aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Transforms/Scalar/LoopSink.cpp
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm16/lib/Transforms/Scalar/LoopSink.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm16/lib/Transforms/Scalar/LoopSink.cpp')
-rw-r--r--contrib/libs/llvm16/lib/Transforms/Scalar/LoopSink.cpp429
1 files changed, 429 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Transforms/Scalar/LoopSink.cpp b/contrib/libs/llvm16/lib/Transforms/Scalar/LoopSink.cpp
new file mode 100644
index 0000000000..21025b0bdb
--- /dev/null
+++ b/contrib/libs/llvm16/lib/Transforms/Scalar/LoopSink.cpp
@@ -0,0 +1,429 @@
+//===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass does the inverse transformation of what LICM does.
+// It traverses all of the instructions in the loop's preheader and sinks
+// them to the loop body where frequency is lower than the loop's preheader.
+// This pass is a reverse-transformation of LICM. It differs from the Sink
+// pass in the following ways:
+//
+// * It only handles sinking of instructions from the loop's preheader to the
+// loop's body
+// * It uses alias set tracker to get more accurate alias info
+// * It uses block frequency info to find the optimal sinking locations
+//
+// Overall algorithm:
+//
+// For I in Preheader:
+// InsertBBs = BBs that uses I
+// For BB in sorted(LoopBBs):
+// DomBBs = BBs in InsertBBs that are dominated by BB
+// if freq(DomBBs) > freq(BB)
+// InsertBBs = UseBBs - DomBBs + BB
+// For BB in InsertBBs:
+// Insert I at BB's beginning
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/LoopSink.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/Analysis/MemorySSAUpdater.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "loopsink"
+
+STATISTIC(NumLoopSunk, "Number of instructions sunk into loop");
+STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop");
+
+static cl::opt<unsigned> SinkFrequencyPercentThreshold(
+ "sink-freq-percent-threshold", cl::Hidden, cl::init(90),
+ cl::desc("Do not sink instructions that require cloning unless they "
+ "execute less than this percent of the time."));
+
+static cl::opt<unsigned> MaxNumberOfUseBBsForSinking(
+ "max-uses-for-sinking", cl::Hidden, cl::init(30),
+ cl::desc("Do not sink instructions that have too many uses."));
+
+/// Return adjusted total frequency of \p BBs.
+///
+/// * If there is only one BB, sinking instruction will not introduce code
+/// size increase. Thus there is no need to adjust the frequency.
+/// * If there are more than one BB, sinking would lead to code size increase.
+/// In this case, we add some "tax" to the total frequency to make it harder
+/// to sink. E.g.
+/// Freq(Preheader) = 100
+/// Freq(BBs) = sum(50, 49) = 99
+/// Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
+/// BBs as the difference is too small to justify the code size increase.
+/// To model this, The adjusted Freq(BBs) will be:
+/// AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
+static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs,
+ BlockFrequencyInfo &BFI) {
+ BlockFrequency T = 0;
+ for (BasicBlock *B : BBs)
+ T += BFI.getBlockFreq(B);
+ if (BBs.size() > 1)
+ T /= BranchProbability(SinkFrequencyPercentThreshold, 100);
+ return T;
+}
+
+/// Return a set of basic blocks to insert sinked instructions.
+///
+/// The returned set of basic blocks (BBsToSinkInto) should satisfy:
+///
+/// * Inside the loop \p L
+/// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
+/// that domintates the UseBB
+/// * Has minimum total frequency that is no greater than preheader frequency
+///
+/// The purpose of the function is to find the optimal sinking points to
+/// minimize execution cost, which is defined as "sum of frequency of
+/// BBsToSinkInto".
+/// As a result, the returned BBsToSinkInto needs to have minimum total
+/// frequency.
+/// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
+/// frequency, the optimal solution is not sinking (return empty set).
+///
+/// \p ColdLoopBBs is used to help find the optimal sinking locations.
+/// It stores a list of BBs that is:
+///
+/// * Inside the loop \p L
+/// * Has a frequency no larger than the loop's preheader
+/// * Sorted by BB frequency
+///
+/// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
+/// To avoid expensive computation, we cap the maximum UseBBs.size() in its
+/// caller.
+static SmallPtrSet<BasicBlock *, 2>
+findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs,
+ const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
+ DominatorTree &DT, BlockFrequencyInfo &BFI) {
+ SmallPtrSet<BasicBlock *, 2> BBsToSinkInto;
+ if (UseBBs.size() == 0)
+ return BBsToSinkInto;
+
+ BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end());
+ SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB;
+
+ // For every iteration:
+ // * Pick the ColdestBB from ColdLoopBBs
+ // * Find the set BBsDominatedByColdestBB that satisfy:
+ // - BBsDominatedByColdestBB is a subset of BBsToSinkInto
+ // - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
+ // * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
+ // BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
+ // BBsToSinkInto
+ for (BasicBlock *ColdestBB : ColdLoopBBs) {
+ BBsDominatedByColdestBB.clear();
+ for (BasicBlock *SinkedBB : BBsToSinkInto)
+ if (DT.dominates(ColdestBB, SinkedBB))
+ BBsDominatedByColdestBB.insert(SinkedBB);
+ if (BBsDominatedByColdestBB.size() == 0)
+ continue;
+ if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) >
+ BFI.getBlockFreq(ColdestBB)) {
+ for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) {
+ BBsToSinkInto.erase(DominatedBB);
+ }
+ BBsToSinkInto.insert(ColdestBB);
+ }
+ }
+
+ // Can't sink into blocks that have no valid insertion point.
+ for (BasicBlock *BB : BBsToSinkInto) {
+ if (BB->getFirstInsertionPt() == BB->end()) {
+ BBsToSinkInto.clear();
+ break;
+ }
+ }
+
+ // If the total frequency of BBsToSinkInto is larger than preheader frequency,
+ // do not sink.
+ if (adjustedSumFreq(BBsToSinkInto, BFI) >
+ BFI.getBlockFreq(L.getLoopPreheader()))
+ BBsToSinkInto.clear();
+ return BBsToSinkInto;
+}
+
+// Sinks \p I from the loop \p L's preheader to its uses. Returns true if
+// sinking is successful.
+// \p LoopBlockNumber is used to sort the insertion blocks to ensure
+// determinism.
+static bool sinkInstruction(
+ Loop &L, Instruction &I, const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
+ const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber, LoopInfo &LI,
+ DominatorTree &DT, BlockFrequencyInfo &BFI, MemorySSAUpdater *MSSAU) {
+ // Compute the set of blocks in loop L which contain a use of I.
+ SmallPtrSet<BasicBlock *, 2> BBs;
+ for (auto &U : I.uses()) {
+ Instruction *UI = cast<Instruction>(U.getUser());
+ // We cannot sink I to PHI-uses.
+ if (isa<PHINode>(UI))
+ return false;
+ // We cannot sink I if it has uses outside of the loop.
+ if (!L.contains(LI.getLoopFor(UI->getParent())))
+ return false;
+ BBs.insert(UI->getParent());
+ }
+
+ // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
+ // BBs.size() to avoid expensive computation.
+ // FIXME: Handle code size growth for min_size and opt_size.
+ if (BBs.size() > MaxNumberOfUseBBsForSinking)
+ return false;
+
+ // Find the set of BBs that we should insert a copy of I.
+ SmallPtrSet<BasicBlock *, 2> BBsToSinkInto =
+ findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI);
+ if (BBsToSinkInto.empty())
+ return false;
+
+ // Return if any of the candidate blocks to sink into is non-cold.
+ if (BBsToSinkInto.size() > 1 &&
+ !llvm::set_is_subset(BBsToSinkInto, LoopBlockNumber))
+ return false;
+
+ // Copy the final BBs into a vector and sort them using the total ordering
+ // of the loop block numbers as iterating the set doesn't give a useful
+ // order. No need to stable sort as the block numbers are a total ordering.
+ SmallVector<BasicBlock *, 2> SortedBBsToSinkInto;
+ llvm::append_range(SortedBBsToSinkInto, BBsToSinkInto);
+ llvm::sort(SortedBBsToSinkInto, [&](BasicBlock *A, BasicBlock *B) {
+ return LoopBlockNumber.find(A)->second < LoopBlockNumber.find(B)->second;
+ });
+
+ BasicBlock *MoveBB = *SortedBBsToSinkInto.begin();
+ // FIXME: Optimize the efficiency for cloned value replacement. The current
+ // implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
+ for (BasicBlock *N : ArrayRef(SortedBBsToSinkInto).drop_front(1)) {
+ assert(LoopBlockNumber.find(N)->second >
+ LoopBlockNumber.find(MoveBB)->second &&
+ "BBs not sorted!");
+ // Clone I and replace its uses.
+ Instruction *IC = I.clone();
+ IC->setName(I.getName());
+ IC->insertBefore(&*N->getFirstInsertionPt());
+
+ if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
+ // Create a new MemoryAccess and let MemorySSA set its defining access.
+ MemoryAccess *NewMemAcc =
+ MSSAU->createMemoryAccessInBB(IC, nullptr, N, MemorySSA::Beginning);
+ if (NewMemAcc) {
+ if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
+ MSSAU->insertDef(MemDef, /*RenameUses=*/true);
+ else {
+ auto *MemUse = cast<MemoryUse>(NewMemAcc);
+ MSSAU->insertUse(MemUse, /*RenameUses=*/true);
+ }
+ }
+ }
+
+ // Replaces uses of I with IC in N
+ I.replaceUsesWithIf(IC, [N](Use &U) {
+ return cast<Instruction>(U.getUser())->getParent() == N;
+ });
+ // Replaces uses of I with IC in blocks dominated by N
+ replaceDominatedUsesWith(&I, IC, DT, N);
+ LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName()
+ << '\n');
+ NumLoopSunkCloned++;
+ }
+ LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n');
+ NumLoopSunk++;
+ I.moveBefore(&*MoveBB->getFirstInsertionPt());
+
+ if (MSSAU)
+ if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
+ MSSAU->getMemorySSA()->getMemoryAccess(&I)))
+ MSSAU->moveToPlace(OldMemAcc, MoveBB, MemorySSA::Beginning);
+
+ return true;
+}
+
+/// Sinks instructions from loop's preheader to the loop body if the
+/// sum frequency of inserted copy is smaller than preheader's frequency.
+static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI,
+ DominatorTree &DT,
+ BlockFrequencyInfo &BFI,
+ MemorySSA &MSSA,
+ ScalarEvolution *SE) {
+ BasicBlock *Preheader = L.getLoopPreheader();
+ assert(Preheader && "Expected loop to have preheader");
+
+ assert(Preheader->getParent()->hasProfileData() &&
+ "Unexpected call when profile data unavailable.");
+
+ const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader);
+ // If there are no basic blocks with lower frequency than the preheader then
+ // we can avoid the detailed analysis as we will never find profitable sinking
+ // opportunities.
+ if (all_of(L.blocks(), [&](const BasicBlock *BB) {
+ return BFI.getBlockFreq(BB) > PreheaderFreq;
+ }))
+ return false;
+
+ MemorySSAUpdater MSSAU(&MSSA);
+ SinkAndHoistLICMFlags LICMFlags(/*IsSink=*/true, &L, &MSSA);
+
+ bool Changed = false;
+
+ // Sort loop's basic blocks by frequency
+ SmallVector<BasicBlock *, 10> ColdLoopBBs;
+ SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber;
+ int i = 0;
+ for (BasicBlock *B : L.blocks())
+ if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) {
+ ColdLoopBBs.push_back(B);
+ LoopBlockNumber[B] = ++i;
+ }
+ llvm::stable_sort(ColdLoopBBs, [&](BasicBlock *A, BasicBlock *B) {
+ return BFI.getBlockFreq(A) < BFI.getBlockFreq(B);
+ });
+
+ // Traverse preheader's instructions in reverse order because if A depends
+ // on B (A appears after B), A needs to be sunk first before B can be
+ // sinked.
+ for (Instruction &I : llvm::make_early_inc_range(llvm::reverse(*Preheader))) {
+ if (isa<PHINode>(&I))
+ continue;
+ // No need to check for instruction's operands are loop invariant.
+ assert(L.hasLoopInvariantOperands(&I) &&
+ "Insts in a loop's preheader should have loop invariant operands!");
+ if (!canSinkOrHoistInst(I, &AA, &DT, &L, MSSAU, false, LICMFlags))
+ continue;
+ if (sinkInstruction(L, I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI,
+ &MSSAU)) {
+ Changed = true;
+ if (SE)
+ SE->forgetBlockAndLoopDispositions(&I);
+ }
+ }
+
+ return Changed;
+}
+
+PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) {
+ LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
+ // Nothing to do if there are no loops.
+ if (LI.empty())
+ return PreservedAnalyses::all();
+
+ AAResults &AA = FAM.getResult<AAManager>(F);
+ DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
+ BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
+ MemorySSA &MSSA = FAM.getResult<MemorySSAAnalysis>(F).getMSSA();
+
+ // We want to do a postorder walk over the loops. Since loops are a tree this
+ // is equivalent to a reversed preorder walk and preorder is easy to compute
+ // without recursion. Since we reverse the preorder, we will visit siblings
+ // in reverse program order. This isn't expected to matter at all but is more
+ // consistent with sinking algorithms which generally work bottom-up.
+ SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder();
+
+ bool Changed = false;
+ do {
+ Loop &L = *PreorderLoops.pop_back_val();
+
+ BasicBlock *Preheader = L.getLoopPreheader();
+ if (!Preheader)
+ continue;
+
+ // Enable LoopSink only when runtime profile is available.
+ // With static profile, the sinking decision may be sub-optimal.
+ if (!Preheader->getParent()->hasProfileData())
+ continue;
+
+ // Note that we don't pass SCEV here because it is only used to invalidate
+ // loops in SCEV and we don't preserve (or request) SCEV at all making that
+ // unnecessary.
+ Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI, MSSA,
+ /*ScalarEvolution*/ nullptr);
+ } while (!PreorderLoops.empty());
+
+ if (!Changed)
+ return PreservedAnalyses::all();
+
+ PreservedAnalyses PA;
+ PA.preserveSet<CFGAnalyses>();
+ PA.preserve<MemorySSAAnalysis>();
+
+ if (VerifyMemorySSA)
+ MSSA.verifyMemorySSA();
+
+ return PA;
+}
+
+namespace {
+struct LegacyLoopSinkPass : public LoopPass {
+ static char ID;
+ LegacyLoopSinkPass() : LoopPass(ID) {
+ initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override {
+ if (skipLoop(L))
+ return false;
+
+ BasicBlock *Preheader = L->getLoopPreheader();
+ if (!Preheader)
+ return false;
+
+ // Enable LoopSink only when runtime profile is available.
+ // With static profile, the sinking decision may be sub-optimal.
+ if (!Preheader->getParent()->hasProfileData())
+ return false;
+
+ AAResults &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
+ MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
+ auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
+ bool Changed = sinkLoopInvariantInstructions(
+ *L, AA, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
+ getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
+ getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(),
+ MSSA, SE ? &SE->getSE() : nullptr);
+
+ if (VerifyMemorySSA)
+ MSSA.verifyMemorySSA();
+
+ return Changed;
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addRequired<BlockFrequencyInfoWrapperPass>();
+ getLoopAnalysisUsage(AU);
+ AU.addRequired<MemorySSAWrapperPass>();
+ AU.addPreserved<MemorySSAWrapperPass>();
+ }
+};
+}
+
+char LegacyLoopSinkPass::ID = 0;
+INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(LoopPass)
+INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
+INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false)
+
+Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); }