aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Transforms/Scalar/SROA.cpp
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm16/lib/Transforms/Scalar/SROA.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm16/lib/Transforms/Scalar/SROA.cpp')
-rw-r--r--contrib/libs/llvm16/lib/Transforms/Scalar/SROA.cpp5251
1 files changed, 5251 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Transforms/Scalar/SROA.cpp b/contrib/libs/llvm16/lib/Transforms/Scalar/SROA.cpp
new file mode 100644
index 0000000000..8339981e1b
--- /dev/null
+++ b/contrib/libs/llvm16/lib/Transforms/Scalar/SROA.cpp
@@ -0,0 +1,5251 @@
+//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This transformation implements the well known scalar replacement of
+/// aggregates transformation. It tries to identify promotable elements of an
+/// aggregate alloca, and promote them to registers. It will also try to
+/// convert uses of an element (or set of elements) of an alloca into a vector
+/// or bitfield-style integer scalar if appropriate.
+///
+/// It works to do this with minimal slicing of the alloca so that regions
+/// which are merely transferred in and out of external memory remain unchanged
+/// and are not decomposed to scalar code.
+///
+/// Because this also performs alloca promotion, it can be thought of as also
+/// serving the purpose of SSA formation. The algorithm iterates on the
+/// function until all opportunities for promotion have been realized.
+///
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/SROA.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/ADT/iterator.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/DomTreeUpdater.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/PtrUseVisitor.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/ConstantFolder.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DIBuilder.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/PromoteMemToReg.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <cstring>
+#include <iterator>
+#include <string>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+using namespace llvm::sroa;
+
+#define DEBUG_TYPE "sroa"
+
+STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
+STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
+STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
+STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
+STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
+STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
+STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
+STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
+STATISTIC(NumLoadsPredicated,
+ "Number of loads rewritten into predicated loads to allow promotion");
+STATISTIC(
+ NumStoresPredicated,
+ "Number of stores rewritten into predicated loads to allow promotion");
+STATISTIC(NumDeleted, "Number of instructions deleted");
+STATISTIC(NumVectorized, "Number of vectorized aggregates");
+
+/// Hidden option to experiment with completely strict handling of inbounds
+/// GEPs.
+static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
+ cl::Hidden);
+namespace {
+/// Find linked dbg.assign and generate a new one with the correct
+/// FragmentInfo. Link Inst to the new dbg.assign. If Value is nullptr the
+/// value component is copied from the old dbg.assign to the new.
+/// \param OldAlloca Alloca for the variable before splitting.
+/// \param RelativeOffsetInBits Offset into \p OldAlloca relative to the
+/// offset prior to splitting (change in offset).
+/// \param SliceSizeInBits New number of bits being written to.
+/// \param OldInst Instruction that is being split.
+/// \param Inst New instruction performing this part of the
+/// split store.
+/// \param Dest Store destination.
+/// \param Value Stored value.
+/// \param DL Datalayout.
+static void migrateDebugInfo(AllocaInst *OldAlloca,
+ uint64_t RelativeOffsetInBits,
+ uint64_t SliceSizeInBits, Instruction *OldInst,
+ Instruction *Inst, Value *Dest, Value *Value,
+ const DataLayout &DL) {
+ auto MarkerRange = at::getAssignmentMarkers(OldInst);
+ // Nothing to do if OldInst has no linked dbg.assign intrinsics.
+ if (MarkerRange.empty())
+ return;
+
+ LLVM_DEBUG(dbgs() << " migrateDebugInfo\n");
+ LLVM_DEBUG(dbgs() << " OldAlloca: " << *OldAlloca << "\n");
+ LLVM_DEBUG(dbgs() << " RelativeOffset: " << RelativeOffsetInBits << "\n");
+ LLVM_DEBUG(dbgs() << " SliceSizeInBits: " << SliceSizeInBits << "\n");
+ LLVM_DEBUG(dbgs() << " OldInst: " << *OldInst << "\n");
+ LLVM_DEBUG(dbgs() << " Inst: " << *Inst << "\n");
+ LLVM_DEBUG(dbgs() << " Dest: " << *Dest << "\n");
+ if (Value)
+ LLVM_DEBUG(dbgs() << " Value: " << *Value << "\n");
+
+ // The new inst needs a DIAssignID unique metadata tag (if OldInst has
+ // one). It shouldn't already have one: assert this assumption.
+ assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID));
+ DIAssignID *NewID = nullptr;
+ auto &Ctx = Inst->getContext();
+ DIBuilder DIB(*OldInst->getModule(), /*AllowUnresolved*/ false);
+ uint64_t AllocaSizeInBits = *OldAlloca->getAllocationSizeInBits(DL);
+ assert(OldAlloca->isStaticAlloca());
+
+ for (DbgAssignIntrinsic *DbgAssign : MarkerRange) {
+ LLVM_DEBUG(dbgs() << " existing dbg.assign is: " << *DbgAssign
+ << "\n");
+ auto *Expr = DbgAssign->getExpression();
+
+ // Check if the dbg.assign already describes a fragment.
+ auto GetCurrentFragSize = [AllocaSizeInBits, DbgAssign,
+ Expr]() -> uint64_t {
+ if (auto FI = Expr->getFragmentInfo())
+ return FI->SizeInBits;
+ if (auto VarSize = DbgAssign->getVariable()->getSizeInBits())
+ return *VarSize;
+ // The variable type has an unspecified size. This can happen in the
+ // case of DW_TAG_unspecified_type types, e.g. std::nullptr_t. Because
+ // there is no fragment and we do not know the size of the variable type,
+ // we'll guess by looking at the alloca.
+ return AllocaSizeInBits;
+ };
+ uint64_t CurrentFragSize = GetCurrentFragSize();
+ bool MakeNewFragment = CurrentFragSize != SliceSizeInBits;
+ assert(MakeNewFragment || RelativeOffsetInBits == 0);
+
+ assert(SliceSizeInBits <= AllocaSizeInBits);
+ if (MakeNewFragment) {
+ assert(RelativeOffsetInBits + SliceSizeInBits <= CurrentFragSize);
+ auto E = DIExpression::createFragmentExpression(
+ Expr, RelativeOffsetInBits, SliceSizeInBits);
+ assert(E && "Failed to create fragment expr!");
+ Expr = *E;
+ }
+
+ // If we haven't created a DIAssignID ID do that now and attach it to Inst.
+ if (!NewID) {
+ NewID = DIAssignID::getDistinct(Ctx);
+ Inst->setMetadata(LLVMContext::MD_DIAssignID, NewID);
+ }
+
+ Value = Value ? Value : DbgAssign->getValue();
+ auto *NewAssign = DIB.insertDbgAssign(
+ Inst, Value, DbgAssign->getVariable(), Expr, Dest,
+ DIExpression::get(Ctx, std::nullopt), DbgAssign->getDebugLoc());
+
+ // We could use more precision here at the cost of some additional (code)
+ // complexity - if the original dbg.assign was adjacent to its store, we
+ // could position this new dbg.assign adjacent to its store rather than the
+ // old dbg.assgn. That would result in interleaved dbg.assigns rather than
+ // what we get now:
+ // split store !1
+ // split store !2
+ // dbg.assign !1
+ // dbg.assign !2
+ // This (current behaviour) results results in debug assignments being
+ // noted as slightly offset (in code) from the store. In practice this
+ // should have little effect on the debugging experience due to the fact
+ // that all the split stores should get the same line number.
+ NewAssign->moveBefore(DbgAssign);
+
+ NewAssign->setDebugLoc(DbgAssign->getDebugLoc());
+ LLVM_DEBUG(dbgs() << "Created new assign intrinsic: " << *NewAssign
+ << "\n");
+ }
+}
+
+/// A custom IRBuilder inserter which prefixes all names, but only in
+/// Assert builds.
+class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter {
+ std::string Prefix;
+
+ Twine getNameWithPrefix(const Twine &Name) const {
+ return Name.isTriviallyEmpty() ? Name : Prefix + Name;
+ }
+
+public:
+ void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
+
+ void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
+ BasicBlock::iterator InsertPt) const override {
+ IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB,
+ InsertPt);
+ }
+};
+
+/// Provide a type for IRBuilder that drops names in release builds.
+using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>;
+
+/// A used slice of an alloca.
+///
+/// This structure represents a slice of an alloca used by some instruction. It
+/// stores both the begin and end offsets of this use, a pointer to the use
+/// itself, and a flag indicating whether we can classify the use as splittable
+/// or not when forming partitions of the alloca.
+class Slice {
+ /// The beginning offset of the range.
+ uint64_t BeginOffset = 0;
+
+ /// The ending offset, not included in the range.
+ uint64_t EndOffset = 0;
+
+ /// Storage for both the use of this slice and whether it can be
+ /// split.
+ PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
+
+public:
+ Slice() = default;
+
+ Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
+ : BeginOffset(BeginOffset), EndOffset(EndOffset),
+ UseAndIsSplittable(U, IsSplittable) {}
+
+ uint64_t beginOffset() const { return BeginOffset; }
+ uint64_t endOffset() const { return EndOffset; }
+
+ bool isSplittable() const { return UseAndIsSplittable.getInt(); }
+ void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
+
+ Use *getUse() const { return UseAndIsSplittable.getPointer(); }
+
+ bool isDead() const { return getUse() == nullptr; }
+ void kill() { UseAndIsSplittable.setPointer(nullptr); }
+
+ /// Support for ordering ranges.
+ ///
+ /// This provides an ordering over ranges such that start offsets are
+ /// always increasing, and within equal start offsets, the end offsets are
+ /// decreasing. Thus the spanning range comes first in a cluster with the
+ /// same start position.
+ bool operator<(const Slice &RHS) const {
+ if (beginOffset() < RHS.beginOffset())
+ return true;
+ if (beginOffset() > RHS.beginOffset())
+ return false;
+ if (isSplittable() != RHS.isSplittable())
+ return !isSplittable();
+ if (endOffset() > RHS.endOffset())
+ return true;
+ return false;
+ }
+
+ /// Support comparison with a single offset to allow binary searches.
+ friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
+ uint64_t RHSOffset) {
+ return LHS.beginOffset() < RHSOffset;
+ }
+ friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
+ const Slice &RHS) {
+ return LHSOffset < RHS.beginOffset();
+ }
+
+ bool operator==(const Slice &RHS) const {
+ return isSplittable() == RHS.isSplittable() &&
+ beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
+ }
+ bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
+};
+
+} // end anonymous namespace
+
+/// Representation of the alloca slices.
+///
+/// This class represents the slices of an alloca which are formed by its
+/// various uses. If a pointer escapes, we can't fully build a representation
+/// for the slices used and we reflect that in this structure. The uses are
+/// stored, sorted by increasing beginning offset and with unsplittable slices
+/// starting at a particular offset before splittable slices.
+class llvm::sroa::AllocaSlices {
+public:
+ /// Construct the slices of a particular alloca.
+ AllocaSlices(const DataLayout &DL, AllocaInst &AI);
+
+ /// Test whether a pointer to the allocation escapes our analysis.
+ ///
+ /// If this is true, the slices are never fully built and should be
+ /// ignored.
+ bool isEscaped() const { return PointerEscapingInstr; }
+
+ /// Support for iterating over the slices.
+ /// @{
+ using iterator = SmallVectorImpl<Slice>::iterator;
+ using range = iterator_range<iterator>;
+
+ iterator begin() { return Slices.begin(); }
+ iterator end() { return Slices.end(); }
+
+ using const_iterator = SmallVectorImpl<Slice>::const_iterator;
+ using const_range = iterator_range<const_iterator>;
+
+ const_iterator begin() const { return Slices.begin(); }
+ const_iterator end() const { return Slices.end(); }
+ /// @}
+
+ /// Erase a range of slices.
+ void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
+
+ /// Insert new slices for this alloca.
+ ///
+ /// This moves the slices into the alloca's slices collection, and re-sorts
+ /// everything so that the usual ordering properties of the alloca's slices
+ /// hold.
+ void insert(ArrayRef<Slice> NewSlices) {
+ int OldSize = Slices.size();
+ Slices.append(NewSlices.begin(), NewSlices.end());
+ auto SliceI = Slices.begin() + OldSize;
+ llvm::sort(SliceI, Slices.end());
+ std::inplace_merge(Slices.begin(), SliceI, Slices.end());
+ }
+
+ // Forward declare the iterator and range accessor for walking the
+ // partitions.
+ class partition_iterator;
+ iterator_range<partition_iterator> partitions();
+
+ /// Access the dead users for this alloca.
+ ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
+
+ /// Access Uses that should be dropped if the alloca is promotable.
+ ArrayRef<Use *> getDeadUsesIfPromotable() const {
+ return DeadUseIfPromotable;
+ }
+
+ /// Access the dead operands referring to this alloca.
+ ///
+ /// These are operands which have cannot actually be used to refer to the
+ /// alloca as they are outside its range and the user doesn't correct for
+ /// that. These mostly consist of PHI node inputs and the like which we just
+ /// need to replace with undef.
+ ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
+ void printSlice(raw_ostream &OS, const_iterator I,
+ StringRef Indent = " ") const;
+ void printUse(raw_ostream &OS, const_iterator I,
+ StringRef Indent = " ") const;
+ void print(raw_ostream &OS) const;
+ void dump(const_iterator I) const;
+ void dump() const;
+#endif
+
+private:
+ template <typename DerivedT, typename RetT = void> class BuilderBase;
+ class SliceBuilder;
+
+ friend class AllocaSlices::SliceBuilder;
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ /// Handle to alloca instruction to simplify method interfaces.
+ AllocaInst &AI;
+#endif
+
+ /// The instruction responsible for this alloca not having a known set
+ /// of slices.
+ ///
+ /// When an instruction (potentially) escapes the pointer to the alloca, we
+ /// store a pointer to that here and abort trying to form slices of the
+ /// alloca. This will be null if the alloca slices are analyzed successfully.
+ Instruction *PointerEscapingInstr;
+
+ /// The slices of the alloca.
+ ///
+ /// We store a vector of the slices formed by uses of the alloca here. This
+ /// vector is sorted by increasing begin offset, and then the unsplittable
+ /// slices before the splittable ones. See the Slice inner class for more
+ /// details.
+ SmallVector<Slice, 8> Slices;
+
+ /// Instructions which will become dead if we rewrite the alloca.
+ ///
+ /// Note that these are not separated by slice. This is because we expect an
+ /// alloca to be completely rewritten or not rewritten at all. If rewritten,
+ /// all these instructions can simply be removed and replaced with poison as
+ /// they come from outside of the allocated space.
+ SmallVector<Instruction *, 8> DeadUsers;
+
+ /// Uses which will become dead if can promote the alloca.
+ SmallVector<Use *, 8> DeadUseIfPromotable;
+
+ /// Operands which will become dead if we rewrite the alloca.
+ ///
+ /// These are operands that in their particular use can be replaced with
+ /// poison when we rewrite the alloca. These show up in out-of-bounds inputs
+ /// to PHI nodes and the like. They aren't entirely dead (there might be
+ /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
+ /// want to swap this particular input for poison to simplify the use lists of
+ /// the alloca.
+ SmallVector<Use *, 8> DeadOperands;
+};
+
+/// A partition of the slices.
+///
+/// An ephemeral representation for a range of slices which can be viewed as
+/// a partition of the alloca. This range represents a span of the alloca's
+/// memory which cannot be split, and provides access to all of the slices
+/// overlapping some part of the partition.
+///
+/// Objects of this type are produced by traversing the alloca's slices, but
+/// are only ephemeral and not persistent.
+class llvm::sroa::Partition {
+private:
+ friend class AllocaSlices;
+ friend class AllocaSlices::partition_iterator;
+
+ using iterator = AllocaSlices::iterator;
+
+ /// The beginning and ending offsets of the alloca for this
+ /// partition.
+ uint64_t BeginOffset = 0, EndOffset = 0;
+
+ /// The start and end iterators of this partition.
+ iterator SI, SJ;
+
+ /// A collection of split slice tails overlapping the partition.
+ SmallVector<Slice *, 4> SplitTails;
+
+ /// Raw constructor builds an empty partition starting and ending at
+ /// the given iterator.
+ Partition(iterator SI) : SI(SI), SJ(SI) {}
+
+public:
+ /// The start offset of this partition.
+ ///
+ /// All of the contained slices start at or after this offset.
+ uint64_t beginOffset() const { return BeginOffset; }
+
+ /// The end offset of this partition.
+ ///
+ /// All of the contained slices end at or before this offset.
+ uint64_t endOffset() const { return EndOffset; }
+
+ /// The size of the partition.
+ ///
+ /// Note that this can never be zero.
+ uint64_t size() const {
+ assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
+ return EndOffset - BeginOffset;
+ }
+
+ /// Test whether this partition contains no slices, and merely spans
+ /// a region occupied by split slices.
+ bool empty() const { return SI == SJ; }
+
+ /// \name Iterate slices that start within the partition.
+ /// These may be splittable or unsplittable. They have a begin offset >= the
+ /// partition begin offset.
+ /// @{
+ // FIXME: We should probably define a "concat_iterator" helper and use that
+ // to stitch together pointee_iterators over the split tails and the
+ // contiguous iterators of the partition. That would give a much nicer
+ // interface here. We could then additionally expose filtered iterators for
+ // split, unsplit, and unsplittable splices based on the usage patterns.
+ iterator begin() const { return SI; }
+ iterator end() const { return SJ; }
+ /// @}
+
+ /// Get the sequence of split slice tails.
+ ///
+ /// These tails are of slices which start before this partition but are
+ /// split and overlap into the partition. We accumulate these while forming
+ /// partitions.
+ ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
+};
+
+/// An iterator over partitions of the alloca's slices.
+///
+/// This iterator implements the core algorithm for partitioning the alloca's
+/// slices. It is a forward iterator as we don't support backtracking for
+/// efficiency reasons, and re-use a single storage area to maintain the
+/// current set of split slices.
+///
+/// It is templated on the slice iterator type to use so that it can operate
+/// with either const or non-const slice iterators.
+class AllocaSlices::partition_iterator
+ : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
+ Partition> {
+ friend class AllocaSlices;
+
+ /// Most of the state for walking the partitions is held in a class
+ /// with a nice interface for examining them.
+ Partition P;
+
+ /// We need to keep the end of the slices to know when to stop.
+ AllocaSlices::iterator SE;
+
+ /// We also need to keep track of the maximum split end offset seen.
+ /// FIXME: Do we really?
+ uint64_t MaxSplitSliceEndOffset = 0;
+
+ /// Sets the partition to be empty at given iterator, and sets the
+ /// end iterator.
+ partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
+ : P(SI), SE(SE) {
+ // If not already at the end, advance our state to form the initial
+ // partition.
+ if (SI != SE)
+ advance();
+ }
+
+ /// Advance the iterator to the next partition.
+ ///
+ /// Requires that the iterator not be at the end of the slices.
+ void advance() {
+ assert((P.SI != SE || !P.SplitTails.empty()) &&
+ "Cannot advance past the end of the slices!");
+
+ // Clear out any split uses which have ended.
+ if (!P.SplitTails.empty()) {
+ if (P.EndOffset >= MaxSplitSliceEndOffset) {
+ // If we've finished all splits, this is easy.
+ P.SplitTails.clear();
+ MaxSplitSliceEndOffset = 0;
+ } else {
+ // Remove the uses which have ended in the prior partition. This
+ // cannot change the max split slice end because we just checked that
+ // the prior partition ended prior to that max.
+ llvm::erase_if(P.SplitTails,
+ [&](Slice *S) { return S->endOffset() <= P.EndOffset; });
+ assert(llvm::any_of(P.SplitTails,
+ [&](Slice *S) {
+ return S->endOffset() == MaxSplitSliceEndOffset;
+ }) &&
+ "Could not find the current max split slice offset!");
+ assert(llvm::all_of(P.SplitTails,
+ [&](Slice *S) {
+ return S->endOffset() <= MaxSplitSliceEndOffset;
+ }) &&
+ "Max split slice end offset is not actually the max!");
+ }
+ }
+
+ // If P.SI is already at the end, then we've cleared the split tail and
+ // now have an end iterator.
+ if (P.SI == SE) {
+ assert(P.SplitTails.empty() && "Failed to clear the split slices!");
+ return;
+ }
+
+ // If we had a non-empty partition previously, set up the state for
+ // subsequent partitions.
+ if (P.SI != P.SJ) {
+ // Accumulate all the splittable slices which started in the old
+ // partition into the split list.
+ for (Slice &S : P)
+ if (S.isSplittable() && S.endOffset() > P.EndOffset) {
+ P.SplitTails.push_back(&S);
+ MaxSplitSliceEndOffset =
+ std::max(S.endOffset(), MaxSplitSliceEndOffset);
+ }
+
+ // Start from the end of the previous partition.
+ P.SI = P.SJ;
+
+ // If P.SI is now at the end, we at most have a tail of split slices.
+ if (P.SI == SE) {
+ P.BeginOffset = P.EndOffset;
+ P.EndOffset = MaxSplitSliceEndOffset;
+ return;
+ }
+
+ // If the we have split slices and the next slice is after a gap and is
+ // not splittable immediately form an empty partition for the split
+ // slices up until the next slice begins.
+ if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
+ !P.SI->isSplittable()) {
+ P.BeginOffset = P.EndOffset;
+ P.EndOffset = P.SI->beginOffset();
+ return;
+ }
+ }
+
+ // OK, we need to consume new slices. Set the end offset based on the
+ // current slice, and step SJ past it. The beginning offset of the
+ // partition is the beginning offset of the next slice unless we have
+ // pre-existing split slices that are continuing, in which case we begin
+ // at the prior end offset.
+ P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
+ P.EndOffset = P.SI->endOffset();
+ ++P.SJ;
+
+ // There are two strategies to form a partition based on whether the
+ // partition starts with an unsplittable slice or a splittable slice.
+ if (!P.SI->isSplittable()) {
+ // When we're forming an unsplittable region, it must always start at
+ // the first slice and will extend through its end.
+ assert(P.BeginOffset == P.SI->beginOffset());
+
+ // Form a partition including all of the overlapping slices with this
+ // unsplittable slice.
+ while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
+ if (!P.SJ->isSplittable())
+ P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
+ ++P.SJ;
+ }
+
+ // We have a partition across a set of overlapping unsplittable
+ // partitions.
+ return;
+ }
+
+ // If we're starting with a splittable slice, then we need to form
+ // a synthetic partition spanning it and any other overlapping splittable
+ // splices.
+ assert(P.SI->isSplittable() && "Forming a splittable partition!");
+
+ // Collect all of the overlapping splittable slices.
+ while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
+ P.SJ->isSplittable()) {
+ P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
+ ++P.SJ;
+ }
+
+ // Back upiP.EndOffset if we ended the span early when encountering an
+ // unsplittable slice. This synthesizes the early end offset of
+ // a partition spanning only splittable slices.
+ if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
+ assert(!P.SJ->isSplittable());
+ P.EndOffset = P.SJ->beginOffset();
+ }
+ }
+
+public:
+ bool operator==(const partition_iterator &RHS) const {
+ assert(SE == RHS.SE &&
+ "End iterators don't match between compared partition iterators!");
+
+ // The observed positions of partitions is marked by the P.SI iterator and
+ // the emptiness of the split slices. The latter is only relevant when
+ // P.SI == SE, as the end iterator will additionally have an empty split
+ // slices list, but the prior may have the same P.SI and a tail of split
+ // slices.
+ if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
+ assert(P.SJ == RHS.P.SJ &&
+ "Same set of slices formed two different sized partitions!");
+ assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
+ "Same slice position with differently sized non-empty split "
+ "slice tails!");
+ return true;
+ }
+ return false;
+ }
+
+ partition_iterator &operator++() {
+ advance();
+ return *this;
+ }
+
+ Partition &operator*() { return P; }
+};
+
+/// A forward range over the partitions of the alloca's slices.
+///
+/// This accesses an iterator range over the partitions of the alloca's
+/// slices. It computes these partitions on the fly based on the overlapping
+/// offsets of the slices and the ability to split them. It will visit "empty"
+/// partitions to cover regions of the alloca only accessed via split
+/// slices.
+iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
+ return make_range(partition_iterator(begin(), end()),
+ partition_iterator(end(), end()));
+}
+
+static Value *foldSelectInst(SelectInst &SI) {
+ // If the condition being selected on is a constant or the same value is
+ // being selected between, fold the select. Yes this does (rarely) happen
+ // early on.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
+ return SI.getOperand(1 + CI->isZero());
+ if (SI.getOperand(1) == SI.getOperand(2))
+ return SI.getOperand(1);
+
+ return nullptr;
+}
+
+/// A helper that folds a PHI node or a select.
+static Value *foldPHINodeOrSelectInst(Instruction &I) {
+ if (PHINode *PN = dyn_cast<PHINode>(&I)) {
+ // If PN merges together the same value, return that value.
+ return PN->hasConstantValue();
+ }
+ return foldSelectInst(cast<SelectInst>(I));
+}
+
+/// Builder for the alloca slices.
+///
+/// This class builds a set of alloca slices by recursively visiting the uses
+/// of an alloca and making a slice for each load and store at each offset.
+class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
+ friend class PtrUseVisitor<SliceBuilder>;
+ friend class InstVisitor<SliceBuilder>;
+
+ using Base = PtrUseVisitor<SliceBuilder>;
+
+ const uint64_t AllocSize;
+ AllocaSlices &AS;
+
+ SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
+ SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
+
+ /// Set to de-duplicate dead instructions found in the use walk.
+ SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
+
+public:
+ SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
+ : PtrUseVisitor<SliceBuilder>(DL),
+ AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedValue()),
+ AS(AS) {}
+
+private:
+ void markAsDead(Instruction &I) {
+ if (VisitedDeadInsts.insert(&I).second)
+ AS.DeadUsers.push_back(&I);
+ }
+
+ void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
+ bool IsSplittable = false) {
+ // Completely skip uses which have a zero size or start either before or
+ // past the end of the allocation.
+ if (Size == 0 || Offset.uge(AllocSize)) {
+ LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @"
+ << Offset
+ << " which has zero size or starts outside of the "
+ << AllocSize << " byte alloca:\n"
+ << " alloca: " << AS.AI << "\n"
+ << " use: " << I << "\n");
+ return markAsDead(I);
+ }
+
+ uint64_t BeginOffset = Offset.getZExtValue();
+ uint64_t EndOffset = BeginOffset + Size;
+
+ // Clamp the end offset to the end of the allocation. Note that this is
+ // formulated to handle even the case where "BeginOffset + Size" overflows.
+ // This may appear superficially to be something we could ignore entirely,
+ // but that is not so! There may be widened loads or PHI-node uses where
+ // some instructions are dead but not others. We can't completely ignore
+ // them, and so have to record at least the information here.
+ assert(AllocSize >= BeginOffset); // Established above.
+ if (Size > AllocSize - BeginOffset) {
+ LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @"
+ << Offset << " to remain within the " << AllocSize
+ << " byte alloca:\n"
+ << " alloca: " << AS.AI << "\n"
+ << " use: " << I << "\n");
+ EndOffset = AllocSize;
+ }
+
+ AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
+ }
+
+ void visitBitCastInst(BitCastInst &BC) {
+ if (BC.use_empty())
+ return markAsDead(BC);
+
+ return Base::visitBitCastInst(BC);
+ }
+
+ void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
+ if (ASC.use_empty())
+ return markAsDead(ASC);
+
+ return Base::visitAddrSpaceCastInst(ASC);
+ }
+
+ void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
+ if (GEPI.use_empty())
+ return markAsDead(GEPI);
+
+ if (SROAStrictInbounds && GEPI.isInBounds()) {
+ // FIXME: This is a manually un-factored variant of the basic code inside
+ // of GEPs with checking of the inbounds invariant specified in the
+ // langref in a very strict sense. If we ever want to enable
+ // SROAStrictInbounds, this code should be factored cleanly into
+ // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
+ // by writing out the code here where we have the underlying allocation
+ // size readily available.
+ APInt GEPOffset = Offset;
+ const DataLayout &DL = GEPI.getModule()->getDataLayout();
+ for (gep_type_iterator GTI = gep_type_begin(GEPI),
+ GTE = gep_type_end(GEPI);
+ GTI != GTE; ++GTI) {
+ ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
+ if (!OpC)
+ break;
+
+ // Handle a struct index, which adds its field offset to the pointer.
+ if (StructType *STy = GTI.getStructTypeOrNull()) {
+ unsigned ElementIdx = OpC->getZExtValue();
+ const StructLayout *SL = DL.getStructLayout(STy);
+ GEPOffset +=
+ APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
+ } else {
+ // For array or vector indices, scale the index by the size of the
+ // type.
+ APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
+ GEPOffset +=
+ Index *
+ APInt(Offset.getBitWidth(),
+ DL.getTypeAllocSize(GTI.getIndexedType()).getFixedValue());
+ }
+
+ // If this index has computed an intermediate pointer which is not
+ // inbounds, then the result of the GEP is a poison value and we can
+ // delete it and all uses.
+ if (GEPOffset.ugt(AllocSize))
+ return markAsDead(GEPI);
+ }
+ }
+
+ return Base::visitGetElementPtrInst(GEPI);
+ }
+
+ void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
+ uint64_t Size, bool IsVolatile) {
+ // We allow splitting of non-volatile loads and stores where the type is an
+ // integer type. These may be used to implement 'memcpy' or other "transfer
+ // of bits" patterns.
+ bool IsSplittable =
+ Ty->isIntegerTy() && !IsVolatile && DL.typeSizeEqualsStoreSize(Ty);
+
+ insertUse(I, Offset, Size, IsSplittable);
+ }
+
+ void visitLoadInst(LoadInst &LI) {
+ assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
+ "All simple FCA loads should have been pre-split");
+
+ if (!IsOffsetKnown)
+ return PI.setAborted(&LI);
+
+ if (isa<ScalableVectorType>(LI.getType()))
+ return PI.setAborted(&LI);
+
+ uint64_t Size = DL.getTypeStoreSize(LI.getType()).getFixedValue();
+ return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
+ }
+
+ void visitStoreInst(StoreInst &SI) {
+ Value *ValOp = SI.getValueOperand();
+ if (ValOp == *U)
+ return PI.setEscapedAndAborted(&SI);
+ if (!IsOffsetKnown)
+ return PI.setAborted(&SI);
+
+ if (isa<ScalableVectorType>(ValOp->getType()))
+ return PI.setAborted(&SI);
+
+ uint64_t Size = DL.getTypeStoreSize(ValOp->getType()).getFixedValue();
+
+ // If this memory access can be shown to *statically* extend outside the
+ // bounds of the allocation, it's behavior is undefined, so simply
+ // ignore it. Note that this is more strict than the generic clamping
+ // behavior of insertUse. We also try to handle cases which might run the
+ // risk of overflow.
+ // FIXME: We should instead consider the pointer to have escaped if this
+ // function is being instrumented for addressing bugs or race conditions.
+ if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
+ LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @"
+ << Offset << " which extends past the end of the "
+ << AllocSize << " byte alloca:\n"
+ << " alloca: " << AS.AI << "\n"
+ << " use: " << SI << "\n");
+ return markAsDead(SI);
+ }
+
+ assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
+ "All simple FCA stores should have been pre-split");
+ handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
+ }
+
+ void visitMemSetInst(MemSetInst &II) {
+ assert(II.getRawDest() == *U && "Pointer use is not the destination?");
+ ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
+ if ((Length && Length->getValue() == 0) ||
+ (IsOffsetKnown && Offset.uge(AllocSize)))
+ // Zero-length mem transfer intrinsics can be ignored entirely.
+ return markAsDead(II);
+
+ if (!IsOffsetKnown)
+ return PI.setAborted(&II);
+
+ insertUse(II, Offset, Length ? Length->getLimitedValue()
+ : AllocSize - Offset.getLimitedValue(),
+ (bool)Length);
+ }
+
+ void visitMemTransferInst(MemTransferInst &II) {
+ ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
+ if (Length && Length->getValue() == 0)
+ // Zero-length mem transfer intrinsics can be ignored entirely.
+ return markAsDead(II);
+
+ // Because we can visit these intrinsics twice, also check to see if the
+ // first time marked this instruction as dead. If so, skip it.
+ if (VisitedDeadInsts.count(&II))
+ return;
+
+ if (!IsOffsetKnown)
+ return PI.setAborted(&II);
+
+ // This side of the transfer is completely out-of-bounds, and so we can
+ // nuke the entire transfer. However, we also need to nuke the other side
+ // if already added to our partitions.
+ // FIXME: Yet another place we really should bypass this when
+ // instrumenting for ASan.
+ if (Offset.uge(AllocSize)) {
+ SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
+ MemTransferSliceMap.find(&II);
+ if (MTPI != MemTransferSliceMap.end())
+ AS.Slices[MTPI->second].kill();
+ return markAsDead(II);
+ }
+
+ uint64_t RawOffset = Offset.getLimitedValue();
+ uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
+
+ // Check for the special case where the same exact value is used for both
+ // source and dest.
+ if (*U == II.getRawDest() && *U == II.getRawSource()) {
+ // For non-volatile transfers this is a no-op.
+ if (!II.isVolatile())
+ return markAsDead(II);
+
+ return insertUse(II, Offset, Size, /*IsSplittable=*/false);
+ }
+
+ // If we have seen both source and destination for a mem transfer, then
+ // they both point to the same alloca.
+ bool Inserted;
+ SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
+ std::tie(MTPI, Inserted) =
+ MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
+ unsigned PrevIdx = MTPI->second;
+ if (!Inserted) {
+ Slice &PrevP = AS.Slices[PrevIdx];
+
+ // Check if the begin offsets match and this is a non-volatile transfer.
+ // In that case, we can completely elide the transfer.
+ if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
+ PrevP.kill();
+ return markAsDead(II);
+ }
+
+ // Otherwise we have an offset transfer within the same alloca. We can't
+ // split those.
+ PrevP.makeUnsplittable();
+ }
+
+ // Insert the use now that we've fixed up the splittable nature.
+ insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
+
+ // Check that we ended up with a valid index in the map.
+ assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
+ "Map index doesn't point back to a slice with this user.");
+ }
+
+ // Disable SRoA for any intrinsics except for lifetime invariants and
+ // invariant group.
+ // FIXME: What about debug intrinsics? This matches old behavior, but
+ // doesn't make sense.
+ void visitIntrinsicInst(IntrinsicInst &II) {
+ if (II.isDroppable()) {
+ AS.DeadUseIfPromotable.push_back(U);
+ return;
+ }
+
+ if (!IsOffsetKnown)
+ return PI.setAborted(&II);
+
+ if (II.isLifetimeStartOrEnd()) {
+ ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
+ uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
+ Length->getLimitedValue());
+ insertUse(II, Offset, Size, true);
+ return;
+ }
+
+ if (II.isLaunderOrStripInvariantGroup()) {
+ enqueueUsers(II);
+ return;
+ }
+
+ Base::visitIntrinsicInst(II);
+ }
+
+ Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
+ // We consider any PHI or select that results in a direct load or store of
+ // the same offset to be a viable use for slicing purposes. These uses
+ // are considered unsplittable and the size is the maximum loaded or stored
+ // size.
+ SmallPtrSet<Instruction *, 4> Visited;
+ SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
+ Visited.insert(Root);
+ Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
+ const DataLayout &DL = Root->getModule()->getDataLayout();
+ // If there are no loads or stores, the access is dead. We mark that as
+ // a size zero access.
+ Size = 0;
+ do {
+ Instruction *I, *UsedI;
+ std::tie(UsedI, I) = Uses.pop_back_val();
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ Size =
+ std::max(Size, DL.getTypeStoreSize(LI->getType()).getFixedValue());
+ continue;
+ }
+ if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+ Value *Op = SI->getOperand(0);
+ if (Op == UsedI)
+ return SI;
+ Size =
+ std::max(Size, DL.getTypeStoreSize(Op->getType()).getFixedValue());
+ continue;
+ }
+
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
+ if (!GEP->hasAllZeroIndices())
+ return GEP;
+ } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
+ !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) {
+ return I;
+ }
+
+ for (User *U : I->users())
+ if (Visited.insert(cast<Instruction>(U)).second)
+ Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
+ } while (!Uses.empty());
+
+ return nullptr;
+ }
+
+ void visitPHINodeOrSelectInst(Instruction &I) {
+ assert(isa<PHINode>(I) || isa<SelectInst>(I));
+ if (I.use_empty())
+ return markAsDead(I);
+
+ // If this is a PHI node before a catchswitch, we cannot insert any non-PHI
+ // instructions in this BB, which may be required during rewriting. Bail out
+ // on these cases.
+ if (isa<PHINode>(I) &&
+ I.getParent()->getFirstInsertionPt() == I.getParent()->end())
+ return PI.setAborted(&I);
+
+ // TODO: We could use simplifyInstruction here to fold PHINodes and
+ // SelectInsts. However, doing so requires to change the current
+ // dead-operand-tracking mechanism. For instance, suppose neither loading
+ // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
+ // trap either. However, if we simply replace %U with undef using the
+ // current dead-operand-tracking mechanism, "load (select undef, undef,
+ // %other)" may trap because the select may return the first operand
+ // "undef".
+ if (Value *Result = foldPHINodeOrSelectInst(I)) {
+ if (Result == *U)
+ // If the result of the constant fold will be the pointer, recurse
+ // through the PHI/select as if we had RAUW'ed it.
+ enqueueUsers(I);
+ else
+ // Otherwise the operand to the PHI/select is dead, and we can replace
+ // it with poison.
+ AS.DeadOperands.push_back(U);
+
+ return;
+ }
+
+ if (!IsOffsetKnown)
+ return PI.setAborted(&I);
+
+ // See if we already have computed info on this node.
+ uint64_t &Size = PHIOrSelectSizes[&I];
+ if (!Size) {
+ // This is a new PHI/Select, check for an unsafe use of it.
+ if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
+ return PI.setAborted(UnsafeI);
+ }
+
+ // For PHI and select operands outside the alloca, we can't nuke the entire
+ // phi or select -- the other side might still be relevant, so we special
+ // case them here and use a separate structure to track the operands
+ // themselves which should be replaced with poison.
+ // FIXME: This should instead be escaped in the event we're instrumenting
+ // for address sanitization.
+ if (Offset.uge(AllocSize)) {
+ AS.DeadOperands.push_back(U);
+ return;
+ }
+
+ insertUse(I, Offset, Size);
+ }
+
+ void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
+
+ void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
+
+ /// Disable SROA entirely if there are unhandled users of the alloca.
+ void visitInstruction(Instruction &I) { PI.setAborted(&I); }
+};
+
+AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
+ :
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ AI(AI),
+#endif
+ PointerEscapingInstr(nullptr) {
+ SliceBuilder PB(DL, AI, *this);
+ SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
+ if (PtrI.isEscaped() || PtrI.isAborted()) {
+ // FIXME: We should sink the escape vs. abort info into the caller nicely,
+ // possibly by just storing the PtrInfo in the AllocaSlices.
+ PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
+ : PtrI.getAbortingInst();
+ assert(PointerEscapingInstr && "Did not track a bad instruction");
+ return;
+ }
+
+ llvm::erase_if(Slices, [](const Slice &S) { return S.isDead(); });
+
+ // Sort the uses. This arranges for the offsets to be in ascending order,
+ // and the sizes to be in descending order.
+ llvm::stable_sort(Slices);
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+
+void AllocaSlices::print(raw_ostream &OS, const_iterator I,
+ StringRef Indent) const {
+ printSlice(OS, I, Indent);
+ OS << "\n";
+ printUse(OS, I, Indent);
+}
+
+void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
+ StringRef Indent) const {
+ OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
+ << " slice #" << (I - begin())
+ << (I->isSplittable() ? " (splittable)" : "");
+}
+
+void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
+ StringRef Indent) const {
+ OS << Indent << " used by: " << *I->getUse()->getUser() << "\n";
+}
+
+void AllocaSlices::print(raw_ostream &OS) const {
+ if (PointerEscapingInstr) {
+ OS << "Can't analyze slices for alloca: " << AI << "\n"
+ << " A pointer to this alloca escaped by:\n"
+ << " " << *PointerEscapingInstr << "\n";
+ return;
+ }
+
+ OS << "Slices of alloca: " << AI << "\n";
+ for (const_iterator I = begin(), E = end(); I != E; ++I)
+ print(OS, I);
+}
+
+LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
+ print(dbgs(), I);
+}
+LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
+
+#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+
+/// Walk the range of a partitioning looking for a common type to cover this
+/// sequence of slices.
+static std::pair<Type *, IntegerType *>
+findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E,
+ uint64_t EndOffset) {
+ Type *Ty = nullptr;
+ bool TyIsCommon = true;
+ IntegerType *ITy = nullptr;
+
+ // Note that we need to look at *every* alloca slice's Use to ensure we
+ // always get consistent results regardless of the order of slices.
+ for (AllocaSlices::const_iterator I = B; I != E; ++I) {
+ Use *U = I->getUse();
+ if (isa<IntrinsicInst>(*U->getUser()))
+ continue;
+ if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
+ continue;
+
+ Type *UserTy = nullptr;
+ if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
+ UserTy = LI->getType();
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
+ UserTy = SI->getValueOperand()->getType();
+ }
+
+ if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
+ // If the type is larger than the partition, skip it. We only encounter
+ // this for split integer operations where we want to use the type of the
+ // entity causing the split. Also skip if the type is not a byte width
+ // multiple.
+ if (UserITy->getBitWidth() % 8 != 0 ||
+ UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
+ continue;
+
+ // Track the largest bitwidth integer type used in this way in case there
+ // is no common type.
+ if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
+ ITy = UserITy;
+ }
+
+ // To avoid depending on the order of slices, Ty and TyIsCommon must not
+ // depend on types skipped above.
+ if (!UserTy || (Ty && Ty != UserTy))
+ TyIsCommon = false; // Give up on anything but an iN type.
+ else
+ Ty = UserTy;
+ }
+
+ return {TyIsCommon ? Ty : nullptr, ITy};
+}
+
+/// PHI instructions that use an alloca and are subsequently loaded can be
+/// rewritten to load both input pointers in the pred blocks and then PHI the
+/// results, allowing the load of the alloca to be promoted.
+/// From this:
+/// %P2 = phi [i32* %Alloca, i32* %Other]
+/// %V = load i32* %P2
+/// to:
+/// %V1 = load i32* %Alloca -> will be mem2reg'd
+/// ...
+/// %V2 = load i32* %Other
+/// ...
+/// %V = phi [i32 %V1, i32 %V2]
+///
+/// We can do this to a select if its only uses are loads and if the operands
+/// to the select can be loaded unconditionally.
+///
+/// FIXME: This should be hoisted into a generic utility, likely in
+/// Transforms/Util/Local.h
+static bool isSafePHIToSpeculate(PHINode &PN) {
+ const DataLayout &DL = PN.getModule()->getDataLayout();
+
+ // For now, we can only do this promotion if the load is in the same block
+ // as the PHI, and if there are no stores between the phi and load.
+ // TODO: Allow recursive phi users.
+ // TODO: Allow stores.
+ BasicBlock *BB = PN.getParent();
+ Align MaxAlign;
+ uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType());
+ Type *LoadType = nullptr;
+ for (User *U : PN.users()) {
+ LoadInst *LI = dyn_cast<LoadInst>(U);
+ if (!LI || !LI->isSimple())
+ return false;
+
+ // For now we only allow loads in the same block as the PHI. This is
+ // a common case that happens when instcombine merges two loads through
+ // a PHI.
+ if (LI->getParent() != BB)
+ return false;
+
+ if (LoadType) {
+ if (LoadType != LI->getType())
+ return false;
+ } else {
+ LoadType = LI->getType();
+ }
+
+ // Ensure that there are no instructions between the PHI and the load that
+ // could store.
+ for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
+ if (BBI->mayWriteToMemory())
+ return false;
+
+ MaxAlign = std::max(MaxAlign, LI->getAlign());
+ }
+
+ if (!LoadType)
+ return false;
+
+ APInt LoadSize =
+ APInt(APWidth, DL.getTypeStoreSize(LoadType).getFixedValue());
+
+ // We can only transform this if it is safe to push the loads into the
+ // predecessor blocks. The only thing to watch out for is that we can't put
+ // a possibly trapping load in the predecessor if it is a critical edge.
+ for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
+ Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator();
+ Value *InVal = PN.getIncomingValue(Idx);
+
+ // If the value is produced by the terminator of the predecessor (an
+ // invoke) or it has side-effects, there is no valid place to put a load
+ // in the predecessor.
+ if (TI == InVal || TI->mayHaveSideEffects())
+ return false;
+
+ // If the predecessor has a single successor, then the edge isn't
+ // critical.
+ if (TI->getNumSuccessors() == 1)
+ continue;
+
+ // If this pointer is always safe to load, or if we can prove that there
+ // is already a load in the block, then we can move the load to the pred
+ // block.
+ if (isSafeToLoadUnconditionally(InVal, MaxAlign, LoadSize, DL, TI))
+ continue;
+
+ return false;
+ }
+
+ return true;
+}
+
+static void speculatePHINodeLoads(IRBuilderTy &IRB, PHINode &PN) {
+ LLVM_DEBUG(dbgs() << " original: " << PN << "\n");
+
+ LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
+ Type *LoadTy = SomeLoad->getType();
+ IRB.SetInsertPoint(&PN);
+ PHINode *NewPN = IRB.CreatePHI(LoadTy, PN.getNumIncomingValues(),
+ PN.getName() + ".sroa.speculated");
+
+ // Get the AA tags and alignment to use from one of the loads. It does not
+ // matter which one we get and if any differ.
+ AAMDNodes AATags = SomeLoad->getAAMetadata();
+ Align Alignment = SomeLoad->getAlign();
+
+ // Rewrite all loads of the PN to use the new PHI.
+ while (!PN.use_empty()) {
+ LoadInst *LI = cast<LoadInst>(PN.user_back());
+ LI->replaceAllUsesWith(NewPN);
+ LI->eraseFromParent();
+ }
+
+ // Inject loads into all of the pred blocks.
+ DenseMap<BasicBlock*, Value*> InjectedLoads;
+ for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
+ BasicBlock *Pred = PN.getIncomingBlock(Idx);
+ Value *InVal = PN.getIncomingValue(Idx);
+
+ // A PHI node is allowed to have multiple (duplicated) entries for the same
+ // basic block, as long as the value is the same. So if we already injected
+ // a load in the predecessor, then we should reuse the same load for all
+ // duplicated entries.
+ if (Value* V = InjectedLoads.lookup(Pred)) {
+ NewPN->addIncoming(V, Pred);
+ continue;
+ }
+
+ Instruction *TI = Pred->getTerminator();
+ IRB.SetInsertPoint(TI);
+
+ LoadInst *Load = IRB.CreateAlignedLoad(
+ LoadTy, InVal, Alignment,
+ (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
+ ++NumLoadsSpeculated;
+ if (AATags)
+ Load->setAAMetadata(AATags);
+ NewPN->addIncoming(Load, Pred);
+ InjectedLoads[Pred] = Load;
+ }
+
+ LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN << "\n");
+ PN.eraseFromParent();
+}
+
+sroa::SelectHandSpeculativity &
+sroa::SelectHandSpeculativity::setAsSpeculatable(bool isTrueVal) {
+ if (isTrueVal)
+ Bitfield::set<sroa::SelectHandSpeculativity::TrueVal>(Storage, true);
+ else
+ Bitfield::set<sroa::SelectHandSpeculativity::FalseVal>(Storage, true);
+ return *this;
+}
+
+bool sroa::SelectHandSpeculativity::isSpeculatable(bool isTrueVal) const {
+ return isTrueVal
+ ? Bitfield::get<sroa::SelectHandSpeculativity::TrueVal>(Storage)
+ : Bitfield::get<sroa::SelectHandSpeculativity::FalseVal>(Storage);
+}
+
+bool sroa::SelectHandSpeculativity::areAllSpeculatable() const {
+ return isSpeculatable(/*isTrueVal=*/true) &&
+ isSpeculatable(/*isTrueVal=*/false);
+}
+
+bool sroa::SelectHandSpeculativity::areAnySpeculatable() const {
+ return isSpeculatable(/*isTrueVal=*/true) ||
+ isSpeculatable(/*isTrueVal=*/false);
+}
+bool sroa::SelectHandSpeculativity::areNoneSpeculatable() const {
+ return !areAnySpeculatable();
+}
+
+static sroa::SelectHandSpeculativity
+isSafeLoadOfSelectToSpeculate(LoadInst &LI, SelectInst &SI, bool PreserveCFG) {
+ assert(LI.isSimple() && "Only for simple loads");
+ sroa::SelectHandSpeculativity Spec;
+
+ const DataLayout &DL = SI.getModule()->getDataLayout();
+ for (Value *Value : {SI.getTrueValue(), SI.getFalseValue()})
+ if (isSafeToLoadUnconditionally(Value, LI.getType(), LI.getAlign(), DL,
+ &LI))
+ Spec.setAsSpeculatable(/*isTrueVal=*/Value == SI.getTrueValue());
+ else if (PreserveCFG)
+ return Spec;
+
+ return Spec;
+}
+
+std::optional<sroa::RewriteableMemOps>
+SROAPass::isSafeSelectToSpeculate(SelectInst &SI, bool PreserveCFG) {
+ RewriteableMemOps Ops;
+
+ for (User *U : SI.users()) {
+ if (auto *BC = dyn_cast<BitCastInst>(U); BC && BC->hasOneUse())
+ U = *BC->user_begin();
+
+ if (auto *Store = dyn_cast<StoreInst>(U)) {
+ // Note that atomic stores can be transformed; atomic semantics do not
+ // have any meaning for a local alloca. Stores are not speculatable,
+ // however, so if we can't turn it into a predicated store, we are done.
+ if (Store->isVolatile() || PreserveCFG)
+ return {}; // Give up on this `select`.
+ Ops.emplace_back(Store);
+ continue;
+ }
+
+ auto *LI = dyn_cast<LoadInst>(U);
+
+ // Note that atomic loads can be transformed;
+ // atomic semantics do not have any meaning for a local alloca.
+ if (!LI || LI->isVolatile())
+ return {}; // Give up on this `select`.
+
+ PossiblySpeculatableLoad Load(LI);
+ if (!LI->isSimple()) {
+ // If the `load` is not simple, we can't speculatively execute it,
+ // but we could handle this via a CFG modification. But can we?
+ if (PreserveCFG)
+ return {}; // Give up on this `select`.
+ Ops.emplace_back(Load);
+ continue;
+ }
+
+ sroa::SelectHandSpeculativity Spec =
+ isSafeLoadOfSelectToSpeculate(*LI, SI, PreserveCFG);
+ if (PreserveCFG && !Spec.areAllSpeculatable())
+ return {}; // Give up on this `select`.
+
+ Load.setInt(Spec);
+ Ops.emplace_back(Load);
+ }
+
+ return Ops;
+}
+
+static void speculateSelectInstLoads(SelectInst &SI, LoadInst &LI,
+ IRBuilderTy &IRB) {
+ LLVM_DEBUG(dbgs() << " original load: " << SI << "\n");
+
+ Value *TV = SI.getTrueValue();
+ Value *FV = SI.getFalseValue();
+ // Replace the given load of the select with a select of two loads.
+
+ assert(LI.isSimple() && "We only speculate simple loads");
+
+ IRB.SetInsertPoint(&LI);
+
+ if (auto *TypedPtrTy = LI.getPointerOperandType();
+ !TypedPtrTy->isOpaquePointerTy() && SI.getType() != TypedPtrTy) {
+ TV = IRB.CreateBitOrPointerCast(TV, TypedPtrTy, "");
+ FV = IRB.CreateBitOrPointerCast(FV, TypedPtrTy, "");
+ }
+
+ LoadInst *TL =
+ IRB.CreateAlignedLoad(LI.getType(), TV, LI.getAlign(),
+ LI.getName() + ".sroa.speculate.load.true");
+ LoadInst *FL =
+ IRB.CreateAlignedLoad(LI.getType(), FV, LI.getAlign(),
+ LI.getName() + ".sroa.speculate.load.false");
+ NumLoadsSpeculated += 2;
+
+ // Transfer alignment and AA info if present.
+ TL->setAlignment(LI.getAlign());
+ FL->setAlignment(LI.getAlign());
+
+ AAMDNodes Tags = LI.getAAMetadata();
+ if (Tags) {
+ TL->setAAMetadata(Tags);
+ FL->setAAMetadata(Tags);
+ }
+
+ Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
+ LI.getName() + ".sroa.speculated");
+
+ LLVM_DEBUG(dbgs() << " speculated to: " << *V << "\n");
+ LI.replaceAllUsesWith(V);
+}
+
+template <typename T>
+static void rewriteMemOpOfSelect(SelectInst &SI, T &I,
+ sroa::SelectHandSpeculativity Spec,
+ DomTreeUpdater &DTU) {
+ assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && "Only for load and store!");
+ LLVM_DEBUG(dbgs() << " original mem op: " << I << "\n");
+ BasicBlock *Head = I.getParent();
+ Instruction *ThenTerm = nullptr;
+ Instruction *ElseTerm = nullptr;
+ if (Spec.areNoneSpeculatable())
+ SplitBlockAndInsertIfThenElse(SI.getCondition(), &I, &ThenTerm, &ElseTerm,
+ SI.getMetadata(LLVMContext::MD_prof), &DTU);
+ else {
+ SplitBlockAndInsertIfThen(SI.getCondition(), &I, /*Unreachable=*/false,
+ SI.getMetadata(LLVMContext::MD_prof), &DTU,
+ /*LI=*/nullptr, /*ThenBlock=*/nullptr);
+ if (Spec.isSpeculatable(/*isTrueVal=*/true))
+ cast<BranchInst>(Head->getTerminator())->swapSuccessors();
+ }
+ auto *HeadBI = cast<BranchInst>(Head->getTerminator());
+ Spec = {}; // Do not use `Spec` beyond this point.
+ BasicBlock *Tail = I.getParent();
+ Tail->setName(Head->getName() + ".cont");
+ PHINode *PN;
+ if (isa<LoadInst>(I))
+ PN = PHINode::Create(I.getType(), 2, "", &I);
+ for (BasicBlock *SuccBB : successors(Head)) {
+ bool IsThen = SuccBB == HeadBI->getSuccessor(0);
+ int SuccIdx = IsThen ? 0 : 1;
+ auto *NewMemOpBB = SuccBB == Tail ? Head : SuccBB;
+ if (NewMemOpBB != Head) {
+ NewMemOpBB->setName(Head->getName() + (IsThen ? ".then" : ".else"));
+ if (isa<LoadInst>(I))
+ ++NumLoadsPredicated;
+ else
+ ++NumStoresPredicated;
+ } else
+ ++NumLoadsSpeculated;
+ auto &CondMemOp = cast<T>(*I.clone());
+ CondMemOp.insertBefore(NewMemOpBB->getTerminator());
+ Value *Ptr = SI.getOperand(1 + SuccIdx);
+ if (auto *PtrTy = Ptr->getType();
+ !PtrTy->isOpaquePointerTy() &&
+ PtrTy != CondMemOp.getPointerOperandType())
+ Ptr = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
+ Ptr, CondMemOp.getPointerOperandType(), "", &CondMemOp);
+ CondMemOp.setOperand(I.getPointerOperandIndex(), Ptr);
+ if (isa<LoadInst>(I)) {
+ CondMemOp.setName(I.getName() + (IsThen ? ".then" : ".else") + ".val");
+ PN->addIncoming(&CondMemOp, NewMemOpBB);
+ } else
+ LLVM_DEBUG(dbgs() << " to: " << CondMemOp << "\n");
+ }
+ if (isa<LoadInst>(I)) {
+ PN->takeName(&I);
+ LLVM_DEBUG(dbgs() << " to: " << *PN << "\n");
+ I.replaceAllUsesWith(PN);
+ }
+}
+
+static void rewriteMemOpOfSelect(SelectInst &SelInst, Instruction &I,
+ sroa::SelectHandSpeculativity Spec,
+ DomTreeUpdater &DTU) {
+ if (auto *LI = dyn_cast<LoadInst>(&I))
+ rewriteMemOpOfSelect(SelInst, *LI, Spec, DTU);
+ else if (auto *SI = dyn_cast<StoreInst>(&I))
+ rewriteMemOpOfSelect(SelInst, *SI, Spec, DTU);
+ else
+ llvm_unreachable_internal("Only for load and store.");
+}
+
+static bool rewriteSelectInstMemOps(SelectInst &SI,
+ const sroa::RewriteableMemOps &Ops,
+ IRBuilderTy &IRB, DomTreeUpdater *DTU) {
+ bool CFGChanged = false;
+ LLVM_DEBUG(dbgs() << " original select: " << SI << "\n");
+
+ for (const RewriteableMemOp &Op : Ops) {
+ sroa::SelectHandSpeculativity Spec;
+ Instruction *I;
+ if (auto *const *US = std::get_if<UnspeculatableStore>(&Op)) {
+ I = *US;
+ } else {
+ auto PSL = std::get<PossiblySpeculatableLoad>(Op);
+ I = PSL.getPointer();
+ Spec = PSL.getInt();
+ }
+ if (Spec.areAllSpeculatable()) {
+ speculateSelectInstLoads(SI, cast<LoadInst>(*I), IRB);
+ } else {
+ assert(DTU && "Should not get here when not allowed to modify the CFG!");
+ rewriteMemOpOfSelect(SI, *I, Spec, *DTU);
+ CFGChanged = true;
+ }
+ I->eraseFromParent();
+ }
+
+ for (User *U : make_early_inc_range(SI.users()))
+ cast<BitCastInst>(U)->eraseFromParent();
+ SI.eraseFromParent();
+ return CFGChanged;
+}
+
+/// Build a GEP out of a base pointer and indices.
+///
+/// This will return the BasePtr if that is valid, or build a new GEP
+/// instruction using the IRBuilder if GEP-ing is needed.
+static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
+ SmallVectorImpl<Value *> &Indices,
+ const Twine &NamePrefix) {
+ if (Indices.empty())
+ return BasePtr;
+
+ // A single zero index is a no-op, so check for this and avoid building a GEP
+ // in that case.
+ if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
+ return BasePtr;
+
+ // buildGEP() is only called for non-opaque pointers.
+ return IRB.CreateInBoundsGEP(
+ BasePtr->getType()->getNonOpaquePointerElementType(), BasePtr, Indices,
+ NamePrefix + "sroa_idx");
+}
+
+/// Get a natural GEP off of the BasePtr walking through Ty toward
+/// TargetTy without changing the offset of the pointer.
+///
+/// This routine assumes we've already established a properly offset GEP with
+/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
+/// zero-indices down through type layers until we find one the same as
+/// TargetTy. If we can't find one with the same type, we at least try to use
+/// one with the same size. If none of that works, we just produce the GEP as
+/// indicated by Indices to have the correct offset.
+static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
+ Value *BasePtr, Type *Ty, Type *TargetTy,
+ SmallVectorImpl<Value *> &Indices,
+ const Twine &NamePrefix) {
+ if (Ty == TargetTy)
+ return buildGEP(IRB, BasePtr, Indices, NamePrefix);
+
+ // Offset size to use for the indices.
+ unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType());
+
+ // See if we can descend into a struct and locate a field with the correct
+ // type.
+ unsigned NumLayers = 0;
+ Type *ElementTy = Ty;
+ do {
+ if (ElementTy->isPointerTy())
+ break;
+
+ if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
+ ElementTy = ArrayTy->getElementType();
+ Indices.push_back(IRB.getIntN(OffsetSize, 0));
+ } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
+ ElementTy = VectorTy->getElementType();
+ Indices.push_back(IRB.getInt32(0));
+ } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
+ if (STy->element_begin() == STy->element_end())
+ break; // Nothing left to descend into.
+ ElementTy = *STy->element_begin();
+ Indices.push_back(IRB.getInt32(0));
+ } else {
+ break;
+ }
+ ++NumLayers;
+ } while (ElementTy != TargetTy);
+ if (ElementTy != TargetTy)
+ Indices.erase(Indices.end() - NumLayers, Indices.end());
+
+ return buildGEP(IRB, BasePtr, Indices, NamePrefix);
+}
+
+/// Get a natural GEP from a base pointer to a particular offset and
+/// resulting in a particular type.
+///
+/// The goal is to produce a "natural" looking GEP that works with the existing
+/// composite types to arrive at the appropriate offset and element type for
+/// a pointer. TargetTy is the element type the returned GEP should point-to if
+/// possible. We recurse by decreasing Offset, adding the appropriate index to
+/// Indices, and setting Ty to the result subtype.
+///
+/// If no natural GEP can be constructed, this function returns null.
+static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
+ Value *Ptr, APInt Offset, Type *TargetTy,
+ SmallVectorImpl<Value *> &Indices,
+ const Twine &NamePrefix) {
+ PointerType *Ty = cast<PointerType>(Ptr->getType());
+
+ // Don't consider any GEPs through an i8* as natural unless the TargetTy is
+ // an i8.
+ if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
+ return nullptr;
+
+ Type *ElementTy = Ty->getNonOpaquePointerElementType();
+ if (!ElementTy->isSized())
+ return nullptr; // We can't GEP through an unsized element.
+
+ SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(ElementTy, Offset);
+ if (Offset != 0)
+ return nullptr;
+
+ for (const APInt &Index : IntIndices)
+ Indices.push_back(IRB.getInt(Index));
+ return getNaturalGEPWithType(IRB, DL, Ptr, ElementTy, TargetTy, Indices,
+ NamePrefix);
+}
+
+/// Compute an adjusted pointer from Ptr by Offset bytes where the
+/// resulting pointer has PointerTy.
+///
+/// This tries very hard to compute a "natural" GEP which arrives at the offset
+/// and produces the pointer type desired. Where it cannot, it will try to use
+/// the natural GEP to arrive at the offset and bitcast to the type. Where that
+/// fails, it will try to use an existing i8* and GEP to the byte offset and
+/// bitcast to the type.
+///
+/// The strategy for finding the more natural GEPs is to peel off layers of the
+/// pointer, walking back through bit casts and GEPs, searching for a base
+/// pointer from which we can compute a natural GEP with the desired
+/// properties. The algorithm tries to fold as many constant indices into
+/// a single GEP as possible, thus making each GEP more independent of the
+/// surrounding code.
+static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
+ APInt Offset, Type *PointerTy,
+ const Twine &NamePrefix) {
+ // Create i8 GEP for opaque pointers.
+ if (Ptr->getType()->isOpaquePointerTy()) {
+ if (Offset != 0)
+ Ptr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(Offset),
+ NamePrefix + "sroa_idx");
+ return IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, PointerTy,
+ NamePrefix + "sroa_cast");
+ }
+
+ // Even though we don't look through PHI nodes, we could be called on an
+ // instruction in an unreachable block, which may be on a cycle.
+ SmallPtrSet<Value *, 4> Visited;
+ Visited.insert(Ptr);
+ SmallVector<Value *, 4> Indices;
+
+ // We may end up computing an offset pointer that has the wrong type. If we
+ // never are able to compute one directly that has the correct type, we'll
+ // fall back to it, so keep it and the base it was computed from around here.
+ Value *OffsetPtr = nullptr;
+ Value *OffsetBasePtr;
+
+ // Remember any i8 pointer we come across to re-use if we need to do a raw
+ // byte offset.
+ Value *Int8Ptr = nullptr;
+ APInt Int8PtrOffset(Offset.getBitWidth(), 0);
+
+ PointerType *TargetPtrTy = cast<PointerType>(PointerTy);
+ Type *TargetTy = TargetPtrTy->getNonOpaquePointerElementType();
+
+ // As `addrspacecast` is , `Ptr` (the storage pointer) may have different
+ // address space from the expected `PointerTy` (the pointer to be used).
+ // Adjust the pointer type based the original storage pointer.
+ auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace();
+ PointerTy = TargetTy->getPointerTo(AS);
+
+ do {
+ // First fold any existing GEPs into the offset.
+ while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
+ APInt GEPOffset(Offset.getBitWidth(), 0);
+ if (!GEP->accumulateConstantOffset(DL, GEPOffset))
+ break;
+ Offset += GEPOffset;
+ Ptr = GEP->getPointerOperand();
+ if (!Visited.insert(Ptr).second)
+ break;
+ }
+
+ // See if we can perform a natural GEP here.
+ Indices.clear();
+ if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
+ Indices, NamePrefix)) {
+ // If we have a new natural pointer at the offset, clear out any old
+ // offset pointer we computed. Unless it is the base pointer or
+ // a non-instruction, we built a GEP we don't need. Zap it.
+ if (OffsetPtr && OffsetPtr != OffsetBasePtr)
+ if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
+ assert(I->use_empty() && "Built a GEP with uses some how!");
+ I->eraseFromParent();
+ }
+ OffsetPtr = P;
+ OffsetBasePtr = Ptr;
+ // If we also found a pointer of the right type, we're done.
+ if (P->getType() == PointerTy)
+ break;
+ }
+
+ // Stash this pointer if we've found an i8*.
+ if (Ptr->getType()->isIntegerTy(8)) {
+ Int8Ptr = Ptr;
+ Int8PtrOffset = Offset;
+ }
+
+ // Peel off a layer of the pointer and update the offset appropriately.
+ if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
+ Ptr = cast<Operator>(Ptr)->getOperand(0);
+ } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
+ if (GA->isInterposable())
+ break;
+ Ptr = GA->getAliasee();
+ } else {
+ break;
+ }
+ assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
+ } while (Visited.insert(Ptr).second);
+
+ if (!OffsetPtr) {
+ if (!Int8Ptr) {
+ Int8Ptr = IRB.CreateBitCast(
+ Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
+ NamePrefix + "sroa_raw_cast");
+ Int8PtrOffset = Offset;
+ }
+
+ OffsetPtr = Int8PtrOffset == 0
+ ? Int8Ptr
+ : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
+ IRB.getInt(Int8PtrOffset),
+ NamePrefix + "sroa_raw_idx");
+ }
+ Ptr = OffsetPtr;
+
+ // On the off chance we were targeting i8*, guard the bitcast here.
+ if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) {
+ Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr,
+ TargetPtrTy,
+ NamePrefix + "sroa_cast");
+ }
+
+ return Ptr;
+}
+
+/// Compute the adjusted alignment for a load or store from an offset.
+static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) {
+ return commonAlignment(getLoadStoreAlignment(I), Offset);
+}
+
+/// Test whether we can convert a value from the old to the new type.
+///
+/// This predicate should be used to guard calls to convertValue in order to
+/// ensure that we only try to convert viable values. The strategy is that we
+/// will peel off single element struct and array wrappings to get to an
+/// underlying value, and convert that value.
+static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
+ if (OldTy == NewTy)
+ return true;
+
+ // For integer types, we can't handle any bit-width differences. This would
+ // break both vector conversions with extension and introduce endianness
+ // issues when in conjunction with loads and stores.
+ if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
+ assert(cast<IntegerType>(OldTy)->getBitWidth() !=
+ cast<IntegerType>(NewTy)->getBitWidth() &&
+ "We can't have the same bitwidth for different int types");
+ return false;
+ }
+
+ if (DL.getTypeSizeInBits(NewTy).getFixedValue() !=
+ DL.getTypeSizeInBits(OldTy).getFixedValue())
+ return false;
+ if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
+ return false;
+
+ // We can convert pointers to integers and vice-versa. Same for vectors
+ // of pointers and integers.
+ OldTy = OldTy->getScalarType();
+ NewTy = NewTy->getScalarType();
+ if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
+ if (NewTy->isPointerTy() && OldTy->isPointerTy()) {
+ unsigned OldAS = OldTy->getPointerAddressSpace();
+ unsigned NewAS = NewTy->getPointerAddressSpace();
+ // Convert pointers if they are pointers from the same address space or
+ // different integral (not non-integral) address spaces with the same
+ // pointer size.
+ return OldAS == NewAS ||
+ (!DL.isNonIntegralAddressSpace(OldAS) &&
+ !DL.isNonIntegralAddressSpace(NewAS) &&
+ DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
+ }
+
+ // We can convert integers to integral pointers, but not to non-integral
+ // pointers.
+ if (OldTy->isIntegerTy())
+ return !DL.isNonIntegralPointerType(NewTy);
+
+ // We can convert integral pointers to integers, but non-integral pointers
+ // need to remain pointers.
+ if (!DL.isNonIntegralPointerType(OldTy))
+ return NewTy->isIntegerTy();
+
+ return false;
+ }
+
+ if (OldTy->isTargetExtTy() || NewTy->isTargetExtTy())
+ return false;
+
+ return true;
+}
+
+/// Generic routine to convert an SSA value to a value of a different
+/// type.
+///
+/// This will try various different casting techniques, such as bitcasts,
+/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
+/// two types for viability with this routine.
+static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
+ Type *NewTy) {
+ Type *OldTy = V->getType();
+ assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
+
+ if (OldTy == NewTy)
+ return V;
+
+ assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
+ "Integer types must be the exact same to convert.");
+
+ // See if we need inttoptr for this type pair. May require additional bitcast.
+ if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
+ // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
+ // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
+ // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*>
+ // Directly handle i64 to i8*
+ return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
+ NewTy);
+ }
+
+ // See if we need ptrtoint for this type pair. May require additional bitcast.
+ if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) {
+ // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
+ // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
+ // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32>
+ // Expand i8* to i64 --> i8* to i64 to i64
+ return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
+ NewTy);
+ }
+
+ if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
+ unsigned OldAS = OldTy->getPointerAddressSpace();
+ unsigned NewAS = NewTy->getPointerAddressSpace();
+ // To convert pointers with different address spaces (they are already
+ // checked convertible, i.e. they have the same pointer size), so far we
+ // cannot use `bitcast` (which has restrict on the same address space) or
+ // `addrspacecast` (which is not always no-op casting). Instead, use a pair
+ // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit
+ // size.
+ if (OldAS != NewAS) {
+ assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
+ return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
+ NewTy);
+ }
+ }
+
+ return IRB.CreateBitCast(V, NewTy);
+}
+
+/// Test whether the given slice use can be promoted to a vector.
+///
+/// This function is called to test each entry in a partition which is slated
+/// for a single slice.
+static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
+ VectorType *Ty,
+ uint64_t ElementSize,
+ const DataLayout &DL) {
+ // First validate the slice offsets.
+ uint64_t BeginOffset =
+ std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
+ uint64_t BeginIndex = BeginOffset / ElementSize;
+ if (BeginIndex * ElementSize != BeginOffset ||
+ BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements())
+ return false;
+ uint64_t EndOffset =
+ std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
+ uint64_t EndIndex = EndOffset / ElementSize;
+ if (EndIndex * ElementSize != EndOffset ||
+ EndIndex > cast<FixedVectorType>(Ty)->getNumElements())
+ return false;
+
+ assert(EndIndex > BeginIndex && "Empty vector!");
+ uint64_t NumElements = EndIndex - BeginIndex;
+ Type *SliceTy = (NumElements == 1)
+ ? Ty->getElementType()
+ : FixedVectorType::get(Ty->getElementType(), NumElements);
+
+ Type *SplitIntTy =
+ Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
+
+ Use *U = S.getUse();
+
+ if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
+ if (MI->isVolatile())
+ return false;
+ if (!S.isSplittable())
+ return false; // Skip any unsplittable intrinsics.
+ } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
+ if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
+ return false;
+ } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
+ if (LI->isVolatile())
+ return false;
+ Type *LTy = LI->getType();
+ // Disable vector promotion when there are loads or stores of an FCA.
+ if (LTy->isStructTy())
+ return false;
+ if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
+ assert(LTy->isIntegerTy());
+ LTy = SplitIntTy;
+ }
+ if (!canConvertValue(DL, SliceTy, LTy))
+ return false;
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
+ if (SI->isVolatile())
+ return false;
+ Type *STy = SI->getValueOperand()->getType();
+ // Disable vector promotion when there are loads or stores of an FCA.
+ if (STy->isStructTy())
+ return false;
+ if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
+ assert(STy->isIntegerTy());
+ STy = SplitIntTy;
+ }
+ if (!canConvertValue(DL, STy, SliceTy))
+ return false;
+ } else {
+ return false;
+ }
+
+ return true;
+}
+
+/// Test whether a vector type is viable for promotion.
+///
+/// This implements the necessary checking for \c isVectorPromotionViable over
+/// all slices of the alloca for the given VectorType.
+static bool checkVectorTypeForPromotion(Partition &P, VectorType *VTy,
+ const DataLayout &DL) {
+ uint64_t ElementSize =
+ DL.getTypeSizeInBits(VTy->getElementType()).getFixedValue();
+
+ // While the definition of LLVM vectors is bitpacked, we don't support sizes
+ // that aren't byte sized.
+ if (ElementSize % 8)
+ return false;
+ assert((DL.getTypeSizeInBits(VTy).getFixedValue() % 8) == 0 &&
+ "vector size not a multiple of element size?");
+ ElementSize /= 8;
+
+ for (const Slice &S : P)
+ if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
+ return false;
+
+ for (const Slice *S : P.splitSliceTails())
+ if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
+ return false;
+
+ return true;
+}
+
+/// Test whether the given alloca partitioning and range of slices can be
+/// promoted to a vector.
+///
+/// This is a quick test to check whether we can rewrite a particular alloca
+/// partition (and its newly formed alloca) into a vector alloca with only
+/// whole-vector loads and stores such that it could be promoted to a vector
+/// SSA value. We only can ensure this for a limited set of operations, and we
+/// don't want to do the rewrites unless we are confident that the result will
+/// be promotable, so we have an early test here.
+static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
+ // Collect the candidate types for vector-based promotion. Also track whether
+ // we have different element types.
+ SmallVector<VectorType *, 4> CandidateTys;
+ Type *CommonEltTy = nullptr;
+ VectorType *CommonVecPtrTy = nullptr;
+ bool HaveVecPtrTy = false;
+ bool HaveCommonEltTy = true;
+ bool HaveCommonVecPtrTy = true;
+ auto CheckCandidateType = [&](Type *Ty) {
+ if (auto *VTy = dyn_cast<VectorType>(Ty)) {
+ // Return if bitcast to vectors is different for total size in bits.
+ if (!CandidateTys.empty()) {
+ VectorType *V = CandidateTys[0];
+ if (DL.getTypeSizeInBits(VTy).getFixedValue() !=
+ DL.getTypeSizeInBits(V).getFixedValue()) {
+ CandidateTys.clear();
+ return;
+ }
+ }
+ CandidateTys.push_back(VTy);
+ Type *EltTy = VTy->getElementType();
+
+ if (!CommonEltTy)
+ CommonEltTy = EltTy;
+ else if (CommonEltTy != EltTy)
+ HaveCommonEltTy = false;
+
+ if (EltTy->isPointerTy()) {
+ HaveVecPtrTy = true;
+ if (!CommonVecPtrTy)
+ CommonVecPtrTy = VTy;
+ else if (CommonVecPtrTy != VTy)
+ HaveCommonVecPtrTy = false;
+ }
+ }
+ };
+ // Consider any loads or stores that are the exact size of the slice.
+ for (const Slice &S : P)
+ if (S.beginOffset() == P.beginOffset() &&
+ S.endOffset() == P.endOffset()) {
+ if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
+ CheckCandidateType(LI->getType());
+ else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
+ CheckCandidateType(SI->getValueOperand()->getType());
+ }
+
+ // If we didn't find a vector type, nothing to do here.
+ if (CandidateTys.empty())
+ return nullptr;
+
+ // Pointer-ness is sticky, if we had a vector-of-pointers candidate type,
+ // then we should choose it, not some other alternative.
+ // But, we can't perform a no-op pointer address space change via bitcast,
+ // so if we didn't have a common pointer element type, bail.
+ if (HaveVecPtrTy && !HaveCommonVecPtrTy)
+ return nullptr;
+
+ // Try to pick the "best" element type out of the choices.
+ if (!HaveCommonEltTy && HaveVecPtrTy) {
+ // If there was a pointer element type, there's really only one choice.
+ CandidateTys.clear();
+ CandidateTys.push_back(CommonVecPtrTy);
+ } else if (!HaveCommonEltTy && !HaveVecPtrTy) {
+ // Integer-ify vector types.
+ for (VectorType *&VTy : CandidateTys) {
+ if (!VTy->getElementType()->isIntegerTy())
+ VTy = cast<VectorType>(VTy->getWithNewType(IntegerType::getIntNTy(
+ VTy->getContext(), VTy->getScalarSizeInBits())));
+ }
+
+ // Rank the remaining candidate vector types. This is easy because we know
+ // they're all integer vectors. We sort by ascending number of elements.
+ auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
+ (void)DL;
+ assert(DL.getTypeSizeInBits(RHSTy).getFixedValue() ==
+ DL.getTypeSizeInBits(LHSTy).getFixedValue() &&
+ "Cannot have vector types of different sizes!");
+ assert(RHSTy->getElementType()->isIntegerTy() &&
+ "All non-integer types eliminated!");
+ assert(LHSTy->getElementType()->isIntegerTy() &&
+ "All non-integer types eliminated!");
+ return cast<FixedVectorType>(RHSTy)->getNumElements() <
+ cast<FixedVectorType>(LHSTy)->getNumElements();
+ };
+ llvm::sort(CandidateTys, RankVectorTypes);
+ CandidateTys.erase(
+ std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
+ CandidateTys.end());
+ } else {
+// The only way to have the same element type in every vector type is to
+// have the same vector type. Check that and remove all but one.
+#ifndef NDEBUG
+ for (VectorType *VTy : CandidateTys) {
+ assert(VTy->getElementType() == CommonEltTy &&
+ "Unaccounted for element type!");
+ assert(VTy == CandidateTys[0] &&
+ "Different vector types with the same element type!");
+ }
+#endif
+ CandidateTys.resize(1);
+ }
+
+ // FIXME: hack. Do we have a named constant for this?
+ // SDAG SDNode can't have more than 65535 operands.
+ llvm::erase_if(CandidateTys, [](VectorType *VTy) {
+ return cast<FixedVectorType>(VTy)->getNumElements() >
+ std::numeric_limits<unsigned short>::max();
+ });
+
+ for (VectorType *VTy : CandidateTys)
+ if (checkVectorTypeForPromotion(P, VTy, DL))
+ return VTy;
+
+ return nullptr;
+}
+
+/// Test whether a slice of an alloca is valid for integer widening.
+///
+/// This implements the necessary checking for the \c isIntegerWideningViable
+/// test below on a single slice of the alloca.
+static bool isIntegerWideningViableForSlice(const Slice &S,
+ uint64_t AllocBeginOffset,
+ Type *AllocaTy,
+ const DataLayout &DL,
+ bool &WholeAllocaOp) {
+ uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedValue();
+
+ uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
+ uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
+
+ Use *U = S.getUse();
+
+ // Lifetime intrinsics operate over the whole alloca whose sizes are usually
+ // larger than other load/store slices (RelEnd > Size). But lifetime are
+ // always promotable and should not impact other slices' promotability of the
+ // partition.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
+ if (II->isLifetimeStartOrEnd() || II->isDroppable())
+ return true;
+ }
+
+ // We can't reasonably handle cases where the load or store extends past
+ // the end of the alloca's type and into its padding.
+ if (RelEnd > Size)
+ return false;
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
+ if (LI->isVolatile())
+ return false;
+ // We can't handle loads that extend past the allocated memory.
+ if (DL.getTypeStoreSize(LI->getType()).getFixedValue() > Size)
+ return false;
+ // So far, AllocaSliceRewriter does not support widening split slice tails
+ // in rewriteIntegerLoad.
+ if (S.beginOffset() < AllocBeginOffset)
+ return false;
+ // Note that we don't count vector loads or stores as whole-alloca
+ // operations which enable integer widening because we would prefer to use
+ // vector widening instead.
+ if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
+ WholeAllocaOp = true;
+ if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
+ if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedValue())
+ return false;
+ } else if (RelBegin != 0 || RelEnd != Size ||
+ !canConvertValue(DL, AllocaTy, LI->getType())) {
+ // Non-integer loads need to be convertible from the alloca type so that
+ // they are promotable.
+ return false;
+ }
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
+ Type *ValueTy = SI->getValueOperand()->getType();
+ if (SI->isVolatile())
+ return false;
+ // We can't handle stores that extend past the allocated memory.
+ if (DL.getTypeStoreSize(ValueTy).getFixedValue() > Size)
+ return false;
+ // So far, AllocaSliceRewriter does not support widening split slice tails
+ // in rewriteIntegerStore.
+ if (S.beginOffset() < AllocBeginOffset)
+ return false;
+ // Note that we don't count vector loads or stores as whole-alloca
+ // operations which enable integer widening because we would prefer to use
+ // vector widening instead.
+ if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
+ WholeAllocaOp = true;
+ if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
+ if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedValue())
+ return false;
+ } else if (RelBegin != 0 || RelEnd != Size ||
+ !canConvertValue(DL, ValueTy, AllocaTy)) {
+ // Non-integer stores need to be convertible to the alloca type so that
+ // they are promotable.
+ return false;
+ }
+ } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
+ if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
+ return false;
+ if (!S.isSplittable())
+ return false; // Skip any unsplittable intrinsics.
+ } else {
+ return false;
+ }
+
+ return true;
+}
+
+/// Test whether the given alloca partition's integer operations can be
+/// widened to promotable ones.
+///
+/// This is a quick test to check whether we can rewrite the integer loads and
+/// stores to a particular alloca into wider loads and stores and be able to
+/// promote the resulting alloca.
+static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
+ const DataLayout &DL) {
+ uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedValue();
+ // Don't create integer types larger than the maximum bitwidth.
+ if (SizeInBits > IntegerType::MAX_INT_BITS)
+ return false;
+
+ // Don't try to handle allocas with bit-padding.
+ if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedValue())
+ return false;
+
+ // We need to ensure that an integer type with the appropriate bitwidth can
+ // be converted to the alloca type, whatever that is. We don't want to force
+ // the alloca itself to have an integer type if there is a more suitable one.
+ Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
+ if (!canConvertValue(DL, AllocaTy, IntTy) ||
+ !canConvertValue(DL, IntTy, AllocaTy))
+ return false;
+
+ // While examining uses, we ensure that the alloca has a covering load or
+ // store. We don't want to widen the integer operations only to fail to
+ // promote due to some other unsplittable entry (which we may make splittable
+ // later). However, if there are only splittable uses, go ahead and assume
+ // that we cover the alloca.
+ // FIXME: We shouldn't consider split slices that happen to start in the
+ // partition here...
+ bool WholeAllocaOp = P.empty() && DL.isLegalInteger(SizeInBits);
+
+ for (const Slice &S : P)
+ if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
+ WholeAllocaOp))
+ return false;
+
+ for (const Slice *S : P.splitSliceTails())
+ if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
+ WholeAllocaOp))
+ return false;
+
+ return WholeAllocaOp;
+}
+
+static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
+ IntegerType *Ty, uint64_t Offset,
+ const Twine &Name) {
+ LLVM_DEBUG(dbgs() << " start: " << *V << "\n");
+ IntegerType *IntTy = cast<IntegerType>(V->getType());
+ assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <=
+ DL.getTypeStoreSize(IntTy).getFixedValue() &&
+ "Element extends past full value");
+ uint64_t ShAmt = 8 * Offset;
+ if (DL.isBigEndian())
+ ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedValue() -
+ DL.getTypeStoreSize(Ty).getFixedValue() - Offset);
+ if (ShAmt) {
+ V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
+ LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n");
+ }
+ assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
+ "Cannot extract to a larger integer!");
+ if (Ty != IntTy) {
+ V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
+ LLVM_DEBUG(dbgs() << " trunced: " << *V << "\n");
+ }
+ return V;
+}
+
+static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
+ Value *V, uint64_t Offset, const Twine &Name) {
+ IntegerType *IntTy = cast<IntegerType>(Old->getType());
+ IntegerType *Ty = cast<IntegerType>(V->getType());
+ assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
+ "Cannot insert a larger integer!");
+ LLVM_DEBUG(dbgs() << " start: " << *V << "\n");
+ if (Ty != IntTy) {
+ V = IRB.CreateZExt(V, IntTy, Name + ".ext");
+ LLVM_DEBUG(dbgs() << " extended: " << *V << "\n");
+ }
+ assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <=
+ DL.getTypeStoreSize(IntTy).getFixedValue() &&
+ "Element store outside of alloca store");
+ uint64_t ShAmt = 8 * Offset;
+ if (DL.isBigEndian())
+ ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedValue() -
+ DL.getTypeStoreSize(Ty).getFixedValue() - Offset);
+ if (ShAmt) {
+ V = IRB.CreateShl(V, ShAmt, Name + ".shift");
+ LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n");
+ }
+
+ if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
+ APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
+ Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
+ LLVM_DEBUG(dbgs() << " masked: " << *Old << "\n");
+ V = IRB.CreateOr(Old, V, Name + ".insert");
+ LLVM_DEBUG(dbgs() << " inserted: " << *V << "\n");
+ }
+ return V;
+}
+
+static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
+ unsigned EndIndex, const Twine &Name) {
+ auto *VecTy = cast<FixedVectorType>(V->getType());
+ unsigned NumElements = EndIndex - BeginIndex;
+ assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
+
+ if (NumElements == VecTy->getNumElements())
+ return V;
+
+ if (NumElements == 1) {
+ V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
+ Name + ".extract");
+ LLVM_DEBUG(dbgs() << " extract: " << *V << "\n");
+ return V;
+ }
+
+ auto Mask = llvm::to_vector<8>(llvm::seq<int>(BeginIndex, EndIndex));
+ V = IRB.CreateShuffleVector(V, Mask, Name + ".extract");
+ LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n");
+ return V;
+}
+
+static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
+ unsigned BeginIndex, const Twine &Name) {
+ VectorType *VecTy = cast<VectorType>(Old->getType());
+ assert(VecTy && "Can only insert a vector into a vector");
+
+ VectorType *Ty = dyn_cast<VectorType>(V->getType());
+ if (!Ty) {
+ // Single element to insert.
+ V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
+ Name + ".insert");
+ LLVM_DEBUG(dbgs() << " insert: " << *V << "\n");
+ return V;
+ }
+
+ assert(cast<FixedVectorType>(Ty)->getNumElements() <=
+ cast<FixedVectorType>(VecTy)->getNumElements() &&
+ "Too many elements!");
+ if (cast<FixedVectorType>(Ty)->getNumElements() ==
+ cast<FixedVectorType>(VecTy)->getNumElements()) {
+ assert(V->getType() == VecTy && "Vector type mismatch");
+ return V;
+ }
+ unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements();
+
+ // When inserting a smaller vector into the larger to store, we first
+ // use a shuffle vector to widen it with undef elements, and then
+ // a second shuffle vector to select between the loaded vector and the
+ // incoming vector.
+ SmallVector<int, 8> Mask;
+ Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
+ for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
+ if (i >= BeginIndex && i < EndIndex)
+ Mask.push_back(i - BeginIndex);
+ else
+ Mask.push_back(-1);
+ V = IRB.CreateShuffleVector(V, Mask, Name + ".expand");
+ LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n");
+
+ SmallVector<Constant *, 8> Mask2;
+ Mask2.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
+ for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
+ Mask2.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
+
+ V = IRB.CreateSelect(ConstantVector::get(Mask2), V, Old, Name + "blend");
+
+ LLVM_DEBUG(dbgs() << " blend: " << *V << "\n");
+ return V;
+}
+
+/// Visitor to rewrite instructions using p particular slice of an alloca
+/// to use a new alloca.
+///
+/// Also implements the rewriting to vector-based accesses when the partition
+/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
+/// lives here.
+class llvm::sroa::AllocaSliceRewriter
+ : public InstVisitor<AllocaSliceRewriter, bool> {
+ // Befriend the base class so it can delegate to private visit methods.
+ friend class InstVisitor<AllocaSliceRewriter, bool>;
+
+ using Base = InstVisitor<AllocaSliceRewriter, bool>;
+
+ const DataLayout &DL;
+ AllocaSlices &AS;
+ SROAPass &Pass;
+ AllocaInst &OldAI, &NewAI;
+ const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
+ Type *NewAllocaTy;
+
+ // This is a convenience and flag variable that will be null unless the new
+ // alloca's integer operations should be widened to this integer type due to
+ // passing isIntegerWideningViable above. If it is non-null, the desired
+ // integer type will be stored here for easy access during rewriting.
+ IntegerType *IntTy;
+
+ // If we are rewriting an alloca partition which can be written as pure
+ // vector operations, we stash extra information here. When VecTy is
+ // non-null, we have some strict guarantees about the rewritten alloca:
+ // - The new alloca is exactly the size of the vector type here.
+ // - The accesses all either map to the entire vector or to a single
+ // element.
+ // - The set of accessing instructions is only one of those handled above
+ // in isVectorPromotionViable. Generally these are the same access kinds
+ // which are promotable via mem2reg.
+ VectorType *VecTy;
+ Type *ElementTy;
+ uint64_t ElementSize;
+
+ // The original offset of the slice currently being rewritten relative to
+ // the original alloca.
+ uint64_t BeginOffset = 0;
+ uint64_t EndOffset = 0;
+
+ // The new offsets of the slice currently being rewritten relative to the
+ // original alloca.
+ uint64_t NewBeginOffset = 0, NewEndOffset = 0;
+
+ uint64_t RelativeOffset = 0;
+ uint64_t SliceSize = 0;
+ bool IsSplittable = false;
+ bool IsSplit = false;
+ Use *OldUse = nullptr;
+ Instruction *OldPtr = nullptr;
+
+ // Track post-rewrite users which are PHI nodes and Selects.
+ SmallSetVector<PHINode *, 8> &PHIUsers;
+ SmallSetVector<SelectInst *, 8> &SelectUsers;
+
+ // Utility IR builder, whose name prefix is setup for each visited use, and
+ // the insertion point is set to point to the user.
+ IRBuilderTy IRB;
+
+ // Return the new alloca, addrspacecasted if required to avoid changing the
+ // addrspace of a volatile access.
+ Value *getPtrToNewAI(unsigned AddrSpace, bool IsVolatile) {
+ if (!IsVolatile || AddrSpace == NewAI.getType()->getPointerAddressSpace())
+ return &NewAI;
+
+ Type *AccessTy = NewAI.getAllocatedType()->getPointerTo(AddrSpace);
+ return IRB.CreateAddrSpaceCast(&NewAI, AccessTy);
+ }
+
+public:
+ AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROAPass &Pass,
+ AllocaInst &OldAI, AllocaInst &NewAI,
+ uint64_t NewAllocaBeginOffset,
+ uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
+ VectorType *PromotableVecTy,
+ SmallSetVector<PHINode *, 8> &PHIUsers,
+ SmallSetVector<SelectInst *, 8> &SelectUsers)
+ : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
+ NewAllocaBeginOffset(NewAllocaBeginOffset),
+ NewAllocaEndOffset(NewAllocaEndOffset),
+ NewAllocaTy(NewAI.getAllocatedType()),
+ IntTy(
+ IsIntegerPromotable
+ ? Type::getIntNTy(NewAI.getContext(),
+ DL.getTypeSizeInBits(NewAI.getAllocatedType())
+ .getFixedValue())
+ : nullptr),
+ VecTy(PromotableVecTy),
+ ElementTy(VecTy ? VecTy->getElementType() : nullptr),
+ ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedValue() / 8
+ : 0),
+ PHIUsers(PHIUsers), SelectUsers(SelectUsers),
+ IRB(NewAI.getContext(), ConstantFolder()) {
+ if (VecTy) {
+ assert((DL.getTypeSizeInBits(ElementTy).getFixedValue() % 8) == 0 &&
+ "Only multiple-of-8 sized vector elements are viable");
+ ++NumVectorized;
+ }
+ assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
+ }
+
+ bool visit(AllocaSlices::const_iterator I) {
+ bool CanSROA = true;
+ BeginOffset = I->beginOffset();
+ EndOffset = I->endOffset();
+ IsSplittable = I->isSplittable();
+ IsSplit =
+ BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
+ LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : ""));
+ LLVM_DEBUG(AS.printSlice(dbgs(), I, ""));
+ LLVM_DEBUG(dbgs() << "\n");
+
+ // Compute the intersecting offset range.
+ assert(BeginOffset < NewAllocaEndOffset);
+ assert(EndOffset > NewAllocaBeginOffset);
+ NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
+ NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
+
+ RelativeOffset = NewBeginOffset - BeginOffset;
+ SliceSize = NewEndOffset - NewBeginOffset;
+ LLVM_DEBUG(dbgs() << " Begin:(" << BeginOffset << ", " << EndOffset
+ << ") NewBegin:(" << NewBeginOffset << ", "
+ << NewEndOffset << ") NewAllocaBegin:("
+ << NewAllocaBeginOffset << ", " << NewAllocaEndOffset
+ << ")\n");
+ assert(IsSplit || RelativeOffset == 0);
+ OldUse = I->getUse();
+ OldPtr = cast<Instruction>(OldUse->get());
+
+ Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
+ IRB.SetInsertPoint(OldUserI);
+ IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
+ IRB.getInserter().SetNamePrefix(
+ Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
+
+ CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
+ if (VecTy || IntTy)
+ assert(CanSROA);
+ return CanSROA;
+ }
+
+private:
+ // Make sure the other visit overloads are visible.
+ using Base::visit;
+
+ // Every instruction which can end up as a user must have a rewrite rule.
+ bool visitInstruction(Instruction &I) {
+ LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n");
+ llvm_unreachable("No rewrite rule for this instruction!");
+ }
+
+ Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
+ // Note that the offset computation can use BeginOffset or NewBeginOffset
+ // interchangeably for unsplit slices.
+ assert(IsSplit || BeginOffset == NewBeginOffset);
+ uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
+
+#ifndef NDEBUG
+ StringRef OldName = OldPtr->getName();
+ // Skip through the last '.sroa.' component of the name.
+ size_t LastSROAPrefix = OldName.rfind(".sroa.");
+ if (LastSROAPrefix != StringRef::npos) {
+ OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
+ // Look for an SROA slice index.
+ size_t IndexEnd = OldName.find_first_not_of("0123456789");
+ if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
+ // Strip the index and look for the offset.
+ OldName = OldName.substr(IndexEnd + 1);
+ size_t OffsetEnd = OldName.find_first_not_of("0123456789");
+ if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
+ // Strip the offset.
+ OldName = OldName.substr(OffsetEnd + 1);
+ }
+ }
+ // Strip any SROA suffixes as well.
+ OldName = OldName.substr(0, OldName.find(".sroa_"));
+#endif
+
+ return getAdjustedPtr(IRB, DL, &NewAI,
+ APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset),
+ PointerTy,
+#ifndef NDEBUG
+ Twine(OldName) + "."
+#else
+ Twine()
+#endif
+ );
+ }
+
+ /// Compute suitable alignment to access this slice of the *new*
+ /// alloca.
+ ///
+ /// You can optionally pass a type to this routine and if that type's ABI
+ /// alignment is itself suitable, this will return zero.
+ Align getSliceAlign() {
+ return commonAlignment(NewAI.getAlign(),
+ NewBeginOffset - NewAllocaBeginOffset);
+ }
+
+ unsigned getIndex(uint64_t Offset) {
+ assert(VecTy && "Can only call getIndex when rewriting a vector");
+ uint64_t RelOffset = Offset - NewAllocaBeginOffset;
+ assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
+ uint32_t Index = RelOffset / ElementSize;
+ assert(Index * ElementSize == RelOffset);
+ return Index;
+ }
+
+ void deleteIfTriviallyDead(Value *V) {
+ Instruction *I = cast<Instruction>(V);
+ if (isInstructionTriviallyDead(I))
+ Pass.DeadInsts.push_back(I);
+ }
+
+ Value *rewriteVectorizedLoadInst(LoadInst &LI) {
+ unsigned BeginIndex = getIndex(NewBeginOffset);
+ unsigned EndIndex = getIndex(NewEndOffset);
+ assert(EndIndex > BeginIndex && "Empty vector!");
+
+ LoadInst *Load = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
+ NewAI.getAlign(), "load");
+
+ Load->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access,
+ LLVMContext::MD_access_group});
+ return extractVector(IRB, Load, BeginIndex, EndIndex, "vec");
+ }
+
+ Value *rewriteIntegerLoad(LoadInst &LI) {
+ assert(IntTy && "We cannot insert an integer to the alloca");
+ assert(!LI.isVolatile());
+ Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
+ NewAI.getAlign(), "load");
+ V = convertValue(DL, IRB, V, IntTy);
+ assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
+ uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
+ if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
+ IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
+ V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
+ }
+ // It is possible that the extracted type is not the load type. This
+ // happens if there is a load past the end of the alloca, and as
+ // a consequence the slice is narrower but still a candidate for integer
+ // lowering. To handle this case, we just zero extend the extracted
+ // integer.
+ assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
+ "Can only handle an extract for an overly wide load");
+ if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
+ V = IRB.CreateZExt(V, LI.getType());
+ return V;
+ }
+
+ bool visitLoadInst(LoadInst &LI) {
+ LLVM_DEBUG(dbgs() << " original: " << LI << "\n");
+ Value *OldOp = LI.getOperand(0);
+ assert(OldOp == OldPtr);
+
+ AAMDNodes AATags = LI.getAAMetadata();
+
+ unsigned AS = LI.getPointerAddressSpace();
+
+ Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
+ : LI.getType();
+ const bool IsLoadPastEnd =
+ DL.getTypeStoreSize(TargetTy).getFixedValue() > SliceSize;
+ bool IsPtrAdjusted = false;
+ Value *V;
+ if (VecTy) {
+ V = rewriteVectorizedLoadInst(LI);
+ } else if (IntTy && LI.getType()->isIntegerTy()) {
+ V = rewriteIntegerLoad(LI);
+ } else if (NewBeginOffset == NewAllocaBeginOffset &&
+ NewEndOffset == NewAllocaEndOffset &&
+ (canConvertValue(DL, NewAllocaTy, TargetTy) ||
+ (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
+ TargetTy->isIntegerTy()))) {
+ Value *NewPtr =
+ getPtrToNewAI(LI.getPointerAddressSpace(), LI.isVolatile());
+ LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), NewPtr,
+ NewAI.getAlign(), LI.isVolatile(),
+ LI.getName());
+ if (LI.isVolatile())
+ NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
+ if (NewLI->isAtomic())
+ NewLI->setAlignment(LI.getAlign());
+
+ // Copy any metadata that is valid for the new load. This may require
+ // conversion to a different kind of metadata, e.g. !nonnull might change
+ // to !range or vice versa.
+ copyMetadataForLoad(*NewLI, LI);
+
+ // Do this after copyMetadataForLoad() to preserve the TBAA shift.
+ if (AATags)
+ NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
+
+ // Try to preserve nonnull metadata
+ V = NewLI;
+
+ // If this is an integer load past the end of the slice (which means the
+ // bytes outside the slice are undef or this load is dead) just forcibly
+ // fix the integer size with correct handling of endianness.
+ if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
+ if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
+ if (AITy->getBitWidth() < TITy->getBitWidth()) {
+ V = IRB.CreateZExt(V, TITy, "load.ext");
+ if (DL.isBigEndian())
+ V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
+ "endian_shift");
+ }
+ } else {
+ Type *LTy = TargetTy->getPointerTo(AS);
+ LoadInst *NewLI =
+ IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy),
+ getSliceAlign(), LI.isVolatile(), LI.getName());
+ if (AATags)
+ NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
+ if (LI.isVolatile())
+ NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
+ NewLI->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access,
+ LLVMContext::MD_access_group});
+
+ V = NewLI;
+ IsPtrAdjusted = true;
+ }
+ V = convertValue(DL, IRB, V, TargetTy);
+
+ if (IsSplit) {
+ assert(!LI.isVolatile());
+ assert(LI.getType()->isIntegerTy() &&
+ "Only integer type loads and stores are split");
+ assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedValue() &&
+ "Split load isn't smaller than original load");
+ assert(DL.typeSizeEqualsStoreSize(LI.getType()) &&
+ "Non-byte-multiple bit width");
+ // Move the insertion point just past the load so that we can refer to it.
+ IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
+ // Create a placeholder value with the same type as LI to use as the
+ // basis for the new value. This allows us to replace the uses of LI with
+ // the computed value, and then replace the placeholder with LI, leaving
+ // LI only used for this computation.
+ Value *Placeholder = new LoadInst(
+ LI.getType(), PoisonValue::get(LI.getType()->getPointerTo(AS)), "",
+ false, Align(1));
+ V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
+ "insert");
+ LI.replaceAllUsesWith(V);
+ Placeholder->replaceAllUsesWith(&LI);
+ Placeholder->deleteValue();
+ } else {
+ LI.replaceAllUsesWith(V);
+ }
+
+ Pass.DeadInsts.push_back(&LI);
+ deleteIfTriviallyDead(OldOp);
+ LLVM_DEBUG(dbgs() << " to: " << *V << "\n");
+ return !LI.isVolatile() && !IsPtrAdjusted;
+ }
+
+ bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
+ AAMDNodes AATags) {
+ // Capture V for the purpose of debug-info accounting once it's converted
+ // to a vector store.
+ Value *OrigV = V;
+ if (V->getType() != VecTy) {
+ unsigned BeginIndex = getIndex(NewBeginOffset);
+ unsigned EndIndex = getIndex(NewEndOffset);
+ assert(EndIndex > BeginIndex && "Empty vector!");
+ unsigned NumElements = EndIndex - BeginIndex;
+ assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
+ "Too many elements!");
+ Type *SliceTy = (NumElements == 1)
+ ? ElementTy
+ : FixedVectorType::get(ElementTy, NumElements);
+ if (V->getType() != SliceTy)
+ V = convertValue(DL, IRB, V, SliceTy);
+
+ // Mix in the existing elements.
+ Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
+ NewAI.getAlign(), "load");
+ V = insertVector(IRB, Old, V, BeginIndex, "vec");
+ }
+ StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
+ Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
+ LLVMContext::MD_access_group});
+ if (AATags)
+ Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
+ Pass.DeadInsts.push_back(&SI);
+
+ // NOTE: Careful to use OrigV rather than V.
+ migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &SI, Store,
+ Store->getPointerOperand(), OrigV, DL);
+ LLVM_DEBUG(dbgs() << " to: " << *Store << "\n");
+ return true;
+ }
+
+ bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) {
+ assert(IntTy && "We cannot extract an integer from the alloca");
+ assert(!SI.isVolatile());
+ if (DL.getTypeSizeInBits(V->getType()).getFixedValue() !=
+ IntTy->getBitWidth()) {
+ Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
+ NewAI.getAlign(), "oldload");
+ Old = convertValue(DL, IRB, Old, IntTy);
+ assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
+ uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
+ V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
+ }
+ V = convertValue(DL, IRB, V, NewAllocaTy);
+ StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
+ Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
+ LLVMContext::MD_access_group});
+ if (AATags)
+ Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
+
+ migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &SI, Store,
+ Store->getPointerOperand(), Store->getValueOperand(), DL);
+
+ Pass.DeadInsts.push_back(&SI);
+ LLVM_DEBUG(dbgs() << " to: " << *Store << "\n");
+ return true;
+ }
+
+ bool visitStoreInst(StoreInst &SI) {
+ LLVM_DEBUG(dbgs() << " original: " << SI << "\n");
+ Value *OldOp = SI.getOperand(1);
+ assert(OldOp == OldPtr);
+
+ AAMDNodes AATags = SI.getAAMetadata();
+ Value *V = SI.getValueOperand();
+
+ // Strip all inbounds GEPs and pointer casts to try to dig out any root
+ // alloca that should be re-examined after promoting this alloca.
+ if (V->getType()->isPointerTy())
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
+ Pass.PostPromotionWorklist.insert(AI);
+
+ if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedValue()) {
+ assert(!SI.isVolatile());
+ assert(V->getType()->isIntegerTy() &&
+ "Only integer type loads and stores are split");
+ assert(DL.typeSizeEqualsStoreSize(V->getType()) &&
+ "Non-byte-multiple bit width");
+ IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
+ V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
+ "extract");
+ }
+
+ if (VecTy)
+ return rewriteVectorizedStoreInst(V, SI, OldOp, AATags);
+ if (IntTy && V->getType()->isIntegerTy())
+ return rewriteIntegerStore(V, SI, AATags);
+
+ const bool IsStorePastEnd =
+ DL.getTypeStoreSize(V->getType()).getFixedValue() > SliceSize;
+ StoreInst *NewSI;
+ if (NewBeginOffset == NewAllocaBeginOffset &&
+ NewEndOffset == NewAllocaEndOffset &&
+ (canConvertValue(DL, V->getType(), NewAllocaTy) ||
+ (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
+ V->getType()->isIntegerTy()))) {
+ // If this is an integer store past the end of slice (and thus the bytes
+ // past that point are irrelevant or this is unreachable), truncate the
+ // value prior to storing.
+ if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
+ if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
+ if (VITy->getBitWidth() > AITy->getBitWidth()) {
+ if (DL.isBigEndian())
+ V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
+ "endian_shift");
+ V = IRB.CreateTrunc(V, AITy, "load.trunc");
+ }
+
+ V = convertValue(DL, IRB, V, NewAllocaTy);
+ Value *NewPtr =
+ getPtrToNewAI(SI.getPointerAddressSpace(), SI.isVolatile());
+
+ NewSI =
+ IRB.CreateAlignedStore(V, NewPtr, NewAI.getAlign(), SI.isVolatile());
+ } else {
+ unsigned AS = SI.getPointerAddressSpace();
+ Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS));
+ NewSI =
+ IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile());
+ }
+ NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
+ LLVMContext::MD_access_group});
+ if (AATags)
+ NewSI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
+ if (SI.isVolatile())
+ NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
+ if (NewSI->isAtomic())
+ NewSI->setAlignment(SI.getAlign());
+
+ migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &SI, NewSI,
+ NewSI->getPointerOperand(), NewSI->getValueOperand(), DL);
+
+ Pass.DeadInsts.push_back(&SI);
+ deleteIfTriviallyDead(OldOp);
+
+ LLVM_DEBUG(dbgs() << " to: " << *NewSI << "\n");
+ return NewSI->getPointerOperand() == &NewAI &&
+ NewSI->getValueOperand()->getType() == NewAllocaTy &&
+ !SI.isVolatile();
+ }
+
+ /// Compute an integer value from splatting an i8 across the given
+ /// number of bytes.
+ ///
+ /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
+ /// call this routine.
+ /// FIXME: Heed the advice above.
+ ///
+ /// \param V The i8 value to splat.
+ /// \param Size The number of bytes in the output (assuming i8 is one byte)
+ Value *getIntegerSplat(Value *V, unsigned Size) {
+ assert(Size > 0 && "Expected a positive number of bytes.");
+ IntegerType *VTy = cast<IntegerType>(V->getType());
+ assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
+ if (Size == 1)
+ return V;
+
+ Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
+ V = IRB.CreateMul(
+ IRB.CreateZExt(V, SplatIntTy, "zext"),
+ IRB.CreateUDiv(Constant::getAllOnesValue(SplatIntTy),
+ IRB.CreateZExt(Constant::getAllOnesValue(V->getType()),
+ SplatIntTy)),
+ "isplat");
+ return V;
+ }
+
+ /// Compute a vector splat for a given element value.
+ Value *getVectorSplat(Value *V, unsigned NumElements) {
+ V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
+ LLVM_DEBUG(dbgs() << " splat: " << *V << "\n");
+ return V;
+ }
+
+ bool visitMemSetInst(MemSetInst &II) {
+ LLVM_DEBUG(dbgs() << " original: " << II << "\n");
+ assert(II.getRawDest() == OldPtr);
+
+ AAMDNodes AATags = II.getAAMetadata();
+
+ // If the memset has a variable size, it cannot be split, just adjust the
+ // pointer to the new alloca.
+ if (!isa<ConstantInt>(II.getLength())) {
+ assert(!IsSplit);
+ assert(NewBeginOffset == BeginOffset);
+ II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
+ II.setDestAlignment(getSliceAlign());
+ // In theory we should call migrateDebugInfo here. However, we do not
+ // emit dbg.assign intrinsics for mem intrinsics storing through non-
+ // constant geps, or storing a variable number of bytes.
+ assert(at::getAssignmentMarkers(&II).empty() &&
+ "AT: Unexpected link to non-const GEP");
+ deleteIfTriviallyDead(OldPtr);
+ return false;
+ }
+
+ // Record this instruction for deletion.
+ Pass.DeadInsts.push_back(&II);
+
+ Type *AllocaTy = NewAI.getAllocatedType();
+ Type *ScalarTy = AllocaTy->getScalarType();
+
+ const bool CanContinue = [&]() {
+ if (VecTy || IntTy)
+ return true;
+ if (BeginOffset > NewAllocaBeginOffset ||
+ EndOffset < NewAllocaEndOffset)
+ return false;
+ // Length must be in range for FixedVectorType.
+ auto *C = cast<ConstantInt>(II.getLength());
+ const uint64_t Len = C->getLimitedValue();
+ if (Len > std::numeric_limits<unsigned>::max())
+ return false;
+ auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext());
+ auto *SrcTy = FixedVectorType::get(Int8Ty, Len);
+ return canConvertValue(DL, SrcTy, AllocaTy) &&
+ DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedValue());
+ }();
+
+ // If this doesn't map cleanly onto the alloca type, and that type isn't
+ // a single value type, just emit a memset.
+ if (!CanContinue) {
+ Type *SizeTy = II.getLength()->getType();
+ Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
+ MemIntrinsic *New = cast<MemIntrinsic>(IRB.CreateMemSet(
+ getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
+ MaybeAlign(getSliceAlign()), II.isVolatile()));
+ if (AATags)
+ New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
+
+ migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, New,
+ New->getRawDest(), nullptr, DL);
+
+ LLVM_DEBUG(dbgs() << " to: " << *New << "\n");
+ return false;
+ }
+
+ // If we can represent this as a simple value, we have to build the actual
+ // value to store, which requires expanding the byte present in memset to
+ // a sensible representation for the alloca type. This is essentially
+ // splatting the byte to a sufficiently wide integer, splatting it across
+ // any desired vector width, and bitcasting to the final type.
+ Value *V;
+
+ if (VecTy) {
+ // If this is a memset of a vectorized alloca, insert it.
+ assert(ElementTy == ScalarTy);
+
+ unsigned BeginIndex = getIndex(NewBeginOffset);
+ unsigned EndIndex = getIndex(NewEndOffset);
+ assert(EndIndex > BeginIndex && "Empty vector!");
+ unsigned NumElements = EndIndex - BeginIndex;
+ assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
+ "Too many elements!");
+
+ Value *Splat = getIntegerSplat(
+ II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedValue() / 8);
+ Splat = convertValue(DL, IRB, Splat, ElementTy);
+ if (NumElements > 1)
+ Splat = getVectorSplat(Splat, NumElements);
+
+ Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
+ NewAI.getAlign(), "oldload");
+ V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
+ } else if (IntTy) {
+ // If this is a memset on an alloca where we can widen stores, insert the
+ // set integer.
+ assert(!II.isVolatile());
+
+ uint64_t Size = NewEndOffset - NewBeginOffset;
+ V = getIntegerSplat(II.getValue(), Size);
+
+ if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
+ EndOffset != NewAllocaBeginOffset)) {
+ Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
+ NewAI.getAlign(), "oldload");
+ Old = convertValue(DL, IRB, Old, IntTy);
+ uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
+ V = insertInteger(DL, IRB, Old, V, Offset, "insert");
+ } else {
+ assert(V->getType() == IntTy &&
+ "Wrong type for an alloca wide integer!");
+ }
+ V = convertValue(DL, IRB, V, AllocaTy);
+ } else {
+ // Established these invariants above.
+ assert(NewBeginOffset == NewAllocaBeginOffset);
+ assert(NewEndOffset == NewAllocaEndOffset);
+
+ V = getIntegerSplat(II.getValue(),
+ DL.getTypeSizeInBits(ScalarTy).getFixedValue() / 8);
+ if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
+ V = getVectorSplat(
+ V, cast<FixedVectorType>(AllocaVecTy)->getNumElements());
+
+ V = convertValue(DL, IRB, V, AllocaTy);
+ }
+
+ Value *NewPtr = getPtrToNewAI(II.getDestAddressSpace(), II.isVolatile());
+ StoreInst *New =
+ IRB.CreateAlignedStore(V, NewPtr, NewAI.getAlign(), II.isVolatile());
+ New->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
+ LLVMContext::MD_access_group});
+ if (AATags)
+ New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
+
+ migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, New,
+ New->getPointerOperand(), V, DL);
+
+ LLVM_DEBUG(dbgs() << " to: " << *New << "\n");
+ return !II.isVolatile();
+ }
+
+ bool visitMemTransferInst(MemTransferInst &II) {
+ // Rewriting of memory transfer instructions can be a bit tricky. We break
+ // them into two categories: split intrinsics and unsplit intrinsics.
+
+ LLVM_DEBUG(dbgs() << " original: " << II << "\n");
+
+ AAMDNodes AATags = II.getAAMetadata();
+
+ bool IsDest = &II.getRawDestUse() == OldUse;
+ assert((IsDest && II.getRawDest() == OldPtr) ||
+ (!IsDest && II.getRawSource() == OldPtr));
+
+ Align SliceAlign = getSliceAlign();
+ // For unsplit intrinsics, we simply modify the source and destination
+ // pointers in place. This isn't just an optimization, it is a matter of
+ // correctness. With unsplit intrinsics we may be dealing with transfers
+ // within a single alloca before SROA ran, or with transfers that have
+ // a variable length. We may also be dealing with memmove instead of
+ // memcpy, and so simply updating the pointers is the necessary for us to
+ // update both source and dest of a single call.
+ if (!IsSplittable) {
+ Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
+ if (IsDest) {
+ // Update the address component of linked dbg.assigns.
+ for (auto *DAI : at::getAssignmentMarkers(&II)) {
+ if (any_of(DAI->location_ops(),
+ [&](Value *V) { return V == II.getDest(); }) ||
+ DAI->getAddress() == II.getDest())
+ DAI->replaceVariableLocationOp(II.getDest(), AdjustedPtr);
+ }
+ II.setDest(AdjustedPtr);
+ II.setDestAlignment(SliceAlign);
+ } else {
+ II.setSource(AdjustedPtr);
+ II.setSourceAlignment(SliceAlign);
+ }
+
+ LLVM_DEBUG(dbgs() << " to: " << II << "\n");
+ deleteIfTriviallyDead(OldPtr);
+ return false;
+ }
+ // For split transfer intrinsics we have an incredibly useful assurance:
+ // the source and destination do not reside within the same alloca, and at
+ // least one of them does not escape. This means that we can replace
+ // memmove with memcpy, and we don't need to worry about all manner of
+ // downsides to splitting and transforming the operations.
+
+ // If this doesn't map cleanly onto the alloca type, and that type isn't
+ // a single value type, just emit a memcpy.
+ bool EmitMemCpy =
+ !VecTy && !IntTy &&
+ (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
+ SliceSize !=
+ DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedValue() ||
+ !NewAI.getAllocatedType()->isSingleValueType());
+
+ // If we're just going to emit a memcpy, the alloca hasn't changed, and the
+ // size hasn't been shrunk based on analysis of the viable range, this is
+ // a no-op.
+ if (EmitMemCpy && &OldAI == &NewAI) {
+ // Ensure the start lines up.
+ assert(NewBeginOffset == BeginOffset);
+
+ // Rewrite the size as needed.
+ if (NewEndOffset != EndOffset)
+ II.setLength(ConstantInt::get(II.getLength()->getType(),
+ NewEndOffset - NewBeginOffset));
+ return false;
+ }
+ // Record this instruction for deletion.
+ Pass.DeadInsts.push_back(&II);
+
+ // Strip all inbounds GEPs and pointer casts to try to dig out any root
+ // alloca that should be re-examined after rewriting this instruction.
+ Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
+ if (AllocaInst *AI =
+ dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
+ assert(AI != &OldAI && AI != &NewAI &&
+ "Splittable transfers cannot reach the same alloca on both ends.");
+ Pass.Worklist.insert(AI);
+ }
+
+ Type *OtherPtrTy = OtherPtr->getType();
+ unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
+
+ // Compute the relative offset for the other pointer within the transfer.
+ unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS);
+ APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset);
+ Align OtherAlign =
+ (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne();
+ OtherAlign =
+ commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue());
+
+ if (EmitMemCpy) {
+ // Compute the other pointer, folding as much as possible to produce
+ // a single, simple GEP in most cases.
+ OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
+ OtherPtr->getName() + ".");
+
+ Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
+ Type *SizeTy = II.getLength()->getType();
+ Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
+
+ Value *DestPtr, *SrcPtr;
+ MaybeAlign DestAlign, SrcAlign;
+ // Note: IsDest is true iff we're copying into the new alloca slice
+ if (IsDest) {
+ DestPtr = OurPtr;
+ DestAlign = SliceAlign;
+ SrcPtr = OtherPtr;
+ SrcAlign = OtherAlign;
+ } else {
+ DestPtr = OtherPtr;
+ DestAlign = OtherAlign;
+ SrcPtr = OurPtr;
+ SrcAlign = SliceAlign;
+ }
+ CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign,
+ Size, II.isVolatile());
+ if (AATags)
+ New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
+
+ migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, New,
+ DestPtr, nullptr, DL);
+ LLVM_DEBUG(dbgs() << " to: " << *New << "\n");
+ return false;
+ }
+
+ bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
+ NewEndOffset == NewAllocaEndOffset;
+ uint64_t Size = NewEndOffset - NewBeginOffset;
+ unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
+ unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
+ unsigned NumElements = EndIndex - BeginIndex;
+ IntegerType *SubIntTy =
+ IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
+
+ // Reset the other pointer type to match the register type we're going to
+ // use, but using the address space of the original other pointer.
+ Type *OtherTy;
+ if (VecTy && !IsWholeAlloca) {
+ if (NumElements == 1)
+ OtherTy = VecTy->getElementType();
+ else
+ OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements);
+ } else if (IntTy && !IsWholeAlloca) {
+ OtherTy = SubIntTy;
+ } else {
+ OtherTy = NewAllocaTy;
+ }
+ OtherPtrTy = OtherTy->getPointerTo(OtherAS);
+
+ Value *AdjPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
+ OtherPtr->getName() + ".");
+ MaybeAlign SrcAlign = OtherAlign;
+ MaybeAlign DstAlign = SliceAlign;
+ if (!IsDest)
+ std::swap(SrcAlign, DstAlign);
+
+ Value *SrcPtr;
+ Value *DstPtr;
+
+ if (IsDest) {
+ DstPtr = getPtrToNewAI(II.getDestAddressSpace(), II.isVolatile());
+ SrcPtr = AdjPtr;
+ } else {
+ DstPtr = AdjPtr;
+ SrcPtr = getPtrToNewAI(II.getSourceAddressSpace(), II.isVolatile());
+ }
+
+ Value *Src;
+ if (VecTy && !IsWholeAlloca && !IsDest) {
+ Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
+ NewAI.getAlign(), "load");
+ Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
+ } else if (IntTy && !IsWholeAlloca && !IsDest) {
+ Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
+ NewAI.getAlign(), "load");
+ Src = convertValue(DL, IRB, Src, IntTy);
+ uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
+ Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
+ } else {
+ LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign,
+ II.isVolatile(), "copyload");
+ Load->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
+ LLVMContext::MD_access_group});
+ if (AATags)
+ Load->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
+ Src = Load;
+ }
+
+ if (VecTy && !IsWholeAlloca && IsDest) {
+ Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
+ NewAI.getAlign(), "oldload");
+ Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
+ } else if (IntTy && !IsWholeAlloca && IsDest) {
+ Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
+ NewAI.getAlign(), "oldload");
+ Old = convertValue(DL, IRB, Old, IntTy);
+ uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
+ Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
+ Src = convertValue(DL, IRB, Src, NewAllocaTy);
+ }
+
+ StoreInst *Store = cast<StoreInst>(
+ IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
+ Store->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
+ LLVMContext::MD_access_group});
+ if (AATags)
+ Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
+
+ migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, Store,
+ DstPtr, Src, DL);
+ LLVM_DEBUG(dbgs() << " to: " << *Store << "\n");
+ return !II.isVolatile();
+ }
+
+ bool visitIntrinsicInst(IntrinsicInst &II) {
+ assert((II.isLifetimeStartOrEnd() || II.isDroppable()) &&
+ "Unexpected intrinsic!");
+ LLVM_DEBUG(dbgs() << " original: " << II << "\n");
+
+ // Record this instruction for deletion.
+ Pass.DeadInsts.push_back(&II);
+
+ if (II.isDroppable()) {
+ assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume");
+ // TODO For now we forget assumed information, this can be improved.
+ OldPtr->dropDroppableUsesIn(II);
+ return true;
+ }
+
+ assert(II.getArgOperand(1) == OldPtr);
+ // Lifetime intrinsics are only promotable if they cover the whole alloca.
+ // Therefore, we drop lifetime intrinsics which don't cover the whole
+ // alloca.
+ // (In theory, intrinsics which partially cover an alloca could be
+ // promoted, but PromoteMemToReg doesn't handle that case.)
+ // FIXME: Check whether the alloca is promotable before dropping the
+ // lifetime intrinsics?
+ if (NewBeginOffset != NewAllocaBeginOffset ||
+ NewEndOffset != NewAllocaEndOffset)
+ return true;
+
+ ConstantInt *Size =
+ ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
+ NewEndOffset - NewBeginOffset);
+ // Lifetime intrinsics always expect an i8* so directly get such a pointer
+ // for the new alloca slice.
+ Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace());
+ Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy);
+ Value *New;
+ if (II.getIntrinsicID() == Intrinsic::lifetime_start)
+ New = IRB.CreateLifetimeStart(Ptr, Size);
+ else
+ New = IRB.CreateLifetimeEnd(Ptr, Size);
+
+ (void)New;
+ LLVM_DEBUG(dbgs() << " to: " << *New << "\n");
+
+ return true;
+ }
+
+ void fixLoadStoreAlign(Instruction &Root) {
+ // This algorithm implements the same visitor loop as
+ // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
+ // or store found.
+ SmallPtrSet<Instruction *, 4> Visited;
+ SmallVector<Instruction *, 4> Uses;
+ Visited.insert(&Root);
+ Uses.push_back(&Root);
+ do {
+ Instruction *I = Uses.pop_back_val();
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ LI->setAlignment(std::min(LI->getAlign(), getSliceAlign()));
+ continue;
+ }
+ if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+ SI->setAlignment(std::min(SI->getAlign(), getSliceAlign()));
+ continue;
+ }
+
+ assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) ||
+ isa<PHINode>(I) || isa<SelectInst>(I) ||
+ isa<GetElementPtrInst>(I));
+ for (User *U : I->users())
+ if (Visited.insert(cast<Instruction>(U)).second)
+ Uses.push_back(cast<Instruction>(U));
+ } while (!Uses.empty());
+ }
+
+ bool visitPHINode(PHINode &PN) {
+ LLVM_DEBUG(dbgs() << " original: " << PN << "\n");
+ assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
+ assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
+
+ // We would like to compute a new pointer in only one place, but have it be
+ // as local as possible to the PHI. To do that, we re-use the location of
+ // the old pointer, which necessarily must be in the right position to
+ // dominate the PHI.
+ IRBuilderBase::InsertPointGuard Guard(IRB);
+ if (isa<PHINode>(OldPtr))
+ IRB.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt());
+ else
+ IRB.SetInsertPoint(OldPtr);
+ IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc());
+
+ Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
+ // Replace the operands which were using the old pointer.
+ std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
+
+ LLVM_DEBUG(dbgs() << " to: " << PN << "\n");
+ deleteIfTriviallyDead(OldPtr);
+
+ // Fix the alignment of any loads or stores using this PHI node.
+ fixLoadStoreAlign(PN);
+
+ // PHIs can't be promoted on their own, but often can be speculated. We
+ // check the speculation outside of the rewriter so that we see the
+ // fully-rewritten alloca.
+ PHIUsers.insert(&PN);
+ return true;
+ }
+
+ bool visitSelectInst(SelectInst &SI) {
+ LLVM_DEBUG(dbgs() << " original: " << SI << "\n");
+ assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
+ "Pointer isn't an operand!");
+ assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
+ assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
+
+ Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
+ // Replace the operands which were using the old pointer.
+ if (SI.getOperand(1) == OldPtr)
+ SI.setOperand(1, NewPtr);
+ if (SI.getOperand(2) == OldPtr)
+ SI.setOperand(2, NewPtr);
+
+ LLVM_DEBUG(dbgs() << " to: " << SI << "\n");
+ deleteIfTriviallyDead(OldPtr);
+
+ // Fix the alignment of any loads or stores using this select.
+ fixLoadStoreAlign(SI);
+
+ // Selects can't be promoted on their own, but often can be speculated. We
+ // check the speculation outside of the rewriter so that we see the
+ // fully-rewritten alloca.
+ SelectUsers.insert(&SI);
+ return true;
+ }
+};
+
+namespace {
+
+/// Visitor to rewrite aggregate loads and stores as scalar.
+///
+/// This pass aggressively rewrites all aggregate loads and stores on
+/// a particular pointer (or any pointer derived from it which we can identify)
+/// with scalar loads and stores.
+class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
+ // Befriend the base class so it can delegate to private visit methods.
+ friend class InstVisitor<AggLoadStoreRewriter, bool>;
+
+ /// Queue of pointer uses to analyze and potentially rewrite.
+ SmallVector<Use *, 8> Queue;
+
+ /// Set to prevent us from cycling with phi nodes and loops.
+ SmallPtrSet<User *, 8> Visited;
+
+ /// The current pointer use being rewritten. This is used to dig up the used
+ /// value (as opposed to the user).
+ Use *U = nullptr;
+
+ /// Used to calculate offsets, and hence alignment, of subobjects.
+ const DataLayout &DL;
+
+ IRBuilderTy &IRB;
+
+public:
+ AggLoadStoreRewriter(const DataLayout &DL, IRBuilderTy &IRB)
+ : DL(DL), IRB(IRB) {}
+
+ /// Rewrite loads and stores through a pointer and all pointers derived from
+ /// it.
+ bool rewrite(Instruction &I) {
+ LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
+ enqueueUsers(I);
+ bool Changed = false;
+ while (!Queue.empty()) {
+ U = Queue.pop_back_val();
+ Changed |= visit(cast<Instruction>(U->getUser()));
+ }
+ return Changed;
+ }
+
+private:
+ /// Enqueue all the users of the given instruction for further processing.
+ /// This uses a set to de-duplicate users.
+ void enqueueUsers(Instruction &I) {
+ for (Use &U : I.uses())
+ if (Visited.insert(U.getUser()).second)
+ Queue.push_back(&U);
+ }
+
+ // Conservative default is to not rewrite anything.
+ bool visitInstruction(Instruction &I) { return false; }
+
+ /// Generic recursive split emission class.
+ template <typename Derived> class OpSplitter {
+ protected:
+ /// The builder used to form new instructions.
+ IRBuilderTy &IRB;
+
+ /// The indices which to be used with insert- or extractvalue to select the
+ /// appropriate value within the aggregate.
+ SmallVector<unsigned, 4> Indices;
+
+ /// The indices to a GEP instruction which will move Ptr to the correct slot
+ /// within the aggregate.
+ SmallVector<Value *, 4> GEPIndices;
+
+ /// The base pointer of the original op, used as a base for GEPing the
+ /// split operations.
+ Value *Ptr;
+
+ /// The base pointee type being GEPed into.
+ Type *BaseTy;
+
+ /// Known alignment of the base pointer.
+ Align BaseAlign;
+
+ /// To calculate offset of each component so we can correctly deduce
+ /// alignments.
+ const DataLayout &DL;
+
+ /// Initialize the splitter with an insertion point, Ptr and start with a
+ /// single zero GEP index.
+ OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
+ Align BaseAlign, const DataLayout &DL, IRBuilderTy &IRB)
+ : IRB(IRB), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr), BaseTy(BaseTy),
+ BaseAlign(BaseAlign), DL(DL) {
+ IRB.SetInsertPoint(InsertionPoint);
+ }
+
+ public:
+ /// Generic recursive split emission routine.
+ ///
+ /// This method recursively splits an aggregate op (load or store) into
+ /// scalar or vector ops. It splits recursively until it hits a single value
+ /// and emits that single value operation via the template argument.
+ ///
+ /// The logic of this routine relies on GEPs and insertvalue and
+ /// extractvalue all operating with the same fundamental index list, merely
+ /// formatted differently (GEPs need actual values).
+ ///
+ /// \param Ty The type being split recursively into smaller ops.
+ /// \param Agg The aggregate value being built up or stored, depending on
+ /// whether this is splitting a load or a store respectively.
+ void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
+ if (Ty->isSingleValueType()) {
+ unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices);
+ return static_cast<Derived *>(this)->emitFunc(
+ Ty, Agg, commonAlignment(BaseAlign, Offset), Name);
+ }
+
+ if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ unsigned OldSize = Indices.size();
+ (void)OldSize;
+ for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
+ ++Idx) {
+ assert(Indices.size() == OldSize && "Did not return to the old size");
+ Indices.push_back(Idx);
+ GEPIndices.push_back(IRB.getInt32(Idx));
+ emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
+ GEPIndices.pop_back();
+ Indices.pop_back();
+ }
+ return;
+ }
+
+ if (StructType *STy = dyn_cast<StructType>(Ty)) {
+ unsigned OldSize = Indices.size();
+ (void)OldSize;
+ for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
+ ++Idx) {
+ assert(Indices.size() == OldSize && "Did not return to the old size");
+ Indices.push_back(Idx);
+ GEPIndices.push_back(IRB.getInt32(Idx));
+ emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
+ GEPIndices.pop_back();
+ Indices.pop_back();
+ }
+ return;
+ }
+
+ llvm_unreachable("Only arrays and structs are aggregate loadable types");
+ }
+ };
+
+ struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
+ AAMDNodes AATags;
+
+ LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
+ AAMDNodes AATags, Align BaseAlign, const DataLayout &DL,
+ IRBuilderTy &IRB)
+ : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, DL,
+ IRB),
+ AATags(AATags) {}
+
+ /// Emit a leaf load of a single value. This is called at the leaves of the
+ /// recursive emission to actually load values.
+ void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
+ assert(Ty->isSingleValueType());
+ // Load the single value and insert it using the indices.
+ Value *GEP =
+ IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
+ LoadInst *Load =
+ IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load");
+
+ APInt Offset(
+ DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
+ if (AATags &&
+ GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
+ Load->setAAMetadata(AATags.shift(Offset.getZExtValue()));
+
+ Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
+ LLVM_DEBUG(dbgs() << " to: " << *Load << "\n");
+ }
+ };
+
+ bool visitLoadInst(LoadInst &LI) {
+ assert(LI.getPointerOperand() == *U);
+ if (!LI.isSimple() || LI.getType()->isSingleValueType())
+ return false;
+
+ // We have an aggregate being loaded, split it apart.
+ LLVM_DEBUG(dbgs() << " original: " << LI << "\n");
+ LoadOpSplitter Splitter(&LI, *U, LI.getType(), LI.getAAMetadata(),
+ getAdjustedAlignment(&LI, 0), DL, IRB);
+ Value *V = PoisonValue::get(LI.getType());
+ Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
+ Visited.erase(&LI);
+ LI.replaceAllUsesWith(V);
+ LI.eraseFromParent();
+ return true;
+ }
+
+ struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
+ StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
+ AAMDNodes AATags, StoreInst *AggStore, Align BaseAlign,
+ const DataLayout &DL, IRBuilderTy &IRB)
+ : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
+ DL, IRB),
+ AATags(AATags), AggStore(AggStore) {}
+ AAMDNodes AATags;
+ StoreInst *AggStore;
+ /// Emit a leaf store of a single value. This is called at the leaves of the
+ /// recursive emission to actually produce stores.
+ void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
+ assert(Ty->isSingleValueType());
+ // Extract the single value and store it using the indices.
+ //
+ // The gep and extractvalue values are factored out of the CreateStore
+ // call to make the output independent of the argument evaluation order.
+ Value *ExtractValue =
+ IRB.CreateExtractValue(Agg, Indices, Name + ".extract");
+ Value *InBoundsGEP =
+ IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
+ StoreInst *Store =
+ IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment);
+
+ APInt Offset(
+ DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
+ if (AATags &&
+ GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
+ Store->setAAMetadata(AATags.shift(Offset.getZExtValue()));
+
+ // migrateDebugInfo requires the base Alloca. Walk to it from this gep.
+ // If we cannot (because there's an intervening non-const or unbounded
+ // gep) then we wouldn't expect to see dbg.assign intrinsics linked to
+ // this instruction.
+ APInt OffsetInBytes(DL.getTypeSizeInBits(Ptr->getType()), false);
+ Value *Base = InBoundsGEP->stripAndAccumulateInBoundsConstantOffsets(
+ DL, OffsetInBytes);
+ if (auto *OldAI = dyn_cast<AllocaInst>(Base)) {
+ uint64_t SizeInBits =
+ DL.getTypeSizeInBits(Store->getValueOperand()->getType());
+ migrateDebugInfo(OldAI, OffsetInBytes.getZExtValue() * 8, SizeInBits,
+ AggStore, Store, Store->getPointerOperand(),
+ Store->getValueOperand(), DL);
+ } else {
+ assert(at::getAssignmentMarkers(Store).empty() &&
+ "AT: unexpected debug.assign linked to store through "
+ "unbounded GEP");
+ }
+ LLVM_DEBUG(dbgs() << " to: " << *Store << "\n");
+ }
+ };
+
+ bool visitStoreInst(StoreInst &SI) {
+ if (!SI.isSimple() || SI.getPointerOperand() != *U)
+ return false;
+ Value *V = SI.getValueOperand();
+ if (V->getType()->isSingleValueType())
+ return false;
+
+ // We have an aggregate being stored, split it apart.
+ LLVM_DEBUG(dbgs() << " original: " << SI << "\n");
+ StoreOpSplitter Splitter(&SI, *U, V->getType(), SI.getAAMetadata(), &SI,
+ getAdjustedAlignment(&SI, 0), DL, IRB);
+ Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
+ Visited.erase(&SI);
+ SI.eraseFromParent();
+ return true;
+ }
+
+ bool visitBitCastInst(BitCastInst &BC) {
+ enqueueUsers(BC);
+ return false;
+ }
+
+ bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
+ enqueueUsers(ASC);
+ return false;
+ }
+
+ // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2)
+ bool foldGEPSelect(GetElementPtrInst &GEPI) {
+ if (!GEPI.hasAllConstantIndices())
+ return false;
+
+ SelectInst *Sel = cast<SelectInst>(GEPI.getPointerOperand());
+
+ LLVM_DEBUG(dbgs() << " Rewriting gep(select) -> select(gep):"
+ << "\n original: " << *Sel
+ << "\n " << GEPI);
+
+ IRB.SetInsertPoint(&GEPI);
+ SmallVector<Value *, 4> Index(GEPI.indices());
+ bool IsInBounds = GEPI.isInBounds();
+
+ Type *Ty = GEPI.getSourceElementType();
+ Value *True = Sel->getTrueValue();
+ Value *NTrue = IRB.CreateGEP(Ty, True, Index, True->getName() + ".sroa.gep",
+ IsInBounds);
+
+ Value *False = Sel->getFalseValue();
+
+ Value *NFalse = IRB.CreateGEP(Ty, False, Index,
+ False->getName() + ".sroa.gep", IsInBounds);
+
+ Value *NSel = IRB.CreateSelect(Sel->getCondition(), NTrue, NFalse,
+ Sel->getName() + ".sroa.sel");
+ Visited.erase(&GEPI);
+ GEPI.replaceAllUsesWith(NSel);
+ GEPI.eraseFromParent();
+ Instruction *NSelI = cast<Instruction>(NSel);
+ Visited.insert(NSelI);
+ enqueueUsers(*NSelI);
+
+ LLVM_DEBUG(dbgs() << "\n to: " << *NTrue
+ << "\n " << *NFalse
+ << "\n " << *NSel << '\n');
+
+ return true;
+ }
+
+ // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2)
+ bool foldGEPPhi(GetElementPtrInst &GEPI) {
+ if (!GEPI.hasAllConstantIndices())
+ return false;
+
+ PHINode *PHI = cast<PHINode>(GEPI.getPointerOperand());
+ if (GEPI.getParent() != PHI->getParent() ||
+ llvm::any_of(PHI->incoming_values(), [](Value *In)
+ { Instruction *I = dyn_cast<Instruction>(In);
+ return !I || isa<GetElementPtrInst>(I) || isa<PHINode>(I) ||
+ succ_empty(I->getParent()) ||
+ !I->getParent()->isLegalToHoistInto();
+ }))
+ return false;
+
+ LLVM_DEBUG(dbgs() << " Rewriting gep(phi) -> phi(gep):"
+ << "\n original: " << *PHI
+ << "\n " << GEPI
+ << "\n to: ");
+
+ SmallVector<Value *, 4> Index(GEPI.indices());
+ bool IsInBounds = GEPI.isInBounds();
+ IRB.SetInsertPoint(GEPI.getParent()->getFirstNonPHI());
+ PHINode *NewPN = IRB.CreatePHI(GEPI.getType(), PHI->getNumIncomingValues(),
+ PHI->getName() + ".sroa.phi");
+ for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) {
+ BasicBlock *B = PHI->getIncomingBlock(I);
+ Value *NewVal = nullptr;
+ int Idx = NewPN->getBasicBlockIndex(B);
+ if (Idx >= 0) {
+ NewVal = NewPN->getIncomingValue(Idx);
+ } else {
+ Instruction *In = cast<Instruction>(PHI->getIncomingValue(I));
+
+ IRB.SetInsertPoint(In->getParent(), std::next(In->getIterator()));
+ Type *Ty = GEPI.getSourceElementType();
+ NewVal = IRB.CreateGEP(Ty, In, Index, In->getName() + ".sroa.gep",
+ IsInBounds);
+ }
+ NewPN->addIncoming(NewVal, B);
+ }
+
+ Visited.erase(&GEPI);
+ GEPI.replaceAllUsesWith(NewPN);
+ GEPI.eraseFromParent();
+ Visited.insert(NewPN);
+ enqueueUsers(*NewPN);
+
+ LLVM_DEBUG(for (Value *In : NewPN->incoming_values())
+ dbgs() << "\n " << *In;
+ dbgs() << "\n " << *NewPN << '\n');
+
+ return true;
+ }
+
+ bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
+ if (isa<SelectInst>(GEPI.getPointerOperand()) &&
+ foldGEPSelect(GEPI))
+ return true;
+
+ if (isa<PHINode>(GEPI.getPointerOperand()) &&
+ foldGEPPhi(GEPI))
+ return true;
+
+ enqueueUsers(GEPI);
+ return false;
+ }
+
+ bool visitPHINode(PHINode &PN) {
+ enqueueUsers(PN);
+ return false;
+ }
+
+ bool visitSelectInst(SelectInst &SI) {
+ enqueueUsers(SI);
+ return false;
+ }
+};
+
+} // end anonymous namespace
+
+/// Strip aggregate type wrapping.
+///
+/// This removes no-op aggregate types wrapping an underlying type. It will
+/// strip as many layers of types as it can without changing either the type
+/// size or the allocated size.
+static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
+ if (Ty->isSingleValueType())
+ return Ty;
+
+ uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedValue();
+ uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedValue();
+
+ Type *InnerTy;
+ if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
+ InnerTy = ArrTy->getElementType();
+ } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
+ const StructLayout *SL = DL.getStructLayout(STy);
+ unsigned Index = SL->getElementContainingOffset(0);
+ InnerTy = STy->getElementType(Index);
+ } else {
+ return Ty;
+ }
+
+ if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedValue() ||
+ TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedValue())
+ return Ty;
+
+ return stripAggregateTypeWrapping(DL, InnerTy);
+}
+
+/// Try to find a partition of the aggregate type passed in for a given
+/// offset and size.
+///
+/// This recurses through the aggregate type and tries to compute a subtype
+/// based on the offset and size. When the offset and size span a sub-section
+/// of an array, it will even compute a new array type for that sub-section,
+/// and the same for structs.
+///
+/// Note that this routine is very strict and tries to find a partition of the
+/// type which produces the *exact* right offset and size. It is not forgiving
+/// when the size or offset cause either end of type-based partition to be off.
+/// Also, this is a best-effort routine. It is reasonable to give up and not
+/// return a type if necessary.
+static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
+ uint64_t Size) {
+ if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedValue() == Size)
+ return stripAggregateTypeWrapping(DL, Ty);
+ if (Offset > DL.getTypeAllocSize(Ty).getFixedValue() ||
+ (DL.getTypeAllocSize(Ty).getFixedValue() - Offset) < Size)
+ return nullptr;
+
+ if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
+ Type *ElementTy;
+ uint64_t TyNumElements;
+ if (auto *AT = dyn_cast<ArrayType>(Ty)) {
+ ElementTy = AT->getElementType();
+ TyNumElements = AT->getNumElements();
+ } else {
+ // FIXME: This isn't right for vectors with non-byte-sized or
+ // non-power-of-two sized elements.
+ auto *VT = cast<FixedVectorType>(Ty);
+ ElementTy = VT->getElementType();
+ TyNumElements = VT->getNumElements();
+ }
+ uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedValue();
+ uint64_t NumSkippedElements = Offset / ElementSize;
+ if (NumSkippedElements >= TyNumElements)
+ return nullptr;
+ Offset -= NumSkippedElements * ElementSize;
+
+ // First check if we need to recurse.
+ if (Offset > 0 || Size < ElementSize) {
+ // Bail if the partition ends in a different array element.
+ if ((Offset + Size) > ElementSize)
+ return nullptr;
+ // Recurse through the element type trying to peel off offset bytes.
+ return getTypePartition(DL, ElementTy, Offset, Size);
+ }
+ assert(Offset == 0);
+
+ if (Size == ElementSize)
+ return stripAggregateTypeWrapping(DL, ElementTy);
+ assert(Size > ElementSize);
+ uint64_t NumElements = Size / ElementSize;
+ if (NumElements * ElementSize != Size)
+ return nullptr;
+ return ArrayType::get(ElementTy, NumElements);
+ }
+
+ StructType *STy = dyn_cast<StructType>(Ty);
+ if (!STy)
+ return nullptr;
+
+ const StructLayout *SL = DL.getStructLayout(STy);
+ if (Offset >= SL->getSizeInBytes())
+ return nullptr;
+ uint64_t EndOffset = Offset + Size;
+ if (EndOffset > SL->getSizeInBytes())
+ return nullptr;
+
+ unsigned Index = SL->getElementContainingOffset(Offset);
+ Offset -= SL->getElementOffset(Index);
+
+ Type *ElementTy = STy->getElementType(Index);
+ uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedValue();
+ if (Offset >= ElementSize)
+ return nullptr; // The offset points into alignment padding.
+
+ // See if any partition must be contained by the element.
+ if (Offset > 0 || Size < ElementSize) {
+ if ((Offset + Size) > ElementSize)
+ return nullptr;
+ return getTypePartition(DL, ElementTy, Offset, Size);
+ }
+ assert(Offset == 0);
+
+ if (Size == ElementSize)
+ return stripAggregateTypeWrapping(DL, ElementTy);
+
+ StructType::element_iterator EI = STy->element_begin() + Index,
+ EE = STy->element_end();
+ if (EndOffset < SL->getSizeInBytes()) {
+ unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
+ if (Index == EndIndex)
+ return nullptr; // Within a single element and its padding.
+
+ // Don't try to form "natural" types if the elements don't line up with the
+ // expected size.
+ // FIXME: We could potentially recurse down through the last element in the
+ // sub-struct to find a natural end point.
+ if (SL->getElementOffset(EndIndex) != EndOffset)
+ return nullptr;
+
+ assert(Index < EndIndex);
+ EE = STy->element_begin() + EndIndex;
+ }
+
+ // Try to build up a sub-structure.
+ StructType *SubTy =
+ StructType::get(STy->getContext(), ArrayRef(EI, EE), STy->isPacked());
+ const StructLayout *SubSL = DL.getStructLayout(SubTy);
+ if (Size != SubSL->getSizeInBytes())
+ return nullptr; // The sub-struct doesn't have quite the size needed.
+
+ return SubTy;
+}
+
+/// Pre-split loads and stores to simplify rewriting.
+///
+/// We want to break up the splittable load+store pairs as much as
+/// possible. This is important to do as a preprocessing step, as once we
+/// start rewriting the accesses to partitions of the alloca we lose the
+/// necessary information to correctly split apart paired loads and stores
+/// which both point into this alloca. The case to consider is something like
+/// the following:
+///
+/// %a = alloca [12 x i8]
+/// %gep1 = getelementptr i8, ptr %a, i32 0
+/// %gep2 = getelementptr i8, ptr %a, i32 4
+/// %gep3 = getelementptr i8, ptr %a, i32 8
+/// store float 0.0, ptr %gep1
+/// store float 1.0, ptr %gep2
+/// %v = load i64, ptr %gep1
+/// store i64 %v, ptr %gep2
+/// %f1 = load float, ptr %gep2
+/// %f2 = load float, ptr %gep3
+///
+/// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
+/// promote everything so we recover the 2 SSA values that should have been
+/// there all along.
+///
+/// \returns true if any changes are made.
+bool SROAPass::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
+ LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
+
+ // Track the loads and stores which are candidates for pre-splitting here, in
+ // the order they first appear during the partition scan. These give stable
+ // iteration order and a basis for tracking which loads and stores we
+ // actually split.
+ SmallVector<LoadInst *, 4> Loads;
+ SmallVector<StoreInst *, 4> Stores;
+
+ // We need to accumulate the splits required of each load or store where we
+ // can find them via a direct lookup. This is important to cross-check loads
+ // and stores against each other. We also track the slice so that we can kill
+ // all the slices that end up split.
+ struct SplitOffsets {
+ Slice *S;
+ std::vector<uint64_t> Splits;
+ };
+ SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
+
+ // Track loads out of this alloca which cannot, for any reason, be pre-split.
+ // This is important as we also cannot pre-split stores of those loads!
+ // FIXME: This is all pretty gross. It means that we can be more aggressive
+ // in pre-splitting when the load feeding the store happens to come from
+ // a separate alloca. Put another way, the effectiveness of SROA would be
+ // decreased by a frontend which just concatenated all of its local allocas
+ // into one big flat alloca. But defeating such patterns is exactly the job
+ // SROA is tasked with! Sadly, to not have this discrepancy we would have
+ // change store pre-splitting to actually force pre-splitting of the load
+ // that feeds it *and all stores*. That makes pre-splitting much harder, but
+ // maybe it would make it more principled?
+ SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
+
+ LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n");
+ for (auto &P : AS.partitions()) {
+ for (Slice &S : P) {
+ Instruction *I = cast<Instruction>(S.getUse()->getUser());
+ if (!S.isSplittable() || S.endOffset() <= P.endOffset()) {
+ // If this is a load we have to track that it can't participate in any
+ // pre-splitting. If this is a store of a load we have to track that
+ // that load also can't participate in any pre-splitting.
+ if (auto *LI = dyn_cast<LoadInst>(I))
+ UnsplittableLoads.insert(LI);
+ else if (auto *SI = dyn_cast<StoreInst>(I))
+ if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()))
+ UnsplittableLoads.insert(LI);
+ continue;
+ }
+ assert(P.endOffset() > S.beginOffset() &&
+ "Empty or backwards partition!");
+
+ // Determine if this is a pre-splittable slice.
+ if (auto *LI = dyn_cast<LoadInst>(I)) {
+ assert(!LI->isVolatile() && "Cannot split volatile loads!");
+
+ // The load must be used exclusively to store into other pointers for
+ // us to be able to arbitrarily pre-split it. The stores must also be
+ // simple to avoid changing semantics.
+ auto IsLoadSimplyStored = [](LoadInst *LI) {
+ for (User *LU : LI->users()) {
+ auto *SI = dyn_cast<StoreInst>(LU);
+ if (!SI || !SI->isSimple())
+ return false;
+ }
+ return true;
+ };
+ if (!IsLoadSimplyStored(LI)) {
+ UnsplittableLoads.insert(LI);
+ continue;
+ }
+
+ Loads.push_back(LI);
+ } else if (auto *SI = dyn_cast<StoreInst>(I)) {
+ if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
+ // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
+ continue;
+ auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
+ if (!StoredLoad || !StoredLoad->isSimple())
+ continue;
+ assert(!SI->isVolatile() && "Cannot split volatile stores!");
+
+ Stores.push_back(SI);
+ } else {
+ // Other uses cannot be pre-split.
+ continue;
+ }
+
+ // Record the initial split.
+ LLVM_DEBUG(dbgs() << " Candidate: " << *I << "\n");
+ auto &Offsets = SplitOffsetsMap[I];
+ assert(Offsets.Splits.empty() &&
+ "Should not have splits the first time we see an instruction!");
+ Offsets.S = &S;
+ Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
+ }
+
+ // Now scan the already split slices, and add a split for any of them which
+ // we're going to pre-split.
+ for (Slice *S : P.splitSliceTails()) {
+ auto SplitOffsetsMapI =
+ SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
+ if (SplitOffsetsMapI == SplitOffsetsMap.end())
+ continue;
+ auto &Offsets = SplitOffsetsMapI->second;
+
+ assert(Offsets.S == S && "Found a mismatched slice!");
+ assert(!Offsets.Splits.empty() &&
+ "Cannot have an empty set of splits on the second partition!");
+ assert(Offsets.Splits.back() ==
+ P.beginOffset() - Offsets.S->beginOffset() &&
+ "Previous split does not end where this one begins!");
+
+ // Record each split. The last partition's end isn't needed as the size
+ // of the slice dictates that.
+ if (S->endOffset() > P.endOffset())
+ Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
+ }
+ }
+
+ // We may have split loads where some of their stores are split stores. For
+ // such loads and stores, we can only pre-split them if their splits exactly
+ // match relative to their starting offset. We have to verify this prior to
+ // any rewriting.
+ llvm::erase_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
+ // Lookup the load we are storing in our map of split
+ // offsets.
+ auto *LI = cast<LoadInst>(SI->getValueOperand());
+ // If it was completely unsplittable, then we're done,
+ // and this store can't be pre-split.
+ if (UnsplittableLoads.count(LI))
+ return true;
+
+ auto LoadOffsetsI = SplitOffsetsMap.find(LI);
+ if (LoadOffsetsI == SplitOffsetsMap.end())
+ return false; // Unrelated loads are definitely safe.
+ auto &LoadOffsets = LoadOffsetsI->second;
+
+ // Now lookup the store's offsets.
+ auto &StoreOffsets = SplitOffsetsMap[SI];
+
+ // If the relative offsets of each split in the load and
+ // store match exactly, then we can split them and we
+ // don't need to remove them here.
+ if (LoadOffsets.Splits == StoreOffsets.Splits)
+ return false;
+
+ LLVM_DEBUG(dbgs() << " Mismatched splits for load and store:\n"
+ << " " << *LI << "\n"
+ << " " << *SI << "\n");
+
+ // We've found a store and load that we need to split
+ // with mismatched relative splits. Just give up on them
+ // and remove both instructions from our list of
+ // candidates.
+ UnsplittableLoads.insert(LI);
+ return true;
+ });
+ // Now we have to go *back* through all the stores, because a later store may
+ // have caused an earlier store's load to become unsplittable and if it is
+ // unsplittable for the later store, then we can't rely on it being split in
+ // the earlier store either.
+ llvm::erase_if(Stores, [&UnsplittableLoads](StoreInst *SI) {
+ auto *LI = cast<LoadInst>(SI->getValueOperand());
+ return UnsplittableLoads.count(LI);
+ });
+ // Once we've established all the loads that can't be split for some reason,
+ // filter any that made it into our list out.
+ llvm::erase_if(Loads, [&UnsplittableLoads](LoadInst *LI) {
+ return UnsplittableLoads.count(LI);
+ });
+
+ // If no loads or stores are left, there is no pre-splitting to be done for
+ // this alloca.
+ if (Loads.empty() && Stores.empty())
+ return false;
+
+ // From here on, we can't fail and will be building new accesses, so rig up
+ // an IR builder.
+ IRBuilderTy IRB(&AI);
+
+ // Collect the new slices which we will merge into the alloca slices.
+ SmallVector<Slice, 4> NewSlices;
+
+ // Track any allocas we end up splitting loads and stores for so we iterate
+ // on them.
+ SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
+
+ // At this point, we have collected all of the loads and stores we can
+ // pre-split, and the specific splits needed for them. We actually do the
+ // splitting in a specific order in order to handle when one of the loads in
+ // the value operand to one of the stores.
+ //
+ // First, we rewrite all of the split loads, and just accumulate each split
+ // load in a parallel structure. We also build the slices for them and append
+ // them to the alloca slices.
+ SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
+ std::vector<LoadInst *> SplitLoads;
+ const DataLayout &DL = AI.getModule()->getDataLayout();
+ for (LoadInst *LI : Loads) {
+ SplitLoads.clear();
+
+ auto &Offsets = SplitOffsetsMap[LI];
+ unsigned SliceSize = Offsets.S->endOffset() - Offsets.S->beginOffset();
+ assert(LI->getType()->getIntegerBitWidth() % 8 == 0 &&
+ "Load must have type size equal to store size");
+ assert(LI->getType()->getIntegerBitWidth() / 8 >= SliceSize &&
+ "Load must be >= slice size");
+
+ uint64_t BaseOffset = Offsets.S->beginOffset();
+ assert(BaseOffset + SliceSize > BaseOffset &&
+ "Cannot represent alloca access size using 64-bit integers!");
+
+ Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
+ IRB.SetInsertPoint(LI);
+
+ LLVM_DEBUG(dbgs() << " Splitting load: " << *LI << "\n");
+
+ uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
+ int Idx = 0, Size = Offsets.Splits.size();
+ for (;;) {
+ auto *PartTy = Type::getIntNTy(LI->getContext(), PartSize * 8);
+ auto AS = LI->getPointerAddressSpace();
+ auto *PartPtrTy = PartTy->getPointerTo(AS);
+ LoadInst *PLoad = IRB.CreateAlignedLoad(
+ PartTy,
+ getAdjustedPtr(IRB, DL, BasePtr,
+ APInt(DL.getIndexSizeInBits(AS), PartOffset),
+ PartPtrTy, BasePtr->getName() + "."),
+ getAdjustedAlignment(LI, PartOffset),
+ /*IsVolatile*/ false, LI->getName());
+ PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
+ LLVMContext::MD_access_group});
+
+ // Append this load onto the list of split loads so we can find it later
+ // to rewrite the stores.
+ SplitLoads.push_back(PLoad);
+
+ // Now build a new slice for the alloca.
+ NewSlices.push_back(
+ Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
+ &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
+ /*IsSplittable*/ false));
+ LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset()
+ << ", " << NewSlices.back().endOffset()
+ << "): " << *PLoad << "\n");
+
+ // See if we've handled all the splits.
+ if (Idx >= Size)
+ break;
+
+ // Setup the next partition.
+ PartOffset = Offsets.Splits[Idx];
+ ++Idx;
+ PartSize = (Idx < Size ? Offsets.Splits[Idx] : SliceSize) - PartOffset;
+ }
+
+ // Now that we have the split loads, do the slow walk over all uses of the
+ // load and rewrite them as split stores, or save the split loads to use
+ // below if the store is going to be split there anyways.
+ bool DeferredStores = false;
+ for (User *LU : LI->users()) {
+ StoreInst *SI = cast<StoreInst>(LU);
+ if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
+ DeferredStores = true;
+ LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI
+ << "\n");
+ continue;
+ }
+
+ Value *StoreBasePtr = SI->getPointerOperand();
+ IRB.SetInsertPoint(SI);
+
+ LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n");
+
+ for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
+ LoadInst *PLoad = SplitLoads[Idx];
+ uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
+ auto *PartPtrTy =
+ PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
+
+ auto AS = SI->getPointerAddressSpace();
+ StoreInst *PStore = IRB.CreateAlignedStore(
+ PLoad,
+ getAdjustedPtr(IRB, DL, StoreBasePtr,
+ APInt(DL.getIndexSizeInBits(AS), PartOffset),
+ PartPtrTy, StoreBasePtr->getName() + "."),
+ getAdjustedAlignment(SI, PartOffset),
+ /*IsVolatile*/ false);
+ PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access,
+ LLVMContext::MD_access_group,
+ LLVMContext::MD_DIAssignID});
+ LLVM_DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n");
+ }
+
+ // We want to immediately iterate on any allocas impacted by splitting
+ // this store, and we have to track any promotable alloca (indicated by
+ // a direct store) as needing to be resplit because it is no longer
+ // promotable.
+ if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
+ ResplitPromotableAllocas.insert(OtherAI);
+ Worklist.insert(OtherAI);
+ } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
+ StoreBasePtr->stripInBoundsOffsets())) {
+ Worklist.insert(OtherAI);
+ }
+
+ // Mark the original store as dead.
+ DeadInsts.push_back(SI);
+ }
+
+ // Save the split loads if there are deferred stores among the users.
+ if (DeferredStores)
+ SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
+
+ // Mark the original load as dead and kill the original slice.
+ DeadInsts.push_back(LI);
+ Offsets.S->kill();
+ }
+
+ // Second, we rewrite all of the split stores. At this point, we know that
+ // all loads from this alloca have been split already. For stores of such
+ // loads, we can simply look up the pre-existing split loads. For stores of
+ // other loads, we split those loads first and then write split stores of
+ // them.
+ for (StoreInst *SI : Stores) {
+ auto *LI = cast<LoadInst>(SI->getValueOperand());
+ IntegerType *Ty = cast<IntegerType>(LI->getType());
+ assert(Ty->getBitWidth() % 8 == 0);
+ uint64_t StoreSize = Ty->getBitWidth() / 8;
+ assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
+
+ auto &Offsets = SplitOffsetsMap[SI];
+ assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
+ "Slice size should always match load size exactly!");
+ uint64_t BaseOffset = Offsets.S->beginOffset();
+ assert(BaseOffset + StoreSize > BaseOffset &&
+ "Cannot represent alloca access size using 64-bit integers!");
+
+ Value *LoadBasePtr = LI->getPointerOperand();
+ Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
+
+ LLVM_DEBUG(dbgs() << " Splitting store: " << *SI << "\n");
+
+ // Check whether we have an already split load.
+ auto SplitLoadsMapI = SplitLoadsMap.find(LI);
+ std::vector<LoadInst *> *SplitLoads = nullptr;
+ if (SplitLoadsMapI != SplitLoadsMap.end()) {
+ SplitLoads = &SplitLoadsMapI->second;
+ assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
+ "Too few split loads for the number of splits in the store!");
+ } else {
+ LLVM_DEBUG(dbgs() << " of load: " << *LI << "\n");
+ }
+
+ uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
+ int Idx = 0, Size = Offsets.Splits.size();
+ for (;;) {
+ auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
+ auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
+ auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
+
+ // Either lookup a split load or create one.
+ LoadInst *PLoad;
+ if (SplitLoads) {
+ PLoad = (*SplitLoads)[Idx];
+ } else {
+ IRB.SetInsertPoint(LI);
+ auto AS = LI->getPointerAddressSpace();
+ PLoad = IRB.CreateAlignedLoad(
+ PartTy,
+ getAdjustedPtr(IRB, DL, LoadBasePtr,
+ APInt(DL.getIndexSizeInBits(AS), PartOffset),
+ LoadPartPtrTy, LoadBasePtr->getName() + "."),
+ getAdjustedAlignment(LI, PartOffset),
+ /*IsVolatile*/ false, LI->getName());
+ PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
+ LLVMContext::MD_access_group});
+ }
+
+ // And store this partition.
+ IRB.SetInsertPoint(SI);
+ auto AS = SI->getPointerAddressSpace();
+ StoreInst *PStore = IRB.CreateAlignedStore(
+ PLoad,
+ getAdjustedPtr(IRB, DL, StoreBasePtr,
+ APInt(DL.getIndexSizeInBits(AS), PartOffset),
+ StorePartPtrTy, StoreBasePtr->getName() + "."),
+ getAdjustedAlignment(SI, PartOffset),
+ /*IsVolatile*/ false);
+ PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access,
+ LLVMContext::MD_access_group});
+
+ // Now build a new slice for the alloca.
+ NewSlices.push_back(
+ Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
+ &PStore->getOperandUse(PStore->getPointerOperandIndex()),
+ /*IsSplittable*/ false));
+ LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset()
+ << ", " << NewSlices.back().endOffset()
+ << "): " << *PStore << "\n");
+ if (!SplitLoads) {
+ LLVM_DEBUG(dbgs() << " of split load: " << *PLoad << "\n");
+ }
+
+ // See if we've finished all the splits.
+ if (Idx >= Size)
+ break;
+
+ // Setup the next partition.
+ PartOffset = Offsets.Splits[Idx];
+ ++Idx;
+ PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
+ }
+
+ // We want to immediately iterate on any allocas impacted by splitting
+ // this load, which is only relevant if it isn't a load of this alloca and
+ // thus we didn't already split the loads above. We also have to keep track
+ // of any promotable allocas we split loads on as they can no longer be
+ // promoted.
+ if (!SplitLoads) {
+ if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
+ assert(OtherAI != &AI && "We can't re-split our own alloca!");
+ ResplitPromotableAllocas.insert(OtherAI);
+ Worklist.insert(OtherAI);
+ } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
+ LoadBasePtr->stripInBoundsOffsets())) {
+ assert(OtherAI != &AI && "We can't re-split our own alloca!");
+ Worklist.insert(OtherAI);
+ }
+ }
+
+ // Mark the original store as dead now that we've split it up and kill its
+ // slice. Note that we leave the original load in place unless this store
+ // was its only use. It may in turn be split up if it is an alloca load
+ // for some other alloca, but it may be a normal load. This may introduce
+ // redundant loads, but where those can be merged the rest of the optimizer
+ // should handle the merging, and this uncovers SSA splits which is more
+ // important. In practice, the original loads will almost always be fully
+ // split and removed eventually, and the splits will be merged by any
+ // trivial CSE, including instcombine.
+ if (LI->hasOneUse()) {
+ assert(*LI->user_begin() == SI && "Single use isn't this store!");
+ DeadInsts.push_back(LI);
+ }
+ DeadInsts.push_back(SI);
+ Offsets.S->kill();
+ }
+
+ // Remove the killed slices that have ben pre-split.
+ llvm::erase_if(AS, [](const Slice &S) { return S.isDead(); });
+
+ // Insert our new slices. This will sort and merge them into the sorted
+ // sequence.
+ AS.insert(NewSlices);
+
+ LLVM_DEBUG(dbgs() << " Pre-split slices:\n");
+#ifndef NDEBUG
+ for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
+ LLVM_DEBUG(AS.print(dbgs(), I, " "));
+#endif
+
+ // Finally, don't try to promote any allocas that new require re-splitting.
+ // They have already been added to the worklist above.
+ llvm::erase_if(PromotableAllocas, [&](AllocaInst *AI) {
+ return ResplitPromotableAllocas.count(AI);
+ });
+
+ return true;
+}
+
+/// Rewrite an alloca partition's users.
+///
+/// This routine drives both of the rewriting goals of the SROA pass. It tries
+/// to rewrite uses of an alloca partition to be conducive for SSA value
+/// promotion. If the partition needs a new, more refined alloca, this will
+/// build that new alloca, preserving as much type information as possible, and
+/// rewrite the uses of the old alloca to point at the new one and have the
+/// appropriate new offsets. It also evaluates how successful the rewrite was
+/// at enabling promotion and if it was successful queues the alloca to be
+/// promoted.
+AllocaInst *SROAPass::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
+ Partition &P) {
+ // Try to compute a friendly type for this partition of the alloca. This
+ // won't always succeed, in which case we fall back to a legal integer type
+ // or an i8 array of an appropriate size.
+ Type *SliceTy = nullptr;
+ VectorType *SliceVecTy = nullptr;
+ const DataLayout &DL = AI.getModule()->getDataLayout();
+ std::pair<Type *, IntegerType *> CommonUseTy =
+ findCommonType(P.begin(), P.end(), P.endOffset());
+ // Do all uses operate on the same type?
+ if (CommonUseTy.first)
+ if (DL.getTypeAllocSize(CommonUseTy.first).getFixedValue() >= P.size()) {
+ SliceTy = CommonUseTy.first;
+ SliceVecTy = dyn_cast<VectorType>(SliceTy);
+ }
+ // If not, can we find an appropriate subtype in the original allocated type?
+ if (!SliceTy)
+ if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
+ P.beginOffset(), P.size()))
+ SliceTy = TypePartitionTy;
+
+ // If still not, can we use the largest bitwidth integer type used?
+ if (!SliceTy && CommonUseTy.second)
+ if (DL.getTypeAllocSize(CommonUseTy.second).getFixedValue() >= P.size()) {
+ SliceTy = CommonUseTy.second;
+ SliceVecTy = dyn_cast<VectorType>(SliceTy);
+ }
+ if ((!SliceTy || (SliceTy->isArrayTy() &&
+ SliceTy->getArrayElementType()->isIntegerTy())) &&
+ DL.isLegalInteger(P.size() * 8)) {
+ SliceTy = Type::getIntNTy(*C, P.size() * 8);
+ }
+
+ // If the common use types are not viable for promotion then attempt to find
+ // another type that is viable.
+ if (SliceVecTy && !checkVectorTypeForPromotion(P, SliceVecTy, DL))
+ if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
+ P.beginOffset(), P.size())) {
+ VectorType *TypePartitionVecTy = dyn_cast<VectorType>(TypePartitionTy);
+ if (TypePartitionVecTy &&
+ checkVectorTypeForPromotion(P, TypePartitionVecTy, DL))
+ SliceTy = TypePartitionTy;
+ }
+
+ if (!SliceTy)
+ SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
+ assert(DL.getTypeAllocSize(SliceTy).getFixedValue() >= P.size());
+
+ bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
+
+ VectorType *VecTy =
+ IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
+ if (VecTy)
+ SliceTy = VecTy;
+
+ // Check for the case where we're going to rewrite to a new alloca of the
+ // exact same type as the original, and with the same access offsets. In that
+ // case, re-use the existing alloca, but still run through the rewriter to
+ // perform phi and select speculation.
+ // P.beginOffset() can be non-zero even with the same type in a case with
+ // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
+ AllocaInst *NewAI;
+ if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) {
+ NewAI = &AI;
+ // FIXME: We should be able to bail at this point with "nothing changed".
+ // FIXME: We might want to defer PHI speculation until after here.
+ // FIXME: return nullptr;
+ } else {
+ // Make sure the alignment is compatible with P.beginOffset().
+ const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset());
+ // If we will get at least this much alignment from the type alone, leave
+ // the alloca's alignment unconstrained.
+ const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy);
+ NewAI = new AllocaInst(
+ SliceTy, AI.getAddressSpace(), nullptr,
+ IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment,
+ AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
+ // Copy the old AI debug location over to the new one.
+ NewAI->setDebugLoc(AI.getDebugLoc());
+ ++NumNewAllocas;
+ }
+
+ LLVM_DEBUG(dbgs() << "Rewriting alloca partition "
+ << "[" << P.beginOffset() << "," << P.endOffset()
+ << ") to: " << *NewAI << "\n");
+
+ // Track the high watermark on the worklist as it is only relevant for
+ // promoted allocas. We will reset it to this point if the alloca is not in
+ // fact scheduled for promotion.
+ unsigned PPWOldSize = PostPromotionWorklist.size();
+ unsigned NumUses = 0;
+ SmallSetVector<PHINode *, 8> PHIUsers;
+ SmallSetVector<SelectInst *, 8> SelectUsers;
+
+ AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
+ P.endOffset(), IsIntegerPromotable, VecTy,
+ PHIUsers, SelectUsers);
+ bool Promotable = true;
+ for (Slice *S : P.splitSliceTails()) {
+ Promotable &= Rewriter.visit(S);
+ ++NumUses;
+ }
+ for (Slice &S : P) {
+ Promotable &= Rewriter.visit(&S);
+ ++NumUses;
+ }
+
+ NumAllocaPartitionUses += NumUses;
+ MaxUsesPerAllocaPartition.updateMax(NumUses);
+
+ // Now that we've processed all the slices in the new partition, check if any
+ // PHIs or Selects would block promotion.
+ for (PHINode *PHI : PHIUsers)
+ if (!isSafePHIToSpeculate(*PHI)) {
+ Promotable = false;
+ PHIUsers.clear();
+ SelectUsers.clear();
+ break;
+ }
+
+ SmallVector<std::pair<SelectInst *, RewriteableMemOps>, 2>
+ NewSelectsToRewrite;
+ NewSelectsToRewrite.reserve(SelectUsers.size());
+ for (SelectInst *Sel : SelectUsers) {
+ std::optional<RewriteableMemOps> Ops =
+ isSafeSelectToSpeculate(*Sel, PreserveCFG);
+ if (!Ops) {
+ Promotable = false;
+ PHIUsers.clear();
+ SelectUsers.clear();
+ NewSelectsToRewrite.clear();
+ break;
+ }
+ NewSelectsToRewrite.emplace_back(std::make_pair(Sel, *Ops));
+ }
+
+ if (Promotable) {
+ for (Use *U : AS.getDeadUsesIfPromotable()) {
+ auto *OldInst = dyn_cast<Instruction>(U->get());
+ Value::dropDroppableUse(*U);
+ if (OldInst)
+ if (isInstructionTriviallyDead(OldInst))
+ DeadInsts.push_back(OldInst);
+ }
+ if (PHIUsers.empty() && SelectUsers.empty()) {
+ // Promote the alloca.
+ PromotableAllocas.push_back(NewAI);
+ } else {
+ // If we have either PHIs or Selects to speculate, add them to those
+ // worklists and re-queue the new alloca so that we promote in on the
+ // next iteration.
+ for (PHINode *PHIUser : PHIUsers)
+ SpeculatablePHIs.insert(PHIUser);
+ SelectsToRewrite.reserve(SelectsToRewrite.size() +
+ NewSelectsToRewrite.size());
+ for (auto &&KV : llvm::make_range(
+ std::make_move_iterator(NewSelectsToRewrite.begin()),
+ std::make_move_iterator(NewSelectsToRewrite.end())))
+ SelectsToRewrite.insert(std::move(KV));
+ Worklist.insert(NewAI);
+ }
+ } else {
+ // Drop any post-promotion work items if promotion didn't happen.
+ while (PostPromotionWorklist.size() > PPWOldSize)
+ PostPromotionWorklist.pop_back();
+
+ // We couldn't promote and we didn't create a new partition, nothing
+ // happened.
+ if (NewAI == &AI)
+ return nullptr;
+
+ // If we can't promote the alloca, iterate on it to check for new
+ // refinements exposed by splitting the current alloca. Don't iterate on an
+ // alloca which didn't actually change and didn't get promoted.
+ Worklist.insert(NewAI);
+ }
+
+ return NewAI;
+}
+
+/// Walks the slices of an alloca and form partitions based on them,
+/// rewriting each of their uses.
+bool SROAPass::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
+ if (AS.begin() == AS.end())
+ return false;
+
+ unsigned NumPartitions = 0;
+ bool Changed = false;
+ const DataLayout &DL = AI.getModule()->getDataLayout();
+
+ // First try to pre-split loads and stores.
+ Changed |= presplitLoadsAndStores(AI, AS);
+
+ // Now that we have identified any pre-splitting opportunities,
+ // mark loads and stores unsplittable except for the following case.
+ // We leave a slice splittable if all other slices are disjoint or fully
+ // included in the slice, such as whole-alloca loads and stores.
+ // If we fail to split these during pre-splitting, we want to force them
+ // to be rewritten into a partition.
+ bool IsSorted = true;
+
+ uint64_t AllocaSize =
+ DL.getTypeAllocSize(AI.getAllocatedType()).getFixedValue();
+ const uint64_t MaxBitVectorSize = 1024;
+ if (AllocaSize <= MaxBitVectorSize) {
+ // If a byte boundary is included in any load or store, a slice starting or
+ // ending at the boundary is not splittable.
+ SmallBitVector SplittableOffset(AllocaSize + 1, true);
+ for (Slice &S : AS)
+ for (unsigned O = S.beginOffset() + 1;
+ O < S.endOffset() && O < AllocaSize; O++)
+ SplittableOffset.reset(O);
+
+ for (Slice &S : AS) {
+ if (!S.isSplittable())
+ continue;
+
+ if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) &&
+ (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()]))
+ continue;
+
+ if (isa<LoadInst>(S.getUse()->getUser()) ||
+ isa<StoreInst>(S.getUse()->getUser())) {
+ S.makeUnsplittable();
+ IsSorted = false;
+ }
+ }
+ }
+ else {
+ // We only allow whole-alloca splittable loads and stores
+ // for a large alloca to avoid creating too large BitVector.
+ for (Slice &S : AS) {
+ if (!S.isSplittable())
+ continue;
+
+ if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize)
+ continue;
+
+ if (isa<LoadInst>(S.getUse()->getUser()) ||
+ isa<StoreInst>(S.getUse()->getUser())) {
+ S.makeUnsplittable();
+ IsSorted = false;
+ }
+ }
+ }
+
+ if (!IsSorted)
+ llvm::sort(AS);
+
+ /// Describes the allocas introduced by rewritePartition in order to migrate
+ /// the debug info.
+ struct Fragment {
+ AllocaInst *Alloca;
+ uint64_t Offset;
+ uint64_t Size;
+ Fragment(AllocaInst *AI, uint64_t O, uint64_t S)
+ : Alloca(AI), Offset(O), Size(S) {}
+ };
+ SmallVector<Fragment, 4> Fragments;
+
+ // Rewrite each partition.
+ for (auto &P : AS.partitions()) {
+ if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
+ Changed = true;
+ if (NewAI != &AI) {
+ uint64_t SizeOfByte = 8;
+ uint64_t AllocaSize =
+ DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedValue();
+ // Don't include any padding.
+ uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
+ Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size));
+ }
+ }
+ ++NumPartitions;
+ }
+
+ NumAllocaPartitions += NumPartitions;
+ MaxPartitionsPerAlloca.updateMax(NumPartitions);
+
+ // Migrate debug information from the old alloca to the new alloca(s)
+ // and the individual partitions.
+ TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI);
+ for (auto *DbgAssign : at::getAssignmentMarkers(&AI))
+ DbgDeclares.push_back(DbgAssign);
+ for (DbgVariableIntrinsic *DbgDeclare : DbgDeclares) {
+ auto *Expr = DbgDeclare->getExpression();
+ DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
+ uint64_t AllocaSize =
+ DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedValue();
+ for (auto Fragment : Fragments) {
+ // Create a fragment expression describing the new partition or reuse AI's
+ // expression if there is only one partition.
+ auto *FragmentExpr = Expr;
+ if (Fragment.Size < AllocaSize || Expr->isFragment()) {
+ // If this alloca is already a scalar replacement of a larger aggregate,
+ // Fragment.Offset describes the offset inside the scalar.
+ auto ExprFragment = Expr->getFragmentInfo();
+ uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0;
+ uint64_t Start = Offset + Fragment.Offset;
+ uint64_t Size = Fragment.Size;
+ if (ExprFragment) {
+ uint64_t AbsEnd =
+ ExprFragment->OffsetInBits + ExprFragment->SizeInBits;
+ if (Start >= AbsEnd) {
+ // No need to describe a SROAed padding.
+ continue;
+ }
+ Size = std::min(Size, AbsEnd - Start);
+ }
+ // The new, smaller fragment is stenciled out from the old fragment.
+ if (auto OrigFragment = FragmentExpr->getFragmentInfo()) {
+ assert(Start >= OrigFragment->OffsetInBits &&
+ "new fragment is outside of original fragment");
+ Start -= OrigFragment->OffsetInBits;
+ }
+
+ // The alloca may be larger than the variable.
+ auto VarSize = DbgDeclare->getVariable()->getSizeInBits();
+ if (VarSize) {
+ if (Size > *VarSize)
+ Size = *VarSize;
+ if (Size == 0 || Start + Size > *VarSize)
+ continue;
+ }
+
+ // Avoid creating a fragment expression that covers the entire variable.
+ if (!VarSize || *VarSize != Size) {
+ if (auto E =
+ DIExpression::createFragmentExpression(Expr, Start, Size))
+ FragmentExpr = *E;
+ else
+ continue;
+ }
+ }
+
+ // Remove any existing intrinsics on the new alloca describing
+ // the variable fragment.
+ for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca)) {
+ auto SameVariableFragment = [](const DbgVariableIntrinsic *LHS,
+ const DbgVariableIntrinsic *RHS) {
+ return LHS->getVariable() == RHS->getVariable() &&
+ LHS->getDebugLoc()->getInlinedAt() ==
+ RHS->getDebugLoc()->getInlinedAt();
+ };
+ if (SameVariableFragment(OldDII, DbgDeclare))
+ OldDII->eraseFromParent();
+ }
+
+ if (auto *DbgAssign = dyn_cast<DbgAssignIntrinsic>(DbgDeclare)) {
+ if (!Fragment.Alloca->hasMetadata(LLVMContext::MD_DIAssignID)) {
+ Fragment.Alloca->setMetadata(
+ LLVMContext::MD_DIAssignID,
+ DIAssignID::getDistinct(AI.getContext()));
+ }
+ auto *NewAssign = DIB.insertDbgAssign(
+ Fragment.Alloca, DbgAssign->getValue(), DbgAssign->getVariable(),
+ FragmentExpr, Fragment.Alloca, DbgAssign->getAddressExpression(),
+ DbgAssign->getDebugLoc());
+ NewAssign->setDebugLoc(DbgAssign->getDebugLoc());
+ LLVM_DEBUG(dbgs() << "Created new assign intrinsic: " << *NewAssign
+ << "\n");
+ } else {
+ DIB.insertDeclare(Fragment.Alloca, DbgDeclare->getVariable(),
+ FragmentExpr, DbgDeclare->getDebugLoc(), &AI);
+ }
+ }
+ }
+ return Changed;
+}
+
+/// Clobber a use with poison, deleting the used value if it becomes dead.
+void SROAPass::clobberUse(Use &U) {
+ Value *OldV = U;
+ // Replace the use with an poison value.
+ U = PoisonValue::get(OldV->getType());
+
+ // Check for this making an instruction dead. We have to garbage collect
+ // all the dead instructions to ensure the uses of any alloca end up being
+ // minimal.
+ if (Instruction *OldI = dyn_cast<Instruction>(OldV))
+ if (isInstructionTriviallyDead(OldI)) {
+ DeadInsts.push_back(OldI);
+ }
+}
+
+/// Analyze an alloca for SROA.
+///
+/// This analyzes the alloca to ensure we can reason about it, builds
+/// the slices of the alloca, and then hands it off to be split and
+/// rewritten as needed.
+std::pair<bool /*Changed*/, bool /*CFGChanged*/>
+SROAPass::runOnAlloca(AllocaInst &AI) {
+ bool Changed = false;
+ bool CFGChanged = false;
+
+ LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
+ ++NumAllocasAnalyzed;
+
+ // Special case dead allocas, as they're trivial.
+ if (AI.use_empty()) {
+ AI.eraseFromParent();
+ Changed = true;
+ return {Changed, CFGChanged};
+ }
+ const DataLayout &DL = AI.getModule()->getDataLayout();
+
+ // Skip alloca forms that this analysis can't handle.
+ auto *AT = AI.getAllocatedType();
+ if (AI.isArrayAllocation() || !AT->isSized() || isa<ScalableVectorType>(AT) ||
+ DL.getTypeAllocSize(AT).getFixedValue() == 0)
+ return {Changed, CFGChanged};
+
+ // First, split any FCA loads and stores touching this alloca to promote
+ // better splitting and promotion opportunities.
+ IRBuilderTy IRB(&AI);
+ AggLoadStoreRewriter AggRewriter(DL, IRB);
+ Changed |= AggRewriter.rewrite(AI);
+
+ // Build the slices using a recursive instruction-visiting builder.
+ AllocaSlices AS(DL, AI);
+ LLVM_DEBUG(AS.print(dbgs()));
+ if (AS.isEscaped())
+ return {Changed, CFGChanged};
+
+ // Delete all the dead users of this alloca before splitting and rewriting it.
+ for (Instruction *DeadUser : AS.getDeadUsers()) {
+ // Free up everything used by this instruction.
+ for (Use &DeadOp : DeadUser->operands())
+ clobberUse(DeadOp);
+
+ // Now replace the uses of this instruction.
+ DeadUser->replaceAllUsesWith(PoisonValue::get(DeadUser->getType()));
+
+ // And mark it for deletion.
+ DeadInsts.push_back(DeadUser);
+ Changed = true;
+ }
+ for (Use *DeadOp : AS.getDeadOperands()) {
+ clobberUse(*DeadOp);
+ Changed = true;
+ }
+
+ // No slices to split. Leave the dead alloca for a later pass to clean up.
+ if (AS.begin() == AS.end())
+ return {Changed, CFGChanged};
+
+ Changed |= splitAlloca(AI, AS);
+
+ LLVM_DEBUG(dbgs() << " Speculating PHIs\n");
+ while (!SpeculatablePHIs.empty())
+ speculatePHINodeLoads(IRB, *SpeculatablePHIs.pop_back_val());
+
+ LLVM_DEBUG(dbgs() << " Rewriting Selects\n");
+ auto RemainingSelectsToRewrite = SelectsToRewrite.takeVector();
+ while (!RemainingSelectsToRewrite.empty()) {
+ const auto [K, V] = RemainingSelectsToRewrite.pop_back_val();
+ CFGChanged |=
+ rewriteSelectInstMemOps(*K, V, IRB, PreserveCFG ? nullptr : DTU);
+ }
+
+ return {Changed, CFGChanged};
+}
+
+/// Delete the dead instructions accumulated in this run.
+///
+/// Recursively deletes the dead instructions we've accumulated. This is done
+/// at the very end to maximize locality of the recursive delete and to
+/// minimize the problems of invalidated instruction pointers as such pointers
+/// are used heavily in the intermediate stages of the algorithm.
+///
+/// We also record the alloca instructions deleted here so that they aren't
+/// subsequently handed to mem2reg to promote.
+bool SROAPass::deleteDeadInstructions(
+ SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
+ bool Changed = false;
+ while (!DeadInsts.empty()) {
+ Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
+ if (!I)
+ continue;
+ LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
+
+ // If the instruction is an alloca, find the possible dbg.declare connected
+ // to it, and remove it too. We must do this before calling RAUW or we will
+ // not be able to find it.
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
+ DeletedAllocas.insert(AI);
+ for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI))
+ OldDII->eraseFromParent();
+ }
+
+ at::deleteAssignmentMarkers(I);
+ I->replaceAllUsesWith(UndefValue::get(I->getType()));
+
+ for (Use &Operand : I->operands())
+ if (Instruction *U = dyn_cast<Instruction>(Operand)) {
+ // Zero out the operand and see if it becomes trivially dead.
+ Operand = nullptr;
+ if (isInstructionTriviallyDead(U))
+ DeadInsts.push_back(U);
+ }
+
+ ++NumDeleted;
+ I->eraseFromParent();
+ Changed = true;
+ }
+ return Changed;
+}
+
+/// Promote the allocas, using the best available technique.
+///
+/// This attempts to promote whatever allocas have been identified as viable in
+/// the PromotableAllocas list. If that list is empty, there is nothing to do.
+/// This function returns whether any promotion occurred.
+bool SROAPass::promoteAllocas(Function &F) {
+ if (PromotableAllocas.empty())
+ return false;
+
+ NumPromoted += PromotableAllocas.size();
+
+ LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
+ PromoteMemToReg(PromotableAllocas, DTU->getDomTree(), AC);
+ PromotableAllocas.clear();
+ return true;
+}
+
+PreservedAnalyses SROAPass::runImpl(Function &F, DomTreeUpdater &RunDTU,
+ AssumptionCache &RunAC) {
+ LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
+ C = &F.getContext();
+ DTU = &RunDTU;
+ AC = &RunAC;
+
+ BasicBlock &EntryBB = F.getEntryBlock();
+ for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
+ I != E; ++I) {
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
+ if (isa<ScalableVectorType>(AI->getAllocatedType())) {
+ if (isAllocaPromotable(AI))
+ PromotableAllocas.push_back(AI);
+ } else {
+ Worklist.insert(AI);
+ }
+ }
+ }
+
+ bool Changed = false;
+ bool CFGChanged = false;
+ // A set of deleted alloca instruction pointers which should be removed from
+ // the list of promotable allocas.
+ SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
+
+ do {
+ while (!Worklist.empty()) {
+ auto [IterationChanged, IterationCFGChanged] =
+ runOnAlloca(*Worklist.pop_back_val());
+ Changed |= IterationChanged;
+ CFGChanged |= IterationCFGChanged;
+
+ Changed |= deleteDeadInstructions(DeletedAllocas);
+
+ // Remove the deleted allocas from various lists so that we don't try to
+ // continue processing them.
+ if (!DeletedAllocas.empty()) {
+ auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
+ Worklist.remove_if(IsInSet);
+ PostPromotionWorklist.remove_if(IsInSet);
+ llvm::erase_if(PromotableAllocas, IsInSet);
+ DeletedAllocas.clear();
+ }
+ }
+
+ Changed |= promoteAllocas(F);
+
+ Worklist = PostPromotionWorklist;
+ PostPromotionWorklist.clear();
+ } while (!Worklist.empty());
+
+ assert((!CFGChanged || Changed) && "Can not only modify the CFG.");
+ assert((!CFGChanged || !PreserveCFG) &&
+ "Should not have modified the CFG when told to preserve it.");
+
+ if (!Changed)
+ return PreservedAnalyses::all();
+
+ PreservedAnalyses PA;
+ if (!CFGChanged)
+ PA.preserveSet<CFGAnalyses>();
+ PA.preserve<DominatorTreeAnalysis>();
+ return PA;
+}
+
+PreservedAnalyses SROAPass::runImpl(Function &F, DominatorTree &RunDT,
+ AssumptionCache &RunAC) {
+ DomTreeUpdater DTU(RunDT, DomTreeUpdater::UpdateStrategy::Lazy);
+ return runImpl(F, DTU, RunAC);
+}
+
+PreservedAnalyses SROAPass::run(Function &F, FunctionAnalysisManager &AM) {
+ return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F),
+ AM.getResult<AssumptionAnalysis>(F));
+}
+
+void SROAPass::printPipeline(
+ raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
+ static_cast<PassInfoMixin<SROAPass> *>(this)->printPipeline(
+ OS, MapClassName2PassName);
+ OS << (PreserveCFG ? "<preserve-cfg>" : "<modify-cfg>");
+}
+
+SROAPass::SROAPass(SROAOptions PreserveCFG_)
+ : PreserveCFG(PreserveCFG_ == SROAOptions::PreserveCFG) {}
+
+/// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
+///
+/// This is in the llvm namespace purely to allow it to be a friend of the \c
+/// SROA pass.
+class llvm::sroa::SROALegacyPass : public FunctionPass {
+ /// The SROA implementation.
+ SROAPass Impl;
+
+public:
+ static char ID;
+
+ SROALegacyPass(SROAOptions PreserveCFG = SROAOptions::PreserveCFG)
+ : FunctionPass(ID), Impl(PreserveCFG) {
+ initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override {
+ if (skipFunction(F))
+ return false;
+
+ auto PA = Impl.runImpl(
+ F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
+ getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
+ return !PA.areAllPreserved();
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ }
+
+ StringRef getPassName() const override { return "SROA"; }
+};
+
+char SROALegacyPass::ID = 0;
+
+FunctionPass *llvm::createSROAPass(bool PreserveCFG) {
+ return new SROALegacyPass(PreserveCFG ? SROAOptions::PreserveCFG
+ : SROAOptions::ModifyCFG);
+}
+
+INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
+ "Scalar Replacement Of Aggregates", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
+ false, false)