diff options
author | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
---|---|---|
committer | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
commit | 6ffe9e53658409f212834330e13564e4952558f6 (patch) | |
tree | 85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm16/lib/Transforms/Scalar/LoopSink.cpp | |
parent | 726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff) | |
download | ydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz |
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm16/lib/Transforms/Scalar/LoopSink.cpp')
-rw-r--r-- | contrib/libs/llvm16/lib/Transforms/Scalar/LoopSink.cpp | 429 |
1 files changed, 429 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Transforms/Scalar/LoopSink.cpp b/contrib/libs/llvm16/lib/Transforms/Scalar/LoopSink.cpp new file mode 100644 index 0000000000..21025b0bdb --- /dev/null +++ b/contrib/libs/llvm16/lib/Transforms/Scalar/LoopSink.cpp @@ -0,0 +1,429 @@ +//===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass does the inverse transformation of what LICM does. +// It traverses all of the instructions in the loop's preheader and sinks +// them to the loop body where frequency is lower than the loop's preheader. +// This pass is a reverse-transformation of LICM. It differs from the Sink +// pass in the following ways: +// +// * It only handles sinking of instructions from the loop's preheader to the +// loop's body +// * It uses alias set tracker to get more accurate alias info +// * It uses block frequency info to find the optimal sinking locations +// +// Overall algorithm: +// +// For I in Preheader: +// InsertBBs = BBs that uses I +// For BB in sorted(LoopBBs): +// DomBBs = BBs in InsertBBs that are dominated by BB +// if freq(DomBBs) > freq(BB) +// InsertBBs = UseBBs - DomBBs + BB +// For BB in InsertBBs: +// Insert I at BB's beginning +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/LoopSink.h" +#include "llvm/ADT/SetOperations.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/MemorySSA.h" +#include "llvm/Analysis/MemorySSAUpdater.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Instructions.h" +#include "llvm/InitializePasses.h" +#include "llvm/Support/BranchProbability.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +using namespace llvm; + +#define DEBUG_TYPE "loopsink" + +STATISTIC(NumLoopSunk, "Number of instructions sunk into loop"); +STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop"); + +static cl::opt<unsigned> SinkFrequencyPercentThreshold( + "sink-freq-percent-threshold", cl::Hidden, cl::init(90), + cl::desc("Do not sink instructions that require cloning unless they " + "execute less than this percent of the time.")); + +static cl::opt<unsigned> MaxNumberOfUseBBsForSinking( + "max-uses-for-sinking", cl::Hidden, cl::init(30), + cl::desc("Do not sink instructions that have too many uses.")); + +/// Return adjusted total frequency of \p BBs. +/// +/// * If there is only one BB, sinking instruction will not introduce code +/// size increase. Thus there is no need to adjust the frequency. +/// * If there are more than one BB, sinking would lead to code size increase. +/// In this case, we add some "tax" to the total frequency to make it harder +/// to sink. E.g. +/// Freq(Preheader) = 100 +/// Freq(BBs) = sum(50, 49) = 99 +/// Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to +/// BBs as the difference is too small to justify the code size increase. +/// To model this, The adjusted Freq(BBs) will be: +/// AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold% +static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs, + BlockFrequencyInfo &BFI) { + BlockFrequency T = 0; + for (BasicBlock *B : BBs) + T += BFI.getBlockFreq(B); + if (BBs.size() > 1) + T /= BranchProbability(SinkFrequencyPercentThreshold, 100); + return T; +} + +/// Return a set of basic blocks to insert sinked instructions. +/// +/// The returned set of basic blocks (BBsToSinkInto) should satisfy: +/// +/// * Inside the loop \p L +/// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto +/// that domintates the UseBB +/// * Has minimum total frequency that is no greater than preheader frequency +/// +/// The purpose of the function is to find the optimal sinking points to +/// minimize execution cost, which is defined as "sum of frequency of +/// BBsToSinkInto". +/// As a result, the returned BBsToSinkInto needs to have minimum total +/// frequency. +/// Additionally, if the total frequency of BBsToSinkInto exceeds preheader +/// frequency, the optimal solution is not sinking (return empty set). +/// +/// \p ColdLoopBBs is used to help find the optimal sinking locations. +/// It stores a list of BBs that is: +/// +/// * Inside the loop \p L +/// * Has a frequency no larger than the loop's preheader +/// * Sorted by BB frequency +/// +/// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()). +/// To avoid expensive computation, we cap the maximum UseBBs.size() in its +/// caller. +static SmallPtrSet<BasicBlock *, 2> +findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs, + const SmallVectorImpl<BasicBlock *> &ColdLoopBBs, + DominatorTree &DT, BlockFrequencyInfo &BFI) { + SmallPtrSet<BasicBlock *, 2> BBsToSinkInto; + if (UseBBs.size() == 0) + return BBsToSinkInto; + + BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end()); + SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB; + + // For every iteration: + // * Pick the ColdestBB from ColdLoopBBs + // * Find the set BBsDominatedByColdestBB that satisfy: + // - BBsDominatedByColdestBB is a subset of BBsToSinkInto + // - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB + // * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove + // BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to + // BBsToSinkInto + for (BasicBlock *ColdestBB : ColdLoopBBs) { + BBsDominatedByColdestBB.clear(); + for (BasicBlock *SinkedBB : BBsToSinkInto) + if (DT.dominates(ColdestBB, SinkedBB)) + BBsDominatedByColdestBB.insert(SinkedBB); + if (BBsDominatedByColdestBB.size() == 0) + continue; + if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) > + BFI.getBlockFreq(ColdestBB)) { + for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) { + BBsToSinkInto.erase(DominatedBB); + } + BBsToSinkInto.insert(ColdestBB); + } + } + + // Can't sink into blocks that have no valid insertion point. + for (BasicBlock *BB : BBsToSinkInto) { + if (BB->getFirstInsertionPt() == BB->end()) { + BBsToSinkInto.clear(); + break; + } + } + + // If the total frequency of BBsToSinkInto is larger than preheader frequency, + // do not sink. + if (adjustedSumFreq(BBsToSinkInto, BFI) > + BFI.getBlockFreq(L.getLoopPreheader())) + BBsToSinkInto.clear(); + return BBsToSinkInto; +} + +// Sinks \p I from the loop \p L's preheader to its uses. Returns true if +// sinking is successful. +// \p LoopBlockNumber is used to sort the insertion blocks to ensure +// determinism. +static bool sinkInstruction( + Loop &L, Instruction &I, const SmallVectorImpl<BasicBlock *> &ColdLoopBBs, + const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber, LoopInfo &LI, + DominatorTree &DT, BlockFrequencyInfo &BFI, MemorySSAUpdater *MSSAU) { + // Compute the set of blocks in loop L which contain a use of I. + SmallPtrSet<BasicBlock *, 2> BBs; + for (auto &U : I.uses()) { + Instruction *UI = cast<Instruction>(U.getUser()); + // We cannot sink I to PHI-uses. + if (isa<PHINode>(UI)) + return false; + // We cannot sink I if it has uses outside of the loop. + if (!L.contains(LI.getLoopFor(UI->getParent()))) + return false; + BBs.insert(UI->getParent()); + } + + // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max + // BBs.size() to avoid expensive computation. + // FIXME: Handle code size growth for min_size and opt_size. + if (BBs.size() > MaxNumberOfUseBBsForSinking) + return false; + + // Find the set of BBs that we should insert a copy of I. + SmallPtrSet<BasicBlock *, 2> BBsToSinkInto = + findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI); + if (BBsToSinkInto.empty()) + return false; + + // Return if any of the candidate blocks to sink into is non-cold. + if (BBsToSinkInto.size() > 1 && + !llvm::set_is_subset(BBsToSinkInto, LoopBlockNumber)) + return false; + + // Copy the final BBs into a vector and sort them using the total ordering + // of the loop block numbers as iterating the set doesn't give a useful + // order. No need to stable sort as the block numbers are a total ordering. + SmallVector<BasicBlock *, 2> SortedBBsToSinkInto; + llvm::append_range(SortedBBsToSinkInto, BBsToSinkInto); + llvm::sort(SortedBBsToSinkInto, [&](BasicBlock *A, BasicBlock *B) { + return LoopBlockNumber.find(A)->second < LoopBlockNumber.find(B)->second; + }); + + BasicBlock *MoveBB = *SortedBBsToSinkInto.begin(); + // FIXME: Optimize the efficiency for cloned value replacement. The current + // implementation is O(SortedBBsToSinkInto.size() * I.num_uses()). + for (BasicBlock *N : ArrayRef(SortedBBsToSinkInto).drop_front(1)) { + assert(LoopBlockNumber.find(N)->second > + LoopBlockNumber.find(MoveBB)->second && + "BBs not sorted!"); + // Clone I and replace its uses. + Instruction *IC = I.clone(); + IC->setName(I.getName()); + IC->insertBefore(&*N->getFirstInsertionPt()); + + if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) { + // Create a new MemoryAccess and let MemorySSA set its defining access. + MemoryAccess *NewMemAcc = + MSSAU->createMemoryAccessInBB(IC, nullptr, N, MemorySSA::Beginning); + if (NewMemAcc) { + if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc)) + MSSAU->insertDef(MemDef, /*RenameUses=*/true); + else { + auto *MemUse = cast<MemoryUse>(NewMemAcc); + MSSAU->insertUse(MemUse, /*RenameUses=*/true); + } + } + } + + // Replaces uses of I with IC in N + I.replaceUsesWithIf(IC, [N](Use &U) { + return cast<Instruction>(U.getUser())->getParent() == N; + }); + // Replaces uses of I with IC in blocks dominated by N + replaceDominatedUsesWith(&I, IC, DT, N); + LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName() + << '\n'); + NumLoopSunkCloned++; + } + LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n'); + NumLoopSunk++; + I.moveBefore(&*MoveBB->getFirstInsertionPt()); + + if (MSSAU) + if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>( + MSSAU->getMemorySSA()->getMemoryAccess(&I))) + MSSAU->moveToPlace(OldMemAcc, MoveBB, MemorySSA::Beginning); + + return true; +} + +/// Sinks instructions from loop's preheader to the loop body if the +/// sum frequency of inserted copy is smaller than preheader's frequency. +static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI, + DominatorTree &DT, + BlockFrequencyInfo &BFI, + MemorySSA &MSSA, + ScalarEvolution *SE) { + BasicBlock *Preheader = L.getLoopPreheader(); + assert(Preheader && "Expected loop to have preheader"); + + assert(Preheader->getParent()->hasProfileData() && + "Unexpected call when profile data unavailable."); + + const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader); + // If there are no basic blocks with lower frequency than the preheader then + // we can avoid the detailed analysis as we will never find profitable sinking + // opportunities. + if (all_of(L.blocks(), [&](const BasicBlock *BB) { + return BFI.getBlockFreq(BB) > PreheaderFreq; + })) + return false; + + MemorySSAUpdater MSSAU(&MSSA); + SinkAndHoistLICMFlags LICMFlags(/*IsSink=*/true, &L, &MSSA); + + bool Changed = false; + + // Sort loop's basic blocks by frequency + SmallVector<BasicBlock *, 10> ColdLoopBBs; + SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber; + int i = 0; + for (BasicBlock *B : L.blocks()) + if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) { + ColdLoopBBs.push_back(B); + LoopBlockNumber[B] = ++i; + } + llvm::stable_sort(ColdLoopBBs, [&](BasicBlock *A, BasicBlock *B) { + return BFI.getBlockFreq(A) < BFI.getBlockFreq(B); + }); + + // Traverse preheader's instructions in reverse order because if A depends + // on B (A appears after B), A needs to be sunk first before B can be + // sinked. + for (Instruction &I : llvm::make_early_inc_range(llvm::reverse(*Preheader))) { + if (isa<PHINode>(&I)) + continue; + // No need to check for instruction's operands are loop invariant. + assert(L.hasLoopInvariantOperands(&I) && + "Insts in a loop's preheader should have loop invariant operands!"); + if (!canSinkOrHoistInst(I, &AA, &DT, &L, MSSAU, false, LICMFlags)) + continue; + if (sinkInstruction(L, I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI, + &MSSAU)) { + Changed = true; + if (SE) + SE->forgetBlockAndLoopDispositions(&I); + } + } + + return Changed; +} + +PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) { + LoopInfo &LI = FAM.getResult<LoopAnalysis>(F); + // Nothing to do if there are no loops. + if (LI.empty()) + return PreservedAnalyses::all(); + + AAResults &AA = FAM.getResult<AAManager>(F); + DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); + BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F); + MemorySSA &MSSA = FAM.getResult<MemorySSAAnalysis>(F).getMSSA(); + + // We want to do a postorder walk over the loops. Since loops are a tree this + // is equivalent to a reversed preorder walk and preorder is easy to compute + // without recursion. Since we reverse the preorder, we will visit siblings + // in reverse program order. This isn't expected to matter at all but is more + // consistent with sinking algorithms which generally work bottom-up. + SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder(); + + bool Changed = false; + do { + Loop &L = *PreorderLoops.pop_back_val(); + + BasicBlock *Preheader = L.getLoopPreheader(); + if (!Preheader) + continue; + + // Enable LoopSink only when runtime profile is available. + // With static profile, the sinking decision may be sub-optimal. + if (!Preheader->getParent()->hasProfileData()) + continue; + + // Note that we don't pass SCEV here because it is only used to invalidate + // loops in SCEV and we don't preserve (or request) SCEV at all making that + // unnecessary. + Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI, MSSA, + /*ScalarEvolution*/ nullptr); + } while (!PreorderLoops.empty()); + + if (!Changed) + return PreservedAnalyses::all(); + + PreservedAnalyses PA; + PA.preserveSet<CFGAnalyses>(); + PA.preserve<MemorySSAAnalysis>(); + + if (VerifyMemorySSA) + MSSA.verifyMemorySSA(); + + return PA; +} + +namespace { +struct LegacyLoopSinkPass : public LoopPass { + static char ID; + LegacyLoopSinkPass() : LoopPass(ID) { + initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry()); + } + + bool runOnLoop(Loop *L, LPPassManager &LPM) override { + if (skipLoop(L)) + return false; + + BasicBlock *Preheader = L->getLoopPreheader(); + if (!Preheader) + return false; + + // Enable LoopSink only when runtime profile is available. + // With static profile, the sinking decision may be sub-optimal. + if (!Preheader->getParent()->hasProfileData()) + return false; + + AAResults &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); + MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); + auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); + bool Changed = sinkLoopInvariantInstructions( + *L, AA, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), + getAnalysis<DominatorTreeWrapperPass>().getDomTree(), + getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(), + MSSA, SE ? &SE->getSE() : nullptr); + + if (VerifyMemorySSA) + MSSA.verifyMemorySSA(); + + return Changed; + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + AU.addRequired<BlockFrequencyInfoWrapperPass>(); + getLoopAnalysisUsage(AU); + AU.addRequired<MemorySSAWrapperPass>(); + AU.addPreserved<MemorySSAWrapperPass>(); + } +}; +} + +char LegacyLoopSinkPass::ID = 0; +INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, + false) +INITIALIZE_PASS_DEPENDENCY(LoopPass) +INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) +INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false) + +Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); } |