aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Transforms/Scalar/LoopSimplifyCFG.cpp
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm16/lib/Transforms/Scalar/LoopSimplifyCFG.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm16/lib/Transforms/Scalar/LoopSimplifyCFG.cpp')
-rw-r--r--contrib/libs/llvm16/lib/Transforms/Scalar/LoopSimplifyCFG.cpp785
1 files changed, 785 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Transforms/Scalar/LoopSimplifyCFG.cpp b/contrib/libs/llvm16/lib/Transforms/Scalar/LoopSimplifyCFG.cpp
new file mode 100644
index 0000000000..8d59fdff92
--- /dev/null
+++ b/contrib/libs/llvm16/lib/Transforms/Scalar/LoopSimplifyCFG.cpp
@@ -0,0 +1,785 @@
+//===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Loop SimplifyCFG Pass. This pass is responsible for
+// basic loop CFG cleanup, primarily to assist other loop passes. If you
+// encounter a noncanonical CFG construct that causes another loop pass to
+// perform suboptimally, this is the place to fix it up.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/DependenceAnalysis.h"
+#include "llvm/Analysis/DomTreeUpdater.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/Analysis/MemorySSAUpdater.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Scalar/LoopPassManager.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include <optional>
+using namespace llvm;
+
+#define DEBUG_TYPE "loop-simplifycfg"
+
+static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
+ cl::init(true));
+
+STATISTIC(NumTerminatorsFolded,
+ "Number of terminators folded to unconditional branches");
+STATISTIC(NumLoopBlocksDeleted,
+ "Number of loop blocks deleted");
+STATISTIC(NumLoopExitsDeleted,
+ "Number of loop exiting edges deleted");
+
+/// If \p BB is a switch or a conditional branch, but only one of its successors
+/// can be reached from this block in runtime, return this successor. Otherwise,
+/// return nullptr.
+static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
+ Instruction *TI = BB->getTerminator();
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (BI->isUnconditional())
+ return nullptr;
+ if (BI->getSuccessor(0) == BI->getSuccessor(1))
+ return BI->getSuccessor(0);
+ ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
+ if (!Cond)
+ return nullptr;
+ return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
+ }
+
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
+ if (!CI)
+ return nullptr;
+ for (auto Case : SI->cases())
+ if (Case.getCaseValue() == CI)
+ return Case.getCaseSuccessor();
+ return SI->getDefaultDest();
+ }
+
+ return nullptr;
+}
+
+/// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
+static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop,
+ Loop *LastLoop = nullptr) {
+ assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) &&
+ "First loop is supposed to be inside of last loop!");
+ assert(FirstLoop->contains(BB) && "Must be a loop block!");
+ for (Loop *Current = FirstLoop; Current != LastLoop;
+ Current = Current->getParentLoop())
+ Current->removeBlockFromLoop(BB);
+}
+
+/// Find innermost loop that contains at least one block from \p BBs and
+/// contains the header of loop \p L.
+static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs,
+ Loop &L, LoopInfo &LI) {
+ Loop *Innermost = nullptr;
+ for (BasicBlock *BB : BBs) {
+ Loop *BBL = LI.getLoopFor(BB);
+ while (BBL && !BBL->contains(L.getHeader()))
+ BBL = BBL->getParentLoop();
+ if (BBL == &L)
+ BBL = BBL->getParentLoop();
+ if (!BBL)
+ continue;
+ if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth())
+ Innermost = BBL;
+ }
+ return Innermost;
+}
+
+namespace {
+/// Helper class that can turn branches and switches with constant conditions
+/// into unconditional branches.
+class ConstantTerminatorFoldingImpl {
+private:
+ Loop &L;
+ LoopInfo &LI;
+ DominatorTree &DT;
+ ScalarEvolution &SE;
+ MemorySSAUpdater *MSSAU;
+ LoopBlocksDFS DFS;
+ DomTreeUpdater DTU;
+ SmallVector<DominatorTree::UpdateType, 16> DTUpdates;
+
+ // Whether or not the current loop has irreducible CFG.
+ bool HasIrreducibleCFG = false;
+ // Whether or not the current loop will still exist after terminator constant
+ // folding will be done. In theory, there are two ways how it can happen:
+ // 1. Loop's latch(es) become unreachable from loop header;
+ // 2. Loop's header becomes unreachable from method entry.
+ // In practice, the second situation is impossible because we only modify the
+ // current loop and its preheader and do not affect preheader's reachibility
+ // from any other block. So this variable set to true means that loop's latch
+ // has become unreachable from loop header.
+ bool DeleteCurrentLoop = false;
+
+ // The blocks of the original loop that will still be reachable from entry
+ // after the constant folding.
+ SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
+ // The blocks of the original loop that will become unreachable from entry
+ // after the constant folding.
+ SmallVector<BasicBlock *, 8> DeadLoopBlocks;
+ // The exits of the original loop that will still be reachable from entry
+ // after the constant folding.
+ SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
+ // The exits of the original loop that will become unreachable from entry
+ // after the constant folding.
+ SmallVector<BasicBlock *, 8> DeadExitBlocks;
+ // The blocks that will still be a part of the current loop after folding.
+ SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
+ // The blocks that have terminators with constant condition that can be
+ // folded. Note: fold candidates should be in L but not in any of its
+ // subloops to avoid complex LI updates.
+ SmallVector<BasicBlock *, 8> FoldCandidates;
+
+ void dump() const {
+ dbgs() << "Constant terminator folding for loop " << L << "\n";
+ dbgs() << "After terminator constant-folding, the loop will";
+ if (!DeleteCurrentLoop)
+ dbgs() << " not";
+ dbgs() << " be destroyed\n";
+ auto PrintOutVector = [&](const char *Message,
+ const SmallVectorImpl<BasicBlock *> &S) {
+ dbgs() << Message << "\n";
+ for (const BasicBlock *BB : S)
+ dbgs() << "\t" << BB->getName() << "\n";
+ };
+ auto PrintOutSet = [&](const char *Message,
+ const SmallPtrSetImpl<BasicBlock *> &S) {
+ dbgs() << Message << "\n";
+ for (const BasicBlock *BB : S)
+ dbgs() << "\t" << BB->getName() << "\n";
+ };
+ PrintOutVector("Blocks in which we can constant-fold terminator:",
+ FoldCandidates);
+ PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
+ PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
+ PrintOutSet("Live exit blocks:", LiveExitBlocks);
+ PrintOutVector("Dead exit blocks:", DeadExitBlocks);
+ if (!DeleteCurrentLoop)
+ PrintOutSet("The following blocks will still be part of the loop:",
+ BlocksInLoopAfterFolding);
+ }
+
+ /// Whether or not the current loop has irreducible CFG.
+ bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
+ assert(DFS.isComplete() && "DFS is expected to be finished");
+ // Index of a basic block in RPO traversal.
+ DenseMap<const BasicBlock *, unsigned> RPO;
+ unsigned Current = 0;
+ for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
+ RPO[*I] = Current++;
+
+ for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
+ BasicBlock *BB = *I;
+ for (auto *Succ : successors(BB))
+ if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
+ // If an edge goes from a block with greater order number into a block
+ // with lesses number, and it is not a loop backedge, then it can only
+ // be a part of irreducible non-loop cycle.
+ return true;
+ }
+ return false;
+ }
+
+ /// Fill all information about status of blocks and exits of the current loop
+ /// if constant folding of all branches will be done.
+ void analyze() {
+ DFS.perform(&LI);
+ assert(DFS.isComplete() && "DFS is expected to be finished");
+
+ // TODO: The algorithm below relies on both RPO and Postorder traversals.
+ // When the loop has only reducible CFG inside, then the invariant "all
+ // predecessors of X are processed before X in RPO" is preserved. However
+ // an irreducible loop can break this invariant (e.g. latch does not have to
+ // be the last block in the traversal in this case, and the algorithm relies
+ // on this). We can later decide to support such cases by altering the
+ // algorithms, but so far we just give up analyzing them.
+ if (hasIrreducibleCFG(DFS)) {
+ HasIrreducibleCFG = true;
+ return;
+ }
+
+ // Collect live and dead loop blocks and exits.
+ LiveLoopBlocks.insert(L.getHeader());
+ for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
+ BasicBlock *BB = *I;
+
+ // If a loop block wasn't marked as live so far, then it's dead.
+ if (!LiveLoopBlocks.count(BB)) {
+ DeadLoopBlocks.push_back(BB);
+ continue;
+ }
+
+ BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
+
+ // If a block has only one live successor, it's a candidate on constant
+ // folding. Only handle blocks from current loop: branches in child loops
+ // are skipped because if they can be folded, they should be folded during
+ // the processing of child loops.
+ bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L;
+ if (TakeFoldCandidate)
+ FoldCandidates.push_back(BB);
+
+ // Handle successors.
+ for (BasicBlock *Succ : successors(BB))
+ if (!TakeFoldCandidate || TheOnlySucc == Succ) {
+ if (L.contains(Succ))
+ LiveLoopBlocks.insert(Succ);
+ else
+ LiveExitBlocks.insert(Succ);
+ }
+ }
+
+ // Amount of dead and live loop blocks should match the total number of
+ // blocks in loop.
+ assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
+ "Malformed block sets?");
+
+ // Now, all exit blocks that are not marked as live are dead, if all their
+ // predecessors are in the loop. This may not be the case, as the input loop
+ // may not by in loop-simplify/canonical form.
+ SmallVector<BasicBlock *, 8> ExitBlocks;
+ L.getExitBlocks(ExitBlocks);
+ SmallPtrSet<BasicBlock *, 8> UniqueDeadExits;
+ for (auto *ExitBlock : ExitBlocks)
+ if (!LiveExitBlocks.count(ExitBlock) &&
+ UniqueDeadExits.insert(ExitBlock).second &&
+ all_of(predecessors(ExitBlock),
+ [this](BasicBlock *Pred) { return L.contains(Pred); }))
+ DeadExitBlocks.push_back(ExitBlock);
+
+ // Whether or not the edge From->To will still be present in graph after the
+ // folding.
+ auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
+ if (!LiveLoopBlocks.count(From))
+ return false;
+ BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
+ return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L;
+ };
+
+ // The loop will not be destroyed if its latch is live.
+ DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
+
+ // If we are going to delete the current loop completely, no extra analysis
+ // is needed.
+ if (DeleteCurrentLoop)
+ return;
+
+ // Otherwise, we should check which blocks will still be a part of the
+ // current loop after the transform.
+ BlocksInLoopAfterFolding.insert(L.getLoopLatch());
+ // If the loop is live, then we should compute what blocks are still in
+ // loop after all branch folding has been done. A block is in loop if
+ // it has a live edge to another block that is in the loop; by definition,
+ // latch is in the loop.
+ auto BlockIsInLoop = [&](BasicBlock *BB) {
+ return any_of(successors(BB), [&](BasicBlock *Succ) {
+ return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
+ });
+ };
+ for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
+ BasicBlock *BB = *I;
+ if (BlockIsInLoop(BB))
+ BlocksInLoopAfterFolding.insert(BB);
+ }
+
+ assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
+ "Header not in loop?");
+ assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
+ "All blocks that stay in loop should be live!");
+ }
+
+ /// We need to preserve static reachibility of all loop exit blocks (this is)
+ /// required by loop pass manager. In order to do it, we make the following
+ /// trick:
+ ///
+ /// preheader:
+ /// <preheader code>
+ /// br label %loop_header
+ ///
+ /// loop_header:
+ /// ...
+ /// br i1 false, label %dead_exit, label %loop_block
+ /// ...
+ ///
+ /// We cannot simply remove edge from the loop to dead exit because in this
+ /// case dead_exit (and its successors) may become unreachable. To avoid that,
+ /// we insert the following fictive preheader:
+ ///
+ /// preheader:
+ /// <preheader code>
+ /// switch i32 0, label %preheader-split,
+ /// [i32 1, label %dead_exit_1],
+ /// [i32 2, label %dead_exit_2],
+ /// ...
+ /// [i32 N, label %dead_exit_N],
+ ///
+ /// preheader-split:
+ /// br label %loop_header
+ ///
+ /// loop_header:
+ /// ...
+ /// br i1 false, label %dead_exit_N, label %loop_block
+ /// ...
+ ///
+ /// Doing so, we preserve static reachibility of all dead exits and can later
+ /// remove edges from the loop to these blocks.
+ void handleDeadExits() {
+ // If no dead exits, nothing to do.
+ if (DeadExitBlocks.empty())
+ return;
+
+ // Construct split preheader and the dummy switch to thread edges from it to
+ // dead exits.
+ BasicBlock *Preheader = L.getLoopPreheader();
+ BasicBlock *NewPreheader = llvm::SplitBlock(
+ Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU);
+
+ IRBuilder<> Builder(Preheader->getTerminator());
+ SwitchInst *DummySwitch =
+ Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
+ Preheader->getTerminator()->eraseFromParent();
+
+ unsigned DummyIdx = 1;
+ for (BasicBlock *BB : DeadExitBlocks) {
+ // Eliminate all Phis and LandingPads from dead exits.
+ // TODO: Consider removing all instructions in this dead block.
+ SmallVector<Instruction *, 4> DeadInstructions;
+ for (auto &PN : BB->phis())
+ DeadInstructions.push_back(&PN);
+
+ if (auto *LandingPad = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()))
+ DeadInstructions.emplace_back(LandingPad);
+
+ for (Instruction *I : DeadInstructions) {
+ SE.forgetBlockAndLoopDispositions(I);
+ I->replaceAllUsesWith(PoisonValue::get(I->getType()));
+ I->eraseFromParent();
+ }
+
+ assert(DummyIdx != 0 && "Too many dead exits!");
+ DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
+ DTUpdates.push_back({DominatorTree::Insert, Preheader, BB});
+ ++NumLoopExitsDeleted;
+ }
+
+ assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
+ if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
+ // When we break dead edges, the outer loop may become unreachable from
+ // the current loop. We need to fix loop info accordingly. For this, we
+ // find the most nested loop that still contains L and remove L from all
+ // loops that are inside of it.
+ Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI);
+
+ // Okay, our loop is no longer in the outer loop (and maybe not in some of
+ // its parents as well). Make the fixup.
+ if (StillReachable != OuterLoop) {
+ LI.changeLoopFor(NewPreheader, StillReachable);
+ removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable);
+ for (auto *BB : L.blocks())
+ removeBlockFromLoops(BB, OuterLoop, StillReachable);
+ OuterLoop->removeChildLoop(&L);
+ if (StillReachable)
+ StillReachable->addChildLoop(&L);
+ else
+ LI.addTopLevelLoop(&L);
+
+ // Some values from loops in [OuterLoop, StillReachable) could be used
+ // in the current loop. Now it is not their child anymore, so such uses
+ // require LCSSA Phis.
+ Loop *FixLCSSALoop = OuterLoop;
+ while (FixLCSSALoop->getParentLoop() != StillReachable)
+ FixLCSSALoop = FixLCSSALoop->getParentLoop();
+ assert(FixLCSSALoop && "Should be a loop!");
+ // We need all DT updates to be done before forming LCSSA.
+ if (MSSAU)
+ MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
+ else
+ DTU.applyUpdates(DTUpdates);
+ DTUpdates.clear();
+ formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
+ SE.forgetBlockAndLoopDispositions();
+ }
+ }
+
+ if (MSSAU) {
+ // Clear all updates now. Facilitates deletes that follow.
+ MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
+ DTUpdates.clear();
+ if (VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+ }
+ }
+
+ /// Delete loop blocks that have become unreachable after folding. Make all
+ /// relevant updates to DT and LI.
+ void deleteDeadLoopBlocks() {
+ if (MSSAU) {
+ SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
+ DeadLoopBlocks.end());
+ MSSAU->removeBlocks(DeadLoopBlocksSet);
+ }
+
+ // The function LI.erase has some invariants that need to be preserved when
+ // it tries to remove a loop which is not the top-level loop. In particular,
+ // it requires loop's preheader to be strictly in loop's parent. We cannot
+ // just remove blocks one by one, because after removal of preheader we may
+ // break this invariant for the dead loop. So we detatch and erase all dead
+ // loops beforehand.
+ for (auto *BB : DeadLoopBlocks)
+ if (LI.isLoopHeader(BB)) {
+ assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
+ Loop *DL = LI.getLoopFor(BB);
+ if (!DL->isOutermost()) {
+ for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop())
+ for (auto *BB : DL->getBlocks())
+ PL->removeBlockFromLoop(BB);
+ DL->getParentLoop()->removeChildLoop(DL);
+ LI.addTopLevelLoop(DL);
+ }
+ LI.erase(DL);
+ }
+
+ for (auto *BB : DeadLoopBlocks) {
+ assert(BB != L.getHeader() &&
+ "Header of the current loop cannot be dead!");
+ LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
+ << "\n");
+ LI.removeBlock(BB);
+ }
+
+ detachDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true);
+ DTU.applyUpdates(DTUpdates);
+ DTUpdates.clear();
+ for (auto *BB : DeadLoopBlocks)
+ DTU.deleteBB(BB);
+
+ NumLoopBlocksDeleted += DeadLoopBlocks.size();
+ }
+
+ /// Constant-fold terminators of blocks accumulated in FoldCandidates into the
+ /// unconditional branches.
+ void foldTerminators() {
+ for (BasicBlock *BB : FoldCandidates) {
+ assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
+ BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
+ assert(TheOnlySucc && "Should have one live successor!");
+
+ LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
+ << " with an unconditional branch to the block "
+ << TheOnlySucc->getName() << "\n");
+
+ SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
+ // Remove all BB's successors except for the live one.
+ unsigned TheOnlySuccDuplicates = 0;
+ for (auto *Succ : successors(BB))
+ if (Succ != TheOnlySucc) {
+ DeadSuccessors.insert(Succ);
+ // If our successor lies in a different loop, we don't want to remove
+ // the one-input Phi because it is a LCSSA Phi.
+ bool PreserveLCSSAPhi = !L.contains(Succ);
+ Succ->removePredecessor(BB, PreserveLCSSAPhi);
+ if (MSSAU)
+ MSSAU->removeEdge(BB, Succ);
+ } else
+ ++TheOnlySuccDuplicates;
+
+ assert(TheOnlySuccDuplicates > 0 && "Should be!");
+ // If TheOnlySucc was BB's successor more than once, after transform it
+ // will be its successor only once. Remove redundant inputs from
+ // TheOnlySucc's Phis.
+ bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
+ for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
+ TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
+ if (MSSAU && TheOnlySuccDuplicates > 1)
+ MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
+
+ IRBuilder<> Builder(BB->getContext());
+ Instruction *Term = BB->getTerminator();
+ Builder.SetInsertPoint(Term);
+ Builder.CreateBr(TheOnlySucc);
+ Term->eraseFromParent();
+
+ for (auto *DeadSucc : DeadSuccessors)
+ DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc});
+
+ ++NumTerminatorsFolded;
+ }
+ }
+
+public:
+ ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
+ ScalarEvolution &SE,
+ MemorySSAUpdater *MSSAU)
+ : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L),
+ DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {}
+ bool run() {
+ assert(L.getLoopLatch() && "Should be single latch!");
+
+ // Collect all available information about status of blocks after constant
+ // folding.
+ analyze();
+ BasicBlock *Header = L.getHeader();
+ (void)Header;
+
+ LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName()
+ << ": ");
+
+ if (HasIrreducibleCFG) {
+ LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
+ return false;
+ }
+
+ // Nothing to constant-fold.
+ if (FoldCandidates.empty()) {
+ LLVM_DEBUG(
+ dbgs() << "No constant terminator folding candidates found in loop "
+ << Header->getName() << "\n");
+ return false;
+ }
+
+ // TODO: Support deletion of the current loop.
+ if (DeleteCurrentLoop) {
+ LLVM_DEBUG(
+ dbgs()
+ << "Give up constant terminator folding in loop " << Header->getName()
+ << ": we don't currently support deletion of the current loop.\n");
+ return false;
+ }
+
+ // TODO: Support blocks that are not dead, but also not in loop after the
+ // folding.
+ if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
+ L.getNumBlocks()) {
+ LLVM_DEBUG(
+ dbgs() << "Give up constant terminator folding in loop "
+ << Header->getName() << ": we don't currently"
+ " support blocks that are not dead, but will stop "
+ "being a part of the loop after constant-folding.\n");
+ return false;
+ }
+
+ // TODO: Tokens may breach LCSSA form by default. However, the transform for
+ // dead exit blocks requires LCSSA form to be maintained for all values,
+ // tokens included, otherwise it may break use-def dominance (see PR56243).
+ if (!DeadExitBlocks.empty() && !L.isLCSSAForm(DT, /*IgnoreTokens*/ false)) {
+ assert(L.isLCSSAForm(DT, /*IgnoreTokens*/ true) &&
+ "LCSSA broken not by tokens?");
+ LLVM_DEBUG(dbgs() << "Give up constant terminator folding in loop "
+ << Header->getName()
+ << ": tokens uses potentially break LCSSA form.\n");
+ return false;
+ }
+
+ SE.forgetTopmostLoop(&L);
+ // Dump analysis results.
+ LLVM_DEBUG(dump());
+
+ LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
+ << " terminators in loop " << Header->getName() << "\n");
+
+ if (!DeadLoopBlocks.empty())
+ SE.forgetBlockAndLoopDispositions();
+
+ // Make the actual transforms.
+ handleDeadExits();
+ foldTerminators();
+
+ if (!DeadLoopBlocks.empty()) {
+ LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
+ << " dead blocks in loop " << Header->getName() << "\n");
+ deleteDeadLoopBlocks();
+ } else {
+ // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
+ DTU.applyUpdates(DTUpdates);
+ DTUpdates.clear();
+ }
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+#ifndef NDEBUG
+ // Make sure that we have preserved all data structures after the transform.
+#if defined(EXPENSIVE_CHECKS)
+ assert(DT.verify(DominatorTree::VerificationLevel::Full) &&
+ "DT broken after transform!");
+#else
+ assert(DT.verify(DominatorTree::VerificationLevel::Fast) &&
+ "DT broken after transform!");
+#endif
+ assert(DT.isReachableFromEntry(Header));
+ LI.verify(DT);
+#endif
+
+ return true;
+ }
+
+ bool foldingBreaksCurrentLoop() const {
+ return DeleteCurrentLoop;
+ }
+};
+} // namespace
+
+/// Turn branches and switches with known constant conditions into unconditional
+/// branches.
+static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
+ ScalarEvolution &SE,
+ MemorySSAUpdater *MSSAU,
+ bool &IsLoopDeleted) {
+ if (!EnableTermFolding)
+ return false;
+
+ // To keep things simple, only process loops with single latch. We
+ // canonicalize most loops to this form. We can support multi-latch if needed.
+ if (!L.getLoopLatch())
+ return false;
+
+ ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
+ bool Changed = BranchFolder.run();
+ IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop();
+ return Changed;
+}
+
+static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
+ LoopInfo &LI, MemorySSAUpdater *MSSAU,
+ ScalarEvolution &SE) {
+ bool Changed = false;
+ DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
+ // Copy blocks into a temporary array to avoid iterator invalidation issues
+ // as we remove them.
+ SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
+
+ for (auto &Block : Blocks) {
+ // Attempt to merge blocks in the trivial case. Don't modify blocks which
+ // belong to other loops.
+ BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
+ if (!Succ)
+ continue;
+
+ BasicBlock *Pred = Succ->getSinglePredecessor();
+ if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
+ continue;
+
+ // Merge Succ into Pred and delete it.
+ MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ Changed = true;
+ }
+
+ if (Changed)
+ SE.forgetBlockAndLoopDispositions();
+
+ return Changed;
+}
+
+static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
+ ScalarEvolution &SE, MemorySSAUpdater *MSSAU,
+ bool &IsLoopDeleted) {
+ bool Changed = false;
+
+ // Constant-fold terminators with known constant conditions.
+ Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted);
+
+ if (IsLoopDeleted)
+ return true;
+
+ // Eliminate unconditional branches by merging blocks into their predecessors.
+ Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU, SE);
+
+ if (Changed)
+ SE.forgetTopmostLoop(&L);
+
+ return Changed;
+}
+
+PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
+ LoopStandardAnalysisResults &AR,
+ LPMUpdater &LPMU) {
+ std::optional<MemorySSAUpdater> MSSAU;
+ if (AR.MSSA)
+ MSSAU = MemorySSAUpdater(AR.MSSA);
+ bool DeleteCurrentLoop = false;
+ if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, MSSAU ? &*MSSAU : nullptr,
+ DeleteCurrentLoop))
+ return PreservedAnalyses::all();
+
+ if (DeleteCurrentLoop)
+ LPMU.markLoopAsDeleted(L, "loop-simplifycfg");
+
+ auto PA = getLoopPassPreservedAnalyses();
+ if (AR.MSSA)
+ PA.preserve<MemorySSAAnalysis>();
+ return PA;
+}
+
+namespace {
+class LoopSimplifyCFGLegacyPass : public LoopPass {
+public:
+ static char ID; // Pass ID, replacement for typeid
+ LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
+ initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override {
+ if (skipLoop(L))
+ return false;
+
+ DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+ auto *MSSAA = getAnalysisIfAvailable<MemorySSAWrapperPass>();
+ std::optional<MemorySSAUpdater> MSSAU;
+ if (MSSAA)
+ MSSAU = MemorySSAUpdater(&MSSAA->getMSSA());
+ if (MSSAA && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+ bool DeleteCurrentLoop = false;
+ bool Changed = simplifyLoopCFG(*L, DT, LI, SE, MSSAU ? &*MSSAU : nullptr,
+ DeleteCurrentLoop);
+ if (DeleteCurrentLoop)
+ LPM.markLoopAsDeleted(*L);
+ return Changed;
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addPreserved<MemorySSAWrapperPass>();
+ AU.addPreserved<DependenceAnalysisWrapperPass>();
+ getLoopAnalysisUsage(AU);
+ }
+};
+} // end namespace
+
+char LoopSimplifyCFGLegacyPass::ID = 0;
+INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
+ "Simplify loop CFG", false, false)
+INITIALIZE_PASS_DEPENDENCY(LoopPass)
+INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
+INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
+ "Simplify loop CFG", false, false)
+
+Pass *llvm::createLoopSimplifyCFGPass() {
+ return new LoopSimplifyCFGLegacyPass();
+}