(Right, Depth + 1, {TE, 1});
+ return;
+ }
+
+ TE->setOperandsInOrder();
+ for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
+ ValueList Operands;
+ // Prepare the operand vector.
+ for (Value *V : VL)
+ Operands.push_back(cast<Instruction>(V)->getOperand(i));
+
+ buildTree_rec(Operands, Depth + 1, {TE, i});
+ }
+ return;
+ }
+ case Instruction::GetElementPtr: {
+ // We don't combine GEPs with complicated (nested) indexing.
+ for (Value *V : VL) {
+ auto *I = dyn_cast<GetElementPtrInst>(V);
+ if (!I)
+ continue;
+ if (I->getNumOperands() != 2) {
+ LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
+ BS.cancelScheduling(VL, VL0);
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ return;
+ }
+ }
+
+ // We can't combine several GEPs into one vector if they operate on
+ // different types.
+ Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType();
+ for (Value *V : VL) {
+ auto *GEP = dyn_cast<GEPOperator>(V);
+ if (!GEP)
+ continue;
+ Type *CurTy = GEP->getSourceElementType();
+ if (Ty0 != CurTy) {
+ LLVM_DEBUG(dbgs()
+ << "SLP: not-vectorizable GEP (different types).\n");
+ BS.cancelScheduling(VL, VL0);
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ return;
+ }
+ }
+
+ // We don't combine GEPs with non-constant indexes.
+ Type *Ty1 = VL0->getOperand(1)->getType();
+ for (Value *V : VL) {
+ auto *I = dyn_cast<GetElementPtrInst>(V);
+ if (!I)
+ continue;
+ auto *Op = I->getOperand(1);
+ if ((!IsScatterVectorizeUserTE && !isa<ConstantInt>(Op)) ||
+ (Op->getType() != Ty1 &&
+ ((IsScatterVectorizeUserTE && !isa<ConstantInt>(Op)) ||
+ Op->getType()->getScalarSizeInBits() >
+ DL->getIndexSizeInBits(
+ V->getType()->getPointerAddressSpace())))) {
+ LLVM_DEBUG(dbgs()
+ << "SLP: not-vectorizable GEP (non-constant indexes).\n");
+ BS.cancelScheduling(VL, VL0);
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ return;
+ }
+ }
+
+ TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
+ SmallVector<ValueList, 2> Operands(2);
+ // Prepare the operand vector for pointer operands.
+ for (Value *V : VL) {
+ auto *GEP = dyn_cast<GetElementPtrInst>(V);
+ if (!GEP) {
+ Operands.front().push_back(V);
+ continue;
+ }
+ Operands.front().push_back(GEP->getPointerOperand());
+ }
+ TE->setOperand(0, Operands.front());
+ // Need to cast all indices to the same type before vectorization to
+ // avoid crash.
+ // Required to be able to find correct matches between different gather
+ // nodes and reuse the vectorized values rather than trying to gather them
+ // again.
+ int IndexIdx = 1;
+ Type *VL0Ty = VL0->getOperand(IndexIdx)->getType();
+ Type *Ty = all_of(VL,
+ [VL0Ty, IndexIdx](Value *V) {
+ auto *GEP = dyn_cast<GetElementPtrInst>(V);
+ if (!GEP)
+ return true;
+ return VL0Ty == GEP->getOperand(IndexIdx)->getType();
+ })
+ ? VL0Ty
+ : DL->getIndexType(cast<GetElementPtrInst>(VL0)
+ ->getPointerOperandType()
+ ->getScalarType());
+ // Prepare the operand vector.
+ for (Value *V : VL) {
+ auto *I = dyn_cast<GetElementPtrInst>(V);
+ if (!I) {
+ Operands.back().push_back(
+ ConstantInt::get(Ty, 0, /*isSigned=*/false));
+ continue;
+ }
+ auto *Op = I->getOperand(IndexIdx);
+ auto *CI = dyn_cast<ConstantInt>(Op);
+ if (!CI)
+ Operands.back().push_back(Op);
+ else
+ Operands.back().push_back(ConstantExpr::getIntegerCast(
+ CI, Ty, CI->getValue().isSignBitSet()));
+ }
+ TE->setOperand(IndexIdx, Operands.back());
+
+ for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I)
+ buildTree_rec(Operands[I], Depth + 1, {TE, I});
+ return;
+ }
+ case Instruction::Store: {
+ // Check if the stores are consecutive or if we need to swizzle them.
+ llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
+ // Avoid types that are padded when being allocated as scalars, while
+ // being packed together in a vector (such as i1).
+ if (DL->getTypeSizeInBits(ScalarTy) !=
+ DL->getTypeAllocSizeInBits(ScalarTy)) {
+ BS.cancelScheduling(VL, VL0);
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
+ return;
+ }
+ // Make sure all stores in the bundle are simple - we can't vectorize
+ // atomic or volatile stores.
+ SmallVector<Value *, 4> PointerOps(VL.size());
+ ValueList Operands(VL.size());
+ auto POIter = PointerOps.begin();
+ auto OIter = Operands.begin();
+ for (Value *V : VL) {
+ auto *SI = cast<StoreInst>(V);
+ if (!SI->isSimple()) {
+ BS.cancelScheduling(VL, VL0);
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
+ return;
+ }
+ *POIter = SI->getPointerOperand();
+ *OIter = SI->getValueOperand();
+ ++POIter;
+ ++OIter;
+ }
+
+ OrdersType CurrentOrder;
+ // Check the order of pointer operands.
+ if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
+ Value *Ptr0;
+ Value *PtrN;
+ if (CurrentOrder.empty()) {
+ Ptr0 = PointerOps.front();
+ PtrN = PointerOps.back();
+ } else {
+ Ptr0 = PointerOps[CurrentOrder.front()];
+ PtrN = PointerOps[CurrentOrder.back()];
+ }
+ std::optional<int> Dist =
+ getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
+ // Check that the sorted pointer operands are consecutive.
+ if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
+ if (CurrentOrder.empty()) {
+ // Original stores are consecutive and does not require reordering.
+ TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
+ UserTreeIdx, ReuseShuffleIndicies);
+ TE->setOperandsInOrder();
+ buildTree_rec(Operands, Depth + 1, {TE, 0});
+ LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
+ } else {
+ fixupOrderingIndices(CurrentOrder);
+ TreeEntry *TE =
+ newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies, CurrentOrder);
+ TE->setOperandsInOrder();
+ buildTree_rec(Operands, Depth + 1, {TE, 0});
+ LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
+ }
+ return;
+ }
+ }
+
+ BS.cancelScheduling(VL, VL0);
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
+ return;
+ }
+ case Instruction::Call: {
+ // Check if the calls are all to the same vectorizable intrinsic or
+ // library function.
+ CallInst *CI = cast<CallInst>(VL0);
+ Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
+
+ VFShape Shape = VFShape::get(
+ *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
+ false /*HasGlobalPred*/);
+ Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
+
+ if (!VecFunc && !isTriviallyVectorizable(ID)) {
+ BS.cancelScheduling(VL, VL0);
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
+ return;
+ }
+ Function *F = CI->getCalledFunction();
+ unsigned NumArgs = CI->arg_size();
+ SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
+ for (unsigned j = 0; j != NumArgs; ++j)
+ if (isVectorIntrinsicWithScalarOpAtArg(ID, j))
+ ScalarArgs[j] = CI->getArgOperand(j);
+ for (Value *V : VL) {
+ CallInst *CI2 = dyn_cast<CallInst>(V);
+ if (!CI2 || CI2->getCalledFunction() != F ||
+ getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
+ (VecFunc &&
+ VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
+ !CI->hasIdenticalOperandBundleSchema(*CI2)) {
+ BS.cancelScheduling(VL, VL0);
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
+ << "\n");
+ return;
+ }
+ // Some intrinsics have scalar arguments and should be same in order for
+ // them to be vectorized.
+ for (unsigned j = 0; j != NumArgs; ++j) {
+ if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) {
+ Value *A1J = CI2->getArgOperand(j);
+ if (ScalarArgs[j] != A1J) {
+ BS.cancelScheduling(VL, VL0);
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
+ << " argument " << ScalarArgs[j] << "!=" << A1J
+ << "\n");
+ return;
+ }
+ }
+ }
+ // Verify that the bundle operands are identical between the two calls.
+ if (CI->hasOperandBundles() &&
+ !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
+ CI->op_begin() + CI->getBundleOperandsEndIndex(),
+ CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
+ BS.cancelScheduling(VL, VL0);
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
+ << *CI << "!=" << *V << '\n');
+ return;
+ }
+ }
+
+ TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ TE->setOperandsInOrder();
+ for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
+ // For scalar operands no need to to create an entry since no need to
+ // vectorize it.
+ if (isVectorIntrinsicWithScalarOpAtArg(ID, i))
+ continue;
+ ValueList Operands;
+ // Prepare the operand vector.
+ for (Value *V : VL) {
+ auto *CI2 = cast<CallInst>(V);
+ Operands.push_back(CI2->getArgOperand(i));
+ }
+ buildTree_rec(Operands, Depth + 1, {TE, i});
+ }
+ return;
+ }
+ case Instruction::ShuffleVector: {
+ // If this is not an alternate sequence of opcode like add-sub
+ // then do not vectorize this instruction.
+ if (!S.isAltShuffle()) {
+ BS.cancelScheduling(VL, VL0);
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
+ return;
+ }
+ TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
+
+ // Reorder operands if reordering would enable vectorization.
+ auto *CI = dyn_cast<CmpInst>(VL0);
+ if (isa<BinaryOperator>(VL0) || CI) {
+ ValueList Left, Right;
+ if (!CI || all_of(VL, [](Value *V) {
+ return cast<CmpInst>(V)->isCommutative();
+ })) {
+ reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE,
+ *this);
+ } else {
+ auto *MainCI = cast<CmpInst>(S.MainOp);
+ auto *AltCI = cast<CmpInst>(S.AltOp);
+ CmpInst::Predicate MainP = MainCI->getPredicate();
+ CmpInst::Predicate AltP = AltCI->getPredicate();
+ assert(MainP != AltP &&
+ "Expected different main/alternate predicates.");
+ // Collect operands - commute if it uses the swapped predicate or
+ // alternate operation.
+ for (Value *V : VL) {
+ auto *Cmp = cast<CmpInst>(V);
+ Value *LHS = Cmp->getOperand(0);
+ Value *RHS = Cmp->getOperand(1);
+
+ if (isAlternateInstruction(Cmp, MainCI, AltCI, *TLI)) {
+ if (AltP == CmpInst::getSwappedPredicate(Cmp->getPredicate()))
+ std::swap(LHS, RHS);
+ } else {
+ if (MainP == CmpInst::getSwappedPredicate(Cmp->getPredicate()))
+ std::swap(LHS, RHS);
+ }
+ Left.push_back(LHS);
+ Right.push_back(RHS);
+ }
+ }
+ TE->setOperand(0, Left);
+ TE->setOperand(1, Right);
+ buildTree_rec(Left, Depth + 1, {TE, 0});
+ buildTree_rec(Right, Depth + 1, {TE, 1});
+ return;
+ }
+
+ TE->setOperandsInOrder();
+ for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
+ ValueList Operands;
+ // Prepare the operand vector.
+ for (Value *V : VL)
+ Operands.push_back(cast<Instruction>(V)->getOperand(i));
+
+ buildTree_rec(Operands, Depth + 1, {TE, i});
+ }
+ return;
+ }
+ default:
+ BS.cancelScheduling(VL, VL0);
+ newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx,
+ ReuseShuffleIndicies);
+ LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
+ return;
+ }
+}
+
+unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
+ unsigned N = 1;
+ Type *EltTy = T;
+
+ while (isa<StructType, ArrayType, VectorType>(EltTy)) {
+ if (auto *ST = dyn_cast<StructType>(EltTy)) {
+ // Check that struct is homogeneous.
+ for (const auto *Ty : ST->elements())
+ if (Ty != *ST->element_begin())
+ return 0;
+ N *= ST->getNumElements();
+ EltTy = *ST->element_begin();
+ } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
+ N *= AT->getNumElements();
+ EltTy = AT->getElementType();
+ } else {
+ auto *VT = cast<FixedVectorType>(EltTy);
+ N *= VT->getNumElements();
+ EltTy = VT->getElementType();
+ }
+ }
+
+ if (!isValidElementType(EltTy))
+ return 0;
+ uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
+ if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
+ return 0;
+ return N;
+}
+
+bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
+ SmallVectorImpl<unsigned> &CurrentOrder) const {
+ const auto *It = find_if(VL, [](Value *V) {
+ return isa<ExtractElementInst, ExtractValueInst>(V);
+ });
+ assert(It != VL.end() && "Expected at least one extract instruction.");
+ auto *E0 = cast<Instruction>(*It);
+ assert(all_of(VL,
+ [](Value *V) {
+ return isa<UndefValue, ExtractElementInst, ExtractValueInst>(
+ V);
+ }) &&
+ "Invalid opcode");
+ // Check if all of the extracts come from the same vector and from the
+ // correct offset.
+ Value *Vec = E0->getOperand(0);
+
+ CurrentOrder.clear();
+
+ // We have to extract from a vector/aggregate with the same number of elements.
+ unsigned NElts;
+ if (E0->getOpcode() == Instruction::ExtractValue) {
+ const DataLayout &DL = E0->getModule()->getDataLayout();
+ NElts = canMapToVector(Vec->getType(), DL);
+ if (!NElts)
+ return false;
+ // Check if load can be rewritten as load of vector.
+ LoadInst *LI = dyn_cast<LoadInst>(Vec);
+ if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
+ return false;
+ } else {
+ NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
+ }
+
+ if (NElts != VL.size())
+ return false;
+
+ // Check that all of the indices extract from the correct offset.
+ bool ShouldKeepOrder = true;
+ unsigned E = VL.size();
+ // Assign to all items the initial value E + 1 so we can check if the extract
+ // instruction index was used already.
+ // Also, later we can check that all the indices are used and we have a
+ // consecutive access in the extract instructions, by checking that no
+ // element of CurrentOrder still has value E + 1.
+ CurrentOrder.assign(E, E);
+ unsigned I = 0;
+ for (; I < E; ++I) {
+ auto *Inst = dyn_cast<Instruction>(VL[I]);
+ if (!Inst)
+ continue;
+ if (Inst->getOperand(0) != Vec)
+ break;
+ if (auto *EE = dyn_cast<ExtractElementInst>(Inst))
+ if (isa<UndefValue>(EE->getIndexOperand()))
+ continue;
+ std::optional<unsigned> Idx = getExtractIndex(Inst);
+ if (!Idx)
+ break;
+ const unsigned ExtIdx = *Idx;
+ if (ExtIdx != I) {
+ if (ExtIdx >= E || CurrentOrder[ExtIdx] != E)
+ break;
+ ShouldKeepOrder = false;
+ CurrentOrder[ExtIdx] = I;
+ } else {
+ if (CurrentOrder[I] != E)
+ break;
+ CurrentOrder[I] = I;
+ }
+ }
+ if (I < E) {
+ CurrentOrder.clear();
+ return false;
+ }
+ if (ShouldKeepOrder)
+ CurrentOrder.clear();
+
+ return ShouldKeepOrder;
+}
+
+bool BoUpSLP::areAllUsersVectorized(Instruction *I,
+ ArrayRef<Value *> VectorizedVals) const {
+ return (I->hasOneUse() && is_contained(VectorizedVals, I)) ||
+ all_of(I->users(), [this](User *U) {
+ return ScalarToTreeEntry.count(U) > 0 ||
+ isVectorLikeInstWithConstOps(U) ||
+ (isa<ExtractElementInst>(U) && MustGather.contains(U));
+ });
+}
+
+static std::pair<InstructionCost, InstructionCost>
+getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
+ TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
+ Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
+
+ // Calculate the cost of the scalar and vector calls.
+ SmallVector<Type *, 4> VecTys;
+ for (Use &Arg : CI->args())
+ VecTys.push_back(
+ FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
+ FastMathFlags FMF;
+ if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
+ FMF = FPCI->getFastMathFlags();
+ SmallVector<const Value *> Arguments(CI->args());
+ IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
+ dyn_cast<IntrinsicInst>(CI));
+ auto IntrinsicCost =
+ TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
+
+ auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
+ VecTy->getNumElements())),
+ false /*HasGlobalPred*/);
+ Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
+ auto LibCost = IntrinsicCost;
+ if (!CI->isNoBuiltin() && VecFunc) {
+ // Calculate the cost of the vector library call.
+ // If the corresponding vector call is cheaper, return its cost.
+ LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
+ TTI::TCK_RecipThroughput);
+ }
+ return {IntrinsicCost, LibCost};
+}
+
+/// Compute the cost of creating a vector of type \p VecTy containing the
+/// extracted values from \p VL.
+static InstructionCost
+computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
+ TargetTransformInfo::ShuffleKind ShuffleKind,
+ ArrayRef<int> Mask, TargetTransformInfo &TTI) {
+ unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
+
+ if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
+ VecTy->getNumElements() < NumOfParts)
+ return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
+
+ bool AllConsecutive = true;
+ unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
+ unsigned Idx = -1;
+ InstructionCost Cost = 0;
+
+ // Process extracts in blocks of EltsPerVector to check if the source vector
+ // operand can be re-used directly. If not, add the cost of creating a shuffle
+ // to extract the values into a vector register.
+ SmallVector<int> RegMask(EltsPerVector, UndefMaskElem);
+ for (auto *V : VL) {
+ ++Idx;
+
+ // Reached the start of a new vector registers.
+ if (Idx % EltsPerVector == 0) {
+ RegMask.assign(EltsPerVector, UndefMaskElem);
+ AllConsecutive = true;
+ continue;
+ }
+
+ // Need to exclude undefs from analysis.
+ if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem)
+ continue;
+
+ // Check all extracts for a vector register on the target directly
+ // extract values in order.
+ unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
+ if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) {
+ unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
+ AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
+ CurrentIdx % EltsPerVector == Idx % EltsPerVector;
+ RegMask[Idx % EltsPerVector] = CurrentIdx % EltsPerVector;
+ }
+
+ if (AllConsecutive)
+ continue;
+
+ // Skip all indices, except for the last index per vector block.
+ if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
+ continue;
+
+ // If we have a series of extracts which are not consecutive and hence
+ // cannot re-use the source vector register directly, compute the shuffle
+ // cost to extract the vector with EltsPerVector elements.
+ Cost += TTI.getShuffleCost(
+ TargetTransformInfo::SK_PermuteSingleSrc,
+ FixedVectorType::get(VecTy->getElementType(), EltsPerVector), RegMask);
+ }
+ return Cost;
+}
+
+/// Build shuffle mask for shuffle graph entries and lists of main and alternate
+/// operations operands.
+static void
+buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices,
+ ArrayRef<int> ReusesIndices,
+ const function_ref<bool(Instruction *)> IsAltOp,
+ SmallVectorImpl<int> &Mask,
+ SmallVectorImpl<Value *> *OpScalars = nullptr,
+ SmallVectorImpl<Value *> *AltScalars = nullptr) {
+ unsigned Sz = VL.size();
+ Mask.assign(Sz, UndefMaskElem);
+ SmallVector<int> OrderMask;
+ if (!ReorderIndices.empty())
+ inversePermutation(ReorderIndices, OrderMask);
+ for (unsigned I = 0; I < Sz; ++I) {
+ unsigned Idx = I;
+ if (!ReorderIndices.empty())
+ Idx = OrderMask[I];
+ auto *OpInst = cast<Instruction>(VL[Idx]);
+ if (IsAltOp(OpInst)) {
+ Mask[I] = Sz + Idx;
+ if (AltScalars)
+ AltScalars->push_back(OpInst);
+ } else {
+ Mask[I] = Idx;
+ if (OpScalars)
+ OpScalars->push_back(OpInst);
+ }
+ }
+ if (!ReusesIndices.empty()) {
+ SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem);
+ transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) {
+ return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem;
+ });
+ Mask.swap(NewMask);
+ }
+}
+
+static bool isAlternateInstruction(const Instruction *I,
+ const Instruction *MainOp,
+ const Instruction *AltOp,
+ const TargetLibraryInfo &TLI) {
+ if (auto *MainCI = dyn_cast<CmpInst>(MainOp)) {
+ auto *AltCI = cast<CmpInst>(AltOp);
+ CmpInst::Predicate MainP = MainCI->getPredicate();
+ CmpInst::Predicate AltP = AltCI->getPredicate();
+ assert(MainP != AltP && "Expected different main/alternate predicates.");
+ auto *CI = cast<CmpInst>(I);
+ if (isCmpSameOrSwapped(MainCI, CI, TLI))
+ return false;
+ if (isCmpSameOrSwapped(AltCI, CI, TLI))
+ return true;
+ CmpInst::Predicate P = CI->getPredicate();
+ CmpInst::Predicate SwappedP = CmpInst::getSwappedPredicate(P);
+
+ assert((MainP == P || AltP == P || MainP == SwappedP || AltP == SwappedP) &&
+ "CmpInst expected to match either main or alternate predicate or "
+ "their swap.");
+ (void)AltP;
+ return MainP != P && MainP != SwappedP;
+ }
+ return I->getOpcode() == AltOp->getOpcode();
+}
+
+TTI::OperandValueInfo BoUpSLP::getOperandInfo(ArrayRef<Value *> VL,
+ unsigned OpIdx) {
+ assert(!VL.empty());
+ const auto *I0 = cast<Instruction>(*find_if(VL, Instruction::classof));
+ const auto *Op0 = I0->getOperand(OpIdx);
+
+ const bool IsConstant = all_of(VL, [&](Value *V) {
+ // TODO: We should allow undef elements here
+ const auto *I = dyn_cast<Instruction>(V);
+ if (!I)
+ return true;
+ auto *Op = I->getOperand(OpIdx);
+ return isConstant(Op) && !isa<UndefValue>(Op);
+ });
+ const bool IsUniform = all_of(VL, [&](Value *V) {
+ // TODO: We should allow undef elements here
+ const auto *I = dyn_cast<Instruction>(V);
+ if (!I)
+ return false;
+ return I->getOperand(OpIdx) == Op0;
+ });
+ const bool IsPowerOfTwo = all_of(VL, [&](Value *V) {
+ // TODO: We should allow undef elements here
+ const auto *I = dyn_cast<Instruction>(V);
+ if (!I) {
+ assert((isa<UndefValue>(V) ||
+ I0->getOpcode() == Instruction::GetElementPtr) &&
+ "Expected undef or GEP.");
+ return true;
+ }
+ auto *Op = I->getOperand(OpIdx);
+ if (auto *CI = dyn_cast<ConstantInt>(Op))
+ return CI->getValue().isPowerOf2();
+ return false;
+ });
+ const bool IsNegatedPowerOfTwo = all_of(VL, [&](Value *V) {
+ // TODO: We should allow undef elements here
+ const auto *I = dyn_cast<Instruction>(V);
+ if (!I) {
+ assert((isa<UndefValue>(V) ||
+ I0->getOpcode() == Instruction::GetElementPtr) &&
+ "Expected undef or GEP.");
+ return true;
+ }
+ const auto *Op = I->getOperand(OpIdx);
+ if (auto *CI = dyn_cast<ConstantInt>(Op))
+ return CI->getValue().isNegatedPowerOf2();
+ return false;
+ });
+
+ TTI::OperandValueKind VK = TTI::OK_AnyValue;
+ if (IsConstant && IsUniform)
+ VK = TTI::OK_UniformConstantValue;
+ else if (IsConstant)
+ VK = TTI::OK_NonUniformConstantValue;
+ else if (IsUniform)
+ VK = TTI::OK_UniformValue;
+
+ TTI::OperandValueProperties VP = TTI::OP_None;
+ VP = IsPowerOfTwo ? TTI::OP_PowerOf2 : VP;
+ VP = IsNegatedPowerOfTwo ? TTI::OP_NegatedPowerOf2 : VP;
+
+ return {VK, VP};
+}
+
+namespace {
+/// The base class for shuffle instruction emission and shuffle cost estimation.
+class BaseShuffleAnalysis {
+protected:
+ /// Checks if the mask is an identity mask.
+ /// \param IsStrict if is true the function returns false if mask size does
+ /// not match vector size.
+ static bool isIdentityMask(ArrayRef<int> Mask, const FixedVectorType *VecTy,
+ bool IsStrict) {
+ int Limit = Mask.size();
+ int VF = VecTy->getNumElements();
+ return (VF == Limit || !IsStrict) &&
+ all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) &&
+ ShuffleVectorInst::isIdentityMask(Mask);
+ }
+
+ /// Tries to combine 2 different masks into single one.
+ /// \param LocalVF Vector length of the permuted input vector. \p Mask may
+ /// change the size of the vector, \p LocalVF is the original size of the
+ /// shuffled vector.
+ static void combineMasks(unsigned LocalVF, SmallVectorImpl<int> &Mask,
+ ArrayRef<int> ExtMask) {
+ unsigned VF = Mask.size();
+ SmallVector<int> NewMask(ExtMask.size(), UndefMaskElem);
+ for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) {
+ if (ExtMask[I] == UndefMaskElem)
+ continue;
+ int MaskedIdx = Mask[ExtMask[I] % VF];
+ NewMask[I] =
+ MaskedIdx == UndefMaskElem ? UndefMaskElem : MaskedIdx % LocalVF;
+ }
+ Mask.swap(NewMask);
+ }
+
+ /// Looks through shuffles trying to reduce final number of shuffles in the
+ /// code. The function looks through the previously emitted shuffle
+ /// instructions and properly mark indices in mask as undef.
+ /// For example, given the code
+ /// \code
+ /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0>
+ /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0>
+ /// \endcode
+ /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 3, 2>, it will
+ /// look through %s1 and %s2 and select vectors %0 and %1 with mask
+ /// <0, 1, 2, 3> for the shuffle.
+ /// If 2 operands are of different size, the smallest one will be resized and
+ /// the mask recalculated properly.
+ /// For example, given the code
+ /// \code
+ /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0, 1, 0>
+ /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0, 1, 0>
+ /// \endcode
+ /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 5, 4>, it will
+ /// look through %s1 and %s2 and select vectors %0 and %1 with mask
+ /// <0, 1, 2, 3> for the shuffle.
+ /// So, it tries to transform permutations to simple vector merge, if
+ /// possible.
+ /// \param V The input vector which must be shuffled using the given \p Mask.
+ /// If the better candidate is found, \p V is set to this best candidate
+ /// vector.
+ /// \param Mask The input mask for the shuffle. If the best candidate is found
+ /// during looking-through-shuffles attempt, it is updated accordingly.
+ /// \param SinglePermute true if the shuffle operation is originally a
+ /// single-value-permutation. In this case the look-through-shuffles procedure
+ /// may look for resizing shuffles as the best candidates.
+ /// \return true if the shuffle results in the non-resizing identity shuffle
+ /// (and thus can be ignored), false - otherwise.
+ static bool peekThroughShuffles(Value *&V, SmallVectorImpl<int> &Mask,
+ bool SinglePermute) {
+ Value *Op = V;
+ ShuffleVectorInst *IdentityOp = nullptr;
+ SmallVector<int> IdentityMask;
+ while (auto *SV = dyn_cast<ShuffleVectorInst>(Op)) {
+ // Exit if not a fixed vector type or changing size shuffle.
+ auto *SVTy = dyn_cast<FixedVectorType>(SV->getType());
+ if (!SVTy)
+ break;
+ // Remember the identity or broadcast mask, if it is not a resizing
+ // shuffle. If no better candidates are found, this Op and Mask will be
+ // used in the final shuffle.
+ if (isIdentityMask(Mask, SVTy, /*IsStrict=*/false)) {
+ if (!IdentityOp || !SinglePermute ||
+ (isIdentityMask(Mask, SVTy, /*IsStrict=*/true) &&
+ !ShuffleVectorInst::isZeroEltSplatMask(IdentityMask))) {
+ IdentityOp = SV;
+ // Store current mask in the IdentityMask so later we did not lost
+ // this info if IdentityOp is selected as the best candidate for the
+ // permutation.
+ IdentityMask.assign(Mask);
+ }
+ }
+ // Remember the broadcast mask. If no better candidates are found, this Op
+ // and Mask will be used in the final shuffle.
+ // Zero splat can be used as identity too, since it might be used with
+ // mask <0, 1, 2, ...>, i.e. identity mask without extra reshuffling.
+ // E.g. if need to shuffle the vector with the mask <3, 1, 2, 0>, which is
+ // expensive, the analysis founds out, that the source vector is just a
+ // broadcast, this original mask can be transformed to identity mask <0,
+ // 1, 2, 3>.
+ // \code
+ // %0 = shuffle %v, poison, zeroinitalizer
+ // %res = shuffle %0, poison, <3, 1, 2, 0>
+ // \endcode
+ // may be transformed to
+ // \code
+ // %0 = shuffle %v, poison, zeroinitalizer
+ // %res = shuffle %0, poison, <0, 1, 2, 3>
+ // \endcode
+ if (SV->isZeroEltSplat()) {
+ IdentityOp = SV;
+ IdentityMask.assign(Mask);
+ }
+ int LocalVF = Mask.size();
+ if (auto *SVOpTy =
+ dyn_cast<FixedVectorType>(SV->getOperand(0)->getType()))
+ LocalVF = SVOpTy->getNumElements();
+ SmallVector<int> ExtMask(Mask.size(), UndefMaskElem);
+ for (auto [Idx, I] : enumerate(Mask)) {
+ if (I == UndefMaskElem)
+ continue;
+ ExtMask[Idx] = SV->getMaskValue(I);
+ }
+ bool IsOp1Undef =
+ isUndefVector(SV->getOperand(0),
+ buildUseMask(LocalVF, ExtMask, UseMask::FirstArg))
+ .all();
+ bool IsOp2Undef =
+ isUndefVector(SV->getOperand(1),
+ buildUseMask(LocalVF, ExtMask, UseMask::SecondArg))
+ .all();
+ if (!IsOp1Undef && !IsOp2Undef) {
+ // Update mask and mark undef elems.
+ for (int &I : Mask) {
+ if (I == UndefMaskElem)
+ continue;
+ if (SV->getMaskValue(I % SV->getShuffleMask().size()) ==
+ UndefMaskElem)
+ I = UndefMaskElem;
+ }
+ break;
+ }
+ SmallVector<int> ShuffleMask(SV->getShuffleMask().begin(),
+ SV->getShuffleMask().end());
+ combineMasks(LocalVF, ShuffleMask, Mask);
+ Mask.swap(ShuffleMask);
+ if (IsOp2Undef)
+ Op = SV->getOperand(0);
+ else
+ Op = SV->getOperand(1);
+ }
+ if (auto *OpTy = dyn_cast<FixedVectorType>(Op->getType());
+ !OpTy || !isIdentityMask(Mask, OpTy, SinglePermute)) {
+ if (IdentityOp) {
+ V = IdentityOp;
+ assert(Mask.size() == IdentityMask.size() &&
+ "Expected masks of same sizes.");
+ // Clear known poison elements.
+ for (auto [I, Idx] : enumerate(Mask))
+ if (Idx == UndefMaskElem)
+ IdentityMask[I] = UndefMaskElem;
+ Mask.swap(IdentityMask);
+ auto *Shuffle = dyn_cast<ShuffleVectorInst>(V);
+ return SinglePermute &&
+ (isIdentityMask(Mask, cast<FixedVectorType>(V->getType()),
+ /*IsStrict=*/true) ||
+ (Shuffle && Mask.size() == Shuffle->getShuffleMask().size() &&
+ Shuffle->isZeroEltSplat() &&
+ ShuffleVectorInst::isZeroEltSplatMask(Mask)));
+ }
+ V = Op;
+ return false;
+ }
+ V = Op;
+ return true;
+ }
+
+ /// Smart shuffle instruction emission, walks through shuffles trees and
+ /// tries to find the best matching vector for the actual shuffle
+ /// instruction.
+ template <typename ShuffleBuilderTy>
+ static Value *createShuffle(Value *V1, Value *V2, ArrayRef<int> Mask,
+ ShuffleBuilderTy &Builder) {
+ assert(V1 && "Expected at least one vector value.");
+ int VF = Mask.size();
+ if (auto *FTy = dyn_cast<FixedVectorType>(V1->getType()))
+ VF = FTy->getNumElements();
+ if (V2 &&
+ !isUndefVector(V2, buildUseMask(VF, Mask, UseMask::SecondArg)).all()) {
+ // Peek through shuffles.
+ Value *Op1 = V1;
+ Value *Op2 = V2;
+ int VF =
+ cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
+ SmallVector<int> CombinedMask1(Mask.size(), UndefMaskElem);
+ SmallVector<int> CombinedMask2(Mask.size(), UndefMaskElem);
+ for (int I = 0, E = Mask.size(); I < E; ++I) {
+ if (Mask[I] < VF)
+ CombinedMask1[I] = Mask[I];
+ else
+ CombinedMask2[I] = Mask[I] - VF;
+ }
+ Value *PrevOp1;
+ Value *PrevOp2;
+ do {
+ PrevOp1 = Op1;
+ PrevOp2 = Op2;
+ (void)peekThroughShuffles(Op1, CombinedMask1, /*SinglePermute=*/false);
+ (void)peekThroughShuffles(Op2, CombinedMask2, /*SinglePermute=*/false);
+ // Check if we have 2 resizing shuffles - need to peek through operands
+ // again.
+ if (auto *SV1 = dyn_cast<ShuffleVectorInst>(Op1))
+ if (auto *SV2 = dyn_cast<ShuffleVectorInst>(Op2)) {
+ SmallVector<int> ExtMask1(Mask.size(), UndefMaskElem);
+ for (auto [Idx, I] : enumerate(CombinedMask1)) {
+ if (I == UndefMaskElem)
+ continue;
+ ExtMask1[Idx] = SV1->getMaskValue(I);
+ }
+ SmallBitVector UseMask1 = buildUseMask(
+ cast<FixedVectorType>(SV1->getOperand(1)->getType())
+ ->getNumElements(),
+ ExtMask1, UseMask::SecondArg);
+ SmallVector<int> ExtMask2(CombinedMask2.size(), UndefMaskElem);
+ for (auto [Idx, I] : enumerate(CombinedMask2)) {
+ if (I == UndefMaskElem)
+ continue;
+ ExtMask2[Idx] = SV2->getMaskValue(I);
+ }
+ SmallBitVector UseMask2 = buildUseMask(
+ cast<FixedVectorType>(SV2->getOperand(1)->getType())
+ ->getNumElements(),
+ ExtMask2, UseMask::SecondArg);
+ if (SV1->getOperand(0)->getType() ==
+ SV2->getOperand(0)->getType() &&
+ SV1->getOperand(0)->getType() != SV1->getType() &&
+ isUndefVector(SV1->getOperand(1), UseMask1).all() &&
+ isUndefVector(SV2->getOperand(1), UseMask2).all()) {
+ Op1 = SV1->getOperand(0);
+ Op2 = SV2->getOperand(0);
+ SmallVector<int> ShuffleMask1(SV1->getShuffleMask().begin(),
+ SV1->getShuffleMask().end());
+ int LocalVF = ShuffleMask1.size();
+ if (auto *FTy = dyn_cast<FixedVectorType>(Op1->getType()))
+ LocalVF = FTy->getNumElements();
+ combineMasks(LocalVF, ShuffleMask1, CombinedMask1);
+ CombinedMask1.swap(ShuffleMask1);
+ SmallVector<int> ShuffleMask2(SV2->getShuffleMask().begin(),
+ SV2->getShuffleMask().end());
+ LocalVF = ShuffleMask2.size();
+ if (auto *FTy = dyn_cast<FixedVectorType>(Op2->getType()))
+ LocalVF = FTy->getNumElements();
+ combineMasks(LocalVF, ShuffleMask2, CombinedMask2);
+ CombinedMask2.swap(ShuffleMask2);
+ }
+ }
+ } while (PrevOp1 != Op1 || PrevOp2 != Op2);
+ Builder.resizeToMatch(Op1, Op2);
+ VF = std::max(cast<VectorType>(Op1->getType())
+ ->getElementCount()
+ .getKnownMinValue(),
+ cast<VectorType>(Op2->getType())
+ ->getElementCount()
+ .getKnownMinValue());
+ for (int I = 0, E = Mask.size(); I < E; ++I) {
+ if (CombinedMask2[I] != UndefMaskElem) {
+ assert(CombinedMask1[I] == UndefMaskElem &&
+ "Expected undefined mask element");
+ CombinedMask1[I] = CombinedMask2[I] + (Op1 == Op2 ? 0 : VF);
+ }
+ }
+ return Builder.createShuffleVector(
+ Op1, Op1 == Op2 ? PoisonValue::get(Op1->getType()) : Op2,
+ CombinedMask1);
+ }
+ if (isa<PoisonValue>(V1))
+ return PoisonValue::get(FixedVectorType::get(
+ cast<VectorType>(V1->getType())->getElementType(), Mask.size()));
+ SmallVector<int> NewMask(Mask.begin(), Mask.end());
+ bool IsIdentity = peekThroughShuffles(V1, NewMask, /*SinglePermute=*/true);
+ assert(V1 && "Expected non-null value after looking through shuffles.");
+
+ if (!IsIdentity)
+ return Builder.createShuffleVector(V1, NewMask);
+ return V1;
+ }
+};
+} // namespace
+
+InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E,
+ ArrayRef<Value *> VectorizedVals) {
+ ArrayRef<Value *> VL = E->Scalars;
+
+ Type *ScalarTy = VL[0]->getType();
+ if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
+ ScalarTy = SI->getValueOperand()->getType();
+ else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
+ ScalarTy = CI->getOperand(0)->getType();
+ else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
+ ScalarTy = IE->getOperand(1)->getType();
+ auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
+ TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
+
+ // If we have computed a smaller type for the expression, update VecTy so
+ // that the costs will be accurate.
+ if (MinBWs.count(VL[0]))
+ VecTy = FixedVectorType::get(
+ IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
+ unsigned EntryVF = E->getVectorFactor();
+ auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF);
+
+ bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
+ // FIXME: it tries to fix a problem with MSVC buildbots.
+ TargetTransformInfo *TTI = this->TTI;
+ auto AdjustExtractsCost = [=](InstructionCost &Cost) {
+ // If the resulting type is scalarized, do not adjust the cost.
+ unsigned VecNumParts = TTI->getNumberOfParts(VecTy);
+ if (VecNumParts == VecTy->getNumElements())
+ return;
+ DenseMap<Value *, int> ExtractVectorsTys;
+ SmallPtrSet<Value *, 4> CheckedExtracts;
+ for (auto *V : VL) {
+ if (isa<UndefValue>(V))
+ continue;
+ // If all users of instruction are going to be vectorized and this
+ // instruction itself is not going to be vectorized, consider this
+ // instruction as dead and remove its cost from the final cost of the
+ // vectorized tree.
+ // Also, avoid adjusting the cost for extractelements with multiple uses
+ // in different graph entries.
+ const TreeEntry *VE = getTreeEntry(V);
+ if (!CheckedExtracts.insert(V).second ||
+ !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) ||
+ (VE && VE != E))
+ continue;
+ auto *EE = cast<ExtractElementInst>(V);
+ std::optional<unsigned> EEIdx = getExtractIndex(EE);
+ if (!EEIdx)
+ continue;
+ unsigned Idx = *EEIdx;
+ if (VecNumParts != TTI->getNumberOfParts(EE->getVectorOperandType())) {
+ auto It =
+ ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
+ It->getSecond() = std::min<int>(It->second, Idx);
+ }
+ // Take credit for instruction that will become dead.
+ if (EE->hasOneUse()) {
+ Instruction *Ext = EE->user_back();
+ if (isa<SExtInst, ZExtInst>(Ext) && all_of(Ext->users(), [](User *U) {
+ return isa<GetElementPtrInst>(U);
+ })) {
+ // Use getExtractWithExtendCost() to calculate the cost of
+ // extractelement/ext pair.
+ Cost -=
+ TTI->getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
+ EE->getVectorOperandType(), Idx);
+ // Add back the cost of s|zext which is subtracted separately.
+ Cost += TTI->getCastInstrCost(
+ Ext->getOpcode(), Ext->getType(), EE->getType(),
+ TTI::getCastContextHint(Ext), CostKind, Ext);
+ continue;
+ }
+ }
+ Cost -= TTI->getVectorInstrCost(*EE, EE->getVectorOperandType(), CostKind,
+ Idx);
+ }
+ // Add a cost for subvector extracts/inserts if required.
+ for (const auto &Data : ExtractVectorsTys) {
+ auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
+ unsigned NumElts = VecTy->getNumElements();
+ if (Data.second % NumElts == 0)
+ continue;
+ if (TTI->getNumberOfParts(EEVTy) > VecNumParts) {
+ unsigned Idx = (Data.second / NumElts) * NumElts;
+ unsigned EENumElts = EEVTy->getNumElements();
+ if (Idx + NumElts <= EENumElts) {
+ Cost +=
+ TTI->getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
+ EEVTy, std::nullopt, CostKind, Idx, VecTy);
+ } else {
+ // Need to round up the subvector type vectorization factor to avoid a
+ // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
+ // <= EENumElts.
+ auto *SubVT =
+ FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
+ Cost +=
+ TTI->getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
+ EEVTy, std::nullopt, CostKind, Idx, SubVT);
+ }
+ } else {
+ Cost += TTI->getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
+ VecTy, std::nullopt, CostKind, 0, EEVTy);
+ }
+ }
+ };
+ if (E->State == TreeEntry::NeedToGather) {
+ if (allConstant(VL))
+ return 0;
+ if (isa<InsertElementInst>(VL[0]))
+ return InstructionCost::getInvalid();
+ SmallVector<Value *> GatheredScalars(E->Scalars.begin(), E->Scalars.end());
+ // Build a mask out of the reorder indices and reorder scalars per this
+ // mask.
+ SmallVector<int> ReorderMask;
+ inversePermutation(E->ReorderIndices, ReorderMask);
+ if (!ReorderMask.empty())
+ reorderScalars(GatheredScalars, ReorderMask);
+ SmallVector<int> Mask;
+ std::optional<TargetTransformInfo::ShuffleKind> GatherShuffle;
+ SmallVector<const TreeEntry *> Entries;
+ // Do not try to look for reshuffled loads for gathered loads (they will be
+ // handled later), for vectorized scalars, and cases, which are definitely
+ // not profitable (splats and small gather nodes.)
+ if (E->getOpcode() != Instruction::Load || E->isAltShuffle() ||
+ all_of(E->Scalars, [this](Value *V) { return getTreeEntry(V); }) ||
+ isSplat(E->Scalars) ||
+ (E->Scalars != GatheredScalars && GatheredScalars.size() <= 2))
+ GatherShuffle = isGatherShuffledEntry(E, GatheredScalars, Mask, Entries);
+ if (GatherShuffle) {
+ // Remove shuffled elements from list of gathers.
+ for (int I = 0, Sz = Mask.size(); I < Sz; ++I) {
+ if (Mask[I] != UndefMaskElem)
+ GatheredScalars[I] = PoisonValue::get(ScalarTy);
+ }
+ assert((Entries.size() == 1 || Entries.size() == 2) &&
+ "Expected shuffle of 1 or 2 entries.");
+ InstructionCost GatherCost = 0;
+ int Limit = Mask.size() * 2;
+ if (all_of(Mask, [=](int Idx) { return Idx < Limit; }) &&
+ ShuffleVectorInst::isIdentityMask(Mask)) {
+ // Perfect match in the graph, will reuse the previously vectorized
+ // node. Cost is 0.
+ LLVM_DEBUG(
+ dbgs()
+ << "SLP: perfect diamond match for gather bundle that starts with "
+ << *VL.front() << ".\n");
+ if (NeedToShuffleReuses)
+ GatherCost =
+ TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
+ FinalVecTy, E->ReuseShuffleIndices);
+ } else {
+ LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()
+ << " entries for bundle that starts with "
+ << *VL.front() << ".\n");
+ // Detected that instead of gather we can emit a shuffle of single/two
+ // previously vectorized nodes. Add the cost of the permutation rather
+ // than gather.
+ ::addMask(Mask, E->ReuseShuffleIndices);
+ GatherCost = TTI->getShuffleCost(*GatherShuffle, FinalVecTy, Mask);
+ }
+ if (!all_of(GatheredScalars, UndefValue::classof))
+ GatherCost += getGatherCost(GatheredScalars);
+ return GatherCost;
+ }
+ if ((E->getOpcode() == Instruction::ExtractElement ||
+ all_of(E->Scalars,
+ [](Value *V) {
+ return isa<ExtractElementInst, UndefValue>(V);
+ })) &&
+ allSameType(VL)) {
+ // Check that gather of extractelements can be represented as just a
+ // shuffle of a single/two vectors the scalars are extracted from.
+ SmallVector<int> Mask;
+ std::optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
+ isFixedVectorShuffle(VL, Mask);
+ if (ShuffleKind) {
+ // Found the bunch of extractelement instructions that must be gathered
+ // into a vector and can be represented as a permutation elements in a
+ // single input vector or of 2 input vectors.
+ InstructionCost Cost =
+ computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
+ AdjustExtractsCost(Cost);
+ if (NeedToShuffleReuses)
+ Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
+ FinalVecTy, E->ReuseShuffleIndices);
+ return Cost;
+ }
+ }
+ if (isSplat(VL)) {
+ // Found the broadcasting of the single scalar, calculate the cost as the
+ // broadcast.
+ assert(VecTy == FinalVecTy &&
+ "No reused scalars expected for broadcast.");
+ const auto *It =
+ find_if(VL, [](Value *V) { return !isa<UndefValue>(V); });
+ // If all values are undefs - consider cost free.
+ if (It == VL.end())
+ return TTI::TCC_Free;
+ // Add broadcast for non-identity shuffle only.
+ bool NeedShuffle =
+ VL.front() != *It || !all_of(VL.drop_front(), UndefValue::classof);
+ InstructionCost InsertCost =
+ TTI->getVectorInstrCost(Instruction::InsertElement, VecTy, CostKind,
+ /*Index=*/0, PoisonValue::get(VecTy), *It);
+ return InsertCost + (NeedShuffle
+ ? TTI->getShuffleCost(
+ TargetTransformInfo::SK_Broadcast, VecTy,
+ /*Mask=*/std::nullopt, CostKind,
+ /*Index=*/0,
+ /*SubTp=*/nullptr, /*Args=*/VL[0])
+ : TTI::TCC_Free);
+ }
+ InstructionCost ReuseShuffleCost = 0;
+ if (NeedToShuffleReuses)
+ ReuseShuffleCost = TTI->getShuffleCost(
+ TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices);
+ // Improve gather cost for gather of loads, if we can group some of the
+ // loads into vector loads.
+ if (VL.size() > 2 && E->getOpcode() == Instruction::Load &&
+ !E->isAltShuffle()) {
+ BoUpSLP::ValueSet VectorizedLoads;
+ unsigned StartIdx = 0;
+ unsigned VF = VL.size() / 2;
+ unsigned VectorizedCnt = 0;
+ unsigned ScatterVectorizeCnt = 0;
+ const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType());
+ for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) {
+ for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End;
+ Cnt += VF) {
+ ArrayRef<Value *> Slice = VL.slice(Cnt, VF);
+ if (!VectorizedLoads.count(Slice.front()) &&
+ !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) {
+ SmallVector<Value *> PointerOps;
+ OrdersType CurrentOrder;
+ LoadsState LS =
+ canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, *SE, *LI,
+ *TLI, CurrentOrder, PointerOps);
+ switch (LS) {
+ case LoadsState::Vectorize:
+ case LoadsState::ScatterVectorize:
+ // Mark the vectorized loads so that we don't vectorize them
+ // again.
+ if (LS == LoadsState::Vectorize)
+ ++VectorizedCnt;
+ else
+ ++ScatterVectorizeCnt;
+ VectorizedLoads.insert(Slice.begin(), Slice.end());
+ // If we vectorized initial block, no need to try to vectorize it
+ // again.
+ if (Cnt == StartIdx)
+ StartIdx += VF;
+ break;
+ case LoadsState::Gather:
+ break;
+ }
+ }
+ }
+ // Check if the whole array was vectorized already - exit.
+ if (StartIdx >= VL.size())
+ break;
+ // Found vectorizable parts - exit.
+ if (!VectorizedLoads.empty())
+ break;
+ }
+ if (!VectorizedLoads.empty()) {
+ InstructionCost GatherCost = 0;
+ unsigned NumParts = TTI->getNumberOfParts(VecTy);
+ bool NeedInsertSubvectorAnalysis =
+ !NumParts || (VL.size() / VF) > NumParts;
+ // Get the cost for gathered loads.
+ for (unsigned I = 0, End = VL.size(); I < End; I += VF) {
+ if (VectorizedLoads.contains(VL[I]))
+ continue;
+ GatherCost += getGatherCost(VL.slice(I, VF));
+ }
+ // The cost for vectorized loads.
+ InstructionCost ScalarsCost = 0;
+ for (Value *V : VectorizedLoads) {
+ auto *LI = cast<LoadInst>(V);
+ ScalarsCost +=
+ TTI->getMemoryOpCost(Instruction::Load, LI->getType(),
+ LI->getAlign(), LI->getPointerAddressSpace(),
+ CostKind, TTI::OperandValueInfo(), LI);
+ }
+ auto *LI = cast<LoadInst>(E->getMainOp());
+ auto *LoadTy = FixedVectorType::get(LI->getType(), VF);
+ Align Alignment = LI->getAlign();
+ GatherCost +=
+ VectorizedCnt *
+ TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment,
+ LI->getPointerAddressSpace(), CostKind,
+ TTI::OperandValueInfo(), LI);
+ GatherCost += ScatterVectorizeCnt *
+ TTI->getGatherScatterOpCost(
+ Instruction::Load, LoadTy, LI->getPointerOperand(),
+ /*VariableMask=*/false, Alignment, CostKind, LI);
+ if (NeedInsertSubvectorAnalysis) {
+ // Add the cost for the subvectors insert.
+ for (int I = VF, E = VL.size(); I < E; I += VF)
+ GatherCost +=
+ TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy,
+ std::nullopt, CostKind, I, LoadTy);
+ }
+ return ReuseShuffleCost + GatherCost - ScalarsCost;
+ }
+ }
+ return ReuseShuffleCost + getGatherCost(VL);
+ }
+ InstructionCost CommonCost = 0;
+ SmallVector<int> Mask;
+ if (!E->ReorderIndices.empty()) {
+ SmallVector<int> NewMask;
+ if (E->getOpcode() == Instruction::Store) {
+ // For stores the order is actually a mask.
+ NewMask.resize(E->ReorderIndices.size());
+ copy(E->ReorderIndices, NewMask.begin());
+ } else {
+ inversePermutation(E->ReorderIndices, NewMask);
+ }
+ ::addMask(Mask, NewMask);
+ }
+ if (NeedToShuffleReuses)
+ ::addMask(Mask, E->ReuseShuffleIndices);
+ if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask))
+ CommonCost =
+ TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask);
+ assert((E->State == TreeEntry::Vectorize ||
+ E->State == TreeEntry::ScatterVectorize) &&
+ "Unhandled state");
+ assert(E->getOpcode() &&
+ ((allSameType(VL) && allSameBlock(VL)) ||
+ (E->getOpcode() == Instruction::GetElementPtr &&
+ E->getMainOp()->getType()->isPointerTy())) &&
+ "Invalid VL");
+ Instruction *VL0 = E->getMainOp();
+ unsigned ShuffleOrOp =
+ E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
+ const unsigned Sz = VL.size();
+ auto GetCostDiff =
+ [=](function_ref<InstructionCost(unsigned)> ScalarEltCost,
+ function_ref<InstructionCost(InstructionCost)> VectorCost) {
+ // Calculate the cost of this instruction.
+ InstructionCost ScalarCost = 0;
+ if (isa<CastInst, CmpInst, SelectInst, CallInst>(VL0)) {
+ // For some of the instructions no need to calculate cost for each
+ // particular instruction, we can use the cost of the single
+ // instruction x total number of scalar instructions.
+ ScalarCost = Sz * ScalarEltCost(0);
+ } else {
+ for (unsigned I = 0; I < Sz; ++I)
+ ScalarCost += ScalarEltCost(I);
+ }
+
+ InstructionCost VecCost = VectorCost(CommonCost);
+ LLVM_DEBUG(
+ dumpTreeCosts(E, CommonCost, VecCost - CommonCost, ScalarCost));
+ // Disable warnings for `this` and `E` are unused. Required for
+ // `dumpTreeCosts`.
+ (void)this;
+ (void)E;
+ return VecCost - ScalarCost;
+ };
+ // Calculate cost difference from vectorizing set of GEPs.
+ // Negative value means vectorizing is profitable.
+ auto GetGEPCostDiff = [=](ArrayRef<Value *> Ptrs, Value *BasePtr) {
+ InstructionCost CostSavings = 0;
+ for (Value *V : Ptrs) {
+ if (V == BasePtr)
+ continue;
+ auto *Ptr = dyn_cast<GetElementPtrInst>(V);
+ // GEPs may contain just addresses without instructions, considered free.
+ // GEPs with all constant indices also considered to have zero cost.
+ if (!Ptr || Ptr->hasAllConstantIndices())
+ continue;
+
+ // Here we differentiate two cases: when GEPs represent a regular
+ // vectorization tree node (and hence vectorized) and when the set is
+ // arguments of a set of loads or stores being vectorized. In the former
+ // case all the scalar GEPs will be removed as a result of vectorization.
+ // For any external uses of some lanes extract element instructions will
+ // be generated (which cost is estimated separately). For the latter case
+ // since the set of GEPs itself is not vectorized those used more than
+ // once will remain staying in vectorized code as well. So we should not
+ // count them as savings.
+ if (!Ptr->hasOneUse() && isa<LoadInst, StoreInst>(VL0))
+ continue;
+
+ // TODO: it is target dependent, so need to implement and then use a TTI
+ // interface.
+ CostSavings += TTI->getArithmeticInstrCost(Instruction::Add,
+ Ptr->getType(), CostKind);
+ }
+ LLVM_DEBUG(dbgs() << "SLP: Calculated GEPs cost savings or Tree:\n";
+ E->dump());
+ LLVM_DEBUG(dbgs() << "SLP: GEP cost saving = " << CostSavings << "\n");
+ return InstructionCost() - CostSavings;
+ };
+
+ switch (ShuffleOrOp) {
+ case Instruction::PHI: {
+ // Count reused scalars.
+ InstructionCost ScalarCost = 0;
+ SmallPtrSet<const TreeEntry *, 4> CountedOps;
+ for (Value *V : VL) {
+ auto *PHI = dyn_cast<PHINode>(V);
+ if (!PHI)
+ continue;
+
+ ValueList Operands(PHI->getNumIncomingValues(), nullptr);
+ for (unsigned I = 0, N = PHI->getNumIncomingValues(); I < N; ++I) {
+ Value *Op = PHI->getIncomingValue(I);
+ Operands[I] = Op;
+ }
+ if (const TreeEntry *OpTE = getTreeEntry(Operands.front()))
+ if (OpTE->isSame(Operands) && CountedOps.insert(OpTE).second)
+ if (!OpTE->ReuseShuffleIndices.empty())
+ ScalarCost += TTI::TCC_Basic * (OpTE->ReuseShuffleIndices.size() -
+ OpTE->Scalars.size());
+ }
+
+ return CommonCost - ScalarCost;
+ }
+ case Instruction::ExtractValue:
+ case Instruction::ExtractElement: {
+ auto GetScalarCost = [=](unsigned Idx) {
+ auto *I = cast<Instruction>(VL[Idx]);
+ VectorType *SrcVecTy;
+ if (ShuffleOrOp == Instruction::ExtractElement) {
+ auto *EE = cast<ExtractElementInst>(I);
+ SrcVecTy = EE->getVectorOperandType();
+ } else {
+ auto *EV = cast<ExtractValueInst>(I);
+ Type *AggregateTy = EV->getAggregateOperand()->getType();
+ unsigned NumElts;
+ if (auto *ATy = dyn_cast<ArrayType>(AggregateTy))
+ NumElts = ATy->getNumElements();
+ else
+ NumElts = AggregateTy->getStructNumElements();
+ SrcVecTy = FixedVectorType::get(ScalarTy, NumElts);
+ }
+ if (I->hasOneUse()) {
+ Instruction *Ext = I->user_back();
+ if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
+ all_of(Ext->users(),
+ [](User *U) { return isa<GetElementPtrInst>(U); })) {
+ // Use getExtractWithExtendCost() to calculate the cost of
+ // extractelement/ext pair.
+ InstructionCost Cost = TTI->getExtractWithExtendCost(
+ Ext->getOpcode(), Ext->getType(), SrcVecTy, *getExtractIndex(I));
+ // Subtract the cost of s|zext which is subtracted separately.
+ Cost -= TTI->getCastInstrCost(
+ Ext->getOpcode(), Ext->getType(), I->getType(),
+ TTI::getCastContextHint(Ext), CostKind, Ext);
+ return Cost;
+ }
+ }
+ return TTI->getVectorInstrCost(Instruction::ExtractElement, SrcVecTy,
+ CostKind, *getExtractIndex(I));
+ };
+ auto GetVectorCost = [](InstructionCost CommonCost) { return CommonCost; };
+ return GetCostDiff(GetScalarCost, GetVectorCost);
+ }
+ case Instruction::InsertElement: {
+ assert(E->ReuseShuffleIndices.empty() &&
+ "Unique insertelements only are expected.");
+ auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
+ unsigned const NumElts = SrcVecTy->getNumElements();
+ unsigned const NumScalars = VL.size();
+
+ unsigned NumOfParts = TTI->getNumberOfParts(SrcVecTy);
+
+ SmallVector<int> InsertMask(NumElts, UndefMaskElem);
+ unsigned OffsetBeg = *getInsertIndex(VL.front());
+ unsigned OffsetEnd = OffsetBeg;
+ InsertMask[OffsetBeg] = 0;
+ for (auto [I, V] : enumerate(VL.drop_front())) {
+ unsigned Idx = *getInsertIndex(V);
+ if (OffsetBeg > Idx)
+ OffsetBeg = Idx;
+ else if (OffsetEnd < Idx)
+ OffsetEnd = Idx;
+ InsertMask[Idx] = I + 1;
+ }
+ unsigned VecScalarsSz = PowerOf2Ceil(NumElts);
+ if (NumOfParts > 0)
+ VecScalarsSz = PowerOf2Ceil((NumElts + NumOfParts - 1) / NumOfParts);
+ unsigned VecSz = (1 + OffsetEnd / VecScalarsSz - OffsetBeg / VecScalarsSz) *
+ VecScalarsSz;
+ unsigned Offset = VecScalarsSz * (OffsetBeg / VecScalarsSz);
+ unsigned InsertVecSz = std::min<unsigned>(
+ PowerOf2Ceil(OffsetEnd - OffsetBeg + 1),
+ ((OffsetEnd - OffsetBeg + VecScalarsSz) / VecScalarsSz) * VecScalarsSz);
+ bool IsWholeSubvector =
+ OffsetBeg == Offset && ((OffsetEnd + 1) % VecScalarsSz == 0);
+ // Check if we can safely insert a subvector. If it is not possible, just
+ // generate a whole-sized vector and shuffle the source vector and the new
+ // subvector.
+ if (OffsetBeg + InsertVecSz > VecSz) {
+ // Align OffsetBeg to generate correct mask.
+ OffsetBeg = alignDown(OffsetBeg, VecSz, Offset);
+ InsertVecSz = VecSz;
+ }
+
+ APInt DemandedElts = APInt::getZero(NumElts);
+ // TODO: Add support for Instruction::InsertValue.
+ SmallVector<int> Mask;
+ if (!E->ReorderIndices.empty()) {
+ inversePermutation(E->ReorderIndices, Mask);
+ Mask.append(InsertVecSz - Mask.size(), UndefMaskElem);
+ } else {
+ Mask.assign(VecSz, UndefMaskElem);
+ std::iota(Mask.begin(), std::next(Mask.begin(), InsertVecSz), 0);
+ }
+ bool IsIdentity = true;
+ SmallVector<int> PrevMask(InsertVecSz, UndefMaskElem);
+ Mask.swap(PrevMask);
+ for (unsigned I = 0; I < NumScalars; ++I) {
+ unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]);
+ DemandedElts.setBit(InsertIdx);
+ IsIdentity &= InsertIdx - OffsetBeg == I;
+ Mask[InsertIdx - OffsetBeg] = I;
+ }
+ assert(Offset < NumElts && "Failed to find vector index offset");
+
+ InstructionCost Cost = 0;
+ Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
+ /*Insert*/ true, /*Extract*/ false,
+ CostKind);
+
+ // First cost - resize to actual vector size if not identity shuffle or
+ // need to shift the vector.
+ // Do not calculate the cost if the actual size is the register size and
+ // we can merge this shuffle with the following SK_Select.
+ auto *InsertVecTy =
+ FixedVectorType::get(SrcVecTy->getElementType(), InsertVecSz);
+ if (!IsIdentity)
+ Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
+ InsertVecTy, Mask);
+ auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
+ return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0));
+ }));
+ // Second cost - permutation with subvector, if some elements are from the
+ // initial vector or inserting a subvector.
+ // TODO: Implement the analysis of the FirstInsert->getOperand(0)
+ // subvector of ActualVecTy.
+ SmallBitVector InMask =
+ isUndefVector(FirstInsert->getOperand(0),
+ buildUseMask(NumElts, InsertMask, UseMask::UndefsAsMask));
+ if (!InMask.all() && NumScalars != NumElts && !IsWholeSubvector) {
+ if (InsertVecSz != VecSz) {
+ auto *ActualVecTy =
+ FixedVectorType::get(SrcVecTy->getElementType(), VecSz);
+ Cost += TTI->getShuffleCost(TTI::SK_InsertSubvector, ActualVecTy,
+ std::nullopt, CostKind, OffsetBeg - Offset,
+ InsertVecTy);
+ } else {
+ for (unsigned I = 0, End = OffsetBeg - Offset; I < End; ++I)
+ Mask[I] = InMask.test(I) ? UndefMaskElem : I;
+ for (unsigned I = OffsetBeg - Offset, End = OffsetEnd - Offset;
+ I <= End; ++I)
+ if (Mask[I] != UndefMaskElem)
+ Mask[I] = I + VecSz;
+ for (unsigned I = OffsetEnd + 1 - Offset; I < VecSz; ++I)
+ Mask[I] =
+ ((I >= InMask.size()) || InMask.test(I)) ? UndefMaskElem : I;
+ Cost += TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, InsertVecTy, Mask);
+ }
+ }
+ return Cost;
+ }
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast: {
+ auto GetScalarCost = [=](unsigned Idx) {
+ auto *VI = cast<Instruction>(VL[Idx]);
+ return TTI->getCastInstrCost(E->getOpcode(), ScalarTy,
+ VI->getOperand(0)->getType(),
+ TTI::getCastContextHint(VI), CostKind, VI);
+ };
+ auto GetVectorCost = [=](InstructionCost CommonCost) {
+ Type *SrcTy = VL0->getOperand(0)->getType();
+ auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
+ InstructionCost VecCost = CommonCost;
+ // Check if the values are candidates to demote.
+ if (!MinBWs.count(VL0) || VecTy != SrcVecTy)
+ VecCost +=
+ TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy,
+ TTI::getCastContextHint(VL0), CostKind, VL0);
+ return VecCost;
+ };
+ return GetCostDiff(GetScalarCost, GetVectorCost);
+ }
+ case Instruction::FCmp:
+ case Instruction::ICmp:
+ case Instruction::Select: {
+ CmpInst::Predicate VecPred, SwappedVecPred;
+ auto MatchCmp = m_Cmp(VecPred, m_Value(), m_Value());
+ if (match(VL0, m_Select(MatchCmp, m_Value(), m_Value())) ||
+ match(VL0, MatchCmp))
+ SwappedVecPred = CmpInst::getSwappedPredicate(VecPred);
+ else
+ SwappedVecPred = VecPred = ScalarTy->isFloatingPointTy()
+ ? CmpInst::BAD_FCMP_PREDICATE
+ : CmpInst::BAD_ICMP_PREDICATE;
+ auto GetScalarCost = [&](unsigned Idx) {
+ auto *VI = cast<Instruction>(VL[Idx]);
+ CmpInst::Predicate CurrentPred = ScalarTy->isFloatingPointTy()
+ ? CmpInst::BAD_FCMP_PREDICATE
+ : CmpInst::BAD_ICMP_PREDICATE;
+ auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
+ if ((!match(VI, m_Select(MatchCmp, m_Value(), m_Value())) &&
+ !match(VI, MatchCmp)) ||
+ (CurrentPred != VecPred && CurrentPred != SwappedVecPred))
+ VecPred = SwappedVecPred = ScalarTy->isFloatingPointTy()
+ ? CmpInst::BAD_FCMP_PREDICATE
+ : CmpInst::BAD_ICMP_PREDICATE;
+
+ return TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
+ Builder.getInt1Ty(), CurrentPred, CostKind,
+ VI);
+ };
+ auto GetVectorCost = [&](InstructionCost CommonCost) {
+ auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
+
+ InstructionCost VecCost = TTI->getCmpSelInstrCost(
+ E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
+ // Check if it is possible and profitable to use min/max for selects
+ // in VL.
+ //
+ auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
+ if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
+ IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
+ {VecTy, VecTy});
+ InstructionCost IntrinsicCost =
+ TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
+ // If the selects are the only uses of the compares, they will be
+ // dead and we can adjust the cost by removing their cost.
+ if (IntrinsicAndUse.second)
+ IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy,
+ MaskTy, VecPred, CostKind);
+ VecCost = std::min(VecCost, IntrinsicCost);
+ }
+ return VecCost + CommonCost;
+ };
+ return GetCostDiff(GetScalarCost, GetVectorCost);
+ }
+ case Instruction::FNeg:
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ auto GetScalarCost = [=](unsigned Idx) {
+ auto *VI = cast<Instruction>(VL[Idx]);
+ unsigned OpIdx = isa<UnaryOperator>(VI) ? 0 : 1;
+ TTI::OperandValueInfo Op1Info = TTI::getOperandInfo(VI->getOperand(0));
+ TTI::OperandValueInfo Op2Info =
+ TTI::getOperandInfo(VI->getOperand(OpIdx));
+ SmallVector<const Value *> Operands(VI->operand_values());
+ return TTI->getArithmeticInstrCost(ShuffleOrOp, ScalarTy, CostKind,
+ Op1Info, Op2Info, Operands, VI);
+ };
+ auto GetVectorCost = [=](InstructionCost CommonCost) {
+ unsigned OpIdx = isa<UnaryOperator>(VL0) ? 0 : 1;
+ TTI::OperandValueInfo Op1Info = getOperandInfo(VL, 0);
+ TTI::OperandValueInfo Op2Info = getOperandInfo(VL, OpIdx);
+ return TTI->getArithmeticInstrCost(ShuffleOrOp, VecTy, CostKind, Op1Info,
+ Op2Info) +
+ CommonCost;
+ };
+ return GetCostDiff(GetScalarCost, GetVectorCost);
+ }
+ case Instruction::GetElementPtr: {
+ return CommonCost + GetGEPCostDiff(VL, VL0);
+ }
+ case Instruction::Load: {
+ auto GetScalarCost = [=](unsigned Idx) {
+ auto *VI = cast<LoadInst>(VL[Idx]);
+ return TTI->getMemoryOpCost(Instruction::Load, ScalarTy, VI->getAlign(),
+ VI->getPointerAddressSpace(), CostKind,
+ TTI::OperandValueInfo(), VI);
+ };
+ auto *LI0 = cast<LoadInst>(VL0);
+ auto GetVectorCost = [=](InstructionCost CommonCost) {
+ InstructionCost VecLdCost;
+ if (E->State == TreeEntry::Vectorize) {
+ VecLdCost = TTI->getMemoryOpCost(
+ Instruction::Load, VecTy, LI0->getAlign(),
+ LI0->getPointerAddressSpace(), CostKind, TTI::OperandValueInfo());
+ } else {
+ assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState");
+ Align CommonAlignment = LI0->getAlign();
+ for (Value *V : VL)
+ CommonAlignment =
+ std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
+ VecLdCost = TTI->getGatherScatterOpCost(
+ Instruction::Load, VecTy, LI0->getPointerOperand(),
+ /*VariableMask=*/false, CommonAlignment, CostKind);
+ }
+ return VecLdCost + CommonCost;
+ };
+
+ InstructionCost Cost = GetCostDiff(GetScalarCost, GetVectorCost);
+ // If this node generates masked gather load then it is not a terminal node.
+ // Hence address operand cost is estimated separately.
+ if (E->State == TreeEntry::ScatterVectorize)
+ return Cost;
+
+ // Estimate cost of GEPs since this tree node is a terminator.
+ SmallVector<Value *> PointerOps(VL.size());
+ for (auto [I, V] : enumerate(VL))
+ PointerOps[I] = cast<LoadInst>(V)->getPointerOperand();
+ return Cost + GetGEPCostDiff(PointerOps, LI0->getPointerOperand());
+ }
+ case Instruction::Store: {
+ bool IsReorder = !E->ReorderIndices.empty();
+ auto GetScalarCost = [=](unsigned Idx) {
+ auto *VI = cast<StoreInst>(VL[Idx]);
+ TTI::OperandValueInfo OpInfo = getOperandInfo(VI, 0);
+ return TTI->getMemoryOpCost(Instruction::Store, ScalarTy, VI->getAlign(),
+ VI->getPointerAddressSpace(), CostKind,
+ OpInfo, VI);
+ };
+ auto *BaseSI =
+ cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
+ auto GetVectorCost = [=](InstructionCost CommonCost) {
+ // We know that we can merge the stores. Calculate the cost.
+ TTI::OperandValueInfo OpInfo = getOperandInfo(VL, 0);
+ return TTI->getMemoryOpCost(Instruction::Store, VecTy, BaseSI->getAlign(),
+ BaseSI->getPointerAddressSpace(), CostKind,
+ OpInfo) +
+ CommonCost;
+ };
+ SmallVector<Value *> PointerOps(VL.size());
+ for (auto [I, V] : enumerate(VL)) {
+ unsigned Idx = IsReorder ? E->ReorderIndices[I] : I;
+ PointerOps[Idx] = cast<StoreInst>(V)->getPointerOperand();
+ }
+
+ return GetCostDiff(GetScalarCost, GetVectorCost) +
+ GetGEPCostDiff(PointerOps, BaseSI->getPointerOperand());
+ }
+ case Instruction::Call: {
+ auto GetScalarCost = [=](unsigned Idx) {
+ auto *CI = cast<CallInst>(VL[Idx]);
+ Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
+ if (ID != Intrinsic::not_intrinsic) {
+ IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
+ return TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
+ }
+ return TTI->getCallInstrCost(CI->getCalledFunction(),
+ CI->getFunctionType()->getReturnType(),
+ CI->getFunctionType()->params(), CostKind);
+ };
+ auto GetVectorCost = [=](InstructionCost CommonCost) {
+ auto *CI = cast<CallInst>(VL0);
+ auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
+ return std::min(VecCallCosts.first, VecCallCosts.second) + CommonCost;
+ };
+ return GetCostDiff(GetScalarCost, GetVectorCost);
+ }
+ case Instruction::ShuffleVector: {
+ assert(E->isAltShuffle() &&
+ ((Instruction::isBinaryOp(E->getOpcode()) &&
+ Instruction::isBinaryOp(E->getAltOpcode())) ||
+ (Instruction::isCast(E->getOpcode()) &&
+ Instruction::isCast(E->getAltOpcode())) ||
+ (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
+ "Invalid Shuffle Vector Operand");
+ // Try to find the previous shuffle node with the same operands and same
+ // main/alternate ops.
+ auto TryFindNodeWithEqualOperands = [=]() {
+ for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
+ if (TE.get() == E)
+ break;
+ if (TE->isAltShuffle() &&
+ ((TE->getOpcode() == E->getOpcode() &&
+ TE->getAltOpcode() == E->getAltOpcode()) ||
+ (TE->getOpcode() == E->getAltOpcode() &&
+ TE->getAltOpcode() == E->getOpcode())) &&
+ TE->hasEqualOperands(*E))
+ return true;
+ }
+ return false;
+ };
+ auto GetScalarCost = [=](unsigned Idx) {
+ auto *VI = cast<Instruction>(VL[Idx]);
+ assert(E->isOpcodeOrAlt(VI) && "Unexpected main/alternate opcode");
+ (void)E;
+ return TTI->getInstructionCost(VI, CostKind);
+ };
+ // Need to clear CommonCost since the final shuffle cost is included into
+ // vector cost.
+ auto GetVectorCost = [&](InstructionCost) {
+ // VecCost is equal to sum of the cost of creating 2 vectors
+ // and the cost of creating shuffle.
+ InstructionCost VecCost = 0;
+ if (TryFindNodeWithEqualOperands()) {
+ LLVM_DEBUG({
+ dbgs() << "SLP: diamond match for alternate node found.\n";
+ E->dump();
+ });
+ // No need to add new vector costs here since we're going to reuse
+ // same main/alternate vector ops, just do different shuffling.
+ } else if (Instruction::isBinaryOp(E->getOpcode())) {
+ VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
+ VecCost +=
+ TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, CostKind);
+ } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
+ VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
+ Builder.getInt1Ty(),
+ CI0->getPredicate(), CostKind, VL0);
+ VecCost += TTI->getCmpSelInstrCost(
+ E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
+ cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind,
+ E->getAltOp());
+ } else {
+ Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
+ Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
+ auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
+ auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
+ VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
+ TTI::CastContextHint::None, CostKind);
+ VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
+ TTI::CastContextHint::None, CostKind);
+ }
+ if (E->ReuseShuffleIndices.empty()) {
+ VecCost +=
+ TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy);
+ } else {
+ SmallVector<int> Mask;
+ buildShuffleEntryMask(
+ E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
+ [E](Instruction *I) {
+ assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
+ return I->getOpcode() == E->getAltOpcode();
+ },
+ Mask);
+ VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc,
+ FinalVecTy, Mask);
+ }
+ return VecCost;
+ };
+ return GetCostDiff(GetScalarCost, GetVectorCost);
+ }
+ default:
+ llvm_unreachable("Unknown instruction");
+ }
+}
+
+bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const {
+ LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
+ << VectorizableTree.size() << " is fully vectorizable .\n");
+
+ auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) {
+ SmallVector<int> Mask;
+ return TE->State == TreeEntry::NeedToGather &&
+ !any_of(TE->Scalars,
+ [this](Value *V) { return EphValues.contains(V); }) &&
+ (allConstant(TE->Scalars) || isSplat(TE->Scalars) ||
+ TE->Scalars.size() < Limit ||
+ ((TE->getOpcode() == Instruction::ExtractElement ||
+ all_of(TE->Scalars,
+ [](Value *V) {
+ return isa<ExtractElementInst, UndefValue>(V);
+ })) &&
+ isFixedVectorShuffle(TE->Scalars, Mask)) ||
+ (TE->State == TreeEntry::NeedToGather &&
+ TE->getOpcode() == Instruction::Load && !TE->isAltShuffle()));
+ };
+
+ // We only handle trees of heights 1 and 2.
+ if (VectorizableTree.size() == 1 &&
+ (VectorizableTree[0]->State == TreeEntry::Vectorize ||
+ (ForReduction &&
+ AreVectorizableGathers(VectorizableTree[0].get(),
+ VectorizableTree[0]->Scalars.size()) &&
+ VectorizableTree[0]->getVectorFactor() > 2)))
+ return true;
+
+ if (VectorizableTree.size() != 2)
+ return false;
+
+ // Handle splat and all-constants stores. Also try to vectorize tiny trees
+ // with the second gather nodes if they have less scalar operands rather than
+ // the initial tree element (may be profitable to shuffle the second gather)
+ // or they are extractelements, which form shuffle.
+ SmallVector<int> Mask;
+ if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
+ AreVectorizableGathers(VectorizableTree[1].get(),
+ VectorizableTree[0]->Scalars.size()))
+ return true;
+
+ // Gathering cost would be too much for tiny trees.
+ if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
+ (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
+ VectorizableTree[0]->State != TreeEntry::ScatterVectorize))
+ return false;
+
+ return true;
+}
+
+static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
+ TargetTransformInfo *TTI,
+ bool MustMatchOrInst) {
+ // Look past the root to find a source value. Arbitrarily follow the
+ // path through operand 0 of any 'or'. Also, peek through optional
+ // shift-left-by-multiple-of-8-bits.
+ Value *ZextLoad = Root;
+ const APInt *ShAmtC;
+ bool FoundOr = false;
+ while (!isa<ConstantExpr>(ZextLoad) &&
+ (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
+ (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
+ ShAmtC->urem(8) == 0))) {
+ auto *BinOp = cast<BinaryOperator>(ZextLoad);
+ ZextLoad = BinOp->getOperand(0);
+ if (BinOp->getOpcode() == Instruction::Or)
+ FoundOr = true;
+ }
+ // Check if the input is an extended load of the required or/shift expression.
+ Value *Load;
+ if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
+ !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load))
+ return false;
+
+ // Require that the total load bit width is a legal integer type.
+ // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
+ // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
+ Type *SrcTy = Load->getType();
+ unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
+ if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
+ return false;
+
+ // Everything matched - assume that we can fold the whole sequence using
+ // load combining.
+ LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
+ << *(cast<Instruction>(Root)) << "\n");
+
+ return true;
+}
+
+bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
+ if (RdxKind != RecurKind::Or)
+ return false;
+
+ unsigned NumElts = VectorizableTree[0]->Scalars.size();
+ Value *FirstReduced = VectorizableTree[0]->Scalars[0];
+ return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
+ /* MatchOr */ false);
+}
+
+bool BoUpSLP::isLoadCombineCandidate() const {
+ // Peek through a final sequence of stores and check if all operations are
+ // likely to be load-combined.
+ unsigned NumElts = VectorizableTree[0]->Scalars.size();
+ for (Value *Scalar : VectorizableTree[0]->Scalars) {
+ Value *X;
+ if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
+ !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
+ return false;
+ }
+ return true;
+}
+
+bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const {
+ // No need to vectorize inserts of gathered values.
+ if (VectorizableTree.size() == 2 &&
+ isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
+ VectorizableTree[1]->State == TreeEntry::NeedToGather &&
+ (VectorizableTree[1]->getVectorFactor() <= 2 ||
+ !(isSplat(VectorizableTree[1]->Scalars) ||
+ allConstant(VectorizableTree[1]->Scalars))))
+ return true;
+
+ // We can vectorize the tree if its size is greater than or equal to the
+ // minimum size specified by the MinTreeSize command line option.
+ if (VectorizableTree.size() >= MinTreeSize)
+ return false;
+
+ // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
+ // can vectorize it if we can prove it fully vectorizable.
+ if (isFullyVectorizableTinyTree(ForReduction))
+ return false;
+
+ assert(VectorizableTree.empty()
+ ? ExternalUses.empty()
+ : true && "We shouldn't have any external users");
+
+ // Otherwise, we can't vectorize the tree. It is both tiny and not fully
+ // vectorizable.
+ return true;
+}
+
+InstructionCost BoUpSLP::getSpillCost() const {
+ // Walk from the bottom of the tree to the top, tracking which values are
+ // live. When we see a call instruction that is not part of our tree,
+ // query TTI to see if there is a cost to keeping values live over it
+ // (for example, if spills and fills are required).
+ unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
+ InstructionCost Cost = 0;
+
+ SmallPtrSet<Instruction*, 4> LiveValues;
+ Instruction *PrevInst = nullptr;
+
+ // The entries in VectorizableTree are not necessarily ordered by their
+ // position in basic blocks. Collect them and order them by dominance so later
+ // instructions are guaranteed to be visited first. For instructions in
+ // different basic blocks, we only scan to the beginning of the block, so
+ // their order does not matter, as long as all instructions in a basic block
+ // are grouped together. Using dominance ensures a deterministic order.
+ SmallVector<Instruction *, 16> OrderedScalars;
+ for (const auto &TEPtr : VectorizableTree) {
+ Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
+ if (!Inst)
+ continue;
+ OrderedScalars.push_back(Inst);
+ }
+ llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
+ auto *NodeA = DT->getNode(A->getParent());
+ auto *NodeB = DT->getNode(B->getParent());
+ assert(NodeA && "Should only process reachable instructions");
+ assert(NodeB && "Should only process reachable instructions");
+ assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
+ "Different nodes should have different DFS numbers");
+ if (NodeA != NodeB)
+ return NodeA->getDFSNumIn() < NodeB->getDFSNumIn();
+ return B->comesBefore(A);
+ });
+
+ for (Instruction *Inst : OrderedScalars) {
+ if (!PrevInst) {
+ PrevInst = Inst;
+ continue;
+ }
+
+ // Update LiveValues.
+ LiveValues.erase(PrevInst);
+ for (auto &J : PrevInst->operands()) {
+ if (isa<Instruction>(&*J) && getTreeEntry(&*J))
+ LiveValues.insert(cast<Instruction>(&*J));
+ }
+
+ LLVM_DEBUG({
+ dbgs() << "SLP: #LV: " << LiveValues.size();
+ for (auto *X : LiveValues)
+ dbgs() << " " << X->getName();
+ dbgs() << ", Looking at ";
+ Inst->dump();
+ });
+
+ // Now find the sequence of instructions between PrevInst and Inst.
+ unsigned NumCalls = 0;
+ BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
+ PrevInstIt =
+ PrevInst->getIterator().getReverse();
+ while (InstIt != PrevInstIt) {
+ if (PrevInstIt == PrevInst->getParent()->rend()) {
+ PrevInstIt = Inst->getParent()->rbegin();
+ continue;
+ }
+
+ auto NoCallIntrinsic = [this](Instruction *I) {
+ if (auto *II = dyn_cast<IntrinsicInst>(I)) {
+ if (II->isAssumeLikeIntrinsic())
+ return true;
+ FastMathFlags FMF;
+ SmallVector<Type *, 4> Tys;
+ for (auto &ArgOp : II->args())
+ Tys.push_back(ArgOp->getType());
+ if (auto *FPMO = dyn_cast<FPMathOperator>(II))
+ FMF = FPMO->getFastMathFlags();
+ IntrinsicCostAttributes ICA(II->getIntrinsicID(), II->getType(), Tys,
+ FMF);
+ InstructionCost IntrCost =
+ TTI->getIntrinsicInstrCost(ICA, TTI::TCK_RecipThroughput);
+ InstructionCost CallCost = TTI->getCallInstrCost(
+ nullptr, II->getType(), Tys, TTI::TCK_RecipThroughput);
+ if (IntrCost < CallCost)
+ return true;
+ }
+ return false;
+ };
+
+ // Debug information does not impact spill cost.
+ if (isa<CallInst>(&*PrevInstIt) && !NoCallIntrinsic(&*PrevInstIt) &&
+ &*PrevInstIt != PrevInst)
+ NumCalls++;
+
+ ++PrevInstIt;
+ }
+
+ if (NumCalls) {
+ SmallVector<Type*, 4> V;
+ for (auto *II : LiveValues) {
+ auto *ScalarTy = II->getType();
+ if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
+ ScalarTy = VectorTy->getElementType();
+ V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
+ }
+ Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
+ }
+
+ PrevInst = Inst;
+ }
+
+ return Cost;
+}
+
+/// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the
+/// buildvector sequence.
+static bool isFirstInsertElement(const InsertElementInst *IE1,
+ const InsertElementInst *IE2) {
+ if (IE1 == IE2)
+ return false;
+ const auto *I1 = IE1;
+ const auto *I2 = IE2;
+ const InsertElementInst *PrevI1;
+ const InsertElementInst *PrevI2;
+ unsigned Idx1 = *getInsertIndex(IE1);
+ unsigned Idx2 = *getInsertIndex(IE2);
+ do {
+ if (I2 == IE1)
+ return true;
+ if (I1 == IE2)
+ return false;
+ PrevI1 = I1;
+ PrevI2 = I2;
+ if (I1 && (I1 == IE1 || I1->hasOneUse()) &&
+ getInsertIndex(I1).value_or(Idx2) != Idx2)
+ I1 = dyn_cast<InsertElementInst>(I1->getOperand(0));
+ if (I2 && ((I2 == IE2 || I2->hasOneUse())) &&
+ getInsertIndex(I2).value_or(Idx1) != Idx1)
+ I2 = dyn_cast<InsertElementInst>(I2->getOperand(0));
+ } while ((I1 && PrevI1 != I1) || (I2 && PrevI2 != I2));
+ llvm_unreachable("Two different buildvectors not expected.");
+}
+
+namespace {
+/// Returns incoming Value *, if the requested type is Value * too, or a default
+/// value, otherwise.
+struct ValueSelect {
+ template <typename U>
+ static std::enable_if_t<std::is_same_v<Value *, U>, Value *> get(Value *V) {
+ return V;
+ }
+ template <typename U>
+ static std::enable_if_t<!std::is_same_v<Value *, U>, U> get(Value *) {
+ return U();
+ }
+};
+} // namespace
+
+/// Does the analysis of the provided shuffle masks and performs the requested
+/// actions on the vectors with the given shuffle masks. It tries to do it in
+/// several steps.
+/// 1. If the Base vector is not undef vector, resizing the very first mask to
+/// have common VF and perform action for 2 input vectors (including non-undef
+/// Base). Other shuffle masks are combined with the resulting after the 1 stage
+/// and processed as a shuffle of 2 elements.
+/// 2. If the Base is undef vector and have only 1 shuffle mask, perform the
+/// action only for 1 vector with the given mask, if it is not the identity
+/// mask.
+/// 3. If > 2 masks are used, perform the remaining shuffle actions for 2
+/// vectors, combing the masks properly between the steps.
+template <typename T>
+static T *performExtractsShuffleAction(
+ MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base,
+ function_ref<unsigned(T *)> GetVF,
+ function_ref<std::pair<T *, bool>(T *, ArrayRef<int>, bool)> ResizeAction,
+ function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) {
+ assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts.");
+ SmallVector<int> Mask(ShuffleMask.begin()->second);
+ auto VMIt = std::next(ShuffleMask.begin());
+ T *Prev = nullptr;
+ SmallBitVector UseMask =
+ buildUseMask(Mask.size(), Mask, UseMask::UndefsAsMask);
+ SmallBitVector IsBaseUndef = isUndefVector(Base, UseMask);
+ if (!IsBaseUndef.all()) {
+ // Base is not undef, need to combine it with the next subvectors.
+ std::pair<T *, bool> Res =
+ ResizeAction(ShuffleMask.begin()->first, Mask, /*ForSingleMask=*/false);
+ SmallBitVector IsBasePoison = isUndefVector<true>(Base, UseMask);
+ for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
+ if (Mask[Idx] == UndefMaskElem)
+ Mask[Idx] = IsBasePoison.test(Idx) ? UndefMaskElem : Idx;
+ else
+ Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF;
+ }
+ auto *V = ValueSelect::get<T *>(Base);
+ (void)V;
+ assert((!V || GetVF(V) == Mask.size()) &&
+ "Expected base vector of VF number of elements.");
+ Prev = Action(Mask, {nullptr, Res.first});
+ } else if (ShuffleMask.size() == 1) {
+ // Base is undef and only 1 vector is shuffled - perform the action only for
+ // single vector, if the mask is not the identity mask.
+ std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask,
+ /*ForSingleMask=*/true);
+ if (Res.second)
+ // Identity mask is found.
+ Prev = Res.first;
+ else
+ Prev = Action(Mask, {ShuffleMask.begin()->first});
+ } else {
+ // Base is undef and at least 2 input vectors shuffled - perform 2 vectors
+ // shuffles step by step, combining shuffle between the steps.
+ unsigned Vec1VF = GetVF(ShuffleMask.begin()->first);
+ unsigned Vec2VF = GetVF(VMIt->first);
+ if (Vec1VF == Vec2VF) {
+ // No need to resize the input vectors since they are of the same size, we
+ // can shuffle them directly.
+ ArrayRef<int> SecMask = VMIt->second;
+ for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
+ if (SecMask[I] != UndefMaskElem) {
+ assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars.");
+ Mask[I] = SecMask[I] + Vec1VF;
+ }
+ }
+ Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first});
+ } else {
+ // Vectors of different sizes - resize and reshuffle.
+ std::pair<T *, bool> Res1 = ResizeAction(ShuffleMask.begin()->first, Mask,
+ /*ForSingleMask=*/false);
+ std::pair<T *, bool> Res2 =
+ ResizeAction(VMIt->first, VMIt->second, /*ForSingleMask=*/false);
+ ArrayRef<int> SecMask = VMIt->second;
+ for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
+ if (Mask[I] != UndefMaskElem) {
+ assert(SecMask[I] == UndefMaskElem && "Multiple uses of scalars.");
+ if (Res1.second)
+ Mask[I] = I;
+ } else if (SecMask[I] != UndefMaskElem) {
+ assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars.");
+ Mask[I] = (Res2.second ? I : SecMask[I]) + VF;
+ }
+ }
+ Prev = Action(Mask, {Res1.first, Res2.first});
+ }
+ VMIt = std::next(VMIt);
+ }
+ bool IsBaseNotUndef = !IsBaseUndef.all();
+ (void)IsBaseNotUndef;
+ // Perform requested actions for the remaining masks/vectors.
+ for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) {
+ // Shuffle other input vectors, if any.
+ std::pair<T *, bool> Res =
+ ResizeAction(VMIt->first, VMIt->second, /*ForSingleMask=*/false);
+ ArrayRef<int> SecMask = VMIt->second;
+ for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
+ if (SecMask[I] != UndefMaskElem) {
+ assert((Mask[I] == UndefMaskElem || IsBaseNotUndef) &&
+ "Multiple uses of scalars.");
+ Mask[I] = (Res.second ? I : SecMask[I]) + VF;
+ } else if (Mask[I] != UndefMaskElem) {
+ Mask[I] = I;
+ }
+ }
+ Prev = Action(Mask, {Prev, Res.first});
+ }
+ return Prev;
+}
+
+InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
+ InstructionCost Cost = 0;
+ LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
+ << VectorizableTree.size() << ".\n");
+
+ unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
+
+ for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
+ TreeEntry &TE = *VectorizableTree[I];
+ if (TE.State == TreeEntry::NeedToGather) {
+ if (const TreeEntry *E = getTreeEntry(TE.getMainOp());
+ E && E->getVectorFactor() == TE.getVectorFactor() &&
+ E->isSame(TE.Scalars)) {
+ // Some gather nodes might be absolutely the same as some vectorizable
+ // nodes after reordering, need to handle it.
+ LLVM_DEBUG(dbgs() << "SLP: Adding cost 0 for bundle that starts with "
+ << *TE.Scalars[0] << ".\n"
+ << "SLP: Current total cost = " << Cost << "\n");
+ continue;
+ }
+ }
+
+ InstructionCost C = getEntryCost(&TE, VectorizedVals);
+ Cost += C;
+ LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
+ << " for bundle that starts with " << *TE.Scalars[0]
+ << ".\n"
+ << "SLP: Current total cost = " << Cost << "\n");
+ }
+
+ SmallPtrSet<Value *, 16> ExtractCostCalculated;
+ InstructionCost ExtractCost = 0;
+ SmallVector<MapVector<const TreeEntry *, SmallVector<int>>> ShuffleMasks;
+ SmallVector<std::pair<Value *, const TreeEntry *>> FirstUsers;
+ SmallVector<APInt> DemandedElts;
+ for (ExternalUser &EU : ExternalUses) {
+ // We only add extract cost once for the same scalar.
+ if (!isa_and_nonnull<InsertElementInst>(EU.User) &&
+ !ExtractCostCalculated.insert(EU.Scalar).second)
+ continue;
+
+ // Uses by ephemeral values are free (because the ephemeral value will be
+ // removed prior to code generation, and so the extraction will be
+ // removed as well).
+ if (EphValues.count(EU.User))
+ continue;
+
+ // No extract cost for vector "scalar"
+ if (isa<FixedVectorType>(EU.Scalar->getType()))
+ continue;
+
+ // If found user is an insertelement, do not calculate extract cost but try
+ // to detect it as a final shuffled/identity match.
+ if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) {
+ if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) {
+ std::optional<unsigned> InsertIdx = getInsertIndex(VU);
+ if (InsertIdx) {
+ const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar);
+ auto *It = find_if(
+ FirstUsers,
+ [this, VU](const std::pair<Value *, const TreeEntry *> &Pair) {
+ return areTwoInsertFromSameBuildVector(
+ VU, cast<InsertElementInst>(Pair.first),
+ [this](InsertElementInst *II) -> Value * {
+ Value *Op0 = II->getOperand(0);
+ if (getTreeEntry(II) && !getTreeEntry(Op0))
+ return nullptr;
+ return Op0;
+ });
+ });
+ int VecId = -1;
+ if (It == FirstUsers.end()) {
+ (void)ShuffleMasks.emplace_back();
+ SmallVectorImpl<int> &Mask = ShuffleMasks.back()[ScalarTE];
+ if (Mask.empty())
+ Mask.assign(FTy->getNumElements(), UndefMaskElem);
+ // Find the insertvector, vectorized in tree, if any.
+ Value *Base = VU;
+ while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) {
+ if (IEBase != EU.User &&
+ (!IEBase->hasOneUse() ||
+ getInsertIndex(IEBase).value_or(*InsertIdx) == *InsertIdx))
+ break;
+ // Build the mask for the vectorized insertelement instructions.
+ if (const TreeEntry *E = getTreeEntry(IEBase)) {
+ VU = IEBase;
+ do {
+ IEBase = cast<InsertElementInst>(Base);
+ int Idx = *getInsertIndex(IEBase);
+ assert(Mask[Idx] == UndefMaskElem &&
+ "InsertElementInstruction used already.");
+ Mask[Idx] = Idx;
+ Base = IEBase->getOperand(0);
+ } while (E == getTreeEntry(Base));
+ break;
+ }
+ Base = cast<InsertElementInst>(Base)->getOperand(0);
+ }
+ FirstUsers.emplace_back(VU, ScalarTE);
+ DemandedElts.push_back(APInt::getZero(FTy->getNumElements()));
+ VecId = FirstUsers.size() - 1;
+ } else {
+ if (isFirstInsertElement(VU, cast<InsertElementInst>(It->first)))
+ It->first = VU;
+ VecId = std::distance(FirstUsers.begin(), It);
+ }
+ int InIdx = *InsertIdx;
+ SmallVectorImpl<int> &Mask = ShuffleMasks[VecId][ScalarTE];
+ if (Mask.empty())
+ Mask.assign(FTy->getNumElements(), UndefMaskElem);
+ Mask[InIdx] = EU.Lane;
+ DemandedElts[VecId].setBit(InIdx);
+ continue;
+ }
+ }
+ }
+
+ // If we plan to rewrite the tree in a smaller type, we will need to sign
+ // extend the extracted value back to the original type. Here, we account
+ // for the extract and the added cost of the sign extend if needed.
+ auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
+ TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
+ auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
+ if (MinBWs.count(ScalarRoot)) {
+ auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
+ auto Extend =
+ MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
+ VecTy = FixedVectorType::get(MinTy, BundleWidth);
+ ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
+ VecTy, EU.Lane);
+ } else {
+ ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
+ CostKind, EU.Lane);
+ }
+ }
+
+ InstructionCost SpillCost = getSpillCost();
+ Cost += SpillCost + ExtractCost;
+ auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask,
+ bool) {
+ InstructionCost C = 0;
+ unsigned VF = Mask.size();
+ unsigned VecVF = TE->getVectorFactor();
+ if (VF != VecVF &&
+ (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) ||
+ (all_of(Mask,
+ [VF](int Idx) { return Idx < 2 * static_cast<int>(VF); }) &&
+ !ShuffleVectorInst::isIdentityMask(Mask)))) {
+ SmallVector<int> OrigMask(VecVF, UndefMaskElem);
+ std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)),
+ OrigMask.begin());
+ C = TTI->getShuffleCost(
+ TTI::SK_PermuteSingleSrc,
+ FixedVectorType::get(TE->getMainOp()->getType(), VecVF), OrigMask);
+ LLVM_DEBUG(
+ dbgs() << "SLP: Adding cost " << C
+ << " for final shuffle of insertelement external users.\n";
+ TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n");
+ Cost += C;
+ return std::make_pair(TE, true);
+ }
+ return std::make_pair(TE, false);
+ };
+ // Calculate the cost of the reshuffled vectors, if any.
+ for (int I = 0, E = FirstUsers.size(); I < E; ++I) {
+ Value *Base = cast<Instruction>(FirstUsers[I].first)->getOperand(0);
+ unsigned VF = ShuffleMasks[I].begin()->second.size();
+ auto *FTy = FixedVectorType::get(
+ cast<VectorType>(FirstUsers[I].first->getType())->getElementType(), VF);
+ auto Vector = ShuffleMasks[I].takeVector();
+ auto &&EstimateShufflesCost = [this, FTy,
+ &Cost](ArrayRef<int> Mask,
+ ArrayRef<const TreeEntry *> TEs) {
+ assert((TEs.size() == 1 || TEs.size() == 2) &&
+ "Expected exactly 1 or 2 tree entries.");
+ if (TEs.size() == 1) {
+ int Limit = 2 * Mask.size();
+ if (!all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) ||
+ !ShuffleVectorInst::isIdentityMask(Mask)) {
+ InstructionCost C =
+ TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FTy, Mask);
+ LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
+ << " for final shuffle of insertelement "
+ "external users.\n";
+ TEs.front()->dump();
+ dbgs() << "SLP: Current total cost = " << Cost << "\n");
+ Cost += C;
+ }
+ } else {
+ InstructionCost C =
+ TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, FTy, Mask);
+ LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
+ << " for final shuffle of vector node and external "
+ "insertelement users.\n";
+ if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump();
+ dbgs() << "SLP: Current total cost = " << Cost << "\n");
+ Cost += C;
+ }
+ return TEs.back();
+ };
+ (void)performExtractsShuffleAction<const TreeEntry>(
+ MutableArrayRef(Vector.data(), Vector.size()), Base,
+ [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF,
+ EstimateShufflesCost);
+ InstructionCost InsertCost = TTI->getScalarizationOverhead(
+ cast<FixedVectorType>(FirstUsers[I].first->getType()), DemandedElts[I],
+ /*Insert*/ true, /*Extract*/ false, TTI::TCK_RecipThroughput);
+ Cost -= InsertCost;
+ }
+
+#ifndef NDEBUG
+ SmallString<256> Str;
+ {
+ raw_svector_ostream OS(Str);
+ OS << "SLP: Spill Cost = " << SpillCost << ".\n"
+ << "SLP: Extract Cost = " << ExtractCost << ".\n"
+ << "SLP: Total Cost = " << Cost << ".\n";
+ }
+ LLVM_DEBUG(dbgs() << Str);
+ if (ViewSLPTree)
+ ViewGraph(this, "SLP" + F->getName(), false, Str);
+#endif
+
+ return Cost;
+}
+
+std::optional<TargetTransformInfo::ShuffleKind>
+BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, ArrayRef<Value *> VL,
+ SmallVectorImpl<int> &Mask,
+ SmallVectorImpl<const TreeEntry *> &Entries) {
+ Entries.clear();
+ // No need to check for the topmost gather node.
+ if (TE == VectorizableTree.front().get())
+ return std::nullopt;
+ Mask.assign(VL.size(), UndefMaskElem);
+ assert(TE->UserTreeIndices.size() == 1 &&
+ "Expected only single user of the gather node.");
+ // TODO: currently checking only for Scalars in the tree entry, need to count
+ // reused elements too for better cost estimation.
+ Instruction &UserInst =
+ getLastInstructionInBundle(TE->UserTreeIndices.front().UserTE);
+ auto *PHI = dyn_cast<PHINode>(&UserInst);
+ auto *NodeUI = DT->getNode(
+ PHI ? PHI->getIncomingBlock(TE->UserTreeIndices.front().EdgeIdx)
+ : UserInst.getParent());
+ assert(NodeUI && "Should only process reachable instructions");
+ SmallPtrSet<Value *, 4> GatheredScalars(VL.begin(), VL.end());
+ auto CheckOrdering = [&](Instruction *LastEI) {
+ // Check if the user node of the TE comes after user node of EntryPtr,
+ // otherwise EntryPtr depends on TE.
+ // Gather nodes usually are not scheduled and inserted before their first
+ // user node. So, instead of checking dependency between the gather nodes
+ // themselves, we check the dependency between their user nodes.
+ // If one user node comes before the second one, we cannot use the second
+ // gather node as the source vector for the first gather node, because in
+ // the list of instructions it will be emitted later.
+ auto *EntryParent = LastEI->getParent();
+ auto *NodeEUI = DT->getNode(EntryParent);
+ if (!NodeEUI)
+ return false;
+ assert((NodeUI == NodeEUI) ==
+ (NodeUI->getDFSNumIn() == NodeEUI->getDFSNumIn()) &&
+ "Different nodes should have different DFS numbers");
+ // Check the order of the gather nodes users.
+ if (UserInst.getParent() != EntryParent &&
+ (DT->dominates(NodeUI, NodeEUI) || !DT->dominates(NodeEUI, NodeUI)))
+ return false;
+ if (UserInst.getParent() == EntryParent && UserInst.comesBefore(LastEI))
+ return false;
+ return true;
+ };
+ // Build a lists of values to tree entries.
+ DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs;
+ for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) {
+ if (EntryPtr.get() == TE)
+ continue;
+ if (EntryPtr->State != TreeEntry::NeedToGather)
+ continue;
+ if (!any_of(EntryPtr->Scalars, [&GatheredScalars](Value *V) {
+ return GatheredScalars.contains(V);
+ }))
+ continue;
+ assert(EntryPtr->UserTreeIndices.size() == 1 &&
+ "Expected only single user of the gather node.");
+ Instruction &EntryUserInst =
+ getLastInstructionInBundle(EntryPtr->UserTreeIndices.front().UserTE);
+ if (&UserInst == &EntryUserInst) {
+ // If 2 gathers are operands of the same entry, compare operands indices,
+ // use the earlier one as the base.
+ if (TE->UserTreeIndices.front().UserTE ==
+ EntryPtr->UserTreeIndices.front().UserTE &&
+ TE->UserTreeIndices.front().EdgeIdx <
+ EntryPtr->UserTreeIndices.front().EdgeIdx)
+ continue;
+ }
+ // Check if the user node of the TE comes after user node of EntryPtr,
+ // otherwise EntryPtr depends on TE.
+ auto *EntryPHI = dyn_cast<PHINode>(&EntryUserInst);
+ auto *EntryI =
+ EntryPHI
+ ? EntryPHI
+ ->getIncomingBlock(EntryPtr->UserTreeIndices.front().EdgeIdx)
+ ->getTerminator()
+ : &EntryUserInst;
+ if (!CheckOrdering(EntryI))
+ continue;
+ for (Value *V : EntryPtr->Scalars)
+ if (!isConstant(V))
+ ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get());
+ }
+ // Find all tree entries used by the gathered values. If no common entries
+ // found - not a shuffle.
+ // Here we build a set of tree nodes for each gathered value and trying to
+ // find the intersection between these sets. If we have at least one common
+ // tree node for each gathered value - we have just a permutation of the
+ // single vector. If we have 2 different sets, we're in situation where we
+ // have a permutation of 2 input vectors.
+ SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
+ DenseMap<Value *, int> UsedValuesEntry;
+ for (Value *V : TE->Scalars) {
+ if (isConstant(V))
+ continue;
+ // Build a list of tree entries where V is used.
+ SmallPtrSet<const TreeEntry *, 4> VToTEs;
+ auto It = ValueToTEs.find(V);
+ if (It != ValueToTEs.end())
+ VToTEs = It->second;
+ if (const TreeEntry *VTE = getTreeEntry(V))
+ VToTEs.insert(VTE);
+ if (VToTEs.empty())
+ continue;
+ if (UsedTEs.empty()) {
+ // The first iteration, just insert the list of nodes to vector.
+ UsedTEs.push_back(VToTEs);
+ UsedValuesEntry.try_emplace(V, 0);
+ } else {
+ // Need to check if there are any previously used tree nodes which use V.
+ // If there are no such nodes, consider that we have another one input
+ // vector.
+ SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
+ unsigned Idx = 0;
+ for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
+ // Do we have a non-empty intersection of previously listed tree entries
+ // and tree entries using current V?
+ set_intersect(VToTEs, Set);
+ if (!VToTEs.empty()) {
+ // Yes, write the new subset and continue analysis for the next
+ // scalar.
+ Set.swap(VToTEs);
+ break;
+ }
+ VToTEs = SavedVToTEs;
+ ++Idx;
+ }
+ // No non-empty intersection found - need to add a second set of possible
+ // source vectors.
+ if (Idx == UsedTEs.size()) {
+ // If the number of input vectors is greater than 2 - not a permutation,
+ // fallback to the regular gather.
+ // TODO: support multiple reshuffled nodes.
+ if (UsedTEs.size() == 2)
+ continue;
+ UsedTEs.push_back(SavedVToTEs);
+ Idx = UsedTEs.size() - 1;
+ }
+ UsedValuesEntry.try_emplace(V, Idx);
+ }
+ }
+
+ if (UsedTEs.empty())
+ return std::nullopt;
+
+ unsigned VF = 0;
+ if (UsedTEs.size() == 1) {
+ // Keep the order to avoid non-determinism.
+ SmallVector<const TreeEntry *> FirstEntries(UsedTEs.front().begin(),
+ UsedTEs.front().end());
+ sort(FirstEntries, [](const TreeEntry *TE1, const TreeEntry *TE2) {
+ return TE1->Idx < TE2->Idx;
+ });
+ // Try to find the perfect match in another gather node at first.
+ auto *It = find_if(FirstEntries, [=](const TreeEntry *EntryPtr) {
+ return EntryPtr->isSame(VL) || EntryPtr->isSame(TE->Scalars);
+ });
+ if (It != FirstEntries.end()) {
+ Entries.push_back(*It);
+ std::iota(Mask.begin(), Mask.end(), 0);
+ // Clear undef scalars.
+ for (int I = 0, Sz = VL.size(); I < Sz; ++I)
+ if (isa<PoisonValue>(TE->Scalars[I]))
+ Mask[I] = UndefMaskElem;
+ return TargetTransformInfo::SK_PermuteSingleSrc;
+ }
+ // No perfect match, just shuffle, so choose the first tree node from the
+ // tree.
+ Entries.push_back(FirstEntries.front());
+ } else {
+ // Try to find nodes with the same vector factor.
+ assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.");
+ // Keep the order of tree nodes to avoid non-determinism.
+ DenseMap<int, const TreeEntry *> VFToTE;
+ for (const TreeEntry *TE : UsedTEs.front()) {
+ unsigned VF = TE->getVectorFactor();
+ auto It = VFToTE.find(VF);
+ if (It != VFToTE.end()) {
+ if (It->second->Idx > TE->Idx)
+ It->getSecond() = TE;
+ continue;
+ }
+ VFToTE.try_emplace(VF, TE);
+ }
+ // Same, keep the order to avoid non-determinism.
+ SmallVector<const TreeEntry *> SecondEntries(UsedTEs.back().begin(),
+ UsedTEs.back().end());
+ sort(SecondEntries, [](const TreeEntry *TE1, const TreeEntry *TE2) {
+ return TE1->Idx < TE2->Idx;
+ });
+ for (const TreeEntry *TE : SecondEntries) {
+ auto It = VFToTE.find(TE->getVectorFactor());
+ if (It != VFToTE.end()) {
+ VF = It->first;
+ Entries.push_back(It->second);
+ Entries.push_back(TE);
+ break;
+ }
+ }
+ // No 2 source vectors with the same vector factor - give up and do regular
+ // gather.
+ if (Entries.empty())
+ return std::nullopt;
+ }
+
+ bool IsSplatOrUndefs = isSplat(VL) || all_of(VL, UndefValue::classof);
+ // Checks if the 2 PHIs are compatible in terms of high possibility to be
+ // vectorized.
+ auto AreCompatiblePHIs = [&](Value *V, Value *V1) {
+ auto *PHI = cast<PHINode>(V);
+ auto *PHI1 = cast<PHINode>(V1);
+ // Check that all incoming values are compatible/from same parent (if they
+ // are instructions).
+ // The incoming values are compatible if they all are constants, or
+ // instruction with the same/alternate opcodes from the same basic block.
+ for (int I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
+ Value *In = PHI->getIncomingValue(I);
+ Value *In1 = PHI1->getIncomingValue(I);
+ if (isConstant(In) && isConstant(In1))
+ continue;
+ if (!getSameOpcode({In, In1}, *TLI).getOpcode())
+ return false;
+ if (cast<Instruction>(In)->getParent() !=
+ cast<Instruction>(In1)->getParent())
+ return false;
+ }
+ return true;
+ };
+ // Check if the value can be ignored during analysis for shuffled gathers.
+ // We suppose it is better to ignore instruction, which do not form splats,
+ // are not vectorized/not extractelements (these instructions will be handled
+ // by extractelements processing) or may form vector node in future.
+ auto MightBeIgnored = [=](Value *V) {
+ auto *I = dyn_cast<Instruction>(V);
+ SmallVector<Value *> IgnoredVals;
+ if (UserIgnoreList)
+ IgnoredVals.assign(UserIgnoreList->begin(), UserIgnoreList->end());
+ return I && !IsSplatOrUndefs && !ScalarToTreeEntry.count(I) &&
+ !isVectorLikeInstWithConstOps(I) &&
+ !areAllUsersVectorized(I, IgnoredVals) && isSimple(I);
+ };
+ // Check that the neighbor instruction may form a full vector node with the
+ // current instruction V. It is possible, if they have same/alternate opcode
+ // and same parent basic block.
+ auto NeighborMightBeIgnored = [&](Value *V, int Idx) {
+ Value *V1 = VL[Idx];
+ bool UsedInSameVTE = false;
+ auto It = UsedValuesEntry.find(V1);
+ if (It != UsedValuesEntry.end())
+ UsedInSameVTE = It->second == UsedValuesEntry.find(V)->second;
+ return V != V1 && MightBeIgnored(V1) && !UsedInSameVTE &&
+ getSameOpcode({V, V1}, *TLI).getOpcode() &&
+ cast<Instruction>(V)->getParent() ==
+ cast<Instruction>(V1)->getParent() &&
+ (!isa<PHINode>(V1) || AreCompatiblePHIs(V, V1));
+ };
+ // Build a shuffle mask for better cost estimation and vector emission.
+ SmallBitVector UsedIdxs(Entries.size());
+ SmallVector<std::pair<unsigned, int>> EntryLanes;
+ for (int I = 0, E = VL.size(); I < E; ++I) {
+ Value *V = VL[I];
+ auto It = UsedValuesEntry.find(V);
+ if (It == UsedValuesEntry.end())
+ continue;
+ // Do not try to shuffle scalars, if they are constants, or instructions
+ // that can be vectorized as a result of the following vector build
+ // vectorization.
+ if (isConstant(V) || (MightBeIgnored(V) &&
+ ((I > 0 && NeighborMightBeIgnored(V, I - 1)) ||
+ (I != E - 1 && NeighborMightBeIgnored(V, I + 1)))))
+ continue;
+ unsigned Idx = It->second;
+ EntryLanes.emplace_back(Idx, I);
+ UsedIdxs.set(Idx);
+ }
+ // Iterate through all shuffled scalars and select entries, which can be used
+ // for final shuffle.
+ SmallVector<const TreeEntry *> TempEntries;
+ for (unsigned I = 0, Sz = Entries.size(); I < Sz; ++I) {
+ if (!UsedIdxs.test(I))
+ continue;
+ // Fix the entry number for the given scalar. If it is the first entry, set
+ // Pair.first to 0, otherwise to 1 (currently select at max 2 nodes).
+ // These indices are used when calculating final shuffle mask as the vector
+ // offset.
+ for (std::pair<unsigned, int> &Pair : EntryLanes)
+ if (Pair.first == I)
+ Pair.first = TempEntries.size();
+ TempEntries.push_back(Entries[I]);
+ }
+ Entries.swap(TempEntries);
+ if (EntryLanes.size() == Entries.size() && !VL.equals(TE->Scalars)) {
+ // We may have here 1 or 2 entries only. If the number of scalars is equal
+ // to the number of entries, no need to do the analysis, it is not very
+ // profitable. Since VL is not the same as TE->Scalars, it means we already
+ // have some shuffles before. Cut off not profitable case.
+ Entries.clear();
+ return std::nullopt;
+ }
+ // Build the final mask, check for the identity shuffle, if possible.
+ bool IsIdentity = Entries.size() == 1;
+ // Pair.first is the offset to the vector, while Pair.second is the index of
+ // scalar in the list.
+ for (const std::pair<unsigned, int> &Pair : EntryLanes) {
+ Mask[Pair.second] = Pair.first * VF +
+ Entries[Pair.first]->findLaneForValue(VL[Pair.second]);
+ IsIdentity &= Mask[Pair.second] == Pair.second;
+ }
+ switch (Entries.size()) {
+ case 1:
+ if (IsIdentity || EntryLanes.size() > 1 || VL.size() <= 2)
+ return TargetTransformInfo::SK_PermuteSingleSrc;
+ break;
+ case 2:
+ if (EntryLanes.size() > 2 || VL.size() <= 2)
+ return TargetTransformInfo::SK_PermuteTwoSrc;
+ break;
+ default:
+ break;
+ }
+ Entries.clear();
+ return std::nullopt;
+}
+
+InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty,
+ const APInt &ShuffledIndices,
+ bool NeedToShuffle) const {
+ TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
+ InstructionCost Cost =
+ TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true,
+ /*Extract*/ false, CostKind);
+ if (NeedToShuffle)
+ Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
+ return Cost;
+}
+
+InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
+ // Find the type of the operands in VL.
+ Type *ScalarTy = VL[0]->getType();
+ if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
+ ScalarTy = SI->getValueOperand()->getType();
+ auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
+ bool DuplicateNonConst = false;
+ // Find the cost of inserting/extracting values from the vector.
+ // Check if the same elements are inserted several times and count them as
+ // shuffle candidates.
+ APInt ShuffledElements = APInt::getZero(VL.size());
+ DenseSet<Value *> UniqueElements;
+ // Iterate in reverse order to consider insert elements with the high cost.
+ for (unsigned I = VL.size(); I > 0; --I) {
+ unsigned Idx = I - 1;
+ // No need to shuffle duplicates for constants.
+ if (isConstant(VL[Idx])) {
+ ShuffledElements.setBit(Idx);
+ continue;
+ }
+ if (!UniqueElements.insert(VL[Idx]).second) {
+ DuplicateNonConst = true;
+ ShuffledElements.setBit(Idx);
+ }
+ }
+ return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst);
+}
+
+// Perform operand reordering on the instructions in VL and return the reordered
+// operands in Left and Right.
+void BoUpSLP::reorderInputsAccordingToOpcode(
+ ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left,
+ SmallVectorImpl<Value *> &Right, const TargetLibraryInfo &TLI,
+ const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R) {
+ if (VL.empty())
+ return;
+ VLOperands Ops(VL, TLI, DL, SE, R);
+ // Reorder the operands in place.
+ Ops.reorder();
+ Left = Ops.getVL(0);
+ Right = Ops.getVL(1);
+}
+
+Instruction &BoUpSLP::getLastInstructionInBundle(const TreeEntry *E) {
+ // Get the basic block this bundle is in. All instructions in the bundle
+ // should be in this block (except for extractelement-like instructions with
+ // constant indeces).
+ auto *Front = E->getMainOp();
+ auto *BB = Front->getParent();
+ assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
+ if (E->getOpcode() == Instruction::GetElementPtr &&
+ !isa<GetElementPtrInst>(V))
+ return true;
+ auto *I = cast<Instruction>(V);
+ return !E->isOpcodeOrAlt(I) || I->getParent() == BB ||
+ isVectorLikeInstWithConstOps(I);
+ }));
+
+ auto &&FindLastInst = [E, Front, this, &BB]() {
+ Instruction *LastInst = Front;
+ for (Value *V : E->Scalars) {
+ auto *I = dyn_cast<Instruction>(V);
+ if (!I)
+ continue;
+ if (LastInst->getParent() == I->getParent()) {
+ if (LastInst->comesBefore(I))
+ LastInst = I;
+ continue;
+ }
+ assert(isVectorLikeInstWithConstOps(LastInst) &&
+ isVectorLikeInstWithConstOps(I) &&
+ "Expected vector-like insts only.");
+ if (!DT->isReachableFromEntry(LastInst->getParent())) {
+ LastInst = I;
+ continue;
+ }
+ if (!DT->isReachableFromEntry(I->getParent()))
+ continue;
+ auto *NodeA = DT->getNode(LastInst->getParent());
+ auto *NodeB = DT->getNode(I->getParent());
+ assert(NodeA && "Should only process reachable instructions");
+ assert(NodeB && "Should only process reachable instructions");
+ assert((NodeA == NodeB) ==
+ (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
+ "Different nodes should have different DFS numbers");
+ if (NodeA->getDFSNumIn() < NodeB->getDFSNumIn())
+ LastInst = I;
+ }
+ BB = LastInst->getParent();
+ return LastInst;
+ };
+
+ auto &&FindFirstInst = [E, Front, this]() {
+ Instruction *FirstInst = Front;
+ for (Value *V : E->Scalars) {
+ auto *I = dyn_cast<Instruction>(V);
+ if (!I)
+ continue;
+ if (FirstInst->getParent() == I->getParent()) {
+ if (I->comesBefore(FirstInst))
+ FirstInst = I;
+ continue;
+ }
+ assert(isVectorLikeInstWithConstOps(FirstInst) &&
+ isVectorLikeInstWithConstOps(I) &&
+ "Expected vector-like insts only.");
+ if (!DT->isReachableFromEntry(FirstInst->getParent())) {
+ FirstInst = I;
+ continue;
+ }
+ if (!DT->isReachableFromEntry(I->getParent()))
+ continue;
+ auto *NodeA = DT->getNode(FirstInst->getParent());
+ auto *NodeB = DT->getNode(I->getParent());
+ assert(NodeA && "Should only process reachable instructions");
+ assert(NodeB && "Should only process reachable instructions");
+ assert((NodeA == NodeB) ==
+ (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
+ "Different nodes should have different DFS numbers");
+ if (NodeA->getDFSNumIn() > NodeB->getDFSNumIn())
+ FirstInst = I;
+ }
+ return FirstInst;
+ };
+
+ // Set the insert point to the beginning of the basic block if the entry
+ // should not be scheduled.
+ if (E->State != TreeEntry::NeedToGather &&
+ (doesNotNeedToSchedule(E->Scalars) ||
+ all_of(E->Scalars, isVectorLikeInstWithConstOps))) {
+ Instruction *InsertInst;
+ if (all_of(E->Scalars, [](Value *V) {
+ return !isVectorLikeInstWithConstOps(V) && isUsedOutsideBlock(V);
+ }))
+ InsertInst = FindLastInst();
+ else
+ InsertInst = FindFirstInst();
+ return *InsertInst;
+ }
+
+ // The last instruction in the bundle in program order.
+ Instruction *LastInst = nullptr;
+
+ // Find the last instruction. The common case should be that BB has been
+ // scheduled, and the last instruction is VL.back(). So we start with
+ // VL.back() and iterate over schedule data until we reach the end of the
+ // bundle. The end of the bundle is marked by null ScheduleData.
+ if (BlocksSchedules.count(BB)) {
+ Value *V = E->isOneOf(E->Scalars.back());
+ if (doesNotNeedToBeScheduled(V))
+ V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled);
+ auto *Bundle = BlocksSchedules[BB]->getScheduleData(V);
+ if (Bundle && Bundle->isPartOfBundle())
+ for (; Bundle; Bundle = Bundle->NextInBundle)
+ if (Bundle->OpValue == Bundle->Inst)
+ LastInst = Bundle->Inst;
+ }
+
+ // LastInst can still be null at this point if there's either not an entry
+ // for BB in BlocksSchedules or there's no ScheduleData available for
+ // VL.back(). This can be the case if buildTree_rec aborts for various
+ // reasons (e.g., the maximum recursion depth is reached, the maximum region
+ // size is reached, etc.). ScheduleData is initialized in the scheduling
+ // "dry-run".
+ //
+ // If this happens, we can still find the last instruction by brute force. We
+ // iterate forwards from Front (inclusive) until we either see all
+ // instructions in the bundle or reach the end of the block. If Front is the
+ // last instruction in program order, LastInst will be set to Front, and we
+ // will visit all the remaining instructions in the block.
+ //
+ // One of the reasons we exit early from buildTree_rec is to place an upper
+ // bound on compile-time. Thus, taking an additional compile-time hit here is
+ // not ideal. However, this should be exceedingly rare since it requires that
+ // we both exit early from buildTree_rec and that the bundle be out-of-order
+ // (causing us to iterate all the way to the end of the block).
+ if (!LastInst)
+ LastInst = FindLastInst();
+ assert(LastInst && "Failed to find last instruction in bundle");
+ return *LastInst;
+}
+
+void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
+ auto *Front = E->getMainOp();
+ Instruction *LastInst = EntryToLastInstruction.lookup(E);
+ assert(LastInst && "Failed to find last instruction in bundle");
+ // If the instruction is PHI, set the insert point after all the PHIs.
+ bool IsPHI = isa<PHINode>(LastInst);
+ if (IsPHI)
+ LastInst = LastInst->getParent()->getFirstNonPHI();
+ if (IsPHI || (E->State != TreeEntry::NeedToGather &&
+ doesNotNeedToSchedule(E->Scalars))) {
+ Builder.SetInsertPoint(LastInst);
+ } else {
+ // Set the insertion point after the last instruction in the bundle. Set the
+ // debug location to Front.
+ Builder.SetInsertPoint(LastInst->getParent(),
+ std::next(LastInst->getIterator()));
+ }
+ Builder.SetCurrentDebugLocation(Front->getDebugLoc());
+}
+
+Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
+ // List of instructions/lanes from current block and/or the blocks which are
+ // part of the current loop. These instructions will be inserted at the end to
+ // make it possible to optimize loops and hoist invariant instructions out of
+ // the loops body with better chances for success.
+ SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
+ SmallSet<int, 4> PostponedIndices;
+ Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
+ auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
+ SmallPtrSet<BasicBlock *, 4> Visited;
+ while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
+ InsertBB = InsertBB->getSinglePredecessor();
+ return InsertBB && InsertBB == InstBB;
+ };
+ for (int I = 0, E = VL.size(); I < E; ++I) {
+ if (auto *Inst = dyn_cast<Instruction>(VL[I]))
+ if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
+ getTreeEntry(Inst) || (L && (L->contains(Inst)))) &&
+ PostponedIndices.insert(I).second)
+ PostponedInsts.emplace_back(Inst, I);
+ }
+
+ auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
+ Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
+ auto *InsElt = dyn_cast<InsertElementInst>(Vec);
+ if (!InsElt)
+ return Vec;
+ GatherShuffleExtractSeq.insert(InsElt);
+ CSEBlocks.insert(InsElt->getParent());
+ // Add to our 'need-to-extract' list.
+ if (TreeEntry *Entry = getTreeEntry(V)) {
+ // Find which lane we need to extract.
+ unsigned FoundLane = Entry->findLaneForValue(V);
+ ExternalUses.emplace_back(V, InsElt, FoundLane);
+ }
+ return Vec;
+ };
+ Value *Val0 =
+ isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
+ FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
+ Value *Vec = PoisonValue::get(VecTy);
+ SmallVector<int> NonConsts;
+ // Insert constant values at first.
+ for (int I = 0, E = VL.size(); I < E; ++I) {
+ if (PostponedIndices.contains(I))
+ continue;
+ if (!isConstant(VL[I])) {
+ NonConsts.push_back(I);
+ continue;
+ }
+ Vec = CreateInsertElement(Vec, VL[I], I);
+ }
+ // Insert non-constant values.
+ for (int I : NonConsts)
+ Vec = CreateInsertElement(Vec, VL[I], I);
+ // Append instructions, which are/may be part of the loop, in the end to make
+ // it possible to hoist non-loop-based instructions.
+ for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
+ Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
+
+ return Vec;
+}
+
+/// Merges shuffle masks and emits final shuffle instruction, if required. It
+/// supports shuffling of 2 input vectors. It implements lazy shuffles emission,
+/// when the actual shuffle instruction is generated only if this is actually
+/// required. Otherwise, the shuffle instruction emission is delayed till the
+/// end of the process, to reduce the number of emitted instructions and further
+/// analysis/transformations.
+/// The class also will look through the previously emitted shuffle instructions
+/// and properly mark indices in mask as undef.
+/// For example, given the code
+/// \code
+/// %s1 = shufflevector <2 x ty> %0, poison, <1, 0>
+/// %s2 = shufflevector <2 x ty> %1, poison, <1, 0>
+/// \endcode
+/// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 3, 2>, it will
+/// look through %s1 and %s2 and emit
+/// \code
+/// %res = shufflevector <2 x ty> %0, %1, <0, 1, 2, 3>
+/// \endcode
+/// instead.
+/// If 2 operands are of different size, the smallest one will be resized and
+/// the mask recalculated properly.
+/// For example, given the code
+/// \code
+/// %s1 = shufflevector <2 x ty> %0, poison, <1, 0, 1, 0>
+/// %s2 = shufflevector <2 x ty> %1, poison, <1, 0, 1, 0>
+/// \endcode
+/// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 5, 4>, it will
+/// look through %s1 and %s2 and emit
+/// \code
+/// %res = shufflevector <2 x ty> %0, %1, <0, 1, 2, 3>
+/// \endcode
+/// instead.
+class BoUpSLP::ShuffleInstructionBuilder final : public BaseShuffleAnalysis {
+ bool IsFinalized = false;
+ /// Combined mask for all applied operands and masks. It is built during
+ /// analysis and actual emission of shuffle vector instructions.
+ SmallVector<int> CommonMask;
+ /// List of operands for the shuffle vector instruction. It hold at max 2
+ /// operands, if the 3rd is going to be added, the first 2 are combined into
+ /// shuffle with \p CommonMask mask, the first operand sets to be the
+ /// resulting shuffle and the second operand sets to be the newly added
+ /// operand. The \p CommonMask is transformed in the proper way after that.
+ SmallVector<Value *, 2> InVectors;
+ IRBuilderBase &Builder;
+ BoUpSLP &R;
+
+ class ShuffleIRBuilder {
+ IRBuilderBase &Builder;
+ /// Holds all of the instructions that we gathered.
+ SetVector<Instruction *> &GatherShuffleExtractSeq;
+ /// A list of blocks that we are going to CSE.
+ SetVector<BasicBlock *> &CSEBlocks;
+
+ public:
+ ShuffleIRBuilder(IRBuilderBase &Builder,
+ SetVector<Instruction *> &GatherShuffleExtractSeq,
+ SetVector<BasicBlock *> &CSEBlocks)
+ : Builder(Builder), GatherShuffleExtractSeq(GatherShuffleExtractSeq),
+ CSEBlocks(CSEBlocks) {}
+ ~ShuffleIRBuilder() = default;
+ /// Creates shufflevector for the 2 operands with the given mask.
+ Value *createShuffleVector(Value *V1, Value *V2, ArrayRef<int> Mask) {
+ Value *Vec = Builder.CreateShuffleVector(V1, V2, Mask);
+ if (auto *I = dyn_cast<Instruction>(Vec)) {
+ GatherShuffleExtractSeq.insert(I);
+ CSEBlocks.insert(I->getParent());
+ }
+ return Vec;
+ }
+ /// Creates permutation of the single vector operand with the given mask, if
+ /// it is not identity mask.
+ Value *createShuffleVector(Value *V1, ArrayRef<int> Mask) {
+ if (Mask.empty())
+ return V1;
+ unsigned VF = Mask.size();
+ unsigned LocalVF = cast<FixedVectorType>(V1->getType())->getNumElements();
+ if (VF == LocalVF && ShuffleVectorInst::isIdentityMask(Mask))
+ return V1;
+ Value *Vec = Builder.CreateShuffleVector(V1, Mask);
+ if (auto *I = dyn_cast<Instruction>(Vec)) {
+ GatherShuffleExtractSeq.insert(I);
+ CSEBlocks.insert(I->getParent());
+ }
+ return Vec;
+ }
+ /// Resizes 2 input vector to match the sizes, if the they are not equal
+ /// yet. The smallest vector is resized to the size of the larger vector.
+ void resizeToMatch(Value *&V1, Value *&V2) {
+ if (V1->getType() == V2->getType())
+ return;
+ int V1VF = cast<FixedVectorType>(V1->getType())->getNumElements();
+ int V2VF = cast<FixedVectorType>(V2->getType())->getNumElements();
+ int VF = std::max(V1VF, V2VF);
+ int MinVF = std::min(V1VF, V2VF);
+ SmallVector<int> IdentityMask(VF, UndefMaskElem);
+ std::iota(IdentityMask.begin(), std::next(IdentityMask.begin(), MinVF),
+ 0);
+ Value *&Op = MinVF == V1VF ? V1 : V2;
+ Op = Builder.CreateShuffleVector(Op, IdentityMask);
+ if (auto *I = dyn_cast<Instruction>(Op)) {
+ GatherShuffleExtractSeq.insert(I);
+ CSEBlocks.insert(I->getParent());
+ }
+ if (MinVF == V1VF)
+ V1 = Op;
+ else
+ V2 = Op;
+ }
+ };
+
+ /// Smart shuffle instruction emission, walks through shuffles trees and
+ /// tries to find the best matching vector for the actual shuffle
+ /// instruction.
+ Value *createShuffle(Value *V1, Value *V2, ArrayRef<int> Mask) {
+ assert(V1 && "Expected at least one vector value.");
+ ShuffleIRBuilder ShuffleBuilder(Builder, R.GatherShuffleExtractSeq,
+ R.CSEBlocks);
+ return BaseShuffleAnalysis::createShuffle(V1, V2, Mask, ShuffleBuilder);
+ }
+
+ /// Transforms mask \p CommonMask per given \p Mask to make proper set after
+ /// shuffle emission.
+ static void transformMaskAfterShuffle(MutableArrayRef<int> CommonMask,
+ ArrayRef<int> Mask) {
+ for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
+ if (Mask[Idx] != UndefMaskElem)
+ CommonMask[Idx] = Idx;
+ }
+
+public:
+ ShuffleInstructionBuilder(IRBuilderBase &Builder, BoUpSLP &R)
+ : Builder(Builder), R(R) {}
+
+ /// Adds 2 input vectors and the mask for their shuffling.
+ void add(Value *V1, Value *V2, ArrayRef<int> Mask) {
+ assert(V1 && V2 && !Mask.empty() && "Expected non-empty input vectors.");
+ if (InVectors.empty()) {
+ InVectors.push_back(V1);
+ InVectors.push_back(V2);
+ CommonMask.assign(Mask.begin(), Mask.end());
+ return;
+ }
+ Value *Vec = InVectors.front();
+ if (InVectors.size() == 2) {
+ Vec = createShuffle(Vec, InVectors.back(), CommonMask);
+ transformMaskAfterShuffle(CommonMask, Mask);
+ } else if (cast<FixedVectorType>(Vec->getType())->getNumElements() !=
+ Mask.size()) {
+ Vec = createShuffle(Vec, nullptr, CommonMask);
+ transformMaskAfterShuffle(CommonMask, Mask);
+ }
+ V1 = createShuffle(V1, V2, Mask);
+ for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
+ if (Mask[Idx] != UndefMaskElem)
+ CommonMask[Idx] = Idx + Sz;
+ InVectors.front() = Vec;
+ if (InVectors.size() == 2)
+ InVectors.back() = V1;
+ else
+ InVectors.push_back(V1);
+ }
+ /// Adds another one input vector and the mask for the shuffling.
+ void add(Value *V1, ArrayRef<int> Mask) {
+ if (InVectors.empty()) {
+ if (!isa<FixedVectorType>(V1->getType())) {
+ V1 = createShuffle(V1, nullptr, CommonMask);
+ CommonMask.assign(Mask.size(), UndefMaskElem);
+ transformMaskAfterShuffle(CommonMask, Mask);
+ }
+ InVectors.push_back(V1);
+ CommonMask.assign(Mask.begin(), Mask.end());
+ return;
+ }
+ const auto *It = find(InVectors, V1);
+ if (It == InVectors.end()) {
+ if (InVectors.size() == 2 ||
+ InVectors.front()->getType() != V1->getType() ||
+ !isa<FixedVectorType>(V1->getType())) {
+ Value *V = InVectors.front();
+ if (InVectors.size() == 2) {
+ V = createShuffle(InVectors.front(), InVectors.back(), CommonMask);
+ transformMaskAfterShuffle(CommonMask, CommonMask);
+ } else if (cast<FixedVectorType>(V->getType())->getNumElements() !=
+ CommonMask.size()) {
+ V = createShuffle(InVectors.front(), nullptr, CommonMask);
+ transformMaskAfterShuffle(CommonMask, CommonMask);
+ }
+ for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
+ if (CommonMask[Idx] == UndefMaskElem && Mask[Idx] != UndefMaskElem)
+ CommonMask[Idx] =
+ V->getType() != V1->getType()
+ ? Idx + Sz
+ : Mask[Idx] + cast<FixedVectorType>(V1->getType())
+ ->getNumElements();
+ if (V->getType() != V1->getType())
+ V1 = createShuffle(V1, nullptr, Mask);
+ InVectors.front() = V;
+ if (InVectors.size() == 2)
+ InVectors.back() = V1;
+ else
+ InVectors.push_back(V1);
+ return;
+ }
+ // Check if second vector is required if the used elements are already
+ // used from the first one.
+ for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
+ if (Mask[Idx] != UndefMaskElem && CommonMask[Idx] == UndefMaskElem) {
+ InVectors.push_back(V1);
+ break;
+ }
+ }
+ int VF = CommonMask.size();
+ if (auto *FTy = dyn_cast<FixedVectorType>(V1->getType()))
+ VF = FTy->getNumElements();
+ for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx)
+ if (Mask[Idx] != UndefMaskElem && CommonMask[Idx] == UndefMaskElem)
+ CommonMask[Idx] = Mask[Idx] + (It == InVectors.begin() ? 0 : VF);
+ }
+ /// Adds another one input vector and the mask for the shuffling.
+ void addOrdered(Value *V1, ArrayRef<unsigned> Order) {
+ SmallVector<int> NewMask;
+ inversePermutation(Order, NewMask);
+ add(V1, NewMask);
+ }
+ /// Finalize emission of the shuffles.
+ Value *
+ finalize(ArrayRef<int> ExtMask = std::nullopt) {
+ IsFinalized = true;
+ if (!ExtMask.empty()) {
+ if (CommonMask.empty()) {
+ CommonMask.assign(ExtMask.begin(), ExtMask.end());
+ } else {
+ SmallVector<int> NewMask(ExtMask.size(), UndefMaskElem);
+ for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) {
+ if (ExtMask[I] == UndefMaskElem)
+ continue;
+ NewMask[I] = CommonMask[ExtMask[I]];
+ }
+ CommonMask.swap(NewMask);
+ }
+ }
+ if (CommonMask.empty()) {
+ assert(InVectors.size() == 1 && "Expected only one vector with no mask");
+ return InVectors.front();
+ }
+ if (InVectors.size() == 2)
+ return createShuffle(InVectors.front(), InVectors.back(), CommonMask);
+ return createShuffle(InVectors.front(), nullptr, CommonMask);
+ }
+
+ ~ShuffleInstructionBuilder() {
+ assert((IsFinalized || CommonMask.empty()) &&
+ "Shuffle construction must be finalized.");
+ }
+};
+
+Value *BoUpSLP::vectorizeOperand(TreeEntry *E, unsigned NodeIdx) {
+ ArrayRef<Value *> VL = E->getOperand(NodeIdx);
+ const unsigned VF = VL.size();
+ InstructionsState S = getSameOpcode(VL, *TLI);
+ // Special processing for GEPs bundle, which may include non-gep values.
+ if (!S.getOpcode() && VL.front()->getType()->isPointerTy()) {
+ const auto *It =
+ find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); });
+ if (It != VL.end())
+ S = getSameOpcode(*It, *TLI);
+ }
+ if (S.getOpcode()) {
+ if (TreeEntry *VE = getTreeEntry(S.OpValue);
+ VE && VE->isSame(VL) &&
+ (any_of(VE->UserTreeIndices,
+ [E, NodeIdx](const EdgeInfo &EI) {
+ return EI.UserTE == E && EI.EdgeIdx == NodeIdx;
+ }) ||
+ any_of(VectorizableTree,
+ [E, NodeIdx, VE](const std::unique_ptr<TreeEntry> &TE) {
+ return TE->isOperandGatherNode({E, NodeIdx}) &&
+ VE->isSame(TE->Scalars);
+ }))) {
+ auto FinalShuffle = [&](Value *V, ArrayRef<int> Mask) {
+ ShuffleInstructionBuilder ShuffleBuilder(Builder, *this);
+ ShuffleBuilder.add(V, Mask);
+ return ShuffleBuilder.finalize(std::nullopt);
+ };
+ Value *V = vectorizeTree(VE);
+ if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
+ if (!VE->ReuseShuffleIndices.empty()) {
+ // Reshuffle to get only unique values.
+ // If some of the scalars are duplicated in the vectorization
+ // tree entry, we do not vectorize them but instead generate a
+ // mask for the reuses. But if there are several users of the
+ // same entry, they may have different vectorization factors.
+ // This is especially important for PHI nodes. In this case, we
+ // need to adapt the resulting instruction for the user
+ // vectorization factor and have to reshuffle it again to take
+ // only unique elements of the vector. Without this code the
+ // function incorrectly returns reduced vector instruction with
+ // the same elements, not with the unique ones.
+
+ // block:
+ // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
+ // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0>
+ // ... (use %2)
+ // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0}
+ // br %block
+ SmallVector<int> UniqueIdxs(VF, UndefMaskElem);
+ SmallSet<int, 4> UsedIdxs;
+ int Pos = 0;
+ for (int Idx : VE->ReuseShuffleIndices) {
+ if (Idx != static_cast<int>(VF) && Idx != UndefMaskElem &&
+ UsedIdxs.insert(Idx).second)
+ UniqueIdxs[Idx] = Pos;
+ ++Pos;
+ }
+ assert(VF >= UsedIdxs.size() && "Expected vectorization factor "
+ "less than original vector size.");
+ UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem);
+ V = FinalShuffle(V, UniqueIdxs);
+ } else {
+ assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&
+ "Expected vectorization factor less "
+ "than original vector size.");
+ SmallVector<int> UniformMask(VF, 0);
+ std::iota(UniformMask.begin(), UniformMask.end(), 0);
+ V = FinalShuffle(V, UniformMask);
+ }
+ }
+ return V;
+ }
+ }
+
+ // Find the corresponding gather entry and vectorize it.
+ // Allows to be more accurate with tree/graph transformations, checks for the
+ // correctness of the transformations in many cases.
+ auto *I = find_if(VectorizableTree,
+ [E, NodeIdx](const std::unique_ptr<TreeEntry> &TE) {
+ return TE->isOperandGatherNode({E, NodeIdx});
+ });
+ assert(I != VectorizableTree.end() && "Gather node is not in the graph.");
+ assert(I->get()->UserTreeIndices.size() == 1 &&
+ "Expected only single user for the gather node.");
+ assert(I->get()->isSame(VL) && "Expected same list of scalars.");
+ IRBuilder<>::InsertPointGuard Guard(Builder);
+ if (E->getOpcode() != Instruction::InsertElement &&
+ E->getOpcode() != Instruction::PHI) {
+ Instruction *LastInst = EntryToLastInstruction.lookup(E);
+ assert(LastInst && "Failed to find last instruction in bundle");
+ Builder.SetInsertPoint(LastInst);
+ }
+ return vectorizeTree(I->get());
+}
+
+Value *BoUpSLP::createBuildVector(const TreeEntry *E) {
+ assert(E->State == TreeEntry::NeedToGather && "Expected gather node.");
+ unsigned VF = E->getVectorFactor();
+
+ ShuffleInstructionBuilder ShuffleBuilder(Builder, *this);
+ SmallVector<Value *> Gathered(
+ VF, PoisonValue::get(E->Scalars.front()->getType()));
+ bool NeedFreeze = false;
+ SmallVector<Value *> VL(E->Scalars.begin(), E->Scalars.end());
+ // Build a mask out of the redorder indices and reorder scalars per this mask.
+ SmallVector<int> ReorderMask;
+ inversePermutation(E->ReorderIndices, ReorderMask);
+ if (!ReorderMask.empty())
+ reorderScalars(VL, ReorderMask);
+ SmallVector<int> ReuseMask(VF, UndefMaskElem);
+ if (!allConstant(VL)) {
+ // For splats with can emit broadcasts instead of gathers, so try to find
+ // such sequences.
+ bool IsSplat = isSplat(VL) && (VL.size() > 2 || VL.front() == VL.back());
+ SmallVector<int> UndefPos;
+ DenseMap<Value *, unsigned> UniquePositions;
+ // Gather unique non-const values and all constant values.
+ // For repeated values, just shuffle them.
+ for (auto [I, V] : enumerate(VL)) {
+ if (isa<UndefValue>(V)) {
+ if (!isa<PoisonValue>(V)) {
+ Gathered[I] = V;
+ ReuseMask[I] = I;
+ UndefPos.push_back(I);
+ }
+ continue;
+ }
+ if (isConstant(V)) {
+ Gathered[I] = V;
+ ReuseMask[I] = I;
+ continue;
+ }
+ if (IsSplat) {
+ Gathered.front() = V;
+ ReuseMask[I] = 0;
+ } else {
+ const auto Res = UniquePositions.try_emplace(V, I);
+ Gathered[Res.first->second] = V;
+ ReuseMask[I] = Res.first->second;
+ }
+ }
+ if (!UndefPos.empty() && IsSplat) {
+ // For undef values, try to replace them with the simple broadcast.
+ // We can do it if the broadcasted value is guaranteed to be
+ // non-poisonous, or by freezing the incoming scalar value first.
+ auto *It = find_if(Gathered, [this, E](Value *V) {
+ return !isa<UndefValue>(V) &&
+ (getTreeEntry(V) || isGuaranteedNotToBePoison(V) ||
+ any_of(V->uses(), [E](const Use &U) {
+ // Check if the value already used in the same operation in
+ // one of the nodes already.
+ return E->UserTreeIndices.size() == 1 &&
+ is_contained(
+ E->UserTreeIndices.front().UserTE->Scalars,
+ U.getUser()) &&
+ E->UserTreeIndices.front().EdgeIdx != U.getOperandNo();
+ }));
+ });
+ if (It != Gathered.end()) {
+ // Replace undefs by the non-poisoned scalars and emit broadcast.
+ int Pos = std::distance(Gathered.begin(), It);
+ for_each(UndefPos, [&](int I) {
+ // Set the undef position to the non-poisoned scalar.
+ ReuseMask[I] = Pos;
+ // Replace the undef by the poison, in the mask it is replaced by non-poisoned scalar already.
+ if (I != Pos)
+ Gathered[I] = PoisonValue::get(Gathered[I]->getType());
+ });
+ } else {
+ // Replace undefs by the poisons, emit broadcast and then emit
+ // freeze.
+ for_each(UndefPos, [&](int I) {
+ ReuseMask[I] = UndefMaskElem;
+ if (isa<UndefValue>(Gathered[I]))
+ Gathered[I] = PoisonValue::get(Gathered[I]->getType());
+ });
+ NeedFreeze = true;
+ }
+ }
+ } else {
+ ReuseMask.clear();
+ copy(VL, Gathered.begin());
+ }
+ // Gather unique scalars and all constants.
+ Value *Vec = gather(Gathered);
+ ShuffleBuilder.add(Vec, ReuseMask);
+ Vec = ShuffleBuilder.finalize(E->ReuseShuffleIndices);
+ if (NeedFreeze)
+ Vec = Builder.CreateFreeze(Vec);
+ return Vec;
+}
+
+Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
+ IRBuilder<>::InsertPointGuard Guard(Builder);
+
+ if (E->VectorizedValue) {
+ LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
+ return E->VectorizedValue;
+ }
+
+ auto FinalShuffle = [&](Value *V, const TreeEntry *E) {
+ ShuffleInstructionBuilder ShuffleBuilder(Builder, *this);
+ if (E->State != TreeEntry::NeedToGather &&
+ E->getOpcode() == Instruction::Store) {
+ ArrayRef<int> Mask =
+ ArrayRef(reinterpret_cast<const int *>(E->ReorderIndices.begin()),
+ E->ReorderIndices.size());
+ ShuffleBuilder.add(V, Mask);
+ } else {
+ ShuffleBuilder.addOrdered(V, E->ReorderIndices);
+ }
+ return ShuffleBuilder.finalize(E->ReuseShuffleIndices);
+ };
+
+ if (E->State == TreeEntry::NeedToGather) {
+ if (E->Idx > 0) {
+ // We are in the middle of a vectorizable chain. We need to gather the
+ // scalars from the users.
+ Value *Vec = createBuildVector(E);
+ E->VectorizedValue = Vec;
+ return Vec;
+ }
+ if (E->getMainOp())
+ setInsertPointAfterBundle(E);
+ SmallVector<Value *> GatheredScalars(E->Scalars.begin(), E->Scalars.end());
+ // Build a mask out of the reorder indices and reorder scalars per this
+ // mask.
+ SmallVector<int> ReorderMask;
+ inversePermutation(E->ReorderIndices, ReorderMask);
+ if (!ReorderMask.empty())
+ reorderScalars(GatheredScalars, ReorderMask);
+ Value *Vec;
+ SmallVector<int> Mask;
+ SmallVector<const TreeEntry *> Entries;
+ std::optional<TargetTransformInfo::ShuffleKind> Shuffle =
+ isGatherShuffledEntry(E, GatheredScalars, Mask, Entries);
+ if (Shuffle) {
+ assert((Entries.size() == 1 || Entries.size() == 2) &&
+ "Expected shuffle of 1 or 2 entries.");
+ Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
+ Entries.back()->VectorizedValue, Mask);
+ if (auto *I = dyn_cast<Instruction>(Vec)) {
+ GatherShuffleExtractSeq.insert(I);
+ CSEBlocks.insert(I->getParent());
+ }
+ } else {
+ Vec = gather(E->Scalars);
+ }
+ Vec = FinalShuffle(Vec, E);
+ E->VectorizedValue = Vec;
+ return Vec;
+ }
+
+ assert((E->State == TreeEntry::Vectorize ||
+ E->State == TreeEntry::ScatterVectorize) &&
+ "Unhandled state");
+ unsigned ShuffleOrOp =
+ E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
+ Instruction *VL0 = E->getMainOp();
+ Type *ScalarTy = VL0->getType();
+ if (auto *Store = dyn_cast<StoreInst>(VL0))
+ ScalarTy = Store->getValueOperand()->getType();
+ else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
+ ScalarTy = IE->getOperand(1)->getType();
+ auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
+ switch (ShuffleOrOp) {
+ case Instruction::PHI: {
+ assert((E->ReorderIndices.empty() ||
+ E != VectorizableTree.front().get() ||
+ !E->UserTreeIndices.empty()) &&
+ "PHI reordering is free.");
+ auto *PH = cast<PHINode>(VL0);
+ Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
+ Builder.SetCurrentDebugLocation(PH->getDebugLoc());
+ PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
+ Value *V = NewPhi;
+
+ // Adjust insertion point once all PHI's have been generated.
+ Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt());
+ Builder.SetCurrentDebugLocation(PH->getDebugLoc());
+
+ V = FinalShuffle(V, E);
+
+ E->VectorizedValue = V;
+
+ // PHINodes may have multiple entries from the same block. We want to
+ // visit every block once.
+ SmallPtrSet<BasicBlock*, 4> VisitedBBs;
+
+ for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
+ ValueList Operands;
+ BasicBlock *IBB = PH->getIncomingBlock(i);
+
+ // Stop emission if all incoming values are generated.
+ if (NewPhi->getNumIncomingValues() == PH->getNumIncomingValues()) {
+ LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
+ return V;
+ }
+
+ if (!VisitedBBs.insert(IBB).second) {
+ NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
+ continue;
+ }
+
+ Builder.SetInsertPoint(IBB->getTerminator());
+ Builder.SetCurrentDebugLocation(PH->getDebugLoc());
+ Value *Vec = vectorizeOperand(E, i);
+ NewPhi->addIncoming(Vec, IBB);
+ }
+
+ assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
+ "Invalid number of incoming values");
+ return V;
+ }
+
+ case Instruction::ExtractElement: {
+ Value *V = E->getSingleOperand(0);
+ setInsertPointAfterBundle(E);
+ V = FinalShuffle(V, E);
+ E->VectorizedValue = V;
+ return V;
+ }
+ case Instruction::ExtractValue: {
+ auto *LI = cast<LoadInst>(E->getSingleOperand(0));
+ Builder.SetInsertPoint(LI);
+ auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
+ Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
+ LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
+ Value *NewV = propagateMetadata(V, E->Scalars);
+ NewV = FinalShuffle(NewV, E);
+ E->VectorizedValue = NewV;
+ return NewV;
+ }
+ case Instruction::InsertElement: {
+ assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique");
+ Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back()));
+ Value *V = vectorizeOperand(E, 1);
+
+ // Create InsertVector shuffle if necessary
+ auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
+ return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0));
+ }));
+ const unsigned NumElts =
+ cast<FixedVectorType>(FirstInsert->getType())->getNumElements();
+ const unsigned NumScalars = E->Scalars.size();
+
+ unsigned Offset = *getInsertIndex(VL0);
+ assert(Offset < NumElts && "Failed to find vector index offset");
+
+ // Create shuffle to resize vector
+ SmallVector<int> Mask;
+ if (!E->ReorderIndices.empty()) {
+ inversePermutation(E->ReorderIndices, Mask);
+ Mask.append(NumElts - NumScalars, UndefMaskElem);
+ } else {
+ Mask.assign(NumElts, UndefMaskElem);
+ std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
+ }
+ // Create InsertVector shuffle if necessary
+ bool IsIdentity = true;
+ SmallVector<int> PrevMask(NumElts, UndefMaskElem);
+ Mask.swap(PrevMask);
+ for (unsigned I = 0; I < NumScalars; ++I) {
+ Value *Scalar = E->Scalars[PrevMask[I]];
+ unsigned InsertIdx = *getInsertIndex(Scalar);
+ IsIdentity &= InsertIdx - Offset == I;
+ Mask[InsertIdx - Offset] = I;
+ }
+ if (!IsIdentity || NumElts != NumScalars) {
+ V = Builder.CreateShuffleVector(V, Mask);
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ GatherShuffleExtractSeq.insert(I);
+ CSEBlocks.insert(I->getParent());
+ }
+ }
+
+ SmallVector<int> InsertMask(NumElts, UndefMaskElem);
+ for (unsigned I = 0; I < NumElts; I++) {
+ if (Mask[I] != UndefMaskElem)
+ InsertMask[Offset + I] = I;
+ }
+ SmallBitVector UseMask =
+ buildUseMask(NumElts, InsertMask, UseMask::UndefsAsMask);
+ SmallBitVector IsFirstUndef =
+ isUndefVector(FirstInsert->getOperand(0), UseMask);
+ if ((!IsIdentity || Offset != 0 || !IsFirstUndef.all()) &&
+ NumElts != NumScalars) {
+ if (IsFirstUndef.all()) {
+ if (!ShuffleVectorInst::isIdentityMask(InsertMask)) {
+ SmallBitVector IsFirstPoison =
+ isUndefVector<true>(FirstInsert->getOperand(0), UseMask);
+ if (!IsFirstPoison.all()) {
+ for (unsigned I = 0; I < NumElts; I++) {
+ if (InsertMask[I] == UndefMaskElem && !IsFirstPoison.test(I))
+ InsertMask[I] = I + NumElts;
+ }
+ }
+ V = Builder.CreateShuffleVector(
+ V,
+ IsFirstPoison.all() ? PoisonValue::get(V->getType())
+ : FirstInsert->getOperand(0),
+ InsertMask, cast<Instruction>(E->Scalars.back())->getName());
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ GatherShuffleExtractSeq.insert(I);
+ CSEBlocks.insert(I->getParent());
+ }
+ }
+ } else {
+ SmallBitVector IsFirstPoison =
+ isUndefVector<true>(FirstInsert->getOperand(0), UseMask);
+ for (unsigned I = 0; I < NumElts; I++) {
+ if (InsertMask[I] == UndefMaskElem)
+ InsertMask[I] = IsFirstPoison.test(I) ? UndefMaskElem : I;
+ else
+ InsertMask[I] += NumElts;
+ }
+ V = Builder.CreateShuffleVector(
+ FirstInsert->getOperand(0), V, InsertMask,
+ cast<Instruction>(E->Scalars.back())->getName());
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ GatherShuffleExtractSeq.insert(I);
+ CSEBlocks.insert(I->getParent());
+ }
+ }
+ }
+
+ ++NumVectorInstructions;
+ E->VectorizedValue = V;
+ return V;
+ }
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast: {
+ setInsertPointAfterBundle(E);
+
+ Value *InVec = vectorizeOperand(E, 0);
+ if (E->VectorizedValue) {
+ LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
+ return E->VectorizedValue;
+ }
+
+ auto *CI = cast<CastInst>(VL0);
+ Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
+ V = FinalShuffle(V, E);
+
+ E->VectorizedValue = V;
+ ++NumVectorInstructions;
+ return V;
+ }
+ case Instruction::FCmp:
+ case Instruction::ICmp: {
+ setInsertPointAfterBundle(E);
+
+ Value *L = vectorizeOperand(E, 0);
+ if (E->VectorizedValue) {
+ LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
+ return E->VectorizedValue;
+ }
+ Value *R = vectorizeOperand(E, 1);
+ if (E->VectorizedValue) {
+ LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
+ return E->VectorizedValue;
+ }
+
+ CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
+ Value *V = Builder.CreateCmp(P0, L, R);
+ propagateIRFlags(V, E->Scalars, VL0);
+ V = FinalShuffle(V, E);
+
+ E->VectorizedValue = V;
+ ++NumVectorInstructions;
+ return V;
+ }
+ case Instruction::Select: {
+ setInsertPointAfterBundle(E);
+
+ Value *Cond = vectorizeOperand(E, 0);
+ if (E->VectorizedValue) {
+ LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
+ return E->VectorizedValue;
+ }
+ Value *True = vectorizeOperand(E, 1);
+ if (E->VectorizedValue) {
+ LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
+ return E->VectorizedValue;
+ }
+ Value *False = vectorizeOperand(E, 2);
+ if (E->VectorizedValue) {
+ LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
+ return E->VectorizedValue;
+ }
+
+ Value *V = Builder.CreateSelect(Cond, True, False);
+ V = FinalShuffle(V, E);
+
+ E->VectorizedValue = V;
+ ++NumVectorInstructions;
+ return V;
+ }
+ case Instruction::FNeg: {
+ setInsertPointAfterBundle(E);
+
+ Value *Op = vectorizeOperand(E, 0);
+
+ if (E->VectorizedValue) {
+ LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
+ return E->VectorizedValue;
+ }
+
+ Value *V = Builder.CreateUnOp(
+ static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
+ propagateIRFlags(V, E->Scalars, VL0);
+ if (auto *I = dyn_cast<Instruction>(V))
+ V = propagateMetadata(I, E->Scalars);
+
+ V = FinalShuffle(V, E);
+
+ E->VectorizedValue = V;
+ ++NumVectorInstructions;
+
+ return V;
+ }
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ setInsertPointAfterBundle(E);
+
+ Value *LHS = vectorizeOperand(E, 0);
+ if (E->VectorizedValue) {
+ LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
+ return E->VectorizedValue;
+ }
+ Value *RHS = vectorizeOperand(E, 1);
+ if (E->VectorizedValue) {
+ LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
+ return E->VectorizedValue;
+ }
+
+ Value *V = Builder.CreateBinOp(
+ static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
+ RHS);
+ propagateIRFlags(V, E->Scalars, VL0);
+ if (auto *I = dyn_cast<Instruction>(V))
+ V = propagateMetadata(I, E->Scalars);
+
+ V = FinalShuffle(V, E);
+
+ E->VectorizedValue = V;
+ ++NumVectorInstructions;
+
+ return V;
+ }
+ case Instruction::Load: {
+ // Loads are inserted at the head of the tree because we don't want to
+ // sink them all the way down past store instructions.
+ setInsertPointAfterBundle(E);
+
+ LoadInst *LI = cast<LoadInst>(VL0);
+ Instruction *NewLI;
+ unsigned AS = LI->getPointerAddressSpace();
+ Value *PO = LI->getPointerOperand();
+ if (E->State == TreeEntry::Vectorize) {
+ Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
+ NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
+
+ // The pointer operand uses an in-tree scalar so we add the new BitCast
+ // or LoadInst to ExternalUses list to make sure that an extract will
+ // be generated in the future.
+ if (TreeEntry *Entry = getTreeEntry(PO)) {
+ // Find which lane we need to extract.
+ unsigned FoundLane = Entry->findLaneForValue(PO);
+ ExternalUses.emplace_back(
+ PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane);
+ }
+ } else {
+ assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state");
+ Value *VecPtr = vectorizeOperand(E, 0);
+ if (E->VectorizedValue) {
+ LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
+ return E->VectorizedValue;
+ }
+ // Use the minimum alignment of the gathered loads.
+ Align CommonAlignment = LI->getAlign();
+ for (Value *V : E->Scalars)
+ CommonAlignment =
+ std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
+ NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment);
+ }
+ Value *V = propagateMetadata(NewLI, E->Scalars);
+
+ V = FinalShuffle(V, E);
+ E->VectorizedValue = V;
+ ++NumVectorInstructions;
+ return V;
+ }
+ case Instruction::Store: {
+ auto *SI = cast<StoreInst>(VL0);
+ unsigned AS = SI->getPointerAddressSpace();
+
+ setInsertPointAfterBundle(E);
+
+ Value *VecValue = vectorizeOperand(E, 0);
+ VecValue = FinalShuffle(VecValue, E);
+
+ Value *ScalarPtr = SI->getPointerOperand();
+ Value *VecPtr = Builder.CreateBitCast(
+ ScalarPtr, VecValue->getType()->getPointerTo(AS));
+ StoreInst *ST =
+ Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign());
+
+ // The pointer operand uses an in-tree scalar, so add the new BitCast or
+ // StoreInst to ExternalUses to make sure that an extract will be
+ // generated in the future.
+ if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) {
+ // Find which lane we need to extract.
+ unsigned FoundLane = Entry->findLaneForValue(ScalarPtr);
+ ExternalUses.push_back(ExternalUser(
+ ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST,
+ FoundLane));
+ }
+
+ Value *V = propagateMetadata(ST, E->Scalars);
+
+ E->VectorizedValue = V;
+ ++NumVectorInstructions;
+ return V;
+ }
+ case Instruction::GetElementPtr: {
+ auto *GEP0 = cast<GetElementPtrInst>(VL0);
+ setInsertPointAfterBundle(E);
+
+ Value *Op0 = vectorizeOperand(E, 0);
+ if (E->VectorizedValue) {
+ LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
+ return E->VectorizedValue;
+ }
+
+ SmallVector<Value *> OpVecs;
+ for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) {
+ Value *OpVec = vectorizeOperand(E, J);
+ if (E->VectorizedValue) {
+ LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
+ return E->VectorizedValue;
+ }
+ OpVecs.push_back(OpVec);
+ }
+
+ Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs);
+ if (Instruction *I = dyn_cast<GetElementPtrInst>(V)) {
+ SmallVector<Value *> GEPs;
+ for (Value *V : E->Scalars) {
+ if (isa<GetElementPtrInst>(V))
+ GEPs.push_back(V);
+ }
+ V = propagateMetadata(I, GEPs);
+ }
+
+ V = FinalShuffle(V, E);
+
+ E->VectorizedValue = V;
+ ++NumVectorInstructions;
+
+ return V;
+ }
+ case Instruction::Call: {
+ CallInst *CI = cast<CallInst>(VL0);
+ setInsertPointAfterBundle(E);
+
+ Intrinsic::ID IID = Intrinsic::not_intrinsic;
+ if (Function *FI = CI->getCalledFunction())
+ IID = FI->getIntrinsicID();
+
+ Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
+
+ auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
+ bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
+ VecCallCosts.first <= VecCallCosts.second;
+
+ Value *ScalarArg = nullptr;
+ std::vector<Value *> OpVecs;
+ SmallVector<Type *, 2> TysForDecl =
+ {FixedVectorType::get(CI->getType(), E->Scalars.size())};
+ for (int j = 0, e = CI->arg_size(); j < e; ++j) {
+ ValueList OpVL;
+ // Some intrinsics have scalar arguments. This argument should not be
+ // vectorized.
+ if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(IID, j)) {
+ CallInst *CEI = cast<CallInst>(VL0);
+ ScalarArg = CEI->getArgOperand(j);
+ OpVecs.push_back(CEI->getArgOperand(j));
+ if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j))
+ TysForDecl.push_back(ScalarArg->getType());
+ continue;
+ }
+
+ Value *OpVec = vectorizeOperand(E, j);
+ if (E->VectorizedValue) {
+ LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
+ return E->VectorizedValue;
+ }
+ LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
+ OpVecs.push_back(OpVec);
+ if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j))
+ TysForDecl.push_back(OpVec->getType());
+ }
+
+ Function *CF;
+ if (!UseIntrinsic) {
+ VFShape Shape =
+ VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
+ VecTy->getNumElements())),
+ false /*HasGlobalPred*/);
+ CF = VFDatabase(*CI).getVectorizedFunction(Shape);
+ } else {
+ CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl);
+ }
+
+ SmallVector<OperandBundleDef, 1> OpBundles;
+ CI->getOperandBundlesAsDefs(OpBundles);
+ Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
+
+ // The scalar argument uses an in-tree scalar so we add the new vectorized
+ // call to ExternalUses list to make sure that an extract will be
+ // generated in the future.
+ if (ScalarArg) {
+ if (TreeEntry *Entry = getTreeEntry(ScalarArg)) {
+ // Find which lane we need to extract.
+ unsigned FoundLane = Entry->findLaneForValue(ScalarArg);
+ ExternalUses.push_back(
+ ExternalUser(ScalarArg, cast<User>(V), FoundLane));
+ }
+ }
+
+ propagateIRFlags(V, E->Scalars, VL0);
+ V = FinalShuffle(V, E);
+
+ E->VectorizedValue = V;
+ ++NumVectorInstructions;
+ return V;
+ }
+ case Instruction::ShuffleVector: {
+ assert(E->isAltShuffle() &&
+ ((Instruction::isBinaryOp(E->getOpcode()) &&
+ Instruction::isBinaryOp(E->getAltOpcode())) ||
+ (Instruction::isCast(E->getOpcode()) &&
+ Instruction::isCast(E->getAltOpcode())) ||
+ (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
+ "Invalid Shuffle Vector Operand");
+
+ Value *LHS = nullptr, *RHS = nullptr;
+ if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) {
+ setInsertPointAfterBundle(E);
+ LHS = vectorizeOperand(E, 0);
+ if (E->VectorizedValue) {
+ LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
+ return E->VectorizedValue;
+ }
+ RHS = vectorizeOperand(E, 1);
+ } else {
+ setInsertPointAfterBundle(E);
+ LHS = vectorizeOperand(E, 0);
+ }
+ if (E->VectorizedValue) {
+ LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
+ return E->VectorizedValue;
+ }
+
+ Value *V0, *V1;
+ if (Instruction::isBinaryOp(E->getOpcode())) {
+ V0 = Builder.CreateBinOp(
+ static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
+ V1 = Builder.CreateBinOp(
+ static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
+ } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
+ V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS);
+ auto *AltCI = cast<CmpInst>(E->getAltOp());
+ CmpInst::Predicate AltPred = AltCI->getPredicate();
+ V1 = Builder.CreateCmp(AltPred, LHS, RHS);
+ } else {
+ V0 = Builder.CreateCast(
+ static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
+ V1 = Builder.CreateCast(
+ static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
+ }
+ // Add V0 and V1 to later analysis to try to find and remove matching
+ // instruction, if any.
+ for (Value *V : {V0, V1}) {
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ GatherShuffleExtractSeq.insert(I);
+ CSEBlocks.insert(I->getParent());
+ }
+ }
+
+ // Create shuffle to take alternate operations from the vector.
+ // Also, gather up main and alt scalar ops to propagate IR flags to
+ // each vector operation.
+ ValueList OpScalars, AltScalars;
+ SmallVector<int> Mask;
+ buildShuffleEntryMask(
+ E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
+ [E, this](Instruction *I) {
+ assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
+ return isAlternateInstruction(I, E->getMainOp(), E->getAltOp(),
+ *TLI);
+ },
+ Mask, &OpScalars, &AltScalars);
+
+ propagateIRFlags(V0, OpScalars);
+ propagateIRFlags(V1, AltScalars);
+
+ Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ V = propagateMetadata(I, E->Scalars);
+ GatherShuffleExtractSeq.insert(I);
+ CSEBlocks.insert(I->getParent());
+ }
+
+ E->VectorizedValue = V;
+ ++NumVectorInstructions;
+
+ return V;
+ }
+ default:
+ llvm_unreachable("unknown inst");
+ }
+ return nullptr;
+}
+
+Value *BoUpSLP::vectorizeTree() {
+ ExtraValueToDebugLocsMap ExternallyUsedValues;
+ return vectorizeTree(ExternallyUsedValues);
+}
+
+namespace {
+/// Data type for handling buildvector sequences with the reused scalars from
+/// other tree entries.
+struct ShuffledInsertData {
+ /// List of insertelements to be replaced by shuffles.
+ SmallVector<InsertElementInst *> InsertElements;
+ /// The parent vectors and shuffle mask for the given list of inserts.
+ MapVector<Value *, SmallVector<int>> ValueMasks;
+};
+} // namespace
+
+Value *BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues,
+ Instruction *ReductionRoot) {
+ // All blocks must be scheduled before any instructions are inserted.
+ for (auto &BSIter : BlocksSchedules) {
+ scheduleBlock(BSIter.second.get());
+ }
+
+ // Pre-gather last instructions.
+ for (const std::unique_ptr<TreeEntry> &E : VectorizableTree) {
+ if ((E->State == TreeEntry::NeedToGather &&
+ (!E->getMainOp() || E->Idx > 0)) ||
+ (E->State != TreeEntry::NeedToGather &&
+ E->getOpcode() == Instruction::ExtractValue) ||
+ E->getOpcode() == Instruction::InsertElement)
+ continue;
+ Instruction *LastInst = &getLastInstructionInBundle(E.get());
+ EntryToLastInstruction.try_emplace(E.get(), LastInst);
+ }
+
+ Builder.SetInsertPoint(ReductionRoot ? ReductionRoot
+ : &F->getEntryBlock().front());
+ auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
+
+ // If the vectorized tree can be rewritten in a smaller type, we truncate the
+ // vectorized root. InstCombine will then rewrite the entire expression. We
+ // sign extend the extracted values below.
+ auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
+ if (MinBWs.count(ScalarRoot)) {
+ if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
+ // If current instr is a phi and not the last phi, insert it after the
+ // last phi node.
+ if (isa<PHINode>(I))
+ Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
+ else
+ Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
+ }
+ auto BundleWidth = VectorizableTree[0]->Scalars.size();
+ auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
+ auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
+ auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
+ VectorizableTree[0]->VectorizedValue = Trunc;
+ }
+
+ LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
+ << " values .\n");
+
+ SmallVector<ShuffledInsertData> ShuffledInserts;
+ // Maps vector instruction to original insertelement instruction
+ DenseMap<Value *, InsertElementInst *> VectorToInsertElement;
+ // Maps extract Scalar to the corresponding extractelement instruction in the
+ // basic block. Only one extractelement per block should be emitted.
+ DenseMap<Value *, DenseMap<BasicBlock *, Instruction *>> ScalarToEEs;
+ // Extract all of the elements with the external uses.
+ for (const auto &ExternalUse : ExternalUses) {
+ Value *Scalar = ExternalUse.Scalar;
+ llvm::User *User = ExternalUse.User;
+
+ // Skip users that we already RAUW. This happens when one instruction
+ // has multiple uses of the same value.
+ if (User && !is_contained(Scalar->users(), User))
+ continue;
+ TreeEntry *E = getTreeEntry(Scalar);
+ assert(E && "Invalid scalar");
+ assert(E->State != TreeEntry::NeedToGather &&
+ "Extracting from a gather list");
+ // Non-instruction pointers are not deleted, just skip them.
+ if (E->getOpcode() == Instruction::GetElementPtr &&
+ !isa<GetElementPtrInst>(Scalar))
+ continue;
+
+ Value *Vec = E->VectorizedValue;
+ assert(Vec && "Can't find vectorizable value");
+
+ Value *Lane = Builder.getInt32(ExternalUse.Lane);
+ auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
+ if (Scalar->getType() != Vec->getType()) {
+ Value *Ex = nullptr;
+ auto It = ScalarToEEs.find(Scalar);
+ if (It != ScalarToEEs.end()) {
+ // No need to emit many extracts, just move the only one in the
+ // current block.
+ auto EEIt = It->second.find(Builder.GetInsertBlock());
+ if (EEIt != It->second.end()) {
+ Instruction *I = EEIt->second;
+ if (Builder.GetInsertPoint() != Builder.GetInsertBlock()->end() &&
+ Builder.GetInsertPoint()->comesBefore(I))
+ I->moveBefore(&*Builder.GetInsertPoint());
+ Ex = I;
+ }
+ }
+ if (!Ex) {
+ // "Reuse" the existing extract to improve final codegen.
+ if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
+ Ex = Builder.CreateExtractElement(ES->getOperand(0),
+ ES->getOperand(1));
+ } else {
+ Ex = Builder.CreateExtractElement(Vec, Lane);
+ }
+ if (auto *I = dyn_cast<Instruction>(Ex))
+ ScalarToEEs[Scalar].try_emplace(Builder.GetInsertBlock(), I);
+ }
+ // The then branch of the previous if may produce constants, since 0
+ // operand might be a constant.
+ if (auto *ExI = dyn_cast<Instruction>(Ex)) {
+ GatherShuffleExtractSeq.insert(ExI);
+ CSEBlocks.insert(ExI->getParent());
+ }
+ // If necessary, sign-extend or zero-extend ScalarRoot
+ // to the larger type.
+ if (!MinBWs.count(ScalarRoot))
+ return Ex;
+ if (MinBWs[ScalarRoot].second)
+ return Builder.CreateSExt(Ex, Scalar->getType());
+ return Builder.CreateZExt(Ex, Scalar->getType());
+ }
+ assert(isa<FixedVectorType>(Scalar->getType()) &&
+ isa<InsertElementInst>(Scalar) &&
+ "In-tree scalar of vector type is not insertelement?");
+ auto *IE = cast<InsertElementInst>(Scalar);
+ VectorToInsertElement.try_emplace(Vec, IE);
+ return Vec;
+ };
+ // If User == nullptr, the Scalar is used as extra arg. Generate
+ // ExtractElement instruction and update the record for this scalar in
+ // ExternallyUsedValues.
+ if (!User) {
+ assert(ExternallyUsedValues.count(Scalar) &&
+ "Scalar with nullptr as an external user must be registered in "
+ "ExternallyUsedValues map");
+ if (auto *VecI = dyn_cast<Instruction>(Vec)) {
+ if (auto *PHI = dyn_cast<PHINode>(VecI))
+ Builder.SetInsertPoint(PHI->getParent()->getFirstNonPHI());
+ else
+ Builder.SetInsertPoint(VecI->getParent(),
+ std::next(VecI->getIterator()));
+ } else {
+ Builder.SetInsertPoint(&F->getEntryBlock().front());
+ }
+ Value *NewInst = ExtractAndExtendIfNeeded(Vec);
+ auto &NewInstLocs = ExternallyUsedValues[NewInst];
+ auto It = ExternallyUsedValues.find(Scalar);
+ assert(It != ExternallyUsedValues.end() &&
+ "Externally used scalar is not found in ExternallyUsedValues");
+ NewInstLocs.append(It->second);
+ ExternallyUsedValues.erase(Scalar);
+ // Required to update internally referenced instructions.
+ Scalar->replaceAllUsesWith(NewInst);
+ continue;
+ }
+
+ if (auto *VU = dyn_cast<InsertElementInst>(User)) {
+ // Skip if the scalar is another vector op or Vec is not an instruction.
+ if (!Scalar->getType()->isVectorTy() && isa<Instruction>(Vec)) {
+ if (auto *FTy = dyn_cast<FixedVectorType>(User->getType())) {
+ std::optional<unsigned> InsertIdx = getInsertIndex(VU);
+ if (InsertIdx) {
+ // Need to use original vector, if the root is truncated.
+ if (MinBWs.count(Scalar) &&
+ VectorizableTree[0]->VectorizedValue == Vec)
+ Vec = VectorRoot;
+ auto *It =
+ find_if(ShuffledInserts, [VU](const ShuffledInsertData &Data) {
+ // Checks if 2 insertelements are from the same buildvector.
+ InsertElementInst *VecInsert = Data.InsertElements.front();
+ return areTwoInsertFromSameBuildVector(
+ VU, VecInsert,
+ [](InsertElementInst *II) { return II->getOperand(0); });
+ });
+ unsigned Idx = *InsertIdx;
+ if (It == ShuffledInserts.end()) {
+ (void)ShuffledInserts.emplace_back();
+ It = std::next(ShuffledInserts.begin(),
+ ShuffledInserts.size() - 1);
+ SmallVectorImpl<int> &Mask = It->ValueMasks[Vec];
+ if (Mask.empty())
+ Mask.assign(FTy->getNumElements(), UndefMaskElem);
+ // Find the insertvector, vectorized in tree, if any.
+ Value *Base = VU;
+ while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) {
+ if (IEBase != User &&
+ (!IEBase->hasOneUse() ||
+ getInsertIndex(IEBase).value_or(Idx) == Idx))
+ break;
+ // Build the mask for the vectorized insertelement instructions.
+ if (const TreeEntry *E = getTreeEntry(IEBase)) {
+ do {
+ IEBase = cast<InsertElementInst>(Base);
+ int IEIdx = *getInsertIndex(IEBase);
+ assert(Mask[Idx] == UndefMaskElem &&
+ "InsertElementInstruction used already.");
+ Mask[IEIdx] = IEIdx;
+ Base = IEBase->getOperand(0);
+ } while (E == getTreeEntry(Base));
+ break;
+ }
+ Base = cast<InsertElementInst>(Base)->getOperand(0);
+ // After the vectorization the def-use chain has changed, need
+ // to look through original insertelement instructions, if they
+ // get replaced by vector instructions.
+ auto It = VectorToInsertElement.find(Base);
+ if (It != VectorToInsertElement.end())
+ Base = It->second;
+ }
+ }
+ SmallVectorImpl<int> &Mask = It->ValueMasks[Vec];
+ if (Mask.empty())
+ Mask.assign(FTy->getNumElements(), UndefMaskElem);
+ Mask[Idx] = ExternalUse.Lane;
+ It->InsertElements.push_back(cast<InsertElementInst>(User));
+ continue;
+ }
+ }
+ }
+ }
+
+ // Generate extracts for out-of-tree users.
+ // Find the insertion point for the extractelement lane.
+ if (auto *VecI = dyn_cast<Instruction>(Vec)) {
+ if (PHINode *PH = dyn_cast<PHINode>(User)) {
+ for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
+ if (PH->getIncomingValue(i) == Scalar) {
+ Instruction *IncomingTerminator =
+ PH->getIncomingBlock(i)->getTerminator();
+ if (isa<CatchSwitchInst>(IncomingTerminator)) {
+ Builder.SetInsertPoint(VecI->getParent(),
+ std::next(VecI->getIterator()));
+ } else {
+ Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
+ }
+ Value *NewInst = ExtractAndExtendIfNeeded(Vec);
+ PH->setOperand(i, NewInst);
+ }
+ }
+ } else {
+ Builder.SetInsertPoint(cast<Instruction>(User));
+ Value *NewInst = ExtractAndExtendIfNeeded(Vec);
+ User->replaceUsesOfWith(Scalar, NewInst);
+ }
+ } else {
+ Builder.SetInsertPoint(&F->getEntryBlock().front());
+ Value *NewInst = ExtractAndExtendIfNeeded(Vec);
+ User->replaceUsesOfWith(Scalar, NewInst);
+ }
+
+ LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
+ }
+
+ auto CreateShuffle = [&](Value *V1, Value *V2, ArrayRef<int> Mask) {
+ SmallVector<int> CombinedMask1(Mask.size(), UndefMaskElem);
+ SmallVector<int> CombinedMask2(Mask.size(), UndefMaskElem);
+ int VF = cast<FixedVectorType>(V1->getType())->getNumElements();
+ for (int I = 0, E = Mask.size(); I < E; ++I) {
+ if (Mask[I] < VF)
+ CombinedMask1[I] = Mask[I];
+ else
+ CombinedMask2[I] = Mask[I] - VF;
+ }
+ ShuffleInstructionBuilder ShuffleBuilder(Builder, *this);
+ ShuffleBuilder.add(V1, CombinedMask1);
+ if (V2)
+ ShuffleBuilder.add(V2, CombinedMask2);
+ return ShuffleBuilder.finalize(std::nullopt);
+ };
+
+ auto &&ResizeToVF = [&CreateShuffle](Value *Vec, ArrayRef<int> Mask,
+ bool ForSingleMask) {
+ unsigned VF = Mask.size();
+ unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements();
+ if (VF != VecVF) {
+ if (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); })) {
+ Vec = CreateShuffle(Vec, nullptr, Mask);
+ return std::make_pair(Vec, true);
+ }
+ if (!ForSingleMask) {
+ SmallVector<int> ResizeMask(VF, UndefMaskElem);
+ for (unsigned I = 0; I < VF; ++I) {
+ if (Mask[I] != UndefMaskElem)
+ ResizeMask[Mask[I]] = Mask[I];
+ }
+ Vec = CreateShuffle(Vec, nullptr, ResizeMask);
+ }
+ }
+
+ return std::make_pair(Vec, false);
+ };
+ // Perform shuffling of the vectorize tree entries for better handling of
+ // external extracts.
+ for (int I = 0, E = ShuffledInserts.size(); I < E; ++I) {
+ // Find the first and the last instruction in the list of insertelements.
+ sort(ShuffledInserts[I].InsertElements, isFirstInsertElement);
+ InsertElementInst *FirstInsert = ShuffledInserts[I].InsertElements.front();
+ InsertElementInst *LastInsert = ShuffledInserts[I].InsertElements.back();
+ Builder.SetInsertPoint(LastInsert);
+ auto Vector = ShuffledInserts[I].ValueMasks.takeVector();
+ Value *NewInst = performExtractsShuffleAction<Value>(
+ MutableArrayRef(Vector.data(), Vector.size()),
+ FirstInsert->getOperand(0),
+ [](Value *Vec) {
+ return cast<VectorType>(Vec->getType())
+ ->getElementCount()
+ .getKnownMinValue();
+ },
+ ResizeToVF,
+ [FirstInsert, &CreateShuffle](ArrayRef<int> Mask,
+ ArrayRef<Value *> Vals) {
+ assert((Vals.size() == 1 || Vals.size() == 2) &&
+ "Expected exactly 1 or 2 input values.");
+ if (Vals.size() == 1) {
+ // Do not create shuffle if the mask is a simple identity
+ // non-resizing mask.
+ if (Mask.size() != cast<FixedVectorType>(Vals.front()->getType())
+ ->getNumElements() ||
+ !ShuffleVectorInst::isIdentityMask(Mask))
+ return CreateShuffle(Vals.front(), nullptr, Mask);
+ return Vals.front();
+ }
+ return CreateShuffle(Vals.front() ? Vals.front()
+ : FirstInsert->getOperand(0),
+ Vals.back(), Mask);
+ });
+ auto It = ShuffledInserts[I].InsertElements.rbegin();
+ // Rebuild buildvector chain.
+ InsertElementInst *II = nullptr;
+ if (It != ShuffledInserts[I].InsertElements.rend())
+ II = *It;
+ SmallVector<Instruction *> Inserts;
+ while (It != ShuffledInserts[I].InsertElements.rend()) {
+ assert(II && "Must be an insertelement instruction.");
+ if (*It == II)
+ ++It;
+ else
+ Inserts.push_back(cast<Instruction>(II));
+ II = dyn_cast<InsertElementInst>(II->getOperand(0));
+ }
+ for (Instruction *II : reverse(Inserts)) {
+ II->replaceUsesOfWith(II->getOperand(0), NewInst);
+ if (auto *NewI = dyn_cast<Instruction>(NewInst))
+ if (II->getParent() == NewI->getParent() && II->comesBefore(NewI))
+ II->moveAfter(NewI);
+ NewInst = II;
+ }
+ LastInsert->replaceAllUsesWith(NewInst);
+ for (InsertElementInst *IE : reverse(ShuffledInserts[I].InsertElements)) {
+ IE->replaceUsesOfWith(IE->getOperand(0),
+ PoisonValue::get(IE->getOperand(0)->getType()));
+ IE->replaceUsesOfWith(IE->getOperand(1),
+ PoisonValue::get(IE->getOperand(1)->getType()));
+ eraseInstruction(IE);
+ }
+ CSEBlocks.insert(LastInsert->getParent());
+ }
+
+ SmallVector<Instruction *> RemovedInsts;
+ // For each vectorized value:
+ for (auto &TEPtr : VectorizableTree) {
+ TreeEntry *Entry = TEPtr.get();
+
+ // No need to handle users of gathered values.
+ if (Entry->State == TreeEntry::NeedToGather)
+ continue;
+
+ assert(Entry->VectorizedValue && "Can't find vectorizable value");
+
+ // For each lane:
+ for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
+ Value *Scalar = Entry->Scalars[Lane];
+
+ if (Entry->getOpcode() == Instruction::GetElementPtr &&
+ !isa<GetElementPtrInst>(Scalar))
+ continue;
+#ifndef NDEBUG
+ Type *Ty = Scalar->getType();
+ if (!Ty->isVoidTy()) {
+ for (User *U : Scalar->users()) {
+ LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
+
+ // It is legal to delete users in the ignorelist.
+ assert((getTreeEntry(U) ||
+ (UserIgnoreList && UserIgnoreList->contains(U)) ||
+ (isa_and_nonnull<Instruction>(U) &&
+ isDeleted(cast<Instruction>(U)))) &&
+ "Deleting out-of-tree value");
+ }
+ }
+#endif
+ LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
+ eraseInstruction(cast<Instruction>(Scalar));
+ // Retain to-be-deleted instructions for some debug-info
+ // bookkeeping. NOTE: eraseInstruction only marks the instruction for
+ // deletion - instructions are not deleted until later.
+ RemovedInsts.push_back(cast<Instruction>(Scalar));
+ }
+ }
+
+ // Merge the DIAssignIDs from the about-to-be-deleted instructions into the
+ // new vector instruction.
+ if (auto *V = dyn_cast<Instruction>(VectorizableTree[0]->VectorizedValue))
+ V->mergeDIAssignID(RemovedInsts);
+
+ Builder.ClearInsertionPoint();
+ InstrElementSize.clear();
+
+ return VectorizableTree[0]->VectorizedValue;
+}
+
+void BoUpSLP::optimizeGatherSequence() {
+ LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleExtractSeq.size()
+ << " gather sequences instructions.\n");
+ // LICM InsertElementInst sequences.
+ for (Instruction *I : GatherShuffleExtractSeq) {
+ if (isDeleted(I))
+ continue;
+
+ // Check if this block is inside a loop.
+ Loop *L = LI->getLoopFor(I->getParent());
+ if (!L)
+ continue;
+
+ // Check if it has a preheader.
+ BasicBlock *PreHeader = L->getLoopPreheader();
+ if (!PreHeader)
+ continue;
+
+ // If the vector or the element that we insert into it are
+ // instructions that are defined in this basic block then we can't
+ // hoist this instruction.
+ if (any_of(I->operands(), [L](Value *V) {
+ auto *OpI = dyn_cast<Instruction>(V);
+ return OpI && L->contains(OpI);
+ }))
+ continue;
+
+ // We can hoist this instruction. Move it to the pre-header.
+ I->moveBefore(PreHeader->getTerminator());
+ CSEBlocks.insert(PreHeader);
+ }
+
+ // Make a list of all reachable blocks in our CSE queue.
+ SmallVector<const DomTreeNode *, 8> CSEWorkList;
+ CSEWorkList.reserve(CSEBlocks.size());
+ for (BasicBlock *BB : CSEBlocks)
+ if (DomTreeNode *N = DT->getNode(BB)) {
+ assert(DT->isReachableFromEntry(N));
+ CSEWorkList.push_back(N);
+ }
+
+ // Sort blocks by domination. This ensures we visit a block after all blocks
+ // dominating it are visited.
+ llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
+ assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&
+ "Different nodes should have different DFS numbers");
+ return A->getDFSNumIn() < B->getDFSNumIn();
+ });
+
+ // Less defined shuffles can be replaced by the more defined copies.
+ // Between two shuffles one is less defined if it has the same vector operands
+ // and its mask indeces are the same as in the first one or undefs. E.g.
+ // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0,
+ // poison, <0, 0, 0, 0>.
+ auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2,
+ SmallVectorImpl<int> &NewMask) {
+ if (I1->getType() != I2->getType())
+ return false;
+ auto *SI1 = dyn_cast<ShuffleVectorInst>(I1);
+ auto *SI2 = dyn_cast<ShuffleVectorInst>(I2);
+ if (!SI1 || !SI2)
+ return I1->isIdenticalTo(I2);
+ if (SI1->isIdenticalTo(SI2))
+ return true;
+ for (int I = 0, E = SI1->getNumOperands(); I < E; ++I)
+ if (SI1->getOperand(I) != SI2->getOperand(I))
+ return false;
+ // Check if the second instruction is more defined than the first one.
+ NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end());
+ ArrayRef<int> SM1 = SI1->getShuffleMask();
+ // Count trailing undefs in the mask to check the final number of used
+ // registers.
+ unsigned LastUndefsCnt = 0;
+ for (int I = 0, E = NewMask.size(); I < E; ++I) {
+ if (SM1[I] == UndefMaskElem)
+ ++LastUndefsCnt;
+ else
+ LastUndefsCnt = 0;
+ if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem &&
+ NewMask[I] != SM1[I])
+ return false;
+ if (NewMask[I] == UndefMaskElem)
+ NewMask[I] = SM1[I];
+ }
+ // Check if the last undefs actually change the final number of used vector
+ // registers.
+ return SM1.size() - LastUndefsCnt > 1 &&
+ TTI->getNumberOfParts(SI1->getType()) ==
+ TTI->getNumberOfParts(
+ FixedVectorType::get(SI1->getType()->getElementType(),
+ SM1.size() - LastUndefsCnt));
+ };
+ // Perform O(N^2) search over the gather/shuffle sequences and merge identical
+ // instructions. TODO: We can further optimize this scan if we split the
+ // instructions into different buckets based on the insert lane.
+ SmallVector<Instruction *, 16> Visited;
+ for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
+ assert(*I &&
+ (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
+ "Worklist not sorted properly!");
+ BasicBlock *BB = (*I)->getBlock();
+ // For all instructions in blocks containing gather sequences:
+ for (Instruction &In : llvm::make_early_inc_range(*BB)) {
+ if (isDeleted(&In))
+ continue;
+ if (!isa<InsertElementInst, ExtractElementInst, ShuffleVectorInst>(&In) &&
+ !GatherShuffleExtractSeq.contains(&In))
+ continue;
+
+ // Check if we can replace this instruction with any of the
+ // visited instructions.
+ bool Replaced = false;
+ for (Instruction *&V : Visited) {
+ SmallVector<int> NewMask;
+ if (IsIdenticalOrLessDefined(&In, V, NewMask) &&
+ DT->dominates(V->getParent(), In.getParent())) {
+ In.replaceAllUsesWith(V);
+ eraseInstruction(&In);
+ if (auto *SI = dyn_cast<ShuffleVectorInst>(V))
+ if (!NewMask.empty())
+ SI->setShuffleMask(NewMask);
+ Replaced = true;
+ break;
+ }
+ if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) &&
+ GatherShuffleExtractSeq.contains(V) &&
+ IsIdenticalOrLessDefined(V, &In, NewMask) &&
+ DT->dominates(In.getParent(), V->getParent())) {
+ In.moveAfter(V);
+ V->replaceAllUsesWith(&In);
+ eraseInstruction(V);
+ if (auto *SI = dyn_cast<ShuffleVectorInst>(&In))
+ if (!NewMask.empty())
+ SI->setShuffleMask(NewMask);
+ V = &In;
+ Replaced = true;
+ break;
+ }
+ }
+ if (!Replaced) {
+ assert(!is_contained(Visited, &In));
+ Visited.push_back(&In);
+ }
+ }
+ }
+ CSEBlocks.clear();
+ GatherShuffleExtractSeq.clear();
+}
+
+BoUpSLP::ScheduleData *
+BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) {
+ ScheduleData *Bundle = nullptr;
+ ScheduleData *PrevInBundle = nullptr;
+ for (Value *V : VL) {
+ if (doesNotNeedToBeScheduled(V))
+ continue;
+ ScheduleData *BundleMember = getScheduleData(V);
+ assert(BundleMember &&
+ "no ScheduleData for bundle member "
+ "(maybe not in same basic block)");
+ assert(BundleMember->isSchedulingEntity() &&
+ "bundle member already part of other bundle");
+ if (PrevInBundle) {
+ PrevInBundle->NextInBundle = BundleMember;
+ } else {
+ Bundle = BundleMember;
+ }
+
+ // Group the instructions to a bundle.
+ BundleMember->FirstInBundle = Bundle;
+ PrevInBundle = BundleMember;
+ }
+ assert(Bundle && "Failed to find schedule bundle");
+ return Bundle;
+}
+
+// Groups the instructions to a bundle (which is then a single scheduling entity)
+// and schedules instructions until the bundle gets ready.
+std::optional<BoUpSLP::ScheduleData *>
+BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
+ const InstructionsState &S) {
+ // No need to schedule PHIs, insertelement, extractelement and extractvalue
+ // instructions.
+ if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) ||
+ doesNotNeedToSchedule(VL))
+ return nullptr;
+
+ // Initialize the instruction bundle.
+ Instruction *OldScheduleEnd = ScheduleEnd;
+ LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n");
+
+ auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule,
+ ScheduleData *Bundle) {
+ // The scheduling region got new instructions at the lower end (or it is a
+ // new region for the first bundle). This makes it necessary to
+ // recalculate all dependencies.
+ // It is seldom that this needs to be done a second time after adding the
+ // initial bundle to the region.
+ if (ScheduleEnd != OldScheduleEnd) {
+ for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
+ doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
+ ReSchedule = true;
+ }
+ if (Bundle) {
+ LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
+ << " in block " << BB->getName() << "\n");
+ calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
+ }
+
+ if (ReSchedule) {
+ resetSchedule();
+ initialFillReadyList(ReadyInsts);
+ }
+
+ // Now try to schedule the new bundle or (if no bundle) just calculate
+ // dependencies. As soon as the bundle is "ready" it means that there are no
+ // cyclic dependencies and we can schedule it. Note that's important that we
+ // don't "schedule" the bundle yet (see cancelScheduling).
+ while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
+ !ReadyInsts.empty()) {
+ ScheduleData *Picked = ReadyInsts.pop_back_val();
+ assert(Picked->isSchedulingEntity() && Picked->isReady() &&
+ "must be ready to schedule");
+ schedule(Picked, ReadyInsts);
+ }
+ };
+
+ // Make sure that the scheduling region contains all
+ // instructions of the bundle.
+ for (Value *V : VL) {
+ if (doesNotNeedToBeScheduled(V))
+ continue;
+ if (!extendSchedulingRegion(V, S)) {
+ // If the scheduling region got new instructions at the lower end (or it
+ // is a new region for the first bundle). This makes it necessary to
+ // recalculate all dependencies.
+ // Otherwise the compiler may crash trying to incorrectly calculate
+ // dependencies and emit instruction in the wrong order at the actual
+ // scheduling.
+ TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr);
+ return std::nullopt;
+ }
+ }
+
+ bool ReSchedule = false;
+ for (Value *V : VL) {
+ if (doesNotNeedToBeScheduled(V))
+ continue;
+ ScheduleData *BundleMember = getScheduleData(V);
+ assert(BundleMember &&
+ "no ScheduleData for bundle member (maybe not in same basic block)");
+
+ // Make sure we don't leave the pieces of the bundle in the ready list when
+ // whole bundle might not be ready.
+ ReadyInsts.remove(BundleMember);
+
+ if (!BundleMember->IsScheduled)
+ continue;
+ // A bundle member was scheduled as single instruction before and now
+ // needs to be scheduled as part of the bundle. We just get rid of the
+ // existing schedule.
+ LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
+ << " was already scheduled\n");
+ ReSchedule = true;
+ }
+
+ auto *Bundle = buildBundle(VL);
+ TryScheduleBundleImpl(ReSchedule, Bundle);
+ if (!Bundle->isReady()) {
+ cancelScheduling(VL, S.OpValue);
+ return std::nullopt;
+ }
+ return Bundle;
+}
+
+void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
+ Value *OpValue) {
+ if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) ||
+ doesNotNeedToSchedule(VL))
+ return;
+
+ if (doesNotNeedToBeScheduled(OpValue))
+ OpValue = *find_if_not(VL, doesNotNeedToBeScheduled);
+ ScheduleData *Bundle = getScheduleData(OpValue);
+ LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n");
+ assert(!Bundle->IsScheduled &&
+ "Can't cancel bundle which is already scheduled");
+ assert(Bundle->isSchedulingEntity() &&
+ (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) &&
+ "tried to unbundle something which is not a bundle");
+
+ // Remove the bundle from the ready list.
+ if (Bundle->isReady())
+ ReadyInsts.remove(Bundle);
+
+ // Un-bundle: make single instructions out of the bundle.
+ ScheduleData *BundleMember = Bundle;
+ while (BundleMember) {
+ assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
+ BundleMember->FirstInBundle = BundleMember;
+ ScheduleData *Next = BundleMember->NextInBundle;
+ BundleMember->NextInBundle = nullptr;
+ BundleMember->TE = nullptr;
+ if (BundleMember->unscheduledDepsInBundle() == 0) {
+ ReadyInsts.insert(BundleMember);
+ }
+ BundleMember = Next;
+ }
+}
+
+BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
+ // Allocate a new ScheduleData for the instruction.
+ if (ChunkPos >= ChunkSize) {
+ ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
+ ChunkPos = 0;
+ }
+ return &(ScheduleDataChunks.back()[ChunkPos++]);
+}
+
+bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
+ const InstructionsState &S) {
+ if (getScheduleData(V, isOneOf(S, V)))
+ return true;
+ Instruction *I = dyn_cast<Instruction>(V);
+ assert(I && "bundle member must be an instruction");
+ assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) &&
+ !doesNotNeedToBeScheduled(I) &&
+ "phi nodes/insertelements/extractelements/extractvalues don't need to "
+ "be scheduled");
+ auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool {
+ ScheduleData *ISD = getScheduleData(I);
+ if (!ISD)
+ return false;
+ assert(isInSchedulingRegion(ISD) &&
+ "ScheduleData not in scheduling region");
+ ScheduleData *SD = allocateScheduleDataChunks();
+ SD->Inst = I;
+ SD->init(SchedulingRegionID, S.OpValue);
+ ExtraScheduleDataMap[I][S.OpValue] = SD;
+ return true;
+ };
+ if (CheckScheduleForI(I))
+ return true;
+ if (!ScheduleStart) {
+ // It's the first instruction in the new region.
+ initScheduleData(I, I->getNextNode(), nullptr, nullptr);
+ ScheduleStart = I;
+ ScheduleEnd = I->getNextNode();
+ if (isOneOf(S, I) != I)
+ CheckScheduleForI(I);
+ assert(ScheduleEnd && "tried to vectorize a terminator?");
+ LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n");
+ return true;
+ }
+ // Search up and down at the same time, because we don't know if the new
+ // instruction is above or below the existing scheduling region.
+ BasicBlock::reverse_iterator UpIter =
+ ++ScheduleStart->getIterator().getReverse();
+ BasicBlock::reverse_iterator UpperEnd = BB->rend();
+ BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
+ BasicBlock::iterator LowerEnd = BB->end();
+ while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
+ &*DownIter != I) {
+ if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
+ LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n");
+ return false;
+ }
+
+ ++UpIter;
+ ++DownIter;
+ }
+ if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
+ assert(I->getParent() == ScheduleStart->getParent() &&
+ "Instruction is in wrong basic block.");
+ initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
+ ScheduleStart = I;
+ if (isOneOf(S, I) != I)
+ CheckScheduleForI(I);
+ LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I
+ << "\n");
+ return true;
+ }
+ assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
+ "Expected to reach top of the basic block or instruction down the "
+ "lower end.");
+ assert(I->getParent() == ScheduleEnd->getParent() &&
+ "Instruction is in wrong basic block.");
+ initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
+ nullptr);
+ ScheduleEnd = I->getNextNode();
+ if (isOneOf(S, I) != I)
+ CheckScheduleForI(I);
+ assert(ScheduleEnd && "tried to vectorize a terminator?");
+ LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n");
+ return true;
+}
+
+void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
+ Instruction *ToI,
+ ScheduleData *PrevLoadStore,
+ ScheduleData *NextLoadStore) {
+ ScheduleData *CurrentLoadStore = PrevLoadStore;
+ for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
+ // No need to allocate data for non-schedulable instructions.
+ if (doesNotNeedToBeScheduled(I))
+ continue;
+ ScheduleData *SD = ScheduleDataMap.lookup(I);
+ if (!SD) {
+ SD = allocateScheduleDataChunks();
+ ScheduleDataMap[I] = SD;
+ SD->Inst = I;
+ }
+ assert(!isInSchedulingRegion(SD) &&
+ "new ScheduleData already in scheduling region");
+ SD->init(SchedulingRegionID, I);
+
+ if (I->mayReadOrWriteMemory() &&
+ (!isa<IntrinsicInst>(I) ||
+ (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
+ cast<IntrinsicInst>(I)->getIntrinsicID() !=
+ Intrinsic::pseudoprobe))) {
+ // Update the linked list of memory accessing instructions.
+ if (CurrentLoadStore) {
+ CurrentLoadStore->NextLoadStore = SD;
+ } else {
+ FirstLoadStoreInRegion = SD;
+ }
+ CurrentLoadStore = SD;
+ }
+
+ if (match(I, m_Intrinsic<Intrinsic::stacksave>()) ||
+ match(I, m_Intrinsic<Intrinsic::stackrestore>()))
+ RegionHasStackSave = true;
+ }
+ if (NextLoadStore) {
+ if (CurrentLoadStore)
+ CurrentLoadStore->NextLoadStore = NextLoadStore;
+ } else {
+ LastLoadStoreInRegion = CurrentLoadStore;
+ }
+}
+
+void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
+ bool InsertInReadyList,
+ BoUpSLP *SLP) {
+ assert(SD->isSchedulingEntity());
+
+ SmallVector<ScheduleData *, 10> WorkList;
+ WorkList.push_back(SD);
+
+ while (!WorkList.empty()) {
+ ScheduleData *SD = WorkList.pop_back_val();
+ for (ScheduleData *BundleMember = SD; BundleMember;
+ BundleMember = BundleMember->NextInBundle) {
+ assert(isInSchedulingRegion(BundleMember));
+ if (BundleMember->hasValidDependencies())
+ continue;
+
+ LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember
+ << "\n");
+ BundleMember->Dependencies = 0;
+ BundleMember->resetUnscheduledDeps();
+
+ // Handle def-use chain dependencies.
+ if (BundleMember->OpValue != BundleMember->Inst) {
+ if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) {
+ BundleMember->Dependencies++;
+ ScheduleData *DestBundle = UseSD->FirstInBundle;
+ if (!DestBundle->IsScheduled)
+ BundleMember->incrementUnscheduledDeps(1);
+ if (!DestBundle->hasValidDependencies())
+ WorkList.push_back(DestBundle);
+ }
+ } else {
+ for (User *U : BundleMember->Inst->users()) {
+ if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) {
+ BundleMember->Dependencies++;
+ ScheduleData *DestBundle = UseSD->FirstInBundle;
+ if (!DestBundle->IsScheduled)
+ BundleMember->incrementUnscheduledDeps(1);
+ if (!DestBundle->hasValidDependencies())
+ WorkList.push_back(DestBundle);
+ }
+ }
+ }
+
+ auto makeControlDependent = [&](Instruction *I) {
+ auto *DepDest = getScheduleData(I);
+ assert(DepDest && "must be in schedule window");
+ DepDest->ControlDependencies.push_back(BundleMember);
+ BundleMember->Dependencies++;
+ ScheduleData *DestBundle = DepDest->FirstInBundle;
+ if (!DestBundle->IsScheduled)
+ BundleMember->incrementUnscheduledDeps(1);
+ if (!DestBundle->hasValidDependencies())
+ WorkList.push_back(DestBundle);
+ };
+
+ // Any instruction which isn't safe to speculate at the beginning of the
+ // block is control dependend on any early exit or non-willreturn call
+ // which proceeds it.
+ if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) {
+ for (Instruction *I = BundleMember->Inst->getNextNode();
+ I != ScheduleEnd; I = I->getNextNode()) {
+ if (isSafeToSpeculativelyExecute(I, &*BB->begin(), SLP->AC))
+ continue;
+
+ // Add the dependency
+ makeControlDependent(I);
+
+ if (!isGuaranteedToTransferExecutionToSuccessor(I))
+ // Everything past here must be control dependent on I.
+ break;
+ }
+ }
+
+ if (RegionHasStackSave) {
+ // If we have an inalloc alloca instruction, it needs to be scheduled
+ // after any preceeding stacksave. We also need to prevent any alloca
+ // from reordering above a preceeding stackrestore.
+ if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) ||
+ match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) {
+ for (Instruction *I = BundleMember->Inst->getNextNode();
+ I != ScheduleEnd; I = I->getNextNode()) {
+ if (match(I, m_Intrinsic<Intrinsic::stacksave>()) ||
+ match(I, m_Intrinsic<Intrinsic::stackrestore>()))
+ // Any allocas past here must be control dependent on I, and I
+ // must be memory dependend on BundleMember->Inst.
+ break;
+
+ if (!isa<AllocaInst>(I))
+ continue;
+
+ // Add the dependency
+ makeControlDependent(I);
+ }
+ }
+
+ // In addition to the cases handle just above, we need to prevent
+ // allocas and loads/stores from moving below a stacksave or a
+ // stackrestore. Avoiding moving allocas below stackrestore is currently
+ // thought to be conservatism. Moving loads/stores below a stackrestore
+ // can lead to incorrect code.
+ if (isa<AllocaInst>(BundleMember->Inst) ||
+ BundleMember->Inst->mayReadOrWriteMemory()) {
+ for (Instruction *I = BundleMember->Inst->getNextNode();
+ I != ScheduleEnd; I = I->getNextNode()) {
+ if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) &&
+ !match(I, m_Intrinsic<Intrinsic::stackrestore>()))
+ continue;
+
+ // Add the dependency
+ makeControlDependent(I);
+ break;
+ }
+ }
+ }
+
+ // Handle the memory dependencies (if any).
+ ScheduleData *DepDest = BundleMember->NextLoadStore;
+ if (!DepDest)
+ continue;
+ Instruction *SrcInst = BundleMember->Inst;
+ assert(SrcInst->mayReadOrWriteMemory() &&
+ "NextLoadStore list for non memory effecting bundle?");
+ MemoryLocation SrcLoc = getLocation(SrcInst);
+ bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
+ unsigned numAliased = 0;
+ unsigned DistToSrc = 1;
+
+ for ( ; DepDest; DepDest = DepDest->NextLoadStore) {
+ assert(isInSchedulingRegion(DepDest));
+
+ // We have two limits to reduce the complexity:
+ // 1) AliasedCheckLimit: It's a small limit to reduce calls to
+ // SLP->isAliased (which is the expensive part in this loop).
+ // 2) MaxMemDepDistance: It's for very large blocks and it aborts
+ // the whole loop (even if the loop is fast, it's quadratic).
+ // It's important for the loop break condition (see below) to
+ // check this limit even between two read-only instructions.
+ if (DistToSrc >= MaxMemDepDistance ||
+ ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
+ (numAliased >= AliasedCheckLimit ||
+ SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
+
+ // We increment the counter only if the locations are aliased
+ // (instead of counting all alias checks). This gives a better
+ // balance between reduced runtime and accurate dependencies.
+ numAliased++;
+
+ DepDest->MemoryDependencies.push_back(BundleMember);
+ BundleMember->Dependencies++;
+ ScheduleData *DestBundle = DepDest->FirstInBundle;
+ if (!DestBundle->IsScheduled) {
+ BundleMember->incrementUnscheduledDeps(1);
+ }
+ if (!DestBundle->hasValidDependencies()) {
+ WorkList.push_back(DestBundle);
+ }
+ }
+
+ // Example, explaining the loop break condition: Let's assume our
+ // starting instruction is i0 and MaxMemDepDistance = 3.
+ //
+ // +--------v--v--v
+ // i0,i1,i2,i3,i4,i5,i6,i7,i8
+ // +--------^--^--^
+ //
+ // MaxMemDepDistance let us stop alias-checking at i3 and we add
+ // dependencies from i0 to i3,i4,.. (even if they are not aliased).
+ // Previously we already added dependencies from i3 to i6,i7,i8
+ // (because of MaxMemDepDistance). As we added a dependency from
+ // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
+ // and we can abort this loop at i6.
+ if (DistToSrc >= 2 * MaxMemDepDistance)
+ break;
+ DistToSrc++;
+ }
+ }
+ if (InsertInReadyList && SD->isReady()) {
+ ReadyInsts.insert(SD);
+ LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst
+ << "\n");
+ }
+ }
+}
+
+void BoUpSLP::BlockScheduling::resetSchedule() {
+ assert(ScheduleStart &&
+ "tried to reset schedule on block which has not been scheduled");
+ for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
+ doForAllOpcodes(I, [&](ScheduleData *SD) {
+ assert(isInSchedulingRegion(SD) &&
+ "ScheduleData not in scheduling region");
+ SD->IsScheduled = false;
+ SD->resetUnscheduledDeps();
+ });
+ }
+ ReadyInsts.clear();
+}
+
+void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
+ if (!BS->ScheduleStart)
+ return;
+
+ LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
+
+ // A key point - if we got here, pre-scheduling was able to find a valid
+ // scheduling of the sub-graph of the scheduling window which consists
+ // of all vector bundles and their transitive users. As such, we do not
+ // need to reschedule anything *outside of* that subgraph.
+
+ BS->resetSchedule();
+
+ // For the real scheduling we use a more sophisticated ready-list: it is
+ // sorted by the original instruction location. This lets the final schedule
+ // be as close as possible to the original instruction order.
+ // WARNING: If changing this order causes a correctness issue, that means
+ // there is some missing dependence edge in the schedule data graph.
+ struct ScheduleDataCompare {
+ bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
+ return SD2->SchedulingPriority < SD1->SchedulingPriority;
+ }
+ };
+ std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
+
+ // Ensure that all dependency data is updated (for nodes in the sub-graph)
+ // and fill the ready-list with initial instructions.
+ int Idx = 0;
+ for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
+ I = I->getNextNode()) {
+ BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) {
+ TreeEntry *SDTE = getTreeEntry(SD->Inst);
+ (void)SDTE;
+ assert((isVectorLikeInstWithConstOps(SD->Inst) ||
+ SD->isPartOfBundle() ==
+ (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) &&
+ "scheduler and vectorizer bundle mismatch");
+ SD->FirstInBundle->SchedulingPriority = Idx++;
+
+ if (SD->isSchedulingEntity() && SD->isPartOfBundle())
+ BS->calculateDependencies(SD, false, this);
+ });
+ }
+ BS->initialFillReadyList(ReadyInsts);
+
+ Instruction *LastScheduledInst = BS->ScheduleEnd;
+
+ // Do the "real" scheduling.
+ while (!ReadyInsts.empty()) {
+ ScheduleData *picked = *ReadyInsts.begin();
+ ReadyInsts.erase(ReadyInsts.begin());
+
+ // Move the scheduled instruction(s) to their dedicated places, if not
+ // there yet.
+ for (ScheduleData *BundleMember = picked; BundleMember;
+ BundleMember = BundleMember->NextInBundle) {
+ Instruction *pickedInst = BundleMember->Inst;
+ if (pickedInst->getNextNode() != LastScheduledInst)
+ pickedInst->moveBefore(LastScheduledInst);
+ LastScheduledInst = pickedInst;
+ }
+
+ BS->schedule(picked, ReadyInsts);
+ }
+
+ // Check that we didn't break any of our invariants.
+#ifdef EXPENSIVE_CHECKS
+ BS->verify();
+#endif
+
+#if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
+ // Check that all schedulable entities got scheduled
+ for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) {
+ BS->doForAllOpcodes(I, [&](ScheduleData *SD) {
+ if (SD->isSchedulingEntity() && SD->hasValidDependencies()) {
+ assert(SD->IsScheduled && "must be scheduled at this point");
+ }
+ });
+ }
+#endif
+
+ // Avoid duplicate scheduling of the block.
+ BS->ScheduleStart = nullptr;
+}
+
+unsigned BoUpSLP::getVectorElementSize(Value *V) {
+ // If V is a store, just return the width of the stored value (or value
+ // truncated just before storing) without traversing the expression tree.
+ // This is the common case.
+ if (auto *Store = dyn_cast<StoreInst>(V))
+ return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
+
+ if (auto *IEI = dyn_cast<InsertElementInst>(V))
+ return getVectorElementSize(IEI->getOperand(1));
+
+ auto E = InstrElementSize.find(V);
+ if (E != InstrElementSize.end())
+ return E->second;
+
+ // If V is not a store, we can traverse the expression tree to find loads
+ // that feed it. The type of the loaded value may indicate a more suitable
+ // width than V's type. We want to base the vector element size on the width
+ // of memory operations where possible.
+ SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
+ SmallPtrSet<Instruction *, 16> Visited;
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ Worklist.emplace_back(I, I->getParent());
+ Visited.insert(I);
+ }
+
+ // Traverse the expression tree in bottom-up order looking for loads. If we
+ // encounter an instruction we don't yet handle, we give up.
+ auto Width = 0u;
+ while (!Worklist.empty()) {
+ Instruction *I;
+ BasicBlock *Parent;
+ std::tie(I, Parent) = Worklist.pop_back_val();
+
+ // We should only be looking at scalar instructions here. If the current
+ // instruction has a vector type, skip.
+ auto *Ty = I->getType();
+ if (isa<VectorType>(Ty))
+ continue;
+
+ // If the current instruction is a load, update MaxWidth to reflect the
+ // width of the loaded value.
+ if (isa<LoadInst, ExtractElementInst, ExtractValueInst>(I))
+ Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
+
+ // Otherwise, we need to visit the operands of the instruction. We only
+ // handle the interesting cases from buildTree here. If an operand is an
+ // instruction we haven't yet visited and from the same basic block as the
+ // user or the use is a PHI node, we add it to the worklist.
+ else if (isa<PHINode, CastInst, GetElementPtrInst, CmpInst, SelectInst,
+ BinaryOperator, UnaryOperator>(I)) {
+ for (Use &U : I->operands())
+ if (auto *J = dyn_cast<Instruction>(U.get()))
+ if (Visited.insert(J).second &&
+ (isa<PHINode>(I) || J->getParent() == Parent))
+ Worklist.emplace_back(J, J->getParent());
+ } else {
+ break;
+ }
+ }
+
+ // If we didn't encounter a memory access in the expression tree, or if we
+ // gave up for some reason, just return the width of V. Otherwise, return the
+ // maximum width we found.
+ if (!Width) {
+ if (auto *CI = dyn_cast<CmpInst>(V))
+ V = CI->getOperand(0);
+ Width = DL->getTypeSizeInBits(V->getType());
+ }
+
+ for (Instruction *I : Visited)
+ InstrElementSize[I] = Width;
+
+ return Width;
+}
+
+// Determine if a value V in a vectorizable expression Expr can be demoted to a
+// smaller type with a truncation. We collect the values that will be demoted
+// in ToDemote and additional roots that require investigating in Roots.
+static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
+ SmallVectorImpl<Value *> &ToDemote,
+ SmallVectorImpl<Value *> &Roots) {
+ // We can always demote constants.
+ if (isa<Constant>(V)) {
+ ToDemote.push_back(V);
+ return true;
+ }
+
+ // If the value is not an instruction in the expression with only one use, it
+ // cannot be demoted.
+ auto *I = dyn_cast<Instruction>(V);
+ if (!I || !I->hasOneUse() || !Expr.count(I))
+ return false;
+
+ switch (I->getOpcode()) {
+
+ // We can always demote truncations and extensions. Since truncations can
+ // seed additional demotion, we save the truncated value.
+ case Instruction::Trunc:
+ Roots.push_back(I->getOperand(0));
+ break;
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ if (isa<ExtractElementInst, InsertElementInst>(I->getOperand(0)))
+ return false;
+ break;
+
+ // We can demote certain binary operations if we can demote both of their
+ // operands.
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
+ !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
+ return false;
+ break;
+
+ // We can demote selects if we can demote their true and false values.
+ case Instruction::Select: {
+ SelectInst *SI = cast<SelectInst>(I);
+ if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
+ !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
+ return false;
+ break;
+ }
+
+ // We can demote phis if we can demote all their incoming operands. Note that
+ // we don't need to worry about cycles since we ensure single use above.
+ case Instruction::PHI: {
+ PHINode *PN = cast<PHINode>(I);
+ for (Value *IncValue : PN->incoming_values())
+ if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
+ return false;
+ break;
+ }
+
+ // Otherwise, conservatively give up.
+ default:
+ return false;
+ }
+
+ // Record the value that we can demote.
+ ToDemote.push_back(V);
+ return true;
+}
+
+void BoUpSLP::computeMinimumValueSizes() {
+ // If there are no external uses, the expression tree must be rooted by a
+ // store. We can't demote in-memory values, so there is nothing to do here.
+ if (ExternalUses.empty())
+ return;
+
+ // We only attempt to truncate integer expressions.
+ auto &TreeRoot = VectorizableTree[0]->Scalars;
+ auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
+ if (!TreeRootIT)
+ return;
+
+ // If the expression is not rooted by a store, these roots should have
+ // external uses. We will rely on InstCombine to rewrite the expression in
+ // the narrower type. However, InstCombine only rewrites single-use values.
+ // This means that if a tree entry other than a root is used externally, it
+ // must have multiple uses and InstCombine will not rewrite it. The code
+ // below ensures that only the roots are used externally.
+ SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
+ for (auto &EU : ExternalUses)
+ if (!Expr.erase(EU.Scalar))
+ return;
+ if (!Expr.empty())
+ return;
+
+ // Collect the scalar values of the vectorizable expression. We will use this
+ // context to determine which values can be demoted. If we see a truncation,
+ // we mark it as seeding another demotion.
+ for (auto &EntryPtr : VectorizableTree)
+ Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
+
+ // Ensure the roots of the vectorizable tree don't form a cycle. They must
+ // have a single external user that is not in the vectorizable tree.
+ for (auto *Root : TreeRoot)
+ if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
+ return;
+
+ // Conservatively determine if we can actually truncate the roots of the
+ // expression. Collect the values that can be demoted in ToDemote and
+ // additional roots that require investigating in Roots.
+ SmallVector<Value *, 32> ToDemote;
+ SmallVector<Value *, 4> Roots;
+ for (auto *Root : TreeRoot)
+ if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
+ return;
+
+ // The maximum bit width required to represent all the values that can be
+ // demoted without loss of precision. It would be safe to truncate the roots
+ // of the expression to this width.
+ auto MaxBitWidth = 8u;
+
+ // We first check if all the bits of the roots are demanded. If they're not,
+ // we can truncate the roots to this narrower type.
+ for (auto *Root : TreeRoot) {
+ auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
+ MaxBitWidth = std::max<unsigned>(
+ Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
+ }
+
+ // True if the roots can be zero-extended back to their original type, rather
+ // than sign-extended. We know that if the leading bits are not demanded, we
+ // can safely zero-extend. So we initialize IsKnownPositive to True.
+ bool IsKnownPositive = true;
+
+ // If all the bits of the roots are demanded, we can try a little harder to
+ // compute a narrower type. This can happen, for example, if the roots are
+ // getelementptr indices. InstCombine promotes these indices to the pointer
+ // width. Thus, all their bits are technically demanded even though the
+ // address computation might be vectorized in a smaller type.
+ //
+ // We start by looking at each entry that can be demoted. We compute the
+ // maximum bit width required to store the scalar by using ValueTracking to
+ // compute the number of high-order bits we can truncate.
+ if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
+ llvm::all_of(TreeRoot, [](Value *R) {
+ assert(R->hasOneUse() && "Root should have only one use!");
+ return isa<GetElementPtrInst>(R->user_back());
+ })) {
+ MaxBitWidth = 8u;
+
+ // Determine if the sign bit of all the roots is known to be zero. If not,
+ // IsKnownPositive is set to False.
+ IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
+ KnownBits Known = computeKnownBits(R, *DL);
+ return Known.isNonNegative();
+ });
+
+ // Determine the maximum number of bits required to store the scalar
+ // values.
+ for (auto *Scalar : ToDemote) {
+ auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
+ auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
+ MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
+ }
+
+ // If we can't prove that the sign bit is zero, we must add one to the
+ // maximum bit width to account for the unknown sign bit. This preserves
+ // the existing sign bit so we can safely sign-extend the root back to the
+ // original type. Otherwise, if we know the sign bit is zero, we will
+ // zero-extend the root instead.
+ //
+ // FIXME: This is somewhat suboptimal, as there will be cases where adding
+ // one to the maximum bit width will yield a larger-than-necessary
+ // type. In general, we need to add an extra bit only if we can't
+ // prove that the upper bit of the original type is equal to the
+ // upper bit of the proposed smaller type. If these two bits are the
+ // same (either zero or one) we know that sign-extending from the
+ // smaller type will result in the same value. Here, since we can't
+ // yet prove this, we are just making the proposed smaller type
+ // larger to ensure correctness.
+ if (!IsKnownPositive)
+ ++MaxBitWidth;
+ }
+
+ // Round MaxBitWidth up to the next power-of-two.
+ if (!isPowerOf2_64(MaxBitWidth))
+ MaxBitWidth = NextPowerOf2(MaxBitWidth);
+
+ // If the maximum bit width we compute is less than the with of the roots'
+ // type, we can proceed with the narrowing. Otherwise, do nothing.
+ if (MaxBitWidth >= TreeRootIT->getBitWidth())
+ return;
+
+ // If we can truncate the root, we must collect additional values that might
+ // be demoted as a result. That is, those seeded by truncations we will
+ // modify.
+ while (!Roots.empty())
+ collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
+
+ // Finally, map the values we can demote to the maximum bit with we computed.
+ for (auto *Scalar : ToDemote)
+ MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
+}
+
+namespace {
+
+/// The SLPVectorizer Pass.
+struct SLPVectorizer : public FunctionPass {
+ SLPVectorizerPass Impl;
+
+ /// Pass identification, replacement for typeid
+ static char ID;
+
+ explicit SLPVectorizer() : FunctionPass(ID) {
+ initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool doInitialization(Module &M) override { return false; }
+
+ bool runOnFunction(Function &F) override {
+ if (skipFunction(F))
+ return false;
+
+ auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+ auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
+ auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
+ auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+ auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+ auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
+ auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
+
+ return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ FunctionPass::getAnalysisUsage(AU);
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<ScalarEvolutionWrapperPass>();
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<DemandedBitsWrapperPass>();
+ AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
+ AU.addRequired<InjectTLIMappingsLegacy>();
+ AU.addPreserved<LoopInfoWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addPreserved<AAResultsWrapperPass>();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ AU.setPreservesCFG();
+ }
+};
+
+} // end anonymous namespace
+
+PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
+ auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
+ auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
+ auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
+ auto *AA = &AM.getResult<AAManager>(F);
+ auto *LI = &AM.getResult<LoopAnalysis>(F);
+ auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
+ auto *AC = &AM.getResult<AssumptionAnalysis>(F);
+ auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
+ auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
+
+ bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
+ if (!Changed)
+ return PreservedAnalyses::all();
+
+ PreservedAnalyses PA;
+ PA.preserveSet<CFGAnalyses>();
+ return PA;
+}
+
+bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
+ TargetTransformInfo *TTI_,
+ TargetLibraryInfo *TLI_, AAResults *AA_,
+ LoopInfo *LI_, DominatorTree *DT_,
+ AssumptionCache *AC_, DemandedBits *DB_,
+ OptimizationRemarkEmitter *ORE_) {
+ if (!RunSLPVectorization)
+ return false;
+ SE = SE_;
+ TTI = TTI_;
+ TLI = TLI_;
+ AA = AA_;
+ LI = LI_;
+ DT = DT_;
+ AC = AC_;
+ DB = DB_;
+ DL = &F.getParent()->getDataLayout();
+
+ Stores.clear();
+ GEPs.clear();
+ bool Changed = false;
+
+ // If the target claims to have no vector registers don't attempt
+ // vectorization.
+ if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) {
+ LLVM_DEBUG(
+ dbgs() << "SLP: Didn't find any vector registers for target, abort.\n");
+ return false;
+ }
+
+ // Don't vectorize when the attribute NoImplicitFloat is used.
+ if (F.hasFnAttribute(Attribute::NoImplicitFloat))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
+
+ // Use the bottom up slp vectorizer to construct chains that start with
+ // store instructions.
+ BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
+
+ // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
+ // delete instructions.
+
+ // Update DFS numbers now so that we can use them for ordering.
+ DT->updateDFSNumbers();
+
+ // Scan the blocks in the function in post order.
+ for (auto *BB : post_order(&F.getEntryBlock())) {
+ // Start new block - clear the list of reduction roots.
+ R.clearReductionData();
+ collectSeedInstructions(BB);
+
+ // Vectorize trees that end at stores.
+ if (!Stores.empty()) {
+ LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
+ << " underlying objects.\n");
+ Changed |= vectorizeStoreChains(R);
+ }
+
+ // Vectorize trees that end at reductions.
+ Changed |= vectorizeChainsInBlock(BB, R);
+
+ // Vectorize the index computations of getelementptr instructions. This
+ // is primarily intended to catch gather-like idioms ending at
+ // non-consecutive loads.
+ if (!GEPs.empty()) {
+ LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
+ << " underlying objects.\n");
+ Changed |= vectorizeGEPIndices(BB, R);
+ }
+ }
+
+ if (Changed) {
+ R.optimizeGatherSequence();
+ LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
+ }
+ return Changed;
+}
+
+bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
+ unsigned Idx, unsigned MinVF) {
+ LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
+ << "\n");
+ const unsigned Sz = R.getVectorElementSize(Chain[0]);
+ unsigned VF = Chain.size();
+
+ if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
+ return false;
+
+ LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
+ << "\n");
+
+ R.buildTree(Chain);
+ if (R.isTreeTinyAndNotFullyVectorizable())
+ return false;
+ if (R.isLoadCombineCandidate())
+ return false;
+ R.reorderTopToBottom();
+ R.reorderBottomToTop();
+ R.buildExternalUses();
+
+ R.computeMinimumValueSizes();
+
+ InstructionCost Cost = R.getTreeCost();
+
+ LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF=" << VF << "\n");
+ if (Cost < -SLPCostThreshold) {
+ LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
+
+ using namespace ore;
+
+ R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
+ cast<StoreInst>(Chain[0]))
+ << "Stores SLP vectorized with cost " << NV("Cost", Cost)
+ << " and with tree size "
+ << NV("TreeSize", R.getTreeSize()));
+
+ R.vectorizeTree();
+ return true;
+ }
+
+ return false;
+}
+
+bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
+ BoUpSLP &R) {
+ // We may run into multiple chains that merge into a single chain. We mark the
+ // stores that we vectorized so that we don't visit the same store twice.
+ BoUpSLP::ValueSet VectorizedStores;
+ bool Changed = false;
+
+ int E = Stores.size();
+ SmallBitVector Tails(E, false);
+ int MaxIter = MaxStoreLookup.getValue();
+ SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
+ E, std::make_pair(E, INT_MAX));
+ SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
+ int IterCnt;
+ auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
+ &CheckedPairs,
+ &ConsecutiveChain](int K, int Idx) {
+ if (IterCnt >= MaxIter)
+ return true;
+ if (CheckedPairs[Idx].test(K))
+ return ConsecutiveChain[K].second == 1 &&
+ ConsecutiveChain[K].first == Idx;
+ ++IterCnt;
+ CheckedPairs[Idx].set(K);
+ CheckedPairs[K].set(Idx);
+ std::optional<int> Diff = getPointersDiff(
+ Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(),
+ Stores[Idx]->getValueOperand()->getType(),
+ Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true);
+ if (!Diff || *Diff == 0)
+ return false;
+ int Val = *Diff;
+ if (Val < 0) {
+ if (ConsecutiveChain[Idx].second > -Val) {
+ Tails.set(K);
+ ConsecutiveChain[Idx] = std::make_pair(K, -Val);
+ }
+ return false;
+ }
+ if (ConsecutiveChain[K].second <= Val)
+ return false;
+
+ Tails.set(Idx);
+ ConsecutiveChain[K] = std::make_pair(Idx, Val);
+ return Val == 1;
+ };
+ // Do a quadratic search on all of the given stores in reverse order and find
+ // all of the pairs of stores that follow each other.
+ for (int Idx = E - 1; Idx >= 0; --Idx) {
+ // If a store has multiple consecutive store candidates, search according
+ // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
+ // This is because usually pairing with immediate succeeding or preceding
+ // candidate create the best chance to find slp vectorization opportunity.
+ const int MaxLookDepth = std::max(E - Idx, Idx + 1);
+ IterCnt = 0;
+ for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
+ if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
+ (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
+ break;
+ }
+
+ // Tracks if we tried to vectorize stores starting from the given tail
+ // already.
+ SmallBitVector TriedTails(E, false);
+ // For stores that start but don't end a link in the chain:
+ for (int Cnt = E; Cnt > 0; --Cnt) {
+ int I = Cnt - 1;
+ if (ConsecutiveChain[I].first == E || Tails.test(I))
+ continue;
+ // We found a store instr that starts a chain. Now follow the chain and try
+ // to vectorize it.
+ BoUpSLP::ValueList Operands;
+ // Collect the chain into a list.
+ while (I != E && !VectorizedStores.count(Stores[I])) {
+ Operands.push_back(Stores[I]);
+ Tails.set(I);
+ if (ConsecutiveChain[I].second != 1) {
+ // Mark the new end in the chain and go back, if required. It might be
+ // required if the original stores come in reversed order, for example.
+ if (ConsecutiveChain[I].first != E &&
+ Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
+ !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
+ TriedTails.set(I);
+ Tails.reset(ConsecutiveChain[I].first);
+ if (Cnt < ConsecutiveChain[I].first + 2)
+ Cnt = ConsecutiveChain[I].first + 2;
+ }
+ break;
+ }
+ // Move to the next value in the chain.
+ I = ConsecutiveChain[I].first;
+ }
+ assert(!Operands.empty() && "Expected non-empty list of stores.");
+
+ unsigned MaxVecRegSize = R.getMaxVecRegSize();
+ unsigned EltSize = R.getVectorElementSize(Operands[0]);
+ unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
+
+ unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
+ MaxElts);
+ auto *Store = cast<StoreInst>(Operands[0]);
+ Type *StoreTy = Store->getValueOperand()->getType();
+ Type *ValueTy = StoreTy;
+ if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
+ ValueTy = Trunc->getSrcTy();
+ unsigned MinVF = TTI->getStoreMinimumVF(
+ R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy);
+
+ if (MaxVF <= MinVF) {
+ LLVM_DEBUG(dbgs() << "SLP: Vectorization infeasible as MaxVF (" << MaxVF << ") <= "
+ << "MinVF (" << MinVF << ")\n");
+ }
+
+ // FIXME: Is division-by-2 the correct step? Should we assert that the
+ // register size is a power-of-2?
+ unsigned StartIdx = 0;
+ for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
+ for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
+ ArrayRef<Value *> Slice = ArrayRef(Operands).slice(Cnt, Size);
+ if (!VectorizedStores.count(Slice.front()) &&
+ !VectorizedStores.count(Slice.back()) &&
+ vectorizeStoreChain(Slice, R, Cnt, MinVF)) {
+ // Mark the vectorized stores so that we don't vectorize them again.
+ VectorizedStores.insert(Slice.begin(), Slice.end());
+ Changed = true;
+ // If we vectorized initial block, no need to try to vectorize it
+ // again.
+ if (Cnt == StartIdx)
+ StartIdx += Size;
+ Cnt += Size;
+ continue;
+ }
+ ++Cnt;
+ }
+ // Check if the whole array was vectorized already - exit.
+ if (StartIdx >= Operands.size())
+ break;
+ }
+ }
+
+ return Changed;
+}
+
+void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
+ // Initialize the collections. We will make a single pass over the block.
+ Stores.clear();
+ GEPs.clear();
+
+ // Visit the store and getelementptr instructions in BB and organize them in
+ // Stores and GEPs according to the underlying objects of their pointer
+ // operands.
+ for (Instruction &I : *BB) {
+ // Ignore store instructions that are volatile or have a pointer operand
+ // that doesn't point to a scalar type.
+ if (auto *SI = dyn_cast<StoreInst>(&I)) {
+ if (!SI->isSimple())
+ continue;
+ if (!isValidElementType(SI->getValueOperand()->getType()))
+ continue;
+ Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
+ }
+
+ // Ignore getelementptr instructions that have more than one index, a
+ // constant index, or a pointer operand that doesn't point to a scalar
+ // type.
+ else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
+ auto Idx = GEP->idx_begin()->get();
+ if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
+ continue;
+ if (!isValidElementType(Idx->getType()))
+ continue;
+ if (GEP->getType()->isVectorTy())
+ continue;
+ GEPs[GEP->getPointerOperand()].push_back(GEP);
+ }
+ }
+}
+
+bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
+ if (!A || !B)
+ return false;
+ if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B))
+ return false;
+ Value *VL[] = {A, B};
+ return tryToVectorizeList(VL, R);
+}
+
+bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
+ bool LimitForRegisterSize) {
+ if (VL.size() < 2)
+ return false;
+
+ LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
+ << VL.size() << ".\n");
+
+ // Check that all of the parts are instructions of the same type,
+ // we permit an alternate opcode via InstructionsState.
+ InstructionsState S = getSameOpcode(VL, *TLI);
+ if (!S.getOpcode())
+ return false;
+
+ Instruction *I0 = cast<Instruction>(S.OpValue);
+ // Make sure invalid types (including vector type) are rejected before
+ // determining vectorization factor for scalar instructions.
+ for (Value *V : VL) {
+ Type *Ty = V->getType();
+ if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
+ // NOTE: the following will give user internal llvm type name, which may
+ // not be useful.
+ R.getORE()->emit([&]() {
+ std::string type_str;
+ llvm::raw_string_ostream rso(type_str);
+ Ty->print(rso);
+ return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
+ << "Cannot SLP vectorize list: type "
+ << rso.str() + " is unsupported by vectorizer";
+ });
+ return false;
+ }
+ }
+
+ unsigned Sz = R.getVectorElementSize(I0);
+ unsigned MinVF = R.getMinVF(Sz);
+ unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
+ MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
+ if (MaxVF < 2) {
+ R.getORE()->emit([&]() {
+ return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
+ << "Cannot SLP vectorize list: vectorization factor "
+ << "less than 2 is not supported";
+ });
+ return false;
+ }
+
+ bool Changed = false;
+ bool CandidateFound = false;
+ InstructionCost MinCost = SLPCostThreshold.getValue();
+ Type *ScalarTy = VL[0]->getType();
+ if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
+ ScalarTy = IE->getOperand(1)->getType();
+
+ unsigned NextInst = 0, MaxInst = VL.size();
+ for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
+ // No actual vectorization should happen, if number of parts is the same as
+ // provided vectorization factor (i.e. the scalar type is used for vector
+ // code during codegen).
+ auto *VecTy = FixedVectorType::get(ScalarTy, VF);
+ if (TTI->getNumberOfParts(VecTy) == VF)
+ continue;
+ for (unsigned I = NextInst; I < MaxInst; ++I) {
+ unsigned OpsWidth = 0;
+
+ if (I + VF > MaxInst)
+ OpsWidth = MaxInst - I;
+ else
+ OpsWidth = VF;
+
+ if (!isPowerOf2_32(OpsWidth))
+ continue;
+
+ if ((LimitForRegisterSize && OpsWidth < MaxVF) ||
+ (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2))
+ break;
+
+ ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
+ // Check that a previous iteration of this loop did not delete the Value.
+ if (llvm::any_of(Ops, [&R](Value *V) {
+ auto *I = dyn_cast<Instruction>(V);
+ return I && R.isDeleted(I);
+ }))
+ continue;
+
+ LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
+ << "\n");
+
+ R.buildTree(Ops);
+ if (R.isTreeTinyAndNotFullyVectorizable())
+ continue;
+ R.reorderTopToBottom();
+ R.reorderBottomToTop(
+ /*IgnoreReorder=*/!isa<InsertElementInst>(Ops.front()) &&
+ !R.doesRootHaveInTreeUses());
+ R.buildExternalUses();
+
+ R.computeMinimumValueSizes();
+ InstructionCost Cost = R.getTreeCost();
+ CandidateFound = true;
+ MinCost = std::min(MinCost, Cost);
+
+ LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost
+ << " for VF=" << OpsWidth << "\n");
+ if (Cost < -SLPCostThreshold) {
+ LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
+ R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
+ cast<Instruction>(Ops[0]))
+ << "SLP vectorized with cost " << ore::NV("Cost", Cost)
+ << " and with tree size "
+ << ore::NV("TreeSize", R.getTreeSize()));
+
+ R.vectorizeTree();
+ // Move to the next bundle.
+ I += VF - 1;
+ NextInst = I + 1;
+ Changed = true;
+ }
+ }
+ }
+
+ if (!Changed && CandidateFound) {
+ R.getORE()->emit([&]() {
+ return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
+ << "List vectorization was possible but not beneficial with cost "
+ << ore::NV("Cost", MinCost) << " >= "
+ << ore::NV("Treshold", -SLPCostThreshold);
+ });
+ } else if (!Changed) {
+ R.getORE()->emit([&]() {
+ return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
+ << "Cannot SLP vectorize list: vectorization was impossible"
+ << " with available vectorization factors";
+ });
+ }
+ return Changed;
+}
+
+bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
+ if (!I)
+ return false;
+
+ if (!isa<BinaryOperator, CmpInst>(I) || isa<VectorType>(I->getType()))
+ return false;
+
+ Value *P = I->getParent();
+
+ // Vectorize in current basic block only.
+ auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
+ auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
+ if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
+ return false;
+
+ // First collect all possible candidates
+ SmallVector<std::pair<Value *, Value *>, 4> Candidates;
+ Candidates.emplace_back(Op0, Op1);
+
+ auto *A = dyn_cast<BinaryOperator>(Op0);
+ auto *B = dyn_cast<BinaryOperator>(Op1);
+ // Try to skip B.
+ if (A && B && B->hasOneUse()) {
+ auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
+ auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
+ if (B0 && B0->getParent() == P)
+ Candidates.emplace_back(A, B0);
+ if (B1 && B1->getParent() == P)
+ Candidates.emplace_back(A, B1);
+ }
+ // Try to skip A.
+ if (B && A && A->hasOneUse()) {
+ auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
+ auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
+ if (A0 && A0->getParent() == P)
+ Candidates.emplace_back(A0, B);
+ if (A1 && A1->getParent() == P)
+ Candidates.emplace_back(A1, B);
+ }
+
+ if (Candidates.size() == 1)
+ return tryToVectorizePair(Op0, Op1, R);
+
+ // We have multiple options. Try to pick the single best.
+ std::optional<int> BestCandidate = R.findBestRootPair(Candidates);
+ if (!BestCandidate)
+ return false;
+ return tryToVectorizePair(Candidates[*BestCandidate].first,
+ Candidates[*BestCandidate].second, R);
+}
+
+namespace {
+
+/// Model horizontal reductions.
+///
+/// A horizontal reduction is a tree of reduction instructions that has values
+/// that can be put into a vector as its leaves. For example:
+///
+/// mul mul mul mul
+/// \ / \ /
+/// + +
+/// \ /
+/// +
+/// This tree has "mul" as its leaf values and "+" as its reduction
+/// instructions. A reduction can feed into a store or a binary operation
+/// feeding a phi.
+/// ...
+/// \ /
+/// +
+/// |
+/// phi +=
+///
+/// Or:
+/// ...
+/// \ /
+/// +
+/// |
+/// *p =
+///
+class HorizontalReduction {
+ using ReductionOpsType = SmallVector<Value *, 16>;
+ using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
+ ReductionOpsListType ReductionOps;
+ /// List of possibly reduced values.
+ SmallVector<SmallVector<Value *>> ReducedVals;
+ /// Maps reduced value to the corresponding reduction operation.
+ DenseMap<Value *, SmallVector<Instruction *>> ReducedValsToOps;
+ // Use map vector to make stable output.
+ MapVector<Instruction *, Value *> ExtraArgs;
+ WeakTrackingVH ReductionRoot;
+ /// The type of reduction operation.
+ RecurKind RdxKind;
+
+ static bool isCmpSelMinMax(Instruction *I) {
+ return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) &&
+ RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I));
+ }
+
+ // And/or are potentially poison-safe logical patterns like:
+ // select x, y, false
+ // select x, true, y
+ static bool isBoolLogicOp(Instruction *I) {
+ return isa<SelectInst>(I) &&
+ (match(I, m_LogicalAnd()) || match(I, m_LogicalOr()));
+ }
+
+ /// Checks if instruction is associative and can be vectorized.
+ static bool isVectorizable(RecurKind Kind, Instruction *I) {
+ if (Kind == RecurKind::None)
+ return false;
+
+ // Integer ops that map to select instructions or intrinsics are fine.
+ if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) ||
+ isBoolLogicOp(I))
+ return true;
+
+ if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
+ // FP min/max are associative except for NaN and -0.0. We do not
+ // have to rule out -0.0 here because the intrinsic semantics do not
+ // specify a fixed result for it.
+ return I->getFastMathFlags().noNaNs();
+ }
+
+ return I->isAssociative();
+ }
+
+ static Value *getRdxOperand(Instruction *I, unsigned Index) {
+ // Poison-safe 'or' takes the form: select X, true, Y
+ // To make that work with the normal operand processing, we skip the
+ // true value operand.
+ // TODO: Change the code and data structures to handle this without a hack.
+ if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1)
+ return I->getOperand(2);
+ return I->getOperand(Index);
+ }
+
+ /// Creates reduction operation with the current opcode.
+ static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
+ Value *RHS, const Twine &Name, bool UseSelect) {
+ unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
+ switch (Kind) {
+ case RecurKind::Or:
+ if (UseSelect &&
+ LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
+ return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name);
+ return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
+ Name);
+ case RecurKind::And:
+ if (UseSelect &&
+ LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
+ return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name);
+ return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
+ Name);
+ case RecurKind::Add:
+ case RecurKind::Mul:
+ case RecurKind::Xor:
+ case RecurKind::FAdd:
+ case RecurKind::FMul:
+ return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
+ Name);
+ case RecurKind::FMax:
+ return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
+ case RecurKind::FMin:
+ return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
+ case RecurKind::SMax:
+ if (UseSelect) {
+ Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
+ return Builder.CreateSelect(Cmp, LHS, RHS, Name);
+ }
+ return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
+ case RecurKind::SMin:
+ if (UseSelect) {
+ Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
+ return Builder.CreateSelect(Cmp, LHS, RHS, Name);
+ }
+ return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
+ case RecurKind::UMax:
+ if (UseSelect) {
+ Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
+ return Builder.CreateSelect(Cmp, LHS, RHS, Name);
+ }
+ return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
+ case RecurKind::UMin:
+ if (UseSelect) {
+ Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
+ return Builder.CreateSelect(Cmp, LHS, RHS, Name);
+ }
+ return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
+ default:
+ llvm_unreachable("Unknown reduction operation.");
+ }
+ }
+
+ /// Creates reduction operation with the current opcode with the IR flags
+ /// from \p ReductionOps, dropping nuw/nsw flags.
+ static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
+ Value *RHS, const Twine &Name,
+ const ReductionOpsListType &ReductionOps) {
+ bool UseSelect = ReductionOps.size() == 2 ||
+ // Logical or/and.
+ (ReductionOps.size() == 1 &&
+ isa<SelectInst>(ReductionOps.front().front()));
+ assert((!UseSelect || ReductionOps.size() != 2 ||
+ isa<SelectInst>(ReductionOps[1][0])) &&
+ "Expected cmp + select pairs for reduction");
+ Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
+ if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
+ if (auto *Sel = dyn_cast<SelectInst>(Op)) {
+ propagateIRFlags(Sel->getCondition(), ReductionOps[0], nullptr,
+ /*IncludeWrapFlags=*/false);
+ propagateIRFlags(Op, ReductionOps[1], nullptr,
+ /*IncludeWrapFlags=*/false);
+ return Op;
+ }
+ }
+ propagateIRFlags(Op, ReductionOps[0], nullptr, /*IncludeWrapFlags=*/false);
+ return Op;
+ }
+
+ static RecurKind getRdxKind(Value *V) {
+ auto *I = dyn_cast<Instruction>(V);
+ if (!I)
+ return RecurKind::None;
+ if (match(I, m_Add(m_Value(), m_Value())))
+ return RecurKind::Add;
+ if (match(I, m_Mul(m_Value(), m_Value())))
+ return RecurKind::Mul;
+ if (match(I, m_And(m_Value(), m_Value())) ||
+ match(I, m_LogicalAnd(m_Value(), m_Value())))
+ return RecurKind::And;
+ if (match(I, m_Or(m_Value(), m_Value())) ||
+ match(I, m_LogicalOr(m_Value(), m_Value())))
+ return RecurKind::Or;
+ if (match(I, m_Xor(m_Value(), m_Value())))
+ return RecurKind::Xor;
+ if (match(I, m_FAdd(m_Value(), m_Value())))
+ return RecurKind::FAdd;
+ if (match(I, m_FMul(m_Value(), m_Value())))
+ return RecurKind::FMul;
+
+ if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
+ return RecurKind::FMax;
+ if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
+ return RecurKind::FMin;
+
+ // This matches either cmp+select or intrinsics. SLP is expected to handle
+ // either form.
+ // TODO: If we are canonicalizing to intrinsics, we can remove several
+ // special-case paths that deal with selects.
+ if (match(I, m_SMax(m_Value(), m_Value())))
+ return RecurKind::SMax;
+ if (match(I, m_SMin(m_Value(), m_Value())))
+ return RecurKind::SMin;
+ if (match(I, m_UMax(m_Value(), m_Value())))
+ return RecurKind::UMax;
+ if (match(I, m_UMin(m_Value(), m_Value())))
+ return RecurKind::UMin;
+
+ if (auto *Select = dyn_cast<SelectInst>(I)) {
+ // Try harder: look for min/max pattern based on instructions producing
+ // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
+ // During the intermediate stages of SLP, it's very common to have
+ // pattern like this (since optimizeGatherSequence is run only once
+ // at the end):
+ // %1 = extractelement <2 x i32> %a, i32 0
+ // %2 = extractelement <2 x i32> %a, i32 1
+ // %cond = icmp sgt i32 %1, %2
+ // %3 = extractelement <2 x i32> %a, i32 0
+ // %4 = extractelement <2 x i32> %a, i32 1
+ // %select = select i1 %cond, i32 %3, i32 %4
+ CmpInst::Predicate Pred;
+ Instruction *L1;
+ Instruction *L2;
+
+ Value *LHS = Select->getTrueValue();
+ Value *RHS = Select->getFalseValue();
+ Value *Cond = Select->getCondition();
+
+ // TODO: Support inverse predicates.
+ if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
+ if (!isa<ExtractElementInst>(RHS) ||
+ !L2->isIdenticalTo(cast<Instruction>(RHS)))
+ return RecurKind::None;
+ } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
+ if (!isa<ExtractElementInst>(LHS) ||
+ !L1->isIdenticalTo(cast<Instruction>(LHS)))
+ return RecurKind::None;
+ } else {
+ if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
+ return RecurKind::None;
+ if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
+ !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
+ !L2->isIdenticalTo(cast<Instruction>(RHS)))
+ return RecurKind::None;
+ }
+
+ switch (Pred) {
+ default:
+ return RecurKind::None;
+ case CmpInst::ICMP_SGT:
+ case CmpInst::ICMP_SGE:
+ return RecurKind::SMax;
+ case CmpInst::ICMP_SLT:
+ case CmpInst::ICMP_SLE:
+ return RecurKind::SMin;
+ case CmpInst::ICMP_UGT:
+ case CmpInst::ICMP_UGE:
+ return RecurKind::UMax;
+ case CmpInst::ICMP_ULT:
+ case CmpInst::ICMP_ULE:
+ return RecurKind::UMin;
+ }
+ }
+ return RecurKind::None;
+ }
+
+ /// Get the index of the first operand.
+ static unsigned getFirstOperandIndex(Instruction *I) {
+ return isCmpSelMinMax(I) ? 1 : 0;
+ }
+
+ /// Total number of operands in the reduction operation.
+ static unsigned getNumberOfOperands(Instruction *I) {
+ return isCmpSelMinMax(I) ? 3 : 2;
+ }
+
+ /// Checks if the instruction is in basic block \p BB.
+ /// For a cmp+sel min/max reduction check that both ops are in \p BB.
+ static bool hasSameParent(Instruction *I, BasicBlock *BB) {
+ if (isCmpSelMinMax(I) || isBoolLogicOp(I)) {
+ auto *Sel = cast<SelectInst>(I);
+ auto *Cmp = dyn_cast<Instruction>(Sel->getCondition());
+ return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB;
+ }
+ return I->getParent() == BB;
+ }
+
+ /// Expected number of uses for reduction operations/reduced values.
+ static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) {
+ if (IsCmpSelMinMax) {
+ // SelectInst must be used twice while the condition op must have single
+ // use only.
+ if (auto *Sel = dyn_cast<SelectInst>(I))
+ return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
+ return I->hasNUses(2);
+ }
+
+ // Arithmetic reduction operation must be used once only.
+ return I->hasOneUse();
+ }
+
+ /// Initializes the list of reduction operations.
+ void initReductionOps(Instruction *I) {
+ if (isCmpSelMinMax(I))
+ ReductionOps.assign(2, ReductionOpsType());
+ else
+ ReductionOps.assign(1, ReductionOpsType());
+ }
+
+ /// Add all reduction operations for the reduction instruction \p I.
+ void addReductionOps(Instruction *I) {
+ if (isCmpSelMinMax(I)) {
+ ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
+ ReductionOps[1].emplace_back(I);
+ } else {
+ ReductionOps[0].emplace_back(I);
+ }
+ }
+
+ static Value *getLHS(RecurKind Kind, Instruction *I) {
+ if (Kind == RecurKind::None)
+ return nullptr;
+ return I->getOperand(getFirstOperandIndex(I));
+ }
+ static Value *getRHS(RecurKind Kind, Instruction *I) {
+ if (Kind == RecurKind::None)
+ return nullptr;
+ return I->getOperand(getFirstOperandIndex(I) + 1);
+ }
+
+ static bool isGoodForReduction(ArrayRef<Value *> Data) {
+ int Sz = Data.size();
+ auto *I = dyn_cast<Instruction>(Data.front());
+ return Sz > 1 || isConstant(Data.front()) ||
+ (I && !isa<LoadInst>(I) && isValidForAlternation(I->getOpcode()));
+ }
+
+public:
+ HorizontalReduction() = default;
+
+ /// Try to find a reduction tree.
+ bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst,
+ ScalarEvolution &SE, const DataLayout &DL,
+ const TargetLibraryInfo &TLI) {
+ assert((!Phi || is_contained(Phi->operands(), Inst)) &&
+ "Phi needs to use the binary operator");
+ assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) ||
+ isa<IntrinsicInst>(Inst)) &&
+ "Expected binop, select, or intrinsic for reduction matching");
+ RdxKind = getRdxKind(Inst);
+
+ // We could have a initial reductions that is not an add.
+ // r *= v1 + v2 + v3 + v4
+ // In such a case start looking for a tree rooted in the first '+'.
+ if (Phi) {
+ if (getLHS(RdxKind, Inst) == Phi) {
+ Phi = nullptr;
+ Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst));
+ if (!Inst)
+ return false;
+ RdxKind = getRdxKind(Inst);
+ } else if (getRHS(RdxKind, Inst) == Phi) {
+ Phi = nullptr;
+ Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst));
+ if (!Inst)
+ return false;
+ RdxKind = getRdxKind(Inst);
+ }
+ }
+
+ if (!isVectorizable(RdxKind, Inst))
+ return false;
+
+ // Analyze "regular" integer/FP types for reductions - no target-specific
+ // types or pointers.
+ Type *Ty = Inst->getType();
+ if (!isValidElementType(Ty) || Ty->isPointerTy())
+ return false;
+
+ // Though the ultimate reduction may have multiple uses, its condition must
+ // have only single use.
+ if (auto *Sel = dyn_cast<SelectInst>(Inst))
+ if (!Sel->getCondition()->hasOneUse())
+ return false;
+
+ ReductionRoot = Inst;
+
+ // Iterate through all the operands of the possible reduction tree and
+ // gather all the reduced values, sorting them by their value id.
+ BasicBlock *BB = Inst->getParent();
+ bool IsCmpSelMinMax = isCmpSelMinMax(Inst);
+ SmallVector<Instruction *> Worklist(1, Inst);
+ // Checks if the operands of the \p TreeN instruction are also reduction
+ // operations or should be treated as reduced values or an extra argument,
+ // which is not part of the reduction.
+ auto &&CheckOperands = [this, IsCmpSelMinMax,
+ BB](Instruction *TreeN,
+ SmallVectorImpl<Value *> &ExtraArgs,
+ SmallVectorImpl<Value *> &PossibleReducedVals,
+ SmallVectorImpl<Instruction *> &ReductionOps) {
+ for (int I = getFirstOperandIndex(TreeN),
+ End = getNumberOfOperands(TreeN);
+ I < End; ++I) {
+ Value *EdgeVal = getRdxOperand(TreeN, I);
+ ReducedValsToOps[EdgeVal].push_back(TreeN);
+ auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
+ // Edge has wrong parent - mark as an extra argument.
+ if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) &&
+ !hasSameParent(EdgeInst, BB)) {
+ ExtraArgs.push_back(EdgeVal);
+ continue;
+ }
+ // If the edge is not an instruction, or it is different from the main
+ // reduction opcode or has too many uses - possible reduced value.
+ if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind ||
+ IsCmpSelMinMax != isCmpSelMinMax(EdgeInst) ||
+ !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) ||
+ !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) {
+ PossibleReducedVals.push_back(EdgeVal);
+ continue;
+ }
+ ReductionOps.push_back(EdgeInst);
+ }
+ };
+ // Try to regroup reduced values so that it gets more profitable to try to
+ // reduce them. Values are grouped by their value ids, instructions - by
+ // instruction op id and/or alternate op id, plus do extra analysis for
+ // loads (grouping them by the distabce between pointers) and cmp
+ // instructions (grouping them by the predicate).
+ MapVector<size_t, MapVector<size_t, MapVector<Value *, unsigned>>>
+ PossibleReducedVals;
+ initReductionOps(Inst);
+ DenseMap<Value *, SmallVector<LoadInst *>> LoadsMap;
+ SmallSet<size_t, 2> LoadKeyUsed;
+ SmallPtrSet<Value *, 4> DoNotReverseVals;
+ while (!Worklist.empty()) {
+ Instruction *TreeN = Worklist.pop_back_val();
+ SmallVector<Value *> Args;
+ SmallVector<Value *> PossibleRedVals;
+ SmallVector<Instruction *> PossibleReductionOps;
+ CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps);
+ // If too many extra args - mark the instruction itself as a reduction
+ // value, not a reduction operation.
+ if (Args.size() < 2) {
+ addReductionOps(TreeN);
+ // Add extra args.
+ if (!Args.empty()) {
+ assert(Args.size() == 1 && "Expected only single argument.");
+ ExtraArgs[TreeN] = Args.front();
+ }
+ // Add reduction values. The values are sorted for better vectorization
+ // results.
+ for (Value *V : PossibleRedVals) {
+ size_t Key, Idx;
+ std::tie(Key, Idx) = generateKeySubkey(
+ V, &TLI,
+ [&](size_t Key, LoadInst *LI) {
+ Value *Ptr = getUnderlyingObject(LI->getPointerOperand());
+ if (LoadKeyUsed.contains(Key)) {
+ auto LIt = LoadsMap.find(Ptr);
+ if (LIt != LoadsMap.end()) {
+ for (LoadInst *RLI: LIt->second) {
+ if (getPointersDiff(
+ RLI->getType(), RLI->getPointerOperand(),
+ LI->getType(), LI->getPointerOperand(), DL, SE,
+ /*StrictCheck=*/true))
+ return hash_value(RLI->getPointerOperand());
+ }
+ for (LoadInst *RLI : LIt->second) {
+ if (arePointersCompatible(RLI->getPointerOperand(),
+ LI->getPointerOperand(), TLI)) {
+ hash_code SubKey = hash_value(RLI->getPointerOperand());
+ DoNotReverseVals.insert(RLI);
+ return SubKey;
+ }
+ }
+ if (LIt->second.size() > 2) {
+ hash_code SubKey =
+ hash_value(LIt->second.back()->getPointerOperand());
+ DoNotReverseVals.insert(LIt->second.back());
+ return SubKey;
+ }
+ }
+ }
+ LoadKeyUsed.insert(Key);
+ LoadsMap.try_emplace(Ptr).first->second.push_back(LI);
+ return hash_value(LI->getPointerOperand());
+ },
+ /*AllowAlternate=*/false);
+ ++PossibleReducedVals[Key][Idx]
+ .insert(std::make_pair(V, 0))
+ .first->second;
+ }
+ Worklist.append(PossibleReductionOps.rbegin(),
+ PossibleReductionOps.rend());
+ } else {
+ size_t Key, Idx;
+ std::tie(Key, Idx) = generateKeySubkey(
+ TreeN, &TLI,
+ [&](size_t Key, LoadInst *LI) {
+ Value *Ptr = getUnderlyingObject(LI->getPointerOperand());
+ if (LoadKeyUsed.contains(Key)) {
+ auto LIt = LoadsMap.find(Ptr);
+ if (LIt != LoadsMap.end()) {
+ for (LoadInst *RLI: LIt->second) {
+ if (getPointersDiff(RLI->getType(),
+ RLI->getPointerOperand(), LI->getType(),
+ LI->getPointerOperand(), DL, SE,
+ /*StrictCheck=*/true))
+ return hash_value(RLI->getPointerOperand());
+ }
+ for (LoadInst *RLI : LIt->second) {
+ if (arePointersCompatible(RLI->getPointerOperand(),
+ LI->getPointerOperand(), TLI)) {
+ hash_code SubKey = hash_value(RLI->getPointerOperand());
+ DoNotReverseVals.insert(RLI);
+ return SubKey;
+ }
+ }
+ if (LIt->second.size() > 2) {
+ hash_code SubKey = hash_value(LIt->second.back()->getPointerOperand());
+ DoNotReverseVals.insert(LIt->second.back());
+ return SubKey;
+ }
+ }
+ }
+ LoadKeyUsed.insert(Key);
+ LoadsMap.try_emplace(Ptr).first->second.push_back(LI);
+ return hash_value(LI->getPointerOperand());
+ },
+ /*AllowAlternate=*/false);
+ ++PossibleReducedVals[Key][Idx]
+ .insert(std::make_pair(TreeN, 0))
+ .first->second;
+ }
+ }
+ auto PossibleReducedValsVect = PossibleReducedVals.takeVector();
+ // Sort values by the total number of values kinds to start the reduction
+ // from the longest possible reduced values sequences.
+ for (auto &PossibleReducedVals : PossibleReducedValsVect) {
+ auto PossibleRedVals = PossibleReducedVals.second.takeVector();
+ SmallVector<SmallVector<Value *>> PossibleRedValsVect;
+ for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end();
+ It != E; ++It) {
+ PossibleRedValsVect.emplace_back();
+ auto RedValsVect = It->second.takeVector();
+ stable_sort(RedValsVect, llvm::less_second());
+ for (const std::pair<Value *, unsigned> &Data : RedValsVect)
+ PossibleRedValsVect.back().append(Data.second, Data.first);
+ }
+ stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) {
+ return P1.size() > P2.size();
+ });
+ int NewIdx = -1;
+ for (ArrayRef<Value *> Data : PossibleRedValsVect) {
+ if (isGoodForReduction(Data) ||
+ (isa<LoadInst>(Data.front()) && NewIdx >= 0 &&
+ isa<LoadInst>(ReducedVals[NewIdx].front()) &&
+ getUnderlyingObject(
+ cast<LoadInst>(Data.front())->getPointerOperand()) ==
+ getUnderlyingObject(cast<LoadInst>(ReducedVals[NewIdx].front())
+ ->getPointerOperand()))) {
+ if (NewIdx < 0) {
+ NewIdx = ReducedVals.size();
+ ReducedVals.emplace_back();
+ }
+ if (DoNotReverseVals.contains(Data.front()))
+ ReducedVals[NewIdx].append(Data.begin(), Data.end());
+ else
+ ReducedVals[NewIdx].append(Data.rbegin(), Data.rend());
+ } else {
+ ReducedVals.emplace_back().append(Data.rbegin(), Data.rend());
+ }
+ }
+ }
+ // Sort the reduced values by number of same/alternate opcode and/or pointer
+ // operand.
+ stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) {
+ return P1.size() > P2.size();
+ });
+ return true;
+ }
+
+ /// Attempt to vectorize the tree found by matchAssociativeReduction.
+ Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI,
+ const TargetLibraryInfo &TLI) {
+ constexpr int ReductionLimit = 4;
+ constexpr unsigned RegMaxNumber = 4;
+ constexpr unsigned RedValsMaxNumber = 128;
+ // If there are a sufficient number of reduction values, reduce
+ // to a nearby power-of-2. We can safely generate oversized
+ // vectors and rely on the backend to split them to legal sizes.
+ size_t NumReducedVals =
+ std::accumulate(ReducedVals.begin(), ReducedVals.end(), 0,
+ [](size_t Num, ArrayRef<Value *> Vals) {
+ if (!isGoodForReduction(Vals))
+ return Num;
+ return Num + Vals.size();
+ });
+ if (NumReducedVals < ReductionLimit) {
+ for (ReductionOpsType &RdxOps : ReductionOps)
+ for (Value *RdxOp : RdxOps)
+ V.analyzedReductionRoot(cast<Instruction>(RdxOp));
+ return nullptr;
+ }
+
+ IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
+
+ // Track the reduced values in case if they are replaced by extractelement
+ // because of the vectorization.
+ DenseMap<Value *, WeakTrackingVH> TrackedVals(
+ ReducedVals.size() * ReducedVals.front().size() + ExtraArgs.size());
+ BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
+ ExternallyUsedValues.reserve(ExtraArgs.size() + 1);
+ // The same extra argument may be used several times, so log each attempt
+ // to use it.
+ for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
+ assert(Pair.first && "DebugLoc must be set.");
+ ExternallyUsedValues[Pair.second].push_back(Pair.first);
+ TrackedVals.try_emplace(Pair.second, Pair.second);
+ }
+
+ // The compare instruction of a min/max is the insertion point for new
+ // instructions and may be replaced with a new compare instruction.
+ auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
+ assert(isa<SelectInst>(RdxRootInst) &&
+ "Expected min/max reduction to have select root instruction");
+ Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
+ assert(isa<Instruction>(ScalarCond) &&
+ "Expected min/max reduction to have compare condition");
+ return cast<Instruction>(ScalarCond);
+ };
+
+ // The reduction root is used as the insertion point for new instructions,
+ // so set it as externally used to prevent it from being deleted.
+ ExternallyUsedValues[ReductionRoot];
+ SmallDenseSet<Value *> IgnoreList(ReductionOps.size() *
+ ReductionOps.front().size());
+ for (ReductionOpsType &RdxOps : ReductionOps)
+ for (Value *RdxOp : RdxOps) {
+ if (!RdxOp)
+ continue;
+ IgnoreList.insert(RdxOp);
+ }
+ bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot));
+
+ // Need to track reduced vals, they may be changed during vectorization of
+ // subvectors.
+ for (ArrayRef<Value *> Candidates : ReducedVals)
+ for (Value *V : Candidates)
+ TrackedVals.try_emplace(V, V);
+
+ DenseMap<Value *, unsigned> VectorizedVals(ReducedVals.size());
+ // List of the values that were reduced in other trees as part of gather
+ // nodes and thus requiring extract if fully vectorized in other trees.
+ SmallPtrSet<Value *, 4> RequiredExtract;
+ Value *VectorizedTree = nullptr;
+ bool CheckForReusedReductionOps = false;
+ // Try to vectorize elements based on their type.
+ for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) {
+ ArrayRef<Value *> OrigReducedVals = ReducedVals[I];
+ InstructionsState S = getSameOpcode(OrigReducedVals, TLI);
+ SmallVector<Value *> Candidates;
+ Candidates.reserve(2 * OrigReducedVals.size());
+ DenseMap<Value *, Value *> TrackedToOrig(2 * OrigReducedVals.size());
+ for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) {
+ Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second;
+ // Check if the reduction value was not overriden by the extractelement
+ // instruction because of the vectorization and exclude it, if it is not
+ // compatible with other values.
+ if (auto *Inst = dyn_cast<Instruction>(RdxVal))
+ if (isVectorLikeInstWithConstOps(Inst) &&
+ (!S.getOpcode() || !S.isOpcodeOrAlt(Inst)))
+ continue;
+ Candidates.push_back(RdxVal);
+ TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]);
+ }
+ bool ShuffledExtracts = false;
+ // Try to handle shuffled extractelements.
+ if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() &&
+ I + 1 < E) {
+ InstructionsState NextS = getSameOpcode(ReducedVals[I + 1], TLI);
+ if (NextS.getOpcode() == Instruction::ExtractElement &&
+ !NextS.isAltShuffle()) {
+ SmallVector<Value *> CommonCandidates(Candidates);
+ for (Value *RV : ReducedVals[I + 1]) {
+ Value *RdxVal = TrackedVals.find(RV)->second;
+ // Check if the reduction value was not overriden by the
+ // extractelement instruction because of the vectorization and
+ // exclude it, if it is not compatible with other values.
+ if (auto *Inst = dyn_cast<Instruction>(RdxVal))
+ if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst))
+ continue;
+ CommonCandidates.push_back(RdxVal);
+ TrackedToOrig.try_emplace(RdxVal, RV);
+ }
+ SmallVector<int> Mask;
+ if (isFixedVectorShuffle(CommonCandidates, Mask)) {
+ ++I;
+ Candidates.swap(CommonCandidates);
+ ShuffledExtracts = true;
+ }
+ }
+ }
+ unsigned NumReducedVals = Candidates.size();
+ if (NumReducedVals < ReductionLimit)
+ continue;
+
+ unsigned MaxVecRegSize = V.getMaxVecRegSize();
+ unsigned EltSize = V.getVectorElementSize(Candidates[0]);
+ unsigned MaxElts = RegMaxNumber * PowerOf2Floor(MaxVecRegSize / EltSize);
+
+ unsigned ReduxWidth = std::min<unsigned>(
+ PowerOf2Floor(NumReducedVals), std::max(RedValsMaxNumber, MaxElts));
+ unsigned Start = 0;
+ unsigned Pos = Start;
+ // Restarts vectorization attempt with lower vector factor.
+ unsigned PrevReduxWidth = ReduxWidth;
+ bool CheckForReusedReductionOpsLocal = false;
+ auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals,
+ &CheckForReusedReductionOpsLocal,
+ &PrevReduxWidth, &V,
+ &IgnoreList](bool IgnoreVL = false) {
+ bool IsAnyRedOpGathered = !IgnoreVL && V.isAnyGathered(IgnoreList);
+ if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) {
+ // Check if any of the reduction ops are gathered. If so, worth
+ // trying again with less number of reduction ops.
+ CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered;
+ }
+ ++Pos;
+ if (Pos < NumReducedVals - ReduxWidth + 1)
+ return IsAnyRedOpGathered;
+ Pos = Start;
+ ReduxWidth /= 2;
+ return IsAnyRedOpGathered;
+ };
+ while (Pos < NumReducedVals - ReduxWidth + 1 &&
+ ReduxWidth >= ReductionLimit) {
+ // Dependency in tree of the reduction ops - drop this attempt, try
+ // later.
+ if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth &&
+ Start == 0) {
+ CheckForReusedReductionOps = true;
+ break;
+ }
+ PrevReduxWidth = ReduxWidth;
+ ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth);
+ // Beeing analyzed already - skip.
+ if (V.areAnalyzedReductionVals(VL)) {
+ (void)AdjustReducedVals(/*IgnoreVL=*/true);
+ continue;
+ }
+ // Early exit if any of the reduction values were deleted during
+ // previous vectorization attempts.
+ if (any_of(VL, [&V](Value *RedVal) {
+ auto *RedValI = dyn_cast<Instruction>(RedVal);
+ if (!RedValI)
+ return false;
+ return V.isDeleted(RedValI);
+ }))
+ break;
+ V.buildTree(VL, IgnoreList);
+ if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) {
+ if (!AdjustReducedVals())
+ V.analyzedReductionVals(VL);
+ continue;
+ }
+ if (V.isLoadCombineReductionCandidate(RdxKind)) {
+ if (!AdjustReducedVals())
+ V.analyzedReductionVals(VL);
+ continue;
+ }
+ V.reorderTopToBottom();
+ // No need to reorder the root node at all.
+ V.reorderBottomToTop(/*IgnoreReorder=*/true);
+ // Keep extracted other reduction values, if they are used in the
+ // vectorization trees.
+ BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues(
+ ExternallyUsedValues);
+ for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) {
+ if (Cnt == I || (ShuffledExtracts && Cnt == I - 1))
+ continue;
+ for_each(ReducedVals[Cnt],
+ [&LocalExternallyUsedValues, &TrackedVals](Value *V) {
+ if (isa<Instruction>(V))
+ LocalExternallyUsedValues[TrackedVals[V]];
+ });
+ }
+ // Number of uses of the candidates in the vector of values.
+ SmallDenseMap<Value *, unsigned> NumUses(Candidates.size());
+ for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) {
+ Value *V = Candidates[Cnt];
+ ++NumUses.try_emplace(V, 0).first->getSecond();
+ }
+ for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) {
+ Value *V = Candidates[Cnt];
+ ++NumUses.try_emplace(V, 0).first->getSecond();
+ }
+ SmallPtrSet<Value *, 4> VLScalars(VL.begin(), VL.end());
+ // Gather externally used values.
+ SmallPtrSet<Value *, 4> Visited;
+ for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) {
+ Value *RdxVal = Candidates[Cnt];
+ if (!Visited.insert(RdxVal).second)
+ continue;
+ // Check if the scalar was vectorized as part of the vectorization
+ // tree but not the top node.
+ if (!VLScalars.contains(RdxVal) && V.isVectorized(RdxVal)) {
+ LocalExternallyUsedValues[RdxVal];
+ continue;
+ }
+ unsigned NumOps = VectorizedVals.lookup(RdxVal) + NumUses[RdxVal];
+ if (NumOps != ReducedValsToOps.find(RdxVal)->second.size())
+ LocalExternallyUsedValues[RdxVal];
+ }
+ for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) {
+ Value *RdxVal = Candidates[Cnt];
+ if (!Visited.insert(RdxVal).second)
+ continue;
+ // Check if the scalar was vectorized as part of the vectorization
+ // tree but not the top node.
+ if (!VLScalars.contains(RdxVal) && V.isVectorized(RdxVal)) {
+ LocalExternallyUsedValues[RdxVal];
+ continue;
+ }
+ unsigned NumOps = VectorizedVals.lookup(RdxVal) + NumUses[RdxVal];
+ if (NumOps != ReducedValsToOps.find(RdxVal)->second.size())
+ LocalExternallyUsedValues[RdxVal];
+ }
+ for (Value *RdxVal : VL)
+ if (RequiredExtract.contains(RdxVal))
+ LocalExternallyUsedValues[RdxVal];
+ V.buildExternalUses(LocalExternallyUsedValues);
+
+ V.computeMinimumValueSizes();
+
+ // Intersect the fast-math-flags from all reduction operations.
+ FastMathFlags RdxFMF;
+ RdxFMF.set();
+ for (Value *U : IgnoreList)
+ if (auto *FPMO = dyn_cast<FPMathOperator>(U))
+ RdxFMF &= FPMO->getFastMathFlags();
+ // Estimate cost.
+ InstructionCost TreeCost = V.getTreeCost(VL);
+ InstructionCost ReductionCost =
+ getReductionCost(TTI, VL, ReduxWidth, RdxFMF);
+ if (V.isVectorizedFirstNode() && isa<LoadInst>(VL.front())) {
+ Instruction *MainOp = V.getFirstNodeMainOp();
+ for (Value *V : VL) {
+ auto *VI = dyn_cast<LoadInst>(V);
+ // Add the costs of scalar GEP pointers, to be removed from the
+ // code.
+ if (!VI || VI == MainOp)
+ continue;
+ auto *Ptr = dyn_cast<GetElementPtrInst>(VI->getPointerOperand());
+ if (!Ptr || !Ptr->hasOneUse() || Ptr->hasAllConstantIndices())
+ continue;
+ TreeCost -= TTI->getArithmeticInstrCost(
+ Instruction::Add, Ptr->getType(), TTI::TCK_RecipThroughput);
+ }
+ }
+ InstructionCost Cost = TreeCost + ReductionCost;
+ LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for reduction\n");
+ if (!Cost.isValid())
+ return nullptr;
+ if (Cost >= -SLPCostThreshold) {
+ V.getORE()->emit([&]() {
+ return OptimizationRemarkMissed(
+ SV_NAME, "HorSLPNotBeneficial",
+ ReducedValsToOps.find(VL[0])->second.front())
+ << "Vectorizing horizontal reduction is possible "
+ << "but not beneficial with cost " << ore::NV("Cost", Cost)
+ << " and threshold "
+ << ore::NV("Threshold", -SLPCostThreshold);
+ });
+ if (!AdjustReducedVals())
+ V.analyzedReductionVals(VL);
+ continue;
+ }
+
+ LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
+ << Cost << ". (HorRdx)\n");
+ V.getORE()->emit([&]() {
+ return OptimizationRemark(
+ SV_NAME, "VectorizedHorizontalReduction",
+ ReducedValsToOps.find(VL[0])->second.front())
+ << "Vectorized horizontal reduction with cost "
+ << ore::NV("Cost", Cost) << " and with tree size "
+ << ore::NV("TreeSize", V.getTreeSize());
+ });
+
+ Builder.setFastMathFlags(RdxFMF);
+
+ // Emit a reduction. If the root is a select (min/max idiom), the insert
+ // point is the compare condition of that select.
+ Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
+ Instruction *InsertPt = RdxRootInst;
+ if (IsCmpSelMinMax)
+ InsertPt = GetCmpForMinMaxReduction(RdxRootInst);
+
+ // Vectorize a tree.
+ Value *VectorizedRoot =
+ V.vectorizeTree(LocalExternallyUsedValues, InsertPt);
+
+ Builder.SetInsertPoint(InsertPt);
+
+ // To prevent poison from leaking across what used to be sequential,
+ // safe, scalar boolean logic operations, the reduction operand must be
+ // frozen.
+ if (isBoolLogicOp(RdxRootInst))
+ VectorizedRoot = Builder.CreateFreeze(VectorizedRoot);
+
+ Value *ReducedSubTree =
+ emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
+
+ if (!VectorizedTree) {
+ // Initialize the final value in the reduction.
+ VectorizedTree = ReducedSubTree;
+ } else {
+ // Update the final value in the reduction.
+ Builder.SetCurrentDebugLocation(
+ cast<Instruction>(ReductionOps.front().front())->getDebugLoc());
+ VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
+ ReducedSubTree, "op.rdx", ReductionOps);
+ }
+ // Count vectorized reduced values to exclude them from final reduction.
+ for (Value *RdxVal : VL) {
+ ++VectorizedVals.try_emplace(TrackedToOrig.find(RdxVal)->second, 0)
+ .first->getSecond();
+ if (!V.isVectorized(RdxVal))
+ RequiredExtract.insert(RdxVal);
+ }
+ Pos += ReduxWidth;
+ Start = Pos;
+ ReduxWidth = PowerOf2Floor(NumReducedVals - Pos);
+ }
+ }
+ if (VectorizedTree) {
+ // Reorder operands of bool logical op in the natural order to avoid
+ // possible problem with poison propagation. If not possible to reorder
+ // (both operands are originally RHS), emit an extra freeze instruction
+ // for the LHS operand.
+ //I.e., if we have original code like this:
+ // RedOp1 = select i1 ?, i1 LHS, i1 false
+ // RedOp2 = select i1 RHS, i1 ?, i1 false
+
+ // Then, we swap LHS/RHS to create a new op that matches the poison
+ // semantics of the original code.
+
+ // If we have original code like this and both values could be poison:
+ // RedOp1 = select i1 ?, i1 LHS, i1 false
+ // RedOp2 = select i1 ?, i1 RHS, i1 false
+
+ // Then, we must freeze LHS in the new op.
+ auto &&FixBoolLogicalOps =
+ [&Builder, VectorizedTree](Value *&LHS, Value *&RHS,
+ Instruction *RedOp1, Instruction *RedOp2) {
+ if (!isBoolLogicOp(RedOp1))
+ return;
+ if (LHS == VectorizedTree || getRdxOperand(RedOp1, 0) == LHS ||
+ isGuaranteedNotToBePoison(LHS))
+ return;
+ if (!isBoolLogicOp(RedOp2))
+ return;
+ if (RHS == VectorizedTree || getRdxOperand(RedOp2, 0) == RHS ||
+ isGuaranteedNotToBePoison(RHS)) {
+ std::swap(LHS, RHS);
+ return;
+ }
+ LHS = Builder.CreateFreeze(LHS);
+ };
+ // Finish the reduction.
+ // Need to add extra arguments and not vectorized possible reduction
+ // values.
+ // Try to avoid dependencies between the scalar remainders after
+ // reductions.
+ auto &&FinalGen =
+ [this, &Builder, &TrackedVals, &FixBoolLogicalOps](
+ ArrayRef<std::pair<Instruction *, Value *>> InstVals) {
+ unsigned Sz = InstVals.size();
+ SmallVector<std::pair<Instruction *, Value *>> ExtraReds(Sz / 2 +
+ Sz % 2);
+ for (unsigned I = 0, E = (Sz / 2) * 2; I < E; I += 2) {
+ Instruction *RedOp = InstVals[I + 1].first;
+ Builder.SetCurrentDebugLocation(RedOp->getDebugLoc());
+ Value *RdxVal1 = InstVals[I].second;
+ Value *StableRdxVal1 = RdxVal1;
+ auto It1 = TrackedVals.find(RdxVal1);
+ if (It1 != TrackedVals.end())
+ StableRdxVal1 = It1->second;
+ Value *RdxVal2 = InstVals[I + 1].second;
+ Value *StableRdxVal2 = RdxVal2;
+ auto It2 = TrackedVals.find(RdxVal2);
+ if (It2 != TrackedVals.end())
+ StableRdxVal2 = It2->second;
+ // To prevent poison from leaking across what used to be
+ // sequential, safe, scalar boolean logic operations, the
+ // reduction operand must be frozen.
+ FixBoolLogicalOps(StableRdxVal1, StableRdxVal2, InstVals[I].first,
+ RedOp);
+ Value *ExtraRed = createOp(Builder, RdxKind, StableRdxVal1,
+ StableRdxVal2, "op.rdx", ReductionOps);
+ ExtraReds[I / 2] = std::make_pair(InstVals[I].first, ExtraRed);
+ }
+ if (Sz % 2 == 1)
+ ExtraReds[Sz / 2] = InstVals.back();
+ return ExtraReds;
+ };
+ SmallVector<std::pair<Instruction *, Value *>> ExtraReductions;
+ ExtraReductions.emplace_back(cast<Instruction>(ReductionRoot),
+ VectorizedTree);
+ SmallPtrSet<Value *, 8> Visited;
+ for (ArrayRef<Value *> Candidates : ReducedVals) {
+ for (Value *RdxVal : Candidates) {
+ if (!Visited.insert(RdxVal).second)
+ continue;
+ unsigned NumOps = VectorizedVals.lookup(RdxVal);
+ for (Instruction *RedOp :
+ ArrayRef(ReducedValsToOps.find(RdxVal)->second)
+ .drop_back(NumOps))
+ ExtraReductions.emplace_back(RedOp, RdxVal);
+ }
+ }
+ for (auto &Pair : ExternallyUsedValues) {
+ // Add each externally used value to the final reduction.
+ for (auto *I : Pair.second)
+ ExtraReductions.emplace_back(I, Pair.first);
+ }
+ // Iterate through all not-vectorized reduction values/extra arguments.
+ while (ExtraReductions.size() > 1) {
+ VectorizedTree = ExtraReductions.front().second;
+ SmallVector<std::pair<Instruction *, Value *>> NewReds =
+ FinalGen(ExtraReductions);
+ ExtraReductions.swap(NewReds);
+ }
+ VectorizedTree = ExtraReductions.front().second;
+
+ ReductionRoot->replaceAllUsesWith(VectorizedTree);
+
+ // The original scalar reduction is expected to have no remaining
+ // uses outside the reduction tree itself. Assert that we got this
+ // correct, replace internal uses with undef, and mark for eventual
+ // deletion.
+#ifndef NDEBUG
+ SmallSet<Value *, 4> IgnoreSet;
+ for (ArrayRef<Value *> RdxOps : ReductionOps)
+ IgnoreSet.insert(RdxOps.begin(), RdxOps.end());
+#endif
+ for (ArrayRef<Value *> RdxOps : ReductionOps) {
+ for (Value *Ignore : RdxOps) {
+ if (!Ignore)
+ continue;
+#ifndef NDEBUG
+ for (auto *U : Ignore->users()) {
+ assert(IgnoreSet.count(U) &&
+ "All users must be either in the reduction ops list.");
+ }
+#endif
+ if (!Ignore->use_empty()) {
+ Value *Undef = UndefValue::get(Ignore->getType());
+ Ignore->replaceAllUsesWith(Undef);
+ }
+ V.eraseInstruction(cast<Instruction>(Ignore));
+ }
+ }
+ } else if (!CheckForReusedReductionOps) {
+ for (ReductionOpsType &RdxOps : ReductionOps)
+ for (Value *RdxOp : RdxOps)
+ V.analyzedReductionRoot(cast<Instruction>(RdxOp));
+ }
+ return VectorizedTree;
+ }
+
+private:
+ /// Calculate the cost of a reduction.
+ InstructionCost getReductionCost(TargetTransformInfo *TTI,
+ ArrayRef<Value *> ReducedVals,
+ unsigned ReduxWidth, FastMathFlags FMF) {
+ TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
+ Value *FirstReducedVal = ReducedVals.front();
+ Type *ScalarTy = FirstReducedVal->getType();
+ FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
+ InstructionCost VectorCost = 0, ScalarCost;
+ // If all of the reduced values are constant, the vector cost is 0, since
+ // the reduction value can be calculated at the compile time.
+ bool AllConsts = all_of(ReducedVals, isConstant);
+ switch (RdxKind) {
+ case RecurKind::Add:
+ case RecurKind::Mul:
+ case RecurKind::Or:
+ case RecurKind::And:
+ case RecurKind::Xor:
+ case RecurKind::FAdd:
+ case RecurKind::FMul: {
+ unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
+ if (!AllConsts)
+ VectorCost =
+ TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind);
+ ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind);
+ break;
+ }
+ case RecurKind::FMax:
+ case RecurKind::FMin: {
+ auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
+ if (!AllConsts) {
+ auto *VecCondTy =
+ cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
+ VectorCost =
+ TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
+ /*IsUnsigned=*/false, CostKind);
+ }
+ CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
+ ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy,
+ SclCondTy, RdxPred, CostKind) +
+ TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
+ SclCondTy, RdxPred, CostKind);
+ break;
+ }
+ case RecurKind::SMax:
+ case RecurKind::SMin:
+ case RecurKind::UMax:
+ case RecurKind::UMin: {
+ auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
+ if (!AllConsts) {
+ auto *VecCondTy =
+ cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
+ bool IsUnsigned =
+ RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
+ VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
+ IsUnsigned, CostKind);
+ }
+ CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
+ ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
+ SclCondTy, RdxPred, CostKind) +
+ TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
+ SclCondTy, RdxPred, CostKind);
+ break;
+ }
+ default:
+ llvm_unreachable("Expected arithmetic or min/max reduction operation");
+ }
+
+ // Scalar cost is repeated for N-1 elements.
+ ScalarCost *= (ReduxWidth - 1);
+ LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
+ << " for reduction that starts with " << *FirstReducedVal
+ << " (It is a splitting reduction)\n");
+ return VectorCost - ScalarCost;
+ }
+
+ /// Emit a horizontal reduction of the vectorized value.
+ Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
+ unsigned ReduxWidth, const TargetTransformInfo *TTI) {
+ assert(VectorizedValue && "Need to have a vectorized tree node");
+ assert(isPowerOf2_32(ReduxWidth) &&
+ "We only handle power-of-two reductions for now");
+ assert(RdxKind != RecurKind::FMulAdd &&
+ "A call to the llvm.fmuladd intrinsic is not handled yet");
+
+ ++NumVectorInstructions;
+ return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind);
+ }
+};
+
+} // end anonymous namespace
+
+static std::optional<unsigned> getAggregateSize(Instruction *InsertInst) {
+ if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
+ return cast<FixedVectorType>(IE->getType())->getNumElements();
+
+ unsigned AggregateSize = 1;
+ auto *IV = cast<InsertValueInst>(InsertInst);
+ Type *CurrentType = IV->getType();
+ do {
+ if (auto *ST = dyn_cast<StructType>(CurrentType)) {
+ for (auto *Elt : ST->elements())
+ if (Elt != ST->getElementType(0)) // check homogeneity
+ return std::nullopt;
+ AggregateSize *= ST->getNumElements();
+ CurrentType = ST->getElementType(0);
+ } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
+ AggregateSize *= AT->getNumElements();
+ CurrentType = AT->getElementType();
+ } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
+ AggregateSize *= VT->getNumElements();
+ return AggregateSize;
+ } else if (CurrentType->isSingleValueType()) {
+ return AggregateSize;
+ } else {
+ return std::nullopt;
+ }
+ } while (true);
+}
+
+static void findBuildAggregate_rec(Instruction *LastInsertInst,
+ TargetTransformInfo *TTI,
+ SmallVectorImpl<Value *> &BuildVectorOpds,
+ SmallVectorImpl<Value *> &InsertElts,
+ unsigned OperandOffset) {
+ do {
+ Value *InsertedOperand = LastInsertInst->getOperand(1);
+ std::optional<unsigned> OperandIndex =
+ getInsertIndex(LastInsertInst, OperandOffset);
+ if (!OperandIndex)
+ return;
+ if (isa<InsertElementInst, InsertValueInst>(InsertedOperand)) {
+ findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
+ BuildVectorOpds, InsertElts, *OperandIndex);
+
+ } else {
+ BuildVectorOpds[*OperandIndex] = InsertedOperand;
+ InsertElts[*OperandIndex] = LastInsertInst;
+ }
+ LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
+ } while (LastInsertInst != nullptr &&
+ isa<InsertValueInst, InsertElementInst>(LastInsertInst) &&
+ LastInsertInst->hasOneUse());
+}
+
+/// Recognize construction of vectors like
+/// %ra = insertelement <4 x float> poison, float %s0, i32 0
+/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
+/// %rc = insertelement <4 x float> %rb, float %s2, i32 2
+/// %rd = insertelement <4 x float> %rc, float %s3, i32 3
+/// starting from the last insertelement or insertvalue instruction.
+///
+/// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
+/// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
+/// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
+///
+/// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
+///
+/// \return true if it matches.
+static bool findBuildAggregate(Instruction *LastInsertInst,
+ TargetTransformInfo *TTI,
+ SmallVectorImpl<Value *> &BuildVectorOpds,
+ SmallVectorImpl<Value *> &InsertElts) {
+
+ assert((isa<InsertElementInst>(LastInsertInst) ||
+ isa<InsertValueInst>(LastInsertInst)) &&
+ "Expected insertelement or insertvalue instruction!");
+
+ assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
+ "Expected empty result vectors!");
+
+ std::optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
+ if (!AggregateSize)
+ return false;
+ BuildVectorOpds.resize(*AggregateSize);
+ InsertElts.resize(*AggregateSize);
+
+ findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0);
+ llvm::erase_value(BuildVectorOpds, nullptr);
+ llvm::erase_value(InsertElts, nullptr);
+ if (BuildVectorOpds.size() >= 2)
+ return true;
+
+ return false;
+}
+
+/// Try and get a reduction value from a phi node.
+///
+/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
+/// if they come from either \p ParentBB or a containing loop latch.
+///
+/// \returns A candidate reduction value if possible, or \code nullptr \endcode
+/// if not possible.
+static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
+ BasicBlock *ParentBB, LoopInfo *LI) {
+ // There are situations where the reduction value is not dominated by the
+ // reduction phi. Vectorizing such cases has been reported to cause
+ // miscompiles. See PR25787.
+ auto DominatedReduxValue = [&](Value *R) {
+ return isa<Instruction>(R) &&
+ DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
+ };
+
+ Value *Rdx = nullptr;
+
+ // Return the incoming value if it comes from the same BB as the phi node.
+ if (P->getIncomingBlock(0) == ParentBB) {
+ Rdx = P->getIncomingValue(0);
+ } else if (P->getIncomingBlock(1) == ParentBB) {
+ Rdx = P->getIncomingValue(1);
+ }
+
+ if (Rdx && DominatedReduxValue(Rdx))
+ return Rdx;
+
+ // Otherwise, check whether we have a loop latch to look at.
+ Loop *BBL = LI->getLoopFor(ParentBB);
+ if (!BBL)
+ return nullptr;
+ BasicBlock *BBLatch = BBL->getLoopLatch();
+ if (!BBLatch)
+ return nullptr;
+
+ // There is a loop latch, return the incoming value if it comes from
+ // that. This reduction pattern occasionally turns up.
+ if (P->getIncomingBlock(0) == BBLatch) {
+ Rdx = P->getIncomingValue(0);
+ } else if (P->getIncomingBlock(1) == BBLatch) {
+ Rdx = P->getIncomingValue(1);
+ }
+
+ if (Rdx && DominatedReduxValue(Rdx))
+ return Rdx;
+
+ return nullptr;
+}
+
+static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
+ if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
+ return true;
+ if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
+ return true;
+ if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
+ return true;
+ if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
+ return true;
+ if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
+ return true;
+ if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
+ return true;
+ if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
+ return true;
+ return false;
+}
+
+bool SLPVectorizerPass::vectorizeHorReduction(
+ PHINode *P, Value *V, BasicBlock *BB, BoUpSLP &R, TargetTransformInfo *TTI,
+ SmallVectorImpl<WeakTrackingVH> &PostponedInsts) {
+ if (!ShouldVectorizeHor)
+ return false;
+
+ auto *Root = dyn_cast_or_null<Instruction>(V);
+ if (!Root)
+ return false;
+
+ if (!isa<BinaryOperator>(Root))
+ P = nullptr;
+
+ if (Root->getParent() != BB || isa<PHINode>(Root))
+ return false;
+ // Start analysis starting from Root instruction. If horizontal reduction is
+ // found, try to vectorize it. If it is not a horizontal reduction or
+ // vectorization is not possible or not effective, and currently analyzed
+ // instruction is a binary operation, try to vectorize the operands, using
+ // pre-order DFS traversal order. If the operands were not vectorized, repeat
+ // the same procedure considering each operand as a possible root of the
+ // horizontal reduction.
+ // Interrupt the process if the Root instruction itself was vectorized or all
+ // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
+ // If a horizintal reduction was not matched or vectorized we collect
+ // instructions for possible later attempts for vectorization.
+ std::queue<std::pair<Instruction *, unsigned>> Stack;
+ Stack.emplace(Root, 0);
+ SmallPtrSet<Value *, 8> VisitedInstrs;
+ bool Res = false;
+ auto &&TryToReduce = [this, TTI, &P, &R](Instruction *Inst, Value *&B0,
+ Value *&B1) -> Value * {
+ if (R.isAnalyzedReductionRoot(Inst))
+ return nullptr;
+ bool IsBinop = matchRdxBop(Inst, B0, B1);
+ bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
+ if (IsBinop || IsSelect) {
+ HorizontalReduction HorRdx;
+ if (HorRdx.matchAssociativeReduction(P, Inst, *SE, *DL, *TLI))
+ return HorRdx.tryToReduce(R, TTI, *TLI);
+ }
+ return nullptr;
+ };
+ while (!Stack.empty()) {
+ Instruction *Inst;
+ unsigned Level;
+ std::tie(Inst, Level) = Stack.front();
+ Stack.pop();
+ // Do not try to analyze instruction that has already been vectorized.
+ // This may happen when we vectorize instruction operands on a previous
+ // iteration while stack was populated before that happened.
+ if (R.isDeleted(Inst))
+ continue;
+ Value *B0 = nullptr, *B1 = nullptr;
+ if (Value *V = TryToReduce(Inst, B0, B1)) {
+ Res = true;
+ // Set P to nullptr to avoid re-analysis of phi node in
+ // matchAssociativeReduction function unless this is the root node.
+ P = nullptr;
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ // Try to find another reduction.
+ Stack.emplace(I, Level);
+ continue;
+ }
+ } else {
+ bool IsBinop = B0 && B1;
+ if (P && IsBinop) {
+ Inst = dyn_cast<Instruction>(B0);
+ if (Inst == P)
+ Inst = dyn_cast<Instruction>(B1);
+ if (!Inst) {
+ // Set P to nullptr to avoid re-analysis of phi node in
+ // matchAssociativeReduction function unless this is the root node.
+ P = nullptr;
+ continue;
+ }
+ }
+ // Set P to nullptr to avoid re-analysis of phi node in
+ // matchAssociativeReduction function unless this is the root node.
+ P = nullptr;
+ // Do not collect CmpInst or InsertElementInst/InsertValueInst as their
+ // analysis is done separately.
+ if (!isa<CmpInst, InsertElementInst, InsertValueInst>(Inst))
+ PostponedInsts.push_back(Inst);
+ }
+
+ // Try to vectorize operands.
+ // Continue analysis for the instruction from the same basic block only to
+ // save compile time.
+ if (++Level < RecursionMaxDepth)
+ for (auto *Op : Inst->operand_values())
+ if (VisitedInstrs.insert(Op).second)
+ if (auto *I = dyn_cast<Instruction>(Op))
+ // Do not try to vectorize CmpInst operands, this is done
+ // separately.
+ if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) &&
+ !R.isDeleted(I) && I->getParent() == BB)
+ Stack.emplace(I, Level);
+ }
+ return Res;
+}
+
+bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
+ BasicBlock *BB, BoUpSLP &R,
+ TargetTransformInfo *TTI) {
+ SmallVector<WeakTrackingVH> PostponedInsts;
+ bool Res = vectorizeHorReduction(P, V, BB, R, TTI, PostponedInsts);
+ Res |= tryToVectorize(PostponedInsts, R);
+ return Res;
+}
+
+bool SLPVectorizerPass::tryToVectorize(ArrayRef<WeakTrackingVH> Insts,
+ BoUpSLP &R) {
+ bool Res = false;
+ for (Value *V : Insts)
+ if (auto *Inst = dyn_cast<Instruction>(V); Inst && !R.isDeleted(Inst))
+ Res |= tryToVectorize(Inst, R);
+ return Res;
+}
+
+bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
+ BasicBlock *BB, BoUpSLP &R) {
+ const DataLayout &DL = BB->getModule()->getDataLayout();
+ if (!R.canMapToVector(IVI->getType(), DL))
+ return false;
+
+ SmallVector<Value *, 16> BuildVectorOpds;
+ SmallVector<Value *, 16> BuildVectorInsts;
+ if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
+ // Aggregate value is unlikely to be processed in vector register.
+ return tryToVectorizeList(BuildVectorOpds, R);
+}
+
+bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
+ BasicBlock *BB, BoUpSLP &R) {
+ SmallVector<Value *, 16> BuildVectorInsts;
+ SmallVector<Value *, 16> BuildVectorOpds;
+ SmallVector<int> Mask;
+ if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
+ (llvm::all_of(
+ BuildVectorOpds,
+ [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) &&
+ isFixedVectorShuffle(BuildVectorOpds, Mask)))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n");
+ return tryToVectorizeList(BuildVectorInsts, R);
+}
+
+template <typename T>
+static bool
+tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming,
+ function_ref<unsigned(T *)> Limit,
+ function_ref<bool(T *, T *)> Comparator,
+ function_ref<bool(T *, T *)> AreCompatible,
+ function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper,
+ bool LimitForRegisterSize) {
+ bool Changed = false;
+ // Sort by type, parent, operands.
+ stable_sort(Incoming, Comparator);
+
+ // Try to vectorize elements base on their type.
+ SmallVector<T *> Candidates;
+ for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) {
+ // Look for the next elements with the same type, parent and operand
+ // kinds.
+ auto *SameTypeIt = IncIt;
+ while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt))
+ ++SameTypeIt;
+
+ // Try to vectorize them.
+ unsigned NumElts = (SameTypeIt - IncIt);
+ LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes ("
+ << NumElts << ")\n");
+ // The vectorization is a 3-state attempt:
+ // 1. Try to vectorize instructions with the same/alternate opcodes with the
+ // size of maximal register at first.
+ // 2. Try to vectorize remaining instructions with the same type, if
+ // possible. This may result in the better vectorization results rather than
+ // if we try just to vectorize instructions with the same/alternate opcodes.
+ // 3. Final attempt to try to vectorize all instructions with the
+ // same/alternate ops only, this may result in some extra final
+ // vectorization.
+ if (NumElts > 1 &&
+ TryToVectorizeHelper(ArrayRef(IncIt, NumElts), LimitForRegisterSize)) {
+ // Success start over because instructions might have been changed.
+ Changed = true;
+ } else if (NumElts < Limit(*IncIt) &&
+ (Candidates.empty() ||
+ Candidates.front()->getType() == (*IncIt)->getType())) {
+ Candidates.append(IncIt, std::next(IncIt, NumElts));
+ }
+ // Final attempt to vectorize instructions with the same types.
+ if (Candidates.size() > 1 &&
+ (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) {
+ if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) {
+ // Success start over because instructions might have been changed.
+ Changed = true;
+ } else if (LimitForRegisterSize) {
+ // Try to vectorize using small vectors.
+ for (auto *It = Candidates.begin(), *End = Candidates.end();
+ It != End;) {
+ auto *SameTypeIt = It;
+ while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It))
+ ++SameTypeIt;
+ unsigned NumElts = (SameTypeIt - It);
+ if (NumElts > 1 &&
+ TryToVectorizeHelper(ArrayRef(It, NumElts),
+ /*LimitForRegisterSize=*/false))
+ Changed = true;
+ It = SameTypeIt;
+ }
+ }
+ Candidates.clear();
+ }
+
+ // Start over at the next instruction of a different type (or the end).
+ IncIt = SameTypeIt;
+ }
+ return Changed;
+}
+
+/// Compare two cmp instructions. If IsCompatibility is true, function returns
+/// true if 2 cmps have same/swapped predicates and mos compatible corresponding
+/// operands. If IsCompatibility is false, function implements strict weak
+/// ordering relation between two cmp instructions, returning true if the first
+/// instruction is "less" than the second, i.e. its predicate is less than the
+/// predicate of the second or the operands IDs are less than the operands IDs
+/// of the second cmp instruction.
+template <bool IsCompatibility>
+static bool compareCmp(Value *V, Value *V2, TargetLibraryInfo &TLI,
+ function_ref<bool(Instruction *)> IsDeleted) {
+ auto *CI1 = cast<CmpInst>(V);
+ auto *CI2 = cast<CmpInst>(V2);
+ if (IsDeleted(CI2) || !isValidElementType(CI2->getType()))
+ return false;
+ if (CI1->getOperand(0)->getType()->getTypeID() <
+ CI2->getOperand(0)->getType()->getTypeID())
+ return !IsCompatibility;
+ if (CI1->getOperand(0)->getType()->getTypeID() >
+ CI2->getOperand(0)->getType()->getTypeID())
+ return false;
+ CmpInst::Predicate Pred1 = CI1->getPredicate();
+ CmpInst::Predicate Pred2 = CI2->getPredicate();
+ CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1);
+ CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2);
+ CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1);
+ CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2);
+ if (BasePred1 < BasePred2)
+ return !IsCompatibility;
+ if (BasePred1 > BasePred2)
+ return false;
+ // Compare operands.
+ bool LEPreds = Pred1 <= Pred2;
+ bool GEPreds = Pred1 >= Pred2;
+ for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) {
+ auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1);
+ auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1);
+ if (Op1->getValueID() < Op2->getValueID())
+ return !IsCompatibility;
+ if (Op1->getValueID() > Op2->getValueID())
+ return false;
+ if (auto *I1 = dyn_cast<Instruction>(Op1))
+ if (auto *I2 = dyn_cast<Instruction>(Op2)) {
+ if (I1->getParent() != I2->getParent())
+ return false;
+ InstructionsState S = getSameOpcode({I1, I2}, TLI);
+ if (S.getOpcode())
+ continue;
+ return false;
+ }
+ }
+ return IsCompatibility;
+}
+
+bool SLPVectorizerPass::vectorizeSimpleInstructions(InstSetVector &Instructions,
+ BasicBlock *BB, BoUpSLP &R,
+ bool AtTerminator) {
+ bool OpsChanged = false;
+ SmallVector<Instruction *, 4> PostponedCmps;
+ SmallVector<WeakTrackingVH> PostponedInsts;
+ // pass1 - try to vectorize reductions only
+ for (auto *I : reverse(Instructions)) {
+ if (R.isDeleted(I))
+ continue;
+ if (isa<CmpInst>(I)) {
+ PostponedCmps.push_back(I);
+ continue;
+ }
+ OpsChanged |= vectorizeHorReduction(nullptr, I, BB, R, TTI, PostponedInsts);
+ }
+ // pass2 - try to match and vectorize a buildvector sequence.
+ for (auto *I : reverse(Instructions)) {
+ if (R.isDeleted(I) || isa<CmpInst>(I))
+ continue;
+ if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) {
+ OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
+ } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) {
+ OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
+ }
+ }
+ // Now try to vectorize postponed instructions.
+ OpsChanged |= tryToVectorize(PostponedInsts, R);
+
+ if (AtTerminator) {
+ // Try to find reductions first.
+ for (Instruction *I : PostponedCmps) {
+ if (R.isDeleted(I))
+ continue;
+ for (Value *Op : I->operands())
+ OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
+ }
+ // Try to vectorize operands as vector bundles.
+ for (Instruction *I : PostponedCmps) {
+ if (R.isDeleted(I))
+ continue;
+ OpsChanged |= tryToVectorize(I, R);
+ }
+ // Try to vectorize list of compares.
+ // Sort by type, compare predicate, etc.
+ auto CompareSorter = [&](Value *V, Value *V2) {
+ return compareCmp<false>(V, V2, *TLI,
+ [&R](Instruction *I) { return R.isDeleted(I); });
+ };
+
+ auto AreCompatibleCompares = [&](Value *V1, Value *V2) {
+ if (V1 == V2)
+ return true;
+ return compareCmp<true>(V1, V2, *TLI,
+ [&R](Instruction *I) { return R.isDeleted(I); });
+ };
+ auto Limit = [&R](Value *V) {
+ unsigned EltSize = R.getVectorElementSize(V);
+ return std::max(2U, R.getMaxVecRegSize() / EltSize);
+ };
+
+ SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end());
+ OpsChanged |= tryToVectorizeSequence<Value>(
+ Vals, Limit, CompareSorter, AreCompatibleCompares,
+ [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
+ // Exclude possible reductions from other blocks.
+ bool ArePossiblyReducedInOtherBlock =
+ any_of(Candidates, [](Value *V) {
+ return any_of(V->users(), [V](User *U) {
+ return isa<SelectInst>(U) &&
+ cast<SelectInst>(U)->getParent() !=
+ cast<Instruction>(V)->getParent();
+ });
+ });
+ if (ArePossiblyReducedInOtherBlock)
+ return false;
+ return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
+ },
+ /*LimitForRegisterSize=*/true);
+ Instructions.clear();
+ } else {
+ Instructions.clear();
+ // Insert in reverse order since the PostponedCmps vector was filled in
+ // reverse order.
+ Instructions.insert(PostponedCmps.rbegin(), PostponedCmps.rend());
+ }
+ return OpsChanged;
+}
+
+bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
+ bool Changed = false;
+ SmallVector<Value *, 4> Incoming;
+ SmallPtrSet<Value *, 16> VisitedInstrs;
+ // Maps phi nodes to the non-phi nodes found in the use tree for each phi
+ // node. Allows better to identify the chains that can be vectorized in the
+ // better way.
+ DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes;
+ auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) {
+ assert(isValidElementType(V1->getType()) &&
+ isValidElementType(V2->getType()) &&
+ "Expected vectorizable types only.");
+ // It is fine to compare type IDs here, since we expect only vectorizable
+ // types, like ints, floats and pointers, we don't care about other type.
+ if (V1->getType()->getTypeID() < V2->getType()->getTypeID())
+ return true;
+ if (V1->getType()->getTypeID() > V2->getType()->getTypeID())
+ return false;
+ ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
+ ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
+ if (Opcodes1.size() < Opcodes2.size())
+ return true;
+ if (Opcodes1.size() > Opcodes2.size())
+ return false;
+ std::optional<bool> ConstOrder;
+ for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
+ // Undefs are compatible with any other value.
+ if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) {
+ if (!ConstOrder)
+ ConstOrder =
+ !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]);
+ continue;
+ }
+ if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
+ if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
+ DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent());
+ DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent());
+ if (!NodeI1)
+ return NodeI2 != nullptr;
+ if (!NodeI2)
+ return false;
+ assert((NodeI1 == NodeI2) ==
+ (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
+ "Different nodes should have different DFS numbers");
+ if (NodeI1 != NodeI2)
+ return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
+ InstructionsState S = getSameOpcode({I1, I2}, *TLI);
+ if (S.getOpcode())
+ continue;
+ return I1->getOpcode() < I2->getOpcode();
+ }
+ if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) {
+ if (!ConstOrder)
+ ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID();
+ continue;
+ }
+ if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID())
+ return true;
+ if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID())
+ return false;
+ }
+ return ConstOrder && *ConstOrder;
+ };
+ auto AreCompatiblePHIs = [&PHIToOpcodes, this](Value *V1, Value *V2) {
+ if (V1 == V2)
+ return true;
+ if (V1->getType() != V2->getType())
+ return false;
+ ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
+ ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
+ if (Opcodes1.size() != Opcodes2.size())
+ return false;
+ for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
+ // Undefs are compatible with any other value.
+ if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
+ continue;
+ if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
+ if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
+ if (I1->getParent() != I2->getParent())
+ return false;
+ InstructionsState S = getSameOpcode({I1, I2}, *TLI);
+ if (S.getOpcode())
+ continue;
+ return false;
+ }
+ if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
+ continue;
+ if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID())
+ return false;
+ }
+ return true;
+ };
+ auto Limit = [&R](Value *V) {
+ unsigned EltSize = R.getVectorElementSize(V);
+ return std::max(2U, R.getMaxVecRegSize() / EltSize);
+ };
+
+ bool HaveVectorizedPhiNodes = false;
+ do {
+ // Collect the incoming values from the PHIs.
+ Incoming.clear();
+ for (Instruction &I : *BB) {
+ PHINode *P = dyn_cast<PHINode>(&I);
+ if (!P)
+ break;
+
+ // No need to analyze deleted, vectorized and non-vectorizable
+ // instructions.
+ if (!VisitedInstrs.count(P) && !R.isDeleted(P) &&
+ isValidElementType(P->getType()))
+ Incoming.push_back(P);
+ }
+
+ // Find the corresponding non-phi nodes for better matching when trying to
+ // build the tree.
+ for (Value *V : Incoming) {
+ SmallVectorImpl<Value *> &Opcodes =
+ PHIToOpcodes.try_emplace(V).first->getSecond();
+ if (!Opcodes.empty())
+ continue;
+ SmallVector<Value *, 4> Nodes(1, V);
+ SmallPtrSet<Value *, 4> Visited;
+ while (!Nodes.empty()) {
+ auto *PHI = cast<PHINode>(Nodes.pop_back_val());
+ if (!Visited.insert(PHI).second)
+ continue;
+ for (Value *V : PHI->incoming_values()) {
+ if (auto *PHI1 = dyn_cast<PHINode>((V))) {
+ Nodes.push_back(PHI1);
+ continue;
+ }
+ Opcodes.emplace_back(V);
+ }
+ }
+ }
+
+ HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>(
+ Incoming, Limit, PHICompare, AreCompatiblePHIs,
+ [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
+ return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
+ },
+ /*LimitForRegisterSize=*/true);
+ Changed |= HaveVectorizedPhiNodes;
+ VisitedInstrs.insert(Incoming.begin(), Incoming.end());
+ } while (HaveVectorizedPhiNodes);
+
+ VisitedInstrs.clear();
+
+ InstSetVector PostProcessInstructions;
+ SmallDenseSet<Instruction *, 4> KeyNodes;
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ // Skip instructions with scalable type. The num of elements is unknown at
+ // compile-time for scalable type.
+ if (isa<ScalableVectorType>(it->getType()))
+ continue;
+
+ // Skip instructions marked for the deletion.
+ if (R.isDeleted(&*it))
+ continue;
+ // We may go through BB multiple times so skip the one we have checked.
+ if (!VisitedInstrs.insert(&*it).second) {
+ if (it->use_empty() && KeyNodes.contains(&*it) &&
+ vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
+ it->isTerminator())) {
+ // We would like to start over since some instructions are deleted
+ // and the iterator may become invalid value.
+ Changed = true;
+ it = BB->begin();
+ e = BB->end();
+ }
+ continue;
+ }
+
+ if (isa<DbgInfoIntrinsic>(it))
+ continue;
+
+ // Try to vectorize reductions that use PHINodes.
+ if (PHINode *P = dyn_cast<PHINode>(it)) {
+ // Check that the PHI is a reduction PHI.
+ if (P->getNumIncomingValues() == 2) {
+ // Try to match and vectorize a horizontal reduction.
+ if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
+ TTI)) {
+ Changed = true;
+ it = BB->begin();
+ e = BB->end();
+ continue;
+ }
+ }
+ // Try to vectorize the incoming values of the PHI, to catch reductions
+ // that feed into PHIs.
+ for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
+ // Skip if the incoming block is the current BB for now. Also, bypass
+ // unreachable IR for efficiency and to avoid crashing.
+ // TODO: Collect the skipped incoming values and try to vectorize them
+ // after processing BB.
+ if (BB == P->getIncomingBlock(I) ||
+ !DT->isReachableFromEntry(P->getIncomingBlock(I)))
+ continue;
+
+ // Postponed instructions should not be vectorized here, delay their
+ // vectorization.
+ if (auto *PI = dyn_cast<Instruction>(P->getIncomingValue(I));
+ PI && !PostProcessInstructions.contains(PI))
+ Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
+ P->getIncomingBlock(I), R, TTI);
+ }
+ continue;
+ }
+
+ // Ran into an instruction without users, like terminator, or function call
+ // with ignored return value, store. Ignore unused instructions (basing on
+ // instruction type, except for CallInst and InvokeInst).
+ if (it->use_empty() &&
+ (it->getType()->isVoidTy() || isa<CallInst, InvokeInst>(it))) {
+ KeyNodes.insert(&*it);
+ bool OpsChanged = false;
+ auto *SI = dyn_cast<StoreInst>(it);
+ bool TryToVectorizeRoot = ShouldStartVectorizeHorAtStore || !SI;
+ if (SI) {
+ auto I = Stores.find(getUnderlyingObject(SI->getPointerOperand()));
+ // Try to vectorize chain in store, if this is the only store to the
+ // address in the block.
+ // TODO: This is just a temporarily solution to save compile time. Need
+ // to investigate if we can safely turn on slp-vectorize-hor-store
+ // instead to allow lookup for reduction chains in all non-vectorized
+ // stores (need to check side effects and compile time).
+ TryToVectorizeRoot = (I == Stores.end() || I->second.size() == 1) &&
+ SI->getValueOperand()->hasOneUse();
+ }
+ if (TryToVectorizeRoot) {
+ for (auto *V : it->operand_values()) {
+ // Postponed instructions should not be vectorized here, delay their
+ // vectorization.
+ if (auto *VI = dyn_cast<Instruction>(V);
+ VI && !PostProcessInstructions.contains(VI))
+ // Try to match and vectorize a horizontal reduction.
+ OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
+ }
+ }
+ // Start vectorization of post-process list of instructions from the
+ // top-tree instructions to try to vectorize as many instructions as
+ // possible.
+ OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
+ it->isTerminator());
+ if (OpsChanged) {
+ // We would like to start over since some instructions are deleted
+ // and the iterator may become invalid value.
+ Changed = true;
+ it = BB->begin();
+ e = BB->end();
+ continue;
+ }
+ }
+
+ if (isa<CmpInst, InsertElementInst, InsertValueInst>(it))
+ PostProcessInstructions.insert(&*it);
+ }
+
+ return Changed;
+}
+
+bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
+ auto Changed = false;
+ for (auto &Entry : GEPs) {
+ // If the getelementptr list has fewer than two elements, there's nothing
+ // to do.
+ if (Entry.second.size() < 2)
+ continue;
+
+ LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
+ << Entry.second.size() << ".\n");
+
+ // Process the GEP list in chunks suitable for the target's supported
+ // vector size. If a vector register can't hold 1 element, we are done. We
+ // are trying to vectorize the index computations, so the maximum number of
+ // elements is based on the size of the index expression, rather than the
+ // size of the GEP itself (the target's pointer size).
+ unsigned MaxVecRegSize = R.getMaxVecRegSize();
+ unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
+ if (MaxVecRegSize < EltSize)
+ continue;
+
+ unsigned MaxElts = MaxVecRegSize / EltSize;
+ for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
+ auto Len = std::min<unsigned>(BE - BI, MaxElts);
+ ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
+
+ // Initialize a set a candidate getelementptrs. Note that we use a
+ // SetVector here to preserve program order. If the index computations
+ // are vectorizable and begin with loads, we want to minimize the chance
+ // of having to reorder them later.
+ SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
+
+ // Some of the candidates may have already been vectorized after we
+ // initially collected them. If so, they are marked as deleted, so remove
+ // them from the set of candidates.
+ Candidates.remove_if(
+ [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
+
+ // Remove from the set of candidates all pairs of getelementptrs with
+ // constant differences. Such getelementptrs are likely not good
+ // candidates for vectorization in a bottom-up phase since one can be
+ // computed from the other. We also ensure all candidate getelementptr
+ // indices are unique.
+ for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
+ auto *GEPI = GEPList[I];
+ if (!Candidates.count(GEPI))
+ continue;
+ auto *SCEVI = SE->getSCEV(GEPList[I]);
+ for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
+ auto *GEPJ = GEPList[J];
+ auto *SCEVJ = SE->getSCEV(GEPList[J]);
+ if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
+ Candidates.remove(GEPI);
+ Candidates.remove(GEPJ);
+ } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
+ Candidates.remove(GEPJ);
+ }
+ }
+ }
+
+ // We break out of the above computation as soon as we know there are
+ // fewer than two candidates remaining.
+ if (Candidates.size() < 2)
+ continue;
+
+ // Add the single, non-constant index of each candidate to the bundle. We
+ // ensured the indices met these constraints when we originally collected
+ // the getelementptrs.
+ SmallVector<Value *, 16> Bundle(Candidates.size());
+ auto BundleIndex = 0u;
+ for (auto *V : Candidates) {
+ auto *GEP = cast<GetElementPtrInst>(V);
+ auto *GEPIdx = GEP->idx_begin()->get();
+ assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
+ Bundle[BundleIndex++] = GEPIdx;
+ }
+
+ // Try and vectorize the indices. We are currently only interested in
+ // gather-like cases of the form:
+ //
+ // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
+ //
+ // where the loads of "a", the loads of "b", and the subtractions can be
+ // performed in parallel. It's likely that detecting this pattern in a
+ // bottom-up phase will be simpler and less costly than building a
+ // full-blown top-down phase beginning at the consecutive loads.
+ Changed |= tryToVectorizeList(Bundle, R);
+ }
+ }
+ return Changed;
+}
+
+bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
+ bool Changed = false;
+ // Sort by type, base pointers and values operand. Value operands must be
+ // compatible (have the same opcode, same parent), otherwise it is
+ // definitely not profitable to try to vectorize them.
+ auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) {
+ if (V->getPointerOperandType()->getTypeID() <
+ V2->getPointerOperandType()->getTypeID())
+ return true;
+ if (V->getPointerOperandType()->getTypeID() >
+ V2->getPointerOperandType()->getTypeID())
+ return false;
+ // UndefValues are compatible with all other values.
+ if (isa<UndefValue>(V->getValueOperand()) ||
+ isa<UndefValue>(V2->getValueOperand()))
+ return false;
+ if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand()))
+ if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
+ DomTreeNodeBase<llvm::BasicBlock> *NodeI1 =
+ DT->getNode(I1->getParent());
+ DomTreeNodeBase<llvm::BasicBlock> *NodeI2 =
+ DT->getNode(I2->getParent());
+ assert(NodeI1 && "Should only process reachable instructions");
+ assert(NodeI2 && "Should only process reachable instructions");
+ assert((NodeI1 == NodeI2) ==
+ (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
+ "Different nodes should have different DFS numbers");
+ if (NodeI1 != NodeI2)
+ return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
+ InstructionsState S = getSameOpcode({I1, I2}, *TLI);
+ if (S.getOpcode())
+ return false;
+ return I1->getOpcode() < I2->getOpcode();
+ }
+ if (isa<Constant>(V->getValueOperand()) &&
+ isa<Constant>(V2->getValueOperand()))
+ return false;
+ return V->getValueOperand()->getValueID() <
+ V2->getValueOperand()->getValueID();
+ };
+
+ auto &&AreCompatibleStores = [this](StoreInst *V1, StoreInst *V2) {
+ if (V1 == V2)
+ return true;
+ if (V1->getPointerOperandType() != V2->getPointerOperandType())
+ return false;
+ // Undefs are compatible with any other value.
+ if (isa<UndefValue>(V1->getValueOperand()) ||
+ isa<UndefValue>(V2->getValueOperand()))
+ return true;
+ if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand()))
+ if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
+ if (I1->getParent() != I2->getParent())
+ return false;
+ InstructionsState S = getSameOpcode({I1, I2}, *TLI);
+ return S.getOpcode() > 0;
+ }
+ if (isa<Constant>(V1->getValueOperand()) &&
+ isa<Constant>(V2->getValueOperand()))
+ return true;
+ return V1->getValueOperand()->getValueID() ==
+ V2->getValueOperand()->getValueID();
+ };
+ auto Limit = [&R, this](StoreInst *SI) {
+ unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
+ return R.getMinVF(EltSize);
+ };
+
+ // Attempt to sort and vectorize each of the store-groups.
+ for (auto &Pair : Stores) {
+ if (Pair.second.size() < 2)
+ continue;
+
+ LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
+ << Pair.second.size() << ".\n");
+
+ if (!isValidElementType(Pair.second.front()->getValueOperand()->getType()))
+ continue;
+
+ Changed |= tryToVectorizeSequence<StoreInst>(
+ Pair.second, Limit, StoreSorter, AreCompatibleStores,
+ [this, &R](ArrayRef<StoreInst *> Candidates, bool) {
+ return vectorizeStores(Candidates, R);
+ },
+ /*LimitForRegisterSize=*/false);
+ }
+ return Changed;
+}
+
+char SLPVectorizer::ID = 0;
+
+static const char lv_name[] = "SLP Vectorizer";
+
+INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
+INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
+INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
+
+Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }