diff options
author | vvvv <vvvv@ydb.tech> | 2024-02-06 20:01:22 +0300 |
---|---|---|
committer | vvvv <vvvv@ydb.tech> | 2024-02-06 20:22:16 +0300 |
commit | 0203b7a9a40828bb2bd4c32029b79ff0ea3d1f8f (patch) | |
tree | e630d0d5bd0bd29fc8c2d2842ed2cfde781b993a /contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorize.cpp | |
parent | ba27db76d99d12a4f1c06960b5449423218614c4 (diff) | |
download | ydb-0203b7a9a40828bb2bd4c32029b79ff0ea3d1f8f.tar.gz |
llvm16 targets
Diffstat (limited to 'contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorize.cpp')
-rw-r--r-- | contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorize.cpp | 10711 |
1 files changed, 10711 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorize.cpp b/contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorize.cpp new file mode 100644 index 00000000000..148f2c545b4 --- /dev/null +++ b/contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorize.cpp @@ -0,0 +1,10711 @@ +//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops +// and generates target-independent LLVM-IR. +// The vectorizer uses the TargetTransformInfo analysis to estimate the costs +// of instructions in order to estimate the profitability of vectorization. +// +// The loop vectorizer combines consecutive loop iterations into a single +// 'wide' iteration. After this transformation the index is incremented +// by the SIMD vector width, and not by one. +// +// This pass has three parts: +// 1. The main loop pass that drives the different parts. +// 2. LoopVectorizationLegality - A unit that checks for the legality +// of the vectorization. +// 3. InnerLoopVectorizer - A unit that performs the actual +// widening of instructions. +// 4. LoopVectorizationCostModel - A unit that checks for the profitability +// of vectorization. It decides on the optimal vector width, which +// can be one, if vectorization is not profitable. +// +// There is a development effort going on to migrate loop vectorizer to the +// VPlan infrastructure and to introduce outer loop vectorization support (see +// docs/Proposal/VectorizationPlan.rst and +// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this +// purpose, we temporarily introduced the VPlan-native vectorization path: an +// alternative vectorization path that is natively implemented on top of the +// VPlan infrastructure. See EnableVPlanNativePath for enabling. +// +//===----------------------------------------------------------------------===// +// +// The reduction-variable vectorization is based on the paper: +// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. +// +// Variable uniformity checks are inspired by: +// Karrenberg, R. and Hack, S. Whole Function Vectorization. +// +// The interleaved access vectorization is based on the paper: +// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved +// Data for SIMD +// +// Other ideas/concepts are from: +// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. +// +// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of +// Vectorizing Compilers. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Vectorize/LoopVectorize.h" +#include "LoopVectorizationPlanner.h" +#include "VPRecipeBuilder.h" +#include "VPlan.h" +#include "VPlanHCFGBuilder.h" +#include "VPlanTransforms.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseMapInfo.h" +#include "llvm/ADT/Hashing.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Twine.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/BasicAliasAnalysis.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/CodeMetrics.h" +#include "llvm/Analysis/DemandedBits.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/LoopAccessAnalysis.h" +#include "llvm/Analysis/LoopAnalysisManager.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopIterator.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/ProfileSummaryInfo.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/IR/Verifier.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/InstructionCost.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/InjectTLIMappings.h" +#include "llvm/Transforms/Utils/LoopSimplify.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +#include "llvm/Transforms/Utils/LoopVersioning.h" +#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" +#include "llvm/Transforms/Utils/SizeOpts.h" +#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" +#include <algorithm> +#include <cassert> +#include <cmath> +#include <cstdint> +#include <functional> +#include <iterator> +#include <limits> +#include <map> +#include <memory> +#include <string> +#include <tuple> +#include <utility> + +using namespace llvm; + +#define LV_NAME "loop-vectorize" +#define DEBUG_TYPE LV_NAME + +#ifndef NDEBUG +const char VerboseDebug[] = DEBUG_TYPE "-verbose"; +#endif + +/// @{ +/// Metadata attribute names +const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; +const char LLVMLoopVectorizeFollowupVectorized[] = + "llvm.loop.vectorize.followup_vectorized"; +const char LLVMLoopVectorizeFollowupEpilogue[] = + "llvm.loop.vectorize.followup_epilogue"; +/// @} + +STATISTIC(LoopsVectorized, "Number of loops vectorized"); +STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); +STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); + +static cl::opt<bool> EnableEpilogueVectorization( + "enable-epilogue-vectorization", cl::init(true), cl::Hidden, + cl::desc("Enable vectorization of epilogue loops.")); + +static cl::opt<unsigned> EpilogueVectorizationForceVF( + "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, + cl::desc("When epilogue vectorization is enabled, and a value greater than " + "1 is specified, forces the given VF for all applicable epilogue " + "loops.")); + +static cl::opt<unsigned> EpilogueVectorizationMinVF( + "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, + cl::desc("Only loops with vectorization factor equal to or larger than " + "the specified value are considered for epilogue vectorization.")); + +/// Loops with a known constant trip count below this number are vectorized only +/// if no scalar iteration overheads are incurred. +static cl::opt<unsigned> TinyTripCountVectorThreshold( + "vectorizer-min-trip-count", cl::init(16), cl::Hidden, + cl::desc("Loops with a constant trip count that is smaller than this " + "value are vectorized only if no scalar iteration overheads " + "are incurred.")); + +static cl::opt<unsigned> VectorizeMemoryCheckThreshold( + "vectorize-memory-check-threshold", cl::init(128), cl::Hidden, + cl::desc("The maximum allowed number of runtime memory checks")); + +// Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, +// that predication is preferred, and this lists all options. I.e., the +// vectorizer will try to fold the tail-loop (epilogue) into the vector body +// and predicate the instructions accordingly. If tail-folding fails, there are +// different fallback strategies depending on these values: +namespace PreferPredicateTy { + enum Option { + ScalarEpilogue = 0, + PredicateElseScalarEpilogue, + PredicateOrDontVectorize + }; +} // namespace PreferPredicateTy + +static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( + "prefer-predicate-over-epilogue", + cl::init(PreferPredicateTy::ScalarEpilogue), + cl::Hidden, + cl::desc("Tail-folding and predication preferences over creating a scalar " + "epilogue loop."), + cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, + "scalar-epilogue", + "Don't tail-predicate loops, create scalar epilogue"), + clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, + "predicate-else-scalar-epilogue", + "prefer tail-folding, create scalar epilogue if tail " + "folding fails."), + clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, + "predicate-dont-vectorize", + "prefers tail-folding, don't attempt vectorization if " + "tail-folding fails."))); + +static cl::opt<bool> MaximizeBandwidth( + "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, + cl::desc("Maximize bandwidth when selecting vectorization factor which " + "will be determined by the smallest type in loop.")); + +static cl::opt<bool> EnableInterleavedMemAccesses( + "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, + cl::desc("Enable vectorization on interleaved memory accesses in a loop")); + +/// An interleave-group may need masking if it resides in a block that needs +/// predication, or in order to mask away gaps. +static cl::opt<bool> EnableMaskedInterleavedMemAccesses( + "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, + cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); + +static cl::opt<unsigned> TinyTripCountInterleaveThreshold( + "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, + cl::desc("We don't interleave loops with a estimated constant trip count " + "below this number")); + +static cl::opt<unsigned> ForceTargetNumScalarRegs( + "force-target-num-scalar-regs", cl::init(0), cl::Hidden, + cl::desc("A flag that overrides the target's number of scalar registers.")); + +static cl::opt<unsigned> ForceTargetNumVectorRegs( + "force-target-num-vector-regs", cl::init(0), cl::Hidden, + cl::desc("A flag that overrides the target's number of vector registers.")); + +static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( + "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, + cl::desc("A flag that overrides the target's max interleave factor for " + "scalar loops.")); + +static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( + "force-target-max-vector-interleave", cl::init(0), cl::Hidden, + cl::desc("A flag that overrides the target's max interleave factor for " + "vectorized loops.")); + +static cl::opt<unsigned> ForceTargetInstructionCost( + "force-target-instruction-cost", cl::init(0), cl::Hidden, + cl::desc("A flag that overrides the target's expected cost for " + "an instruction to a single constant value. Mostly " + "useful for getting consistent testing.")); + +static cl::opt<bool> ForceTargetSupportsScalableVectors( + "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, + cl::desc( + "Pretend that scalable vectors are supported, even if the target does " + "not support them. This flag should only be used for testing.")); + +static cl::opt<unsigned> SmallLoopCost( + "small-loop-cost", cl::init(20), cl::Hidden, + cl::desc( + "The cost of a loop that is considered 'small' by the interleaver.")); + +static cl::opt<bool> LoopVectorizeWithBlockFrequency( + "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, + cl::desc("Enable the use of the block frequency analysis to access PGO " + "heuristics minimizing code growth in cold regions and being more " + "aggressive in hot regions.")); + +// Runtime interleave loops for load/store throughput. +static cl::opt<bool> EnableLoadStoreRuntimeInterleave( + "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, + cl::desc( + "Enable runtime interleaving until load/store ports are saturated")); + +/// Interleave small loops with scalar reductions. +static cl::opt<bool> InterleaveSmallLoopScalarReduction( + "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, + cl::desc("Enable interleaving for loops with small iteration counts that " + "contain scalar reductions to expose ILP.")); + +/// The number of stores in a loop that are allowed to need predication. +static cl::opt<unsigned> NumberOfStoresToPredicate( + "vectorize-num-stores-pred", cl::init(1), cl::Hidden, + cl::desc("Max number of stores to be predicated behind an if.")); + +static cl::opt<bool> EnableIndVarRegisterHeur( + "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, + cl::desc("Count the induction variable only once when interleaving")); + +static cl::opt<bool> EnableCondStoresVectorization( + "enable-cond-stores-vec", cl::init(true), cl::Hidden, + cl::desc("Enable if predication of stores during vectorization.")); + +static cl::opt<unsigned> MaxNestedScalarReductionIC( + "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, + cl::desc("The maximum interleave count to use when interleaving a scalar " + "reduction in a nested loop.")); + +static cl::opt<bool> + PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), + cl::Hidden, + cl::desc("Prefer in-loop vector reductions, " + "overriding the targets preference.")); + +static cl::opt<bool> ForceOrderedReductions( + "force-ordered-reductions", cl::init(false), cl::Hidden, + cl::desc("Enable the vectorisation of loops with in-order (strict) " + "FP reductions")); + +static cl::opt<bool> PreferPredicatedReductionSelect( + "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, + cl::desc( + "Prefer predicating a reduction operation over an after loop select.")); + +cl::opt<bool> EnableVPlanNativePath( + "enable-vplan-native-path", cl::init(false), cl::Hidden, + cl::desc("Enable VPlan-native vectorization path with " + "support for outer loop vectorization.")); + +// This flag enables the stress testing of the VPlan H-CFG construction in the +// VPlan-native vectorization path. It must be used in conjuction with +// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the +// verification of the H-CFGs built. +static cl::opt<bool> VPlanBuildStressTest( + "vplan-build-stress-test", cl::init(false), cl::Hidden, + cl::desc( + "Build VPlan for every supported loop nest in the function and bail " + "out right after the build (stress test the VPlan H-CFG construction " + "in the VPlan-native vectorization path).")); + +cl::opt<bool> llvm::EnableLoopInterleaving( + "interleave-loops", cl::init(true), cl::Hidden, + cl::desc("Enable loop interleaving in Loop vectorization passes")); +cl::opt<bool> llvm::EnableLoopVectorization( + "vectorize-loops", cl::init(true), cl::Hidden, + cl::desc("Run the Loop vectorization passes")); + +static cl::opt<bool> PrintVPlansInDotFormat( + "vplan-print-in-dot-format", cl::Hidden, + cl::desc("Use dot format instead of plain text when dumping VPlans")); + +static cl::opt<cl::boolOrDefault> ForceSafeDivisor( + "force-widen-divrem-via-safe-divisor", cl::Hidden, + cl::desc( + "Override cost based safe divisor widening for div/rem instructions")); + +/// A helper function that returns true if the given type is irregular. The +/// type is irregular if its allocated size doesn't equal the store size of an +/// element of the corresponding vector type. +static bool hasIrregularType(Type *Ty, const DataLayout &DL) { + // Determine if an array of N elements of type Ty is "bitcast compatible" + // with a <N x Ty> vector. + // This is only true if there is no padding between the array elements. + return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); +} + +/// A helper function that returns the reciprocal of the block probability of +/// predicated blocks. If we return X, we are assuming the predicated block +/// will execute once for every X iterations of the loop header. +/// +/// TODO: We should use actual block probability here, if available. Currently, +/// we always assume predicated blocks have a 50% chance of executing. +static unsigned getReciprocalPredBlockProb() { return 2; } + +/// A helper function that returns an integer or floating-point constant with +/// value C. +static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { + return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) + : ConstantFP::get(Ty, C); +} + +/// Returns "best known" trip count for the specified loop \p L as defined by +/// the following procedure: +/// 1) Returns exact trip count if it is known. +/// 2) Returns expected trip count according to profile data if any. +/// 3) Returns upper bound estimate if it is known. +/// 4) Returns std::nullopt if all of the above failed. +static std::optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, + Loop *L) { + // Check if exact trip count is known. + if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) + return ExpectedTC; + + // Check if there is an expected trip count available from profile data. + if (LoopVectorizeWithBlockFrequency) + if (auto EstimatedTC = getLoopEstimatedTripCount(L)) + return *EstimatedTC; + + // Check if upper bound estimate is known. + if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) + return ExpectedTC; + + return std::nullopt; +} + +namespace { +// Forward declare GeneratedRTChecks. +class GeneratedRTChecks; +} // namespace + +namespace llvm { + +AnalysisKey ShouldRunExtraVectorPasses::Key; + +/// InnerLoopVectorizer vectorizes loops which contain only one basic +/// block to a specified vectorization factor (VF). +/// This class performs the widening of scalars into vectors, or multiple +/// scalars. This class also implements the following features: +/// * It inserts an epilogue loop for handling loops that don't have iteration +/// counts that are known to be a multiple of the vectorization factor. +/// * It handles the code generation for reduction variables. +/// * Scalarization (implementation using scalars) of un-vectorizable +/// instructions. +/// InnerLoopVectorizer does not perform any vectorization-legality +/// checks, and relies on the caller to check for the different legality +/// aspects. The InnerLoopVectorizer relies on the +/// LoopVectorizationLegality class to provide information about the induction +/// and reduction variables that were found to a given vectorization factor. +class InnerLoopVectorizer { +public: + InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, + LoopInfo *LI, DominatorTree *DT, + const TargetLibraryInfo *TLI, + const TargetTransformInfo *TTI, AssumptionCache *AC, + OptimizationRemarkEmitter *ORE, ElementCount VecWidth, + ElementCount MinProfitableTripCount, + unsigned UnrollFactor, LoopVectorizationLegality *LVL, + LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, + ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) + : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), + AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), + Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), + PSI(PSI), RTChecks(RTChecks) { + // Query this against the original loop and save it here because the profile + // of the original loop header may change as the transformation happens. + OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( + OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); + + if (MinProfitableTripCount.isZero()) + this->MinProfitableTripCount = VecWidth; + else + this->MinProfitableTripCount = MinProfitableTripCount; + } + + virtual ~InnerLoopVectorizer() = default; + + /// Create a new empty loop that will contain vectorized instructions later + /// on, while the old loop will be used as the scalar remainder. Control flow + /// is generated around the vectorized (and scalar epilogue) loops consisting + /// of various checks and bypasses. Return the pre-header block of the new + /// loop and the start value for the canonical induction, if it is != 0. The + /// latter is the case when vectorizing the epilogue loop. In the case of + /// epilogue vectorization, this function is overriden to handle the more + /// complex control flow around the loops. + virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); + + /// Fix the vectorized code, taking care of header phi's, live-outs, and more. + void fixVectorizedLoop(VPTransformState &State, VPlan &Plan); + + // Return true if any runtime check is added. + bool areSafetyChecksAdded() { return AddedSafetyChecks; } + + /// A type for vectorized values in the new loop. Each value from the + /// original loop, when vectorized, is represented by UF vector values in the + /// new unrolled loop, where UF is the unroll factor. + using VectorParts = SmallVector<Value *, 2>; + + /// A helper function to scalarize a single Instruction in the innermost loop. + /// Generates a sequence of scalar instances for each lane between \p MinLane + /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, + /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p + /// Instr's operands. + void scalarizeInstruction(const Instruction *Instr, + VPReplicateRecipe *RepRecipe, + const VPIteration &Instance, bool IfPredicateInstr, + VPTransformState &State); + + /// Construct the vector value of a scalarized value \p V one lane at a time. + void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, + VPTransformState &State); + + /// Try to vectorize interleaved access group \p Group with the base address + /// given in \p Addr, optionally masking the vector operations if \p + /// BlockInMask is non-null. Use \p State to translate given VPValues to IR + /// values in the vectorized loop. + void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, + ArrayRef<VPValue *> VPDefs, + VPTransformState &State, VPValue *Addr, + ArrayRef<VPValue *> StoredValues, + VPValue *BlockInMask = nullptr); + + /// Fix the non-induction PHIs in \p Plan. + void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State); + + /// Returns true if the reordering of FP operations is not allowed, but we are + /// able to vectorize with strict in-order reductions for the given RdxDesc. + bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); + + /// Create a broadcast instruction. This method generates a broadcast + /// instruction (shuffle) for loop invariant values and for the induction + /// value. If this is the induction variable then we extend it to N, N+1, ... + /// this is needed because each iteration in the loop corresponds to a SIMD + /// element. + virtual Value *getBroadcastInstrs(Value *V); + + // Returns the resume value (bc.merge.rdx) for a reduction as + // generated by fixReduction. + PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); + + /// Create a new phi node for the induction variable \p OrigPhi to resume + /// iteration count in the scalar epilogue, from where the vectorized loop + /// left off. In cases where the loop skeleton is more complicated (eg. + /// epilogue vectorization) and the resume values can come from an additional + /// bypass block, the \p AdditionalBypass pair provides information about the + /// bypass block and the end value on the edge from bypass to this loop. + PHINode *createInductionResumeValue( + PHINode *OrigPhi, const InductionDescriptor &ID, + ArrayRef<BasicBlock *> BypassBlocks, + std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); + +protected: + friend class LoopVectorizationPlanner; + + /// A small list of PHINodes. + using PhiVector = SmallVector<PHINode *, 4>; + + /// A type for scalarized values in the new loop. Each value from the + /// original loop, when scalarized, is represented by UF x VF scalar values + /// in the new unrolled loop, where UF is the unroll factor and VF is the + /// vectorization factor. + using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; + + /// Set up the values of the IVs correctly when exiting the vector loop. + void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, + Value *VectorTripCount, Value *EndValue, + BasicBlock *MiddleBlock, BasicBlock *VectorHeader, + VPlan &Plan); + + /// Handle all cross-iteration phis in the header. + void fixCrossIterationPHIs(VPTransformState &State); + + /// Create the exit value of first order recurrences in the middle block and + /// update their users. + void fixFixedOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, + VPTransformState &State); + + /// Create code for the loop exit value of the reduction. + void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); + + /// Clear NSW/NUW flags from reduction instructions if necessary. + void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, + VPTransformState &State); + + /// Iteratively sink the scalarized operands of a predicated instruction into + /// the block that was created for it. + void sinkScalarOperands(Instruction *PredInst); + + /// Shrinks vector element sizes to the smallest bitwidth they can be legally + /// represented as. + void truncateToMinimalBitwidths(VPTransformState &State); + + /// Returns (and creates if needed) the original loop trip count. + Value *getOrCreateTripCount(BasicBlock *InsertBlock); + + /// Returns (and creates if needed) the trip count of the widened loop. + Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); + + /// Returns a bitcasted value to the requested vector type. + /// Also handles bitcasts of vector<float> <-> vector<pointer> types. + Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, + const DataLayout &DL); + + /// Emit a bypass check to see if the vector trip count is zero, including if + /// it overflows. + void emitIterationCountCheck(BasicBlock *Bypass); + + /// Emit a bypass check to see if all of the SCEV assumptions we've + /// had to make are correct. Returns the block containing the checks or + /// nullptr if no checks have been added. + BasicBlock *emitSCEVChecks(BasicBlock *Bypass); + + /// Emit bypass checks to check any memory assumptions we may have made. + /// Returns the block containing the checks or nullptr if no checks have been + /// added. + BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); + + /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, + /// vector loop preheader, middle block and scalar preheader. + void createVectorLoopSkeleton(StringRef Prefix); + + /// Create new phi nodes for the induction variables to resume iteration count + /// in the scalar epilogue, from where the vectorized loop left off. + /// In cases where the loop skeleton is more complicated (eg. epilogue + /// vectorization) and the resume values can come from an additional bypass + /// block, the \p AdditionalBypass pair provides information about the bypass + /// block and the end value on the edge from bypass to this loop. + void createInductionResumeValues( + std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); + + /// Complete the loop skeleton by adding debug MDs, creating appropriate + /// conditional branches in the middle block, preparing the builder and + /// running the verifier. Return the preheader of the completed vector loop. + BasicBlock *completeLoopSkeleton(); + + /// Collect poison-generating recipes that may generate a poison value that is + /// used after vectorization, even when their operands are not poison. Those + /// recipes meet the following conditions: + /// * Contribute to the address computation of a recipe generating a widen + /// memory load/store (VPWidenMemoryInstructionRecipe or + /// VPInterleaveRecipe). + /// * Such a widen memory load/store has at least one underlying Instruction + /// that is in a basic block that needs predication and after vectorization + /// the generated instruction won't be predicated. + void collectPoisonGeneratingRecipes(VPTransformState &State); + + /// Allow subclasses to override and print debug traces before/after vplan + /// execution, when trace information is requested. + virtual void printDebugTracesAtStart(){}; + virtual void printDebugTracesAtEnd(){}; + + /// The original loop. + Loop *OrigLoop; + + /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies + /// dynamic knowledge to simplify SCEV expressions and converts them to a + /// more usable form. + PredicatedScalarEvolution &PSE; + + /// Loop Info. + LoopInfo *LI; + + /// Dominator Tree. + DominatorTree *DT; + + /// Target Library Info. + const TargetLibraryInfo *TLI; + + /// Target Transform Info. + const TargetTransformInfo *TTI; + + /// Assumption Cache. + AssumptionCache *AC; + + /// Interface to emit optimization remarks. + OptimizationRemarkEmitter *ORE; + + /// The vectorization SIMD factor to use. Each vector will have this many + /// vector elements. + ElementCount VF; + + ElementCount MinProfitableTripCount; + + /// The vectorization unroll factor to use. Each scalar is vectorized to this + /// many different vector instructions. + unsigned UF; + + /// The builder that we use + IRBuilder<> Builder; + + // --- Vectorization state --- + + /// The vector-loop preheader. + BasicBlock *LoopVectorPreHeader; + + /// The scalar-loop preheader. + BasicBlock *LoopScalarPreHeader; + + /// Middle Block between the vector and the scalar. + BasicBlock *LoopMiddleBlock; + + /// The unique ExitBlock of the scalar loop if one exists. Note that + /// there can be multiple exiting edges reaching this block. + BasicBlock *LoopExitBlock; + + /// The scalar loop body. + BasicBlock *LoopScalarBody; + + /// A list of all bypass blocks. The first block is the entry of the loop. + SmallVector<BasicBlock *, 4> LoopBypassBlocks; + + /// Store instructions that were predicated. + SmallVector<Instruction *, 4> PredicatedInstructions; + + /// Trip count of the original loop. + Value *TripCount = nullptr; + + /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) + Value *VectorTripCount = nullptr; + + /// The legality analysis. + LoopVectorizationLegality *Legal; + + /// The profitablity analysis. + LoopVectorizationCostModel *Cost; + + // Record whether runtime checks are added. + bool AddedSafetyChecks = false; + + // Holds the end values for each induction variable. We save the end values + // so we can later fix-up the external users of the induction variables. + DenseMap<PHINode *, Value *> IVEndValues; + + /// BFI and PSI are used to check for profile guided size optimizations. + BlockFrequencyInfo *BFI; + ProfileSummaryInfo *PSI; + + // Whether this loop should be optimized for size based on profile guided size + // optimizatios. + bool OptForSizeBasedOnProfile; + + /// Structure to hold information about generated runtime checks, responsible + /// for cleaning the checks, if vectorization turns out unprofitable. + GeneratedRTChecks &RTChecks; + + // Holds the resume values for reductions in the loops, used to set the + // correct start value of reduction PHIs when vectorizing the epilogue. + SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> + ReductionResumeValues; +}; + +class InnerLoopUnroller : public InnerLoopVectorizer { +public: + InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, + LoopInfo *LI, DominatorTree *DT, + const TargetLibraryInfo *TLI, + const TargetTransformInfo *TTI, AssumptionCache *AC, + OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, + LoopVectorizationLegality *LVL, + LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, + ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) + : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, + ElementCount::getFixed(1), + ElementCount::getFixed(1), UnrollFactor, LVL, CM, + BFI, PSI, Check) {} + +private: + Value *getBroadcastInstrs(Value *V) override; +}; + +/// Encapsulate information regarding vectorization of a loop and its epilogue. +/// This information is meant to be updated and used across two stages of +/// epilogue vectorization. +struct EpilogueLoopVectorizationInfo { + ElementCount MainLoopVF = ElementCount::getFixed(0); + unsigned MainLoopUF = 0; + ElementCount EpilogueVF = ElementCount::getFixed(0); + unsigned EpilogueUF = 0; + BasicBlock *MainLoopIterationCountCheck = nullptr; + BasicBlock *EpilogueIterationCountCheck = nullptr; + BasicBlock *SCEVSafetyCheck = nullptr; + BasicBlock *MemSafetyCheck = nullptr; + Value *TripCount = nullptr; + Value *VectorTripCount = nullptr; + + EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, + ElementCount EVF, unsigned EUF) + : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { + assert(EUF == 1 && + "A high UF for the epilogue loop is likely not beneficial."); + } +}; + +/// An extension of the inner loop vectorizer that creates a skeleton for a +/// vectorized loop that has its epilogue (residual) also vectorized. +/// The idea is to run the vplan on a given loop twice, firstly to setup the +/// skeleton and vectorize the main loop, and secondly to complete the skeleton +/// from the first step and vectorize the epilogue. This is achieved by +/// deriving two concrete strategy classes from this base class and invoking +/// them in succession from the loop vectorizer planner. +class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { +public: + InnerLoopAndEpilogueVectorizer( + Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, + DominatorTree *DT, const TargetLibraryInfo *TLI, + const TargetTransformInfo *TTI, AssumptionCache *AC, + OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, + LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, + BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, + GeneratedRTChecks &Checks) + : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, + EPI.MainLoopVF, EPI.MainLoopVF, EPI.MainLoopUF, LVL, + CM, BFI, PSI, Checks), + EPI(EPI) {} + + // Override this function to handle the more complex control flow around the + // three loops. + std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton() final { + return createEpilogueVectorizedLoopSkeleton(); + } + + /// The interface for creating a vectorized skeleton using one of two + /// different strategies, each corresponding to one execution of the vplan + /// as described above. + virtual std::pair<BasicBlock *, Value *> + createEpilogueVectorizedLoopSkeleton() = 0; + + /// Holds and updates state information required to vectorize the main loop + /// and its epilogue in two separate passes. This setup helps us avoid + /// regenerating and recomputing runtime safety checks. It also helps us to + /// shorten the iteration-count-check path length for the cases where the + /// iteration count of the loop is so small that the main vector loop is + /// completely skipped. + EpilogueLoopVectorizationInfo &EPI; +}; + +/// A specialized derived class of inner loop vectorizer that performs +/// vectorization of *main* loops in the process of vectorizing loops and their +/// epilogues. +class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { +public: + EpilogueVectorizerMainLoop( + Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, + DominatorTree *DT, const TargetLibraryInfo *TLI, + const TargetTransformInfo *TTI, AssumptionCache *AC, + OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, + LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, + BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, + GeneratedRTChecks &Check) + : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, + EPI, LVL, CM, BFI, PSI, Check) {} + /// Implements the interface for creating a vectorized skeleton using the + /// *main loop* strategy (ie the first pass of vplan execution). + std::pair<BasicBlock *, Value *> createEpilogueVectorizedLoopSkeleton() final; + +protected: + /// Emits an iteration count bypass check once for the main loop (when \p + /// ForEpilogue is false) and once for the epilogue loop (when \p + /// ForEpilogue is true). + BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue); + void printDebugTracesAtStart() override; + void printDebugTracesAtEnd() override; +}; + +// A specialized derived class of inner loop vectorizer that performs +// vectorization of *epilogue* loops in the process of vectorizing loops and +// their epilogues. +class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { +public: + EpilogueVectorizerEpilogueLoop( + Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, + DominatorTree *DT, const TargetLibraryInfo *TLI, + const TargetTransformInfo *TTI, AssumptionCache *AC, + OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, + LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, + BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, + GeneratedRTChecks &Checks) + : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, + EPI, LVL, CM, BFI, PSI, Checks) { + TripCount = EPI.TripCount; + } + /// Implements the interface for creating a vectorized skeleton using the + /// *epilogue loop* strategy (ie the second pass of vplan execution). + std::pair<BasicBlock *, Value *> createEpilogueVectorizedLoopSkeleton() final; + +protected: + /// Emits an iteration count bypass check after the main vector loop has + /// finished to see if there are any iterations left to execute by either + /// the vector epilogue or the scalar epilogue. + BasicBlock *emitMinimumVectorEpilogueIterCountCheck( + BasicBlock *Bypass, + BasicBlock *Insert); + void printDebugTracesAtStart() override; + void printDebugTracesAtEnd() override; +}; +} // end namespace llvm + +/// Look for a meaningful debug location on the instruction or it's +/// operands. +static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { + if (!I) + return I; + + DebugLoc Empty; + if (I->getDebugLoc() != Empty) + return I; + + for (Use &Op : I->operands()) { + if (Instruction *OpInst = dyn_cast<Instruction>(Op)) + if (OpInst->getDebugLoc() != Empty) + return OpInst; + } + + return I; +} + +/// Write a \p DebugMsg about vectorization to the debug output stream. If \p I +/// is passed, the message relates to that particular instruction. +#ifndef NDEBUG +static void debugVectorizationMessage(const StringRef Prefix, + const StringRef DebugMsg, + Instruction *I) { + dbgs() << "LV: " << Prefix << DebugMsg; + if (I != nullptr) + dbgs() << " " << *I; + else + dbgs() << '.'; + dbgs() << '\n'; +} +#endif + +/// Create an analysis remark that explains why vectorization failed +/// +/// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p +/// RemarkName is the identifier for the remark. If \p I is passed it is an +/// instruction that prevents vectorization. Otherwise \p TheLoop is used for +/// the location of the remark. \return the remark object that can be +/// streamed to. +static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, + StringRef RemarkName, Loop *TheLoop, Instruction *I) { + Value *CodeRegion = TheLoop->getHeader(); + DebugLoc DL = TheLoop->getStartLoc(); + + if (I) { + CodeRegion = I->getParent(); + // If there is no debug location attached to the instruction, revert back to + // using the loop's. + if (I->getDebugLoc()) + DL = I->getDebugLoc(); + } + + return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); +} + +namespace llvm { + +/// Return a value for Step multiplied by VF. +Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, + int64_t Step) { + assert(Ty->isIntegerTy() && "Expected an integer step"); + Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); + return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; +} + +/// Return the runtime value for VF. +Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { + Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); + return VF.isScalable() ? B.CreateVScale(EC) : EC; +} + +const SCEV *createTripCountSCEV(Type *IdxTy, PredicatedScalarEvolution &PSE) { + const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); + assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && "Invalid loop count"); + + ScalarEvolution &SE = *PSE.getSE(); + + // The exit count might have the type of i64 while the phi is i32. This can + // happen if we have an induction variable that is sign extended before the + // compare. The only way that we get a backedge taken count is that the + // induction variable was signed and as such will not overflow. In such a case + // truncation is legal. + if (SE.getTypeSizeInBits(BackedgeTakenCount->getType()) > + IdxTy->getPrimitiveSizeInBits()) + BackedgeTakenCount = SE.getTruncateOrNoop(BackedgeTakenCount, IdxTy); + BackedgeTakenCount = SE.getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); + + // Get the total trip count from the count by adding 1. + return SE.getAddExpr(BackedgeTakenCount, + SE.getOne(BackedgeTakenCount->getType())); +} + +static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, + ElementCount VF) { + assert(FTy->isFloatingPointTy() && "Expected floating point type!"); + Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); + Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); + return B.CreateUIToFP(RuntimeVF, FTy); +} + +void reportVectorizationFailure(const StringRef DebugMsg, + const StringRef OREMsg, const StringRef ORETag, + OptimizationRemarkEmitter *ORE, Loop *TheLoop, + Instruction *I) { + LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); + LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); + ORE->emit( + createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) + << "loop not vectorized: " << OREMsg); +} + +void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, + OptimizationRemarkEmitter *ORE, Loop *TheLoop, + Instruction *I) { + LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); + LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); + ORE->emit( + createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) + << Msg); +} + +} // end namespace llvm + +#ifndef NDEBUG +/// \return string containing a file name and a line # for the given loop. +static std::string getDebugLocString(const Loop *L) { + std::string Result; + if (L) { + raw_string_ostream OS(Result); + if (const DebugLoc LoopDbgLoc = L->getStartLoc()) + LoopDbgLoc.print(OS); + else + // Just print the module name. + OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); + OS.flush(); + } + return Result; +} +#endif + +void InnerLoopVectorizer::collectPoisonGeneratingRecipes( + VPTransformState &State) { + + // Collect recipes in the backward slice of `Root` that may generate a poison + // value that is used after vectorization. + SmallPtrSet<VPRecipeBase *, 16> Visited; + auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { + SmallVector<VPRecipeBase *, 16> Worklist; + Worklist.push_back(Root); + + // Traverse the backward slice of Root through its use-def chain. + while (!Worklist.empty()) { + VPRecipeBase *CurRec = Worklist.back(); + Worklist.pop_back(); + + if (!Visited.insert(CurRec).second) + continue; + + // Prune search if we find another recipe generating a widen memory + // instruction. Widen memory instructions involved in address computation + // will lead to gather/scatter instructions, which don't need to be + // handled. + if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || + isa<VPInterleaveRecipe>(CurRec) || + isa<VPScalarIVStepsRecipe>(CurRec) || + isa<VPCanonicalIVPHIRecipe>(CurRec) || + isa<VPActiveLaneMaskPHIRecipe>(CurRec)) + continue; + + // This recipe contributes to the address computation of a widen + // load/store. Collect recipe if its underlying instruction has + // poison-generating flags. + Instruction *Instr = CurRec->getUnderlyingInstr(); + if (Instr && Instr->hasPoisonGeneratingFlags()) + State.MayGeneratePoisonRecipes.insert(CurRec); + + // Add new definitions to the worklist. + for (VPValue *operand : CurRec->operands()) + if (VPRecipeBase *OpDef = operand->getDefiningRecipe()) + Worklist.push_back(OpDef); + } + }); + + // Traverse all the recipes in the VPlan and collect the poison-generating + // recipes in the backward slice starting at the address of a VPWidenRecipe or + // VPInterleaveRecipe. + auto Iter = vp_depth_first_deep(State.Plan->getEntry()); + for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { + for (VPRecipeBase &Recipe : *VPBB) { + if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { + Instruction &UnderlyingInstr = WidenRec->getIngredient(); + VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe(); + if (AddrDef && WidenRec->isConsecutive() && + Legal->blockNeedsPredication(UnderlyingInstr.getParent())) + collectPoisonGeneratingInstrsInBackwardSlice(AddrDef); + } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { + VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe(); + if (AddrDef) { + // Check if any member of the interleave group needs predication. + const InterleaveGroup<Instruction> *InterGroup = + InterleaveRec->getInterleaveGroup(); + bool NeedPredication = false; + for (int I = 0, NumMembers = InterGroup->getNumMembers(); + I < NumMembers; ++I) { + Instruction *Member = InterGroup->getMember(I); + if (Member) + NeedPredication |= + Legal->blockNeedsPredication(Member->getParent()); + } + + if (NeedPredication) + collectPoisonGeneratingInstrsInBackwardSlice(AddrDef); + } + } + } + } +} + +PHINode *InnerLoopVectorizer::getReductionResumeValue( + const RecurrenceDescriptor &RdxDesc) { + auto It = ReductionResumeValues.find(&RdxDesc); + assert(It != ReductionResumeValues.end() && + "Expected to find a resume value for the reduction."); + return It->second; +} + +namespace llvm { + +// Loop vectorization cost-model hints how the scalar epilogue loop should be +// lowered. +enum ScalarEpilogueLowering { + + // The default: allowing scalar epilogues. + CM_ScalarEpilogueAllowed, + + // Vectorization with OptForSize: don't allow epilogues. + CM_ScalarEpilogueNotAllowedOptSize, + + // A special case of vectorisation with OptForSize: loops with a very small + // trip count are considered for vectorization under OptForSize, thereby + // making sure the cost of their loop body is dominant, free of runtime + // guards and scalar iteration overheads. + CM_ScalarEpilogueNotAllowedLowTripLoop, + + // Loop hint predicate indicating an epilogue is undesired. + CM_ScalarEpilogueNotNeededUsePredicate, + + // Directive indicating we must either tail fold or not vectorize + CM_ScalarEpilogueNotAllowedUsePredicate +}; + +/// ElementCountComparator creates a total ordering for ElementCount +/// for the purposes of using it in a set structure. +struct ElementCountComparator { + bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { + return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < + std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); + } +}; +using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; + +/// LoopVectorizationCostModel - estimates the expected speedups due to +/// vectorization. +/// In many cases vectorization is not profitable. This can happen because of +/// a number of reasons. In this class we mainly attempt to predict the +/// expected speedup/slowdowns due to the supported instruction set. We use the +/// TargetTransformInfo to query the different backends for the cost of +/// different operations. +class LoopVectorizationCostModel { +public: + LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, + PredicatedScalarEvolution &PSE, LoopInfo *LI, + LoopVectorizationLegality *Legal, + const TargetTransformInfo &TTI, + const TargetLibraryInfo *TLI, DemandedBits *DB, + AssumptionCache *AC, + OptimizationRemarkEmitter *ORE, const Function *F, + const LoopVectorizeHints *Hints, + InterleavedAccessInfo &IAI) + : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), + TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), + Hints(Hints), InterleaveInfo(IAI) {} + + /// \return An upper bound for the vectorization factors (both fixed and + /// scalable). If the factors are 0, vectorization and interleaving should be + /// avoided up front. + FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); + + /// \return True if runtime checks are required for vectorization, and false + /// otherwise. + bool runtimeChecksRequired(); + + /// \return The most profitable vectorization factor and the cost of that VF. + /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO + /// then this vectorization factor will be selected if vectorization is + /// possible. + VectorizationFactor + selectVectorizationFactor(const ElementCountSet &CandidateVFs); + + VectorizationFactor + selectEpilogueVectorizationFactor(const ElementCount MaxVF, + const LoopVectorizationPlanner &LVP); + + /// Setup cost-based decisions for user vectorization factor. + /// \return true if the UserVF is a feasible VF to be chosen. + bool selectUserVectorizationFactor(ElementCount UserVF) { + collectUniformsAndScalars(UserVF); + collectInstsToScalarize(UserVF); + return expectedCost(UserVF).first.isValid(); + } + + /// \return The size (in bits) of the smallest and widest types in the code + /// that needs to be vectorized. We ignore values that remain scalar such as + /// 64 bit loop indices. + std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); + + /// \return The desired interleave count. + /// If interleave count has been specified by metadata it will be returned. + /// Otherwise, the interleave count is computed and returned. VF and LoopCost + /// are the selected vectorization factor and the cost of the selected VF. + unsigned selectInterleaveCount(ElementCount VF, InstructionCost LoopCost); + + /// Memory access instruction may be vectorized in more than one way. + /// Form of instruction after vectorization depends on cost. + /// This function takes cost-based decisions for Load/Store instructions + /// and collects them in a map. This decisions map is used for building + /// the lists of loop-uniform and loop-scalar instructions. + /// The calculated cost is saved with widening decision in order to + /// avoid redundant calculations. + void setCostBasedWideningDecision(ElementCount VF); + + /// A struct that represents some properties of the register usage + /// of a loop. + struct RegisterUsage { + /// Holds the number of loop invariant values that are used in the loop. + /// The key is ClassID of target-provided register class. + SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; + /// Holds the maximum number of concurrent live intervals in the loop. + /// The key is ClassID of target-provided register class. + SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; + }; + + /// \return Returns information about the register usages of the loop for the + /// given vectorization factors. + SmallVector<RegisterUsage, 8> + calculateRegisterUsage(ArrayRef<ElementCount> VFs); + + /// Collect values we want to ignore in the cost model. + void collectValuesToIgnore(); + + /// Collect all element types in the loop for which widening is needed. + void collectElementTypesForWidening(); + + /// Split reductions into those that happen in the loop, and those that happen + /// outside. In loop reductions are collected into InLoopReductionChains. + void collectInLoopReductions(); + + /// Returns true if we should use strict in-order reductions for the given + /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, + /// the IsOrdered flag of RdxDesc is set and we do not allow reordering + /// of FP operations. + bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const { + return !Hints->allowReordering() && RdxDesc.isOrdered(); + } + + /// \returns The smallest bitwidth each instruction can be represented with. + /// The vector equivalents of these instructions should be truncated to this + /// type. + const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { + return MinBWs; + } + + /// \returns True if it is more profitable to scalarize instruction \p I for + /// vectorization factor \p VF. + bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { + assert(VF.isVector() && + "Profitable to scalarize relevant only for VF > 1."); + + // Cost model is not run in the VPlan-native path - return conservative + // result until this changes. + if (EnableVPlanNativePath) + return false; + + auto Scalars = InstsToScalarize.find(VF); + assert(Scalars != InstsToScalarize.end() && + "VF not yet analyzed for scalarization profitability"); + return Scalars->second.find(I) != Scalars->second.end(); + } + + /// Returns true if \p I is known to be uniform after vectorization. + bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { + if (VF.isScalar()) + return true; + + // Cost model is not run in the VPlan-native path - return conservative + // result until this changes. + if (EnableVPlanNativePath) + return false; + + auto UniformsPerVF = Uniforms.find(VF); + assert(UniformsPerVF != Uniforms.end() && + "VF not yet analyzed for uniformity"); + return UniformsPerVF->second.count(I); + } + + /// Returns true if \p I is known to be scalar after vectorization. + bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { + if (VF.isScalar()) + return true; + + // Cost model is not run in the VPlan-native path - return conservative + // result until this changes. + if (EnableVPlanNativePath) + return false; + + auto ScalarsPerVF = Scalars.find(VF); + assert(ScalarsPerVF != Scalars.end() && + "Scalar values are not calculated for VF"); + return ScalarsPerVF->second.count(I); + } + + /// \returns True if instruction \p I can be truncated to a smaller bitwidth + /// for vectorization factor \p VF. + bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { + return VF.isVector() && MinBWs.find(I) != MinBWs.end() && + !isProfitableToScalarize(I, VF) && + !isScalarAfterVectorization(I, VF); + } + + /// Decision that was taken during cost calculation for memory instruction. + enum InstWidening { + CM_Unknown, + CM_Widen, // For consecutive accesses with stride +1. + CM_Widen_Reverse, // For consecutive accesses with stride -1. + CM_Interleave, + CM_GatherScatter, + CM_Scalarize + }; + + /// Save vectorization decision \p W and \p Cost taken by the cost model for + /// instruction \p I and vector width \p VF. + void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, + InstructionCost Cost) { + assert(VF.isVector() && "Expected VF >=2"); + WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); + } + + /// Save vectorization decision \p W and \p Cost taken by the cost model for + /// interleaving group \p Grp and vector width \p VF. + void setWideningDecision(const InterleaveGroup<Instruction> *Grp, + ElementCount VF, InstWidening W, + InstructionCost Cost) { + assert(VF.isVector() && "Expected VF >=2"); + /// Broadcast this decicion to all instructions inside the group. + /// But the cost will be assigned to one instruction only. + for (unsigned i = 0; i < Grp->getFactor(); ++i) { + if (auto *I = Grp->getMember(i)) { + if (Grp->getInsertPos() == I) + WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); + else + WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); + } + } + } + + /// Return the cost model decision for the given instruction \p I and vector + /// width \p VF. Return CM_Unknown if this instruction did not pass + /// through the cost modeling. + InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { + assert(VF.isVector() && "Expected VF to be a vector VF"); + // Cost model is not run in the VPlan-native path - return conservative + // result until this changes. + if (EnableVPlanNativePath) + return CM_GatherScatter; + + std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); + auto Itr = WideningDecisions.find(InstOnVF); + if (Itr == WideningDecisions.end()) + return CM_Unknown; + return Itr->second.first; + } + + /// Return the vectorization cost for the given instruction \p I and vector + /// width \p VF. + InstructionCost getWideningCost(Instruction *I, ElementCount VF) { + assert(VF.isVector() && "Expected VF >=2"); + std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); + assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && + "The cost is not calculated"); + return WideningDecisions[InstOnVF].second; + } + + /// Return True if instruction \p I is an optimizable truncate whose operand + /// is an induction variable. Such a truncate will be removed by adding a new + /// induction variable with the destination type. + bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { + // If the instruction is not a truncate, return false. + auto *Trunc = dyn_cast<TruncInst>(I); + if (!Trunc) + return false; + + // Get the source and destination types of the truncate. + Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); + Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); + + // If the truncate is free for the given types, return false. Replacing a + // free truncate with an induction variable would add an induction variable + // update instruction to each iteration of the loop. We exclude from this + // check the primary induction variable since it will need an update + // instruction regardless. + Value *Op = Trunc->getOperand(0); + if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) + return false; + + // If the truncated value is not an induction variable, return false. + return Legal->isInductionPhi(Op); + } + + /// Collects the instructions to scalarize for each predicated instruction in + /// the loop. + void collectInstsToScalarize(ElementCount VF); + + /// Collect Uniform and Scalar values for the given \p VF. + /// The sets depend on CM decision for Load/Store instructions + /// that may be vectorized as interleave, gather-scatter or scalarized. + void collectUniformsAndScalars(ElementCount VF) { + // Do the analysis once. + if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) + return; + setCostBasedWideningDecision(VF); + collectLoopUniforms(VF); + collectLoopScalars(VF); + } + + /// Returns true if the target machine supports masked store operation + /// for the given \p DataType and kind of access to \p Ptr. + bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { + return Legal->isConsecutivePtr(DataType, Ptr) && + TTI.isLegalMaskedStore(DataType, Alignment); + } + + /// Returns true if the target machine supports masked load operation + /// for the given \p DataType and kind of access to \p Ptr. + bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { + return Legal->isConsecutivePtr(DataType, Ptr) && + TTI.isLegalMaskedLoad(DataType, Alignment); + } + + /// Returns true if the target machine can represent \p V as a masked gather + /// or scatter operation. + bool isLegalGatherOrScatter(Value *V, + ElementCount VF = ElementCount::getFixed(1)) { + bool LI = isa<LoadInst>(V); + bool SI = isa<StoreInst>(V); + if (!LI && !SI) + return false; + auto *Ty = getLoadStoreType(V); + Align Align = getLoadStoreAlignment(V); + if (VF.isVector()) + Ty = VectorType::get(Ty, VF); + return (LI && TTI.isLegalMaskedGather(Ty, Align)) || + (SI && TTI.isLegalMaskedScatter(Ty, Align)); + } + + /// Returns true if the target machine supports all of the reduction + /// variables found for the given VF. + bool canVectorizeReductions(ElementCount VF) const { + return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { + const RecurrenceDescriptor &RdxDesc = Reduction.second; + return TTI.isLegalToVectorizeReduction(RdxDesc, VF); + })); + } + + /// Given costs for both strategies, return true if the scalar predication + /// lowering should be used for div/rem. This incorporates an override + /// option so it is not simply a cost comparison. + bool isDivRemScalarWithPredication(InstructionCost ScalarCost, + InstructionCost SafeDivisorCost) const { + switch (ForceSafeDivisor) { + case cl::BOU_UNSET: + return ScalarCost < SafeDivisorCost; + case cl::BOU_TRUE: + return false; + case cl::BOU_FALSE: + return true; + }; + llvm_unreachable("impossible case value"); + } + + /// Returns true if \p I is an instruction which requires predication and + /// for which our chosen predication strategy is scalarization (i.e. we + /// don't have an alternate strategy such as masking available). + /// \p VF is the vectorization factor that will be used to vectorize \p I. + bool isScalarWithPredication(Instruction *I, ElementCount VF) const; + + /// Returns true if \p I is an instruction that needs to be predicated + /// at runtime. The result is independent of the predication mechanism. + /// Superset of instructions that return true for isScalarWithPredication. + bool isPredicatedInst(Instruction *I) const; + + /// Return the costs for our two available strategies for lowering a + /// div/rem operation which requires speculating at least one lane. + /// First result is for scalarization (will be invalid for scalable + /// vectors); second is for the safe-divisor strategy. + std::pair<InstructionCost, InstructionCost> + getDivRemSpeculationCost(Instruction *I, + ElementCount VF) const; + + /// Returns true if \p I is a memory instruction with consecutive memory + /// access that can be widened. + bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF); + + /// Returns true if \p I is a memory instruction in an interleaved-group + /// of memory accesses that can be vectorized with wide vector loads/stores + /// and shuffles. + bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF); + + /// Check if \p Instr belongs to any interleaved access group. + bool isAccessInterleaved(Instruction *Instr) { + return InterleaveInfo.isInterleaved(Instr); + } + + /// Get the interleaved access group that \p Instr belongs to. + const InterleaveGroup<Instruction> * + getInterleavedAccessGroup(Instruction *Instr) { + return InterleaveInfo.getInterleaveGroup(Instr); + } + + /// Returns true if we're required to use a scalar epilogue for at least + /// the final iteration of the original loop. + bool requiresScalarEpilogue(ElementCount VF) const { + if (!isScalarEpilogueAllowed()) + return false; + // If we might exit from anywhere but the latch, must run the exiting + // iteration in scalar form. + if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) + return true; + return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); + } + + /// Returns true if a scalar epilogue is not allowed due to optsize or a + /// loop hint annotation. + bool isScalarEpilogueAllowed() const { + return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; + } + + /// Returns true if all loop blocks should be masked to fold tail loop. + bool foldTailByMasking() const { return FoldTailByMasking; } + + /// Returns true if were tail-folding and want to use the active lane mask + /// for vector loop control flow. + bool useActiveLaneMaskForControlFlow() const { + return FoldTailByMasking && + TTI.emitGetActiveLaneMask() == PredicationStyle::DataAndControlFlow; + } + + /// Returns true if the instructions in this block requires predication + /// for any reason, e.g. because tail folding now requires a predicate + /// or because the block in the original loop was predicated. + bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { + return foldTailByMasking() || Legal->blockNeedsPredication(BB); + } + + /// A SmallMapVector to store the InLoop reduction op chains, mapping phi + /// nodes to the chain of instructions representing the reductions. Uses a + /// MapVector to ensure deterministic iteration order. + using ReductionChainMap = + SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; + + /// Return the chain of instructions representing an inloop reduction. + const ReductionChainMap &getInLoopReductionChains() const { + return InLoopReductionChains; + } + + /// Returns true if the Phi is part of an inloop reduction. + bool isInLoopReduction(PHINode *Phi) const { + return InLoopReductionChains.count(Phi); + } + + /// Estimate cost of an intrinsic call instruction CI if it were vectorized + /// with factor VF. Return the cost of the instruction, including + /// scalarization overhead if it's needed. + InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; + + /// Estimate cost of a call instruction CI if it were vectorized with factor + /// VF. Return the cost of the instruction, including scalarization overhead + /// if it's needed. The flag NeedToScalarize shows if the call needs to be + /// scalarized - + /// i.e. either vector version isn't available, or is too expensive. + InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, + bool &NeedToScalarize) const; + + /// Returns true if the per-lane cost of VectorizationFactor A is lower than + /// that of B. + bool isMoreProfitable(const VectorizationFactor &A, + const VectorizationFactor &B) const; + + /// Invalidates decisions already taken by the cost model. + void invalidateCostModelingDecisions() { + WideningDecisions.clear(); + Uniforms.clear(); + Scalars.clear(); + } + + /// Convenience function that returns the value of vscale_range iff + /// vscale_range.min == vscale_range.max or otherwise returns the value + /// returned by the corresponding TLI method. + std::optional<unsigned> getVScaleForTuning() const; + +private: + unsigned NumPredStores = 0; + + /// \return An upper bound for the vectorization factors for both + /// fixed and scalable vectorization, where the minimum-known number of + /// elements is a power-of-2 larger than zero. If scalable vectorization is + /// disabled or unsupported, then the scalable part will be equal to + /// ElementCount::getScalable(0). + FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, + ElementCount UserVF, + bool FoldTailByMasking); + + /// \return the maximized element count based on the targets vector + /// registers and the loop trip-count, but limited to a maximum safe VF. + /// This is a helper function of computeFeasibleMaxVF. + ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, + unsigned SmallestType, + unsigned WidestType, + ElementCount MaxSafeVF, + bool FoldTailByMasking); + + /// \return the maximum legal scalable VF, based on the safe max number + /// of elements. + ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); + + /// The vectorization cost is a combination of the cost itself and a boolean + /// indicating whether any of the contributing operations will actually + /// operate on vector values after type legalization in the backend. If this + /// latter value is false, then all operations will be scalarized (i.e. no + /// vectorization has actually taken place). + using VectorizationCostTy = std::pair<InstructionCost, bool>; + + /// Returns the expected execution cost. The unit of the cost does + /// not matter because we use the 'cost' units to compare different + /// vector widths. The cost that is returned is *not* normalized by + /// the factor width. If \p Invalid is not nullptr, this function + /// will add a pair(Instruction*, ElementCount) to \p Invalid for + /// each instruction that has an Invalid cost for the given VF. + using InstructionVFPair = std::pair<Instruction *, ElementCount>; + VectorizationCostTy + expectedCost(ElementCount VF, + SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); + + /// Returns the execution time cost of an instruction for a given vector + /// width. Vector width of one means scalar. + VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); + + /// The cost-computation logic from getInstructionCost which provides + /// the vector type as an output parameter. + InstructionCost getInstructionCost(Instruction *I, ElementCount VF, + Type *&VectorTy); + + /// Return the cost of instructions in an inloop reduction pattern, if I is + /// part of that pattern. + std::optional<InstructionCost> + getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, + TTI::TargetCostKind CostKind); + + /// Calculate vectorization cost of memory instruction \p I. + InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); + + /// The cost computation for scalarized memory instruction. + InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); + + /// The cost computation for interleaving group of memory instructions. + InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); + + /// The cost computation for Gather/Scatter instruction. + InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); + + /// The cost computation for widening instruction \p I with consecutive + /// memory access. + InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); + + /// The cost calculation for Load/Store instruction \p I with uniform pointer - + /// Load: scalar load + broadcast. + /// Store: scalar store + (loop invariant value stored? 0 : extract of last + /// element) + InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); + + /// Estimate the overhead of scalarizing an instruction. This is a + /// convenience wrapper for the type-based getScalarizationOverhead API. + InstructionCost getScalarizationOverhead(Instruction *I, ElementCount VF, + TTI::TargetCostKind CostKind) const; + + /// Returns true if an artificially high cost for emulated masked memrefs + /// should be used. + bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); + + /// Map of scalar integer values to the smallest bitwidth they can be legally + /// represented as. The vector equivalents of these values should be truncated + /// to this type. + MapVector<Instruction *, uint64_t> MinBWs; + + /// A type representing the costs for instructions if they were to be + /// scalarized rather than vectorized. The entries are Instruction-Cost + /// pairs. + using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; + + /// A set containing all BasicBlocks that are known to present after + /// vectorization as a predicated block. + DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>> + PredicatedBBsAfterVectorization; + + /// Records whether it is allowed to have the original scalar loop execute at + /// least once. This may be needed as a fallback loop in case runtime + /// aliasing/dependence checks fail, or to handle the tail/remainder + /// iterations when the trip count is unknown or doesn't divide by the VF, + /// or as a peel-loop to handle gaps in interleave-groups. + /// Under optsize and when the trip count is very small we don't allow any + /// iterations to execute in the scalar loop. + ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; + + /// All blocks of loop are to be masked to fold tail of scalar iterations. + bool FoldTailByMasking = false; + + /// A map holding scalar costs for different vectorization factors. The + /// presence of a cost for an instruction in the mapping indicates that the + /// instruction will be scalarized when vectorizing with the associated + /// vectorization factor. The entries are VF-ScalarCostTy pairs. + DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; + + /// Holds the instructions known to be uniform after vectorization. + /// The data is collected per VF. + DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; + + /// Holds the instructions known to be scalar after vectorization. + /// The data is collected per VF. + DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; + + /// Holds the instructions (address computations) that are forced to be + /// scalarized. + DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; + + /// PHINodes of the reductions that should be expanded in-loop along with + /// their associated chains of reduction operations, in program order from top + /// (PHI) to bottom + ReductionChainMap InLoopReductionChains; + + /// A Map of inloop reduction operations and their immediate chain operand. + /// FIXME: This can be removed once reductions can be costed correctly in + /// vplan. This was added to allow quick lookup to the inloop operations, + /// without having to loop through InLoopReductionChains. + DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; + + /// Returns the expected difference in cost from scalarizing the expression + /// feeding a predicated instruction \p PredInst. The instructions to + /// scalarize and their scalar costs are collected in \p ScalarCosts. A + /// non-negative return value implies the expression will be scalarized. + /// Currently, only single-use chains are considered for scalarization. + InstructionCost computePredInstDiscount(Instruction *PredInst, + ScalarCostsTy &ScalarCosts, + ElementCount VF); + + /// Collect the instructions that are uniform after vectorization. An + /// instruction is uniform if we represent it with a single scalar value in + /// the vectorized loop corresponding to each vector iteration. Examples of + /// uniform instructions include pointer operands of consecutive or + /// interleaved memory accesses. Note that although uniformity implies an + /// instruction will be scalar, the reverse is not true. In general, a + /// scalarized instruction will be represented by VF scalar values in the + /// vectorized loop, each corresponding to an iteration of the original + /// scalar loop. + void collectLoopUniforms(ElementCount VF); + + /// Collect the instructions that are scalar after vectorization. An + /// instruction is scalar if it is known to be uniform or will be scalarized + /// during vectorization. collectLoopScalars should only add non-uniform nodes + /// to the list if they are used by a load/store instruction that is marked as + /// CM_Scalarize. Non-uniform scalarized instructions will be represented by + /// VF values in the vectorized loop, each corresponding to an iteration of + /// the original scalar loop. + void collectLoopScalars(ElementCount VF); + + /// Keeps cost model vectorization decision and cost for instructions. + /// Right now it is used for memory instructions only. + using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, + std::pair<InstWidening, InstructionCost>>; + + DecisionList WideningDecisions; + + /// Returns true if \p V is expected to be vectorized and it needs to be + /// extracted. + bool needsExtract(Value *V, ElementCount VF) const { + Instruction *I = dyn_cast<Instruction>(V); + if (VF.isScalar() || !I || !TheLoop->contains(I) || + TheLoop->isLoopInvariant(I)) + return false; + + // Assume we can vectorize V (and hence we need extraction) if the + // scalars are not computed yet. This can happen, because it is called + // via getScalarizationOverhead from setCostBasedWideningDecision, before + // the scalars are collected. That should be a safe assumption in most + // cases, because we check if the operands have vectorizable types + // beforehand in LoopVectorizationLegality. + return Scalars.find(VF) == Scalars.end() || + !isScalarAfterVectorization(I, VF); + }; + + /// Returns a range containing only operands needing to be extracted. + SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, + ElementCount VF) const { + return SmallVector<Value *, 4>(make_filter_range( + Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); + } + + /// Determines if we have the infrastructure to vectorize loop \p L and its + /// epilogue, assuming the main loop is vectorized by \p VF. + bool isCandidateForEpilogueVectorization(const Loop &L, + const ElementCount VF) const; + + /// Returns true if epilogue vectorization is considered profitable, and + /// false otherwise. + /// \p VF is the vectorization factor chosen for the original loop. + bool isEpilogueVectorizationProfitable(const ElementCount VF) const; + +public: + /// The loop that we evaluate. + Loop *TheLoop; + + /// Predicated scalar evolution analysis. + PredicatedScalarEvolution &PSE; + + /// Loop Info analysis. + LoopInfo *LI; + + /// Vectorization legality. + LoopVectorizationLegality *Legal; + + /// Vector target information. + const TargetTransformInfo &TTI; + + /// Target Library Info. + const TargetLibraryInfo *TLI; + + /// Demanded bits analysis. + DemandedBits *DB; + + /// Assumption cache. + AssumptionCache *AC; + + /// Interface to emit optimization remarks. + OptimizationRemarkEmitter *ORE; + + const Function *TheFunction; + + /// Loop Vectorize Hint. + const LoopVectorizeHints *Hints; + + /// The interleave access information contains groups of interleaved accesses + /// with the same stride and close to each other. + InterleavedAccessInfo &InterleaveInfo; + + /// Values to ignore in the cost model. + SmallPtrSet<const Value *, 16> ValuesToIgnore; + + /// Values to ignore in the cost model when VF > 1. + SmallPtrSet<const Value *, 16> VecValuesToIgnore; + + /// All element types found in the loop. + SmallPtrSet<Type *, 16> ElementTypesInLoop; + + /// Profitable vector factors. + SmallVector<VectorizationFactor, 8> ProfitableVFs; +}; +} // end namespace llvm + +namespace { +/// Helper struct to manage generating runtime checks for vectorization. +/// +/// The runtime checks are created up-front in temporary blocks to allow better +/// estimating the cost and un-linked from the existing IR. After deciding to +/// vectorize, the checks are moved back. If deciding not to vectorize, the +/// temporary blocks are completely removed. +class GeneratedRTChecks { + /// Basic block which contains the generated SCEV checks, if any. + BasicBlock *SCEVCheckBlock = nullptr; + + /// The value representing the result of the generated SCEV checks. If it is + /// nullptr, either no SCEV checks have been generated or they have been used. + Value *SCEVCheckCond = nullptr; + + /// Basic block which contains the generated memory runtime checks, if any. + BasicBlock *MemCheckBlock = nullptr; + + /// The value representing the result of the generated memory runtime checks. + /// If it is nullptr, either no memory runtime checks have been generated or + /// they have been used. + Value *MemRuntimeCheckCond = nullptr; + + DominatorTree *DT; + LoopInfo *LI; + TargetTransformInfo *TTI; + + SCEVExpander SCEVExp; + SCEVExpander MemCheckExp; + + bool CostTooHigh = false; + +public: + GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, + TargetTransformInfo *TTI, const DataLayout &DL) + : DT(DT), LI(LI), TTI(TTI), SCEVExp(SE, DL, "scev.check"), + MemCheckExp(SE, DL, "scev.check") {} + + /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can + /// accurately estimate the cost of the runtime checks. The blocks are + /// un-linked from the IR and is added back during vector code generation. If + /// there is no vector code generation, the check blocks are removed + /// completely. + void Create(Loop *L, const LoopAccessInfo &LAI, + const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) { + + // Hard cutoff to limit compile-time increase in case a very large number of + // runtime checks needs to be generated. + // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to + // profile info. + CostTooHigh = + LAI.getNumRuntimePointerChecks() > VectorizeMemoryCheckThreshold; + if (CostTooHigh) + return; + + BasicBlock *LoopHeader = L->getHeader(); + BasicBlock *Preheader = L->getLoopPreheader(); + + // Use SplitBlock to create blocks for SCEV & memory runtime checks to + // ensure the blocks are properly added to LoopInfo & DominatorTree. Those + // may be used by SCEVExpander. The blocks will be un-linked from their + // predecessors and removed from LI & DT at the end of the function. + if (!UnionPred.isAlwaysTrue()) { + SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, + nullptr, "vector.scevcheck"); + + SCEVCheckCond = SCEVExp.expandCodeForPredicate( + &UnionPred, SCEVCheckBlock->getTerminator()); + } + + const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); + if (RtPtrChecking.Need) { + auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; + MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, + "vector.memcheck"); + + auto DiffChecks = RtPtrChecking.getDiffChecks(); + if (DiffChecks) { + Value *RuntimeVF = nullptr; + MemRuntimeCheckCond = addDiffRuntimeChecks( + MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp, + [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) { + if (!RuntimeVF) + RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF); + return RuntimeVF; + }, + IC); + } else { + MemRuntimeCheckCond = + addRuntimeChecks(MemCheckBlock->getTerminator(), L, + RtPtrChecking.getChecks(), MemCheckExp); + } + assert(MemRuntimeCheckCond && + "no RT checks generated although RtPtrChecking " + "claimed checks are required"); + } + + if (!MemCheckBlock && !SCEVCheckBlock) + return; + + // Unhook the temporary block with the checks, update various places + // accordingly. + if (SCEVCheckBlock) + SCEVCheckBlock->replaceAllUsesWith(Preheader); + if (MemCheckBlock) + MemCheckBlock->replaceAllUsesWith(Preheader); + + if (SCEVCheckBlock) { + SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); + new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); + Preheader->getTerminator()->eraseFromParent(); + } + if (MemCheckBlock) { + MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); + new UnreachableInst(Preheader->getContext(), MemCheckBlock); + Preheader->getTerminator()->eraseFromParent(); + } + + DT->changeImmediateDominator(LoopHeader, Preheader); + if (MemCheckBlock) { + DT->eraseNode(MemCheckBlock); + LI->removeBlock(MemCheckBlock); + } + if (SCEVCheckBlock) { + DT->eraseNode(SCEVCheckBlock); + LI->removeBlock(SCEVCheckBlock); + } + } + + InstructionCost getCost() { + if (SCEVCheckBlock || MemCheckBlock) + LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n"); + + if (CostTooHigh) { + InstructionCost Cost; + Cost.setInvalid(); + LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n"); + return Cost; + } + + InstructionCost RTCheckCost = 0; + if (SCEVCheckBlock) + for (Instruction &I : *SCEVCheckBlock) { + if (SCEVCheckBlock->getTerminator() == &I) + continue; + InstructionCost C = + TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); + LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); + RTCheckCost += C; + } + if (MemCheckBlock) + for (Instruction &I : *MemCheckBlock) { + if (MemCheckBlock->getTerminator() == &I) + continue; + InstructionCost C = + TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); + LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); + RTCheckCost += C; + } + + if (SCEVCheckBlock || MemCheckBlock) + LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost + << "\n"); + + return RTCheckCost; + } + + /// Remove the created SCEV & memory runtime check blocks & instructions, if + /// unused. + ~GeneratedRTChecks() { + SCEVExpanderCleaner SCEVCleaner(SCEVExp); + SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); + if (!SCEVCheckCond) + SCEVCleaner.markResultUsed(); + + if (!MemRuntimeCheckCond) + MemCheckCleaner.markResultUsed(); + + if (MemRuntimeCheckCond) { + auto &SE = *MemCheckExp.getSE(); + // Memory runtime check generation creates compares that use expanded + // values. Remove them before running the SCEVExpanderCleaners. + for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { + if (MemCheckExp.isInsertedInstruction(&I)) + continue; + SE.forgetValue(&I); + I.eraseFromParent(); + } + } + MemCheckCleaner.cleanup(); + SCEVCleaner.cleanup(); + + if (SCEVCheckCond) + SCEVCheckBlock->eraseFromParent(); + if (MemRuntimeCheckCond) + MemCheckBlock->eraseFromParent(); + } + + /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and + /// adjusts the branches to branch to the vector preheader or \p Bypass, + /// depending on the generated condition. + BasicBlock *emitSCEVChecks(BasicBlock *Bypass, + BasicBlock *LoopVectorPreHeader, + BasicBlock *LoopExitBlock) { + if (!SCEVCheckCond) + return nullptr; + + Value *Cond = SCEVCheckCond; + // Mark the check as used, to prevent it from being removed during cleanup. + SCEVCheckCond = nullptr; + if (auto *C = dyn_cast<ConstantInt>(Cond)) + if (C->isZero()) + return nullptr; + + auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); + + BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); + // Create new preheader for vector loop. + if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) + PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); + + SCEVCheckBlock->getTerminator()->eraseFromParent(); + SCEVCheckBlock->moveBefore(LoopVectorPreHeader); + Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, + SCEVCheckBlock); + + DT->addNewBlock(SCEVCheckBlock, Pred); + DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); + + ReplaceInstWithInst(SCEVCheckBlock->getTerminator(), + BranchInst::Create(Bypass, LoopVectorPreHeader, Cond)); + return SCEVCheckBlock; + } + + /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts + /// the branches to branch to the vector preheader or \p Bypass, depending on + /// the generated condition. + BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, + BasicBlock *LoopVectorPreHeader) { + // Check if we generated code that checks in runtime if arrays overlap. + if (!MemRuntimeCheckCond) + return nullptr; + + auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); + Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, + MemCheckBlock); + + DT->addNewBlock(MemCheckBlock, Pred); + DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); + MemCheckBlock->moveBefore(LoopVectorPreHeader); + + if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) + PL->addBasicBlockToLoop(MemCheckBlock, *LI); + + ReplaceInstWithInst( + MemCheckBlock->getTerminator(), + BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); + MemCheckBlock->getTerminator()->setDebugLoc( + Pred->getTerminator()->getDebugLoc()); + + // Mark the check as used, to prevent it from being removed during cleanup. + MemRuntimeCheckCond = nullptr; + return MemCheckBlock; + } +}; +} // namespace + +// Return true if \p OuterLp is an outer loop annotated with hints for explicit +// vectorization. The loop needs to be annotated with #pragma omp simd +// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the +// vector length information is not provided, vectorization is not considered +// explicit. Interleave hints are not allowed either. These limitations will be +// relaxed in the future. +// Please, note that we are currently forced to abuse the pragma 'clang +// vectorize' semantics. This pragma provides *auto-vectorization hints* +// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' +// provides *explicit vectorization hints* (LV can bypass legal checks and +// assume that vectorization is legal). However, both hints are implemented +// using the same metadata (llvm.loop.vectorize, processed by +// LoopVectorizeHints). This will be fixed in the future when the native IR +// representation for pragma 'omp simd' is introduced. +static bool isExplicitVecOuterLoop(Loop *OuterLp, + OptimizationRemarkEmitter *ORE) { + assert(!OuterLp->isInnermost() && "This is not an outer loop"); + LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); + + // Only outer loops with an explicit vectorization hint are supported. + // Unannotated outer loops are ignored. + if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) + return false; + + Function *Fn = OuterLp->getHeader()->getParent(); + if (!Hints.allowVectorization(Fn, OuterLp, + true /*VectorizeOnlyWhenForced*/)) { + LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); + return false; + } + + if (Hints.getInterleave() > 1) { + // TODO: Interleave support is future work. + LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " + "outer loops.\n"); + Hints.emitRemarkWithHints(); + return false; + } + + return true; +} + +static void collectSupportedLoops(Loop &L, LoopInfo *LI, + OptimizationRemarkEmitter *ORE, + SmallVectorImpl<Loop *> &V) { + // Collect inner loops and outer loops without irreducible control flow. For + // now, only collect outer loops that have explicit vectorization hints. If we + // are stress testing the VPlan H-CFG construction, we collect the outermost + // loop of every loop nest. + if (L.isInnermost() || VPlanBuildStressTest || + (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { + LoopBlocksRPO RPOT(&L); + RPOT.perform(LI); + if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { + V.push_back(&L); + // TODO: Collect inner loops inside marked outer loops in case + // vectorization fails for the outer loop. Do not invoke + // 'containsIrreducibleCFG' again for inner loops when the outer loop is + // already known to be reducible. We can use an inherited attribute for + // that. + return; + } + } + for (Loop *InnerL : L) + collectSupportedLoops(*InnerL, LI, ORE, V); +} + +namespace { + +/// The LoopVectorize Pass. +struct LoopVectorize : public FunctionPass { + /// Pass identification, replacement for typeid + static char ID; + + LoopVectorizePass Impl; + + explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, + bool VectorizeOnlyWhenForced = false) + : FunctionPass(ID), + Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { + initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); + } + + bool runOnFunction(Function &F) override { + if (skipFunction(F)) + return false; + + auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); + auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); + auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; + auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); + auto &LAIs = getAnalysis<LoopAccessLegacyAnalysis>().getLAIs(); + auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); + auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); + auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); + + return Impl + .runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AC, LAIs, *ORE, PSI) + .MadeAnyChange; + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<AssumptionCacheTracker>(); + AU.addRequired<BlockFrequencyInfoWrapperPass>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<LoopInfoWrapperPass>(); + AU.addRequired<ScalarEvolutionWrapperPass>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + AU.addRequired<LoopAccessLegacyAnalysis>(); + AU.addRequired<DemandedBitsWrapperPass>(); + AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); + AU.addRequired<InjectTLIMappingsLegacy>(); + + // We currently do not preserve loopinfo/dominator analyses with outer loop + // vectorization. Until this is addressed, mark these analyses as preserved + // only for non-VPlan-native path. + // TODO: Preserve Loop and Dominator analyses for VPlan-native path. + if (!EnableVPlanNativePath) { + AU.addPreserved<LoopInfoWrapperPass>(); + AU.addPreserved<DominatorTreeWrapperPass>(); + } + + AU.addPreserved<BasicAAWrapperPass>(); + AU.addPreserved<GlobalsAAWrapperPass>(); + AU.addRequired<ProfileSummaryInfoWrapperPass>(); + } +}; + +} // end anonymous namespace + +//===----------------------------------------------------------------------===// +// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and +// LoopVectorizationCostModel and LoopVectorizationPlanner. +//===----------------------------------------------------------------------===// + +Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { + // We need to place the broadcast of invariant variables outside the loop, + // but only if it's proven safe to do so. Else, broadcast will be inside + // vector loop body. + Instruction *Instr = dyn_cast<Instruction>(V); + bool SafeToHoist = OrigLoop->isLoopInvariant(V) && + (!Instr || + DT->dominates(Instr->getParent(), LoopVectorPreHeader)); + // Place the code for broadcasting invariant variables in the new preheader. + IRBuilder<>::InsertPointGuard Guard(Builder); + if (SafeToHoist) + Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); + + // Broadcast the scalar into all locations in the vector. + Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); + + return Shuf; +} + +/// This function adds +/// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) +/// to each vector element of Val. The sequence starts at StartIndex. +/// \p Opcode is relevant for FP induction variable. +static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, + Instruction::BinaryOps BinOp, ElementCount VF, + IRBuilderBase &Builder) { + assert(VF.isVector() && "only vector VFs are supported"); + + // Create and check the types. + auto *ValVTy = cast<VectorType>(Val->getType()); + ElementCount VLen = ValVTy->getElementCount(); + + Type *STy = Val->getType()->getScalarType(); + assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && + "Induction Step must be an integer or FP"); + assert(Step->getType() == STy && "Step has wrong type"); + + SmallVector<Constant *, 8> Indices; + + // Create a vector of consecutive numbers from zero to VF. + VectorType *InitVecValVTy = ValVTy; + if (STy->isFloatingPointTy()) { + Type *InitVecValSTy = + IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); + InitVecValVTy = VectorType::get(InitVecValSTy, VLen); + } + Value *InitVec = Builder.CreateStepVector(InitVecValVTy); + + // Splat the StartIdx + Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); + + if (STy->isIntegerTy()) { + InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); + Step = Builder.CreateVectorSplat(VLen, Step); + assert(Step->getType() == Val->getType() && "Invalid step vec"); + // FIXME: The newly created binary instructions should contain nsw/nuw + // flags, which can be found from the original scalar operations. + Step = Builder.CreateMul(InitVec, Step); + return Builder.CreateAdd(Val, Step, "induction"); + } + + // Floating point induction. + assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && + "Binary Opcode should be specified for FP induction"); + InitVec = Builder.CreateUIToFP(InitVec, ValVTy); + InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); + + Step = Builder.CreateVectorSplat(VLen, Step); + Value *MulOp = Builder.CreateFMul(InitVec, Step); + return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); +} + +/// Compute scalar induction steps. \p ScalarIV is the scalar induction +/// variable on which to base the steps, \p Step is the size of the step. +static void buildScalarSteps(Value *ScalarIV, Value *Step, + const InductionDescriptor &ID, VPValue *Def, + VPTransformState &State) { + IRBuilderBase &Builder = State.Builder; + + // Ensure step has the same type as that of scalar IV. + Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); + if (ScalarIVTy != Step->getType()) { + // TODO: Also use VPDerivedIVRecipe when only the step needs truncating, to + // avoid separate truncate here. + assert(Step->getType()->isIntegerTy() && + "Truncation requires an integer step"); + Step = State.Builder.CreateTrunc(Step, ScalarIVTy); + } + + // We build scalar steps for both integer and floating-point induction + // variables. Here, we determine the kind of arithmetic we will perform. + Instruction::BinaryOps AddOp; + Instruction::BinaryOps MulOp; + if (ScalarIVTy->isIntegerTy()) { + AddOp = Instruction::Add; + MulOp = Instruction::Mul; + } else { + AddOp = ID.getInductionOpcode(); + MulOp = Instruction::FMul; + } + + // Determine the number of scalars we need to generate for each unroll + // iteration. + bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); + // Compute the scalar steps and save the results in State. + Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), + ScalarIVTy->getScalarSizeInBits()); + Type *VecIVTy = nullptr; + Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; + if (!FirstLaneOnly && State.VF.isScalable()) { + VecIVTy = VectorType::get(ScalarIVTy, State.VF); + UnitStepVec = + Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); + SplatStep = Builder.CreateVectorSplat(State.VF, Step); + SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); + } + + unsigned StartPart = 0; + unsigned EndPart = State.UF; + unsigned StartLane = 0; + unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); + if (State.Instance) { + StartPart = State.Instance->Part; + EndPart = StartPart + 1; + StartLane = State.Instance->Lane.getKnownLane(); + EndLane = StartLane + 1; + } + for (unsigned Part = StartPart; Part < EndPart; ++Part) { + Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); + + if (!FirstLaneOnly && State.VF.isScalable()) { + auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); + auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); + if (ScalarIVTy->isFloatingPointTy()) + InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); + auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); + auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); + State.set(Def, Add, Part); + // It's useful to record the lane values too for the known minimum number + // of elements so we do those below. This improves the code quality when + // trying to extract the first element, for example. + } + + if (ScalarIVTy->isFloatingPointTy()) + StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); + + for (unsigned Lane = StartLane; Lane < EndLane; ++Lane) { + Value *StartIdx = Builder.CreateBinOp( + AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); + // The step returned by `createStepForVF` is a runtime-evaluated value + // when VF is scalable. Otherwise, it should be folded into a Constant. + assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && + "Expected StartIdx to be folded to a constant when VF is not " + "scalable"); + auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); + auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); + State.set(Def, Add, VPIteration(Part, Lane)); + } + } +} + +// Generate code for the induction step. Note that induction steps are +// required to be loop-invariant +static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, + Instruction *InsertBefore, + Loop *OrigLoop = nullptr) { + const DataLayout &DL = SE.getDataLayout(); + assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && + "Induction step should be loop invariant"); + if (auto *E = dyn_cast<SCEVUnknown>(Step)) + return E->getValue(); + + SCEVExpander Exp(SE, DL, "induction"); + return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); +} + +/// Compute the transformed value of Index at offset StartValue using step +/// StepValue. +/// For integer induction, returns StartValue + Index * StepValue. +/// For pointer induction, returns StartValue[Index * StepValue]. +/// FIXME: The newly created binary instructions should contain nsw/nuw +/// flags, which can be found from the original scalar operations. +static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, + Value *StartValue, Value *Step, + const InductionDescriptor &ID) { + Type *StepTy = Step->getType(); + Value *CastedIndex = StepTy->isIntegerTy() + ? B.CreateSExtOrTrunc(Index, StepTy) + : B.CreateCast(Instruction::SIToFP, Index, StepTy); + if (CastedIndex != Index) { + CastedIndex->setName(CastedIndex->getName() + ".cast"); + Index = CastedIndex; + } + + // Note: the IR at this point is broken. We cannot use SE to create any new + // SCEV and then expand it, hoping that SCEV's simplification will give us + // a more optimal code. Unfortunately, attempt of doing so on invalid IR may + // lead to various SCEV crashes. So all we can do is to use builder and rely + // on InstCombine for future simplifications. Here we handle some trivial + // cases only. + auto CreateAdd = [&B](Value *X, Value *Y) { + assert(X->getType() == Y->getType() && "Types don't match!"); + if (auto *CX = dyn_cast<ConstantInt>(X)) + if (CX->isZero()) + return Y; + if (auto *CY = dyn_cast<ConstantInt>(Y)) + if (CY->isZero()) + return X; + return B.CreateAdd(X, Y); + }; + + // We allow X to be a vector type, in which case Y will potentially be + // splatted into a vector with the same element count. + auto CreateMul = [&B](Value *X, Value *Y) { + assert(X->getType()->getScalarType() == Y->getType() && + "Types don't match!"); + if (auto *CX = dyn_cast<ConstantInt>(X)) + if (CX->isOne()) + return Y; + if (auto *CY = dyn_cast<ConstantInt>(Y)) + if (CY->isOne()) + return X; + VectorType *XVTy = dyn_cast<VectorType>(X->getType()); + if (XVTy && !isa<VectorType>(Y->getType())) + Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); + return B.CreateMul(X, Y); + }; + + switch (ID.getKind()) { + case InductionDescriptor::IK_IntInduction: { + assert(!isa<VectorType>(Index->getType()) && + "Vector indices not supported for integer inductions yet"); + assert(Index->getType() == StartValue->getType() && + "Index type does not match StartValue type"); + if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) + return B.CreateSub(StartValue, Index); + auto *Offset = CreateMul(Index, Step); + return CreateAdd(StartValue, Offset); + } + case InductionDescriptor::IK_PtrInduction: { + assert(isa<Constant>(Step) && + "Expected constant step for pointer induction"); + return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); + } + case InductionDescriptor::IK_FpInduction: { + assert(!isa<VectorType>(Index->getType()) && + "Vector indices not supported for FP inductions yet"); + assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); + auto InductionBinOp = ID.getInductionBinOp(); + assert(InductionBinOp && + (InductionBinOp->getOpcode() == Instruction::FAdd || + InductionBinOp->getOpcode() == Instruction::FSub) && + "Original bin op should be defined for FP induction"); + + Value *MulExp = B.CreateFMul(Step, Index); + return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, + "induction"); + } + case InductionDescriptor::IK_NoInduction: + return nullptr; + } + llvm_unreachable("invalid enum"); +} + +void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, + const VPIteration &Instance, + VPTransformState &State) { + Value *ScalarInst = State.get(Def, Instance); + Value *VectorValue = State.get(Def, Instance.Part); + VectorValue = Builder.CreateInsertElement( + VectorValue, ScalarInst, + Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); + State.set(Def, VectorValue, Instance.Part); +} + +// Return whether we allow using masked interleave-groups (for dealing with +// strided loads/stores that reside in predicated blocks, or for dealing +// with gaps). +static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { + // If an override option has been passed in for interleaved accesses, use it. + if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) + return EnableMaskedInterleavedMemAccesses; + + return TTI.enableMaskedInterleavedAccessVectorization(); +} + +// Try to vectorize the interleave group that \p Instr belongs to. +// +// E.g. Translate following interleaved load group (factor = 3): +// for (i = 0; i < N; i+=3) { +// R = Pic[i]; // Member of index 0 +// G = Pic[i+1]; // Member of index 1 +// B = Pic[i+2]; // Member of index 2 +// ... // do something to R, G, B +// } +// To: +// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B +// %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements +// %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements +// %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements +// +// Or translate following interleaved store group (factor = 3): +// for (i = 0; i < N; i+=3) { +// ... do something to R, G, B +// Pic[i] = R; // Member of index 0 +// Pic[i+1] = G; // Member of index 1 +// Pic[i+2] = B; // Member of index 2 +// } +// To: +// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> +// %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> +// %interleaved.vec = shuffle %R_G.vec, %B_U.vec, +// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements +// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B +void InnerLoopVectorizer::vectorizeInterleaveGroup( + const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, + VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, + VPValue *BlockInMask) { + Instruction *Instr = Group->getInsertPos(); + const DataLayout &DL = Instr->getModule()->getDataLayout(); + + // Prepare for the vector type of the interleaved load/store. + Type *ScalarTy = getLoadStoreType(Instr); + unsigned InterleaveFactor = Group->getFactor(); + assert(!VF.isScalable() && "scalable vectors not yet supported."); + auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); + + // Prepare for the new pointers. + SmallVector<Value *, 2> AddrParts; + unsigned Index = Group->getIndex(Instr); + + // TODO: extend the masked interleaved-group support to reversed access. + assert((!BlockInMask || !Group->isReverse()) && + "Reversed masked interleave-group not supported."); + + // If the group is reverse, adjust the index to refer to the last vector lane + // instead of the first. We adjust the index from the first vector lane, + // rather than directly getting the pointer for lane VF - 1, because the + // pointer operand of the interleaved access is supposed to be uniform. For + // uniform instructions, we're only required to generate a value for the + // first vector lane in each unroll iteration. + if (Group->isReverse()) + Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); + + for (unsigned Part = 0; Part < UF; Part++) { + Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); + State.setDebugLocFromInst(AddrPart); + + // Notice current instruction could be any index. Need to adjust the address + // to the member of index 0. + // + // E.g. a = A[i+1]; // Member of index 1 (Current instruction) + // b = A[i]; // Member of index 0 + // Current pointer is pointed to A[i+1], adjust it to A[i]. + // + // E.g. A[i+1] = a; // Member of index 1 + // A[i] = b; // Member of index 0 + // A[i+2] = c; // Member of index 2 (Current instruction) + // Current pointer is pointed to A[i+2], adjust it to A[i]. + + bool InBounds = false; + if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) + InBounds = gep->isInBounds(); + AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); + cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); + + // Cast to the vector pointer type. + unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); + Type *PtrTy = VecTy->getPointerTo(AddressSpace); + AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); + } + + State.setDebugLocFromInst(Instr); + Value *PoisonVec = PoisonValue::get(VecTy); + + Value *MaskForGaps = nullptr; + if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { + MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); + assert(MaskForGaps && "Mask for Gaps is required but it is null"); + } + + // Vectorize the interleaved load group. + if (isa<LoadInst>(Instr)) { + // For each unroll part, create a wide load for the group. + SmallVector<Value *, 2> NewLoads; + for (unsigned Part = 0; Part < UF; Part++) { + Instruction *NewLoad; + if (BlockInMask || MaskForGaps) { + assert(useMaskedInterleavedAccesses(*TTI) && + "masked interleaved groups are not allowed."); + Value *GroupMask = MaskForGaps; + if (BlockInMask) { + Value *BlockInMaskPart = State.get(BlockInMask, Part); + Value *ShuffledMask = Builder.CreateShuffleVector( + BlockInMaskPart, + createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), + "interleaved.mask"); + GroupMask = MaskForGaps + ? Builder.CreateBinOp(Instruction::And, ShuffledMask, + MaskForGaps) + : ShuffledMask; + } + NewLoad = + Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), + GroupMask, PoisonVec, "wide.masked.vec"); + } + else + NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], + Group->getAlign(), "wide.vec"); + Group->addMetadata(NewLoad); + NewLoads.push_back(NewLoad); + } + + // For each member in the group, shuffle out the appropriate data from the + // wide loads. + unsigned J = 0; + for (unsigned I = 0; I < InterleaveFactor; ++I) { + Instruction *Member = Group->getMember(I); + + // Skip the gaps in the group. + if (!Member) + continue; + + auto StrideMask = + createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); + for (unsigned Part = 0; Part < UF; Part++) { + Value *StridedVec = Builder.CreateShuffleVector( + NewLoads[Part], StrideMask, "strided.vec"); + + // If this member has different type, cast the result type. + if (Member->getType() != ScalarTy) { + assert(!VF.isScalable() && "VF is assumed to be non scalable."); + VectorType *OtherVTy = VectorType::get(Member->getType(), VF); + StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); + } + + if (Group->isReverse()) + StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); + + State.set(VPDefs[J], StridedVec, Part); + } + ++J; + } + return; + } + + // The sub vector type for current instruction. + auto *SubVT = VectorType::get(ScalarTy, VF); + + // Vectorize the interleaved store group. + MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); + assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && + "masked interleaved groups are not allowed."); + assert((!MaskForGaps || !VF.isScalable()) && + "masking gaps for scalable vectors is not yet supported."); + for (unsigned Part = 0; Part < UF; Part++) { + // Collect the stored vector from each member. + SmallVector<Value *, 4> StoredVecs; + unsigned StoredIdx = 0; + for (unsigned i = 0; i < InterleaveFactor; i++) { + assert((Group->getMember(i) || MaskForGaps) && + "Fail to get a member from an interleaved store group"); + Instruction *Member = Group->getMember(i); + + // Skip the gaps in the group. + if (!Member) { + Value *Undef = PoisonValue::get(SubVT); + StoredVecs.push_back(Undef); + continue; + } + + Value *StoredVec = State.get(StoredValues[StoredIdx], Part); + ++StoredIdx; + + if (Group->isReverse()) + StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); + + // If this member has different type, cast it to a unified type. + + if (StoredVec->getType() != SubVT) + StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); + + StoredVecs.push_back(StoredVec); + } + + // Concatenate all vectors into a wide vector. + Value *WideVec = concatenateVectors(Builder, StoredVecs); + + // Interleave the elements in the wide vector. + Value *IVec = Builder.CreateShuffleVector( + WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), + "interleaved.vec"); + + Instruction *NewStoreInstr; + if (BlockInMask || MaskForGaps) { + Value *GroupMask = MaskForGaps; + if (BlockInMask) { + Value *BlockInMaskPart = State.get(BlockInMask, Part); + Value *ShuffledMask = Builder.CreateShuffleVector( + BlockInMaskPart, + createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), + "interleaved.mask"); + GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, + ShuffledMask, MaskForGaps) + : ShuffledMask; + } + NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], + Group->getAlign(), GroupMask); + } else + NewStoreInstr = + Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); + + Group->addMetadata(NewStoreInstr); + } +} + +void InnerLoopVectorizer::scalarizeInstruction(const Instruction *Instr, + VPReplicateRecipe *RepRecipe, + const VPIteration &Instance, + bool IfPredicateInstr, + VPTransformState &State) { + assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); + + // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for + // the first lane and part. + if (isa<NoAliasScopeDeclInst>(Instr)) + if (!Instance.isFirstIteration()) + return; + + // Does this instruction return a value ? + bool IsVoidRetTy = Instr->getType()->isVoidTy(); + + Instruction *Cloned = Instr->clone(); + if (!IsVoidRetTy) + Cloned->setName(Instr->getName() + ".cloned"); + + // If the scalarized instruction contributes to the address computation of a + // widen masked load/store which was in a basic block that needed predication + // and is not predicated after vectorization, we can't propagate + // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized + // instruction could feed a poison value to the base address of the widen + // load/store. + if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) + Cloned->dropPoisonGeneratingFlags(); + + if (Instr->getDebugLoc()) + State.setDebugLocFromInst(Instr); + + // Replace the operands of the cloned instructions with their scalar + // equivalents in the new loop. + for (const auto &I : enumerate(RepRecipe->operands())) { + auto InputInstance = Instance; + VPValue *Operand = I.value(); + if (vputils::isUniformAfterVectorization(Operand)) + InputInstance.Lane = VPLane::getFirstLane(); + Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); + } + State.addNewMetadata(Cloned, Instr); + + // Place the cloned scalar in the new loop. + State.Builder.Insert(Cloned); + + State.set(RepRecipe, Cloned, Instance); + + // If we just cloned a new assumption, add it the assumption cache. + if (auto *II = dyn_cast<AssumeInst>(Cloned)) + AC->registerAssumption(II); + + // End if-block. + if (IfPredicateInstr) + PredicatedInstructions.push_back(Cloned); +} + +Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { + if (TripCount) + return TripCount; + + assert(InsertBlock); + IRBuilder<> Builder(InsertBlock->getTerminator()); + // Find the loop boundaries. + Type *IdxTy = Legal->getWidestInductionType(); + assert(IdxTy && "No type for induction"); + const SCEV *ExitCount = createTripCountSCEV(IdxTy, PSE); + + const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); + + // Expand the trip count and place the new instructions in the preheader. + // Notice that the pre-header does not change, only the loop body. + SCEVExpander Exp(*PSE.getSE(), DL, "induction"); + + // Count holds the overall loop count (N). + TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), + InsertBlock->getTerminator()); + + if (TripCount->getType()->isPointerTy()) + TripCount = + CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", + InsertBlock->getTerminator()); + + return TripCount; +} + +Value * +InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { + if (VectorTripCount) + return VectorTripCount; + + Value *TC = getOrCreateTripCount(InsertBlock); + IRBuilder<> Builder(InsertBlock->getTerminator()); + + Type *Ty = TC->getType(); + // This is where we can make the step a runtime constant. + Value *Step = createStepForVF(Builder, Ty, VF, UF); + + // If the tail is to be folded by masking, round the number of iterations N + // up to a multiple of Step instead of rounding down. This is done by first + // adding Step-1 and then rounding down. Note that it's ok if this addition + // overflows: the vector induction variable will eventually wrap to zero given + // that it starts at zero and its Step is a power of two; the loop will then + // exit, with the last early-exit vector comparison also producing all-true. + // For scalable vectors the VF is not guaranteed to be a power of 2, but this + // is accounted for in emitIterationCountCheck that adds an overflow check. + if (Cost->foldTailByMasking()) { + assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && + "VF*UF must be a power of 2 when folding tail by masking"); + Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); + TC = Builder.CreateAdd( + TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); + } + + // Now we need to generate the expression for the part of the loop that the + // vectorized body will execute. This is equal to N - (N % Step) if scalar + // iterations are not required for correctness, or N - Step, otherwise. Step + // is equal to the vectorization factor (number of SIMD elements) times the + // unroll factor (number of SIMD instructions). + Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); + + // There are cases where we *must* run at least one iteration in the remainder + // loop. See the cost model for when this can happen. If the step evenly + // divides the trip count, we set the remainder to be equal to the step. If + // the step does not evenly divide the trip count, no adjustment is necessary + // since there will already be scalar iterations. Note that the minimum + // iterations check ensures that N >= Step. + if (Cost->requiresScalarEpilogue(VF)) { + auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); + R = Builder.CreateSelect(IsZero, Step, R); + } + + VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); + + return VectorTripCount; +} + +Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, + const DataLayout &DL) { + // Verify that V is a vector type with same number of elements as DstVTy. + auto *DstFVTy = cast<FixedVectorType>(DstVTy); + unsigned VF = DstFVTy->getNumElements(); + auto *SrcVecTy = cast<FixedVectorType>(V->getType()); + assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); + Type *SrcElemTy = SrcVecTy->getElementType(); + Type *DstElemTy = DstFVTy->getElementType(); + assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && + "Vector elements must have same size"); + + // Do a direct cast if element types are castable. + if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { + return Builder.CreateBitOrPointerCast(V, DstFVTy); + } + // V cannot be directly casted to desired vector type. + // May happen when V is a floating point vector but DstVTy is a vector of + // pointers or vice-versa. Handle this using a two-step bitcast using an + // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. + assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && + "Only one type should be a pointer type"); + assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && + "Only one type should be a floating point type"); + Type *IntTy = + IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); + auto *VecIntTy = FixedVectorType::get(IntTy, VF); + Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); + return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); +} + +void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) { + Value *Count = getOrCreateTripCount(LoopVectorPreHeader); + // Reuse existing vector loop preheader for TC checks. + // Note that new preheader block is generated for vector loop. + BasicBlock *const TCCheckBlock = LoopVectorPreHeader; + IRBuilder<> Builder(TCCheckBlock->getTerminator()); + + // Generate code to check if the loop's trip count is less than VF * UF, or + // equal to it in case a scalar epilogue is required; this implies that the + // vector trip count is zero. This check also covers the case where adding one + // to the backedge-taken count overflowed leading to an incorrect trip count + // of zero. In this case we will also jump to the scalar loop. + auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE + : ICmpInst::ICMP_ULT; + + // If tail is to be folded, vector loop takes care of all iterations. + Type *CountTy = Count->getType(); + Value *CheckMinIters = Builder.getFalse(); + auto CreateStep = [&]() -> Value * { + // Create step with max(MinProTripCount, UF * VF). + if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue()) + return createStepForVF(Builder, CountTy, VF, UF); + + Value *MinProfTC = + createStepForVF(Builder, CountTy, MinProfitableTripCount, 1); + if (!VF.isScalable()) + return MinProfTC; + return Builder.CreateBinaryIntrinsic( + Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF)); + }; + + if (!Cost->foldTailByMasking()) + CheckMinIters = + Builder.CreateICmp(P, Count, CreateStep(), "min.iters.check"); + else if (VF.isScalable()) { + // vscale is not necessarily a power-of-2, which means we cannot guarantee + // an overflow to zero when updating induction variables and so an + // additional overflow check is required before entering the vector loop. + + // Get the maximum unsigned value for the type. + Value *MaxUIntTripCount = + ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask()); + Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count); + + // Don't execute the vector loop if (UMax - n) < (VF * UF). + CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep()); + } + + // Create new preheader for vector loop. + LoopVectorPreHeader = + SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, + "vector.ph"); + + assert(DT->properlyDominates(DT->getNode(TCCheckBlock), + DT->getNode(Bypass)->getIDom()) && + "TC check is expected to dominate Bypass"); + + // Update dominator for Bypass & LoopExit (if needed). + DT->changeImmediateDominator(Bypass, TCCheckBlock); + if (!Cost->requiresScalarEpilogue(VF)) + // If there is an epilogue which must run, there's no edge from the + // middle block to exit blocks and thus no need to update the immediate + // dominator of the exit blocks. + DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); + + ReplaceInstWithInst( + TCCheckBlock->getTerminator(), + BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); + LoopBypassBlocks.push_back(TCCheckBlock); +} + +BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { + BasicBlock *const SCEVCheckBlock = + RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); + if (!SCEVCheckBlock) + return nullptr; + + assert(!(SCEVCheckBlock->getParent()->hasOptSize() || + (OptForSizeBasedOnProfile && + Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && + "Cannot SCEV check stride or overflow when optimizing for size"); + + + // Update dominator only if this is first RT check. + if (LoopBypassBlocks.empty()) { + DT->changeImmediateDominator(Bypass, SCEVCheckBlock); + if (!Cost->requiresScalarEpilogue(VF)) + // If there is an epilogue which must run, there's no edge from the + // middle block to exit blocks and thus no need to update the immediate + // dominator of the exit blocks. + DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); + } + + LoopBypassBlocks.push_back(SCEVCheckBlock); + AddedSafetyChecks = true; + return SCEVCheckBlock; +} + +BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { + // VPlan-native path does not do any analysis for runtime checks currently. + if (EnableVPlanNativePath) + return nullptr; + + BasicBlock *const MemCheckBlock = + RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); + + // Check if we generated code that checks in runtime if arrays overlap. We put + // the checks into a separate block to make the more common case of few + // elements faster. + if (!MemCheckBlock) + return nullptr; + + if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { + assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && + "Cannot emit memory checks when optimizing for size, unless forced " + "to vectorize."); + ORE->emit([&]() { + return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", + OrigLoop->getStartLoc(), + OrigLoop->getHeader()) + << "Code-size may be reduced by not forcing " + "vectorization, or by source-code modifications " + "eliminating the need for runtime checks " + "(e.g., adding 'restrict')."; + }); + } + + LoopBypassBlocks.push_back(MemCheckBlock); + + AddedSafetyChecks = true; + + return MemCheckBlock; +} + +void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { + LoopScalarBody = OrigLoop->getHeader(); + LoopVectorPreHeader = OrigLoop->getLoopPreheader(); + assert(LoopVectorPreHeader && "Invalid loop structure"); + LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr + assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && + "multiple exit loop without required epilogue?"); + + LoopMiddleBlock = + SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, + LI, nullptr, Twine(Prefix) + "middle.block"); + LoopScalarPreHeader = + SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, + nullptr, Twine(Prefix) + "scalar.ph"); + + auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); + + // Set up the middle block terminator. Two cases: + // 1) If we know that we must execute the scalar epilogue, emit an + // unconditional branch. + // 2) Otherwise, we must have a single unique exit block (due to how we + // implement the multiple exit case). In this case, set up a conditional + // branch from the middle block to the loop scalar preheader, and the + // exit block. completeLoopSkeleton will update the condition to use an + // iteration check, if required to decide whether to execute the remainder. + BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? + BranchInst::Create(LoopScalarPreHeader) : + BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, + Builder.getTrue()); + BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); + ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); + + // Update dominator for loop exit. During skeleton creation, only the vector + // pre-header and the middle block are created. The vector loop is entirely + // created during VPlan exection. + if (!Cost->requiresScalarEpilogue(VF)) + // If there is an epilogue which must run, there's no edge from the + // middle block to exit blocks and thus no need to update the immediate + // dominator of the exit blocks. + DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); +} + +PHINode *InnerLoopVectorizer::createInductionResumeValue( + PHINode *OrigPhi, const InductionDescriptor &II, + ArrayRef<BasicBlock *> BypassBlocks, + std::pair<BasicBlock *, Value *> AdditionalBypass) { + Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); + assert(VectorTripCount && "Expected valid arguments"); + + Instruction *OldInduction = Legal->getPrimaryInduction(); + Value *&EndValue = IVEndValues[OrigPhi]; + Value *EndValueFromAdditionalBypass = AdditionalBypass.second; + if (OrigPhi == OldInduction) { + // We know what the end value is. + EndValue = VectorTripCount; + } else { + IRBuilder<> B(LoopVectorPreHeader->getTerminator()); + + // Fast-math-flags propagate from the original induction instruction. + if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) + B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); + + Value *Step = + CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); + EndValue = + emitTransformedIndex(B, VectorTripCount, II.getStartValue(), Step, II); + EndValue->setName("ind.end"); + + // Compute the end value for the additional bypass (if applicable). + if (AdditionalBypass.first) { + B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); + Value *Step = + CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); + EndValueFromAdditionalBypass = emitTransformedIndex( + B, AdditionalBypass.second, II.getStartValue(), Step, II); + EndValueFromAdditionalBypass->setName("ind.end"); + } + } + + // Create phi nodes to merge from the backedge-taken check block. + PHINode *BCResumeVal = PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", + LoopScalarPreHeader->getTerminator()); + // Copy original phi DL over to the new one. + BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); + + // The new PHI merges the original incoming value, in case of a bypass, + // or the value at the end of the vectorized loop. + BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); + + // Fix the scalar body counter (PHI node). + // The old induction's phi node in the scalar body needs the truncated + // value. + for (BasicBlock *BB : BypassBlocks) + BCResumeVal->addIncoming(II.getStartValue(), BB); + + if (AdditionalBypass.first) + BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, + EndValueFromAdditionalBypass); + return BCResumeVal; +} + +void InnerLoopVectorizer::createInductionResumeValues( + std::pair<BasicBlock *, Value *> AdditionalBypass) { + assert(((AdditionalBypass.first && AdditionalBypass.second) || + (!AdditionalBypass.first && !AdditionalBypass.second)) && + "Inconsistent information about additional bypass."); + // We are going to resume the execution of the scalar loop. + // Go over all of the induction variables that we found and fix the + // PHIs that are left in the scalar version of the loop. + // The starting values of PHI nodes depend on the counter of the last + // iteration in the vectorized loop. + // If we come from a bypass edge then we need to start from the original + // start value. + for (const auto &InductionEntry : Legal->getInductionVars()) { + PHINode *OrigPhi = InductionEntry.first; + const InductionDescriptor &II = InductionEntry.second; + PHINode *BCResumeVal = createInductionResumeValue( + OrigPhi, II, LoopBypassBlocks, AdditionalBypass); + OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); + } +} + +BasicBlock *InnerLoopVectorizer::completeLoopSkeleton() { + // The trip counts should be cached by now. + Value *Count = getOrCreateTripCount(LoopVectorPreHeader); + Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); + + auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); + + // Add a check in the middle block to see if we have completed + // all of the iterations in the first vector loop. Three cases: + // 1) If we require a scalar epilogue, there is no conditional branch as + // we unconditionally branch to the scalar preheader. Do nothing. + // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. + // Thus if tail is to be folded, we know we don't need to run the + // remainder and we can use the previous value for the condition (true). + // 3) Otherwise, construct a runtime check. + if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { + Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, + Count, VectorTripCount, "cmp.n", + LoopMiddleBlock->getTerminator()); + + // Here we use the same DebugLoc as the scalar loop latch terminator instead + // of the corresponding compare because they may have ended up with + // different line numbers and we want to avoid awkward line stepping while + // debugging. Eg. if the compare has got a line number inside the loop. + CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); + cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); + } + +#ifdef EXPENSIVE_CHECKS + assert(DT->verify(DominatorTree::VerificationLevel::Fast)); +#endif + + return LoopVectorPreHeader; +} + +std::pair<BasicBlock *, Value *> +InnerLoopVectorizer::createVectorizedLoopSkeleton() { + /* + In this function we generate a new loop. The new loop will contain + the vectorized instructions while the old loop will continue to run the + scalar remainder. + + [ ] <-- loop iteration number check. + / | + / v + | [ ] <-- vector loop bypass (may consist of multiple blocks). + | / | + | / v + || [ ] <-- vector pre header. + |/ | + | v + | [ ] \ + | [ ]_| <-- vector loop (created during VPlan execution). + | | + | v + \ -[ ] <--- middle-block. + \/ | + /\ v + | ->[ ] <--- new preheader. + | | + (opt) v <-- edge from middle to exit iff epilogue is not required. + | [ ] \ + | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). + \ | + \ v + >[ ] <-- exit block(s). + ... + */ + + // Create an empty vector loop, and prepare basic blocks for the runtime + // checks. + createVectorLoopSkeleton(""); + + // Now, compare the new count to zero. If it is zero skip the vector loop and + // jump to the scalar loop. This check also covers the case where the + // backedge-taken count is uint##_max: adding one to it will overflow leading + // to an incorrect trip count of zero. In this (rare) case we will also jump + // to the scalar loop. + emitIterationCountCheck(LoopScalarPreHeader); + + // Generate the code to check any assumptions that we've made for SCEV + // expressions. + emitSCEVChecks(LoopScalarPreHeader); + + // Generate the code that checks in runtime if arrays overlap. We put the + // checks into a separate block to make the more common case of few elements + // faster. + emitMemRuntimeChecks(LoopScalarPreHeader); + + // Emit phis for the new starting index of the scalar loop. + createInductionResumeValues(); + + return {completeLoopSkeleton(), nullptr}; +} + +// Fix up external users of the induction variable. At this point, we are +// in LCSSA form, with all external PHIs that use the IV having one input value, +// coming from the remainder loop. We need those PHIs to also have a correct +// value for the IV when arriving directly from the middle block. +void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, + const InductionDescriptor &II, + Value *VectorTripCount, Value *EndValue, + BasicBlock *MiddleBlock, + BasicBlock *VectorHeader, VPlan &Plan) { + // There are two kinds of external IV usages - those that use the value + // computed in the last iteration (the PHI) and those that use the penultimate + // value (the value that feeds into the phi from the loop latch). + // We allow both, but they, obviously, have different values. + + assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); + + DenseMap<Value *, Value *> MissingVals; + + // An external user of the last iteration's value should see the value that + // the remainder loop uses to initialize its own IV. + Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); + for (User *U : PostInc->users()) { + Instruction *UI = cast<Instruction>(U); + if (!OrigLoop->contains(UI)) { + assert(isa<PHINode>(UI) && "Expected LCSSA form"); + MissingVals[UI] = EndValue; + } + } + + // An external user of the penultimate value need to see EndValue - Step. + // The simplest way to get this is to recompute it from the constituent SCEVs, + // that is Start + (Step * (CRD - 1)). + for (User *U : OrigPhi->users()) { + auto *UI = cast<Instruction>(U); + if (!OrigLoop->contains(UI)) { + assert(isa<PHINode>(UI) && "Expected LCSSA form"); + + IRBuilder<> B(MiddleBlock->getTerminator()); + + // Fast-math-flags propagate from the original induction instruction. + if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) + B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); + + Value *CountMinusOne = B.CreateSub( + VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1)); + CountMinusOne->setName("cmo"); + Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), + VectorHeader->getTerminator()); + Value *Escape = + emitTransformedIndex(B, CountMinusOne, II.getStartValue(), Step, II); + Escape->setName("ind.escape"); + MissingVals[UI] = Escape; + } + } + + for (auto &I : MissingVals) { + PHINode *PHI = cast<PHINode>(I.first); + // One corner case we have to handle is two IVs "chasing" each-other, + // that is %IV2 = phi [...], [ %IV1, %latch ] + // In this case, if IV1 has an external use, we need to avoid adding both + // "last value of IV1" and "penultimate value of IV2". So, verify that we + // don't already have an incoming value for the middle block. + if (PHI->getBasicBlockIndex(MiddleBlock) == -1) { + PHI->addIncoming(I.second, MiddleBlock); + Plan.removeLiveOut(PHI); + } + } +} + +namespace { + +struct CSEDenseMapInfo { + static bool canHandle(const Instruction *I) { + return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || + isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); + } + + static inline Instruction *getEmptyKey() { + return DenseMapInfo<Instruction *>::getEmptyKey(); + } + + static inline Instruction *getTombstoneKey() { + return DenseMapInfo<Instruction *>::getTombstoneKey(); + } + + static unsigned getHashValue(const Instruction *I) { + assert(canHandle(I) && "Unknown instruction!"); + return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), + I->value_op_end())); + } + + static bool isEqual(const Instruction *LHS, const Instruction *RHS) { + if (LHS == getEmptyKey() || RHS == getEmptyKey() || + LHS == getTombstoneKey() || RHS == getTombstoneKey()) + return LHS == RHS; + return LHS->isIdenticalTo(RHS); + } +}; + +} // end anonymous namespace + +///Perform cse of induction variable instructions. +static void cse(BasicBlock *BB) { + // Perform simple cse. + SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; + for (Instruction &In : llvm::make_early_inc_range(*BB)) { + if (!CSEDenseMapInfo::canHandle(&In)) + continue; + + // Check if we can replace this instruction with any of the + // visited instructions. + if (Instruction *V = CSEMap.lookup(&In)) { + In.replaceAllUsesWith(V); + In.eraseFromParent(); + continue; + } + + CSEMap[&In] = &In; + } +} + +InstructionCost +LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, + bool &NeedToScalarize) const { + Function *F = CI->getCalledFunction(); + Type *ScalarRetTy = CI->getType(); + SmallVector<Type *, 4> Tys, ScalarTys; + for (auto &ArgOp : CI->args()) + ScalarTys.push_back(ArgOp->getType()); + + // Estimate cost of scalarized vector call. The source operands are assumed + // to be vectors, so we need to extract individual elements from there, + // execute VF scalar calls, and then gather the result into the vector return + // value. + TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; + InstructionCost ScalarCallCost = + TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, CostKind); + if (VF.isScalar()) + return ScalarCallCost; + + // Compute corresponding vector type for return value and arguments. + Type *RetTy = ToVectorTy(ScalarRetTy, VF); + for (Type *ScalarTy : ScalarTys) + Tys.push_back(ToVectorTy(ScalarTy, VF)); + + // Compute costs of unpacking argument values for the scalar calls and + // packing the return values to a vector. + InstructionCost ScalarizationCost = + getScalarizationOverhead(CI, VF, CostKind); + + InstructionCost Cost = + ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; + + // If we can't emit a vector call for this function, then the currently found + // cost is the cost we need to return. + NeedToScalarize = true; + VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); + Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); + + if (!TLI || CI->isNoBuiltin() || !VecFunc) + return Cost; + + // If the corresponding vector cost is cheaper, return its cost. + InstructionCost VectorCallCost = + TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind); + if (VectorCallCost < Cost) { + NeedToScalarize = false; + Cost = VectorCallCost; + } + return Cost; +} + +static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { + if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) + return Elt; + return VectorType::get(Elt, VF); +} + +InstructionCost +LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, + ElementCount VF) const { + Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); + assert(ID && "Expected intrinsic call!"); + Type *RetTy = MaybeVectorizeType(CI->getType(), VF); + FastMathFlags FMF; + if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) + FMF = FPMO->getFastMathFlags(); + + SmallVector<const Value *> Arguments(CI->args()); + FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); + SmallVector<Type *> ParamTys; + std::transform(FTy->param_begin(), FTy->param_end(), + std::back_inserter(ParamTys), + [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); + + IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, + dyn_cast<IntrinsicInst>(CI)); + return TTI.getIntrinsicInstrCost(CostAttrs, + TargetTransformInfo::TCK_RecipThroughput); +} + +static Type *smallestIntegerVectorType(Type *T1, Type *T2) { + auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); + auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); + return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; +} + +static Type *largestIntegerVectorType(Type *T1, Type *T2) { + auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); + auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); + return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; +} + +void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { + // For every instruction `I` in MinBWs, truncate the operands, create a + // truncated version of `I` and reextend its result. InstCombine runs + // later and will remove any ext/trunc pairs. + SmallPtrSet<Value *, 4> Erased; + for (const auto &KV : Cost->getMinimalBitwidths()) { + // If the value wasn't vectorized, we must maintain the original scalar + // type. The absence of the value from State indicates that it + // wasn't vectorized. + // FIXME: Should not rely on getVPValue at this point. + VPValue *Def = State.Plan->getVPValue(KV.first, true); + if (!State.hasAnyVectorValue(Def)) + continue; + for (unsigned Part = 0; Part < UF; ++Part) { + Value *I = State.get(Def, Part); + if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) + continue; + Type *OriginalTy = I->getType(); + Type *ScalarTruncatedTy = + IntegerType::get(OriginalTy->getContext(), KV.second); + auto *TruncatedTy = VectorType::get( + ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); + if (TruncatedTy == OriginalTy) + continue; + + IRBuilder<> B(cast<Instruction>(I)); + auto ShrinkOperand = [&](Value *V) -> Value * { + if (auto *ZI = dyn_cast<ZExtInst>(V)) + if (ZI->getSrcTy() == TruncatedTy) + return ZI->getOperand(0); + return B.CreateZExtOrTrunc(V, TruncatedTy); + }; + + // The actual instruction modification depends on the instruction type, + // unfortunately. + Value *NewI = nullptr; + if (auto *BO = dyn_cast<BinaryOperator>(I)) { + NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), + ShrinkOperand(BO->getOperand(1))); + + // Any wrapping introduced by shrinking this operation shouldn't be + // considered undefined behavior. So, we can't unconditionally copy + // arithmetic wrapping flags to NewI. + cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); + } else if (auto *CI = dyn_cast<ICmpInst>(I)) { + NewI = + B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), + ShrinkOperand(CI->getOperand(1))); + } else if (auto *SI = dyn_cast<SelectInst>(I)) { + NewI = B.CreateSelect(SI->getCondition(), + ShrinkOperand(SI->getTrueValue()), + ShrinkOperand(SI->getFalseValue())); + } else if (auto *CI = dyn_cast<CastInst>(I)) { + switch (CI->getOpcode()) { + default: + llvm_unreachable("Unhandled cast!"); + case Instruction::Trunc: + NewI = ShrinkOperand(CI->getOperand(0)); + break; + case Instruction::SExt: + NewI = B.CreateSExtOrTrunc( + CI->getOperand(0), + smallestIntegerVectorType(OriginalTy, TruncatedTy)); + break; + case Instruction::ZExt: + NewI = B.CreateZExtOrTrunc( + CI->getOperand(0), + smallestIntegerVectorType(OriginalTy, TruncatedTy)); + break; + } + } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { + auto Elements0 = + cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); + auto *O0 = B.CreateZExtOrTrunc( + SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); + auto Elements1 = + cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); + auto *O1 = B.CreateZExtOrTrunc( + SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); + + NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); + } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { + // Don't do anything with the operands, just extend the result. + continue; + } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { + auto Elements = + cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); + auto *O0 = B.CreateZExtOrTrunc( + IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); + auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); + NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); + } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { + auto Elements = + cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); + auto *O0 = B.CreateZExtOrTrunc( + EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); + NewI = B.CreateExtractElement(O0, EE->getOperand(2)); + } else { + // If we don't know what to do, be conservative and don't do anything. + continue; + } + + // Lastly, extend the result. + NewI->takeName(cast<Instruction>(I)); + Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); + I->replaceAllUsesWith(Res); + cast<Instruction>(I)->eraseFromParent(); + Erased.insert(I); + State.reset(Def, Res, Part); + } + } + + // We'll have created a bunch of ZExts that are now parentless. Clean up. + for (const auto &KV : Cost->getMinimalBitwidths()) { + // If the value wasn't vectorized, we must maintain the original scalar + // type. The absence of the value from State indicates that it + // wasn't vectorized. + // FIXME: Should not rely on getVPValue at this point. + VPValue *Def = State.Plan->getVPValue(KV.first, true); + if (!State.hasAnyVectorValue(Def)) + continue; + for (unsigned Part = 0; Part < UF; ++Part) { + Value *I = State.get(Def, Part); + ZExtInst *Inst = dyn_cast<ZExtInst>(I); + if (Inst && Inst->use_empty()) { + Value *NewI = Inst->getOperand(0); + Inst->eraseFromParent(); + State.reset(Def, NewI, Part); + } + } + } +} + +void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State, + VPlan &Plan) { + // Insert truncates and extends for any truncated instructions as hints to + // InstCombine. + if (VF.isVector()) + truncateToMinimalBitwidths(State); + + // Fix widened non-induction PHIs by setting up the PHI operands. + if (EnableVPlanNativePath) + fixNonInductionPHIs(Plan, State); + + // At this point every instruction in the original loop is widened to a + // vector form. Now we need to fix the recurrences in the loop. These PHI + // nodes are currently empty because we did not want to introduce cycles. + // This is the second stage of vectorizing recurrences. + fixCrossIterationPHIs(State); + + // Forget the original basic block. + PSE.getSE()->forgetLoop(OrigLoop); + + VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock(); + Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]); + if (Cost->requiresScalarEpilogue(VF)) { + // No edge from the middle block to the unique exit block has been inserted + // and there is nothing to fix from vector loop; phis should have incoming + // from scalar loop only. + Plan.clearLiveOuts(); + } else { + // If we inserted an edge from the middle block to the unique exit block, + // update uses outside the loop (phis) to account for the newly inserted + // edge. + + // Fix-up external users of the induction variables. + for (const auto &Entry : Legal->getInductionVars()) + fixupIVUsers(Entry.first, Entry.second, + getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), + IVEndValues[Entry.first], LoopMiddleBlock, + VectorLoop->getHeader(), Plan); + } + + // Fix LCSSA phis not already fixed earlier. Extracts may need to be generated + // in the exit block, so update the builder. + State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI()); + for (const auto &KV : Plan.getLiveOuts()) + KV.second->fixPhi(Plan, State); + + for (Instruction *PI : PredicatedInstructions) + sinkScalarOperands(&*PI); + + // Remove redundant induction instructions. + cse(VectorLoop->getHeader()); + + // Set/update profile weights for the vector and remainder loops as original + // loop iterations are now distributed among them. Note that original loop + // represented by LoopScalarBody becomes remainder loop after vectorization. + // + // For cases like foldTailByMasking() and requiresScalarEpiloque() we may + // end up getting slightly roughened result but that should be OK since + // profile is not inherently precise anyway. Note also possible bypass of + // vector code caused by legality checks is ignored, assigning all the weight + // to the vector loop, optimistically. + // + // For scalable vectorization we can't know at compile time how many iterations + // of the loop are handled in one vector iteration, so instead assume a pessimistic + // vscale of '1'. + setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, + LI->getLoopFor(LoopScalarBody), + VF.getKnownMinValue() * UF); +} + +void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { + // In order to support recurrences we need to be able to vectorize Phi nodes. + // Phi nodes have cycles, so we need to vectorize them in two stages. This is + // stage #2: We now need to fix the recurrences by adding incoming edges to + // the currently empty PHI nodes. At this point every instruction in the + // original loop is widened to a vector form so we can use them to construct + // the incoming edges. + VPBasicBlock *Header = + State.Plan->getVectorLoopRegion()->getEntryBasicBlock(); + for (VPRecipeBase &R : Header->phis()) { + if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) + fixReduction(ReductionPhi, State); + else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) + fixFixedOrderRecurrence(FOR, State); + } +} + +void InnerLoopVectorizer::fixFixedOrderRecurrence( + VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { + // This is the second phase of vectorizing first-order recurrences. An + // overview of the transformation is described below. Suppose we have the + // following loop. + // + // for (int i = 0; i < n; ++i) + // b[i] = a[i] - a[i - 1]; + // + // There is a first-order recurrence on "a". For this loop, the shorthand + // scalar IR looks like: + // + // scalar.ph: + // s_init = a[-1] + // br scalar.body + // + // scalar.body: + // i = phi [0, scalar.ph], [i+1, scalar.body] + // s1 = phi [s_init, scalar.ph], [s2, scalar.body] + // s2 = a[i] + // b[i] = s2 - s1 + // br cond, scalar.body, ... + // + // In this example, s1 is a recurrence because it's value depends on the + // previous iteration. In the first phase of vectorization, we created a + // vector phi v1 for s1. We now complete the vectorization and produce the + // shorthand vector IR shown below (for VF = 4, UF = 1). + // + // vector.ph: + // v_init = vector(..., ..., ..., a[-1]) + // br vector.body + // + // vector.body + // i = phi [0, vector.ph], [i+4, vector.body] + // v1 = phi [v_init, vector.ph], [v2, vector.body] + // v2 = a[i, i+1, i+2, i+3]; + // v3 = vector(v1(3), v2(0, 1, 2)) + // b[i, i+1, i+2, i+3] = v2 - v3 + // br cond, vector.body, middle.block + // + // middle.block: + // x = v2(3) + // br scalar.ph + // + // scalar.ph: + // s_init = phi [x, middle.block], [a[-1], otherwise] + // br scalar.body + // + // After execution completes the vector loop, we extract the next value of + // the recurrence (x) to use as the initial value in the scalar loop. + + // Extract the last vector element in the middle block. This will be the + // initial value for the recurrence when jumping to the scalar loop. + VPValue *PreviousDef = PhiR->getBackedgeValue(); + Value *Incoming = State.get(PreviousDef, UF - 1); + auto *ExtractForScalar = Incoming; + auto *IdxTy = Builder.getInt32Ty(); + if (VF.isVector()) { + auto *One = ConstantInt::get(IdxTy, 1); + Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); + auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); + auto *LastIdx = Builder.CreateSub(RuntimeVF, One); + ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, + "vector.recur.extract"); + } + // Extract the second last element in the middle block if the + // Phi is used outside the loop. We need to extract the phi itself + // and not the last element (the phi update in the current iteration). This + // will be the value when jumping to the exit block from the LoopMiddleBlock, + // when the scalar loop is not run at all. + Value *ExtractForPhiUsedOutsideLoop = nullptr; + if (VF.isVector()) { + auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); + auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); + ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( + Incoming, Idx, "vector.recur.extract.for.phi"); + } else if (UF > 1) + // When loop is unrolled without vectorizing, initialize + // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value + // of `Incoming`. This is analogous to the vectorized case above: extracting + // the second last element when VF > 1. + ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); + + // Fix the initial value of the original recurrence in the scalar loop. + Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); + PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); + auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); + auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); + for (auto *BB : predecessors(LoopScalarPreHeader)) { + auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; + Start->addIncoming(Incoming, BB); + } + + Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); + Phi->setName("scalar.recur"); + + // Finally, fix users of the recurrence outside the loop. The users will need + // either the last value of the scalar recurrence or the last value of the + // vector recurrence we extracted in the middle block. Since the loop is in + // LCSSA form, we just need to find all the phi nodes for the original scalar + // recurrence in the exit block, and then add an edge for the middle block. + // Note that LCSSA does not imply single entry when the original scalar loop + // had multiple exiting edges (as we always run the last iteration in the + // scalar epilogue); in that case, there is no edge from middle to exit and + // and thus no phis which needed updated. + if (!Cost->requiresScalarEpilogue(VF)) + for (PHINode &LCSSAPhi : LoopExitBlock->phis()) + if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) { + LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); + State.Plan->removeLiveOut(&LCSSAPhi); + } +} + +void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, + VPTransformState &State) { + PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); + // Get it's reduction variable descriptor. + assert(Legal->isReductionVariable(OrigPhi) && + "Unable to find the reduction variable"); + const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); + + RecurKind RK = RdxDesc.getRecurrenceKind(); + TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); + Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); + State.setDebugLocFromInst(ReductionStartValue); + + VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); + // This is the vector-clone of the value that leaves the loop. + Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); + + // Wrap flags are in general invalid after vectorization, clear them. + clearReductionWrapFlags(PhiR, State); + + // Before each round, move the insertion point right between + // the PHIs and the values we are going to write. + // This allows us to write both PHINodes and the extractelement + // instructions. + Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); + + State.setDebugLocFromInst(LoopExitInst); + + Type *PhiTy = OrigPhi->getType(); + + VPBasicBlock *LatchVPBB = + PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock(); + BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB]; + // If tail is folded by masking, the vector value to leave the loop should be + // a Select choosing between the vectorized LoopExitInst and vectorized Phi, + // instead of the former. For an inloop reduction the reduction will already + // be predicated, and does not need to be handled here. + if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { + for (unsigned Part = 0; Part < UF; ++Part) { + Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); + SelectInst *Sel = nullptr; + for (User *U : VecLoopExitInst->users()) { + if (isa<SelectInst>(U)) { + assert(!Sel && "Reduction exit feeding two selects"); + Sel = cast<SelectInst>(U); + } else + assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); + } + assert(Sel && "Reduction exit feeds no select"); + State.reset(LoopExitInstDef, Sel, Part); + + if (isa<FPMathOperator>(Sel)) + Sel->setFastMathFlags(RdxDesc.getFastMathFlags()); + + // If the target can create a predicated operator for the reduction at no + // extra cost in the loop (for example a predicated vadd), it can be + // cheaper for the select to remain in the loop than be sunk out of it, + // and so use the select value for the phi instead of the old + // LoopExitValue. + if (PreferPredicatedReductionSelect || + TTI->preferPredicatedReductionSelect( + RdxDesc.getOpcode(), PhiTy, + TargetTransformInfo::ReductionFlags())) { + auto *VecRdxPhi = + cast<PHINode>(State.get(PhiR, Part)); + VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); + } + } + } + + // If the vector reduction can be performed in a smaller type, we truncate + // then extend the loop exit value to enable InstCombine to evaluate the + // entire expression in the smaller type. + if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { + assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); + Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); + Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); + VectorParts RdxParts(UF); + for (unsigned Part = 0; Part < UF; ++Part) { + RdxParts[Part] = State.get(LoopExitInstDef, Part); + Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); + Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) + : Builder.CreateZExt(Trunc, VecTy); + for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) + if (U != Trunc) { + U->replaceUsesOfWith(RdxParts[Part], Extnd); + RdxParts[Part] = Extnd; + } + } + Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); + for (unsigned Part = 0; Part < UF; ++Part) { + RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); + State.reset(LoopExitInstDef, RdxParts[Part], Part); + } + } + + // Reduce all of the unrolled parts into a single vector. + Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); + unsigned Op = RecurrenceDescriptor::getOpcode(RK); + + // The middle block terminator has already been assigned a DebugLoc here (the + // OrigLoop's single latch terminator). We want the whole middle block to + // appear to execute on this line because: (a) it is all compiler generated, + // (b) these instructions are always executed after evaluating the latch + // conditional branch, and (c) other passes may add new predecessors which + // terminate on this line. This is the easiest way to ensure we don't + // accidentally cause an extra step back into the loop while debugging. + State.setDebugLocFromInst(LoopMiddleBlock->getTerminator()); + if (PhiR->isOrdered()) + ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); + else { + // Floating-point operations should have some FMF to enable the reduction. + IRBuilderBase::FastMathFlagGuard FMFG(Builder); + Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); + for (unsigned Part = 1; Part < UF; ++Part) { + Value *RdxPart = State.get(LoopExitInstDef, Part); + if (Op != Instruction::ICmp && Op != Instruction::FCmp) { + ReducedPartRdx = Builder.CreateBinOp( + (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); + } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) + ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, + ReducedPartRdx, RdxPart); + else + ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); + } + } + + // Create the reduction after the loop. Note that inloop reductions create the + // target reduction in the loop using a Reduction recipe. + if (VF.isVector() && !PhiR->isInLoop()) { + ReducedPartRdx = + createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); + // If the reduction can be performed in a smaller type, we need to extend + // the reduction to the wider type before we branch to the original loop. + if (PhiTy != RdxDesc.getRecurrenceType()) + ReducedPartRdx = RdxDesc.isSigned() + ? Builder.CreateSExt(ReducedPartRdx, PhiTy) + : Builder.CreateZExt(ReducedPartRdx, PhiTy); + } + + PHINode *ResumePhi = + dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); + + // Create a phi node that merges control-flow from the backedge-taken check + // block and the middle block. + PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", + LoopScalarPreHeader->getTerminator()); + + // If we are fixing reductions in the epilogue loop then we should already + // have created a bc.merge.rdx Phi after the main vector body. Ensure that + // we carry over the incoming values correctly. + for (auto *Incoming : predecessors(LoopScalarPreHeader)) { + if (Incoming == LoopMiddleBlock) + BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); + else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) + BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), + Incoming); + else + BCBlockPhi->addIncoming(ReductionStartValue, Incoming); + } + + // Set the resume value for this reduction + ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); + + // If there were stores of the reduction value to a uniform memory address + // inside the loop, create the final store here. + if (StoreInst *SI = RdxDesc.IntermediateStore) { + StoreInst *NewSI = + Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand()); + propagateMetadata(NewSI, SI); + + // If the reduction value is used in other places, + // then let the code below create PHI's for that. + } + + // Now, we need to fix the users of the reduction variable + // inside and outside of the scalar remainder loop. + + // We know that the loop is in LCSSA form. We need to update the PHI nodes + // in the exit blocks. See comment on analogous loop in + // fixFixedOrderRecurrence for a more complete explaination of the logic. + if (!Cost->requiresScalarEpilogue(VF)) + for (PHINode &LCSSAPhi : LoopExitBlock->phis()) + if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) { + LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); + State.Plan->removeLiveOut(&LCSSAPhi); + } + + // Fix the scalar loop reduction variable with the incoming reduction sum + // from the vector body and from the backedge value. + int IncomingEdgeBlockIdx = + OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); + assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); + // Pick the other block. + int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); + OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); + OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); +} + +void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, + VPTransformState &State) { + const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); + RecurKind RK = RdxDesc.getRecurrenceKind(); + if (RK != RecurKind::Add && RK != RecurKind::Mul) + return; + + SmallVector<VPValue *, 8> Worklist; + SmallPtrSet<VPValue *, 8> Visited; + Worklist.push_back(PhiR); + Visited.insert(PhiR); + + while (!Worklist.empty()) { + VPValue *Cur = Worklist.pop_back_val(); + for (unsigned Part = 0; Part < UF; ++Part) { + Value *V = State.get(Cur, Part); + if (!isa<OverflowingBinaryOperator>(V)) + break; + cast<Instruction>(V)->dropPoisonGeneratingFlags(); + } + + for (VPUser *U : Cur->users()) { + auto *UserRecipe = dyn_cast<VPRecipeBase>(U); + if (!UserRecipe) + continue; + for (VPValue *V : UserRecipe->definedValues()) + if (Visited.insert(V).second) + Worklist.push_back(V); + } + } +} + +void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { + // The basic block and loop containing the predicated instruction. + auto *PredBB = PredInst->getParent(); + auto *VectorLoop = LI->getLoopFor(PredBB); + + // Initialize a worklist with the operands of the predicated instruction. + SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); + + // Holds instructions that we need to analyze again. An instruction may be + // reanalyzed if we don't yet know if we can sink it or not. + SmallVector<Instruction *, 8> InstsToReanalyze; + + // Returns true if a given use occurs in the predicated block. Phi nodes use + // their operands in their corresponding predecessor blocks. + auto isBlockOfUsePredicated = [&](Use &U) -> bool { + auto *I = cast<Instruction>(U.getUser()); + BasicBlock *BB = I->getParent(); + if (auto *Phi = dyn_cast<PHINode>(I)) + BB = Phi->getIncomingBlock( + PHINode::getIncomingValueNumForOperand(U.getOperandNo())); + return BB == PredBB; + }; + + // Iteratively sink the scalarized operands of the predicated instruction + // into the block we created for it. When an instruction is sunk, it's + // operands are then added to the worklist. The algorithm ends after one pass + // through the worklist doesn't sink a single instruction. + bool Changed; + do { + // Add the instructions that need to be reanalyzed to the worklist, and + // reset the changed indicator. + Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); + InstsToReanalyze.clear(); + Changed = false; + + while (!Worklist.empty()) { + auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); + + // We can't sink an instruction if it is a phi node, is not in the loop, + // or may have side effects. + if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || + I->mayHaveSideEffects()) + continue; + + // If the instruction is already in PredBB, check if we can sink its + // operands. In that case, VPlan's sinkScalarOperands() succeeded in + // sinking the scalar instruction I, hence it appears in PredBB; but it + // may have failed to sink I's operands (recursively), which we try + // (again) here. + if (I->getParent() == PredBB) { + Worklist.insert(I->op_begin(), I->op_end()); + continue; + } + + // It's legal to sink the instruction if all its uses occur in the + // predicated block. Otherwise, there's nothing to do yet, and we may + // need to reanalyze the instruction. + if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { + InstsToReanalyze.push_back(I); + continue; + } + + // Move the instruction to the beginning of the predicated block, and add + // it's operands to the worklist. + I->moveBefore(&*PredBB->getFirstInsertionPt()); + Worklist.insert(I->op_begin(), I->op_end()); + + // The sinking may have enabled other instructions to be sunk, so we will + // need to iterate. + Changed = true; + } + } while (Changed); +} + +void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan, + VPTransformState &State) { + auto Iter = vp_depth_first_deep(Plan.getEntry()); + for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { + for (VPRecipeBase &P : VPBB->phis()) { + VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P); + if (!VPPhi) + continue; + PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); + // Make sure the builder has a valid insert point. + Builder.SetInsertPoint(NewPhi); + for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { + VPValue *Inc = VPPhi->getIncomingValue(i); + VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); + NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); + } + } + } +} + +bool InnerLoopVectorizer::useOrderedReductions( + const RecurrenceDescriptor &RdxDesc) { + return Cost->useOrderedReductions(RdxDesc); +} + +void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { + // We should not collect Scalars more than once per VF. Right now, this + // function is called from collectUniformsAndScalars(), which already does + // this check. Collecting Scalars for VF=1 does not make any sense. + assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && + "This function should not be visited twice for the same VF"); + + // This avoids any chances of creating a REPLICATE recipe during planning + // since that would result in generation of scalarized code during execution, + // which is not supported for scalable vectors. + if (VF.isScalable()) { + Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); + return; + } + + SmallSetVector<Instruction *, 8> Worklist; + + // These sets are used to seed the analysis with pointers used by memory + // accesses that will remain scalar. + SmallSetVector<Instruction *, 8> ScalarPtrs; + SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; + auto *Latch = TheLoop->getLoopLatch(); + + // A helper that returns true if the use of Ptr by MemAccess will be scalar. + // The pointer operands of loads and stores will be scalar as long as the + // memory access is not a gather or scatter operation. The value operand of a + // store will remain scalar if the store is scalarized. + auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { + InstWidening WideningDecision = getWideningDecision(MemAccess, VF); + assert(WideningDecision != CM_Unknown && + "Widening decision should be ready at this moment"); + if (auto *Store = dyn_cast<StoreInst>(MemAccess)) + if (Ptr == Store->getValueOperand()) + return WideningDecision == CM_Scalarize; + assert(Ptr == getLoadStorePointerOperand(MemAccess) && + "Ptr is neither a value or pointer operand"); + return WideningDecision != CM_GatherScatter; + }; + + // A helper that returns true if the given value is a bitcast or + // getelementptr instruction contained in the loop. + auto isLoopVaryingBitCastOrGEP = [&](Value *V) { + return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || + isa<GetElementPtrInst>(V)) && + !TheLoop->isLoopInvariant(V); + }; + + // A helper that evaluates a memory access's use of a pointer. If the use will + // be a scalar use and the pointer is only used by memory accesses, we place + // the pointer in ScalarPtrs. Otherwise, the pointer is placed in + // PossibleNonScalarPtrs. + auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { + // We only care about bitcast and getelementptr instructions contained in + // the loop. + if (!isLoopVaryingBitCastOrGEP(Ptr)) + return; + + // If the pointer has already been identified as scalar (e.g., if it was + // also identified as uniform), there's nothing to do. + auto *I = cast<Instruction>(Ptr); + if (Worklist.count(I)) + return; + + // If the use of the pointer will be a scalar use, and all users of the + // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, + // place the pointer in PossibleNonScalarPtrs. + if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { + return isa<LoadInst>(U) || isa<StoreInst>(U); + })) + ScalarPtrs.insert(I); + else + PossibleNonScalarPtrs.insert(I); + }; + + // We seed the scalars analysis with three classes of instructions: (1) + // instructions marked uniform-after-vectorization and (2) bitcast, + // getelementptr and (pointer) phi instructions used by memory accesses + // requiring a scalar use. + // + // (1) Add to the worklist all instructions that have been identified as + // uniform-after-vectorization. + Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); + + // (2) Add to the worklist all bitcast and getelementptr instructions used by + // memory accesses requiring a scalar use. The pointer operands of loads and + // stores will be scalar as long as the memory accesses is not a gather or + // scatter operation. The value operand of a store will remain scalar if the + // store is scalarized. + for (auto *BB : TheLoop->blocks()) + for (auto &I : *BB) { + if (auto *Load = dyn_cast<LoadInst>(&I)) { + evaluatePtrUse(Load, Load->getPointerOperand()); + } else if (auto *Store = dyn_cast<StoreInst>(&I)) { + evaluatePtrUse(Store, Store->getPointerOperand()); + evaluatePtrUse(Store, Store->getValueOperand()); + } + } + for (auto *I : ScalarPtrs) + if (!PossibleNonScalarPtrs.count(I)) { + LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); + Worklist.insert(I); + } + + // Insert the forced scalars. + // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector + // induction variable when the PHI user is scalarized. + auto ForcedScalar = ForcedScalars.find(VF); + if (ForcedScalar != ForcedScalars.end()) + for (auto *I : ForcedScalar->second) { + LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n"); + Worklist.insert(I); + } + + // Expand the worklist by looking through any bitcasts and getelementptr + // instructions we've already identified as scalar. This is similar to the + // expansion step in collectLoopUniforms(); however, here we're only + // expanding to include additional bitcasts and getelementptr instructions. + unsigned Idx = 0; + while (Idx != Worklist.size()) { + Instruction *Dst = Worklist[Idx++]; + if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) + continue; + auto *Src = cast<Instruction>(Dst->getOperand(0)); + if (llvm::all_of(Src->users(), [&](User *U) -> bool { + auto *J = cast<Instruction>(U); + return !TheLoop->contains(J) || Worklist.count(J) || + ((isa<LoadInst>(J) || isa<StoreInst>(J)) && + isScalarUse(J, Src)); + })) { + Worklist.insert(Src); + LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); + } + } + + // An induction variable will remain scalar if all users of the induction + // variable and induction variable update remain scalar. + for (const auto &Induction : Legal->getInductionVars()) { + auto *Ind = Induction.first; + auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); + + // If tail-folding is applied, the primary induction variable will be used + // to feed a vector compare. + if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) + continue; + + // Returns true if \p Indvar is a pointer induction that is used directly by + // load/store instruction \p I. + auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, + Instruction *I) { + return Induction.second.getKind() == + InductionDescriptor::IK_PtrInduction && + (isa<LoadInst>(I) || isa<StoreInst>(I)) && + Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); + }; + + // Determine if all users of the induction variable are scalar after + // vectorization. + auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { + auto *I = cast<Instruction>(U); + return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || + IsDirectLoadStoreFromPtrIndvar(Ind, I); + }); + if (!ScalarInd) + continue; + + // Determine if all users of the induction variable update instruction are + // scalar after vectorization. + auto ScalarIndUpdate = + llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { + auto *I = cast<Instruction>(U); + return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || + IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); + }); + if (!ScalarIndUpdate) + continue; + + // The induction variable and its update instruction will remain scalar. + Worklist.insert(Ind); + Worklist.insert(IndUpdate); + LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); + LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate + << "\n"); + } + + Scalars[VF].insert(Worklist.begin(), Worklist.end()); +} + +bool LoopVectorizationCostModel::isScalarWithPredication( + Instruction *I, ElementCount VF) const { + if (!isPredicatedInst(I)) + return false; + + // Do we have a non-scalar lowering for this predicated + // instruction? No - it is scalar with predication. + switch(I->getOpcode()) { + default: + return true; + case Instruction::Load: + case Instruction::Store: { + auto *Ptr = getLoadStorePointerOperand(I); + auto *Ty = getLoadStoreType(I); + Type *VTy = Ty; + if (VF.isVector()) + VTy = VectorType::get(Ty, VF); + const Align Alignment = getLoadStoreAlignment(I); + return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || + TTI.isLegalMaskedGather(VTy, Alignment)) + : !(isLegalMaskedStore(Ty, Ptr, Alignment) || + TTI.isLegalMaskedScatter(VTy, Alignment)); + } + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::SRem: + case Instruction::URem: { + // We have the option to use the safe-divisor idiom to avoid predication. + // The cost based decision here will always select safe-divisor for + // scalable vectors as scalarization isn't legal. + const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF); + return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost); + } + } +} + +bool LoopVectorizationCostModel::isPredicatedInst(Instruction *I) const { + if (!blockNeedsPredicationForAnyReason(I->getParent())) + return false; + + // Can we prove this instruction is safe to unconditionally execute? + // If not, we must use some form of predication. + switch(I->getOpcode()) { + default: + return false; + case Instruction::Load: + case Instruction::Store: { + if (!Legal->isMaskRequired(I)) + return false; + // When we know the load's address is loop invariant and the instruction + // in the original scalar loop was unconditionally executed then we + // don't need to mark it as a predicated instruction. Tail folding may + // introduce additional predication, but we're guaranteed to always have + // at least one active lane. We call Legal->blockNeedsPredication here + // because it doesn't query tail-folding. For stores, we need to prove + // both speculation safety (which follows from the same argument as loads), + // but also must prove the value being stored is correct. The easiest + // form of the later is to require that all values stored are the same. + if (Legal->isUniformMemOp(*I) && + (isa<LoadInst>(I) || + (isa<StoreInst>(I) && + TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()))) && + !Legal->blockNeedsPredication(I->getParent())) + return false; + return true; + } + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::SRem: + case Instruction::URem: + // TODO: We can use the loop-preheader as context point here and get + // context sensitive reasoning + return !isSafeToSpeculativelyExecute(I); + } +} + +std::pair<InstructionCost, InstructionCost> +LoopVectorizationCostModel::getDivRemSpeculationCost(Instruction *I, + ElementCount VF) const { + assert(I->getOpcode() == Instruction::UDiv || + I->getOpcode() == Instruction::SDiv || + I->getOpcode() == Instruction::SRem || + I->getOpcode() == Instruction::URem); + assert(!isSafeToSpeculativelyExecute(I)); + + const TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; + + // Scalarization isn't legal for scalable vector types + InstructionCost ScalarizationCost = InstructionCost::getInvalid(); + if (!VF.isScalable()) { + // Get the scalarization cost and scale this amount by the probability of + // executing the predicated block. If the instruction is not predicated, + // we fall through to the next case. + ScalarizationCost = 0; + + // These instructions have a non-void type, so account for the phi nodes + // that we will create. This cost is likely to be zero. The phi node + // cost, if any, should be scaled by the block probability because it + // models a copy at the end of each predicated block. + ScalarizationCost += VF.getKnownMinValue() * + TTI.getCFInstrCost(Instruction::PHI, CostKind); + + // The cost of the non-predicated instruction. + ScalarizationCost += VF.getKnownMinValue() * + TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind); + + // The cost of insertelement and extractelement instructions needed for + // scalarization. + ScalarizationCost += getScalarizationOverhead(I, VF, CostKind); + + // Scale the cost by the probability of executing the predicated blocks. + // This assumes the predicated block for each vector lane is equally + // likely. + ScalarizationCost = ScalarizationCost / getReciprocalPredBlockProb(); + } + InstructionCost SafeDivisorCost = 0; + + auto *VecTy = ToVectorTy(I->getType(), VF); + + // The cost of the select guard to ensure all lanes are well defined + // after we speculate above any internal control flow. + SafeDivisorCost += TTI.getCmpSelInstrCost( + Instruction::Select, VecTy, + ToVectorTy(Type::getInt1Ty(I->getContext()), VF), + CmpInst::BAD_ICMP_PREDICATE, CostKind); + + // Certain instructions can be cheaper to vectorize if they have a constant + // second vector operand. One example of this are shifts on x86. + Value *Op2 = I->getOperand(1); + auto Op2Info = TTI.getOperandInfo(Op2); + if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) + Op2Info.Kind = TargetTransformInfo::OK_UniformValue; + + SmallVector<const Value *, 4> Operands(I->operand_values()); + SafeDivisorCost += TTI.getArithmeticInstrCost( + I->getOpcode(), VecTy, CostKind, + {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, + Op2Info, Operands, I); + return {ScalarizationCost, SafeDivisorCost}; +} + +bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( + Instruction *I, ElementCount VF) { + assert(isAccessInterleaved(I) && "Expecting interleaved access."); + assert(getWideningDecision(I, VF) == CM_Unknown && + "Decision should not be set yet."); + auto *Group = getInterleavedAccessGroup(I); + assert(Group && "Must have a group."); + + // If the instruction's allocated size doesn't equal it's type size, it + // requires padding and will be scalarized. + auto &DL = I->getModule()->getDataLayout(); + auto *ScalarTy = getLoadStoreType(I); + if (hasIrregularType(ScalarTy, DL)) + return false; + + // If the group involves a non-integral pointer, we may not be able to + // losslessly cast all values to a common type. + unsigned InterleaveFactor = Group->getFactor(); + bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); + for (unsigned i = 0; i < InterleaveFactor; i++) { + Instruction *Member = Group->getMember(i); + if (!Member) + continue; + auto *MemberTy = getLoadStoreType(Member); + bool MemberNI = DL.isNonIntegralPointerType(MemberTy); + // Don't coerce non-integral pointers to integers or vice versa. + if (MemberNI != ScalarNI) { + // TODO: Consider adding special nullptr value case here + return false; + } else if (MemberNI && ScalarNI && + ScalarTy->getPointerAddressSpace() != + MemberTy->getPointerAddressSpace()) { + return false; + } + } + + // Check if masking is required. + // A Group may need masking for one of two reasons: it resides in a block that + // needs predication, or it was decided to use masking to deal with gaps + // (either a gap at the end of a load-access that may result in a speculative + // load, or any gaps in a store-access). + bool PredicatedAccessRequiresMasking = + blockNeedsPredicationForAnyReason(I->getParent()) && + Legal->isMaskRequired(I); + bool LoadAccessWithGapsRequiresEpilogMasking = + isa<LoadInst>(I) && Group->requiresScalarEpilogue() && + !isScalarEpilogueAllowed(); + bool StoreAccessWithGapsRequiresMasking = + isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); + if (!PredicatedAccessRequiresMasking && + !LoadAccessWithGapsRequiresEpilogMasking && + !StoreAccessWithGapsRequiresMasking) + return true; + + // If masked interleaving is required, we expect that the user/target had + // enabled it, because otherwise it either wouldn't have been created or + // it should have been invalidated by the CostModel. + assert(useMaskedInterleavedAccesses(TTI) && + "Masked interleave-groups for predicated accesses are not enabled."); + + if (Group->isReverse()) + return false; + + auto *Ty = getLoadStoreType(I); + const Align Alignment = getLoadStoreAlignment(I); + return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) + : TTI.isLegalMaskedStore(Ty, Alignment); +} + +bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( + Instruction *I, ElementCount VF) { + // Get and ensure we have a valid memory instruction. + assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); + + auto *Ptr = getLoadStorePointerOperand(I); + auto *ScalarTy = getLoadStoreType(I); + + // In order to be widened, the pointer should be consecutive, first of all. + if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) + return false; + + // If the instruction is a store located in a predicated block, it will be + // scalarized. + if (isScalarWithPredication(I, VF)) + return false; + + // If the instruction's allocated size doesn't equal it's type size, it + // requires padding and will be scalarized. + auto &DL = I->getModule()->getDataLayout(); + if (hasIrregularType(ScalarTy, DL)) + return false; + + return true; +} + +void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { + // We should not collect Uniforms more than once per VF. Right now, + // this function is called from collectUniformsAndScalars(), which + // already does this check. Collecting Uniforms for VF=1 does not make any + // sense. + + assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && + "This function should not be visited twice for the same VF"); + + // Visit the list of Uniforms. If we'll not find any uniform value, we'll + // not analyze again. Uniforms.count(VF) will return 1. + Uniforms[VF].clear(); + + // We now know that the loop is vectorizable! + // Collect instructions inside the loop that will remain uniform after + // vectorization. + + // Global values, params and instructions outside of current loop are out of + // scope. + auto isOutOfScope = [&](Value *V) -> bool { + Instruction *I = dyn_cast<Instruction>(V); + return (!I || !TheLoop->contains(I)); + }; + + // Worklist containing uniform instructions demanding lane 0. + SetVector<Instruction *> Worklist; + BasicBlock *Latch = TheLoop->getLoopLatch(); + + // Add uniform instructions demanding lane 0 to the worklist. Instructions + // that are scalar with predication must not be considered uniform after + // vectorization, because that would create an erroneous replicating region + // where only a single instance out of VF should be formed. + // TODO: optimize such seldom cases if found important, see PR40816. + auto addToWorklistIfAllowed = [&](Instruction *I) -> void { + if (isOutOfScope(I)) { + LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " + << *I << "\n"); + return; + } + if (isScalarWithPredication(I, VF)) { + LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " + << *I << "\n"); + return; + } + LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); + Worklist.insert(I); + }; + + // Start with the conditional branch. If the branch condition is an + // instruction contained in the loop that is only used by the branch, it is + // uniform. + auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); + if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) + addToWorklistIfAllowed(Cmp); + + // Return true if all lanes perform the same memory operation, and we can + // thus chose to execute only one. + auto isUniformMemOpUse = [&](Instruction *I) { + if (!Legal->isUniformMemOp(*I)) + return false; + if (isa<LoadInst>(I)) + // Loading the same address always produces the same result - at least + // assuming aliasing and ordering which have already been checked. + return true; + // Storing the same value on every iteration. + return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()); + }; + + auto isUniformDecision = [&](Instruction *I, ElementCount VF) { + InstWidening WideningDecision = getWideningDecision(I, VF); + assert(WideningDecision != CM_Unknown && + "Widening decision should be ready at this moment"); + + if (isUniformMemOpUse(I)) + return true; + + return (WideningDecision == CM_Widen || + WideningDecision == CM_Widen_Reverse || + WideningDecision == CM_Interleave); + }; + + + // Returns true if Ptr is the pointer operand of a memory access instruction + // I, and I is known to not require scalarization. + auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { + return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); + }; + + // Holds a list of values which are known to have at least one uniform use. + // Note that there may be other uses which aren't uniform. A "uniform use" + // here is something which only demands lane 0 of the unrolled iterations; + // it does not imply that all lanes produce the same value (e.g. this is not + // the usual meaning of uniform) + SetVector<Value *> HasUniformUse; + + // Scan the loop for instructions which are either a) known to have only + // lane 0 demanded or b) are uses which demand only lane 0 of their operand. + for (auto *BB : TheLoop->blocks()) + for (auto &I : *BB) { + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { + switch (II->getIntrinsicID()) { + case Intrinsic::sideeffect: + case Intrinsic::experimental_noalias_scope_decl: + case Intrinsic::assume: + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + if (TheLoop->hasLoopInvariantOperands(&I)) + addToWorklistIfAllowed(&I); + break; + default: + break; + } + } + + // ExtractValue instructions must be uniform, because the operands are + // known to be loop-invariant. + if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { + assert(isOutOfScope(EVI->getAggregateOperand()) && + "Expected aggregate value to be loop invariant"); + addToWorklistIfAllowed(EVI); + continue; + } + + // If there's no pointer operand, there's nothing to do. + auto *Ptr = getLoadStorePointerOperand(&I); + if (!Ptr) + continue; + + if (isUniformMemOpUse(&I)) + addToWorklistIfAllowed(&I); + + if (isUniformDecision(&I, VF)) { + assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); + HasUniformUse.insert(Ptr); + } + } + + // Add to the worklist any operands which have *only* uniform (e.g. lane 0 + // demanding) users. Since loops are assumed to be in LCSSA form, this + // disallows uses outside the loop as well. + for (auto *V : HasUniformUse) { + if (isOutOfScope(V)) + continue; + auto *I = cast<Instruction>(V); + auto UsersAreMemAccesses = + llvm::all_of(I->users(), [&](User *U) -> bool { + return isVectorizedMemAccessUse(cast<Instruction>(U), V); + }); + if (UsersAreMemAccesses) + addToWorklistIfAllowed(I); + } + + // Expand Worklist in topological order: whenever a new instruction + // is added , its users should be already inside Worklist. It ensures + // a uniform instruction will only be used by uniform instructions. + unsigned idx = 0; + while (idx != Worklist.size()) { + Instruction *I = Worklist[idx++]; + + for (auto *OV : I->operand_values()) { + // isOutOfScope operands cannot be uniform instructions. + if (isOutOfScope(OV)) + continue; + // First order recurrence Phi's should typically be considered + // non-uniform. + auto *OP = dyn_cast<PHINode>(OV); + if (OP && Legal->isFixedOrderRecurrence(OP)) + continue; + // If all the users of the operand are uniform, then add the + // operand into the uniform worklist. + auto *OI = cast<Instruction>(OV); + if (llvm::all_of(OI->users(), [&](User *U) -> bool { + auto *J = cast<Instruction>(U); + return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); + })) + addToWorklistIfAllowed(OI); + } + } + + // For an instruction to be added into Worklist above, all its users inside + // the loop should also be in Worklist. However, this condition cannot be + // true for phi nodes that form a cyclic dependence. We must process phi + // nodes separately. An induction variable will remain uniform if all users + // of the induction variable and induction variable update remain uniform. + // The code below handles both pointer and non-pointer induction variables. + for (const auto &Induction : Legal->getInductionVars()) { + auto *Ind = Induction.first; + auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); + + // Determine if all users of the induction variable are uniform after + // vectorization. + auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { + auto *I = cast<Instruction>(U); + return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || + isVectorizedMemAccessUse(I, Ind); + }); + if (!UniformInd) + continue; + + // Determine if all users of the induction variable update instruction are + // uniform after vectorization. + auto UniformIndUpdate = + llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { + auto *I = cast<Instruction>(U); + return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || + isVectorizedMemAccessUse(I, IndUpdate); + }); + if (!UniformIndUpdate) + continue; + + // The induction variable and its update instruction will remain uniform. + addToWorklistIfAllowed(Ind); + addToWorklistIfAllowed(IndUpdate); + } + + Uniforms[VF].insert(Worklist.begin(), Worklist.end()); +} + +bool LoopVectorizationCostModel::runtimeChecksRequired() { + LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); + + if (Legal->getRuntimePointerChecking()->Need) { + reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", + "runtime pointer checks needed. Enable vectorization of this " + "loop with '#pragma clang loop vectorize(enable)' when " + "compiling with -Os/-Oz", + "CantVersionLoopWithOptForSize", ORE, TheLoop); + return true; + } + + if (!PSE.getPredicate().isAlwaysTrue()) { + reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", + "runtime SCEV checks needed. Enable vectorization of this " + "loop with '#pragma clang loop vectorize(enable)' when " + "compiling with -Os/-Oz", + "CantVersionLoopWithOptForSize", ORE, TheLoop); + return true; + } + + // FIXME: Avoid specializing for stride==1 instead of bailing out. + if (!Legal->getLAI()->getSymbolicStrides().empty()) { + reportVectorizationFailure("Runtime stride check for small trip count", + "runtime stride == 1 checks needed. Enable vectorization of " + "this loop without such check by compiling with -Os/-Oz", + "CantVersionLoopWithOptForSize", ORE, TheLoop); + return true; + } + + return false; +} + +ElementCount +LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { + if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) + return ElementCount::getScalable(0); + + if (Hints->isScalableVectorizationDisabled()) { + reportVectorizationInfo("Scalable vectorization is explicitly disabled", + "ScalableVectorizationDisabled", ORE, TheLoop); + return ElementCount::getScalable(0); + } + + LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); + + auto MaxScalableVF = ElementCount::getScalable( + std::numeric_limits<ElementCount::ScalarTy>::max()); + + // Test that the loop-vectorizer can legalize all operations for this MaxVF. + // FIXME: While for scalable vectors this is currently sufficient, this should + // be replaced by a more detailed mechanism that filters out specific VFs, + // instead of invalidating vectorization for a whole set of VFs based on the + // MaxVF. + + // Disable scalable vectorization if the loop contains unsupported reductions. + if (!canVectorizeReductions(MaxScalableVF)) { + reportVectorizationInfo( + "Scalable vectorization not supported for the reduction " + "operations found in this loop.", + "ScalableVFUnfeasible", ORE, TheLoop); + return ElementCount::getScalable(0); + } + + // Disable scalable vectorization if the loop contains any instructions + // with element types not supported for scalable vectors. + if (any_of(ElementTypesInLoop, [&](Type *Ty) { + return !Ty->isVoidTy() && + !this->TTI.isElementTypeLegalForScalableVector(Ty); + })) { + reportVectorizationInfo("Scalable vectorization is not supported " + "for all element types found in this loop.", + "ScalableVFUnfeasible", ORE, TheLoop); + return ElementCount::getScalable(0); + } + + if (Legal->isSafeForAnyVectorWidth()) + return MaxScalableVF; + + // Limit MaxScalableVF by the maximum safe dependence distance. + std::optional<unsigned> MaxVScale = TTI.getMaxVScale(); + if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) + MaxVScale = + TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); + MaxScalableVF = + ElementCount::getScalable(MaxVScale ? (MaxSafeElements / *MaxVScale) : 0); + if (!MaxScalableVF) + reportVectorizationInfo( + "Max legal vector width too small, scalable vectorization " + "unfeasible.", + "ScalableVFUnfeasible", ORE, TheLoop); + + return MaxScalableVF; +} + +FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( + unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { + MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); + unsigned SmallestType, WidestType; + std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); + + // Get the maximum safe dependence distance in bits computed by LAA. + // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from + // the memory accesses that is most restrictive (involved in the smallest + // dependence distance). + unsigned MaxSafeElements = + PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); + + auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); + auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); + + LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF + << ".\n"); + LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF + << ".\n"); + + // First analyze the UserVF, fall back if the UserVF should be ignored. + if (UserVF) { + auto MaxSafeUserVF = + UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; + + if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { + // If `VF=vscale x N` is safe, then so is `VF=N` + if (UserVF.isScalable()) + return FixedScalableVFPair( + ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); + else + return UserVF; + } + + assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); + + // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it + // is better to ignore the hint and let the compiler choose a suitable VF. + if (!UserVF.isScalable()) { + LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF + << " is unsafe, clamping to max safe VF=" + << MaxSafeFixedVF << ".\n"); + ORE->emit([&]() { + return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", + TheLoop->getStartLoc(), + TheLoop->getHeader()) + << "User-specified vectorization factor " + << ore::NV("UserVectorizationFactor", UserVF) + << " is unsafe, clamping to maximum safe vectorization factor " + << ore::NV("VectorizationFactor", MaxSafeFixedVF); + }); + return MaxSafeFixedVF; + } + + if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { + LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF + << " is ignored because scalable vectors are not " + "available.\n"); + ORE->emit([&]() { + return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", + TheLoop->getStartLoc(), + TheLoop->getHeader()) + << "User-specified vectorization factor " + << ore::NV("UserVectorizationFactor", UserVF) + << " is ignored because the target does not support scalable " + "vectors. The compiler will pick a more suitable value."; + }); + } else { + LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF + << " is unsafe. Ignoring scalable UserVF.\n"); + ORE->emit([&]() { + return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", + TheLoop->getStartLoc(), + TheLoop->getHeader()) + << "User-specified vectorization factor " + << ore::NV("UserVectorizationFactor", UserVF) + << " is unsafe. Ignoring the hint to let the compiler pick a " + "more suitable value."; + }); + } + } + + LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType + << " / " << WidestType << " bits.\n"); + + FixedScalableVFPair Result(ElementCount::getFixed(1), + ElementCount::getScalable(0)); + if (auto MaxVF = + getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, + MaxSafeFixedVF, FoldTailByMasking)) + Result.FixedVF = MaxVF; + + if (auto MaxVF = + getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, + MaxSafeScalableVF, FoldTailByMasking)) + if (MaxVF.isScalable()) { + Result.ScalableVF = MaxVF; + LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF + << "\n"); + } + + return Result; +} + +FixedScalableVFPair +LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { + if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { + // TODO: It may by useful to do since it's still likely to be dynamically + // uniform if the target can skip. + reportVectorizationFailure( + "Not inserting runtime ptr check for divergent target", + "runtime pointer checks needed. Not enabled for divergent target", + "CantVersionLoopWithDivergentTarget", ORE, TheLoop); + return FixedScalableVFPair::getNone(); + } + + unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); + LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); + if (TC == 1) { + reportVectorizationFailure("Single iteration (non) loop", + "loop trip count is one, irrelevant for vectorization", + "SingleIterationLoop", ORE, TheLoop); + return FixedScalableVFPair::getNone(); + } + + switch (ScalarEpilogueStatus) { + case CM_ScalarEpilogueAllowed: + return computeFeasibleMaxVF(TC, UserVF, false); + case CM_ScalarEpilogueNotAllowedUsePredicate: + [[fallthrough]]; + case CM_ScalarEpilogueNotNeededUsePredicate: + LLVM_DEBUG( + dbgs() << "LV: vector predicate hint/switch found.\n" + << "LV: Not allowing scalar epilogue, creating predicated " + << "vector loop.\n"); + break; + case CM_ScalarEpilogueNotAllowedLowTripLoop: + // fallthrough as a special case of OptForSize + case CM_ScalarEpilogueNotAllowedOptSize: + if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) + LLVM_DEBUG( + dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); + else + LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " + << "count.\n"); + + // Bail if runtime checks are required, which are not good when optimising + // for size. + if (runtimeChecksRequired()) + return FixedScalableVFPair::getNone(); + + break; + } + + // The only loops we can vectorize without a scalar epilogue, are loops with + // a bottom-test and a single exiting block. We'd have to handle the fact + // that not every instruction executes on the last iteration. This will + // require a lane mask which varies through the vector loop body. (TODO) + if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { + // If there was a tail-folding hint/switch, but we can't fold the tail by + // masking, fallback to a vectorization with a scalar epilogue. + if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { + LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " + "scalar epilogue instead.\n"); + ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; + return computeFeasibleMaxVF(TC, UserVF, false); + } + return FixedScalableVFPair::getNone(); + } + + // Now try the tail folding + + // Invalidate interleave groups that require an epilogue if we can't mask + // the interleave-group. + if (!useMaskedInterleavedAccesses(TTI)) { + assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && + "No decisions should have been taken at this point"); + // Note: There is no need to invalidate any cost modeling decisions here, as + // non where taken so far. + InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); + } + + FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); + // Avoid tail folding if the trip count is known to be a multiple of any VF + // we chose. + // FIXME: The condition below pessimises the case for fixed-width vectors, + // when scalable VFs are also candidates for vectorization. + if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { + ElementCount MaxFixedVF = MaxFactors.FixedVF; + assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && + "MaxFixedVF must be a power of 2"); + unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC + : MaxFixedVF.getFixedValue(); + ScalarEvolution *SE = PSE.getSE(); + const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); + const SCEV *ExitCount = SE->getAddExpr( + BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); + const SCEV *Rem = SE->getURemExpr( + SE->applyLoopGuards(ExitCount, TheLoop), + SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); + if (Rem->isZero()) { + // Accept MaxFixedVF if we do not have a tail. + LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); + return MaxFactors; + } + } + + // If we don't know the precise trip count, or if the trip count that we + // found modulo the vectorization factor is not zero, try to fold the tail + // by masking. + // FIXME: look for a smaller MaxVF that does divide TC rather than masking. + if (Legal->prepareToFoldTailByMasking()) { + FoldTailByMasking = true; + return MaxFactors; + } + + // If there was a tail-folding hint/switch, but we can't fold the tail by + // masking, fallback to a vectorization with a scalar epilogue. + if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { + LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " + "scalar epilogue instead.\n"); + ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; + return MaxFactors; + } + + if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { + LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); + return FixedScalableVFPair::getNone(); + } + + if (TC == 0) { + reportVectorizationFailure( + "Unable to calculate the loop count due to complex control flow", + "unable to calculate the loop count due to complex control flow", + "UnknownLoopCountComplexCFG", ORE, TheLoop); + return FixedScalableVFPair::getNone(); + } + + reportVectorizationFailure( + "Cannot optimize for size and vectorize at the same time.", + "cannot optimize for size and vectorize at the same time. " + "Enable vectorization of this loop with '#pragma clang loop " + "vectorize(enable)' when compiling with -Os/-Oz", + "NoTailLoopWithOptForSize", ORE, TheLoop); + return FixedScalableVFPair::getNone(); +} + +ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( + unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, + ElementCount MaxSafeVF, bool FoldTailByMasking) { + bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); + const TypeSize WidestRegister = TTI.getRegisterBitWidth( + ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector + : TargetTransformInfo::RGK_FixedWidthVector); + + // Convenience function to return the minimum of two ElementCounts. + auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { + assert((LHS.isScalable() == RHS.isScalable()) && + "Scalable flags must match"); + return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; + }; + + // Ensure MaxVF is a power of 2; the dependence distance bound may not be. + // Note that both WidestRegister and WidestType may not be a powers of 2. + auto MaxVectorElementCount = ElementCount::get( + PowerOf2Floor(WidestRegister.getKnownMinValue() / WidestType), + ComputeScalableMaxVF); + MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); + LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " + << (MaxVectorElementCount * WidestType) << " bits.\n"); + + if (!MaxVectorElementCount) { + LLVM_DEBUG(dbgs() << "LV: The target has no " + << (ComputeScalableMaxVF ? "scalable" : "fixed") + << " vector registers.\n"); + return ElementCount::getFixed(1); + } + + unsigned WidestRegisterMinEC = MaxVectorElementCount.getKnownMinValue(); + if (MaxVectorElementCount.isScalable() && + TheFunction->hasFnAttribute(Attribute::VScaleRange)) { + auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); + auto Min = Attr.getVScaleRangeMin(); + WidestRegisterMinEC *= Min; + } + if (ConstTripCount && ConstTripCount <= WidestRegisterMinEC && + (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { + // If loop trip count (TC) is known at compile time there is no point in + // choosing VF greater than TC (as done in the loop below). Select maximum + // power of two which doesn't exceed TC. + // If MaxVectorElementCount is scalable, we only fall back on a fixed VF + // when the TC is less than or equal to the known number of lanes. + auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); + LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " + "exceeding the constant trip count: " + << ClampedConstTripCount << "\n"); + return ElementCount::getFixed(ClampedConstTripCount); + } + + TargetTransformInfo::RegisterKind RegKind = + ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector + : TargetTransformInfo::RGK_FixedWidthVector; + ElementCount MaxVF = MaxVectorElementCount; + if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 && + TTI.shouldMaximizeVectorBandwidth(RegKind))) { + auto MaxVectorElementCountMaxBW = ElementCount::get( + PowerOf2Floor(WidestRegister.getKnownMinValue() / SmallestType), + ComputeScalableMaxVF); + MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); + + // Collect all viable vectorization factors larger than the default MaxVF + // (i.e. MaxVectorElementCount). + SmallVector<ElementCount, 8> VFs; + for (ElementCount VS = MaxVectorElementCount * 2; + ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) + VFs.push_back(VS); + + // For each VF calculate its register usage. + auto RUs = calculateRegisterUsage(VFs); + + // Select the largest VF which doesn't require more registers than existing + // ones. + for (int i = RUs.size() - 1; i >= 0; --i) { + bool Selected = true; + for (auto &pair : RUs[i].MaxLocalUsers) { + unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); + if (pair.second > TargetNumRegisters) + Selected = false; + } + if (Selected) { + MaxVF = VFs[i]; + break; + } + } + if (ElementCount MinVF = + TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { + if (ElementCount::isKnownLT(MaxVF, MinVF)) { + LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF + << ") with target's minimum: " << MinVF << '\n'); + MaxVF = MinVF; + } + } + + // Invalidate any widening decisions we might have made, in case the loop + // requires prediction (decided later), but we have already made some + // load/store widening decisions. + invalidateCostModelingDecisions(); + } + return MaxVF; +} + +std::optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { + if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { + auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); + auto Min = Attr.getVScaleRangeMin(); + auto Max = Attr.getVScaleRangeMax(); + if (Max && Min == Max) + return Max; + } + + return TTI.getVScaleForTuning(); +} + +bool LoopVectorizationCostModel::isMoreProfitable( + const VectorizationFactor &A, const VectorizationFactor &B) const { + InstructionCost CostA = A.Cost; + InstructionCost CostB = B.Cost; + + unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); + + if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && + MaxTripCount) { + // If we are folding the tail and the trip count is a known (possibly small) + // constant, the trip count will be rounded up to an integer number of + // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), + // which we compare directly. When not folding the tail, the total cost will + // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is + // approximated with the per-lane cost below instead of using the tripcount + // as here. + auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); + auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); + return RTCostA < RTCostB; + } + + // Improve estimate for the vector width if it is scalable. + unsigned EstimatedWidthA = A.Width.getKnownMinValue(); + unsigned EstimatedWidthB = B.Width.getKnownMinValue(); + if (std::optional<unsigned> VScale = getVScaleForTuning()) { + if (A.Width.isScalable()) + EstimatedWidthA *= *VScale; + if (B.Width.isScalable()) + EstimatedWidthB *= *VScale; + } + + // Assume vscale may be larger than 1 (or the value being tuned for), + // so that scalable vectorization is slightly favorable over fixed-width + // vectorization. + if (A.Width.isScalable() && !B.Width.isScalable()) + return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); + + // To avoid the need for FP division: + // (CostA / A.Width) < (CostB / B.Width) + // <=> (CostA * B.Width) < (CostB * A.Width) + return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); +} + +VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( + const ElementCountSet &VFCandidates) { + InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; + LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); + assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); + assert(VFCandidates.count(ElementCount::getFixed(1)) && + "Expected Scalar VF to be a candidate"); + + const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost, + ExpectedCost); + VectorizationFactor ChosenFactor = ScalarCost; + + bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; + if (ForceVectorization && VFCandidates.size() > 1) { + // Ignore scalar width, because the user explicitly wants vectorization. + // Initialize cost to max so that VF = 2 is, at least, chosen during cost + // evaluation. + ChosenFactor.Cost = InstructionCost::getMax(); + } + + SmallVector<InstructionVFPair> InvalidCosts; + for (const auto &i : VFCandidates) { + // The cost for scalar VF=1 is already calculated, so ignore it. + if (i.isScalar()) + continue; + + VectorizationCostTy C = expectedCost(i, &InvalidCosts); + VectorizationFactor Candidate(i, C.first, ScalarCost.ScalarCost); + +#ifndef NDEBUG + unsigned AssumedMinimumVscale = 1; + if (std::optional<unsigned> VScale = getVScaleForTuning()) + AssumedMinimumVscale = *VScale; + unsigned Width = + Candidate.Width.isScalable() + ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale + : Candidate.Width.getFixedValue(); + LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i + << " costs: " << (Candidate.Cost / Width)); + if (i.isScalable()) + LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " + << AssumedMinimumVscale << ")"); + LLVM_DEBUG(dbgs() << ".\n"); +#endif + + if (!C.second && !ForceVectorization) { + LLVM_DEBUG( + dbgs() << "LV: Not considering vector loop of width " << i + << " because it will not generate any vector instructions.\n"); + continue; + } + + // If profitable add it to ProfitableVF list. + if (isMoreProfitable(Candidate, ScalarCost)) + ProfitableVFs.push_back(Candidate); + + if (isMoreProfitable(Candidate, ChosenFactor)) + ChosenFactor = Candidate; + } + + // Emit a report of VFs with invalid costs in the loop. + if (!InvalidCosts.empty()) { + // Group the remarks per instruction, keeping the instruction order from + // InvalidCosts. + std::map<Instruction *, unsigned> Numbering; + unsigned I = 0; + for (auto &Pair : InvalidCosts) + if (!Numbering.count(Pair.first)) + Numbering[Pair.first] = I++; + + // Sort the list, first on instruction(number) then on VF. + llvm::sort(InvalidCosts, + [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { + if (Numbering[A.first] != Numbering[B.first]) + return Numbering[A.first] < Numbering[B.first]; + ElementCountComparator ECC; + return ECC(A.second, B.second); + }); + + // For a list of ordered instruction-vf pairs: + // [(load, vf1), (load, vf2), (store, vf1)] + // Group the instructions together to emit separate remarks for: + // load (vf1, vf2) + // store (vf1) + auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); + auto Subset = ArrayRef<InstructionVFPair>(); + do { + if (Subset.empty()) + Subset = Tail.take_front(1); + + Instruction *I = Subset.front().first; + + // If the next instruction is different, or if there are no other pairs, + // emit a remark for the collated subset. e.g. + // [(load, vf1), (load, vf2))] + // to emit: + // remark: invalid costs for 'load' at VF=(vf, vf2) + if (Subset == Tail || Tail[Subset.size()].first != I) { + std::string OutString; + raw_string_ostream OS(OutString); + assert(!Subset.empty() && "Unexpected empty range"); + OS << "Instruction with invalid costs prevented vectorization at VF=("; + for (const auto &Pair : Subset) + OS << (Pair.second == Subset.front().second ? "" : ", ") + << Pair.second; + OS << "):"; + if (auto *CI = dyn_cast<CallInst>(I)) + OS << " call to " << CI->getCalledFunction()->getName(); + else + OS << " " << I->getOpcodeName(); + OS.flush(); + reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); + Tail = Tail.drop_front(Subset.size()); + Subset = {}; + } else + // Grow the subset by one element + Subset = Tail.take_front(Subset.size() + 1); + } while (!Tail.empty()); + } + + if (!EnableCondStoresVectorization && NumPredStores) { + reportVectorizationFailure("There are conditional stores.", + "store that is conditionally executed prevents vectorization", + "ConditionalStore", ORE, TheLoop); + ChosenFactor = ScalarCost; + } + + LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && + !isMoreProfitable(ChosenFactor, ScalarCost)) dbgs() + << "LV: Vectorization seems to be not beneficial, " + << "but was forced by a user.\n"); + LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); + return ChosenFactor; +} + +bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( + const Loop &L, ElementCount VF) const { + // Cross iteration phis such as reductions need special handling and are + // currently unsupported. + if (any_of(L.getHeader()->phis(), + [&](PHINode &Phi) { return Legal->isFixedOrderRecurrence(&Phi); })) + return false; + + // Phis with uses outside of the loop require special handling and are + // currently unsupported. + for (const auto &Entry : Legal->getInductionVars()) { + // Look for uses of the value of the induction at the last iteration. + Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); + for (User *U : PostInc->users()) + if (!L.contains(cast<Instruction>(U))) + return false; + // Look for uses of penultimate value of the induction. + for (User *U : Entry.first->users()) + if (!L.contains(cast<Instruction>(U))) + return false; + } + + // Epilogue vectorization code has not been auditted to ensure it handles + // non-latch exits properly. It may be fine, but it needs auditted and + // tested. + if (L.getExitingBlock() != L.getLoopLatch()) + return false; + + return true; +} + +bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( + const ElementCount VF) const { + // FIXME: We need a much better cost-model to take different parameters such + // as register pressure, code size increase and cost of extra branches into + // account. For now we apply a very crude heuristic and only consider loops + // with vectorization factors larger than a certain value. + + // Allow the target to opt out entirely. + if (!TTI.preferEpilogueVectorization()) + return false; + + // We also consider epilogue vectorization unprofitable for targets that don't + // consider interleaving beneficial (eg. MVE). + if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) + return false; + // FIXME: We should consider changing the threshold for scalable + // vectors to take VScaleForTuning into account. + if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) + return true; + return false; +} + +VectorizationFactor +LoopVectorizationCostModel::selectEpilogueVectorizationFactor( + const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { + VectorizationFactor Result = VectorizationFactor::Disabled(); + if (!EnableEpilogueVectorization) { + LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); + return Result; + } + + if (!isScalarEpilogueAllowed()) { + LLVM_DEBUG( + dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " + "allowed.\n";); + return Result; + } + + // Not really a cost consideration, but check for unsupported cases here to + // simplify the logic. + if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { + LLVM_DEBUG( + dbgs() << "LEV: Unable to vectorize epilogue because the loop is " + "not a supported candidate.\n";); + return Result; + } + + if (EpilogueVectorizationForceVF > 1) { + LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); + ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); + if (LVP.hasPlanWithVF(ForcedEC)) + return {ForcedEC, 0, 0}; + else { + LLVM_DEBUG( + dbgs() + << "LEV: Epilogue vectorization forced factor is not viable.\n";); + return Result; + } + } + + if (TheLoop->getHeader()->getParent()->hasOptSize() || + TheLoop->getHeader()->getParent()->hasMinSize()) { + LLVM_DEBUG( + dbgs() + << "LEV: Epilogue vectorization skipped due to opt for size.\n";); + return Result; + } + + if (!isEpilogueVectorizationProfitable(MainLoopVF)) { + LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " + "this loop\n"); + return Result; + } + + // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know + // the main loop handles 8 lanes per iteration. We could still benefit from + // vectorizing the epilogue loop with VF=4. + ElementCount EstimatedRuntimeVF = MainLoopVF; + if (MainLoopVF.isScalable()) { + EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); + if (std::optional<unsigned> VScale = getVScaleForTuning()) + EstimatedRuntimeVF *= *VScale; + } + + for (auto &NextVF : ProfitableVFs) + if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && + ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || + ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && + (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && + LVP.hasPlanWithVF(NextVF.Width)) + Result = NextVF; + + if (Result != VectorizationFactor::Disabled()) + LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " + << Result.Width << "\n";); + return Result; +} + +std::pair<unsigned, unsigned> +LoopVectorizationCostModel::getSmallestAndWidestTypes() { + unsigned MinWidth = -1U; + unsigned MaxWidth = 8; + const DataLayout &DL = TheFunction->getParent()->getDataLayout(); + // For in-loop reductions, no element types are added to ElementTypesInLoop + // if there are no loads/stores in the loop. In this case, check through the + // reduction variables to determine the maximum width. + if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { + // Reset MaxWidth so that we can find the smallest type used by recurrences + // in the loop. + MaxWidth = -1U; + for (const auto &PhiDescriptorPair : Legal->getReductionVars()) { + const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; + // When finding the min width used by the recurrence we need to account + // for casts on the input operands of the recurrence. + MaxWidth = std::min<unsigned>( + MaxWidth, std::min<unsigned>( + RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), + RdxDesc.getRecurrenceType()->getScalarSizeInBits())); + } + } else { + for (Type *T : ElementTypesInLoop) { + MinWidth = std::min<unsigned>( + MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue()); + MaxWidth = std::max<unsigned>( + MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue()); + } + } + return {MinWidth, MaxWidth}; +} + +void LoopVectorizationCostModel::collectElementTypesForWidening() { + ElementTypesInLoop.clear(); + // For each block. + for (BasicBlock *BB : TheLoop->blocks()) { + // For each instruction in the loop. + for (Instruction &I : BB->instructionsWithoutDebug()) { + Type *T = I.getType(); + + // Skip ignored values. + if (ValuesToIgnore.count(&I)) + continue; + + // Only examine Loads, Stores and PHINodes. + if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) + continue; + + // Examine PHI nodes that are reduction variables. Update the type to + // account for the recurrence type. + if (auto *PN = dyn_cast<PHINode>(&I)) { + if (!Legal->isReductionVariable(PN)) + continue; + const RecurrenceDescriptor &RdxDesc = + Legal->getReductionVars().find(PN)->second; + if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || + TTI.preferInLoopReduction(RdxDesc.getOpcode(), + RdxDesc.getRecurrenceType(), + TargetTransformInfo::ReductionFlags())) + continue; + T = RdxDesc.getRecurrenceType(); + } + + // Examine the stored values. + if (auto *ST = dyn_cast<StoreInst>(&I)) + T = ST->getValueOperand()->getType(); + + assert(T->isSized() && + "Expected the load/store/recurrence type to be sized"); + + ElementTypesInLoop.insert(T); + } + } +} + +unsigned +LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, + InstructionCost LoopCost) { + // -- The interleave heuristics -- + // We interleave the loop in order to expose ILP and reduce the loop overhead. + // There are many micro-architectural considerations that we can't predict + // at this level. For example, frontend pressure (on decode or fetch) due to + // code size, or the number and capabilities of the execution ports. + // + // We use the following heuristics to select the interleave count: + // 1. If the code has reductions, then we interleave to break the cross + // iteration dependency. + // 2. If the loop is really small, then we interleave to reduce the loop + // overhead. + // 3. We don't interleave if we think that we will spill registers to memory + // due to the increased register pressure. + + if (!isScalarEpilogueAllowed()) + return 1; + + // We used the distance for the interleave count. + if (Legal->getMaxSafeDepDistBytes() != -1U) + return 1; + + auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); + const bool HasReductions = !Legal->getReductionVars().empty(); + // Do not interleave loops with a relatively small known or estimated trip + // count. But we will interleave when InterleaveSmallLoopScalarReduction is + // enabled, and the code has scalar reductions(HasReductions && VF = 1), + // because with the above conditions interleaving can expose ILP and break + // cross iteration dependences for reductions. + if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && + !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) + return 1; + + // If we did not calculate the cost for VF (because the user selected the VF) + // then we calculate the cost of VF here. + if (LoopCost == 0) { + LoopCost = expectedCost(VF).first; + assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost"); + + // Loop body is free and there is no need for interleaving. + if (LoopCost == 0) + return 1; + } + + RegisterUsage R = calculateRegisterUsage({VF})[0]; + // We divide by these constants so assume that we have at least one + // instruction that uses at least one register. + for (auto& pair : R.MaxLocalUsers) { + pair.second = std::max(pair.second, 1U); + } + + // We calculate the interleave count using the following formula. + // Subtract the number of loop invariants from the number of available + // registers. These registers are used by all of the interleaved instances. + // Next, divide the remaining registers by the number of registers that is + // required by the loop, in order to estimate how many parallel instances + // fit without causing spills. All of this is rounded down if necessary to be + // a power of two. We want power of two interleave count to simplify any + // addressing operations or alignment considerations. + // We also want power of two interleave counts to ensure that the induction + // variable of the vector loop wraps to zero, when tail is folded by masking; + // this currently happens when OptForSize, in which case IC is set to 1 above. + unsigned IC = UINT_MAX; + + for (auto& pair : R.MaxLocalUsers) { + unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); + LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters + << " registers of " + << TTI.getRegisterClassName(pair.first) << " register class\n"); + if (VF.isScalar()) { + if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) + TargetNumRegisters = ForceTargetNumScalarRegs; + } else { + if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) + TargetNumRegisters = ForceTargetNumVectorRegs; + } + unsigned MaxLocalUsers = pair.second; + unsigned LoopInvariantRegs = 0; + if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) + LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; + + unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); + // Don't count the induction variable as interleaved. + if (EnableIndVarRegisterHeur) { + TmpIC = + PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / + std::max(1U, (MaxLocalUsers - 1))); + } + + IC = std::min(IC, TmpIC); + } + + // Clamp the interleave ranges to reasonable counts. + unsigned MaxInterleaveCount = + TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); + + // Check if the user has overridden the max. + if (VF.isScalar()) { + if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) + MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; + } else { + if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) + MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; + } + + // If trip count is known or estimated compile time constant, limit the + // interleave count to be less than the trip count divided by VF, provided it + // is at least 1. + // + // For scalable vectors we can't know if interleaving is beneficial. It may + // not be beneficial for small loops if none of the lanes in the second vector + // iterations is enabled. However, for larger loops, there is likely to be a + // similar benefit as for fixed-width vectors. For now, we choose to leave + // the InterleaveCount as if vscale is '1', although if some information about + // the vector is known (e.g. min vector size), we can make a better decision. + if (BestKnownTC) { + MaxInterleaveCount = + std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); + // Make sure MaxInterleaveCount is greater than 0. + MaxInterleaveCount = std::max(1u, MaxInterleaveCount); + } + + assert(MaxInterleaveCount > 0 && + "Maximum interleave count must be greater than 0"); + + // Clamp the calculated IC to be between the 1 and the max interleave count + // that the target and trip count allows. + if (IC > MaxInterleaveCount) + IC = MaxInterleaveCount; + else + // Make sure IC is greater than 0. + IC = std::max(1u, IC); + + assert(IC > 0 && "Interleave count must be greater than 0."); + + // Interleave if we vectorized this loop and there is a reduction that could + // benefit from interleaving. + if (VF.isVector() && HasReductions) { + LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); + return IC; + } + + // For any scalar loop that either requires runtime checks or predication we + // are better off leaving this to the unroller. Note that if we've already + // vectorized the loop we will have done the runtime check and so interleaving + // won't require further checks. + bool ScalarInterleavingRequiresPredication = + (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { + return Legal->blockNeedsPredication(BB); + })); + bool ScalarInterleavingRequiresRuntimePointerCheck = + (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); + + // We want to interleave small loops in order to reduce the loop overhead and + // potentially expose ILP opportunities. + LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' + << "LV: IC is " << IC << '\n' + << "LV: VF is " << VF << '\n'); + const bool AggressivelyInterleaveReductions = + TTI.enableAggressiveInterleaving(HasReductions); + if (!ScalarInterleavingRequiresRuntimePointerCheck && + !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { + // We assume that the cost overhead is 1 and we use the cost model + // to estimate the cost of the loop and interleave until the cost of the + // loop overhead is about 5% of the cost of the loop. + unsigned SmallIC = std::min( + IC, (unsigned)PowerOf2Floor(SmallLoopCost / *LoopCost.getValue())); + + // Interleave until store/load ports (estimated by max interleave count) are + // saturated. + unsigned NumStores = Legal->getNumStores(); + unsigned NumLoads = Legal->getNumLoads(); + unsigned StoresIC = IC / (NumStores ? NumStores : 1); + unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); + + // There is little point in interleaving for reductions containing selects + // and compares when VF=1 since it may just create more overhead than it's + // worth for loops with small trip counts. This is because we still have to + // do the final reduction after the loop. + bool HasSelectCmpReductions = + HasReductions && + any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { + const RecurrenceDescriptor &RdxDesc = Reduction.second; + return RecurrenceDescriptor::isSelectCmpRecurrenceKind( + RdxDesc.getRecurrenceKind()); + }); + if (HasSelectCmpReductions) { + LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); + return 1; + } + + // If we have a scalar reduction (vector reductions are already dealt with + // by this point), we can increase the critical path length if the loop + // we're interleaving is inside another loop. For tree-wise reductions + // set the limit to 2, and for ordered reductions it's best to disable + // interleaving entirely. + if (HasReductions && TheLoop->getLoopDepth() > 1) { + bool HasOrderedReductions = + any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { + const RecurrenceDescriptor &RdxDesc = Reduction.second; + return RdxDesc.isOrdered(); + }); + if (HasOrderedReductions) { + LLVM_DEBUG( + dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); + return 1; + } + + unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); + SmallIC = std::min(SmallIC, F); + StoresIC = std::min(StoresIC, F); + LoadsIC = std::min(LoadsIC, F); + } + + if (EnableLoadStoreRuntimeInterleave && + std::max(StoresIC, LoadsIC) > SmallIC) { + LLVM_DEBUG( + dbgs() << "LV: Interleaving to saturate store or load ports.\n"); + return std::max(StoresIC, LoadsIC); + } + + // If there are scalar reductions and TTI has enabled aggressive + // interleaving for reductions, we will interleave to expose ILP. + if (InterleaveSmallLoopScalarReduction && VF.isScalar() && + AggressivelyInterleaveReductions) { + LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); + // Interleave no less than SmallIC but not as aggressive as the normal IC + // to satisfy the rare situation when resources are too limited. + return std::max(IC / 2, SmallIC); + } else { + LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); + return SmallIC; + } + } + + // Interleave if this is a large loop (small loops are already dealt with by + // this point) that could benefit from interleaving. + if (AggressivelyInterleaveReductions) { + LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); + return IC; + } + + LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); + return 1; +} + +SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> +LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { + // This function calculates the register usage by measuring the highest number + // of values that are alive at a single location. Obviously, this is a very + // rough estimation. We scan the loop in a topological order in order and + // assign a number to each instruction. We use RPO to ensure that defs are + // met before their users. We assume that each instruction that has in-loop + // users starts an interval. We record every time that an in-loop value is + // used, so we have a list of the first and last occurrences of each + // instruction. Next, we transpose this data structure into a multi map that + // holds the list of intervals that *end* at a specific location. This multi + // map allows us to perform a linear search. We scan the instructions linearly + // and record each time that a new interval starts, by placing it in a set. + // If we find this value in the multi-map then we remove it from the set. + // The max register usage is the maximum size of the set. + // We also search for instructions that are defined outside the loop, but are + // used inside the loop. We need this number separately from the max-interval + // usage number because when we unroll, loop-invariant values do not take + // more register. + LoopBlocksDFS DFS(TheLoop); + DFS.perform(LI); + + RegisterUsage RU; + + // Each 'key' in the map opens a new interval. The values + // of the map are the index of the 'last seen' usage of the + // instruction that is the key. + using IntervalMap = DenseMap<Instruction *, unsigned>; + + // Maps instruction to its index. + SmallVector<Instruction *, 64> IdxToInstr; + // Marks the end of each interval. + IntervalMap EndPoint; + // Saves the list of instruction indices that are used in the loop. + SmallPtrSet<Instruction *, 8> Ends; + // Saves the list of values that are used in the loop but are defined outside + // the loop (not including non-instruction values such as arguments and + // constants). + SmallPtrSet<Instruction *, 8> LoopInvariants; + + for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { + for (Instruction &I : BB->instructionsWithoutDebug()) { + IdxToInstr.push_back(&I); + + // Save the end location of each USE. + for (Value *U : I.operands()) { + auto *Instr = dyn_cast<Instruction>(U); + + // Ignore non-instruction values such as arguments, constants, etc. + // FIXME: Might need some motivation why these values are ignored. If + // for example an argument is used inside the loop it will increase the + // register pressure (so shouldn't we add it to LoopInvariants). + if (!Instr) + continue; + + // If this instruction is outside the loop then record it and continue. + if (!TheLoop->contains(Instr)) { + LoopInvariants.insert(Instr); + continue; + } + + // Overwrite previous end points. + EndPoint[Instr] = IdxToInstr.size(); + Ends.insert(Instr); + } + } + } + + // Saves the list of intervals that end with the index in 'key'. + using InstrList = SmallVector<Instruction *, 2>; + DenseMap<unsigned, InstrList> TransposeEnds; + + // Transpose the EndPoints to a list of values that end at each index. + for (auto &Interval : EndPoint) + TransposeEnds[Interval.second].push_back(Interval.first); + + SmallPtrSet<Instruction *, 8> OpenIntervals; + SmallVector<RegisterUsage, 8> RUs(VFs.size()); + SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); + + LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); + + const auto &TTICapture = TTI; + auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { + if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) + return 0; + return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); + }; + + for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { + Instruction *I = IdxToInstr[i]; + + // Remove all of the instructions that end at this location. + InstrList &List = TransposeEnds[i]; + for (Instruction *ToRemove : List) + OpenIntervals.erase(ToRemove); + + // Ignore instructions that are never used within the loop. + if (!Ends.count(I)) + continue; + + // Skip ignored values. + if (ValuesToIgnore.count(I)) + continue; + + // For each VF find the maximum usage of registers. + for (unsigned j = 0, e = VFs.size(); j < e; ++j) { + // Count the number of registers used, per register class, given all open + // intervals. + // Note that elements in this SmallMapVector will be default constructed + // as 0. So we can use "RegUsage[ClassID] += n" in the code below even if + // there is no previous entry for ClassID. + SmallMapVector<unsigned, unsigned, 4> RegUsage; + + if (VFs[j].isScalar()) { + for (auto *Inst : OpenIntervals) { + unsigned ClassID = + TTI.getRegisterClassForType(false, Inst->getType()); + // FIXME: The target might use more than one register for the type + // even in the scalar case. + RegUsage[ClassID] += 1; + } + } else { + collectUniformsAndScalars(VFs[j]); + for (auto *Inst : OpenIntervals) { + // Skip ignored values for VF > 1. + if (VecValuesToIgnore.count(Inst)) + continue; + if (isScalarAfterVectorization(Inst, VFs[j])) { + unsigned ClassID = + TTI.getRegisterClassForType(false, Inst->getType()); + // FIXME: The target might use more than one register for the type + // even in the scalar case. + RegUsage[ClassID] += 1; + } else { + unsigned ClassID = + TTI.getRegisterClassForType(true, Inst->getType()); + RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); + } + } + } + + for (auto& pair : RegUsage) { + auto &Entry = MaxUsages[j][pair.first]; + Entry = std::max(Entry, pair.second); + } + } + + LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " + << OpenIntervals.size() << '\n'); + + // Add the current instruction to the list of open intervals. + OpenIntervals.insert(I); + } + + for (unsigned i = 0, e = VFs.size(); i < e; ++i) { + // Note that elements in this SmallMapVector will be default constructed + // as 0. So we can use "Invariant[ClassID] += n" in the code below even if + // there is no previous entry for ClassID. + SmallMapVector<unsigned, unsigned, 4> Invariant; + + for (auto *Inst : LoopInvariants) { + // FIXME: The target might use more than one register for the type + // even in the scalar case. + bool IsScalar = all_of(Inst->users(), [&](User *U) { + auto *I = cast<Instruction>(U); + return TheLoop != LI->getLoopFor(I->getParent()) || + isScalarAfterVectorization(I, VFs[i]); + }); + + ElementCount VF = IsScalar ? ElementCount::getFixed(1) : VFs[i]; + unsigned ClassID = + TTI.getRegisterClassForType(VF.isVector(), Inst->getType()); + Invariant[ClassID] += GetRegUsage(Inst->getType(), VF); + } + + LLVM_DEBUG({ + dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; + dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() + << " item\n"; + for (const auto &pair : MaxUsages[i]) { + dbgs() << "LV(REG): RegisterClass: " + << TTI.getRegisterClassName(pair.first) << ", " << pair.second + << " registers\n"; + } + dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() + << " item\n"; + for (const auto &pair : Invariant) { + dbgs() << "LV(REG): RegisterClass: " + << TTI.getRegisterClassName(pair.first) << ", " << pair.second + << " registers\n"; + } + }); + + RU.LoopInvariantRegs = Invariant; + RU.MaxLocalUsers = MaxUsages[i]; + RUs[i] = RU; + } + + return RUs; +} + +bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, + ElementCount VF) { + // TODO: Cost model for emulated masked load/store is completely + // broken. This hack guides the cost model to use an artificially + // high enough value to practically disable vectorization with such + // operations, except where previously deployed legality hack allowed + // using very low cost values. This is to avoid regressions coming simply + // from moving "masked load/store" check from legality to cost model. + // Masked Load/Gather emulation was previously never allowed. + // Limited number of Masked Store/Scatter emulation was allowed. + assert((isPredicatedInst(I)) && + "Expecting a scalar emulated instruction"); + return isa<LoadInst>(I) || + (isa<StoreInst>(I) && + NumPredStores > NumberOfStoresToPredicate); +} + +void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { + // If we aren't vectorizing the loop, or if we've already collected the + // instructions to scalarize, there's nothing to do. Collection may already + // have occurred if we have a user-selected VF and are now computing the + // expected cost for interleaving. + if (VF.isScalar() || VF.isZero() || + InstsToScalarize.find(VF) != InstsToScalarize.end()) + return; + + // Initialize a mapping for VF in InstsToScalalarize. If we find that it's + // not profitable to scalarize any instructions, the presence of VF in the + // map will indicate that we've analyzed it already. + ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; + + PredicatedBBsAfterVectorization[VF].clear(); + + // Find all the instructions that are scalar with predication in the loop and + // determine if it would be better to not if-convert the blocks they are in. + // If so, we also record the instructions to scalarize. + for (BasicBlock *BB : TheLoop->blocks()) { + if (!blockNeedsPredicationForAnyReason(BB)) + continue; + for (Instruction &I : *BB) + if (isScalarWithPredication(&I, VF)) { + ScalarCostsTy ScalarCosts; + // Do not apply discount if scalable, because that would lead to + // invalid scalarization costs. + // Do not apply discount logic if hacked cost is needed + // for emulated masked memrefs. + if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && + computePredInstDiscount(&I, ScalarCosts, VF) >= 0) + ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); + // Remember that BB will remain after vectorization. + PredicatedBBsAfterVectorization[VF].insert(BB); + } + } +} + +InstructionCost LoopVectorizationCostModel::computePredInstDiscount( + Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { + assert(!isUniformAfterVectorization(PredInst, VF) && + "Instruction marked uniform-after-vectorization will be predicated"); + + // Initialize the discount to zero, meaning that the scalar version and the + // vector version cost the same. + InstructionCost Discount = 0; + + // Holds instructions to analyze. The instructions we visit are mapped in + // ScalarCosts. Those instructions are the ones that would be scalarized if + // we find that the scalar version costs less. + SmallVector<Instruction *, 8> Worklist; + + // Returns true if the given instruction can be scalarized. + auto canBeScalarized = [&](Instruction *I) -> bool { + // We only attempt to scalarize instructions forming a single-use chain + // from the original predicated block that would otherwise be vectorized. + // Although not strictly necessary, we give up on instructions we know will + // already be scalar to avoid traversing chains that are unlikely to be + // beneficial. + if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || + isScalarAfterVectorization(I, VF)) + return false; + + // If the instruction is scalar with predication, it will be analyzed + // separately. We ignore it within the context of PredInst. + if (isScalarWithPredication(I, VF)) + return false; + + // If any of the instruction's operands are uniform after vectorization, + // the instruction cannot be scalarized. This prevents, for example, a + // masked load from being scalarized. + // + // We assume we will only emit a value for lane zero of an instruction + // marked uniform after vectorization, rather than VF identical values. + // Thus, if we scalarize an instruction that uses a uniform, we would + // create uses of values corresponding to the lanes we aren't emitting code + // for. This behavior can be changed by allowing getScalarValue to clone + // the lane zero values for uniforms rather than asserting. + for (Use &U : I->operands()) + if (auto *J = dyn_cast<Instruction>(U.get())) + if (isUniformAfterVectorization(J, VF)) + return false; + + // Otherwise, we can scalarize the instruction. + return true; + }; + + // Compute the expected cost discount from scalarizing the entire expression + // feeding the predicated instruction. We currently only consider expressions + // that are single-use instruction chains. + Worklist.push_back(PredInst); + while (!Worklist.empty()) { + Instruction *I = Worklist.pop_back_val(); + + // If we've already analyzed the instruction, there's nothing to do. + if (ScalarCosts.find(I) != ScalarCosts.end()) + continue; + + // Compute the cost of the vector instruction. Note that this cost already + // includes the scalarization overhead of the predicated instruction. + InstructionCost VectorCost = getInstructionCost(I, VF).first; + + // Compute the cost of the scalarized instruction. This cost is the cost of + // the instruction as if it wasn't if-converted and instead remained in the + // predicated block. We will scale this cost by block probability after + // computing the scalarization overhead. + InstructionCost ScalarCost = + VF.getFixedValue() * + getInstructionCost(I, ElementCount::getFixed(1)).first; + + // Compute the scalarization overhead of needed insertelement instructions + // and phi nodes. + TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; + if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { + ScalarCost += TTI.getScalarizationOverhead( + cast<VectorType>(ToVectorTy(I->getType(), VF)), + APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ true, + /*Extract*/ false, CostKind); + ScalarCost += + VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind); + } + + // Compute the scalarization overhead of needed extractelement + // instructions. For each of the instruction's operands, if the operand can + // be scalarized, add it to the worklist; otherwise, account for the + // overhead. + for (Use &U : I->operands()) + if (auto *J = dyn_cast<Instruction>(U.get())) { + assert(VectorType::isValidElementType(J->getType()) && + "Instruction has non-scalar type"); + if (canBeScalarized(J)) + Worklist.push_back(J); + else if (needsExtract(J, VF)) { + ScalarCost += TTI.getScalarizationOverhead( + cast<VectorType>(ToVectorTy(J->getType(), VF)), + APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false, + /*Extract*/ true, CostKind); + } + } + + // Scale the total scalar cost by block probability. + ScalarCost /= getReciprocalPredBlockProb(); + + // Compute the discount. A non-negative discount means the vector version + // of the instruction costs more, and scalarizing would be beneficial. + Discount += VectorCost - ScalarCost; + ScalarCosts[I] = ScalarCost; + } + + return Discount; +} + +LoopVectorizationCostModel::VectorizationCostTy +LoopVectorizationCostModel::expectedCost( + ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { + VectorizationCostTy Cost; + + // For each block. + for (BasicBlock *BB : TheLoop->blocks()) { + VectorizationCostTy BlockCost; + + // For each instruction in the old loop. + for (Instruction &I : BB->instructionsWithoutDebug()) { + // Skip ignored values. + if (ValuesToIgnore.count(&I) || + (VF.isVector() && VecValuesToIgnore.count(&I))) + continue; + + VectorizationCostTy C = getInstructionCost(&I, VF); + + // Check if we should override the cost. + if (C.first.isValid() && + ForceTargetInstructionCost.getNumOccurrences() > 0) + C.first = InstructionCost(ForceTargetInstructionCost); + + // Keep a list of instructions with invalid costs. + if (Invalid && !C.first.isValid()) + Invalid->emplace_back(&I, VF); + + BlockCost.first += C.first; + BlockCost.second |= C.second; + LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first + << " for VF " << VF << " For instruction: " << I + << '\n'); + } + + // If we are vectorizing a predicated block, it will have been + // if-converted. This means that the block's instructions (aside from + // stores and instructions that may divide by zero) will now be + // unconditionally executed. For the scalar case, we may not always execute + // the predicated block, if it is an if-else block. Thus, scale the block's + // cost by the probability of executing it. blockNeedsPredication from + // Legal is used so as to not include all blocks in tail folded loops. + if (VF.isScalar() && Legal->blockNeedsPredication(BB)) + BlockCost.first /= getReciprocalPredBlockProb(); + + Cost.first += BlockCost.first; + Cost.second |= BlockCost.second; + } + + return Cost; +} + +/// Gets Address Access SCEV after verifying that the access pattern +/// is loop invariant except the induction variable dependence. +/// +/// This SCEV can be sent to the Target in order to estimate the address +/// calculation cost. +static const SCEV *getAddressAccessSCEV( + Value *Ptr, + LoopVectorizationLegality *Legal, + PredicatedScalarEvolution &PSE, + const Loop *TheLoop) { + + auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); + if (!Gep) + return nullptr; + + // We are looking for a gep with all loop invariant indices except for one + // which should be an induction variable. + auto SE = PSE.getSE(); + unsigned NumOperands = Gep->getNumOperands(); + for (unsigned i = 1; i < NumOperands; ++i) { + Value *Opd = Gep->getOperand(i); + if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && + !Legal->isInductionVariable(Opd)) + return nullptr; + } + + // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. + return PSE.getSCEV(Ptr); +} + +static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { + return Legal->hasStride(I->getOperand(0)) || + Legal->hasStride(I->getOperand(1)); +} + +InstructionCost +LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, + ElementCount VF) { + assert(VF.isVector() && + "Scalarization cost of instruction implies vectorization."); + if (VF.isScalable()) + return InstructionCost::getInvalid(); + + Type *ValTy = getLoadStoreType(I); + auto SE = PSE.getSE(); + + unsigned AS = getLoadStoreAddressSpace(I); + Value *Ptr = getLoadStorePointerOperand(I); + Type *PtrTy = ToVectorTy(Ptr->getType(), VF); + // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` + // that it is being called from this specific place. + + // Figure out whether the access is strided and get the stride value + // if it's known in compile time + const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); + + // Get the cost of the scalar memory instruction and address computation. + InstructionCost Cost = + VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); + + // Don't pass *I here, since it is scalar but will actually be part of a + // vectorized loop where the user of it is a vectorized instruction. + TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; + const Align Alignment = getLoadStoreAlignment(I); + Cost += VF.getKnownMinValue() * TTI.getMemoryOpCost(I->getOpcode(), + ValTy->getScalarType(), + Alignment, AS, CostKind); + + // Get the overhead of the extractelement and insertelement instructions + // we might create due to scalarization. + Cost += getScalarizationOverhead(I, VF, CostKind); + + // If we have a predicated load/store, it will need extra i1 extracts and + // conditional branches, but may not be executed for each vector lane. Scale + // the cost by the probability of executing the predicated block. + if (isPredicatedInst(I)) { + Cost /= getReciprocalPredBlockProb(); + + // Add the cost of an i1 extract and a branch + auto *Vec_i1Ty = + VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); + Cost += TTI.getScalarizationOverhead( + Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), + /*Insert=*/false, /*Extract=*/true, CostKind); + Cost += TTI.getCFInstrCost(Instruction::Br, CostKind); + + if (useEmulatedMaskMemRefHack(I, VF)) + // Artificially setting to a high enough value to practically disable + // vectorization with such operations. + Cost = 3000000; + } + + return Cost; +} + +InstructionCost +LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, + ElementCount VF) { + Type *ValTy = getLoadStoreType(I); + auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); + Value *Ptr = getLoadStorePointerOperand(I); + unsigned AS = getLoadStoreAddressSpace(I); + int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); + enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; + + assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && + "Stride should be 1 or -1 for consecutive memory access"); + const Align Alignment = getLoadStoreAlignment(I); + InstructionCost Cost = 0; + if (Legal->isMaskRequired(I)) { + Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, + CostKind); + } else { + TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0)); + Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, + CostKind, OpInfo, I); + } + + bool Reverse = ConsecutiveStride < 0; + if (Reverse) + Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, + std::nullopt, CostKind, 0); + return Cost; +} + +InstructionCost +LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, + ElementCount VF) { + assert(Legal->isUniformMemOp(*I)); + + Type *ValTy = getLoadStoreType(I); + auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); + const Align Alignment = getLoadStoreAlignment(I); + unsigned AS = getLoadStoreAddressSpace(I); + enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; + if (isa<LoadInst>(I)) { + return TTI.getAddressComputationCost(ValTy) + + TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, + CostKind) + + TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); + } + StoreInst *SI = cast<StoreInst>(I); + + bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); + return TTI.getAddressComputationCost(ValTy) + + TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, + CostKind) + + (isLoopInvariantStoreValue + ? 0 + : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, + CostKind, VF.getKnownMinValue() - 1)); +} + +InstructionCost +LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, + ElementCount VF) { + Type *ValTy = getLoadStoreType(I); + auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); + const Align Alignment = getLoadStoreAlignment(I); + const Value *Ptr = getLoadStorePointerOperand(I); + + return TTI.getAddressComputationCost(VectorTy) + + TTI.getGatherScatterOpCost( + I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, + TargetTransformInfo::TCK_RecipThroughput, I); +} + +InstructionCost +LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, + ElementCount VF) { + // TODO: Once we have support for interleaving with scalable vectors + // we can calculate the cost properly here. + if (VF.isScalable()) + return InstructionCost::getInvalid(); + + Type *ValTy = getLoadStoreType(I); + auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); + unsigned AS = getLoadStoreAddressSpace(I); + enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; + + auto Group = getInterleavedAccessGroup(I); + assert(Group && "Fail to get an interleaved access group."); + + unsigned InterleaveFactor = Group->getFactor(); + auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); + + // Holds the indices of existing members in the interleaved group. + SmallVector<unsigned, 4> Indices; + for (unsigned IF = 0; IF < InterleaveFactor; IF++) + if (Group->getMember(IF)) + Indices.push_back(IF); + + // Calculate the cost of the whole interleaved group. + bool UseMaskForGaps = + (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || + (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); + InstructionCost Cost = TTI.getInterleavedMemoryOpCost( + I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), + AS, CostKind, Legal->isMaskRequired(I), UseMaskForGaps); + + if (Group->isReverse()) { + // TODO: Add support for reversed masked interleaved access. + assert(!Legal->isMaskRequired(I) && + "Reverse masked interleaved access not supported."); + Cost += Group->getNumMembers() * + TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, + std::nullopt, CostKind, 0); + } + return Cost; +} + +std::optional<InstructionCost> +LoopVectorizationCostModel::getReductionPatternCost( + Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { + using namespace llvm::PatternMatch; + // Early exit for no inloop reductions + if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) + return std::nullopt; + auto *VectorTy = cast<VectorType>(Ty); + + // We are looking for a pattern of, and finding the minimal acceptable cost: + // reduce(mul(ext(A), ext(B))) or + // reduce(mul(A, B)) or + // reduce(ext(A)) or + // reduce(A). + // The basic idea is that we walk down the tree to do that, finding the root + // reduction instruction in InLoopReductionImmediateChains. From there we find + // the pattern of mul/ext and test the cost of the entire pattern vs the cost + // of the components. If the reduction cost is lower then we return it for the + // reduction instruction and 0 for the other instructions in the pattern. If + // it is not we return an invalid cost specifying the orignal cost method + // should be used. + Instruction *RetI = I; + if (match(RetI, m_ZExtOrSExt(m_Value()))) { + if (!RetI->hasOneUser()) + return std::nullopt; + RetI = RetI->user_back(); + } + + if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) && + RetI->user_back()->getOpcode() == Instruction::Add) { + RetI = RetI->user_back(); + } + + // Test if the found instruction is a reduction, and if not return an invalid + // cost specifying the parent to use the original cost modelling. + if (!InLoopReductionImmediateChains.count(RetI)) + return std::nullopt; + + // Find the reduction this chain is a part of and calculate the basic cost of + // the reduction on its own. + Instruction *LastChain = InLoopReductionImmediateChains[RetI]; + Instruction *ReductionPhi = LastChain; + while (!isa<PHINode>(ReductionPhi)) + ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; + + const RecurrenceDescriptor &RdxDesc = + Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; + + InstructionCost BaseCost = TTI.getArithmeticReductionCost( + RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); + + // For a call to the llvm.fmuladd intrinsic we need to add the cost of a + // normal fmul instruction to the cost of the fadd reduction. + if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) + BaseCost += + TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); + + // If we're using ordered reductions then we can just return the base cost + // here, since getArithmeticReductionCost calculates the full ordered + // reduction cost when FP reassociation is not allowed. + if (useOrderedReductions(RdxDesc)) + return BaseCost; + + // Get the operand that was not the reduction chain and match it to one of the + // patterns, returning the better cost if it is found. + Instruction *RedOp = RetI->getOperand(1) == LastChain + ? dyn_cast<Instruction>(RetI->getOperand(0)) + : dyn_cast<Instruction>(RetI->getOperand(1)); + + VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); + + Instruction *Op0, *Op1; + if (RedOp && RdxDesc.getOpcode() == Instruction::Add && + match(RedOp, + m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && + match(Op0, m_ZExtOrSExt(m_Value())) && + Op0->getOpcode() == Op1->getOpcode() && + Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && + !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && + (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { + + // Matched reduce.add(ext(mul(ext(A), ext(B))) + // Note that the extend opcodes need to all match, or if A==B they will have + // been converted to zext(mul(sext(A), sext(A))) as it is known positive, + // which is equally fine. + bool IsUnsigned = isa<ZExtInst>(Op0); + auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); + auto *MulType = VectorType::get(Op0->getType(), VectorTy); + + InstructionCost ExtCost = + TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, + TTI::CastContextHint::None, CostKind, Op0); + InstructionCost MulCost = + TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); + InstructionCost Ext2Cost = + TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, + TTI::CastContextHint::None, CostKind, RedOp); + + InstructionCost RedCost = TTI.getMulAccReductionCost( + IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind); + + if (RedCost.isValid() && + RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) + return I == RetI ? RedCost : 0; + } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && + !TheLoop->isLoopInvariant(RedOp)) { + // Matched reduce(ext(A)) + bool IsUnsigned = isa<ZExtInst>(RedOp); + auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); + InstructionCost RedCost = TTI.getExtendedReductionCost( + RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, + RdxDesc.getFastMathFlags(), CostKind); + + InstructionCost ExtCost = + TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, + TTI::CastContextHint::None, CostKind, RedOp); + if (RedCost.isValid() && RedCost < BaseCost + ExtCost) + return I == RetI ? RedCost : 0; + } else if (RedOp && RdxDesc.getOpcode() == Instruction::Add && + match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { + if (match(Op0, m_ZExtOrSExt(m_Value())) && + Op0->getOpcode() == Op1->getOpcode() && + !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { + bool IsUnsigned = isa<ZExtInst>(Op0); + Type *Op0Ty = Op0->getOperand(0)->getType(); + Type *Op1Ty = Op1->getOperand(0)->getType(); + Type *LargestOpTy = + Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty + : Op0Ty; + auto *ExtType = VectorType::get(LargestOpTy, VectorTy); + + // Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of + // different sizes. We take the largest type as the ext to reduce, and add + // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). + InstructionCost ExtCost0 = TTI.getCastInstrCost( + Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), + TTI::CastContextHint::None, CostKind, Op0); + InstructionCost ExtCost1 = TTI.getCastInstrCost( + Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), + TTI::CastContextHint::None, CostKind, Op1); + InstructionCost MulCost = + TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); + + InstructionCost RedCost = TTI.getMulAccReductionCost( + IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind); + InstructionCost ExtraExtCost = 0; + if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { + Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; + ExtraExtCost = TTI.getCastInstrCost( + ExtraExtOp->getOpcode(), ExtType, + VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), + TTI::CastContextHint::None, CostKind, ExtraExtOp); + } + + if (RedCost.isValid() && + (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) + return I == RetI ? RedCost : 0; + } else if (!match(I, m_ZExtOrSExt(m_Value()))) { + // Matched reduce.add(mul()) + InstructionCost MulCost = + TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); + + InstructionCost RedCost = TTI.getMulAccReductionCost( + true, RdxDesc.getRecurrenceType(), VectorTy, CostKind); + + if (RedCost.isValid() && RedCost < MulCost + BaseCost) + return I == RetI ? RedCost : 0; + } + } + + return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt; +} + +InstructionCost +LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, + ElementCount VF) { + // Calculate scalar cost only. Vectorization cost should be ready at this + // moment. + if (VF.isScalar()) { + Type *ValTy = getLoadStoreType(I); + const Align Alignment = getLoadStoreAlignment(I); + unsigned AS = getLoadStoreAddressSpace(I); + + TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0)); + return TTI.getAddressComputationCost(ValTy) + + TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, + TTI::TCK_RecipThroughput, OpInfo, I); + } + return getWideningCost(I, VF); +} + +LoopVectorizationCostModel::VectorizationCostTy +LoopVectorizationCostModel::getInstructionCost(Instruction *I, + ElementCount VF) { + // If we know that this instruction will remain uniform, check the cost of + // the scalar version. + if (isUniformAfterVectorization(I, VF)) + VF = ElementCount::getFixed(1); + + if (VF.isVector() && isProfitableToScalarize(I, VF)) + return VectorizationCostTy(InstsToScalarize[VF][I], false); + + // Forced scalars do not have any scalarization overhead. + auto ForcedScalar = ForcedScalars.find(VF); + if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { + auto InstSet = ForcedScalar->second; + if (InstSet.count(I)) + return VectorizationCostTy( + (getInstructionCost(I, ElementCount::getFixed(1)).first * + VF.getKnownMinValue()), + false); + } + + Type *VectorTy; + InstructionCost C = getInstructionCost(I, VF, VectorTy); + + bool TypeNotScalarized = false; + if (VF.isVector() && VectorTy->isVectorTy()) { + if (unsigned NumParts = TTI.getNumberOfParts(VectorTy)) { + if (VF.isScalable()) + // <vscale x 1 x iN> is assumed to be profitable over iN because + // scalable registers are a distinct register class from scalar ones. + // If we ever find a target which wants to lower scalable vectors + // back to scalars, we'll need to update this code to explicitly + // ask TTI about the register class uses for each part. + TypeNotScalarized = NumParts <= VF.getKnownMinValue(); + else + TypeNotScalarized = NumParts < VF.getKnownMinValue(); + } else + C = InstructionCost::getInvalid(); + } + return VectorizationCostTy(C, TypeNotScalarized); +} + +InstructionCost LoopVectorizationCostModel::getScalarizationOverhead( + Instruction *I, ElementCount VF, TTI::TargetCostKind CostKind) const { + + // There is no mechanism yet to create a scalable scalarization loop, + // so this is currently Invalid. + if (VF.isScalable()) + return InstructionCost::getInvalid(); + + if (VF.isScalar()) + return 0; + + InstructionCost Cost = 0; + Type *RetTy = ToVectorTy(I->getType(), VF); + if (!RetTy->isVoidTy() && + (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) + Cost += TTI.getScalarizationOverhead( + cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), + /*Insert*/ true, + /*Extract*/ false, CostKind); + + // Some targets keep addresses scalar. + if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) + return Cost; + + // Some targets support efficient element stores. + if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) + return Cost; + + // Collect operands to consider. + CallInst *CI = dyn_cast<CallInst>(I); + Instruction::op_range Ops = CI ? CI->args() : I->operands(); + + // Skip operands that do not require extraction/scalarization and do not incur + // any overhead. + SmallVector<Type *> Tys; + for (auto *V : filterExtractingOperands(Ops, VF)) + Tys.push_back(MaybeVectorizeType(V->getType(), VF)); + return Cost + TTI.getOperandsScalarizationOverhead( + filterExtractingOperands(Ops, VF), Tys, CostKind); +} + +void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { + if (VF.isScalar()) + return; + NumPredStores = 0; + for (BasicBlock *BB : TheLoop->blocks()) { + // For each instruction in the old loop. + for (Instruction &I : *BB) { + Value *Ptr = getLoadStorePointerOperand(&I); + if (!Ptr) + continue; + + // TODO: We should generate better code and update the cost model for + // predicated uniform stores. Today they are treated as any other + // predicated store (see added test cases in + // invariant-store-vectorization.ll). + if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) + NumPredStores++; + + if (Legal->isUniformMemOp(I)) { + auto isLegalToScalarize = [&]() { + if (!VF.isScalable()) + // Scalarization of fixed length vectors "just works". + return true; + + // We have dedicated lowering for unpredicated uniform loads and + // stores. Note that even with tail folding we know that at least + // one lane is active (i.e. generalized predication is not possible + // here), and the logic below depends on this fact. + if (!foldTailByMasking()) + return true; + + // For scalable vectors, a uniform memop load is always + // uniform-by-parts and we know how to scalarize that. + if (isa<LoadInst>(I)) + return true; + + // A uniform store isn't neccessarily uniform-by-part + // and we can't assume scalarization. + auto &SI = cast<StoreInst>(I); + return TheLoop->isLoopInvariant(SI.getValueOperand()); + }; + + const InstructionCost GatherScatterCost = + isLegalGatherOrScatter(&I, VF) ? + getGatherScatterCost(&I, VF) : InstructionCost::getInvalid(); + + // Load: Scalar load + broadcast + // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract + // FIXME: This cost is a significant under-estimate for tail folded + // memory ops. + const InstructionCost ScalarizationCost = isLegalToScalarize() ? + getUniformMemOpCost(&I, VF) : InstructionCost::getInvalid(); + + // Choose better solution for the current VF, Note that Invalid + // costs compare as maximumal large. If both are invalid, we get + // scalable invalid which signals a failure and a vectorization abort. + if (GatherScatterCost < ScalarizationCost) + setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost); + else + setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost); + continue; + } + + // We assume that widening is the best solution when possible. + if (memoryInstructionCanBeWidened(&I, VF)) { + InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); + int ConsecutiveStride = Legal->isConsecutivePtr( + getLoadStoreType(&I), getLoadStorePointerOperand(&I)); + assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && + "Expected consecutive stride."); + InstWidening Decision = + ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; + setWideningDecision(&I, VF, Decision, Cost); + continue; + } + + // Choose between Interleaving, Gather/Scatter or Scalarization. + InstructionCost InterleaveCost = InstructionCost::getInvalid(); + unsigned NumAccesses = 1; + if (isAccessInterleaved(&I)) { + auto Group = getInterleavedAccessGroup(&I); + assert(Group && "Fail to get an interleaved access group."); + + // Make one decision for the whole group. + if (getWideningDecision(&I, VF) != CM_Unknown) + continue; + + NumAccesses = Group->getNumMembers(); + if (interleavedAccessCanBeWidened(&I, VF)) + InterleaveCost = getInterleaveGroupCost(&I, VF); + } + + InstructionCost GatherScatterCost = + isLegalGatherOrScatter(&I, VF) + ? getGatherScatterCost(&I, VF) * NumAccesses + : InstructionCost::getInvalid(); + + InstructionCost ScalarizationCost = + getMemInstScalarizationCost(&I, VF) * NumAccesses; + + // Choose better solution for the current VF, + // write down this decision and use it during vectorization. + InstructionCost Cost; + InstWidening Decision; + if (InterleaveCost <= GatherScatterCost && + InterleaveCost < ScalarizationCost) { + Decision = CM_Interleave; + Cost = InterleaveCost; + } else if (GatherScatterCost < ScalarizationCost) { + Decision = CM_GatherScatter; + Cost = GatherScatterCost; + } else { + Decision = CM_Scalarize; + Cost = ScalarizationCost; + } + // If the instructions belongs to an interleave group, the whole group + // receives the same decision. The whole group receives the cost, but + // the cost will actually be assigned to one instruction. + if (auto Group = getInterleavedAccessGroup(&I)) + setWideningDecision(Group, VF, Decision, Cost); + else + setWideningDecision(&I, VF, Decision, Cost); + } + } + + // Make sure that any load of address and any other address computation + // remains scalar unless there is gather/scatter support. This avoids + // inevitable extracts into address registers, and also has the benefit of + // activating LSR more, since that pass can't optimize vectorized + // addresses. + if (TTI.prefersVectorizedAddressing()) + return; + + // Start with all scalar pointer uses. + SmallPtrSet<Instruction *, 8> AddrDefs; + for (BasicBlock *BB : TheLoop->blocks()) + for (Instruction &I : *BB) { + Instruction *PtrDef = + dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); + if (PtrDef && TheLoop->contains(PtrDef) && + getWideningDecision(&I, VF) != CM_GatherScatter) + AddrDefs.insert(PtrDef); + } + + // Add all instructions used to generate the addresses. + SmallVector<Instruction *, 4> Worklist; + append_range(Worklist, AddrDefs); + while (!Worklist.empty()) { + Instruction *I = Worklist.pop_back_val(); + for (auto &Op : I->operands()) + if (auto *InstOp = dyn_cast<Instruction>(Op)) + if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && + AddrDefs.insert(InstOp).second) + Worklist.push_back(InstOp); + } + + for (auto *I : AddrDefs) { + if (isa<LoadInst>(I)) { + // Setting the desired widening decision should ideally be handled in + // by cost functions, but since this involves the task of finding out + // if the loaded register is involved in an address computation, it is + // instead changed here when we know this is the case. + InstWidening Decision = getWideningDecision(I, VF); + if (Decision == CM_Widen || Decision == CM_Widen_Reverse) + // Scalarize a widened load of address. + setWideningDecision( + I, VF, CM_Scalarize, + (VF.getKnownMinValue() * + getMemoryInstructionCost(I, ElementCount::getFixed(1)))); + else if (auto Group = getInterleavedAccessGroup(I)) { + // Scalarize an interleave group of address loads. + for (unsigned I = 0; I < Group->getFactor(); ++I) { + if (Instruction *Member = Group->getMember(I)) + setWideningDecision( + Member, VF, CM_Scalarize, + (VF.getKnownMinValue() * + getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); + } + } + } else + // Make sure I gets scalarized and a cost estimate without + // scalarization overhead. + ForcedScalars[VF].insert(I); + } +} + +InstructionCost +LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, + Type *&VectorTy) { + Type *RetTy = I->getType(); + if (canTruncateToMinimalBitwidth(I, VF)) + RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); + auto SE = PSE.getSE(); + TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; + + auto hasSingleCopyAfterVectorization = [this](Instruction *I, + ElementCount VF) -> bool { + if (VF.isScalar()) + return true; + + auto Scalarized = InstsToScalarize.find(VF); + assert(Scalarized != InstsToScalarize.end() && + "VF not yet analyzed for scalarization profitability"); + return !Scalarized->second.count(I) && + llvm::all_of(I->users(), [&](User *U) { + auto *UI = cast<Instruction>(U); + return !Scalarized->second.count(UI); + }); + }; + (void) hasSingleCopyAfterVectorization; + + if (isScalarAfterVectorization(I, VF)) { + // With the exception of GEPs and PHIs, after scalarization there should + // only be one copy of the instruction generated in the loop. This is + // because the VF is either 1, or any instructions that need scalarizing + // have already been dealt with by the the time we get here. As a result, + // it means we don't have to multiply the instruction cost by VF. + assert(I->getOpcode() == Instruction::GetElementPtr || + I->getOpcode() == Instruction::PHI || + (I->getOpcode() == Instruction::BitCast && + I->getType()->isPointerTy()) || + hasSingleCopyAfterVectorization(I, VF)); + VectorTy = RetTy; + } else + VectorTy = ToVectorTy(RetTy, VF); + + // TODO: We need to estimate the cost of intrinsic calls. + switch (I->getOpcode()) { + case Instruction::GetElementPtr: + // We mark this instruction as zero-cost because the cost of GEPs in + // vectorized code depends on whether the corresponding memory instruction + // is scalarized or not. Therefore, we handle GEPs with the memory + // instruction cost. + return 0; + case Instruction::Br: { + // In cases of scalarized and predicated instructions, there will be VF + // predicated blocks in the vectorized loop. Each branch around these + // blocks requires also an extract of its vector compare i1 element. + bool ScalarPredicatedBB = false; + BranchInst *BI = cast<BranchInst>(I); + if (VF.isVector() && BI->isConditional() && + (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) || + PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1)))) + ScalarPredicatedBB = true; + + if (ScalarPredicatedBB) { + // Not possible to scalarize scalable vector with predicated instructions. + if (VF.isScalable()) + return InstructionCost::getInvalid(); + // Return cost for branches around scalarized and predicated blocks. + auto *Vec_i1Ty = + VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); + return ( + TTI.getScalarizationOverhead( + Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), + /*Insert*/ false, /*Extract*/ true, CostKind) + + (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); + } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) + // The back-edge branch will remain, as will all scalar branches. + return TTI.getCFInstrCost(Instruction::Br, CostKind); + else + // This branch will be eliminated by if-conversion. + return 0; + // Note: We currently assume zero cost for an unconditional branch inside + // a predicated block since it will become a fall-through, although we + // may decide in the future to call TTI for all branches. + } + case Instruction::PHI: { + auto *Phi = cast<PHINode>(I); + + // First-order recurrences are replaced by vector shuffles inside the loop. + if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) { + SmallVector<int> Mask(VF.getKnownMinValue()); + std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1); + return TTI.getShuffleCost(TargetTransformInfo::SK_Splice, + cast<VectorType>(VectorTy), Mask, CostKind, + VF.getKnownMinValue() - 1); + } + + // Phi nodes in non-header blocks (not inductions, reductions, etc.) are + // converted into select instructions. We require N - 1 selects per phi + // node, where N is the number of incoming values. + if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) + return (Phi->getNumIncomingValues() - 1) * + TTI.getCmpSelInstrCost( + Instruction::Select, ToVectorTy(Phi->getType(), VF), + ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), + CmpInst::BAD_ICMP_PREDICATE, CostKind); + + return TTI.getCFInstrCost(Instruction::PHI, CostKind); + } + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::URem: + case Instruction::SRem: + if (VF.isVector() && isPredicatedInst(I)) { + const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF); + return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ? + ScalarCost : SafeDivisorCost; + } + // We've proven all lanes safe to speculate, fall through. + [[fallthrough]]; + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::FDiv: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + // Since we will replace the stride by 1 the multiplication should go away. + if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) + return 0; + + // Detect reduction patterns + if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) + return *RedCost; + + // Certain instructions can be cheaper to vectorize if they have a constant + // second vector operand. One example of this are shifts on x86. + Value *Op2 = I->getOperand(1); + auto Op2Info = TTI.getOperandInfo(Op2); + if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) + Op2Info.Kind = TargetTransformInfo::OK_UniformValue; + + SmallVector<const Value *, 4> Operands(I->operand_values()); + return TTI.getArithmeticInstrCost( + I->getOpcode(), VectorTy, CostKind, + {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, + Op2Info, Operands, I); + } + case Instruction::FNeg: { + return TTI.getArithmeticInstrCost( + I->getOpcode(), VectorTy, CostKind, + {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, + {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, + I->getOperand(0), I); + } + case Instruction::Select: { + SelectInst *SI = cast<SelectInst>(I); + const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); + bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); + + const Value *Op0, *Op1; + using namespace llvm::PatternMatch; + if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || + match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { + // select x, y, false --> x & y + // select x, true, y --> x | y + const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0); + const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1); + assert(Op0->getType()->getScalarSizeInBits() == 1 && + Op1->getType()->getScalarSizeInBits() == 1); + + SmallVector<const Value *, 2> Operands{Op0, Op1}; + return TTI.getArithmeticInstrCost( + match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, + CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, I); + } + + Type *CondTy = SI->getCondition()->getType(); + if (!ScalarCond) + CondTy = VectorType::get(CondTy, VF); + + CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; + if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) + Pred = Cmp->getPredicate(); + return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, + CostKind, I); + } + case Instruction::ICmp: + case Instruction::FCmp: { + Type *ValTy = I->getOperand(0)->getType(); + Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); + if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) + ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); + VectorTy = ToVectorTy(ValTy, VF); + return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, + cast<CmpInst>(I)->getPredicate(), CostKind, + I); + } + case Instruction::Store: + case Instruction::Load: { + ElementCount Width = VF; + if (Width.isVector()) { + InstWidening Decision = getWideningDecision(I, Width); + assert(Decision != CM_Unknown && + "CM decision should be taken at this point"); + if (getWideningCost(I, VF) == InstructionCost::getInvalid()) + return InstructionCost::getInvalid(); + if (Decision == CM_Scalarize) + Width = ElementCount::getFixed(1); + } + VectorTy = ToVectorTy(getLoadStoreType(I), Width); + return getMemoryInstructionCost(I, VF); + } + case Instruction::BitCast: + if (I->getType()->isPointerTy()) + return 0; + [[fallthrough]]; + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::FPExt: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::SIToFP: + case Instruction::UIToFP: + case Instruction::Trunc: + case Instruction::FPTrunc: { + // Computes the CastContextHint from a Load/Store instruction. + auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { + assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && + "Expected a load or a store!"); + + if (VF.isScalar() || !TheLoop->contains(I)) + return TTI::CastContextHint::Normal; + + switch (getWideningDecision(I, VF)) { + case LoopVectorizationCostModel::CM_GatherScatter: + return TTI::CastContextHint::GatherScatter; + case LoopVectorizationCostModel::CM_Interleave: + return TTI::CastContextHint::Interleave; + case LoopVectorizationCostModel::CM_Scalarize: + case LoopVectorizationCostModel::CM_Widen: + return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked + : TTI::CastContextHint::Normal; + case LoopVectorizationCostModel::CM_Widen_Reverse: + return TTI::CastContextHint::Reversed; + case LoopVectorizationCostModel::CM_Unknown: + llvm_unreachable("Instr did not go through cost modelling?"); + } + + llvm_unreachable("Unhandled case!"); + }; + + unsigned Opcode = I->getOpcode(); + TTI::CastContextHint CCH = TTI::CastContextHint::None; + // For Trunc, the context is the only user, which must be a StoreInst. + if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { + if (I->hasOneUse()) + if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) + CCH = ComputeCCH(Store); + } + // For Z/Sext, the context is the operand, which must be a LoadInst. + else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || + Opcode == Instruction::FPExt) { + if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) + CCH = ComputeCCH(Load); + } + + // We optimize the truncation of induction variables having constant + // integer steps. The cost of these truncations is the same as the scalar + // operation. + if (isOptimizableIVTruncate(I, VF)) { + auto *Trunc = cast<TruncInst>(I); + return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), + Trunc->getSrcTy(), CCH, CostKind, Trunc); + } + + // Detect reduction patterns + if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) + return *RedCost; + + Type *SrcScalarTy = I->getOperand(0)->getType(); + Type *SrcVecTy = + VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; + if (canTruncateToMinimalBitwidth(I, VF)) { + // This cast is going to be shrunk. This may remove the cast or it might + // turn it into slightly different cast. For example, if MinBW == 16, + // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". + // + // Calculate the modified src and dest types. + Type *MinVecTy = VectorTy; + if (Opcode == Instruction::Trunc) { + SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); + VectorTy = + largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); + } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { + SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); + VectorTy = + smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); + } + } + + return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); + } + case Instruction::Call: { + if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) + if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) + return *RedCost; + bool NeedToScalarize; + CallInst *CI = cast<CallInst>(I); + InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); + if (getVectorIntrinsicIDForCall(CI, TLI)) { + InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); + return std::min(CallCost, IntrinsicCost); + } + return CallCost; + } + case Instruction::ExtractValue: + return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); + case Instruction::Alloca: + // We cannot easily widen alloca to a scalable alloca, as + // the result would need to be a vector of pointers. + if (VF.isScalable()) + return InstructionCost::getInvalid(); + [[fallthrough]]; + default: + // This opcode is unknown. Assume that it is the same as 'mul'. + return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); + } // end of switch. +} + +char LoopVectorize::ID = 0; + +static const char lv_name[] = "Loop Vectorization"; + +INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) +INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) +INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) + +namespace llvm { + +Pass *createLoopVectorizePass() { return new LoopVectorize(); } + +Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, + bool VectorizeOnlyWhenForced) { + return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); +} + +} // end namespace llvm + +void LoopVectorizationCostModel::collectValuesToIgnore() { + // Ignore ephemeral values. + CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); + + // Find all stores to invariant variables. Since they are going to sink + // outside the loop we do not need calculate cost for them. + for (BasicBlock *BB : TheLoop->blocks()) + for (Instruction &I : *BB) { + StoreInst *SI; + if ((SI = dyn_cast<StoreInst>(&I)) && + Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) + ValuesToIgnore.insert(&I); + } + + // Ignore type-promoting instructions we identified during reduction + // detection. + for (const auto &Reduction : Legal->getReductionVars()) { + const RecurrenceDescriptor &RedDes = Reduction.second; + const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); + VecValuesToIgnore.insert(Casts.begin(), Casts.end()); + } + // Ignore type-casting instructions we identified during induction + // detection. + for (const auto &Induction : Legal->getInductionVars()) { + const InductionDescriptor &IndDes = Induction.second; + const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); + VecValuesToIgnore.insert(Casts.begin(), Casts.end()); + } +} + +void LoopVectorizationCostModel::collectInLoopReductions() { + for (const auto &Reduction : Legal->getReductionVars()) { + PHINode *Phi = Reduction.first; + const RecurrenceDescriptor &RdxDesc = Reduction.second; + + // We don't collect reductions that are type promoted (yet). + if (RdxDesc.getRecurrenceType() != Phi->getType()) + continue; + + // If the target would prefer this reduction to happen "in-loop", then we + // want to record it as such. + unsigned Opcode = RdxDesc.getOpcode(); + if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && + !TTI.preferInLoopReduction(Opcode, Phi->getType(), + TargetTransformInfo::ReductionFlags())) + continue; + + // Check that we can correctly put the reductions into the loop, by + // finding the chain of operations that leads from the phi to the loop + // exit value. + SmallVector<Instruction *, 4> ReductionOperations = + RdxDesc.getReductionOpChain(Phi, TheLoop); + bool InLoop = !ReductionOperations.empty(); + if (InLoop) { + InLoopReductionChains[Phi] = ReductionOperations; + // Add the elements to InLoopReductionImmediateChains for cost modelling. + Instruction *LastChain = Phi; + for (auto *I : ReductionOperations) { + InLoopReductionImmediateChains[I] = LastChain; + LastChain = I; + } + } + LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") + << " reduction for phi: " << *Phi << "\n"); + } +} + +// TODO: we could return a pair of values that specify the max VF and +// min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of +// `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment +// doesn't have a cost model that can choose which plan to execute if +// more than one is generated. +static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, + LoopVectorizationCostModel &CM) { + unsigned WidestType; + std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); + return WidestVectorRegBits / WidestType; +} + +VectorizationFactor +LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { + assert(!UserVF.isScalable() && "scalable vectors not yet supported"); + ElementCount VF = UserVF; + // Outer loop handling: They may require CFG and instruction level + // transformations before even evaluating whether vectorization is profitable. + // Since we cannot modify the incoming IR, we need to build VPlan upfront in + // the vectorization pipeline. + if (!OrigLoop->isInnermost()) { + // If the user doesn't provide a vectorization factor, determine a + // reasonable one. + if (UserVF.isZero()) { + VF = ElementCount::getFixed(determineVPlanVF( + TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) + .getFixedValue(), + CM)); + LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); + + // Make sure we have a VF > 1 for stress testing. + if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { + LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " + << "overriding computed VF.\n"); + VF = ElementCount::getFixed(4); + } + } + assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); + assert(isPowerOf2_32(VF.getKnownMinValue()) && + "VF needs to be a power of two"); + LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") + << "VF " << VF << " to build VPlans.\n"); + buildVPlans(VF, VF); + + // For VPlan build stress testing, we bail out after VPlan construction. + if (VPlanBuildStressTest) + return VectorizationFactor::Disabled(); + + return {VF, 0 /*Cost*/, 0 /* ScalarCost */}; + } + + LLVM_DEBUG( + dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " + "VPlan-native path.\n"); + return VectorizationFactor::Disabled(); +} + +std::optional<VectorizationFactor> +LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { + assert(OrigLoop->isInnermost() && "Inner loop expected."); + FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); + if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. + return std::nullopt; + + // Invalidate interleave groups if all blocks of loop will be predicated. + if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && + !useMaskedInterleavedAccesses(*TTI)) { + LLVM_DEBUG( + dbgs() + << "LV: Invalidate all interleaved groups due to fold-tail by masking " + "which requires masked-interleaved support.\n"); + if (CM.InterleaveInfo.invalidateGroups()) + // Invalidating interleave groups also requires invalidating all decisions + // based on them, which includes widening decisions and uniform and scalar + // values. + CM.invalidateCostModelingDecisions(); + } + + ElementCount MaxUserVF = + UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; + bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); + if (!UserVF.isZero() && UserVFIsLegal) { + assert(isPowerOf2_32(UserVF.getKnownMinValue()) && + "VF needs to be a power of two"); + // Collect the instructions (and their associated costs) that will be more + // profitable to scalarize. + if (CM.selectUserVectorizationFactor(UserVF)) { + LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); + CM.collectInLoopReductions(); + buildVPlansWithVPRecipes(UserVF, UserVF); + LLVM_DEBUG(printPlans(dbgs())); + return {{UserVF, 0, 0}}; + } else + reportVectorizationInfo("UserVF ignored because of invalid costs.", + "InvalidCost", ORE, OrigLoop); + } + + // Populate the set of Vectorization Factor Candidates. + ElementCountSet VFCandidates; + for (auto VF = ElementCount::getFixed(1); + ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) + VFCandidates.insert(VF); + for (auto VF = ElementCount::getScalable(1); + ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) + VFCandidates.insert(VF); + + for (const auto &VF : VFCandidates) { + // Collect Uniform and Scalar instructions after vectorization with VF. + CM.collectUniformsAndScalars(VF); + + // Collect the instructions (and their associated costs) that will be more + // profitable to scalarize. + if (VF.isVector()) + CM.collectInstsToScalarize(VF); + } + + CM.collectInLoopReductions(); + buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); + buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); + + LLVM_DEBUG(printPlans(dbgs())); + if (!MaxFactors.hasVector()) + return VectorizationFactor::Disabled(); + + // Select the optimal vectorization factor. + VectorizationFactor VF = CM.selectVectorizationFactor(VFCandidates); + assert((VF.Width.isScalar() || VF.ScalarCost > 0) && "when vectorizing, the scalar cost must be non-zero."); + return VF; +} + +VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { + assert(count_if(VPlans, + [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == + 1 && + "Best VF has not a single VPlan."); + + for (const VPlanPtr &Plan : VPlans) { + if (Plan->hasVF(VF)) + return *Plan.get(); + } + llvm_unreachable("No plan found!"); +} + +static void AddRuntimeUnrollDisableMetaData(Loop *L) { + SmallVector<Metadata *, 4> MDs; + // Reserve first location for self reference to the LoopID metadata node. + MDs.push_back(nullptr); + bool IsUnrollMetadata = false; + MDNode *LoopID = L->getLoopID(); + if (LoopID) { + // First find existing loop unrolling disable metadata. + for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { + auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); + if (MD) { + const auto *S = dyn_cast<MDString>(MD->getOperand(0)); + IsUnrollMetadata = + S && S->getString().startswith("llvm.loop.unroll.disable"); + } + MDs.push_back(LoopID->getOperand(i)); + } + } + + if (!IsUnrollMetadata) { + // Add runtime unroll disable metadata. + LLVMContext &Context = L->getHeader()->getContext(); + SmallVector<Metadata *, 1> DisableOperands; + DisableOperands.push_back( + MDString::get(Context, "llvm.loop.unroll.runtime.disable")); + MDNode *DisableNode = MDNode::get(Context, DisableOperands); + MDs.push_back(DisableNode); + MDNode *NewLoopID = MDNode::get(Context, MDs); + // Set operand 0 to refer to the loop id itself. + NewLoopID->replaceOperandWith(0, NewLoopID); + L->setLoopID(NewLoopID); + } +} + +void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, + VPlan &BestVPlan, + InnerLoopVectorizer &ILV, + DominatorTree *DT, + bool IsEpilogueVectorization) { + assert(BestVPlan.hasVF(BestVF) && + "Trying to execute plan with unsupported VF"); + assert(BestVPlan.hasUF(BestUF) && + "Trying to execute plan with unsupported UF"); + + LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF + << '\n'); + + // Workaround! Compute the trip count of the original loop and cache it + // before we start modifying the CFG. This code has a systemic problem + // wherein it tries to run analysis over partially constructed IR; this is + // wrong, and not simply for SCEV. The trip count of the original loop + // simply happens to be prone to hitting this in practice. In theory, we + // can hit the same issue for any SCEV, or ValueTracking query done during + // mutation. See PR49900. + ILV.getOrCreateTripCount(OrigLoop->getLoopPreheader()); + + if (!IsEpilogueVectorization) + VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE); + + // Perform the actual loop transformation. + + // 1. Set up the skeleton for vectorization, including vector pre-header and + // middle block. The vector loop is created during VPlan execution. + VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; + Value *CanonicalIVStartValue; + std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = + ILV.createVectorizedLoopSkeleton(); + + // Only use noalias metadata when using memory checks guaranteeing no overlap + // across all iterations. + const LoopAccessInfo *LAI = ILV.Legal->getLAI(); + if (LAI && !LAI->getRuntimePointerChecking()->getChecks().empty() && + !LAI->getRuntimePointerChecking()->getDiffChecks()) { + + // We currently don't use LoopVersioning for the actual loop cloning but we + // still use it to add the noalias metadata. + // TODO: Find a better way to re-use LoopVersioning functionality to add + // metadata. + State.LVer = std::make_unique<LoopVersioning>( + *LAI, LAI->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, DT, + PSE.getSE()); + State.LVer->prepareNoAliasMetadata(); + } + + ILV.collectPoisonGeneratingRecipes(State); + + ILV.printDebugTracesAtStart(); + + //===------------------------------------------------===// + // + // Notice: any optimization or new instruction that go + // into the code below should also be implemented in + // the cost-model. + // + //===------------------------------------------------===// + + // 2. Copy and widen instructions from the old loop into the new loop. + BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), + ILV.getOrCreateVectorTripCount(nullptr), + CanonicalIVStartValue, State, + IsEpilogueVectorization); + + BestVPlan.execute(&State); + + // Keep all loop hints from the original loop on the vector loop (we'll + // replace the vectorizer-specific hints below). + MDNode *OrigLoopID = OrigLoop->getLoopID(); + + std::optional<MDNode *> VectorizedLoopID = + makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, + LLVMLoopVectorizeFollowupVectorized}); + + VPBasicBlock *HeaderVPBB = + BestVPlan.getVectorLoopRegion()->getEntryBasicBlock(); + Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]); + if (VectorizedLoopID) + L->setLoopID(*VectorizedLoopID); + else { + // Keep all loop hints from the original loop on the vector loop (we'll + // replace the vectorizer-specific hints below). + if (MDNode *LID = OrigLoop->getLoopID()) + L->setLoopID(LID); + + LoopVectorizeHints Hints(L, true, *ORE); + Hints.setAlreadyVectorized(); + } + AddRuntimeUnrollDisableMetaData(L); + + // 3. Fix the vectorized code: take care of header phi's, live-outs, + // predication, updating analyses. + ILV.fixVectorizedLoop(State, BestVPlan); + + ILV.printDebugTracesAtEnd(); +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void LoopVectorizationPlanner::printPlans(raw_ostream &O) { + for (const auto &Plan : VPlans) + if (PrintVPlansInDotFormat) + Plan->printDOT(O); + else + Plan->print(O); +} +#endif + +Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } + +//===--------------------------------------------------------------------===// +// EpilogueVectorizerMainLoop +//===--------------------------------------------------------------------===// + +/// This function is partially responsible for generating the control flow +/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. +std::pair<BasicBlock *, Value *> +EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { + createVectorLoopSkeleton(""); + + // Generate the code to check the minimum iteration count of the vector + // epilogue (see below). + EPI.EpilogueIterationCountCheck = + emitIterationCountCheck(LoopScalarPreHeader, true); + EPI.EpilogueIterationCountCheck->setName("iter.check"); + + // Generate the code to check any assumptions that we've made for SCEV + // expressions. + EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); + + // Generate the code that checks at runtime if arrays overlap. We put the + // checks into a separate block to make the more common case of few elements + // faster. + EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); + + // Generate the iteration count check for the main loop, *after* the check + // for the epilogue loop, so that the path-length is shorter for the case + // that goes directly through the vector epilogue. The longer-path length for + // the main loop is compensated for, by the gain from vectorizing the larger + // trip count. Note: the branch will get updated later on when we vectorize + // the epilogue. + EPI.MainLoopIterationCountCheck = + emitIterationCountCheck(LoopScalarPreHeader, false); + + // Generate the induction variable. + EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); + + // Skip induction resume value creation here because they will be created in + // the second pass for the scalar loop. The induction resume values for the + // inductions in the epilogue loop are created before executing the plan for + // the epilogue loop. + + return {completeLoopSkeleton(), nullptr}; +} + +void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { + LLVM_DEBUG({ + dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" + << "Main Loop VF:" << EPI.MainLoopVF + << ", Main Loop UF:" << EPI.MainLoopUF + << ", Epilogue Loop VF:" << EPI.EpilogueVF + << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; + }); +} + +void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { + DEBUG_WITH_TYPE(VerboseDebug, { + dbgs() << "intermediate fn:\n" + << *OrigLoop->getHeader()->getParent() << "\n"; + }); +} + +BasicBlock * +EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass, + bool ForEpilogue) { + assert(Bypass && "Expected valid bypass basic block."); + ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; + unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; + Value *Count = getOrCreateTripCount(LoopVectorPreHeader); + // Reuse existing vector loop preheader for TC checks. + // Note that new preheader block is generated for vector loop. + BasicBlock *const TCCheckBlock = LoopVectorPreHeader; + IRBuilder<> Builder(TCCheckBlock->getTerminator()); + + // Generate code to check if the loop's trip count is less than VF * UF of the + // main vector loop. + auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? + ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; + + Value *CheckMinIters = Builder.CreateICmp( + P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), + "min.iters.check"); + + if (!ForEpilogue) + TCCheckBlock->setName("vector.main.loop.iter.check"); + + // Create new preheader for vector loop. + LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), + DT, LI, nullptr, "vector.ph"); + + if (ForEpilogue) { + assert(DT->properlyDominates(DT->getNode(TCCheckBlock), + DT->getNode(Bypass)->getIDom()) && + "TC check is expected to dominate Bypass"); + + // Update dominator for Bypass & LoopExit. + DT->changeImmediateDominator(Bypass, TCCheckBlock); + if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) + // For loops with multiple exits, there's no edge from the middle block + // to exit blocks (as the epilogue must run) and thus no need to update + // the immediate dominator of the exit blocks. + DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); + + LoopBypassBlocks.push_back(TCCheckBlock); + + // Save the trip count so we don't have to regenerate it in the + // vec.epilog.iter.check. This is safe to do because the trip count + // generated here dominates the vector epilog iter check. + EPI.TripCount = Count; + } + + ReplaceInstWithInst( + TCCheckBlock->getTerminator(), + BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); + + return TCCheckBlock; +} + +//===--------------------------------------------------------------------===// +// EpilogueVectorizerEpilogueLoop +//===--------------------------------------------------------------------===// + +/// This function is partially responsible for generating the control flow +/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. +std::pair<BasicBlock *, Value *> +EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { + createVectorLoopSkeleton("vec.epilog."); + + // Now, compare the remaining count and if there aren't enough iterations to + // execute the vectorized epilogue skip to the scalar part. + BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; + VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); + LoopVectorPreHeader = + SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, + LI, nullptr, "vec.epilog.ph"); + emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, + VecEpilogueIterationCountCheck); + + // Adjust the control flow taking the state info from the main loop + // vectorization into account. + assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && + "expected this to be saved from the previous pass."); + EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( + VecEpilogueIterationCountCheck, LoopVectorPreHeader); + + DT->changeImmediateDominator(LoopVectorPreHeader, + EPI.MainLoopIterationCountCheck); + + EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( + VecEpilogueIterationCountCheck, LoopScalarPreHeader); + + if (EPI.SCEVSafetyCheck) + EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( + VecEpilogueIterationCountCheck, LoopScalarPreHeader); + if (EPI.MemSafetyCheck) + EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( + VecEpilogueIterationCountCheck, LoopScalarPreHeader); + + DT->changeImmediateDominator( + VecEpilogueIterationCountCheck, + VecEpilogueIterationCountCheck->getSinglePredecessor()); + + DT->changeImmediateDominator(LoopScalarPreHeader, + EPI.EpilogueIterationCountCheck); + if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) + // If there is an epilogue which must run, there's no edge from the + // middle block to exit blocks and thus no need to update the immediate + // dominator of the exit blocks. + DT->changeImmediateDominator(LoopExitBlock, + EPI.EpilogueIterationCountCheck); + + // Keep track of bypass blocks, as they feed start values to the induction and + // reduction phis in the scalar loop preheader. + if (EPI.SCEVSafetyCheck) + LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); + if (EPI.MemSafetyCheck) + LoopBypassBlocks.push_back(EPI.MemSafetyCheck); + LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); + + // The vec.epilog.iter.check block may contain Phi nodes from inductions or + // reductions which merge control-flow from the latch block and the middle + // block. Update the incoming values here and move the Phi into the preheader. + SmallVector<PHINode *, 4> PhisInBlock; + for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) + PhisInBlock.push_back(&Phi); + + for (PHINode *Phi : PhisInBlock) { + Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); + Phi->replaceIncomingBlockWith( + VecEpilogueIterationCountCheck->getSinglePredecessor(), + VecEpilogueIterationCountCheck); + + // If the phi doesn't have an incoming value from the + // EpilogueIterationCountCheck, we are done. Otherwise remove the incoming + // value and also those from other check blocks. This is needed for + // reduction phis only. + if (none_of(Phi->blocks(), [&](BasicBlock *IncB) { + return EPI.EpilogueIterationCountCheck == IncB; + })) + continue; + Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); + if (EPI.SCEVSafetyCheck) + Phi->removeIncomingValue(EPI.SCEVSafetyCheck); + if (EPI.MemSafetyCheck) + Phi->removeIncomingValue(EPI.MemSafetyCheck); + } + + // Generate a resume induction for the vector epilogue and put it in the + // vector epilogue preheader + Type *IdxTy = Legal->getWidestInductionType(); + PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", + LoopVectorPreHeader->getFirstNonPHI()); + EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); + EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), + EPI.MainLoopIterationCountCheck); + + // Generate induction resume values. These variables save the new starting + // indexes for the scalar loop. They are used to test if there are any tail + // iterations left once the vector loop has completed. + // Note that when the vectorized epilogue is skipped due to iteration count + // check, then the resume value for the induction variable comes from + // the trip count of the main vector loop, hence passing the AdditionalBypass + // argument. + createInductionResumeValues({VecEpilogueIterationCountCheck, + EPI.VectorTripCount} /* AdditionalBypass */); + + return {completeLoopSkeleton(), EPResumeVal}; +} + +BasicBlock * +EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( + BasicBlock *Bypass, BasicBlock *Insert) { + + assert(EPI.TripCount && + "Expected trip count to have been safed in the first pass."); + assert( + (!isa<Instruction>(EPI.TripCount) || + DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && + "saved trip count does not dominate insertion point."); + Value *TC = EPI.TripCount; + IRBuilder<> Builder(Insert->getTerminator()); + Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); + + // Generate code to check if the loop's trip count is less than VF * UF of the + // vector epilogue loop. + auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? + ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; + + Value *CheckMinIters = + Builder.CreateICmp(P, Count, + createStepForVF(Builder, Count->getType(), + EPI.EpilogueVF, EPI.EpilogueUF), + "min.epilog.iters.check"); + + ReplaceInstWithInst( + Insert->getTerminator(), + BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); + + LoopBypassBlocks.push_back(Insert); + return Insert; +} + +void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { + LLVM_DEBUG({ + dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" + << "Epilogue Loop VF:" << EPI.EpilogueVF + << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; + }); +} + +void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { + DEBUG_WITH_TYPE(VerboseDebug, { + dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; + }); +} + +bool LoopVectorizationPlanner::getDecisionAndClampRange( + const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { + assert(!Range.isEmpty() && "Trying to test an empty VF range."); + bool PredicateAtRangeStart = Predicate(Range.Start); + + for (ElementCount TmpVF = Range.Start * 2; + ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) + if (Predicate(TmpVF) != PredicateAtRangeStart) { + Range.End = TmpVF; + break; + } + + return PredicateAtRangeStart; +} + +/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, +/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range +/// of VF's starting at a given VF and extending it as much as possible. Each +/// vectorization decision can potentially shorten this sub-range during +/// buildVPlan(). +void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, + ElementCount MaxVF) { + auto MaxVFPlusOne = MaxVF.getWithIncrement(1); + for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { + VFRange SubRange = {VF, MaxVFPlusOne}; + VPlans.push_back(buildVPlan(SubRange)); + VF = SubRange.End; + } +} + +VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, + VPlanPtr &Plan) { + assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); + + // Look for cached value. + std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); + EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); + if (ECEntryIt != EdgeMaskCache.end()) + return ECEntryIt->second; + + VPValue *SrcMask = createBlockInMask(Src, Plan); + + // The terminator has to be a branch inst! + BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); + assert(BI && "Unexpected terminator found"); + + if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) + return EdgeMaskCache[Edge] = SrcMask; + + // If source is an exiting block, we know the exit edge is dynamically dead + // in the vector loop, and thus we don't need to restrict the mask. Avoid + // adding uses of an otherwise potentially dead instruction. + if (OrigLoop->isLoopExiting(Src)) + return EdgeMaskCache[Edge] = SrcMask; + + VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); + assert(EdgeMask && "No Edge Mask found for condition"); + + if (BI->getSuccessor(0) != Dst) + EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); + + if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. + // The condition is 'SrcMask && EdgeMask', which is equivalent to + // 'select i1 SrcMask, i1 EdgeMask, i1 false'. + // The select version does not introduce new UB if SrcMask is false and + // EdgeMask is poison. Using 'and' here introduces undefined behavior. + VPValue *False = Plan->getOrAddVPValue( + ConstantInt::getFalse(BI->getCondition()->getType())); + EdgeMask = + Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); + } + + return EdgeMaskCache[Edge] = EdgeMask; +} + +VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { + assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); + + // Look for cached value. + BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); + if (BCEntryIt != BlockMaskCache.end()) + return BCEntryIt->second; + + // All-one mask is modelled as no-mask following the convention for masked + // load/store/gather/scatter. Initialize BlockMask to no-mask. + VPValue *BlockMask = nullptr; + + if (OrigLoop->getHeader() == BB) { + if (!CM.blockNeedsPredicationForAnyReason(BB)) + return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. + + assert(CM.foldTailByMasking() && "must fold the tail"); + + // If we're using the active lane mask for control flow, then we get the + // mask from the active lane mask PHI that is cached in the VPlan. + PredicationStyle EmitGetActiveLaneMask = CM.TTI.emitGetActiveLaneMask(); + if (EmitGetActiveLaneMask == PredicationStyle::DataAndControlFlow) + return BlockMaskCache[BB] = Plan->getActiveLaneMaskPhi(); + + // Introduce the early-exit compare IV <= BTC to form header block mask. + // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by + // constructing the desired canonical IV in the header block as its first + // non-phi instructions. + + VPBasicBlock *HeaderVPBB = + Plan->getVectorLoopRegion()->getEntryBasicBlock(); + auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); + auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); + HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); + + VPBuilder::InsertPointGuard Guard(Builder); + Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); + if (EmitGetActiveLaneMask != PredicationStyle::None) { + VPValue *TC = Plan->getOrCreateTripCount(); + BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}, + nullptr, "active.lane.mask"); + } else { + VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); + BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); + } + return BlockMaskCache[BB] = BlockMask; + } + + // This is the block mask. We OR all incoming edges. + for (auto *Predecessor : predecessors(BB)) { + VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); + if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. + return BlockMaskCache[BB] = EdgeMask; + + if (!BlockMask) { // BlockMask has its initialized nullptr value. + BlockMask = EdgeMask; + continue; + } + + BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); + } + + return BlockMaskCache[BB] = BlockMask; +} + +VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, + ArrayRef<VPValue *> Operands, + VFRange &Range, + VPlanPtr &Plan) { + assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && + "Must be called with either a load or store"); + + auto willWiden = [&](ElementCount VF) -> bool { + LoopVectorizationCostModel::InstWidening Decision = + CM.getWideningDecision(I, VF); + assert(Decision != LoopVectorizationCostModel::CM_Unknown && + "CM decision should be taken at this point."); + if (Decision == LoopVectorizationCostModel::CM_Interleave) + return true; + if (CM.isScalarAfterVectorization(I, VF) || + CM.isProfitableToScalarize(I, VF)) + return false; + return Decision != LoopVectorizationCostModel::CM_Scalarize; + }; + + if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) + return nullptr; + + VPValue *Mask = nullptr; + if (Legal->isMaskRequired(I)) + Mask = createBlockInMask(I->getParent(), Plan); + + // Determine if the pointer operand of the access is either consecutive or + // reverse consecutive. + LoopVectorizationCostModel::InstWidening Decision = + CM.getWideningDecision(I, Range.Start); + bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; + bool Consecutive = + Reverse || Decision == LoopVectorizationCostModel::CM_Widen; + + if (LoadInst *Load = dyn_cast<LoadInst>(I)) + return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, + Consecutive, Reverse); + + StoreInst *Store = cast<StoreInst>(I); + return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], + Mask, Consecutive, Reverse); +} + +/// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also +/// insert a recipe to expand the step for the induction recipe. +static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes( + PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, + const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM, + VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) { + // Returns true if an instruction \p I should be scalarized instead of + // vectorized for the chosen vectorization factor. + auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { + return CM.isScalarAfterVectorization(I, VF) || + CM.isProfitableToScalarize(I, VF); + }; + + bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( + [&](ElementCount VF) { + return ShouldScalarizeInstruction(PhiOrTrunc, VF); + }, + Range); + assert(IndDesc.getStartValue() == + Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); + assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && + "step must be loop invariant"); + + VPValue *Step = + vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE); + if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { + return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI, + !NeedsScalarIVOnly); + } + assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); + return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, + !NeedsScalarIVOnly); +} + +VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI( + PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) { + + // Check if this is an integer or fp induction. If so, build the recipe that + // produces its scalar and vector values. + if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) + return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan, + *PSE.getSE(), *OrigLoop, Range); + + // Check if this is pointer induction. If so, build the recipe for it. + if (auto *II = Legal->getPointerInductionDescriptor(Phi)) { + VPValue *Step = vputils::getOrCreateVPValueForSCEVExpr(Plan, II->getStep(), + *PSE.getSE()); + assert(isa<SCEVConstant>(II->getStep())); + return new VPWidenPointerInductionRecipe( + Phi, Operands[0], Step, *II, + LoopVectorizationPlanner::getDecisionAndClampRange( + [&](ElementCount VF) { + return CM.isScalarAfterVectorization(Phi, VF); + }, + Range)); + } + return nullptr; +} + +VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( + TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) { + // Optimize the special case where the source is a constant integer + // induction variable. Notice that we can only optimize the 'trunc' case + // because (a) FP conversions lose precision, (b) sext/zext may wrap, and + // (c) other casts depend on pointer size. + + // Determine whether \p K is a truncation based on an induction variable that + // can be optimized. + auto isOptimizableIVTruncate = + [&](Instruction *K) -> std::function<bool(ElementCount)> { + return [=](ElementCount VF) -> bool { + return CM.isOptimizableIVTruncate(K, VF); + }; + }; + + if (LoopVectorizationPlanner::getDecisionAndClampRange( + isOptimizableIVTruncate(I), Range)) { + + auto *Phi = cast<PHINode>(I->getOperand(0)); + const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); + VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); + return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan, + *PSE.getSE(), *OrigLoop, Range); + } + return nullptr; +} + +VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, + ArrayRef<VPValue *> Operands, + VPlanPtr &Plan) { + // If all incoming values are equal, the incoming VPValue can be used directly + // instead of creating a new VPBlendRecipe. + if (llvm::all_equal(Operands)) + return Operands[0]; + + unsigned NumIncoming = Phi->getNumIncomingValues(); + // For in-loop reductions, we do not need to create an additional select. + VPValue *InLoopVal = nullptr; + for (unsigned In = 0; In < NumIncoming; In++) { + PHINode *PhiOp = + dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); + if (PhiOp && CM.isInLoopReduction(PhiOp)) { + assert(!InLoopVal && "Found more than one in-loop reduction!"); + InLoopVal = Operands[In]; + } + } + + assert((!InLoopVal || NumIncoming == 2) && + "Found an in-loop reduction for PHI with unexpected number of " + "incoming values"); + if (InLoopVal) + return Operands[Operands[0] == InLoopVal ? 1 : 0]; + + // We know that all PHIs in non-header blocks are converted into selects, so + // we don't have to worry about the insertion order and we can just use the + // builder. At this point we generate the predication tree. There may be + // duplications since this is a simple recursive scan, but future + // optimizations will clean it up. + SmallVector<VPValue *, 2> OperandsWithMask; + + for (unsigned In = 0; In < NumIncoming; In++) { + VPValue *EdgeMask = + createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); + assert((EdgeMask || NumIncoming == 1) && + "Multiple predecessors with one having a full mask"); + OperandsWithMask.push_back(Operands[In]); + if (EdgeMask) + OperandsWithMask.push_back(EdgeMask); + } + return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); +} + +VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, + ArrayRef<VPValue *> Operands, + VFRange &Range) const { + + bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( + [this, CI](ElementCount VF) { + return CM.isScalarWithPredication(CI, VF); + }, + Range); + + if (IsPredicated) + return nullptr; + + Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); + if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || + ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || + ID == Intrinsic::pseudoprobe || + ID == Intrinsic::experimental_noalias_scope_decl)) + return nullptr; + + ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); + + // Is it beneficial to perform intrinsic call compared to lib call? + bool ShouldUseVectorIntrinsic = + ID && LoopVectorizationPlanner::getDecisionAndClampRange( + [&](ElementCount VF) -> bool { + bool NeedToScalarize = false; + // Is it beneficial to perform intrinsic call compared to lib + // call? + InstructionCost CallCost = + CM.getVectorCallCost(CI, VF, NeedToScalarize); + InstructionCost IntrinsicCost = + CM.getVectorIntrinsicCost(CI, VF); + return IntrinsicCost <= CallCost; + }, + Range); + if (ShouldUseVectorIntrinsic) + return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()), ID); + + // Is better to call a vectorized version of the function than to to scalarize + // the call? + auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange( + [&](ElementCount VF) -> bool { + // The following case may be scalarized depending on the VF. + // The flag shows whether we can use a usual Call for vectorized + // version of the instruction. + bool NeedToScalarize = false; + CM.getVectorCallCost(CI, VF, NeedToScalarize); + return !NeedToScalarize; + }, + Range); + if (ShouldUseVectorCall) + return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()), + Intrinsic::not_intrinsic); + + return nullptr; +} + +bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { + assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && + !isa<StoreInst>(I) && "Instruction should have been handled earlier"); + // Instruction should be widened, unless it is scalar after vectorization, + // scalarization is profitable or it is predicated. + auto WillScalarize = [this, I](ElementCount VF) -> bool { + return CM.isScalarAfterVectorization(I, VF) || + CM.isProfitableToScalarize(I, VF) || + CM.isScalarWithPredication(I, VF); + }; + return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, + Range); +} + +VPRecipeBase *VPRecipeBuilder::tryToWiden(Instruction *I, + ArrayRef<VPValue *> Operands, + VPBasicBlock *VPBB, VPlanPtr &Plan) { + switch (I->getOpcode()) { + default: + return nullptr; + case Instruction::SDiv: + case Instruction::UDiv: + case Instruction::SRem: + case Instruction::URem: { + // If not provably safe, use a select to form a safe divisor before widening the + // div/rem operation itself. Otherwise fall through to general handling below. + if (CM.isPredicatedInst(I)) { + SmallVector<VPValue *> Ops(Operands.begin(), Operands.end()); + VPValue *Mask = createBlockInMask(I->getParent(), Plan); + VPValue *One = + Plan->getOrAddExternalDef(ConstantInt::get(I->getType(), 1u, false)); + auto *SafeRHS = + new VPInstruction(Instruction::Select, {Mask, Ops[1], One}, + I->getDebugLoc()); + VPBB->appendRecipe(SafeRHS); + Ops[1] = SafeRHS; + return new VPWidenRecipe(*I, make_range(Ops.begin(), Ops.end())); + } + LLVM_FALLTHROUGH; + } + case Instruction::Add: + case Instruction::And: + case Instruction::AShr: + case Instruction::BitCast: + case Instruction::FAdd: + case Instruction::FCmp: + case Instruction::FDiv: + case Instruction::FMul: + case Instruction::FNeg: + case Instruction::FPExt: + case Instruction::FPToSI: + case Instruction::FPToUI: + case Instruction::FPTrunc: + case Instruction::FRem: + case Instruction::FSub: + case Instruction::ICmp: + case Instruction::IntToPtr: + case Instruction::LShr: + case Instruction::Mul: + case Instruction::Or: + case Instruction::PtrToInt: + case Instruction::Select: + case Instruction::SExt: + case Instruction::Shl: + case Instruction::SIToFP: + case Instruction::Sub: + case Instruction::Trunc: + case Instruction::UIToFP: + case Instruction::Xor: + case Instruction::ZExt: + case Instruction::Freeze: + return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); + }; +} + +void VPRecipeBuilder::fixHeaderPhis() { + BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); + for (VPHeaderPHIRecipe *R : PhisToFix) { + auto *PN = cast<PHINode>(R->getUnderlyingValue()); + VPRecipeBase *IncR = + getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); + R->addOperand(IncR->getVPSingleValue()); + } +} + +VPBasicBlock *VPRecipeBuilder::handleReplication( + Instruction *I, VFRange &Range, VPBasicBlock *VPBB, + VPlanPtr &Plan) { + bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( + [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, + Range); + + bool IsPredicated = CM.isPredicatedInst(I); + + // Even if the instruction is not marked as uniform, there are certain + // intrinsic calls that can be effectively treated as such, so we check for + // them here. Conservatively, we only do this for scalable vectors, since + // for fixed-width VFs we can always fall back on full scalarization. + if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { + switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { + case Intrinsic::assume: + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + // For scalable vectors if one of the operands is variant then we still + // want to mark as uniform, which will generate one instruction for just + // the first lane of the vector. We can't scalarize the call in the same + // way as for fixed-width vectors because we don't know how many lanes + // there are. + // + // The reasons for doing it this way for scalable vectors are: + // 1. For the assume intrinsic generating the instruction for the first + // lane is still be better than not generating any at all. For + // example, the input may be a splat across all lanes. + // 2. For the lifetime start/end intrinsics the pointer operand only + // does anything useful when the input comes from a stack object, + // which suggests it should always be uniform. For non-stack objects + // the effect is to poison the object, which still allows us to + // remove the call. + IsUniform = true; + break; + default: + break; + } + } + + auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), + IsUniform, IsPredicated); + + // Find if I uses a predicated instruction. If so, it will use its scalar + // value. Avoid hoisting the insert-element which packs the scalar value into + // a vector value, as that happens iff all users use the vector value. + for (VPValue *Op : Recipe->operands()) { + auto *PredR = + dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDefiningRecipe()); + if (!PredR) + continue; + auto *RepR = cast<VPReplicateRecipe>( + PredR->getOperand(0)->getDefiningRecipe()); + assert(RepR->isPredicated() && + "expected Replicate recipe to be predicated"); + RepR->setAlsoPack(false); + } + + // Finalize the recipe for Instr, first if it is not predicated. + if (!IsPredicated) { + LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); + setRecipe(I, Recipe); + Plan->addVPValue(I, Recipe); + VPBB->appendRecipe(Recipe); + return VPBB; + } + LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); + + VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); + assert(SingleSucc && "VPBB must have a single successor when handling " + "predicated replication."); + VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); + // Record predicated instructions for above packing optimizations. + VPBlockBase *Region = createReplicateRegion(Recipe, Plan); + VPBlockUtils::insertBlockAfter(Region, VPBB); + auto *RegSucc = new VPBasicBlock(); + VPBlockUtils::insertBlockAfter(RegSucc, Region); + VPBlockUtils::connectBlocks(RegSucc, SingleSucc); + return RegSucc; +} + +VPRegionBlock * +VPRecipeBuilder::createReplicateRegion(VPReplicateRecipe *PredRecipe, + VPlanPtr &Plan) { + Instruction *Instr = PredRecipe->getUnderlyingInstr(); + // Instructions marked for predication are replicated and placed under an + // if-then construct to prevent side-effects. + // Generate recipes to compute the block mask for this region. + VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); + + // Build the triangular if-then region. + std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); + assert(Instr->getParent() && "Predicated instruction not in any basic block"); + auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); + auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); + auto *PHIRecipe = Instr->getType()->isVoidTy() + ? nullptr + : new VPPredInstPHIRecipe(PredRecipe); + if (PHIRecipe) { + setRecipe(Instr, PHIRecipe); + Plan->addVPValue(Instr, PHIRecipe); + } else { + setRecipe(Instr, PredRecipe); + Plan->addVPValue(Instr, PredRecipe); + } + + auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); + auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); + VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true); + + // Note: first set Entry as region entry and then connect successors starting + // from it in order, to propagate the "parent" of each VPBasicBlock. + VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry); + VPBlockUtils::connectBlocks(Pred, Exiting); + + return Region; +} + +VPRecipeOrVPValueTy +VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, + ArrayRef<VPValue *> Operands, + VFRange &Range, VPBasicBlock *VPBB, + VPlanPtr &Plan) { + // First, check for specific widening recipes that deal with inductions, Phi + // nodes, calls and memory operations. + VPRecipeBase *Recipe; + if (auto Phi = dyn_cast<PHINode>(Instr)) { + if (Phi->getParent() != OrigLoop->getHeader()) + return tryToBlend(Phi, Operands, Plan); + + // Always record recipes for header phis. Later first-order recurrence phis + // can have earlier phis as incoming values. + recordRecipeOf(Phi); + + if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range))) + return toVPRecipeResult(Recipe); + + VPHeaderPHIRecipe *PhiRecipe = nullptr; + assert((Legal->isReductionVariable(Phi) || + Legal->isFixedOrderRecurrence(Phi)) && + "can only widen reductions and fixed-order recurrences here"); + VPValue *StartV = Operands[0]; + if (Legal->isReductionVariable(Phi)) { + const RecurrenceDescriptor &RdxDesc = + Legal->getReductionVars().find(Phi)->second; + assert(RdxDesc.getRecurrenceStartValue() == + Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); + PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, + CM.isInLoopReduction(Phi), + CM.useOrderedReductions(RdxDesc)); + } else { + // TODO: Currently fixed-order recurrences are modeled as chains of + // first-order recurrences. If there are no users of the intermediate + // recurrences in the chain, the fixed order recurrence should be modeled + // directly, enabling more efficient codegen. + PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); + } + + // Record the incoming value from the backedge, so we can add the incoming + // value from the backedge after all recipes have been created. + auto *Inc = cast<Instruction>( + Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())); + auto RecipeIter = Ingredient2Recipe.find(Inc); + if (RecipeIter == Ingredient2Recipe.end()) + recordRecipeOf(Inc); + + PhisToFix.push_back(PhiRecipe); + return toVPRecipeResult(PhiRecipe); + } + + if (isa<TruncInst>(Instr) && + (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, + Range, *Plan))) + return toVPRecipeResult(Recipe); + + // All widen recipes below deal only with VF > 1. + if (LoopVectorizationPlanner::getDecisionAndClampRange( + [&](ElementCount VF) { return VF.isScalar(); }, Range)) + return nullptr; + + if (auto *CI = dyn_cast<CallInst>(Instr)) + return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); + + if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) + return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); + + if (!shouldWiden(Instr, Range)) + return nullptr; + + if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) + return toVPRecipeResult(new VPWidenGEPRecipe( + GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); + + if (auto *SI = dyn_cast<SelectInst>(Instr)) { + bool InvariantCond = + PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); + return toVPRecipeResult(new VPWidenSelectRecipe( + *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); + } + + return toVPRecipeResult(tryToWiden(Instr, Operands, VPBB, Plan)); +} + +void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, + ElementCount MaxVF) { + assert(OrigLoop->isInnermost() && "Inner loop expected."); + + // Add assume instructions we need to drop to DeadInstructions, to prevent + // them from being added to the VPlan. + // TODO: We only need to drop assumes in blocks that get flattend. If the + // control flow is preserved, we should keep them. + SmallPtrSet<Instruction *, 4> DeadInstructions; + auto &ConditionalAssumes = Legal->getConditionalAssumes(); + DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); + + MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); + // Dead instructions do not need sinking. Remove them from SinkAfter. + for (Instruction *I : DeadInstructions) + SinkAfter.erase(I); + + // Cannot sink instructions after dead instructions (there won't be any + // recipes for them). Instead, find the first non-dead previous instruction. + for (auto &P : Legal->getSinkAfter()) { + Instruction *SinkTarget = P.second; + Instruction *FirstInst = &*SinkTarget->getParent()->begin(); + (void)FirstInst; + while (DeadInstructions.contains(SinkTarget)) { + assert( + SinkTarget != FirstInst && + "Must find a live instruction (at least the one feeding the " + "fixed-order recurrence PHI) before reaching beginning of the block"); + SinkTarget = SinkTarget->getPrevNode(); + assert(SinkTarget != P.first && + "sink source equals target, no sinking required"); + } + P.second = SinkTarget; + } + + auto MaxVFPlusOne = MaxVF.getWithIncrement(1); + for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { + VFRange SubRange = {VF, MaxVFPlusOne}; + VPlans.push_back( + buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); + VF = SubRange.End; + } +} + +// Add the necessary canonical IV and branch recipes required to control the +// loop. +static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, + bool HasNUW, + bool UseLaneMaskForLoopControlFlow) { + Value *StartIdx = ConstantInt::get(IdxTy, 0); + auto *StartV = Plan.getOrAddVPValue(StartIdx); + + // Add a VPCanonicalIVPHIRecipe starting at 0 to the header. + auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); + VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); + VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); + Header->insert(CanonicalIVPHI, Header->begin()); + + // Add a CanonicalIVIncrement{NUW} VPInstruction to increment the scalar + // IV by VF * UF. + auto *CanonicalIVIncrement = + new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW + : VPInstruction::CanonicalIVIncrement, + {CanonicalIVPHI}, DL, "index.next"); + CanonicalIVPHI->addOperand(CanonicalIVIncrement); + + VPBasicBlock *EB = TopRegion->getExitingBasicBlock(); + EB->appendRecipe(CanonicalIVIncrement); + + if (UseLaneMaskForLoopControlFlow) { + // Create the active lane mask instruction in the vplan preheader. + VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); + + // We can't use StartV directly in the ActiveLaneMask VPInstruction, since + // we have to take unrolling into account. Each part needs to start at + // Part * VF + auto *CanonicalIVIncrementParts = + new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW + : VPInstruction::CanonicalIVIncrementForPart, + {StartV}, DL, "index.part.next"); + Preheader->appendRecipe(CanonicalIVIncrementParts); + + // Create the ActiveLaneMask instruction using the correct start values. + VPValue *TC = Plan.getOrCreateTripCount(); + auto *EntryALM = new VPInstruction(VPInstruction::ActiveLaneMask, + {CanonicalIVIncrementParts, TC}, DL, + "active.lane.mask.entry"); + Preheader->appendRecipe(EntryALM); + + // Now create the ActiveLaneMaskPhi recipe in the main loop using the + // preheader ActiveLaneMask instruction. + auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc()); + Header->insert(LaneMaskPhi, Header->getFirstNonPhi()); + + // Create the active lane mask for the next iteration of the loop. + CanonicalIVIncrementParts = + new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW + : VPInstruction::CanonicalIVIncrementForPart, + {CanonicalIVIncrement}, DL); + EB->appendRecipe(CanonicalIVIncrementParts); + + auto *ALM = new VPInstruction(VPInstruction::ActiveLaneMask, + {CanonicalIVIncrementParts, TC}, DL, + "active.lane.mask.next"); + EB->appendRecipe(ALM); + LaneMaskPhi->addOperand(ALM); + + // We have to invert the mask here because a true condition means jumping + // to the exit block. + auto *NotMask = new VPInstruction(VPInstruction::Not, ALM, DL); + EB->appendRecipe(NotMask); + + VPInstruction *BranchBack = + new VPInstruction(VPInstruction::BranchOnCond, {NotMask}, DL); + EB->appendRecipe(BranchBack); + } else { + // Add the BranchOnCount VPInstruction to the latch. + VPInstruction *BranchBack = new VPInstruction( + VPInstruction::BranchOnCount, + {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); + EB->appendRecipe(BranchBack); + } +} + +// Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the +// original exit block. +static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB, + VPBasicBlock *MiddleVPBB, Loop *OrigLoop, + VPlan &Plan) { + BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock(); + BasicBlock *ExitingBB = OrigLoop->getExitingBlock(); + // Only handle single-exit loops with unique exit blocks for now. + if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB) + return; + + // Introduce VPUsers modeling the exit values. + for (PHINode &ExitPhi : ExitBB->phis()) { + Value *IncomingValue = + ExitPhi.getIncomingValueForBlock(ExitingBB); + VPValue *V = Plan.getOrAddVPValue(IncomingValue, true); + Plan.addLiveOut(&ExitPhi, V); + } +} + +VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( + VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, + const MapVector<Instruction *, Instruction *> &SinkAfter) { + + SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; + + VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); + + // --------------------------------------------------------------------------- + // Pre-construction: record ingredients whose recipes we'll need to further + // process after constructing the initial VPlan. + // --------------------------------------------------------------------------- + + // Mark instructions we'll need to sink later and their targets as + // ingredients whose recipe we'll need to record. + for (const auto &Entry : SinkAfter) { + RecipeBuilder.recordRecipeOf(Entry.first); + RecipeBuilder.recordRecipeOf(Entry.second); + } + for (const auto &Reduction : CM.getInLoopReductionChains()) { + PHINode *Phi = Reduction.first; + RecurKind Kind = + Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); + const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; + + RecipeBuilder.recordRecipeOf(Phi); + for (const auto &R : ReductionOperations) { + RecipeBuilder.recordRecipeOf(R); + // For min/max reductions, where we have a pair of icmp/select, we also + // need to record the ICmp recipe, so it can be removed later. + assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && + "Only min/max recurrences allowed for inloop reductions"); + if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) + RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); + } + } + + // For each interleave group which is relevant for this (possibly trimmed) + // Range, add it to the set of groups to be later applied to the VPlan and add + // placeholders for its members' Recipes which we'll be replacing with a + // single VPInterleaveRecipe. + for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { + auto applyIG = [IG, this](ElementCount VF) -> bool { + return (VF.isVector() && // Query is illegal for VF == 1 + CM.getWideningDecision(IG->getInsertPos(), VF) == + LoopVectorizationCostModel::CM_Interleave); + }; + if (!getDecisionAndClampRange(applyIG, Range)) + continue; + InterleaveGroups.insert(IG); + for (unsigned i = 0; i < IG->getFactor(); i++) + if (Instruction *Member = IG->getMember(i)) + RecipeBuilder.recordRecipeOf(Member); + }; + + // --------------------------------------------------------------------------- + // Build initial VPlan: Scan the body of the loop in a topological order to + // visit each basic block after having visited its predecessor basic blocks. + // --------------------------------------------------------------------------- + + // Create initial VPlan skeleton, starting with a block for the pre-header, + // followed by a region for the vector loop, followed by the middle block. The + // skeleton vector loop region contains a header and latch block. + VPBasicBlock *Preheader = new VPBasicBlock("vector.ph"); + auto Plan = std::make_unique<VPlan>(Preheader); + + VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); + VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); + VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); + auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); + VPBlockUtils::insertBlockAfter(TopRegion, Preheader); + VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); + VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); + + Instruction *DLInst = + getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); + addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), + DLInst ? DLInst->getDebugLoc() : DebugLoc(), + !CM.foldTailByMasking(), + CM.useActiveLaneMaskForControlFlow()); + + // Scan the body of the loop in a topological order to visit each basic block + // after having visited its predecessor basic blocks. + LoopBlocksDFS DFS(OrigLoop); + DFS.perform(LI); + + VPBasicBlock *VPBB = HeaderVPBB; + SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; + for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { + // Relevant instructions from basic block BB will be grouped into VPRecipe + // ingredients and fill a new VPBasicBlock. + unsigned VPBBsForBB = 0; + if (VPBB != HeaderVPBB) + VPBB->setName(BB->getName()); + Builder.setInsertPoint(VPBB); + + // Introduce each ingredient into VPlan. + // TODO: Model and preserve debug intrinsics in VPlan. + for (Instruction &I : BB->instructionsWithoutDebug()) { + Instruction *Instr = &I; + + // First filter out irrelevant instructions, to ensure no recipes are + // built for them. + if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) + continue; + + SmallVector<VPValue *, 4> Operands; + auto *Phi = dyn_cast<PHINode>(Instr); + if (Phi && Phi->getParent() == OrigLoop->getHeader()) { + Operands.push_back(Plan->getOrAddVPValue( + Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); + } else { + auto OpRange = Plan->mapToVPValues(Instr->operands()); + Operands = {OpRange.begin(), OpRange.end()}; + } + + // Invariant stores inside loop will be deleted and a single store + // with the final reduction value will be added to the exit block + StoreInst *SI; + if ((SI = dyn_cast<StoreInst>(&I)) && + Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) + continue; + + if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( + Instr, Operands, Range, VPBB, Plan)) { + // If Instr can be simplified to an existing VPValue, use it. + if (RecipeOrValue.is<VPValue *>()) { + auto *VPV = RecipeOrValue.get<VPValue *>(); + Plan->addVPValue(Instr, VPV); + // If the re-used value is a recipe, register the recipe for the + // instruction, in case the recipe for Instr needs to be recorded. + if (VPRecipeBase *R = VPV->getDefiningRecipe()) + RecipeBuilder.setRecipe(Instr, R); + continue; + } + // Otherwise, add the new recipe. + VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); + for (auto *Def : Recipe->definedValues()) { + auto *UV = Def->getUnderlyingValue(); + Plan->addVPValue(UV, Def); + } + + if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && + HeaderVPBB->getFirstNonPhi() != VPBB->end()) { + // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section + // of the header block. That can happen for truncates of induction + // variables. Those recipes are moved to the phi section of the header + // block after applying SinkAfter, which relies on the original + // position of the trunc. + assert(isa<TruncInst>(Instr)); + InductionsToMove.push_back( + cast<VPWidenIntOrFpInductionRecipe>(Recipe)); + } + RecipeBuilder.setRecipe(Instr, Recipe); + VPBB->appendRecipe(Recipe); + continue; + } + + // Otherwise, if all widening options failed, Instruction is to be + // replicated. This may create a successor for VPBB. + VPBasicBlock *NextVPBB = + RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); + if (NextVPBB != VPBB) { + VPBB = NextVPBB; + VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) + : ""); + } + } + + VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); + VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); + } + + // After here, VPBB should not be used. + VPBB = nullptr; + + addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan); + + assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && + !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && + "entry block must be set to a VPRegionBlock having a non-empty entry " + "VPBasicBlock"); + RecipeBuilder.fixHeaderPhis(); + + // --------------------------------------------------------------------------- + // Transform initial VPlan: Apply previously taken decisions, in order, to + // bring the VPlan to its final state. + // --------------------------------------------------------------------------- + + // Apply Sink-After legal constraints. + auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { + auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); + if (Region && Region->isReplicator()) { + assert(Region->getNumSuccessors() == 1 && + Region->getNumPredecessors() == 1 && "Expected SESE region!"); + assert(R->getParent()->size() == 1 && + "A recipe in an original replicator region must be the only " + "recipe in its block"); + return Region; + } + return nullptr; + }; + for (const auto &Entry : SinkAfter) { + VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); + VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); + + auto *TargetRegion = GetReplicateRegion(Target); + auto *SinkRegion = GetReplicateRegion(Sink); + if (!SinkRegion) { + // If the sink source is not a replicate region, sink the recipe directly. + if (TargetRegion) { + // The target is in a replication region, make sure to move Sink to + // the block after it, not into the replication region itself. + VPBasicBlock *NextBlock = + cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); + Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); + } else + Sink->moveAfter(Target); + continue; + } + + // The sink source is in a replicate region. Unhook the region from the CFG. + auto *SinkPred = SinkRegion->getSinglePredecessor(); + auto *SinkSucc = SinkRegion->getSingleSuccessor(); + VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); + VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); + VPBlockUtils::connectBlocks(SinkPred, SinkSucc); + + if (TargetRegion) { + // The target recipe is also in a replicate region, move the sink region + // after the target region. + auto *TargetSucc = TargetRegion->getSingleSuccessor(); + VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); + VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); + VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); + } else { + // The sink source is in a replicate region, we need to move the whole + // replicate region, which should only contain a single recipe in the + // main block. + auto *SplitBlock = + Target->getParent()->splitAt(std::next(Target->getIterator())); + + auto *SplitPred = SplitBlock->getSinglePredecessor(); + + VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); + VPBlockUtils::connectBlocks(SplitPred, SinkRegion); + VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); + } + } + + VPlanTransforms::removeRedundantCanonicalIVs(*Plan); + VPlanTransforms::removeRedundantInductionCasts(*Plan); + + // Now that sink-after is done, move induction recipes for optimized truncates + // to the phi section of the header block. + for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) + Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); + + // Adjust the recipes for any inloop reductions. + adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan, + RecipeBuilder, Range.Start); + + // Introduce a recipe to combine the incoming and previous values of a + // fixed-order recurrence. + for (VPRecipeBase &R : + Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { + auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); + if (!RecurPhi) + continue; + + VPRecipeBase *PrevRecipe = &RecurPhi->getBackedgeRecipe(); + // Fixed-order recurrences do not contain cycles, so this loop is guaranteed + // to terminate. + while (auto *PrevPhi = + dyn_cast<VPFirstOrderRecurrencePHIRecipe>(PrevRecipe)) + PrevRecipe = &PrevPhi->getBackedgeRecipe(); + VPBasicBlock *InsertBlock = PrevRecipe->getParent(); + auto *Region = GetReplicateRegion(PrevRecipe); + if (Region) + InsertBlock = dyn_cast<VPBasicBlock>(Region->getSingleSuccessor()); + if (!InsertBlock) { + InsertBlock = new VPBasicBlock(Region->getName() + ".succ"); + VPBlockUtils::insertBlockAfter(InsertBlock, Region); + } + if (Region || PrevRecipe->isPhi()) + Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); + else + Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); + + auto *RecurSplice = cast<VPInstruction>( + Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, + {RecurPhi, RecurPhi->getBackedgeValue()})); + + RecurPhi->replaceAllUsesWith(RecurSplice); + // Set the first operand of RecurSplice to RecurPhi again, after replacing + // all users. + RecurSplice->setOperand(0, RecurPhi); + } + + // Interleave memory: for each Interleave Group we marked earlier as relevant + // for this VPlan, replace the Recipes widening its memory instructions with a + // single VPInterleaveRecipe at its insertion point. + for (const auto *IG : InterleaveGroups) { + auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( + RecipeBuilder.getRecipe(IG->getInsertPos())); + SmallVector<VPValue *, 4> StoredValues; + for (unsigned i = 0; i < IG->getFactor(); ++i) + if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { + auto *StoreR = + cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); + StoredValues.push_back(StoreR->getStoredValue()); + } + + auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, + Recipe->getMask()); + VPIG->insertBefore(Recipe); + unsigned J = 0; + for (unsigned i = 0; i < IG->getFactor(); ++i) + if (Instruction *Member = IG->getMember(i)) { + if (!Member->getType()->isVoidTy()) { + VPValue *OriginalV = Plan->getVPValue(Member); + Plan->removeVPValueFor(Member); + Plan->addVPValue(Member, VPIG->getVPValue(J)); + OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); + J++; + } + RecipeBuilder.getRecipe(Member)->eraseFromParent(); + } + } + + for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); + VF *= 2) + Plan->addVF(VF); + Plan->setName("Initial VPlan"); + + // From this point onwards, VPlan-to-VPlan transformations may change the plan + // in ways that accessing values using original IR values is incorrect. + Plan->disableValue2VPValue(); + + VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); + VPlanTransforms::removeDeadRecipes(*Plan); + + bool ShouldSimplify = true; + while (ShouldSimplify) { + ShouldSimplify = VPlanTransforms::sinkScalarOperands(*Plan); + ShouldSimplify |= + VPlanTransforms::mergeReplicateRegionsIntoSuccessors(*Plan); + ShouldSimplify |= VPlanTransforms::mergeBlocksIntoPredecessors(*Plan); + } + + VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan); + VPlanTransforms::mergeBlocksIntoPredecessors(*Plan); + + assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); + return Plan; +} + +VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { + // Outer loop handling: They may require CFG and instruction level + // transformations before even evaluating whether vectorization is profitable. + // Since we cannot modify the incoming IR, we need to build VPlan upfront in + // the vectorization pipeline. + assert(!OrigLoop->isInnermost()); + assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); + + // Create new empty VPlan + auto Plan = std::make_unique<VPlan>(); + + // Build hierarchical CFG + VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); + HCFGBuilder.buildHierarchicalCFG(); + + for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); + VF *= 2) + Plan->addVF(VF); + + SmallPtrSet<Instruction *, 1> DeadInstructions; + VPlanTransforms::VPInstructionsToVPRecipes( + OrigLoop, Plan, + [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, + DeadInstructions, *PSE.getSE(), *TLI); + + // Remove the existing terminator of the exiting block of the top-most region. + // A BranchOnCount will be added instead when adding the canonical IV recipes. + auto *Term = + Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator(); + Term->eraseFromParent(); + + addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), + true, CM.useActiveLaneMaskForControlFlow()); + return Plan; +} + +// Adjust the recipes for reductions. For in-loop reductions the chain of +// instructions leading from the loop exit instr to the phi need to be converted +// to reductions, with one operand being vector and the other being the scalar +// reduction chain. For other reductions, a select is introduced between the phi +// and live-out recipes when folding the tail. +void LoopVectorizationPlanner::adjustRecipesForReductions( + VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, + ElementCount MinVF) { + for (const auto &Reduction : CM.getInLoopReductionChains()) { + PHINode *Phi = Reduction.first; + const RecurrenceDescriptor &RdxDesc = + Legal->getReductionVars().find(Phi)->second; + const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; + + if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) + continue; + + // ReductionOperations are orders top-down from the phi's use to the + // LoopExitValue. We keep a track of the previous item (the Chain) to tell + // which of the two operands will remain scalar and which will be reduced. + // For minmax the chain will be the select instructions. + Instruction *Chain = Phi; + for (Instruction *R : ReductionOperations) { + VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); + RecurKind Kind = RdxDesc.getRecurrenceKind(); + + VPValue *ChainOp = Plan->getVPValue(Chain); + unsigned FirstOpId; + assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && + "Only min/max recurrences allowed for inloop reductions"); + // Recognize a call to the llvm.fmuladd intrinsic. + bool IsFMulAdd = (Kind == RecurKind::FMulAdd); + assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && + "Expected instruction to be a call to the llvm.fmuladd intrinsic"); + if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { + assert(isa<VPWidenSelectRecipe>(WidenRecipe) && + "Expected to replace a VPWidenSelectSC"); + FirstOpId = 1; + } else { + assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || + (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && + "Expected to replace a VPWidenSC"); + FirstOpId = 0; + } + unsigned VecOpId = + R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; + VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); + + VPValue *CondOp = nullptr; + if (CM.blockNeedsPredicationForAnyReason(R->getParent())) { + VPBuilder::InsertPointGuard Guard(Builder); + Builder.setInsertPoint(WidenRecipe->getParent(), + WidenRecipe->getIterator()); + CondOp = RecipeBuilder.createBlockInMask(R->getParent(), Plan); + } + + if (IsFMulAdd) { + // If the instruction is a call to the llvm.fmuladd intrinsic then we + // need to create an fmul recipe to use as the vector operand for the + // fadd reduction. + VPInstruction *FMulRecipe = new VPInstruction( + Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); + FMulRecipe->setFastMathFlags(R->getFastMathFlags()); + WidenRecipe->getParent()->insert(FMulRecipe, + WidenRecipe->getIterator()); + VecOp = FMulRecipe; + } + VPReductionRecipe *RedRecipe = + new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); + WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); + Plan->removeVPValueFor(R); + Plan->addVPValue(R, RedRecipe); + // Append the recipe to the end of the VPBasicBlock because we need to + // ensure that it comes after all of it's inputs, including CondOp. + WidenRecipe->getParent()->appendRecipe(RedRecipe); + WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); + WidenRecipe->eraseFromParent(); + + if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { + VPRecipeBase *CompareRecipe = + RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); + assert(isa<VPWidenRecipe>(CompareRecipe) && + "Expected to replace a VPWidenSC"); + assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && + "Expected no remaining users"); + CompareRecipe->eraseFromParent(); + } + Chain = R; + } + } + + // If tail is folded by masking, introduce selects between the phi + // and the live-out instruction of each reduction, at the beginning of the + // dedicated latch block. + if (CM.foldTailByMasking()) { + Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); + for (VPRecipeBase &R : + Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { + VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); + if (!PhiR || PhiR->isInLoop()) + continue; + VPValue *Cond = + RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); + VPValue *Red = PhiR->getBackedgeValue(); + assert(Red->getDefiningRecipe()->getParent() != LatchVPBB && + "reduction recipe must be defined before latch"); + Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); + } + } +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, + VPSlotTracker &SlotTracker) const { + O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; + IG->getInsertPos()->printAsOperand(O, false); + O << ", "; + getAddr()->printAsOperand(O, SlotTracker); + VPValue *Mask = getMask(); + if (Mask) { + O << ", "; + Mask->printAsOperand(O, SlotTracker); + } + + unsigned OpIdx = 0; + for (unsigned i = 0; i < IG->getFactor(); ++i) { + if (!IG->getMember(i)) + continue; + if (getNumStoreOperands() > 0) { + O << "\n" << Indent << " store "; + getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); + O << " to index " << i; + } else { + O << "\n" << Indent << " "; + getVPValue(OpIdx)->printAsOperand(O, SlotTracker); + O << " = load from index " << i; + } + ++OpIdx; + } +} +#endif + +void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { + assert(!State.Instance && "Int or FP induction being replicated."); + + Value *Start = getStartValue()->getLiveInIRValue(); + const InductionDescriptor &ID = getInductionDescriptor(); + TruncInst *Trunc = getTruncInst(); + IRBuilderBase &Builder = State.Builder; + assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); + assert(State.VF.isVector() && "must have vector VF"); + + // The value from the original loop to which we are mapping the new induction + // variable. + Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; + + // Fast-math-flags propagate from the original induction instruction. + IRBuilder<>::FastMathFlagGuard FMFG(Builder); + if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) + Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); + + // Now do the actual transformations, and start with fetching the step value. + Value *Step = State.get(getStepValue(), VPIteration(0, 0)); + + assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && + "Expected either an induction phi-node or a truncate of it!"); + + // Construct the initial value of the vector IV in the vector loop preheader + auto CurrIP = Builder.saveIP(); + BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); + Builder.SetInsertPoint(VectorPH->getTerminator()); + if (isa<TruncInst>(EntryVal)) { + assert(Start->getType()->isIntegerTy() && + "Truncation requires an integer type"); + auto *TruncType = cast<IntegerType>(EntryVal->getType()); + Step = Builder.CreateTrunc(Step, TruncType); + Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); + } + + Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); + Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); + Value *SteppedStart = getStepVector( + SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); + + // We create vector phi nodes for both integer and floating-point induction + // variables. Here, we determine the kind of arithmetic we will perform. + Instruction::BinaryOps AddOp; + Instruction::BinaryOps MulOp; + if (Step->getType()->isIntegerTy()) { + AddOp = Instruction::Add; + MulOp = Instruction::Mul; + } else { + AddOp = ID.getInductionOpcode(); + MulOp = Instruction::FMul; + } + + // Multiply the vectorization factor by the step using integer or + // floating-point arithmetic as appropriate. + Type *StepType = Step->getType(); + Value *RuntimeVF; + if (Step->getType()->isFloatingPointTy()) + RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); + else + RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); + Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); + + // Create a vector splat to use in the induction update. + // + // FIXME: If the step is non-constant, we create the vector splat with + // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't + // handle a constant vector splat. + Value *SplatVF = isa<Constant>(Mul) + ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) + : Builder.CreateVectorSplat(State.VF, Mul); + Builder.restoreIP(CurrIP); + + // We may need to add the step a number of times, depending on the unroll + // factor. The last of those goes into the PHI. + PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", + &*State.CFG.PrevBB->getFirstInsertionPt()); + VecInd->setDebugLoc(EntryVal->getDebugLoc()); + Instruction *LastInduction = VecInd; + for (unsigned Part = 0; Part < State.UF; ++Part) { + State.set(this, LastInduction, Part); + + if (isa<TruncInst>(EntryVal)) + State.addMetadata(LastInduction, EntryVal); + + LastInduction = cast<Instruction>( + Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); + LastInduction->setDebugLoc(EntryVal->getDebugLoc()); + } + + LastInduction->setName("vec.ind.next"); + VecInd->addIncoming(SteppedStart, VectorPH); + // Add induction update using an incorrect block temporarily. The phi node + // will be fixed after VPlan execution. Note that at this point the latch + // block cannot be used, as it does not exist yet. + // TODO: Model increment value in VPlan, by turning the recipe into a + // multi-def and a subclass of VPHeaderPHIRecipe. + VecInd->addIncoming(LastInduction, VectorPH); +} + +void VPWidenPointerInductionRecipe::execute(VPTransformState &State) { + assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction && + "Not a pointer induction according to InductionDescriptor!"); + assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() && + "Unexpected type."); + + auto *IVR = getParent()->getPlan()->getCanonicalIV(); + PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); + + if (onlyScalarsGenerated(State.VF)) { + // This is the normalized GEP that starts counting at zero. + Value *PtrInd = State.Builder.CreateSExtOrTrunc( + CanonicalIV, IndDesc.getStep()->getType()); + // Determine the number of scalars we need to generate for each unroll + // iteration. If the instruction is uniform, we only need to generate the + // first lane. Otherwise, we generate all VF values. + bool IsUniform = vputils::onlyFirstLaneUsed(this); + assert((IsUniform || !State.VF.isScalable()) && + "Cannot scalarize a scalable VF"); + unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); + + for (unsigned Part = 0; Part < State.UF; ++Part) { + Value *PartStart = + createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part); + + for (unsigned Lane = 0; Lane < Lanes; ++Lane) { + Value *Idx = State.Builder.CreateAdd( + PartStart, ConstantInt::get(PtrInd->getType(), Lane)); + Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx); + + Value *Step = State.get(getOperand(1), VPIteration(0, Part)); + Value *SclrGep = emitTransformedIndex( + State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc); + SclrGep->setName("next.gep"); + State.set(this, SclrGep, VPIteration(Part, Lane)); + } + } + return; + } + + assert(isa<SCEVConstant>(IndDesc.getStep()) && + "Induction step not a SCEV constant!"); + Type *PhiType = IndDesc.getStep()->getType(); + + // Build a pointer phi + Value *ScalarStartValue = getStartValue()->getLiveInIRValue(); + Type *ScStValueType = ScalarStartValue->getType(); + PHINode *NewPointerPhi = + PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); + + BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); + NewPointerPhi->addIncoming(ScalarStartValue, VectorPH); + + // A pointer induction, performed by using a gep + Instruction *InductionLoc = &*State.Builder.GetInsertPoint(); + + Value *ScalarStepValue = State.get(getOperand(1), VPIteration(0, 0)); + Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF); + Value *NumUnrolledElems = + State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); + Value *InductionGEP = GetElementPtrInst::Create( + IndDesc.getElementType(), NewPointerPhi, + State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", + InductionLoc); + // Add induction update using an incorrect block temporarily. The phi node + // will be fixed after VPlan execution. Note that at this point the latch + // block cannot be used, as it does not exist yet. + // TODO: Model increment value in VPlan, by turning the recipe into a + // multi-def and a subclass of VPHeaderPHIRecipe. + NewPointerPhi->addIncoming(InductionGEP, VectorPH); + + // Create UF many actual address geps that use the pointer + // phi as base and a vectorized version of the step value + // (<step*0, ..., step*N>) as offset. + for (unsigned Part = 0; Part < State.UF; ++Part) { + Type *VecPhiType = VectorType::get(PhiType, State.VF); + Value *StartOffsetScalar = + State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); + Value *StartOffset = + State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar); + // Create a vector of consecutive numbers from zero to VF. + StartOffset = State.Builder.CreateAdd( + StartOffset, State.Builder.CreateStepVector(VecPhiType)); + + assert(ScalarStepValue == State.get(getOperand(1), VPIteration(0, Part)) && + "scalar step must be the same across all parts"); + Value *GEP = State.Builder.CreateGEP( + IndDesc.getElementType(), NewPointerPhi, + State.Builder.CreateMul( + StartOffset, + State.Builder.CreateVectorSplat(State.VF, ScalarStepValue), + "vector.gep")); + State.set(this, GEP, Part); + } +} + +void VPDerivedIVRecipe::execute(VPTransformState &State) { + assert(!State.Instance && "VPDerivedIVRecipe being replicated."); + + // Fast-math-flags propagate from the original induction instruction. + IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); + if (IndDesc.getInductionBinOp() && + isa<FPMathOperator>(IndDesc.getInductionBinOp())) + State.Builder.setFastMathFlags( + IndDesc.getInductionBinOp()->getFastMathFlags()); + + Value *Step = State.get(getStepValue(), VPIteration(0, 0)); + Value *CanonicalIV = State.get(getCanonicalIV(), VPIteration(0, 0)); + Value *DerivedIV = + emitTransformedIndex(State.Builder, CanonicalIV, + getStartValue()->getLiveInIRValue(), Step, IndDesc); + DerivedIV->setName("offset.idx"); + if (ResultTy != DerivedIV->getType()) { + assert(Step->getType()->isIntegerTy() && + "Truncation requires an integer step"); + DerivedIV = State.Builder.CreateTrunc(DerivedIV, ResultTy); + } + assert(DerivedIV != CanonicalIV && "IV didn't need transforming?"); + + State.set(this, DerivedIV, VPIteration(0, 0)); +} + +void VPScalarIVStepsRecipe::execute(VPTransformState &State) { + // Fast-math-flags propagate from the original induction instruction. + IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); + if (IndDesc.getInductionBinOp() && + isa<FPMathOperator>(IndDesc.getInductionBinOp())) + State.Builder.setFastMathFlags( + IndDesc.getInductionBinOp()->getFastMathFlags()); + + Value *BaseIV = State.get(getOperand(0), VPIteration(0, 0)); + Value *Step = State.get(getStepValue(), VPIteration(0, 0)); + + buildScalarSteps(BaseIV, Step, IndDesc, this, State); +} + +void VPInterleaveRecipe::execute(VPTransformState &State) { + assert(!State.Instance && "Interleave group being replicated."); + State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), + getStoredValues(), getMask()); +} + +void VPReductionRecipe::execute(VPTransformState &State) { + assert(!State.Instance && "Reduction being replicated."); + Value *PrevInChain = State.get(getChainOp(), 0); + RecurKind Kind = RdxDesc->getRecurrenceKind(); + bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); + // Propagate the fast-math flags carried by the underlying instruction. + IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); + State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); + for (unsigned Part = 0; Part < State.UF; ++Part) { + Value *NewVecOp = State.get(getVecOp(), Part); + if (VPValue *Cond = getCondOp()) { + Value *NewCond = State.get(Cond, Part); + VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); + Value *Iden = RdxDesc->getRecurrenceIdentity( + Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); + Value *IdenVec = + State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); + Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); + NewVecOp = Select; + } + Value *NewRed; + Value *NextInChain; + if (IsOrdered) { + if (State.VF.isVector()) + NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, + PrevInChain); + else + NewRed = State.Builder.CreateBinOp( + (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, + NewVecOp); + PrevInChain = NewRed; + } else { + PrevInChain = State.get(getChainOp(), Part); + NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); + } + if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { + NextInChain = + createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), + NewRed, PrevInChain); + } else if (IsOrdered) + NextInChain = NewRed; + else + NextInChain = State.Builder.CreateBinOp( + (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, + PrevInChain); + State.set(this, NextInChain, Part); + } +} + +void VPReplicateRecipe::execute(VPTransformState &State) { + Instruction *UI = getUnderlyingInstr(); + if (State.Instance) { // Generate a single instance. + assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); + State.ILV->scalarizeInstruction(UI, this, *State.Instance, + IsPredicated, State); + // Insert scalar instance packing it into a vector. + if (AlsoPack && State.VF.isVector()) { + // If we're constructing lane 0, initialize to start from poison. + if (State.Instance->Lane.isFirstLane()) { + assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); + Value *Poison = PoisonValue::get( + VectorType::get(UI->getType(), State.VF)); + State.set(this, Poison, State.Instance->Part); + } + State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); + } + return; + } + + if (IsUniform) { + // If the recipe is uniform across all parts (instead of just per VF), only + // generate a single instance. + if ((isa<LoadInst>(UI) || isa<StoreInst>(UI)) && + all_of(operands(), [](VPValue *Op) { + return Op->isDefinedOutsideVectorRegions(); + })) { + State.ILV->scalarizeInstruction(UI, this, VPIteration(0, 0), IsPredicated, + State); + if (user_begin() != user_end()) { + for (unsigned Part = 1; Part < State.UF; ++Part) + State.set(this, State.get(this, VPIteration(0, 0)), + VPIteration(Part, 0)); + } + return; + } + + // Uniform within VL means we need to generate lane 0 only for each + // unrolled copy. + for (unsigned Part = 0; Part < State.UF; ++Part) + State.ILV->scalarizeInstruction(UI, this, VPIteration(Part, 0), + IsPredicated, State); + return; + } + + // A store of a loop varying value to a loop invariant address only + // needs only the last copy of the store. + if (isa<StoreInst>(UI) && !getOperand(1)->hasDefiningRecipe()) { + auto Lane = VPLane::getLastLaneForVF(State.VF); + State.ILV->scalarizeInstruction(UI, this, VPIteration(State.UF - 1, Lane), IsPredicated, + State); + return; + } + + // Generate scalar instances for all VF lanes of all UF parts. + assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); + const unsigned EndLane = State.VF.getKnownMinValue(); + for (unsigned Part = 0; Part < State.UF; ++Part) + for (unsigned Lane = 0; Lane < EndLane; ++Lane) + State.ILV->scalarizeInstruction(UI, this, VPIteration(Part, Lane), + IsPredicated, State); +} + +void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { + VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; + + // Attempt to issue a wide load. + LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); + StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); + + assert((LI || SI) && "Invalid Load/Store instruction"); + assert((!SI || StoredValue) && "No stored value provided for widened store"); + assert((!LI || !StoredValue) && "Stored value provided for widened load"); + + Type *ScalarDataTy = getLoadStoreType(&Ingredient); + + auto *DataTy = VectorType::get(ScalarDataTy, State.VF); + const Align Alignment = getLoadStoreAlignment(&Ingredient); + bool CreateGatherScatter = !Consecutive; + + auto &Builder = State.Builder; + InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); + bool isMaskRequired = getMask(); + if (isMaskRequired) + for (unsigned Part = 0; Part < State.UF; ++Part) + BlockInMaskParts[Part] = State.get(getMask(), Part); + + const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { + // Calculate the pointer for the specific unroll-part. + GetElementPtrInst *PartPtr = nullptr; + + bool InBounds = false; + if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) + InBounds = gep->isInBounds(); + if (Reverse) { + // If the address is consecutive but reversed, then the + // wide store needs to start at the last vector element. + // RunTimeVF = VScale * VF.getKnownMinValue() + // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() + Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); + // NumElt = -Part * RunTimeVF + Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); + // LastLane = 1 - RunTimeVF + Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); + PartPtr = + cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); + PartPtr->setIsInBounds(InBounds); + PartPtr = cast<GetElementPtrInst>( + Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); + PartPtr->setIsInBounds(InBounds); + if (isMaskRequired) // Reverse of a null all-one mask is a null mask. + BlockInMaskParts[Part] = + Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); + } else { + Value *Increment = + createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); + PartPtr = cast<GetElementPtrInst>( + Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); + PartPtr->setIsInBounds(InBounds); + } + + unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); + return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); + }; + + // Handle Stores: + if (SI) { + State.setDebugLocFromInst(SI); + + for (unsigned Part = 0; Part < State.UF; ++Part) { + Instruction *NewSI = nullptr; + Value *StoredVal = State.get(StoredValue, Part); + if (CreateGatherScatter) { + Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; + Value *VectorGep = State.get(getAddr(), Part); + NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, + MaskPart); + } else { + if (Reverse) { + // If we store to reverse consecutive memory locations, then we need + // to reverse the order of elements in the stored value. + StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); + // We don't want to update the value in the map as it might be used in + // another expression. So don't call resetVectorValue(StoredVal). + } + auto *VecPtr = + CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); + if (isMaskRequired) + NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, + BlockInMaskParts[Part]); + else + NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); + } + State.addMetadata(NewSI, SI); + } + return; + } + + // Handle loads. + assert(LI && "Must have a load instruction"); + State.setDebugLocFromInst(LI); + for (unsigned Part = 0; Part < State.UF; ++Part) { + Value *NewLI; + if (CreateGatherScatter) { + Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; + Value *VectorGep = State.get(getAddr(), Part); + NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, + nullptr, "wide.masked.gather"); + State.addMetadata(NewLI, LI); + } else { + auto *VecPtr = + CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); + if (isMaskRequired) + NewLI = Builder.CreateMaskedLoad( + DataTy, VecPtr, Alignment, BlockInMaskParts[Part], + PoisonValue::get(DataTy), "wide.masked.load"); + else + NewLI = + Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); + + // Add metadata to the load, but setVectorValue to the reverse shuffle. + State.addMetadata(NewLI, LI); + if (Reverse) + NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); + } + + State.set(getVPSingleValue(), NewLI, Part); + } +} + +// Determine how to lower the scalar epilogue, which depends on 1) optimising +// for minimum code-size, 2) predicate compiler options, 3) loop hints forcing +// predication, and 4) a TTI hook that analyses whether the loop is suitable +// for predication. +static ScalarEpilogueLowering getScalarEpilogueLowering( + Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, + BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, + AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, + LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI) { + // 1) OptSize takes precedence over all other options, i.e. if this is set, + // don't look at hints or options, and don't request a scalar epilogue. + // (For PGSO, as shouldOptimizeForSize isn't currently accessible from + // LoopAccessInfo (due to code dependency and not being able to reliably get + // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection + // of strides in LoopAccessInfo::analyzeLoop() and vectorize without + // versioning when the vectorization is forced, unlike hasOptSize. So revert + // back to the old way and vectorize with versioning when forced. See D81345.) + if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, + PGSOQueryType::IRPass) && + Hints.getForce() != LoopVectorizeHints::FK_Enabled)) + return CM_ScalarEpilogueNotAllowedOptSize; + + // 2) If set, obey the directives + if (PreferPredicateOverEpilogue.getNumOccurrences()) { + switch (PreferPredicateOverEpilogue) { + case PreferPredicateTy::ScalarEpilogue: + return CM_ScalarEpilogueAllowed; + case PreferPredicateTy::PredicateElseScalarEpilogue: + return CM_ScalarEpilogueNotNeededUsePredicate; + case PreferPredicateTy::PredicateOrDontVectorize: + return CM_ScalarEpilogueNotAllowedUsePredicate; + }; + } + + // 3) If set, obey the hints + switch (Hints.getPredicate()) { + case LoopVectorizeHints::FK_Enabled: + return CM_ScalarEpilogueNotNeededUsePredicate; + case LoopVectorizeHints::FK_Disabled: + return CM_ScalarEpilogueAllowed; + }; + + // 4) if the TTI hook indicates this is profitable, request predication. + if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, &LVL, IAI)) + return CM_ScalarEpilogueNotNeededUsePredicate; + + return CM_ScalarEpilogueAllowed; +} + +Value *VPTransformState::get(VPValue *Def, unsigned Part) { + // If Values have been set for this Def return the one relevant for \p Part. + if (hasVectorValue(Def, Part)) + return Data.PerPartOutput[Def][Part]; + + if (!hasScalarValue(Def, {Part, 0})) { + Value *IRV = Def->getLiveInIRValue(); + Value *B = ILV->getBroadcastInstrs(IRV); + set(Def, B, Part); + return B; + } + + Value *ScalarValue = get(Def, {Part, 0}); + // If we aren't vectorizing, we can just copy the scalar map values over + // to the vector map. + if (VF.isScalar()) { + set(Def, ScalarValue, Part); + return ScalarValue; + } + + bool IsUniform = vputils::isUniformAfterVectorization(Def); + + unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; + // Check if there is a scalar value for the selected lane. + if (!hasScalarValue(Def, {Part, LastLane})) { + // At the moment, VPWidenIntOrFpInductionRecipes and VPScalarIVStepsRecipes can also be uniform. + assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || + isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe())) && + "unexpected recipe found to be invariant"); + IsUniform = true; + LastLane = 0; + } + + auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); + // Set the insert point after the last scalarized instruction or after the + // last PHI, if LastInst is a PHI. This ensures the insertelement sequence + // will directly follow the scalar definitions. + auto OldIP = Builder.saveIP(); + auto NewIP = + isa<PHINode>(LastInst) + ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) + : std::next(BasicBlock::iterator(LastInst)); + Builder.SetInsertPoint(&*NewIP); + + // However, if we are vectorizing, we need to construct the vector values. + // If the value is known to be uniform after vectorization, we can just + // broadcast the scalar value corresponding to lane zero for each unroll + // iteration. Otherwise, we construct the vector values using + // insertelement instructions. Since the resulting vectors are stored in + // State, we will only generate the insertelements once. + Value *VectorValue = nullptr; + if (IsUniform) { + VectorValue = ILV->getBroadcastInstrs(ScalarValue); + set(Def, VectorValue, Part); + } else { + // Initialize packing with insertelements to start from undef. + assert(!VF.isScalable() && "VF is assumed to be non scalable."); + Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); + set(Def, Undef, Part); + for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) + ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); + VectorValue = get(Def, Part); + } + Builder.restoreIP(OldIP); + return VectorValue; +} + +// Process the loop in the VPlan-native vectorization path. This path builds +// VPlan upfront in the vectorization pipeline, which allows to apply +// VPlan-to-VPlan transformations from the very beginning without modifying the +// input LLVM IR. +static bool processLoopInVPlanNativePath( + Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, + LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, + TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, + OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, + ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, + LoopVectorizationRequirements &Requirements) { + + if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { + LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); + return false; + } + assert(EnableVPlanNativePath && "VPlan-native path is disabled."); + Function *F = L->getHeader()->getParent(); + InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); + + ScalarEpilogueLowering SEL = getScalarEpilogueLowering( + F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL, &IAI); + + LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, + &Hints, IAI); + // Use the planner for outer loop vectorization. + // TODO: CM is not used at this point inside the planner. Turn CM into an + // optional argument if we don't need it in the future. + LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, ORE); + + // Get user vectorization factor. + ElementCount UserVF = Hints.getWidth(); + + CM.collectElementTypesForWidening(); + + // Plan how to best vectorize, return the best VF and its cost. + const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); + + // If we are stress testing VPlan builds, do not attempt to generate vector + // code. Masked vector code generation support will follow soon. + // Also, do not attempt to vectorize if no vector code will be produced. + if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF) + return false; + + VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); + + { + GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI, + F->getParent()->getDataLayout()); + InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, + VF.Width, 1, LVL, &CM, BFI, PSI, Checks); + LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" + << L->getHeader()->getParent()->getName() << "\"\n"); + LVP.executePlan(VF.Width, 1, BestPlan, LB, DT, false); + } + + // Mark the loop as already vectorized to avoid vectorizing again. + Hints.setAlreadyVectorized(); + assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); + return true; +} + +// Emit a remark if there are stores to floats that required a floating point +// extension. If the vectorized loop was generated with floating point there +// will be a performance penalty from the conversion overhead and the change in +// the vector width. +static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { + SmallVector<Instruction *, 4> Worklist; + for (BasicBlock *BB : L->getBlocks()) { + for (Instruction &Inst : *BB) { + if (auto *S = dyn_cast<StoreInst>(&Inst)) { + if (S->getValueOperand()->getType()->isFloatTy()) + Worklist.push_back(S); + } + } + } + + // Traverse the floating point stores upwards searching, for floating point + // conversions. + SmallPtrSet<const Instruction *, 4> Visited; + SmallPtrSet<const Instruction *, 4> EmittedRemark; + while (!Worklist.empty()) { + auto *I = Worklist.pop_back_val(); + if (!L->contains(I)) + continue; + if (!Visited.insert(I).second) + continue; + + // Emit a remark if the floating point store required a floating + // point conversion. + // TODO: More work could be done to identify the root cause such as a + // constant or a function return type and point the user to it. + if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) + ORE->emit([&]() { + return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", + I->getDebugLoc(), L->getHeader()) + << "floating point conversion changes vector width. " + << "Mixed floating point precision requires an up/down " + << "cast that will negatively impact performance."; + }); + + for (Use &Op : I->operands()) + if (auto *OpI = dyn_cast<Instruction>(Op)) + Worklist.push_back(OpI); + } +} + +static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks, + VectorizationFactor &VF, + std::optional<unsigned> VScale, Loop *L, + ScalarEvolution &SE) { + InstructionCost CheckCost = Checks.getCost(); + if (!CheckCost.isValid()) + return false; + + // When interleaving only scalar and vector cost will be equal, which in turn + // would lead to a divide by 0. Fall back to hard threshold. + if (VF.Width.isScalar()) { + if (CheckCost > VectorizeMemoryCheckThreshold) { + LLVM_DEBUG( + dbgs() + << "LV: Interleaving only is not profitable due to runtime checks\n"); + return false; + } + return true; + } + + // The scalar cost should only be 0 when vectorizing with a user specified VF/IC. In those cases, runtime checks should always be generated. + double ScalarC = *VF.ScalarCost.getValue(); + if (ScalarC == 0) + return true; + + // First, compute the minimum iteration count required so that the vector + // loop outperforms the scalar loop. + // The total cost of the scalar loop is + // ScalarC * TC + // where + // * TC is the actual trip count of the loop. + // * ScalarC is the cost of a single scalar iteration. + // + // The total cost of the vector loop is + // RtC + VecC * (TC / VF) + EpiC + // where + // * RtC is the cost of the generated runtime checks + // * VecC is the cost of a single vector iteration. + // * TC is the actual trip count of the loop + // * VF is the vectorization factor + // * EpiCost is the cost of the generated epilogue, including the cost + // of the remaining scalar operations. + // + // Vectorization is profitable once the total vector cost is less than the + // total scalar cost: + // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC + // + // Now we can compute the minimum required trip count TC as + // (RtC + EpiC) / (ScalarC - (VecC / VF)) < TC + // + // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that + // the computations are performed on doubles, not integers and the result + // is rounded up, hence we get an upper estimate of the TC. + unsigned IntVF = VF.Width.getKnownMinValue(); + if (VF.Width.isScalable()) { + unsigned AssumedMinimumVscale = 1; + if (VScale) + AssumedMinimumVscale = *VScale; + IntVF *= AssumedMinimumVscale; + } + double VecCOverVF = double(*VF.Cost.getValue()) / IntVF; + double RtC = *CheckCost.getValue(); + double MinTC1 = RtC / (ScalarC - VecCOverVF); + + // Second, compute a minimum iteration count so that the cost of the + // runtime checks is only a fraction of the total scalar loop cost. This + // adds a loop-dependent bound on the overhead incurred if the runtime + // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC + // * TC. To bound the runtime check to be a fraction 1/X of the scalar + // cost, compute + // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC + double MinTC2 = RtC * 10 / ScalarC; + + // Now pick the larger minimum. If it is not a multiple of VF, choose the + // next closest multiple of VF. This should partly compensate for ignoring + // the epilogue cost. + uint64_t MinTC = std::ceil(std::max(MinTC1, MinTC2)); + VF.MinProfitableTripCount = ElementCount::getFixed(alignTo(MinTC, IntVF)); + + LLVM_DEBUG( + dbgs() << "LV: Minimum required TC for runtime checks to be profitable:" + << VF.MinProfitableTripCount << "\n"); + + // Skip vectorization if the expected trip count is less than the minimum + // required trip count. + if (auto ExpectedTC = getSmallBestKnownTC(SE, L)) { + if (ElementCount::isKnownLT(ElementCount::getFixed(*ExpectedTC), + VF.MinProfitableTripCount)) { + LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected " + "trip count < minimum profitable VF (" + << *ExpectedTC << " < " << VF.MinProfitableTripCount + << ")\n"); + + return false; + } + } + return true; +} + +LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) + : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || + !EnableLoopInterleaving), + VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || + !EnableLoopVectorization) {} + +bool LoopVectorizePass::processLoop(Loop *L) { + assert((EnableVPlanNativePath || L->isInnermost()) && + "VPlan-native path is not enabled. Only process inner loops."); + +#ifndef NDEBUG + const std::string DebugLocStr = getDebugLocString(L); +#endif /* NDEBUG */ + + LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" + << L->getHeader()->getParent()->getName() << "' from " + << DebugLocStr << "\n"); + + LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); + + LLVM_DEBUG( + dbgs() << "LV: Loop hints:" + << " force=" + << (Hints.getForce() == LoopVectorizeHints::FK_Disabled + ? "disabled" + : (Hints.getForce() == LoopVectorizeHints::FK_Enabled + ? "enabled" + : "?")) + << " width=" << Hints.getWidth() + << " interleave=" << Hints.getInterleave() << "\n"); + + // Function containing loop + Function *F = L->getHeader()->getParent(); + + // Looking at the diagnostic output is the only way to determine if a loop + // was vectorized (other than looking at the IR or machine code), so it + // is important to generate an optimization remark for each loop. Most of + // these messages are generated as OptimizationRemarkAnalysis. Remarks + // generated as OptimizationRemark and OptimizationRemarkMissed are + // less verbose reporting vectorized loops and unvectorized loops that may + // benefit from vectorization, respectively. + + if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { + LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); + return false; + } + + PredicatedScalarEvolution PSE(*SE, *L); + + // Check if it is legal to vectorize the loop. + LoopVectorizationRequirements Requirements; + LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE, + &Requirements, &Hints, DB, AC, BFI, PSI); + if (!LVL.canVectorize(EnableVPlanNativePath)) { + LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); + Hints.emitRemarkWithHints(); + return false; + } + + // Entrance to the VPlan-native vectorization path. Outer loops are processed + // here. They may require CFG and instruction level transformations before + // even evaluating whether vectorization is profitable. Since we cannot modify + // the incoming IR, we need to build VPlan upfront in the vectorization + // pipeline. + if (!L->isInnermost()) + return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, + ORE, BFI, PSI, Hints, Requirements); + + assert(L->isInnermost() && "Inner loop expected."); + + InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); + bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); + + // If an override option has been passed in for interleaved accesses, use it. + if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) + UseInterleaved = EnableInterleavedMemAccesses; + + // Analyze interleaved memory accesses. + if (UseInterleaved) + IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); + + // Check the function attributes and profiles to find out if this function + // should be optimized for size. + ScalarEpilogueLowering SEL = getScalarEpilogueLowering( + F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL, &IAI); + + // Check the loop for a trip count threshold: vectorize loops with a tiny trip + // count by optimizing for size, to minimize overheads. + auto ExpectedTC = getSmallBestKnownTC(*SE, L); + if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { + LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " + << "This loop is worth vectorizing only if no scalar " + << "iteration overheads are incurred."); + if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) + LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); + else { + if (*ExpectedTC > TTI->getMinTripCountTailFoldingThreshold()) { + LLVM_DEBUG(dbgs() << "\n"); + SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; + } else { + LLVM_DEBUG(dbgs() << " But the target considers the trip count too " + "small to consider vectorizing.\n"); + reportVectorizationFailure( + "The trip count is below the minial threshold value.", + "loop trip count is too low, avoiding vectorization", + "LowTripCount", ORE, L); + Hints.emitRemarkWithHints(); + return false; + } + } + } + + // Check the function attributes to see if implicit floats or vectors are + // allowed. + if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { + reportVectorizationFailure( + "Can't vectorize when the NoImplicitFloat attribute is used", + "loop not vectorized due to NoImplicitFloat attribute", + "NoImplicitFloat", ORE, L); + Hints.emitRemarkWithHints(); + return false; + } + + // Check if the target supports potentially unsafe FP vectorization. + // FIXME: Add a check for the type of safety issue (denormal, signaling) + // for the target we're vectorizing for, to make sure none of the + // additional fp-math flags can help. + if (Hints.isPotentiallyUnsafe() && + TTI->isFPVectorizationPotentiallyUnsafe()) { + reportVectorizationFailure( + "Potentially unsafe FP op prevents vectorization", + "loop not vectorized due to unsafe FP support.", + "UnsafeFP", ORE, L); + Hints.emitRemarkWithHints(); + return false; + } + + bool AllowOrderedReductions; + // If the flag is set, use that instead and override the TTI behaviour. + if (ForceOrderedReductions.getNumOccurrences() > 0) + AllowOrderedReductions = ForceOrderedReductions; + else + AllowOrderedReductions = TTI->enableOrderedReductions(); + if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { + ORE->emit([&]() { + auto *ExactFPMathInst = Requirements.getExactFPInst(); + return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", + ExactFPMathInst->getDebugLoc(), + ExactFPMathInst->getParent()) + << "loop not vectorized: cannot prove it is safe to reorder " + "floating-point operations"; + }); + LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " + "reorder floating-point operations\n"); + Hints.emitRemarkWithHints(); + return false; + } + + // Use the cost model. + LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, + F, &Hints, IAI); + CM.collectValuesToIgnore(); + CM.collectElementTypesForWidening(); + + // Use the planner for vectorization. + LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, ORE); + + // Get user vectorization factor and interleave count. + ElementCount UserVF = Hints.getWidth(); + unsigned UserIC = Hints.getInterleave(); + + // Plan how to best vectorize, return the best VF and its cost. + std::optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); + + VectorizationFactor VF = VectorizationFactor::Disabled(); + unsigned IC = 1; + + GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI, + F->getParent()->getDataLayout()); + if (MaybeVF) { + VF = *MaybeVF; + // Select the interleave count. + IC = CM.selectInterleaveCount(VF.Width, VF.Cost); + + unsigned SelectedIC = std::max(IC, UserIC); + // Optimistically generate runtime checks if they are needed. Drop them if + // they turn out to not be profitable. + if (VF.Width.isVector() || SelectedIC > 1) + Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC); + + // Check if it is profitable to vectorize with runtime checks. + bool ForceVectorization = + Hints.getForce() == LoopVectorizeHints::FK_Enabled; + if (!ForceVectorization && + !areRuntimeChecksProfitable(Checks, VF, CM.getVScaleForTuning(), L, + *PSE.getSE())) { + ORE->emit([&]() { + return OptimizationRemarkAnalysisAliasing( + DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(), + L->getHeader()) + << "loop not vectorized: cannot prove it is safe to reorder " + "memory operations"; + }); + LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); + Hints.emitRemarkWithHints(); + return false; + } + } + + // Identify the diagnostic messages that should be produced. + std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; + bool VectorizeLoop = true, InterleaveLoop = true; + if (VF.Width.isScalar()) { + LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); + VecDiagMsg = std::make_pair( + "VectorizationNotBeneficial", + "the cost-model indicates that vectorization is not beneficial"); + VectorizeLoop = false; + } + + if (!MaybeVF && UserIC > 1) { + // Tell the user interleaving was avoided up-front, despite being explicitly + // requested. + LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " + "interleaving should be avoided up front\n"); + IntDiagMsg = std::make_pair( + "InterleavingAvoided", + "Ignoring UserIC, because interleaving was avoided up front"); + InterleaveLoop = false; + } else if (IC == 1 && UserIC <= 1) { + // Tell the user interleaving is not beneficial. + LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); + IntDiagMsg = std::make_pair( + "InterleavingNotBeneficial", + "the cost-model indicates that interleaving is not beneficial"); + InterleaveLoop = false; + if (UserIC == 1) { + IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; + IntDiagMsg.second += + " and is explicitly disabled or interleave count is set to 1"; + } + } else if (IC > 1 && UserIC == 1) { + // Tell the user interleaving is beneficial, but it explicitly disabled. + LLVM_DEBUG( + dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); + IntDiagMsg = std::make_pair( + "InterleavingBeneficialButDisabled", + "the cost-model indicates that interleaving is beneficial " + "but is explicitly disabled or interleave count is set to 1"); + InterleaveLoop = false; + } + + // Override IC if user provided an interleave count. + IC = UserIC > 0 ? UserIC : IC; + + // Emit diagnostic messages, if any. + const char *VAPassName = Hints.vectorizeAnalysisPassName(); + if (!VectorizeLoop && !InterleaveLoop) { + // Do not vectorize or interleaving the loop. + ORE->emit([&]() { + return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, + L->getStartLoc(), L->getHeader()) + << VecDiagMsg.second; + }); + ORE->emit([&]() { + return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, + L->getStartLoc(), L->getHeader()) + << IntDiagMsg.second; + }); + return false; + } else if (!VectorizeLoop && InterleaveLoop) { + LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); + ORE->emit([&]() { + return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, + L->getStartLoc(), L->getHeader()) + << VecDiagMsg.second; + }); + } else if (VectorizeLoop && !InterleaveLoop) { + LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width + << ") in " << DebugLocStr << '\n'); + ORE->emit([&]() { + return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, + L->getStartLoc(), L->getHeader()) + << IntDiagMsg.second; + }); + } else if (VectorizeLoop && InterleaveLoop) { + LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width + << ") in " << DebugLocStr << '\n'); + LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); + } + + bool DisableRuntimeUnroll = false; + MDNode *OrigLoopID = L->getLoopID(); + { + using namespace ore; + if (!VectorizeLoop) { + assert(IC > 1 && "interleave count should not be 1 or 0"); + // If we decided that it is not legal to vectorize the loop, then + // interleave it. + InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, + &CM, BFI, PSI, Checks); + + VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); + LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT, false); + + ORE->emit([&]() { + return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), + L->getHeader()) + << "interleaved loop (interleaved count: " + << NV("InterleaveCount", IC) << ")"; + }); + } else { + // If we decided that it is *legal* to vectorize the loop, then do it. + + // Consider vectorizing the epilogue too if it's profitable. + VectorizationFactor EpilogueVF = + CM.selectEpilogueVectorizationFactor(VF.Width, LVP); + if (EpilogueVF.Width.isVector()) { + + // The first pass vectorizes the main loop and creates a scalar epilogue + // to be vectorized by executing the plan (potentially with a different + // factor) again shortly afterwards. + EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); + EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, + EPI, &LVL, &CM, BFI, PSI, Checks); + + VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); + LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, + DT, true); + ++LoopsVectorized; + + // Second pass vectorizes the epilogue and adjusts the control flow + // edges from the first pass. + EPI.MainLoopVF = EPI.EpilogueVF; + EPI.MainLoopUF = EPI.EpilogueUF; + EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, + ORE, EPI, &LVL, &CM, BFI, PSI, + Checks); + + VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); + VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion(); + VPBasicBlock *Header = VectorLoop->getEntryBasicBlock(); + Header->setName("vec.epilog.vector.body"); + + // Ensure that the start values for any VPWidenIntOrFpInductionRecipe, + // VPWidenPointerInductionRecipe and VPReductionPHIRecipes are updated + // before vectorizing the epilogue loop. + for (VPRecipeBase &R : Header->phis()) { + if (isa<VPCanonicalIVPHIRecipe>(&R)) + continue; + + Value *ResumeV = nullptr; + // TODO: Move setting of resume values to prepareToExecute. + if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { + ResumeV = MainILV.getReductionResumeValue( + ReductionPhi->getRecurrenceDescriptor()); + } else { + // Create induction resume values for both widened pointer and + // integer/fp inductions and update the start value of the induction + // recipes to use the resume value. + PHINode *IndPhi = nullptr; + const InductionDescriptor *ID; + if (auto *Ind = dyn_cast<VPWidenPointerInductionRecipe>(&R)) { + IndPhi = cast<PHINode>(Ind->getUnderlyingValue()); + ID = &Ind->getInductionDescriptor(); + } else { + auto *WidenInd = cast<VPWidenIntOrFpInductionRecipe>(&R); + IndPhi = WidenInd->getPHINode(); + ID = &WidenInd->getInductionDescriptor(); + } + + ResumeV = MainILV.createInductionResumeValue( + IndPhi, *ID, {EPI.MainLoopIterationCountCheck}); + } + assert(ResumeV && "Must have a resume value"); + VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(ResumeV); + cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal); + } + + LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, + DT, true); + ++LoopsEpilogueVectorized; + + if (!MainILV.areSafetyChecksAdded()) + DisableRuntimeUnroll = true; + } else { + InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, + VF.MinProfitableTripCount, IC, &LVL, &CM, BFI, + PSI, Checks); + + VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); + LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false); + ++LoopsVectorized; + + // Add metadata to disable runtime unrolling a scalar loop when there + // are no runtime checks about strides and memory. A scalar loop that is + // rarely used is not worth unrolling. + if (!LB.areSafetyChecksAdded()) + DisableRuntimeUnroll = true; + } + // Report the vectorization decision. + ORE->emit([&]() { + return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), + L->getHeader()) + << "vectorized loop (vectorization width: " + << NV("VectorizationFactor", VF.Width) + << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; + }); + } + + if (ORE->allowExtraAnalysis(LV_NAME)) + checkMixedPrecision(L, ORE); + } + + std::optional<MDNode *> RemainderLoopID = + makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, + LLVMLoopVectorizeFollowupEpilogue}); + if (RemainderLoopID) { + L->setLoopID(*RemainderLoopID); + } else { + if (DisableRuntimeUnroll) + AddRuntimeUnrollDisableMetaData(L); + + // Mark the loop as already vectorized to avoid vectorizing again. + Hints.setAlreadyVectorized(); + } + + assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); + return true; +} + +LoopVectorizeResult LoopVectorizePass::runImpl( + Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, + DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, + DemandedBits &DB_, AssumptionCache &AC_, LoopAccessInfoManager &LAIs_, + OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { + SE = &SE_; + LI = &LI_; + TTI = &TTI_; + DT = &DT_; + BFI = &BFI_; + TLI = TLI_; + AC = &AC_; + LAIs = &LAIs_; + DB = &DB_; + ORE = &ORE_; + PSI = PSI_; + + // Don't attempt if + // 1. the target claims to have no vector registers, and + // 2. interleaving won't help ILP. + // + // The second condition is necessary because, even if the target has no + // vector registers, loop vectorization may still enable scalar + // interleaving. + if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && + TTI->getMaxInterleaveFactor(1) < 2) + return LoopVectorizeResult(false, false); + + bool Changed = false, CFGChanged = false; + + // The vectorizer requires loops to be in simplified form. + // Since simplification may add new inner loops, it has to run before the + // legality and profitability checks. This means running the loop vectorizer + // will simplify all loops, regardless of whether anything end up being + // vectorized. + for (const auto &L : *LI) + Changed |= CFGChanged |= + simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); + + // Build up a worklist of inner-loops to vectorize. This is necessary as + // the act of vectorizing or partially unrolling a loop creates new loops + // and can invalidate iterators across the loops. + SmallVector<Loop *, 8> Worklist; + + for (Loop *L : *LI) + collectSupportedLoops(*L, LI, ORE, Worklist); + + LoopsAnalyzed += Worklist.size(); + + // Now walk the identified inner loops. + while (!Worklist.empty()) { + Loop *L = Worklist.pop_back_val(); + + // For the inner loops we actually process, form LCSSA to simplify the + // transform. + Changed |= formLCSSARecursively(*L, *DT, LI, SE); + + Changed |= CFGChanged |= processLoop(L); + + if (Changed) + LAIs->clear(); + } + + // Process each loop nest in the function. + return LoopVectorizeResult(Changed, CFGChanged); +} + +PreservedAnalyses LoopVectorizePass::run(Function &F, + FunctionAnalysisManager &AM) { + auto &LI = AM.getResult<LoopAnalysis>(F); + // There are no loops in the function. Return before computing other expensive + // analyses. + if (LI.empty()) + return PreservedAnalyses::all(); + auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); + auto &TTI = AM.getResult<TargetIRAnalysis>(F); + auto &DT = AM.getResult<DominatorTreeAnalysis>(F); + auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); + auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); + auto &AC = AM.getResult<AssumptionAnalysis>(F); + auto &DB = AM.getResult<DemandedBitsAnalysis>(F); + auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); + + LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F); + auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); + ProfileSummaryInfo *PSI = + MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); + LoopVectorizeResult Result = + runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AC, LAIs, ORE, PSI); + if (!Result.MadeAnyChange) + return PreservedAnalyses::all(); + PreservedAnalyses PA; + + // We currently do not preserve loopinfo/dominator analyses with outer loop + // vectorization. Until this is addressed, mark these analyses as preserved + // only for non-VPlan-native path. + // TODO: Preserve Loop and Dominator analyses for VPlan-native path. + if (!EnableVPlanNativePath) { + PA.preserve<LoopAnalysis>(); + PA.preserve<DominatorTreeAnalysis>(); + } + + if (Result.MadeCFGChange) { + // Making CFG changes likely means a loop got vectorized. Indicate that + // extra simplification passes should be run. + // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only + // be run if runtime checks have been added. + AM.getResult<ShouldRunExtraVectorPasses>(F); + PA.preserve<ShouldRunExtraVectorPasses>(); + } else { + PA.preserveSet<CFGAnalyses>(); + } + return PA; +} + +void LoopVectorizePass::printPipeline( + raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { + static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( + OS, MapClassName2PassName); + + OS << "<"; + OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; + OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; + OS << ">"; +} |