diff options
author | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
---|---|---|
committer | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
commit | 6ffe9e53658409f212834330e13564e4952558f6 (patch) | |
tree | 85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm16/lib/Transforms/Scalar/LoopSimplifyCFG.cpp | |
parent | 726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff) | |
download | ydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz |
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm16/lib/Transforms/Scalar/LoopSimplifyCFG.cpp')
-rw-r--r-- | contrib/libs/llvm16/lib/Transforms/Scalar/LoopSimplifyCFG.cpp | 785 |
1 files changed, 785 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Transforms/Scalar/LoopSimplifyCFG.cpp b/contrib/libs/llvm16/lib/Transforms/Scalar/LoopSimplifyCFG.cpp new file mode 100644 index 0000000000..8d59fdff92 --- /dev/null +++ b/contrib/libs/llvm16/lib/Transforms/Scalar/LoopSimplifyCFG.cpp @@ -0,0 +1,785 @@ +//===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the Loop SimplifyCFG Pass. This pass is responsible for +// basic loop CFG cleanup, primarily to assist other loop passes. If you +// encounter a noncanonical CFG construct that causes another loop pass to +// perform suboptimally, this is the place to fix it up. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/LoopSimplifyCFG.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/DependenceAnalysis.h" +#include "llvm/Analysis/DomTreeUpdater.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopIterator.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/MemorySSA.h" +#include "llvm/Analysis/MemorySSAUpdater.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/InitializePasses.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Scalar/LoopPassManager.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +#include <optional> +using namespace llvm; + +#define DEBUG_TYPE "loop-simplifycfg" + +static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding", + cl::init(true)); + +STATISTIC(NumTerminatorsFolded, + "Number of terminators folded to unconditional branches"); +STATISTIC(NumLoopBlocksDeleted, + "Number of loop blocks deleted"); +STATISTIC(NumLoopExitsDeleted, + "Number of loop exiting edges deleted"); + +/// If \p BB is a switch or a conditional branch, but only one of its successors +/// can be reached from this block in runtime, return this successor. Otherwise, +/// return nullptr. +static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) { + Instruction *TI = BB->getTerminator(); + if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { + if (BI->isUnconditional()) + return nullptr; + if (BI->getSuccessor(0) == BI->getSuccessor(1)) + return BI->getSuccessor(0); + ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); + if (!Cond) + return nullptr; + return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0); + } + + if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { + auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); + if (!CI) + return nullptr; + for (auto Case : SI->cases()) + if (Case.getCaseValue() == CI) + return Case.getCaseSuccessor(); + return SI->getDefaultDest(); + } + + return nullptr; +} + +/// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain. +static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop, + Loop *LastLoop = nullptr) { + assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) && + "First loop is supposed to be inside of last loop!"); + assert(FirstLoop->contains(BB) && "Must be a loop block!"); + for (Loop *Current = FirstLoop; Current != LastLoop; + Current = Current->getParentLoop()) + Current->removeBlockFromLoop(BB); +} + +/// Find innermost loop that contains at least one block from \p BBs and +/// contains the header of loop \p L. +static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs, + Loop &L, LoopInfo &LI) { + Loop *Innermost = nullptr; + for (BasicBlock *BB : BBs) { + Loop *BBL = LI.getLoopFor(BB); + while (BBL && !BBL->contains(L.getHeader())) + BBL = BBL->getParentLoop(); + if (BBL == &L) + BBL = BBL->getParentLoop(); + if (!BBL) + continue; + if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth()) + Innermost = BBL; + } + return Innermost; +} + +namespace { +/// Helper class that can turn branches and switches with constant conditions +/// into unconditional branches. +class ConstantTerminatorFoldingImpl { +private: + Loop &L; + LoopInfo &LI; + DominatorTree &DT; + ScalarEvolution &SE; + MemorySSAUpdater *MSSAU; + LoopBlocksDFS DFS; + DomTreeUpdater DTU; + SmallVector<DominatorTree::UpdateType, 16> DTUpdates; + + // Whether or not the current loop has irreducible CFG. + bool HasIrreducibleCFG = false; + // Whether or not the current loop will still exist after terminator constant + // folding will be done. In theory, there are two ways how it can happen: + // 1. Loop's latch(es) become unreachable from loop header; + // 2. Loop's header becomes unreachable from method entry. + // In practice, the second situation is impossible because we only modify the + // current loop and its preheader and do not affect preheader's reachibility + // from any other block. So this variable set to true means that loop's latch + // has become unreachable from loop header. + bool DeleteCurrentLoop = false; + + // The blocks of the original loop that will still be reachable from entry + // after the constant folding. + SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks; + // The blocks of the original loop that will become unreachable from entry + // after the constant folding. + SmallVector<BasicBlock *, 8> DeadLoopBlocks; + // The exits of the original loop that will still be reachable from entry + // after the constant folding. + SmallPtrSet<BasicBlock *, 8> LiveExitBlocks; + // The exits of the original loop that will become unreachable from entry + // after the constant folding. + SmallVector<BasicBlock *, 8> DeadExitBlocks; + // The blocks that will still be a part of the current loop after folding. + SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding; + // The blocks that have terminators with constant condition that can be + // folded. Note: fold candidates should be in L but not in any of its + // subloops to avoid complex LI updates. + SmallVector<BasicBlock *, 8> FoldCandidates; + + void dump() const { + dbgs() << "Constant terminator folding for loop " << L << "\n"; + dbgs() << "After terminator constant-folding, the loop will"; + if (!DeleteCurrentLoop) + dbgs() << " not"; + dbgs() << " be destroyed\n"; + auto PrintOutVector = [&](const char *Message, + const SmallVectorImpl<BasicBlock *> &S) { + dbgs() << Message << "\n"; + for (const BasicBlock *BB : S) + dbgs() << "\t" << BB->getName() << "\n"; + }; + auto PrintOutSet = [&](const char *Message, + const SmallPtrSetImpl<BasicBlock *> &S) { + dbgs() << Message << "\n"; + for (const BasicBlock *BB : S) + dbgs() << "\t" << BB->getName() << "\n"; + }; + PrintOutVector("Blocks in which we can constant-fold terminator:", + FoldCandidates); + PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks); + PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks); + PrintOutSet("Live exit blocks:", LiveExitBlocks); + PrintOutVector("Dead exit blocks:", DeadExitBlocks); + if (!DeleteCurrentLoop) + PrintOutSet("The following blocks will still be part of the loop:", + BlocksInLoopAfterFolding); + } + + /// Whether or not the current loop has irreducible CFG. + bool hasIrreducibleCFG(LoopBlocksDFS &DFS) { + assert(DFS.isComplete() && "DFS is expected to be finished"); + // Index of a basic block in RPO traversal. + DenseMap<const BasicBlock *, unsigned> RPO; + unsigned Current = 0; + for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) + RPO[*I] = Current++; + + for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { + BasicBlock *BB = *I; + for (auto *Succ : successors(BB)) + if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ]) + // If an edge goes from a block with greater order number into a block + // with lesses number, and it is not a loop backedge, then it can only + // be a part of irreducible non-loop cycle. + return true; + } + return false; + } + + /// Fill all information about status of blocks and exits of the current loop + /// if constant folding of all branches will be done. + void analyze() { + DFS.perform(&LI); + assert(DFS.isComplete() && "DFS is expected to be finished"); + + // TODO: The algorithm below relies on both RPO and Postorder traversals. + // When the loop has only reducible CFG inside, then the invariant "all + // predecessors of X are processed before X in RPO" is preserved. However + // an irreducible loop can break this invariant (e.g. latch does not have to + // be the last block in the traversal in this case, and the algorithm relies + // on this). We can later decide to support such cases by altering the + // algorithms, but so far we just give up analyzing them. + if (hasIrreducibleCFG(DFS)) { + HasIrreducibleCFG = true; + return; + } + + // Collect live and dead loop blocks and exits. + LiveLoopBlocks.insert(L.getHeader()); + for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { + BasicBlock *BB = *I; + + // If a loop block wasn't marked as live so far, then it's dead. + if (!LiveLoopBlocks.count(BB)) { + DeadLoopBlocks.push_back(BB); + continue; + } + + BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); + + // If a block has only one live successor, it's a candidate on constant + // folding. Only handle blocks from current loop: branches in child loops + // are skipped because if they can be folded, they should be folded during + // the processing of child loops. + bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L; + if (TakeFoldCandidate) + FoldCandidates.push_back(BB); + + // Handle successors. + for (BasicBlock *Succ : successors(BB)) + if (!TakeFoldCandidate || TheOnlySucc == Succ) { + if (L.contains(Succ)) + LiveLoopBlocks.insert(Succ); + else + LiveExitBlocks.insert(Succ); + } + } + + // Amount of dead and live loop blocks should match the total number of + // blocks in loop. + assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() && + "Malformed block sets?"); + + // Now, all exit blocks that are not marked as live are dead, if all their + // predecessors are in the loop. This may not be the case, as the input loop + // may not by in loop-simplify/canonical form. + SmallVector<BasicBlock *, 8> ExitBlocks; + L.getExitBlocks(ExitBlocks); + SmallPtrSet<BasicBlock *, 8> UniqueDeadExits; + for (auto *ExitBlock : ExitBlocks) + if (!LiveExitBlocks.count(ExitBlock) && + UniqueDeadExits.insert(ExitBlock).second && + all_of(predecessors(ExitBlock), + [this](BasicBlock *Pred) { return L.contains(Pred); })) + DeadExitBlocks.push_back(ExitBlock); + + // Whether or not the edge From->To will still be present in graph after the + // folding. + auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) { + if (!LiveLoopBlocks.count(From)) + return false; + BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From); + return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L; + }; + + // The loop will not be destroyed if its latch is live. + DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader()); + + // If we are going to delete the current loop completely, no extra analysis + // is needed. + if (DeleteCurrentLoop) + return; + + // Otherwise, we should check which blocks will still be a part of the + // current loop after the transform. + BlocksInLoopAfterFolding.insert(L.getLoopLatch()); + // If the loop is live, then we should compute what blocks are still in + // loop after all branch folding has been done. A block is in loop if + // it has a live edge to another block that is in the loop; by definition, + // latch is in the loop. + auto BlockIsInLoop = [&](BasicBlock *BB) { + return any_of(successors(BB), [&](BasicBlock *Succ) { + return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ); + }); + }; + for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) { + BasicBlock *BB = *I; + if (BlockIsInLoop(BB)) + BlocksInLoopAfterFolding.insert(BB); + } + + assert(BlocksInLoopAfterFolding.count(L.getHeader()) && + "Header not in loop?"); + assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() && + "All blocks that stay in loop should be live!"); + } + + /// We need to preserve static reachibility of all loop exit blocks (this is) + /// required by loop pass manager. In order to do it, we make the following + /// trick: + /// + /// preheader: + /// <preheader code> + /// br label %loop_header + /// + /// loop_header: + /// ... + /// br i1 false, label %dead_exit, label %loop_block + /// ... + /// + /// We cannot simply remove edge from the loop to dead exit because in this + /// case dead_exit (and its successors) may become unreachable. To avoid that, + /// we insert the following fictive preheader: + /// + /// preheader: + /// <preheader code> + /// switch i32 0, label %preheader-split, + /// [i32 1, label %dead_exit_1], + /// [i32 2, label %dead_exit_2], + /// ... + /// [i32 N, label %dead_exit_N], + /// + /// preheader-split: + /// br label %loop_header + /// + /// loop_header: + /// ... + /// br i1 false, label %dead_exit_N, label %loop_block + /// ... + /// + /// Doing so, we preserve static reachibility of all dead exits and can later + /// remove edges from the loop to these blocks. + void handleDeadExits() { + // If no dead exits, nothing to do. + if (DeadExitBlocks.empty()) + return; + + // Construct split preheader and the dummy switch to thread edges from it to + // dead exits. + BasicBlock *Preheader = L.getLoopPreheader(); + BasicBlock *NewPreheader = llvm::SplitBlock( + Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU); + + IRBuilder<> Builder(Preheader->getTerminator()); + SwitchInst *DummySwitch = + Builder.CreateSwitch(Builder.getInt32(0), NewPreheader); + Preheader->getTerminator()->eraseFromParent(); + + unsigned DummyIdx = 1; + for (BasicBlock *BB : DeadExitBlocks) { + // Eliminate all Phis and LandingPads from dead exits. + // TODO: Consider removing all instructions in this dead block. + SmallVector<Instruction *, 4> DeadInstructions; + for (auto &PN : BB->phis()) + DeadInstructions.push_back(&PN); + + if (auto *LandingPad = dyn_cast<LandingPadInst>(BB->getFirstNonPHI())) + DeadInstructions.emplace_back(LandingPad); + + for (Instruction *I : DeadInstructions) { + SE.forgetBlockAndLoopDispositions(I); + I->replaceAllUsesWith(PoisonValue::get(I->getType())); + I->eraseFromParent(); + } + + assert(DummyIdx != 0 && "Too many dead exits!"); + DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB); + DTUpdates.push_back({DominatorTree::Insert, Preheader, BB}); + ++NumLoopExitsDeleted; + } + + assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?"); + if (Loop *OuterLoop = LI.getLoopFor(Preheader)) { + // When we break dead edges, the outer loop may become unreachable from + // the current loop. We need to fix loop info accordingly. For this, we + // find the most nested loop that still contains L and remove L from all + // loops that are inside of it. + Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI); + + // Okay, our loop is no longer in the outer loop (and maybe not in some of + // its parents as well). Make the fixup. + if (StillReachable != OuterLoop) { + LI.changeLoopFor(NewPreheader, StillReachable); + removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable); + for (auto *BB : L.blocks()) + removeBlockFromLoops(BB, OuterLoop, StillReachable); + OuterLoop->removeChildLoop(&L); + if (StillReachable) + StillReachable->addChildLoop(&L); + else + LI.addTopLevelLoop(&L); + + // Some values from loops in [OuterLoop, StillReachable) could be used + // in the current loop. Now it is not their child anymore, so such uses + // require LCSSA Phis. + Loop *FixLCSSALoop = OuterLoop; + while (FixLCSSALoop->getParentLoop() != StillReachable) + FixLCSSALoop = FixLCSSALoop->getParentLoop(); + assert(FixLCSSALoop && "Should be a loop!"); + // We need all DT updates to be done before forming LCSSA. + if (MSSAU) + MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); + else + DTU.applyUpdates(DTUpdates); + DTUpdates.clear(); + formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE); + SE.forgetBlockAndLoopDispositions(); + } + } + + if (MSSAU) { + // Clear all updates now. Facilitates deletes that follow. + MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); + DTUpdates.clear(); + if (VerifyMemorySSA) + MSSAU->getMemorySSA()->verifyMemorySSA(); + } + } + + /// Delete loop blocks that have become unreachable after folding. Make all + /// relevant updates to DT and LI. + void deleteDeadLoopBlocks() { + if (MSSAU) { + SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(), + DeadLoopBlocks.end()); + MSSAU->removeBlocks(DeadLoopBlocksSet); + } + + // The function LI.erase has some invariants that need to be preserved when + // it tries to remove a loop which is not the top-level loop. In particular, + // it requires loop's preheader to be strictly in loop's parent. We cannot + // just remove blocks one by one, because after removal of preheader we may + // break this invariant for the dead loop. So we detatch and erase all dead + // loops beforehand. + for (auto *BB : DeadLoopBlocks) + if (LI.isLoopHeader(BB)) { + assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!"); + Loop *DL = LI.getLoopFor(BB); + if (!DL->isOutermost()) { + for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop()) + for (auto *BB : DL->getBlocks()) + PL->removeBlockFromLoop(BB); + DL->getParentLoop()->removeChildLoop(DL); + LI.addTopLevelLoop(DL); + } + LI.erase(DL); + } + + for (auto *BB : DeadLoopBlocks) { + assert(BB != L.getHeader() && + "Header of the current loop cannot be dead!"); + LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName() + << "\n"); + LI.removeBlock(BB); + } + + detachDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true); + DTU.applyUpdates(DTUpdates); + DTUpdates.clear(); + for (auto *BB : DeadLoopBlocks) + DTU.deleteBB(BB); + + NumLoopBlocksDeleted += DeadLoopBlocks.size(); + } + + /// Constant-fold terminators of blocks accumulated in FoldCandidates into the + /// unconditional branches. + void foldTerminators() { + for (BasicBlock *BB : FoldCandidates) { + assert(LI.getLoopFor(BB) == &L && "Should be a loop block!"); + BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); + assert(TheOnlySucc && "Should have one live successor!"); + + LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName() + << " with an unconditional branch to the block " + << TheOnlySucc->getName() << "\n"); + + SmallPtrSet<BasicBlock *, 2> DeadSuccessors; + // Remove all BB's successors except for the live one. + unsigned TheOnlySuccDuplicates = 0; + for (auto *Succ : successors(BB)) + if (Succ != TheOnlySucc) { + DeadSuccessors.insert(Succ); + // If our successor lies in a different loop, we don't want to remove + // the one-input Phi because it is a LCSSA Phi. + bool PreserveLCSSAPhi = !L.contains(Succ); + Succ->removePredecessor(BB, PreserveLCSSAPhi); + if (MSSAU) + MSSAU->removeEdge(BB, Succ); + } else + ++TheOnlySuccDuplicates; + + assert(TheOnlySuccDuplicates > 0 && "Should be!"); + // If TheOnlySucc was BB's successor more than once, after transform it + // will be its successor only once. Remove redundant inputs from + // TheOnlySucc's Phis. + bool PreserveLCSSAPhi = !L.contains(TheOnlySucc); + for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup) + TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi); + if (MSSAU && TheOnlySuccDuplicates > 1) + MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc); + + IRBuilder<> Builder(BB->getContext()); + Instruction *Term = BB->getTerminator(); + Builder.SetInsertPoint(Term); + Builder.CreateBr(TheOnlySucc); + Term->eraseFromParent(); + + for (auto *DeadSucc : DeadSuccessors) + DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc}); + + ++NumTerminatorsFolded; + } + } + +public: + ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT, + ScalarEvolution &SE, + MemorySSAUpdater *MSSAU) + : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L), + DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {} + bool run() { + assert(L.getLoopLatch() && "Should be single latch!"); + + // Collect all available information about status of blocks after constant + // folding. + analyze(); + BasicBlock *Header = L.getHeader(); + (void)Header; + + LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName() + << ": "); + + if (HasIrreducibleCFG) { + LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n"); + return false; + } + + // Nothing to constant-fold. + if (FoldCandidates.empty()) { + LLVM_DEBUG( + dbgs() << "No constant terminator folding candidates found in loop " + << Header->getName() << "\n"); + return false; + } + + // TODO: Support deletion of the current loop. + if (DeleteCurrentLoop) { + LLVM_DEBUG( + dbgs() + << "Give up constant terminator folding in loop " << Header->getName() + << ": we don't currently support deletion of the current loop.\n"); + return false; + } + + // TODO: Support blocks that are not dead, but also not in loop after the + // folding. + if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() != + L.getNumBlocks()) { + LLVM_DEBUG( + dbgs() << "Give up constant terminator folding in loop " + << Header->getName() << ": we don't currently" + " support blocks that are not dead, but will stop " + "being a part of the loop after constant-folding.\n"); + return false; + } + + // TODO: Tokens may breach LCSSA form by default. However, the transform for + // dead exit blocks requires LCSSA form to be maintained for all values, + // tokens included, otherwise it may break use-def dominance (see PR56243). + if (!DeadExitBlocks.empty() && !L.isLCSSAForm(DT, /*IgnoreTokens*/ false)) { + assert(L.isLCSSAForm(DT, /*IgnoreTokens*/ true) && + "LCSSA broken not by tokens?"); + LLVM_DEBUG(dbgs() << "Give up constant terminator folding in loop " + << Header->getName() + << ": tokens uses potentially break LCSSA form.\n"); + return false; + } + + SE.forgetTopmostLoop(&L); + // Dump analysis results. + LLVM_DEBUG(dump()); + + LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size() + << " terminators in loop " << Header->getName() << "\n"); + + if (!DeadLoopBlocks.empty()) + SE.forgetBlockAndLoopDispositions(); + + // Make the actual transforms. + handleDeadExits(); + foldTerminators(); + + if (!DeadLoopBlocks.empty()) { + LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size() + << " dead blocks in loop " << Header->getName() << "\n"); + deleteDeadLoopBlocks(); + } else { + // If we didn't do updates inside deleteDeadLoopBlocks, do them here. + DTU.applyUpdates(DTUpdates); + DTUpdates.clear(); + } + + if (MSSAU && VerifyMemorySSA) + MSSAU->getMemorySSA()->verifyMemorySSA(); + +#ifndef NDEBUG + // Make sure that we have preserved all data structures after the transform. +#if defined(EXPENSIVE_CHECKS) + assert(DT.verify(DominatorTree::VerificationLevel::Full) && + "DT broken after transform!"); +#else + assert(DT.verify(DominatorTree::VerificationLevel::Fast) && + "DT broken after transform!"); +#endif + assert(DT.isReachableFromEntry(Header)); + LI.verify(DT); +#endif + + return true; + } + + bool foldingBreaksCurrentLoop() const { + return DeleteCurrentLoop; + } +}; +} // namespace + +/// Turn branches and switches with known constant conditions into unconditional +/// branches. +static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI, + ScalarEvolution &SE, + MemorySSAUpdater *MSSAU, + bool &IsLoopDeleted) { + if (!EnableTermFolding) + return false; + + // To keep things simple, only process loops with single latch. We + // canonicalize most loops to this form. We can support multi-latch if needed. + if (!L.getLoopLatch()) + return false; + + ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU); + bool Changed = BranchFolder.run(); + IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop(); + return Changed; +} + +static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, + LoopInfo &LI, MemorySSAUpdater *MSSAU, + ScalarEvolution &SE) { + bool Changed = false; + DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); + // Copy blocks into a temporary array to avoid iterator invalidation issues + // as we remove them. + SmallVector<WeakTrackingVH, 16> Blocks(L.blocks()); + + for (auto &Block : Blocks) { + // Attempt to merge blocks in the trivial case. Don't modify blocks which + // belong to other loops. + BasicBlock *Succ = cast_or_null<BasicBlock>(Block); + if (!Succ) + continue; + + BasicBlock *Pred = Succ->getSinglePredecessor(); + if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L) + continue; + + // Merge Succ into Pred and delete it. + MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU); + + if (MSSAU && VerifyMemorySSA) + MSSAU->getMemorySSA()->verifyMemorySSA(); + + Changed = true; + } + + if (Changed) + SE.forgetBlockAndLoopDispositions(); + + return Changed; +} + +static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI, + ScalarEvolution &SE, MemorySSAUpdater *MSSAU, + bool &IsLoopDeleted) { + bool Changed = false; + + // Constant-fold terminators with known constant conditions. + Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted); + + if (IsLoopDeleted) + return true; + + // Eliminate unconditional branches by merging blocks into their predecessors. + Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU, SE); + + if (Changed) + SE.forgetTopmostLoop(&L); + + return Changed; +} + +PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM, + LoopStandardAnalysisResults &AR, + LPMUpdater &LPMU) { + std::optional<MemorySSAUpdater> MSSAU; + if (AR.MSSA) + MSSAU = MemorySSAUpdater(AR.MSSA); + bool DeleteCurrentLoop = false; + if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, MSSAU ? &*MSSAU : nullptr, + DeleteCurrentLoop)) + return PreservedAnalyses::all(); + + if (DeleteCurrentLoop) + LPMU.markLoopAsDeleted(L, "loop-simplifycfg"); + + auto PA = getLoopPassPreservedAnalyses(); + if (AR.MSSA) + PA.preserve<MemorySSAAnalysis>(); + return PA; +} + +namespace { +class LoopSimplifyCFGLegacyPass : public LoopPass { +public: + static char ID; // Pass ID, replacement for typeid + LoopSimplifyCFGLegacyPass() : LoopPass(ID) { + initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry()); + } + + bool runOnLoop(Loop *L, LPPassManager &LPM) override { + if (skipLoop(L)) + return false; + + DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + auto *MSSAA = getAnalysisIfAvailable<MemorySSAWrapperPass>(); + std::optional<MemorySSAUpdater> MSSAU; + if (MSSAA) + MSSAU = MemorySSAUpdater(&MSSAA->getMSSA()); + if (MSSAA && VerifyMemorySSA) + MSSAU->getMemorySSA()->verifyMemorySSA(); + bool DeleteCurrentLoop = false; + bool Changed = simplifyLoopCFG(*L, DT, LI, SE, MSSAU ? &*MSSAU : nullptr, + DeleteCurrentLoop); + if (DeleteCurrentLoop) + LPM.markLoopAsDeleted(*L); + return Changed; + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addPreserved<MemorySSAWrapperPass>(); + AU.addPreserved<DependenceAnalysisWrapperPass>(); + getLoopAnalysisUsage(AU); + } +}; +} // end namespace + +char LoopSimplifyCFGLegacyPass::ID = 0; +INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", + "Simplify loop CFG", false, false) +INITIALIZE_PASS_DEPENDENCY(LoopPass) +INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) +INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", + "Simplify loop CFG", false, false) + +Pass *llvm::createLoopSimplifyCFGPass() { + return new LoopSimplifyCFGLegacyPass(); +} |