aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp
diff options
context:
space:
mode:
authorvvvv <vvvv@ydb.tech>2024-02-06 20:01:22 +0300
committerAlexander Smirnov <alex@ydb.tech>2024-02-09 19:18:27 +0300
commitee2b7fbda052aa09b6fdb83b8c6f0305fef3e193 (patch)
tree102765416c3866bde98a82facc7752d329ee0226 /contrib/libs/llvm16/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp
parent7494ca32d3a5aca00b7ac527b5f127989335102c (diff)
downloadydb-ee2b7fbda052aa09b6fdb83b8c6f0305fef3e193.tar.gz
llvm16 targets
Diffstat (limited to 'contrib/libs/llvm16/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp')
-rw-r--r--contrib/libs/llvm16/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp3486
1 files changed, 3486 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp b/contrib/libs/llvm16/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp
new file mode 100644
index 0000000000..e9614b48fd
--- /dev/null
+++ b/contrib/libs/llvm16/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp
@@ -0,0 +1,3486 @@
+//===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
+/// analysis.
+///
+/// Unlike other Sanitizer tools, this tool is not designed to detect a specific
+/// class of bugs on its own. Instead, it provides a generic dynamic data flow
+/// analysis framework to be used by clients to help detect application-specific
+/// issues within their own code.
+///
+/// The analysis is based on automatic propagation of data flow labels (also
+/// known as taint labels) through a program as it performs computation.
+///
+/// Argument and return value labels are passed through TLS variables
+/// __dfsan_arg_tls and __dfsan_retval_tls.
+///
+/// Each byte of application memory is backed by a shadow memory byte. The
+/// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then
+/// laid out as follows:
+///
+/// +--------------------+ 0x800000000000 (top of memory)
+/// | application 3 |
+/// +--------------------+ 0x700000000000
+/// | invalid |
+/// +--------------------+ 0x610000000000
+/// | origin 1 |
+/// +--------------------+ 0x600000000000
+/// | application 2 |
+/// +--------------------+ 0x510000000000
+/// | shadow 1 |
+/// +--------------------+ 0x500000000000
+/// | invalid |
+/// +--------------------+ 0x400000000000
+/// | origin 3 |
+/// +--------------------+ 0x300000000000
+/// | shadow 3 |
+/// +--------------------+ 0x200000000000
+/// | origin 2 |
+/// +--------------------+ 0x110000000000
+/// | invalid |
+/// +--------------------+ 0x100000000000
+/// | shadow 2 |
+/// +--------------------+ 0x010000000000
+/// | application 1 |
+/// +--------------------+ 0x000000000000
+///
+/// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000
+/// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000
+///
+/// For more information, please refer to the design document:
+/// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/iterator.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Alignment.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/SpecialCaseList.h"
+#include "llvm/Support/VirtualFileSystem.h"
+#include "llvm/Transforms/Instrumentation.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <memory>
+#include <set>
+#include <string>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+// This must be consistent with ShadowWidthBits.
+static const Align ShadowTLSAlignment = Align(2);
+
+static const Align MinOriginAlignment = Align(4);
+
+// The size of TLS variables. These constants must be kept in sync with the ones
+// in dfsan.cpp.
+static const unsigned ArgTLSSize = 800;
+static const unsigned RetvalTLSSize = 800;
+
+// The -dfsan-preserve-alignment flag controls whether this pass assumes that
+// alignment requirements provided by the input IR are correct. For example,
+// if the input IR contains a load with alignment 8, this flag will cause
+// the shadow load to have alignment 16. This flag is disabled by default as
+// we have unfortunately encountered too much code (including Clang itself;
+// see PR14291) which performs misaligned access.
+static cl::opt<bool> ClPreserveAlignment(
+ "dfsan-preserve-alignment",
+ cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
+ cl::init(false));
+
+// The ABI list files control how shadow parameters are passed. The pass treats
+// every function labelled "uninstrumented" in the ABI list file as conforming
+// to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
+// additional annotations for those functions, a call to one of those functions
+// will produce a warning message, as the labelling behaviour of the function is
+// unknown. The other supported annotations for uninstrumented functions are
+// "functional" and "discard", which are described below under
+// DataFlowSanitizer::WrapperKind.
+// Functions will often be labelled with both "uninstrumented" and one of
+// "functional" or "discard". This will leave the function unchanged by this
+// pass, and create a wrapper function that will call the original.
+//
+// Instrumented functions can also be annotated as "force_zero_labels", which
+// will make all shadow and return values set zero labels.
+// Functions should never be labelled with both "force_zero_labels" and
+// "uninstrumented" or any of the unistrumented wrapper kinds.
+static cl::list<std::string> ClABIListFiles(
+ "dfsan-abilist",
+ cl::desc("File listing native ABI functions and how the pass treats them"),
+ cl::Hidden);
+
+// Controls whether the pass includes or ignores the labels of pointers in load
+// instructions.
+static cl::opt<bool> ClCombinePointerLabelsOnLoad(
+ "dfsan-combine-pointer-labels-on-load",
+ cl::desc("Combine the label of the pointer with the label of the data when "
+ "loading from memory."),
+ cl::Hidden, cl::init(true));
+
+// Controls whether the pass includes or ignores the labels of pointers in
+// stores instructions.
+static cl::opt<bool> ClCombinePointerLabelsOnStore(
+ "dfsan-combine-pointer-labels-on-store",
+ cl::desc("Combine the label of the pointer with the label of the data when "
+ "storing in memory."),
+ cl::Hidden, cl::init(false));
+
+// Controls whether the pass propagates labels of offsets in GEP instructions.
+static cl::opt<bool> ClCombineOffsetLabelsOnGEP(
+ "dfsan-combine-offset-labels-on-gep",
+ cl::desc(
+ "Combine the label of the offset with the label of the pointer when "
+ "doing pointer arithmetic."),
+ cl::Hidden, cl::init(true));
+
+static cl::list<std::string> ClCombineTaintLookupTables(
+ "dfsan-combine-taint-lookup-table",
+ cl::desc(
+ "When dfsan-combine-offset-labels-on-gep and/or "
+ "dfsan-combine-pointer-labels-on-load are false, this flag can "
+ "be used to re-enable combining offset and/or pointer taint when "
+ "loading specific constant global variables (i.e. lookup tables)."),
+ cl::Hidden);
+
+static cl::opt<bool> ClDebugNonzeroLabels(
+ "dfsan-debug-nonzero-labels",
+ cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
+ "load or return with a nonzero label"),
+ cl::Hidden);
+
+// Experimental feature that inserts callbacks for certain data events.
+// Currently callbacks are only inserted for loads, stores, memory transfers
+// (i.e. memcpy and memmove), and comparisons.
+//
+// If this flag is set to true, the user must provide definitions for the
+// following callback functions:
+// void __dfsan_load_callback(dfsan_label Label, void* addr);
+// void __dfsan_store_callback(dfsan_label Label, void* addr);
+// void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len);
+// void __dfsan_cmp_callback(dfsan_label CombinedLabel);
+static cl::opt<bool> ClEventCallbacks(
+ "dfsan-event-callbacks",
+ cl::desc("Insert calls to __dfsan_*_callback functions on data events."),
+ cl::Hidden, cl::init(false));
+
+// Experimental feature that inserts callbacks for conditionals, including:
+// conditional branch, switch, select.
+// This must be true for dfsan_set_conditional_callback() to have effect.
+static cl::opt<bool> ClConditionalCallbacks(
+ "dfsan-conditional-callbacks",
+ cl::desc("Insert calls to callback functions on conditionals."), cl::Hidden,
+ cl::init(false));
+
+// Experimental feature that inserts callbacks for data reaching a function,
+// either via function arguments and loads.
+// This must be true for dfsan_set_reaches_function_callback() to have effect.
+static cl::opt<bool> ClReachesFunctionCallbacks(
+ "dfsan-reaches-function-callbacks",
+ cl::desc("Insert calls to callback functions on data reaching a function."),
+ cl::Hidden, cl::init(false));
+
+// Controls whether the pass tracks the control flow of select instructions.
+static cl::opt<bool> ClTrackSelectControlFlow(
+ "dfsan-track-select-control-flow",
+ cl::desc("Propagate labels from condition values of select instructions "
+ "to results."),
+ cl::Hidden, cl::init(true));
+
+// TODO: This default value follows MSan. DFSan may use a different value.
+static cl::opt<int> ClInstrumentWithCallThreshold(
+ "dfsan-instrument-with-call-threshold",
+ cl::desc("If the function being instrumented requires more than "
+ "this number of origin stores, use callbacks instead of "
+ "inline checks (-1 means never use callbacks)."),
+ cl::Hidden, cl::init(3500));
+
+// Controls how to track origins.
+// * 0: do not track origins.
+// * 1: track origins at memory store operations.
+// * 2: track origins at memory load and store operations.
+// TODO: track callsites.
+static cl::opt<int> ClTrackOrigins("dfsan-track-origins",
+ cl::desc("Track origins of labels"),
+ cl::Hidden, cl::init(0));
+
+static cl::opt<bool> ClIgnorePersonalityRoutine(
+ "dfsan-ignore-personality-routine",
+ cl::desc("If a personality routine is marked uninstrumented from the ABI "
+ "list, do not create a wrapper for it."),
+ cl::Hidden, cl::init(false));
+
+static StringRef getGlobalTypeString(const GlobalValue &G) {
+ // Types of GlobalVariables are always pointer types.
+ Type *GType = G.getValueType();
+ // For now we support excluding struct types only.
+ if (StructType *SGType = dyn_cast<StructType>(GType)) {
+ if (!SGType->isLiteral())
+ return SGType->getName();
+ }
+ return "<unknown type>";
+}
+
+namespace {
+
+// Memory map parameters used in application-to-shadow address calculation.
+// Offset = (Addr & ~AndMask) ^ XorMask
+// Shadow = ShadowBase + Offset
+// Origin = (OriginBase + Offset) & ~3ULL
+struct MemoryMapParams {
+ uint64_t AndMask;
+ uint64_t XorMask;
+ uint64_t ShadowBase;
+ uint64_t OriginBase;
+};
+
+} // end anonymous namespace
+
+// NOLINTBEGIN(readability-identifier-naming)
+// aarch64 Linux
+const MemoryMapParams Linux_AArch64_MemoryMapParams = {
+ 0, // AndMask (not used)
+ 0x0B00000000000, // XorMask
+ 0, // ShadowBase (not used)
+ 0x0200000000000, // OriginBase
+};
+
+// x86_64 Linux
+const MemoryMapParams Linux_X86_64_MemoryMapParams = {
+ 0, // AndMask (not used)
+ 0x500000000000, // XorMask
+ 0, // ShadowBase (not used)
+ 0x100000000000, // OriginBase
+};
+// NOLINTEND(readability-identifier-naming)
+
+namespace {
+
+class DFSanABIList {
+ std::unique_ptr<SpecialCaseList> SCL;
+
+public:
+ DFSanABIList() = default;
+
+ void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
+
+ /// Returns whether either this function or its source file are listed in the
+ /// given category.
+ bool isIn(const Function &F, StringRef Category) const {
+ return isIn(*F.getParent(), Category) ||
+ SCL->inSection("dataflow", "fun", F.getName(), Category);
+ }
+
+ /// Returns whether this global alias is listed in the given category.
+ ///
+ /// If GA aliases a function, the alias's name is matched as a function name
+ /// would be. Similarly, aliases of globals are matched like globals.
+ bool isIn(const GlobalAlias &GA, StringRef Category) const {
+ if (isIn(*GA.getParent(), Category))
+ return true;
+
+ if (isa<FunctionType>(GA.getValueType()))
+ return SCL->inSection("dataflow", "fun", GA.getName(), Category);
+
+ return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
+ SCL->inSection("dataflow", "type", getGlobalTypeString(GA),
+ Category);
+ }
+
+ /// Returns whether this module is listed in the given category.
+ bool isIn(const Module &M, StringRef Category) const {
+ return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
+ }
+};
+
+/// TransformedFunction is used to express the result of transforming one
+/// function type into another. This struct is immutable. It holds metadata
+/// useful for updating calls of the old function to the new type.
+struct TransformedFunction {
+ TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType,
+ std::vector<unsigned> ArgumentIndexMapping)
+ : OriginalType(OriginalType), TransformedType(TransformedType),
+ ArgumentIndexMapping(ArgumentIndexMapping) {}
+
+ // Disallow copies.
+ TransformedFunction(const TransformedFunction &) = delete;
+ TransformedFunction &operator=(const TransformedFunction &) = delete;
+
+ // Allow moves.
+ TransformedFunction(TransformedFunction &&) = default;
+ TransformedFunction &operator=(TransformedFunction &&) = default;
+
+ /// Type of the function before the transformation.
+ FunctionType *OriginalType;
+
+ /// Type of the function after the transformation.
+ FunctionType *TransformedType;
+
+ /// Transforming a function may change the position of arguments. This
+ /// member records the mapping from each argument's old position to its new
+ /// position. Argument positions are zero-indexed. If the transformation
+ /// from F to F' made the first argument of F into the third argument of F',
+ /// then ArgumentIndexMapping[0] will equal 2.
+ std::vector<unsigned> ArgumentIndexMapping;
+};
+
+/// Given function attributes from a call site for the original function,
+/// return function attributes appropriate for a call to the transformed
+/// function.
+AttributeList
+transformFunctionAttributes(const TransformedFunction &TransformedFunction,
+ LLVMContext &Ctx, AttributeList CallSiteAttrs) {
+
+ // Construct a vector of AttributeSet for each function argument.
+ std::vector<llvm::AttributeSet> ArgumentAttributes(
+ TransformedFunction.TransformedType->getNumParams());
+
+ // Copy attributes from the parameter of the original function to the
+ // transformed version. 'ArgumentIndexMapping' holds the mapping from
+ // old argument position to new.
+ for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size();
+ I < IE; ++I) {
+ unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I];
+ ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I);
+ }
+
+ // Copy annotations on varargs arguments.
+ for (unsigned I = TransformedFunction.OriginalType->getNumParams(),
+ IE = CallSiteAttrs.getNumAttrSets();
+ I < IE; ++I) {
+ ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I));
+ }
+
+ return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(),
+ CallSiteAttrs.getRetAttrs(),
+ llvm::ArrayRef(ArgumentAttributes));
+}
+
+class DataFlowSanitizer {
+ friend struct DFSanFunction;
+ friend class DFSanVisitor;
+
+ enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 };
+
+ enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 };
+
+ /// How should calls to uninstrumented functions be handled?
+ enum WrapperKind {
+ /// This function is present in an uninstrumented form but we don't know
+ /// how it should be handled. Print a warning and call the function anyway.
+ /// Don't label the return value.
+ WK_Warning,
+
+ /// This function does not write to (user-accessible) memory, and its return
+ /// value is unlabelled.
+ WK_Discard,
+
+ /// This function does not write to (user-accessible) memory, and the label
+ /// of its return value is the union of the label of its arguments.
+ WK_Functional,
+
+ /// Instead of calling the function, a custom wrapper __dfsw_F is called,
+ /// where F is the name of the function. This function may wrap the
+ /// original function or provide its own implementation. WK_Custom uses an
+ /// extra pointer argument to return the shadow. This allows the wrapped
+ /// form of the function type to be expressed in C.
+ WK_Custom
+ };
+
+ Module *Mod;
+ LLVMContext *Ctx;
+ Type *Int8Ptr;
+ IntegerType *OriginTy;
+ PointerType *OriginPtrTy;
+ ConstantInt *ZeroOrigin;
+ /// The shadow type for all primitive types and vector types.
+ IntegerType *PrimitiveShadowTy;
+ PointerType *PrimitiveShadowPtrTy;
+ IntegerType *IntptrTy;
+ ConstantInt *ZeroPrimitiveShadow;
+ Constant *ArgTLS;
+ ArrayType *ArgOriginTLSTy;
+ Constant *ArgOriginTLS;
+ Constant *RetvalTLS;
+ Constant *RetvalOriginTLS;
+ FunctionType *DFSanUnionLoadFnTy;
+ FunctionType *DFSanLoadLabelAndOriginFnTy;
+ FunctionType *DFSanUnimplementedFnTy;
+ FunctionType *DFSanWrapperExternWeakNullFnTy;
+ FunctionType *DFSanSetLabelFnTy;
+ FunctionType *DFSanNonzeroLabelFnTy;
+ FunctionType *DFSanVarargWrapperFnTy;
+ FunctionType *DFSanConditionalCallbackFnTy;
+ FunctionType *DFSanConditionalCallbackOriginFnTy;
+ FunctionType *DFSanReachesFunctionCallbackFnTy;
+ FunctionType *DFSanReachesFunctionCallbackOriginFnTy;
+ FunctionType *DFSanCmpCallbackFnTy;
+ FunctionType *DFSanLoadStoreCallbackFnTy;
+ FunctionType *DFSanMemTransferCallbackFnTy;
+ FunctionType *DFSanChainOriginFnTy;
+ FunctionType *DFSanChainOriginIfTaintedFnTy;
+ FunctionType *DFSanMemOriginTransferFnTy;
+ FunctionType *DFSanMemShadowOriginTransferFnTy;
+ FunctionType *DFSanMemShadowOriginConditionalExchangeFnTy;
+ FunctionType *DFSanMaybeStoreOriginFnTy;
+ FunctionCallee DFSanUnionLoadFn;
+ FunctionCallee DFSanLoadLabelAndOriginFn;
+ FunctionCallee DFSanUnimplementedFn;
+ FunctionCallee DFSanWrapperExternWeakNullFn;
+ FunctionCallee DFSanSetLabelFn;
+ FunctionCallee DFSanNonzeroLabelFn;
+ FunctionCallee DFSanVarargWrapperFn;
+ FunctionCallee DFSanLoadCallbackFn;
+ FunctionCallee DFSanStoreCallbackFn;
+ FunctionCallee DFSanMemTransferCallbackFn;
+ FunctionCallee DFSanConditionalCallbackFn;
+ FunctionCallee DFSanConditionalCallbackOriginFn;
+ FunctionCallee DFSanReachesFunctionCallbackFn;
+ FunctionCallee DFSanReachesFunctionCallbackOriginFn;
+ FunctionCallee DFSanCmpCallbackFn;
+ FunctionCallee DFSanChainOriginFn;
+ FunctionCallee DFSanChainOriginIfTaintedFn;
+ FunctionCallee DFSanMemOriginTransferFn;
+ FunctionCallee DFSanMemShadowOriginTransferFn;
+ FunctionCallee DFSanMemShadowOriginConditionalExchangeFn;
+ FunctionCallee DFSanMaybeStoreOriginFn;
+ SmallPtrSet<Value *, 16> DFSanRuntimeFunctions;
+ MDNode *ColdCallWeights;
+ MDNode *OriginStoreWeights;
+ DFSanABIList ABIList;
+ DenseMap<Value *, Function *> UnwrappedFnMap;
+ AttributeMask ReadOnlyNoneAttrs;
+ StringSet<> CombineTaintLookupTableNames;
+
+ /// Memory map parameters used in calculation mapping application addresses
+ /// to shadow addresses and origin addresses.
+ const MemoryMapParams *MapParams;
+
+ Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB);
+ Value *getShadowAddress(Value *Addr, Instruction *Pos);
+ Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset);
+ std::pair<Value *, Value *>
+ getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos);
+ bool isInstrumented(const Function *F);
+ bool isInstrumented(const GlobalAlias *GA);
+ bool isForceZeroLabels(const Function *F);
+ TransformedFunction getCustomFunctionType(FunctionType *T);
+ WrapperKind getWrapperKind(Function *F);
+ void addGlobalNameSuffix(GlobalValue *GV);
+ void buildExternWeakCheckIfNeeded(IRBuilder<> &IRB, Function *F);
+ Function *buildWrapperFunction(Function *F, StringRef NewFName,
+ GlobalValue::LinkageTypes NewFLink,
+ FunctionType *NewFT);
+ void initializeCallbackFunctions(Module &M);
+ void initializeRuntimeFunctions(Module &M);
+ bool initializeModule(Module &M);
+
+ /// Advances \p OriginAddr to point to the next 32-bit origin and then loads
+ /// from it. Returns the origin's loaded value.
+ Value *loadNextOrigin(Instruction *Pos, Align OriginAlign,
+ Value **OriginAddr);
+
+ /// Returns whether the given load byte size is amenable to inlined
+ /// optimization patterns.
+ bool hasLoadSizeForFastPath(uint64_t Size);
+
+ /// Returns whether the pass tracks origins. Supports only TLS ABI mode.
+ bool shouldTrackOrigins();
+
+ /// Returns a zero constant with the shadow type of OrigTy.
+ ///
+ /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...}
+ /// getZeroShadow([n x T]) = [n x getZeroShadow(T)]
+ /// getZeroShadow(other type) = i16(0)
+ Constant *getZeroShadow(Type *OrigTy);
+ /// Returns a zero constant with the shadow type of V's type.
+ Constant *getZeroShadow(Value *V);
+
+ /// Checks if V is a zero shadow.
+ bool isZeroShadow(Value *V);
+
+ /// Returns the shadow type of OrigTy.
+ ///
+ /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...}
+ /// getShadowTy([n x T]) = [n x getShadowTy(T)]
+ /// getShadowTy(other type) = i16
+ Type *getShadowTy(Type *OrigTy);
+ /// Returns the shadow type of of V's type.
+ Type *getShadowTy(Value *V);
+
+ const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes;
+
+public:
+ DataFlowSanitizer(const std::vector<std::string> &ABIListFiles);
+
+ bool runImpl(Module &M,
+ llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI);
+};
+
+struct DFSanFunction {
+ DataFlowSanitizer &DFS;
+ Function *F;
+ DominatorTree DT;
+ bool IsNativeABI;
+ bool IsForceZeroLabels;
+ TargetLibraryInfo &TLI;
+ AllocaInst *LabelReturnAlloca = nullptr;
+ AllocaInst *OriginReturnAlloca = nullptr;
+ DenseMap<Value *, Value *> ValShadowMap;
+ DenseMap<Value *, Value *> ValOriginMap;
+ DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
+ DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap;
+
+ struct PHIFixupElement {
+ PHINode *Phi;
+ PHINode *ShadowPhi;
+ PHINode *OriginPhi;
+ };
+ std::vector<PHIFixupElement> PHIFixups;
+
+ DenseSet<Instruction *> SkipInsts;
+ std::vector<Value *> NonZeroChecks;
+
+ struct CachedShadow {
+ BasicBlock *Block; // The block where Shadow is defined.
+ Value *Shadow;
+ };
+ /// Maps a value to its latest shadow value in terms of domination tree.
+ DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows;
+ /// Maps a value to its latest collapsed shadow value it was converted to in
+ /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is
+ /// used at a post process where CFG blocks are split. So it does not cache
+ /// BasicBlock like CachedShadows, but uses domination between values.
+ DenseMap<Value *, Value *> CachedCollapsedShadows;
+ DenseMap<Value *, std::set<Value *>> ShadowElements;
+
+ DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI,
+ bool IsForceZeroLabels, TargetLibraryInfo &TLI)
+ : DFS(DFS), F(F), IsNativeABI(IsNativeABI),
+ IsForceZeroLabels(IsForceZeroLabels), TLI(TLI) {
+ DT.recalculate(*F);
+ }
+
+ /// Computes the shadow address for a given function argument.
+ ///
+ /// Shadow = ArgTLS+ArgOffset.
+ Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB);
+
+ /// Computes the shadow address for a return value.
+ Value *getRetvalTLS(Type *T, IRBuilder<> &IRB);
+
+ /// Computes the origin address for a given function argument.
+ ///
+ /// Origin = ArgOriginTLS[ArgNo].
+ Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB);
+
+ /// Computes the origin address for a return value.
+ Value *getRetvalOriginTLS();
+
+ Value *getOrigin(Value *V);
+ void setOrigin(Instruction *I, Value *Origin);
+ /// Generates IR to compute the origin of the last operand with a taint label.
+ Value *combineOperandOrigins(Instruction *Inst);
+ /// Before the instruction Pos, generates IR to compute the last origin with a
+ /// taint label. Labels and origins are from vectors Shadows and Origins
+ /// correspondingly. The generated IR is like
+ /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0
+ /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be
+ /// zeros with other bitwidths.
+ Value *combineOrigins(const std::vector<Value *> &Shadows,
+ const std::vector<Value *> &Origins, Instruction *Pos,
+ ConstantInt *Zero = nullptr);
+
+ Value *getShadow(Value *V);
+ void setShadow(Instruction *I, Value *Shadow);
+ /// Generates IR to compute the union of the two given shadows, inserting it
+ /// before Pos. The combined value is with primitive type.
+ Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
+ /// Combines the shadow values of V1 and V2, then converts the combined value
+ /// with primitive type into a shadow value with the original type T.
+ Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
+ Instruction *Pos);
+ Value *combineOperandShadows(Instruction *Inst);
+
+ /// Generates IR to load shadow and origin corresponding to bytes [\p
+ /// Addr, \p Addr + \p Size), where addr has alignment \p
+ /// InstAlignment, and take the union of each of those shadows. The returned
+ /// shadow always has primitive type.
+ ///
+ /// When tracking loads is enabled, the returned origin is a chain at the
+ /// current stack if the returned shadow is tainted.
+ std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size,
+ Align InstAlignment,
+ Instruction *Pos);
+
+ void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
+ Align InstAlignment, Value *PrimitiveShadow,
+ Value *Origin, Instruction *Pos);
+ /// Applies PrimitiveShadow to all primitive subtypes of T, returning
+ /// the expanded shadow value.
+ ///
+ /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...}
+ /// EFP([n x T], PS) = [n x EFP(T,PS)]
+ /// EFP(other types, PS) = PS
+ Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
+ Instruction *Pos);
+ /// Collapses Shadow into a single primitive shadow value, unioning all
+ /// primitive shadow values in the process. Returns the final primitive
+ /// shadow value.
+ ///
+ /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...)
+ /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...)
+ /// CTP(other types, PS) = PS
+ Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos);
+
+ void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign,
+ Instruction *Pos);
+
+ Align getShadowAlign(Align InstAlignment);
+
+ // If ClConditionalCallbacks is enabled, insert a callback after a given
+ // branch instruction using the given conditional expression.
+ void addConditionalCallbacksIfEnabled(Instruction &I, Value *Condition);
+
+ // If ClReachesFunctionCallbacks is enabled, insert a callback for each
+ // argument and load instruction.
+ void addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB, Instruction &I,
+ Value *Data);
+
+ bool isLookupTableConstant(Value *P);
+
+private:
+ /// Collapses the shadow with aggregate type into a single primitive shadow
+ /// value.
+ template <class AggregateType>
+ Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow,
+ IRBuilder<> &IRB);
+
+ Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB);
+
+ /// Returns the shadow value of an argument A.
+ Value *getShadowForTLSArgument(Argument *A);
+
+ /// The fast path of loading shadows.
+ std::pair<Value *, Value *>
+ loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size,
+ Align ShadowAlign, Align OriginAlign, Value *FirstOrigin,
+ Instruction *Pos);
+
+ Align getOriginAlign(Align InstAlignment);
+
+ /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load
+ /// is __dfsan_load_label_and_origin. This function returns the union of all
+ /// labels and the origin of the first taint label. However this is an
+ /// additional call with many instructions. To ensure common cases are fast,
+ /// checks if it is possible to load labels and origins without using the
+ /// callback function.
+ ///
+ /// When enabling tracking load instructions, we always use
+ /// __dfsan_load_label_and_origin to reduce code size.
+ bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment);
+
+ /// Returns a chain at the current stack with previous origin V.
+ Value *updateOrigin(Value *V, IRBuilder<> &IRB);
+
+ /// Returns a chain at the current stack with previous origin V if Shadow is
+ /// tainted.
+ Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB);
+
+ /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns
+ /// Origin otherwise.
+ Value *originToIntptr(IRBuilder<> &IRB, Value *Origin);
+
+ /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr +
+ /// Size).
+ void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr,
+ uint64_t StoreOriginSize, Align Alignment);
+
+ /// Stores Origin in terms of its Shadow value.
+ /// * Do not write origins for zero shadows because we do not trace origins
+ /// for untainted sinks.
+ /// * Use __dfsan_maybe_store_origin if there are too many origin store
+ /// instrumentations.
+ void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow,
+ Value *Origin, Value *StoreOriginAddr, Align InstAlignment);
+
+ /// Convert a scalar value to an i1 by comparing with 0.
+ Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = "");
+
+ bool shouldInstrumentWithCall();
+
+ /// Generates IR to load shadow and origin corresponding to bytes [\p
+ /// Addr, \p Addr + \p Size), where addr has alignment \p
+ /// InstAlignment, and take the union of each of those shadows. The returned
+ /// shadow always has primitive type.
+ std::pair<Value *, Value *>
+ loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size,
+ Align InstAlignment, Instruction *Pos);
+ int NumOriginStores = 0;
+};
+
+class DFSanVisitor : public InstVisitor<DFSanVisitor> {
+public:
+ DFSanFunction &DFSF;
+
+ DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
+
+ const DataLayout &getDataLayout() const {
+ return DFSF.F->getParent()->getDataLayout();
+ }
+
+ // Combines shadow values and origins for all of I's operands.
+ void visitInstOperands(Instruction &I);
+
+ void visitUnaryOperator(UnaryOperator &UO);
+ void visitBinaryOperator(BinaryOperator &BO);
+ void visitBitCastInst(BitCastInst &BCI);
+ void visitCastInst(CastInst &CI);
+ void visitCmpInst(CmpInst &CI);
+ void visitLandingPadInst(LandingPadInst &LPI);
+ void visitGetElementPtrInst(GetElementPtrInst &GEPI);
+ void visitLoadInst(LoadInst &LI);
+ void visitStoreInst(StoreInst &SI);
+ void visitAtomicRMWInst(AtomicRMWInst &I);
+ void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I);
+ void visitReturnInst(ReturnInst &RI);
+ void visitLibAtomicLoad(CallBase &CB);
+ void visitLibAtomicStore(CallBase &CB);
+ void visitLibAtomicExchange(CallBase &CB);
+ void visitLibAtomicCompareExchange(CallBase &CB);
+ void visitCallBase(CallBase &CB);
+ void visitPHINode(PHINode &PN);
+ void visitExtractElementInst(ExtractElementInst &I);
+ void visitInsertElementInst(InsertElementInst &I);
+ void visitShuffleVectorInst(ShuffleVectorInst &I);
+ void visitExtractValueInst(ExtractValueInst &I);
+ void visitInsertValueInst(InsertValueInst &I);
+ void visitAllocaInst(AllocaInst &I);
+ void visitSelectInst(SelectInst &I);
+ void visitMemSetInst(MemSetInst &I);
+ void visitMemTransferInst(MemTransferInst &I);
+ void visitBranchInst(BranchInst &BR);
+ void visitSwitchInst(SwitchInst &SW);
+
+private:
+ void visitCASOrRMW(Align InstAlignment, Instruction &I);
+
+ // Returns false when this is an invoke of a custom function.
+ bool visitWrappedCallBase(Function &F, CallBase &CB);
+
+ // Combines origins for all of I's operands.
+ void visitInstOperandOrigins(Instruction &I);
+
+ void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
+ IRBuilder<> &IRB);
+
+ void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
+ IRBuilder<> &IRB);
+
+ Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB);
+ Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB);
+};
+
+bool LibAtomicFunction(const Function &F) {
+ // This is a bit of a hack because TargetLibraryInfo is a function pass.
+ // The DFSan pass would need to be refactored to be function pass oriented
+ // (like MSan is) in order to fit together nicely with TargetLibraryInfo.
+ // We need this check to prevent them from being instrumented, or wrapped.
+ // Match on name and number of arguments.
+ if (!F.hasName() || F.isVarArg())
+ return false;
+ switch (F.arg_size()) {
+ case 4:
+ return F.getName() == "__atomic_load" || F.getName() == "__atomic_store";
+ case 5:
+ return F.getName() == "__atomic_exchange";
+ case 6:
+ return F.getName() == "__atomic_compare_exchange";
+ default:
+ return false;
+ }
+}
+
+} // end anonymous namespace
+
+DataFlowSanitizer::DataFlowSanitizer(
+ const std::vector<std::string> &ABIListFiles) {
+ std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
+ llvm::append_range(AllABIListFiles, ClABIListFiles);
+ // FIXME: should we propagate vfs::FileSystem to this constructor?
+ ABIList.set(
+ SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem()));
+
+ for (StringRef v : ClCombineTaintLookupTables)
+ CombineTaintLookupTableNames.insert(v);
+}
+
+TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
+ SmallVector<Type *, 4> ArgTypes;
+
+ // Some parameters of the custom function being constructed are
+ // parameters of T. Record the mapping from parameters of T to
+ // parameters of the custom function, so that parameter attributes
+ // at call sites can be updated.
+ std::vector<unsigned> ArgumentIndexMapping;
+ for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) {
+ Type *ParamType = T->getParamType(I);
+ ArgumentIndexMapping.push_back(ArgTypes.size());
+ ArgTypes.push_back(ParamType);
+ }
+ for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
+ ArgTypes.push_back(PrimitiveShadowTy);
+ if (T->isVarArg())
+ ArgTypes.push_back(PrimitiveShadowPtrTy);
+ Type *RetType = T->getReturnType();
+ if (!RetType->isVoidTy())
+ ArgTypes.push_back(PrimitiveShadowPtrTy);
+
+ if (shouldTrackOrigins()) {
+ for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
+ ArgTypes.push_back(OriginTy);
+ if (T->isVarArg())
+ ArgTypes.push_back(OriginPtrTy);
+ if (!RetType->isVoidTy())
+ ArgTypes.push_back(OriginPtrTy);
+ }
+
+ return TransformedFunction(
+ T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
+ ArgumentIndexMapping);
+}
+
+bool DataFlowSanitizer::isZeroShadow(Value *V) {
+ Type *T = V->getType();
+ if (!isa<ArrayType>(T) && !isa<StructType>(T)) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
+ return CI->isZero();
+ return false;
+ }
+
+ return isa<ConstantAggregateZero>(V);
+}
+
+bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) {
+ uint64_t ShadowSize = Size * ShadowWidthBytes;
+ return ShadowSize % 8 == 0 || ShadowSize == 4;
+}
+
+bool DataFlowSanitizer::shouldTrackOrigins() {
+ static const bool ShouldTrackOrigins = ClTrackOrigins;
+ return ShouldTrackOrigins;
+}
+
+Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) {
+ if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy))
+ return ZeroPrimitiveShadow;
+ Type *ShadowTy = getShadowTy(OrigTy);
+ return ConstantAggregateZero::get(ShadowTy);
+}
+
+Constant *DataFlowSanitizer::getZeroShadow(Value *V) {
+ return getZeroShadow(V->getType());
+}
+
+static Value *expandFromPrimitiveShadowRecursive(
+ Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy,
+ Value *PrimitiveShadow, IRBuilder<> &IRB) {
+ if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy))
+ return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices);
+
+ if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) {
+ for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) {
+ Indices.push_back(Idx);
+ Shadow = expandFromPrimitiveShadowRecursive(
+ Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB);
+ Indices.pop_back();
+ }
+ return Shadow;
+ }
+
+ if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) {
+ for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) {
+ Indices.push_back(Idx);
+ Shadow = expandFromPrimitiveShadowRecursive(
+ Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB);
+ Indices.pop_back();
+ }
+ return Shadow;
+ }
+ llvm_unreachable("Unexpected shadow type");
+}
+
+bool DFSanFunction::shouldInstrumentWithCall() {
+ return ClInstrumentWithCallThreshold >= 0 &&
+ NumOriginStores >= ClInstrumentWithCallThreshold;
+}
+
+Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
+ Instruction *Pos) {
+ Type *ShadowTy = DFS.getShadowTy(T);
+
+ if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
+ return PrimitiveShadow;
+
+ if (DFS.isZeroShadow(PrimitiveShadow))
+ return DFS.getZeroShadow(ShadowTy);
+
+ IRBuilder<> IRB(Pos);
+ SmallVector<unsigned, 4> Indices;
+ Value *Shadow = UndefValue::get(ShadowTy);
+ Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy,
+ PrimitiveShadow, IRB);
+
+ // Caches the primitive shadow value that built the shadow value.
+ CachedCollapsedShadows[Shadow] = PrimitiveShadow;
+ return Shadow;
+}
+
+template <class AggregateType>
+Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow,
+ IRBuilder<> &IRB) {
+ if (!AT->getNumElements())
+ return DFS.ZeroPrimitiveShadow;
+
+ Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
+ Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB);
+
+ for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) {
+ Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
+ Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB);
+ Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
+ }
+ return Aggregator;
+}
+
+Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
+ IRBuilder<> &IRB) {
+ Type *ShadowTy = Shadow->getType();
+ if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
+ return Shadow;
+ if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy))
+ return collapseAggregateShadow<>(AT, Shadow, IRB);
+ if (StructType *ST = dyn_cast<StructType>(ShadowTy))
+ return collapseAggregateShadow<>(ST, Shadow, IRB);
+ llvm_unreachable("Unexpected shadow type");
+}
+
+Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
+ Instruction *Pos) {
+ Type *ShadowTy = Shadow->getType();
+ if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
+ return Shadow;
+
+ // Checks if the cached collapsed shadow value dominates Pos.
+ Value *&CS = CachedCollapsedShadows[Shadow];
+ if (CS && DT.dominates(CS, Pos))
+ return CS;
+
+ IRBuilder<> IRB(Pos);
+ Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB);
+ // Caches the converted primitive shadow value.
+ CS = PrimitiveShadow;
+ return PrimitiveShadow;
+}
+
+void DFSanFunction::addConditionalCallbacksIfEnabled(Instruction &I,
+ Value *Condition) {
+ if (!ClConditionalCallbacks) {
+ return;
+ }
+ IRBuilder<> IRB(&I);
+ Value *CondShadow = getShadow(Condition);
+ CallInst *CI;
+ if (DFS.shouldTrackOrigins()) {
+ Value *CondOrigin = getOrigin(Condition);
+ CI = IRB.CreateCall(DFS.DFSanConditionalCallbackOriginFn,
+ {CondShadow, CondOrigin});
+ } else {
+ CI = IRB.CreateCall(DFS.DFSanConditionalCallbackFn, {CondShadow});
+ }
+ CI->addParamAttr(0, Attribute::ZExt);
+}
+
+void DFSanFunction::addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB,
+ Instruction &I,
+ Value *Data) {
+ if (!ClReachesFunctionCallbacks) {
+ return;
+ }
+ const DebugLoc &dbgloc = I.getDebugLoc();
+ Value *DataShadow = collapseToPrimitiveShadow(getShadow(Data), IRB);
+ ConstantInt *CILine;
+ llvm::Value *FilePathPtr;
+
+ if (dbgloc.get() == nullptr) {
+ CILine = llvm::ConstantInt::get(I.getContext(), llvm::APInt(32, 0));
+ FilePathPtr = IRB.CreateGlobalStringPtr(
+ I.getFunction()->getParent()->getSourceFileName());
+ } else {
+ CILine = llvm::ConstantInt::get(I.getContext(),
+ llvm::APInt(32, dbgloc.getLine()));
+ FilePathPtr =
+ IRB.CreateGlobalStringPtr(dbgloc->getFilename());
+ }
+
+ llvm::Value *FunctionNamePtr =
+ IRB.CreateGlobalStringPtr(I.getFunction()->getName());
+
+ CallInst *CB;
+ std::vector<Value *> args;
+
+ if (DFS.shouldTrackOrigins()) {
+ Value *DataOrigin = getOrigin(Data);
+ args = { DataShadow, DataOrigin, FilePathPtr, CILine, FunctionNamePtr };
+ CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackOriginFn, args);
+ } else {
+ args = { DataShadow, FilePathPtr, CILine, FunctionNamePtr };
+ CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackFn, args);
+ }
+ CB->addParamAttr(0, Attribute::ZExt);
+ CB->setDebugLoc(dbgloc);
+}
+
+Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) {
+ if (!OrigTy->isSized())
+ return PrimitiveShadowTy;
+ if (isa<IntegerType>(OrigTy))
+ return PrimitiveShadowTy;
+ if (isa<VectorType>(OrigTy))
+ return PrimitiveShadowTy;
+ if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy))
+ return ArrayType::get(getShadowTy(AT->getElementType()),
+ AT->getNumElements());
+ if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
+ SmallVector<Type *, 4> Elements;
+ for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I)
+ Elements.push_back(getShadowTy(ST->getElementType(I)));
+ return StructType::get(*Ctx, Elements);
+ }
+ return PrimitiveShadowTy;
+}
+
+Type *DataFlowSanitizer::getShadowTy(Value *V) {
+ return getShadowTy(V->getType());
+}
+
+bool DataFlowSanitizer::initializeModule(Module &M) {
+ Triple TargetTriple(M.getTargetTriple());
+ const DataLayout &DL = M.getDataLayout();
+
+ if (TargetTriple.getOS() != Triple::Linux)
+ report_fatal_error("unsupported operating system");
+ switch (TargetTriple.getArch()) {
+ case Triple::aarch64:
+ MapParams = &Linux_AArch64_MemoryMapParams;
+ break;
+ case Triple::x86_64:
+ MapParams = &Linux_X86_64_MemoryMapParams;
+ break;
+ default:
+ report_fatal_error("unsupported architecture");
+ }
+
+ Mod = &M;
+ Ctx = &M.getContext();
+ Int8Ptr = Type::getInt8PtrTy(*Ctx);
+ OriginTy = IntegerType::get(*Ctx, OriginWidthBits);
+ OriginPtrTy = PointerType::getUnqual(OriginTy);
+ PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
+ PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy);
+ IntptrTy = DL.getIntPtrType(*Ctx);
+ ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0);
+ ZeroOrigin = ConstantInt::getSigned(OriginTy, 0);
+
+ Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
+ DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs,
+ /*isVarArg=*/false);
+ Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy};
+ DFSanLoadLabelAndOriginFnTy =
+ FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs,
+ /*isVarArg=*/false);
+ DFSanUnimplementedFnTy = FunctionType::get(
+ Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
+ Type *DFSanWrapperExternWeakNullArgs[2] = {Int8Ptr, Int8Ptr};
+ DFSanWrapperExternWeakNullFnTy =
+ FunctionType::get(Type::getVoidTy(*Ctx), DFSanWrapperExternWeakNullArgs,
+ /*isVarArg=*/false);
+ Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy,
+ Type::getInt8PtrTy(*Ctx), IntptrTy};
+ DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
+ DFSanSetLabelArgs, /*isVarArg=*/false);
+ DFSanNonzeroLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), std::nullopt,
+ /*isVarArg=*/false);
+ DFSanVarargWrapperFnTy = FunctionType::get(
+ Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
+ DFSanConditionalCallbackFnTy =
+ FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
+ /*isVarArg=*/false);
+ Type *DFSanConditionalCallbackOriginArgs[2] = {PrimitiveShadowTy, OriginTy};
+ DFSanConditionalCallbackOriginFnTy = FunctionType::get(
+ Type::getVoidTy(*Ctx), DFSanConditionalCallbackOriginArgs,
+ /*isVarArg=*/false);
+ Type *DFSanReachesFunctionCallbackArgs[4] = {PrimitiveShadowTy, Int8Ptr,
+ OriginTy, Int8Ptr};
+ DFSanReachesFunctionCallbackFnTy =
+ FunctionType::get(Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackArgs,
+ /*isVarArg=*/false);
+ Type *DFSanReachesFunctionCallbackOriginArgs[5] = {
+ PrimitiveShadowTy, OriginTy, Int8Ptr, OriginTy, Int8Ptr};
+ DFSanReachesFunctionCallbackOriginFnTy = FunctionType::get(
+ Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackOriginArgs,
+ /*isVarArg=*/false);
+ DFSanCmpCallbackFnTy =
+ FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
+ /*isVarArg=*/false);
+ DFSanChainOriginFnTy =
+ FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false);
+ Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy};
+ DFSanChainOriginIfTaintedFnTy = FunctionType::get(
+ OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false);
+ Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits),
+ Int8Ptr, IntptrTy, OriginTy};
+ DFSanMaybeStoreOriginFnTy = FunctionType::get(
+ Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false);
+ Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy};
+ DFSanMemOriginTransferFnTy = FunctionType::get(
+ Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false);
+ Type *DFSanMemShadowOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy};
+ DFSanMemShadowOriginTransferFnTy =
+ FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemShadowOriginTransferArgs,
+ /*isVarArg=*/false);
+ Type *DFSanMemShadowOriginConditionalExchangeArgs[5] = {
+ IntegerType::get(*Ctx, 8), Int8Ptr, Int8Ptr, Int8Ptr, IntptrTy};
+ DFSanMemShadowOriginConditionalExchangeFnTy = FunctionType::get(
+ Type::getVoidTy(*Ctx), DFSanMemShadowOriginConditionalExchangeArgs,
+ /*isVarArg=*/false);
+ Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr};
+ DFSanLoadStoreCallbackFnTy =
+ FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs,
+ /*isVarArg=*/false);
+ Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
+ DFSanMemTransferCallbackFnTy =
+ FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs,
+ /*isVarArg=*/false);
+
+ ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
+ OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
+ return true;
+}
+
+bool DataFlowSanitizer::isInstrumented(const Function *F) {
+ return !ABIList.isIn(*F, "uninstrumented");
+}
+
+bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
+ return !ABIList.isIn(*GA, "uninstrumented");
+}
+
+bool DataFlowSanitizer::isForceZeroLabels(const Function *F) {
+ return ABIList.isIn(*F, "force_zero_labels");
+}
+
+DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
+ if (ABIList.isIn(*F, "functional"))
+ return WK_Functional;
+ if (ABIList.isIn(*F, "discard"))
+ return WK_Discard;
+ if (ABIList.isIn(*F, "custom"))
+ return WK_Custom;
+
+ return WK_Warning;
+}
+
+void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) {
+ std::string GVName = std::string(GV->getName()), Suffix = ".dfsan";
+ GV->setName(GVName + Suffix);
+
+ // Try to change the name of the function in module inline asm. We only do
+ // this for specific asm directives, currently only ".symver", to try to avoid
+ // corrupting asm which happens to contain the symbol name as a substring.
+ // Note that the substitution for .symver assumes that the versioned symbol
+ // also has an instrumented name.
+ std::string Asm = GV->getParent()->getModuleInlineAsm();
+ std::string SearchStr = ".symver " + GVName + ",";
+ size_t Pos = Asm.find(SearchStr);
+ if (Pos != std::string::npos) {
+ Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ",");
+ Pos = Asm.find("@");
+
+ if (Pos == std::string::npos)
+ report_fatal_error(Twine("unsupported .symver: ", Asm));
+
+ Asm.replace(Pos, 1, Suffix + "@");
+ GV->getParent()->setModuleInlineAsm(Asm);
+ }
+}
+
+void DataFlowSanitizer::buildExternWeakCheckIfNeeded(IRBuilder<> &IRB,
+ Function *F) {
+ // If the function we are wrapping was ExternWeak, it may be null.
+ // The original code before calling this wrapper may have checked for null,
+ // but replacing with a known-to-not-be-null wrapper can break this check.
+ // When replacing uses of the extern weak function with the wrapper we try
+ // to avoid replacing uses in conditionals, but this is not perfect.
+ // In the case where we fail, and accidentally optimize out a null check
+ // for a extern weak function, add a check here to help identify the issue.
+ if (GlobalValue::isExternalWeakLinkage(F->getLinkage())) {
+ std::vector<Value *> Args;
+ Args.push_back(IRB.CreatePointerCast(F, IRB.getInt8PtrTy()));
+ Args.push_back(IRB.CreateGlobalStringPtr(F->getName()));
+ IRB.CreateCall(DFSanWrapperExternWeakNullFn, Args);
+ }
+}
+
+Function *
+DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
+ GlobalValue::LinkageTypes NewFLink,
+ FunctionType *NewFT) {
+ FunctionType *FT = F->getFunctionType();
+ Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(),
+ NewFName, F->getParent());
+ NewF->copyAttributesFrom(F);
+ NewF->removeRetAttrs(
+ AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
+
+ BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
+ if (F->isVarArg()) {
+ NewF->removeFnAttr("split-stack");
+ CallInst::Create(DFSanVarargWrapperFn,
+ IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
+ BB);
+ new UnreachableInst(*Ctx, BB);
+ } else {
+ auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin());
+ std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams());
+
+ CallInst *CI = CallInst::Create(F, Args, "", BB);
+ if (FT->getReturnType()->isVoidTy())
+ ReturnInst::Create(*Ctx, BB);
+ else
+ ReturnInst::Create(*Ctx, CI, BB);
+ }
+
+ return NewF;
+}
+
+// Initialize DataFlowSanitizer runtime functions and declare them in the module
+void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) {
+ LLVMContext &C = M.getContext();
+ {
+ AttributeList AL;
+ AL = AL.addFnAttribute(C, Attribute::NoUnwind);
+ AL = AL.addFnAttribute(
+ C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly()));
+ AL = AL.addRetAttribute(C, Attribute::ZExt);
+ DFSanUnionLoadFn =
+ Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL);
+ }
+ {
+ AttributeList AL;
+ AL = AL.addFnAttribute(C, Attribute::NoUnwind);
+ AL = AL.addFnAttribute(
+ C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly()));
+ AL = AL.addRetAttribute(C, Attribute::ZExt);
+ DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction(
+ "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL);
+ }
+ DFSanUnimplementedFn =
+ Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
+ DFSanWrapperExternWeakNullFn = Mod->getOrInsertFunction(
+ "__dfsan_wrapper_extern_weak_null", DFSanWrapperExternWeakNullFnTy);
+ {
+ AttributeList AL;
+ AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
+ AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
+ DFSanSetLabelFn =
+ Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL);
+ }
+ DFSanNonzeroLabelFn =
+ Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
+ DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
+ DFSanVarargWrapperFnTy);
+ {
+ AttributeList AL;
+ AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
+ AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
+ DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin",
+ DFSanChainOriginFnTy, AL);
+ }
+ {
+ AttributeList AL;
+ AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
+ AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
+ AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
+ DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction(
+ "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL);
+ }
+ DFSanMemOriginTransferFn = Mod->getOrInsertFunction(
+ "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy);
+
+ DFSanMemShadowOriginTransferFn = Mod->getOrInsertFunction(
+ "__dfsan_mem_shadow_origin_transfer", DFSanMemShadowOriginTransferFnTy);
+
+ DFSanMemShadowOriginConditionalExchangeFn =
+ Mod->getOrInsertFunction("__dfsan_mem_shadow_origin_conditional_exchange",
+ DFSanMemShadowOriginConditionalExchangeFnTy);
+
+ {
+ AttributeList AL;
+ AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
+ AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt);
+ DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction(
+ "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL);
+ }
+
+ DFSanRuntimeFunctions.insert(
+ DFSanUnionLoadFn.getCallee()->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanUnimplementedFn.getCallee()->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanWrapperExternWeakNullFn.getCallee()->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanSetLabelFn.getCallee()->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanNonzeroLabelFn.getCallee()->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanVarargWrapperFn.getCallee()->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanLoadCallbackFn.getCallee()->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanStoreCallbackFn.getCallee()->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanConditionalCallbackFn.getCallee()->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanConditionalCallbackOriginFn.getCallee()->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanReachesFunctionCallbackFn.getCallee()->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanReachesFunctionCallbackOriginFn.getCallee()->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanCmpCallbackFn.getCallee()->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanChainOriginFn.getCallee()->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanMemOriginTransferFn.getCallee()->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanMemShadowOriginTransferFn.getCallee()->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanMemShadowOriginConditionalExchangeFn.getCallee()
+ ->stripPointerCasts());
+ DFSanRuntimeFunctions.insert(
+ DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts());
+}
+
+// Initializes event callback functions and declare them in the module
+void DataFlowSanitizer::initializeCallbackFunctions(Module &M) {
+ {
+ AttributeList AL;
+ AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
+ DFSanLoadCallbackFn = Mod->getOrInsertFunction(
+ "__dfsan_load_callback", DFSanLoadStoreCallbackFnTy, AL);
+ }
+ {
+ AttributeList AL;
+ AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
+ DFSanStoreCallbackFn = Mod->getOrInsertFunction(
+ "__dfsan_store_callback", DFSanLoadStoreCallbackFnTy, AL);
+ }
+ DFSanMemTransferCallbackFn = Mod->getOrInsertFunction(
+ "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy);
+ {
+ AttributeList AL;
+ AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
+ DFSanCmpCallbackFn = Mod->getOrInsertFunction("__dfsan_cmp_callback",
+ DFSanCmpCallbackFnTy, AL);
+ }
+ {
+ AttributeList AL;
+ AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
+ DFSanConditionalCallbackFn = Mod->getOrInsertFunction(
+ "__dfsan_conditional_callback", DFSanConditionalCallbackFnTy, AL);
+ }
+ {
+ AttributeList AL;
+ AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
+ DFSanConditionalCallbackOriginFn =
+ Mod->getOrInsertFunction("__dfsan_conditional_callback_origin",
+ DFSanConditionalCallbackOriginFnTy, AL);
+ }
+ {
+ AttributeList AL;
+ AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
+ DFSanReachesFunctionCallbackFn =
+ Mod->getOrInsertFunction("__dfsan_reaches_function_callback",
+ DFSanReachesFunctionCallbackFnTy, AL);
+ }
+ {
+ AttributeList AL;
+ AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
+ DFSanReachesFunctionCallbackOriginFn =
+ Mod->getOrInsertFunction("__dfsan_reaches_function_callback_origin",
+ DFSanReachesFunctionCallbackOriginFnTy, AL);
+ }
+}
+
+bool DataFlowSanitizer::runImpl(
+ Module &M, llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
+ initializeModule(M);
+
+ if (ABIList.isIn(M, "skip"))
+ return false;
+
+ const unsigned InitialGlobalSize = M.global_size();
+ const unsigned InitialModuleSize = M.size();
+
+ bool Changed = false;
+
+ auto GetOrInsertGlobal = [this, &Changed](StringRef Name,
+ Type *Ty) -> Constant * {
+ Constant *C = Mod->getOrInsertGlobal(Name, Ty);
+ if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) {
+ Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
+ G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
+ }
+ return C;
+ };
+
+ // These globals must be kept in sync with the ones in dfsan.cpp.
+ ArgTLS =
+ GetOrInsertGlobal("__dfsan_arg_tls",
+ ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8));
+ RetvalTLS = GetOrInsertGlobal(
+ "__dfsan_retval_tls",
+ ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8));
+ ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS);
+ ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy);
+ RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy);
+
+ (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] {
+ Changed = true;
+ return new GlobalVariable(
+ M, OriginTy, true, GlobalValue::WeakODRLinkage,
+ ConstantInt::getSigned(OriginTy,
+ shouldTrackOrigins() ? ClTrackOrigins : 0),
+ "__dfsan_track_origins");
+ });
+
+ initializeCallbackFunctions(M);
+ initializeRuntimeFunctions(M);
+
+ std::vector<Function *> FnsToInstrument;
+ SmallPtrSet<Function *, 2> FnsWithNativeABI;
+ SmallPtrSet<Function *, 2> FnsWithForceZeroLabel;
+ SmallPtrSet<Constant *, 1> PersonalityFns;
+ for (Function &F : M)
+ if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F) &&
+ !LibAtomicFunction(F)) {
+ FnsToInstrument.push_back(&F);
+ if (F.hasPersonalityFn())
+ PersonalityFns.insert(F.getPersonalityFn()->stripPointerCasts());
+ }
+
+ if (ClIgnorePersonalityRoutine) {
+ for (auto *C : PersonalityFns) {
+ assert(isa<Function>(C) && "Personality routine is not a function!");
+ Function *F = cast<Function>(C);
+ if (!isInstrumented(F))
+ llvm::erase_value(FnsToInstrument, F);
+ }
+ }
+
+ // Give function aliases prefixes when necessary, and build wrappers where the
+ // instrumentedness is inconsistent.
+ for (GlobalAlias &GA : llvm::make_early_inc_range(M.aliases())) {
+ // Don't stop on weak. We assume people aren't playing games with the
+ // instrumentedness of overridden weak aliases.
+ auto *F = dyn_cast<Function>(GA.getAliaseeObject());
+ if (!F)
+ continue;
+
+ bool GAInst = isInstrumented(&GA), FInst = isInstrumented(F);
+ if (GAInst && FInst) {
+ addGlobalNameSuffix(&GA);
+ } else if (GAInst != FInst) {
+ // Non-instrumented alias of an instrumented function, or vice versa.
+ // Replace the alias with a native-ABI wrapper of the aliasee. The pass
+ // below will take care of instrumenting it.
+ Function *NewF =
+ buildWrapperFunction(F, "", GA.getLinkage(), F->getFunctionType());
+ GA.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA.getType()));
+ NewF->takeName(&GA);
+ GA.eraseFromParent();
+ FnsToInstrument.push_back(NewF);
+ }
+ }
+
+ // TODO: This could be more precise.
+ ReadOnlyNoneAttrs.addAttribute(Attribute::Memory);
+
+ // First, change the ABI of every function in the module. ABI-listed
+ // functions keep their original ABI and get a wrapper function.
+ for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(),
+ FE = FnsToInstrument.end();
+ FI != FE; ++FI) {
+ Function &F = **FI;
+ FunctionType *FT = F.getFunctionType();
+
+ bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
+ FT->getReturnType()->isVoidTy());
+
+ if (isInstrumented(&F)) {
+ if (isForceZeroLabels(&F))
+ FnsWithForceZeroLabel.insert(&F);
+
+ // Instrumented functions get a '.dfsan' suffix. This allows us to more
+ // easily identify cases of mismatching ABIs. This naming scheme is
+ // mangling-compatible (see Itanium ABI), using a vendor-specific suffix.
+ addGlobalNameSuffix(&F);
+ } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
+ // Build a wrapper function for F. The wrapper simply calls F, and is
+ // added to FnsToInstrument so that any instrumentation according to its
+ // WrapperKind is done in the second pass below.
+
+ // If the function being wrapped has local linkage, then preserve the
+ // function's linkage in the wrapper function.
+ GlobalValue::LinkageTypes WrapperLinkage =
+ F.hasLocalLinkage() ? F.getLinkage()
+ : GlobalValue::LinkOnceODRLinkage;
+
+ Function *NewF = buildWrapperFunction(
+ &F,
+ (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) +
+ std::string(F.getName()),
+ WrapperLinkage, FT);
+ NewF->removeFnAttrs(ReadOnlyNoneAttrs);
+
+ Value *WrappedFnCst =
+ ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
+
+ // Extern weak functions can sometimes be null at execution time.
+ // Code will sometimes check if an extern weak function is null.
+ // This could look something like:
+ // declare extern_weak i8 @my_func(i8)
+ // br i1 icmp ne (i8 (i8)* @my_func, i8 (i8)* null), label %use_my_func,
+ // label %avoid_my_func
+ // The @"dfsw$my_func" wrapper is never null, so if we replace this use
+ // in the comparison, the icmp will simplify to false and we have
+ // accidentally optimized away a null check that is necessary.
+ // This can lead to a crash when the null extern_weak my_func is called.
+ //
+ // To prevent (the most common pattern of) this problem,
+ // do not replace uses in comparisons with the wrapper.
+ // We definitely want to replace uses in call instructions.
+ // Other uses (e.g. store the function address somewhere) might be
+ // called or compared or both - this case may not be handled correctly.
+ // We will default to replacing with wrapper in cases we are unsure.
+ auto IsNotCmpUse = [](Use &U) -> bool {
+ User *Usr = U.getUser();
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
+ // This is the most common case for icmp ne null
+ if (CE->getOpcode() == Instruction::ICmp) {
+ return false;
+ }
+ }
+ if (Instruction *I = dyn_cast<Instruction>(Usr)) {
+ if (I->getOpcode() == Instruction::ICmp) {
+ return false;
+ }
+ }
+ return true;
+ };
+ F.replaceUsesWithIf(WrappedFnCst, IsNotCmpUse);
+
+ UnwrappedFnMap[WrappedFnCst] = &F;
+ *FI = NewF;
+
+ if (!F.isDeclaration()) {
+ // This function is probably defining an interposition of an
+ // uninstrumented function and hence needs to keep the original ABI.
+ // But any functions it may call need to use the instrumented ABI, so
+ // we instrument it in a mode which preserves the original ABI.
+ FnsWithNativeABI.insert(&F);
+
+ // This code needs to rebuild the iterators, as they may be invalidated
+ // by the push_back, taking care that the new range does not include
+ // any functions added by this code.
+ size_t N = FI - FnsToInstrument.begin(),
+ Count = FE - FnsToInstrument.begin();
+ FnsToInstrument.push_back(&F);
+ FI = FnsToInstrument.begin() + N;
+ FE = FnsToInstrument.begin() + Count;
+ }
+ // Hopefully, nobody will try to indirectly call a vararg
+ // function... yet.
+ } else if (FT->isVarArg()) {
+ UnwrappedFnMap[&F] = &F;
+ *FI = nullptr;
+ }
+ }
+
+ for (Function *F : FnsToInstrument) {
+ if (!F || F->isDeclaration())
+ continue;
+
+ removeUnreachableBlocks(*F);
+
+ DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F),
+ FnsWithForceZeroLabel.count(F), GetTLI(*F));
+
+ if (ClReachesFunctionCallbacks) {
+ // Add callback for arguments reaching this function.
+ for (auto &FArg : F->args()) {
+ Instruction *Next = &F->getEntryBlock().front();
+ Value *FArgShadow = DFSF.getShadow(&FArg);
+ if (isZeroShadow(FArgShadow))
+ continue;
+ if (Instruction *FArgShadowInst = dyn_cast<Instruction>(FArgShadow)) {
+ Next = FArgShadowInst->getNextNode();
+ }
+ if (shouldTrackOrigins()) {
+ if (Instruction *Origin =
+ dyn_cast<Instruction>(DFSF.getOrigin(&FArg))) {
+ // Ensure IRB insertion point is after loads for shadow and origin.
+ Instruction *OriginNext = Origin->getNextNode();
+ if (Next->comesBefore(OriginNext)) {
+ Next = OriginNext;
+ }
+ }
+ }
+ IRBuilder<> IRB(Next);
+ DFSF.addReachesFunctionCallbacksIfEnabled(IRB, *Next, &FArg);
+ }
+ }
+
+ // DFSanVisitor may create new basic blocks, which confuses df_iterator.
+ // Build a copy of the list before iterating over it.
+ SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock()));
+
+ for (BasicBlock *BB : BBList) {
+ Instruction *Inst = &BB->front();
+ while (true) {
+ // DFSanVisitor may split the current basic block, changing the current
+ // instruction's next pointer and moving the next instruction to the
+ // tail block from which we should continue.
+ Instruction *Next = Inst->getNextNode();
+ // DFSanVisitor may delete Inst, so keep track of whether it was a
+ // terminator.
+ bool IsTerminator = Inst->isTerminator();
+ if (!DFSF.SkipInsts.count(Inst))
+ DFSanVisitor(DFSF).visit(Inst);
+ if (IsTerminator)
+ break;
+ Inst = Next;
+ }
+ }
+
+ // We will not necessarily be able to compute the shadow for every phi node
+ // until we have visited every block. Therefore, the code that handles phi
+ // nodes adds them to the PHIFixups list so that they can be properly
+ // handled here.
+ for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) {
+ for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N;
+ ++Val) {
+ P.ShadowPhi->setIncomingValue(
+ Val, DFSF.getShadow(P.Phi->getIncomingValue(Val)));
+ if (P.OriginPhi)
+ P.OriginPhi->setIncomingValue(
+ Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val)));
+ }
+ }
+
+ // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
+ // places (i.e. instructions in basic blocks we haven't even begun visiting
+ // yet). To make our life easier, do this work in a pass after the main
+ // instrumentation.
+ if (ClDebugNonzeroLabels) {
+ for (Value *V : DFSF.NonZeroChecks) {
+ Instruction *Pos;
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ Pos = I->getNextNode();
+ else
+ Pos = &DFSF.F->getEntryBlock().front();
+ while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
+ Pos = Pos->getNextNode();
+ IRBuilder<> IRB(Pos);
+ Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos);
+ Value *Ne =
+ IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow);
+ BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
+ Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
+ IRBuilder<> ThenIRB(BI);
+ ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
+ }
+ }
+ }
+
+ return Changed || !FnsToInstrument.empty() ||
+ M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize;
+}
+
+Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) {
+ Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy);
+ if (ArgOffset)
+ Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset));
+ return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0),
+ "_dfsarg");
+}
+
+Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) {
+ return IRB.CreatePointerCast(
+ DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret");
+}
+
+Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; }
+
+Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) {
+ return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo,
+ "_dfsarg_o");
+}
+
+Value *DFSanFunction::getOrigin(Value *V) {
+ assert(DFS.shouldTrackOrigins());
+ if (!isa<Argument>(V) && !isa<Instruction>(V))
+ return DFS.ZeroOrigin;
+ Value *&Origin = ValOriginMap[V];
+ if (!Origin) {
+ if (Argument *A = dyn_cast<Argument>(V)) {
+ if (IsNativeABI)
+ return DFS.ZeroOrigin;
+ if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) {
+ Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin();
+ IRBuilder<> IRB(ArgOriginTLSPos);
+ Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB);
+ Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr);
+ } else {
+ // Overflow
+ Origin = DFS.ZeroOrigin;
+ }
+ } else {
+ Origin = DFS.ZeroOrigin;
+ }
+ }
+ return Origin;
+}
+
+void DFSanFunction::setOrigin(Instruction *I, Value *Origin) {
+ if (!DFS.shouldTrackOrigins())
+ return;
+ assert(!ValOriginMap.count(I));
+ assert(Origin->getType() == DFS.OriginTy);
+ ValOriginMap[I] = Origin;
+}
+
+Value *DFSanFunction::getShadowForTLSArgument(Argument *A) {
+ unsigned ArgOffset = 0;
+ const DataLayout &DL = F->getParent()->getDataLayout();
+ for (auto &FArg : F->args()) {
+ if (!FArg.getType()->isSized()) {
+ if (A == &FArg)
+ break;
+ continue;
+ }
+
+ unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg));
+ if (A != &FArg) {
+ ArgOffset += alignTo(Size, ShadowTLSAlignment);
+ if (ArgOffset > ArgTLSSize)
+ break; // ArgTLS overflows, uses a zero shadow.
+ continue;
+ }
+
+ if (ArgOffset + Size > ArgTLSSize)
+ break; // ArgTLS overflows, uses a zero shadow.
+
+ Instruction *ArgTLSPos = &*F->getEntryBlock().begin();
+ IRBuilder<> IRB(ArgTLSPos);
+ Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB);
+ return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr,
+ ShadowTLSAlignment);
+ }
+
+ return DFS.getZeroShadow(A);
+}
+
+Value *DFSanFunction::getShadow(Value *V) {
+ if (!isa<Argument>(V) && !isa<Instruction>(V))
+ return DFS.getZeroShadow(V);
+ if (IsForceZeroLabels)
+ return DFS.getZeroShadow(V);
+ Value *&Shadow = ValShadowMap[V];
+ if (!Shadow) {
+ if (Argument *A = dyn_cast<Argument>(V)) {
+ if (IsNativeABI)
+ return DFS.getZeroShadow(V);
+ Shadow = getShadowForTLSArgument(A);
+ NonZeroChecks.push_back(Shadow);
+ } else {
+ Shadow = DFS.getZeroShadow(V);
+ }
+ }
+ return Shadow;
+}
+
+void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
+ assert(!ValShadowMap.count(I));
+ ValShadowMap[I] = Shadow;
+}
+
+/// Compute the integer shadow offset that corresponds to a given
+/// application address.
+///
+/// Offset = (Addr & ~AndMask) ^ XorMask
+Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) {
+ assert(Addr != RetvalTLS && "Reinstrumenting?");
+ Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy);
+
+ uint64_t AndMask = MapParams->AndMask;
+ if (AndMask)
+ OffsetLong =
+ IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask));
+
+ uint64_t XorMask = MapParams->XorMask;
+ if (XorMask)
+ OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask));
+ return OffsetLong;
+}
+
+std::pair<Value *, Value *>
+DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment,
+ Instruction *Pos) {
+ // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL
+ IRBuilder<> IRB(Pos);
+ Value *ShadowOffset = getShadowOffset(Addr, IRB);
+ Value *ShadowLong = ShadowOffset;
+ uint64_t ShadowBase = MapParams->ShadowBase;
+ if (ShadowBase != 0) {
+ ShadowLong =
+ IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase));
+ }
+ IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
+ Value *ShadowPtr =
+ IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
+ Value *OriginPtr = nullptr;
+ if (shouldTrackOrigins()) {
+ Value *OriginLong = ShadowOffset;
+ uint64_t OriginBase = MapParams->OriginBase;
+ if (OriginBase != 0)
+ OriginLong =
+ IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase));
+ const Align Alignment = llvm::assumeAligned(InstAlignment.value());
+ // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB.
+ // So Mask is unnecessary.
+ if (Alignment < MinOriginAlignment) {
+ uint64_t Mask = MinOriginAlignment.value() - 1;
+ OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask));
+ }
+ OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy);
+ }
+ return std::make_pair(ShadowPtr, OriginPtr);
+}
+
+Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos,
+ Value *ShadowOffset) {
+ IRBuilder<> IRB(Pos);
+ return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy);
+}
+
+Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
+ IRBuilder<> IRB(Pos);
+ Value *ShadowOffset = getShadowOffset(Addr, IRB);
+ return getShadowAddress(Addr, Pos, ShadowOffset);
+}
+
+Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
+ Instruction *Pos) {
+ Value *PrimitiveValue = combineShadows(V1, V2, Pos);
+ return expandFromPrimitiveShadow(T, PrimitiveValue, Pos);
+}
+
+// Generates IR to compute the union of the two given shadows, inserting it
+// before Pos. The combined value is with primitive type.
+Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
+ if (DFS.isZeroShadow(V1))
+ return collapseToPrimitiveShadow(V2, Pos);
+ if (DFS.isZeroShadow(V2))
+ return collapseToPrimitiveShadow(V1, Pos);
+ if (V1 == V2)
+ return collapseToPrimitiveShadow(V1, Pos);
+
+ auto V1Elems = ShadowElements.find(V1);
+ auto V2Elems = ShadowElements.find(V2);
+ if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
+ if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
+ V2Elems->second.begin(), V2Elems->second.end())) {
+ return collapseToPrimitiveShadow(V1, Pos);
+ }
+ if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
+ V1Elems->second.begin(), V1Elems->second.end())) {
+ return collapseToPrimitiveShadow(V2, Pos);
+ }
+ } else if (V1Elems != ShadowElements.end()) {
+ if (V1Elems->second.count(V2))
+ return collapseToPrimitiveShadow(V1, Pos);
+ } else if (V2Elems != ShadowElements.end()) {
+ if (V2Elems->second.count(V1))
+ return collapseToPrimitiveShadow(V2, Pos);
+ }
+
+ auto Key = std::make_pair(V1, V2);
+ if (V1 > V2)
+ std::swap(Key.first, Key.second);
+ CachedShadow &CCS = CachedShadows[Key];
+ if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
+ return CCS.Shadow;
+
+ // Converts inputs shadows to shadows with primitive types.
+ Value *PV1 = collapseToPrimitiveShadow(V1, Pos);
+ Value *PV2 = collapseToPrimitiveShadow(V2, Pos);
+
+ IRBuilder<> IRB(Pos);
+ CCS.Block = Pos->getParent();
+ CCS.Shadow = IRB.CreateOr(PV1, PV2);
+
+ std::set<Value *> UnionElems;
+ if (V1Elems != ShadowElements.end()) {
+ UnionElems = V1Elems->second;
+ } else {
+ UnionElems.insert(V1);
+ }
+ if (V2Elems != ShadowElements.end()) {
+ UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
+ } else {
+ UnionElems.insert(V2);
+ }
+ ShadowElements[CCS.Shadow] = std::move(UnionElems);
+
+ return CCS.Shadow;
+}
+
+// A convenience function which folds the shadows of each of the operands
+// of the provided instruction Inst, inserting the IR before Inst. Returns
+// the computed union Value.
+Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
+ if (Inst->getNumOperands() == 0)
+ return DFS.getZeroShadow(Inst);
+
+ Value *Shadow = getShadow(Inst->getOperand(0));
+ for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I)
+ Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst);
+
+ return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst);
+}
+
+void DFSanVisitor::visitInstOperands(Instruction &I) {
+ Value *CombinedShadow = DFSF.combineOperandShadows(&I);
+ DFSF.setShadow(&I, CombinedShadow);
+ visitInstOperandOrigins(I);
+}
+
+Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows,
+ const std::vector<Value *> &Origins,
+ Instruction *Pos, ConstantInt *Zero) {
+ assert(Shadows.size() == Origins.size());
+ size_t Size = Origins.size();
+ if (Size == 0)
+ return DFS.ZeroOrigin;
+ Value *Origin = nullptr;
+ if (!Zero)
+ Zero = DFS.ZeroPrimitiveShadow;
+ for (size_t I = 0; I != Size; ++I) {
+ Value *OpOrigin = Origins[I];
+ Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin);
+ if (ConstOpOrigin && ConstOpOrigin->isNullValue())
+ continue;
+ if (!Origin) {
+ Origin = OpOrigin;
+ continue;
+ }
+ Value *OpShadow = Shadows[I];
+ Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos);
+ IRBuilder<> IRB(Pos);
+ Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero);
+ Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
+ }
+ return Origin ? Origin : DFS.ZeroOrigin;
+}
+
+Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) {
+ size_t Size = Inst->getNumOperands();
+ std::vector<Value *> Shadows(Size);
+ std::vector<Value *> Origins(Size);
+ for (unsigned I = 0; I != Size; ++I) {
+ Shadows[I] = getShadow(Inst->getOperand(I));
+ Origins[I] = getOrigin(Inst->getOperand(I));
+ }
+ return combineOrigins(Shadows, Origins, Inst);
+}
+
+void DFSanVisitor::visitInstOperandOrigins(Instruction &I) {
+ if (!DFSF.DFS.shouldTrackOrigins())
+ return;
+ Value *CombinedOrigin = DFSF.combineOperandOrigins(&I);
+ DFSF.setOrigin(&I, CombinedOrigin);
+}
+
+Align DFSanFunction::getShadowAlign(Align InstAlignment) {
+ const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1);
+ return Align(Alignment.value() * DFS.ShadowWidthBytes);
+}
+
+Align DFSanFunction::getOriginAlign(Align InstAlignment) {
+ const Align Alignment = llvm::assumeAligned(InstAlignment.value());
+ return Align(std::max(MinOriginAlignment, Alignment));
+}
+
+bool DFSanFunction::isLookupTableConstant(Value *P) {
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P->stripPointerCasts()))
+ if (GV->isConstant() && GV->hasName())
+ return DFS.CombineTaintLookupTableNames.count(GV->getName());
+
+ return false;
+}
+
+bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size,
+ Align InstAlignment) {
+ // When enabling tracking load instructions, we always use
+ // __dfsan_load_label_and_origin to reduce code size.
+ if (ClTrackOrigins == 2)
+ return true;
+
+ assert(Size != 0);
+ // * if Size == 1, it is sufficient to load its origin aligned at 4.
+ // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to
+ // load its origin aligned at 4. If not, although origins may be lost, it
+ // should not happen very often.
+ // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When
+ // Size % 4 == 0, it is more efficient to load origins without callbacks.
+ // * Otherwise we use __dfsan_load_label_and_origin.
+ // This should ensure that common cases run efficiently.
+ if (Size <= 2)
+ return false;
+
+ const Align Alignment = llvm::assumeAligned(InstAlignment.value());
+ return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size);
+}
+
+Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign,
+ Value **OriginAddr) {
+ IRBuilder<> IRB(Pos);
+ *OriginAddr =
+ IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1));
+ return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign);
+}
+
+std::pair<Value *, Value *> DFSanFunction::loadShadowFast(
+ Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign,
+ Align OriginAlign, Value *FirstOrigin, Instruction *Pos) {
+ const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
+ const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes;
+
+ assert(Size >= 4 && "Not large enough load size for fast path!");
+
+ // Used for origin tracking.
+ std::vector<Value *> Shadows;
+ std::vector<Value *> Origins;
+
+ // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20)
+ // but this function is only used in a subset of cases that make it possible
+ // to optimize the instrumentation.
+ //
+ // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow
+ // per byte) is either:
+ // - a multiple of 8 (common)
+ // - equal to 4 (only for load32)
+ //
+ // For the second case, we can fit the wide shadow in a 32-bit integer. In all
+ // other cases, we use a 64-bit integer to hold the wide shadow.
+ Type *WideShadowTy =
+ ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx);
+
+ IRBuilder<> IRB(Pos);
+ Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo());
+ Value *CombinedWideShadow =
+ IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
+
+ unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth();
+ const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits;
+
+ auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) {
+ if (BytesPerWideShadow > 4) {
+ assert(BytesPerWideShadow == 8);
+ // The wide shadow relates to two origin pointers: one for the first four
+ // application bytes, and one for the latest four. We use a left shift to
+ // get just the shadow bytes that correspond to the first origin pointer,
+ // and then the entire shadow for the second origin pointer (which will be
+ // chosen by combineOrigins() iff the least-significant half of the wide
+ // shadow was empty but the other half was not).
+ Value *WideShadowLo = IRB.CreateShl(
+ WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2));
+ Shadows.push_back(WideShadow);
+ Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr));
+
+ Shadows.push_back(WideShadowLo);
+ Origins.push_back(Origin);
+ } else {
+ Shadows.push_back(WideShadow);
+ Origins.push_back(Origin);
+ }
+ };
+
+ if (ShouldTrackOrigins)
+ AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin);
+
+ // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly;
+ // then OR individual shadows within the combined WideShadow by binary ORing.
+ // This is fewer instructions than ORing shadows individually, since it
+ // needs logN shift/or instructions (N being the bytes of the combined wide
+ // shadow).
+ for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size;
+ ByteOfs += BytesPerWideShadow) {
+ WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr,
+ ConstantInt::get(DFS.IntptrTy, 1));
+ Value *NextWideShadow =
+ IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
+ CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow);
+ if (ShouldTrackOrigins) {
+ Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr);
+ AppendWideShadowAndOrigin(NextWideShadow, NextOrigin);
+ }
+ }
+ for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits;
+ Width >>= 1) {
+ Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width);
+ CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow);
+ }
+ return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy),
+ ShouldTrackOrigins
+ ? combineOrigins(Shadows, Origins, Pos,
+ ConstantInt::getSigned(IRB.getInt64Ty(), 0))
+ : DFS.ZeroOrigin};
+}
+
+std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking(
+ Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) {
+ const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
+
+ // Non-escaped loads.
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
+ const auto SI = AllocaShadowMap.find(AI);
+ if (SI != AllocaShadowMap.end()) {
+ IRBuilder<> IRB(Pos);
+ Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second);
+ const auto OI = AllocaOriginMap.find(AI);
+ assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end());
+ return {ShadowLI, ShouldTrackOrigins
+ ? IRB.CreateLoad(DFS.OriginTy, OI->second)
+ : nullptr};
+ }
+ }
+
+ // Load from constant addresses.
+ SmallVector<const Value *, 2> Objs;
+ getUnderlyingObjects(Addr, Objs);
+ bool AllConstants = true;
+ for (const Value *Obj : Objs) {
+ if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
+ continue;
+ if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
+ continue;
+
+ AllConstants = false;
+ break;
+ }
+ if (AllConstants)
+ return {DFS.ZeroPrimitiveShadow,
+ ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
+
+ if (Size == 0)
+ return {DFS.ZeroPrimitiveShadow,
+ ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
+
+ // Use callback to load if this is not an optimizable case for origin
+ // tracking.
+ if (ShouldTrackOrigins &&
+ useCallbackLoadLabelAndOrigin(Size, InstAlignment)) {
+ IRBuilder<> IRB(Pos);
+ CallInst *Call =
+ IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn,
+ {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
+ ConstantInt::get(DFS.IntptrTy, Size)});
+ Call->addRetAttr(Attribute::ZExt);
+ return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits),
+ DFS.PrimitiveShadowTy),
+ IRB.CreateTrunc(Call, DFS.OriginTy)};
+ }
+
+ // Other cases that support loading shadows or origins in a fast way.
+ Value *ShadowAddr, *OriginAddr;
+ std::tie(ShadowAddr, OriginAddr) =
+ DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
+
+ const Align ShadowAlign = getShadowAlign(InstAlignment);
+ const Align OriginAlign = getOriginAlign(InstAlignment);
+ Value *Origin = nullptr;
+ if (ShouldTrackOrigins) {
+ IRBuilder<> IRB(Pos);
+ Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign);
+ }
+
+ // When the byte size is small enough, we can load the shadow directly with
+ // just a few instructions.
+ switch (Size) {
+ case 1: {
+ LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos);
+ LI->setAlignment(ShadowAlign);
+ return {LI, Origin};
+ }
+ case 2: {
+ IRBuilder<> IRB(Pos);
+ Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr,
+ ConstantInt::get(DFS.IntptrTy, 1));
+ Value *Load =
+ IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign);
+ Value *Load1 =
+ IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign);
+ return {combineShadows(Load, Load1, Pos), Origin};
+ }
+ }
+ bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size);
+
+ if (HasSizeForFastPath)
+ return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign,
+ OriginAlign, Origin, Pos);
+
+ IRBuilder<> IRB(Pos);
+ CallInst *FallbackCall = IRB.CreateCall(
+ DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
+ FallbackCall->addRetAttr(Attribute::ZExt);
+ return {FallbackCall, Origin};
+}
+
+std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr,
+ uint64_t Size,
+ Align InstAlignment,
+ Instruction *Pos) {
+ Value *PrimitiveShadow, *Origin;
+ std::tie(PrimitiveShadow, Origin) =
+ loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos);
+ if (DFS.shouldTrackOrigins()) {
+ if (ClTrackOrigins == 2) {
+ IRBuilder<> IRB(Pos);
+ auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow);
+ if (!ConstantShadow || !ConstantShadow->isZeroValue())
+ Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB);
+ }
+ }
+ return {PrimitiveShadow, Origin};
+}
+
+static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) {
+ switch (AO) {
+ case AtomicOrdering::NotAtomic:
+ return AtomicOrdering::NotAtomic;
+ case AtomicOrdering::Unordered:
+ case AtomicOrdering::Monotonic:
+ case AtomicOrdering::Acquire:
+ return AtomicOrdering::Acquire;
+ case AtomicOrdering::Release:
+ case AtomicOrdering::AcquireRelease:
+ return AtomicOrdering::AcquireRelease;
+ case AtomicOrdering::SequentiallyConsistent:
+ return AtomicOrdering::SequentiallyConsistent;
+ }
+ llvm_unreachable("Unknown ordering");
+}
+
+Value *StripPointerGEPsAndCasts(Value *V) {
+ if (!V->getType()->isPointerTy())
+ return V;
+
+ // DFSan pass should be running on valid IR, but we'll
+ // keep a seen set to ensure there are no issues.
+ SmallPtrSet<const Value *, 4> Visited;
+ Visited.insert(V);
+ do {
+ if (auto *GEP = dyn_cast<GEPOperator>(V)) {
+ V = GEP->getPointerOperand();
+ } else if (Operator::getOpcode(V) == Instruction::BitCast) {
+ V = cast<Operator>(V)->getOperand(0);
+ if (!V->getType()->isPointerTy())
+ return V;
+ } else if (isa<GlobalAlias>(V)) {
+ V = cast<GlobalAlias>(V)->getAliasee();
+ }
+ } while (Visited.insert(V).second);
+
+ return V;
+}
+
+void DFSanVisitor::visitLoadInst(LoadInst &LI) {
+ auto &DL = LI.getModule()->getDataLayout();
+ uint64_t Size = DL.getTypeStoreSize(LI.getType());
+ if (Size == 0) {
+ DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI));
+ DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin);
+ return;
+ }
+
+ // When an application load is atomic, increase atomic ordering between
+ // atomic application loads and stores to ensure happen-before order; load
+ // shadow data after application data; store zero shadow data before
+ // application data. This ensure shadow loads return either labels of the
+ // initial application data or zeros.
+ if (LI.isAtomic())
+ LI.setOrdering(addAcquireOrdering(LI.getOrdering()));
+
+ Instruction *AfterLi = LI.getNextNode();
+ Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI;
+ std::vector<Value *> Shadows;
+ std::vector<Value *> Origins;
+ Value *PrimitiveShadow, *Origin;
+ std::tie(PrimitiveShadow, Origin) =
+ DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos);
+ const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
+ if (ShouldTrackOrigins) {
+ Shadows.push_back(PrimitiveShadow);
+ Origins.push_back(Origin);
+ }
+ if (ClCombinePointerLabelsOnLoad ||
+ DFSF.isLookupTableConstant(
+ StripPointerGEPsAndCasts(LI.getPointerOperand()))) {
+ Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
+ PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos);
+ if (ShouldTrackOrigins) {
+ Shadows.push_back(PtrShadow);
+ Origins.push_back(DFSF.getOrigin(LI.getPointerOperand()));
+ }
+ }
+ if (!DFSF.DFS.isZeroShadow(PrimitiveShadow))
+ DFSF.NonZeroChecks.push_back(PrimitiveShadow);
+
+ Value *Shadow =
+ DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos);
+ DFSF.setShadow(&LI, Shadow);
+
+ if (ShouldTrackOrigins) {
+ DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos));
+ }
+
+ if (ClEventCallbacks) {
+ IRBuilder<> IRB(Pos);
+ Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr);
+ CallInst *CI =
+ IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8});
+ CI->addParamAttr(0, Attribute::ZExt);
+ }
+
+ IRBuilder<> IRB(AfterLi);
+ DFSF.addReachesFunctionCallbacksIfEnabled(IRB, LI, &LI);
+}
+
+Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin,
+ IRBuilder<> &IRB) {
+ assert(DFS.shouldTrackOrigins());
+ return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin});
+}
+
+Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) {
+ if (!DFS.shouldTrackOrigins())
+ return V;
+ return IRB.CreateCall(DFS.DFSanChainOriginFn, V);
+}
+
+Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) {
+ const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
+ const DataLayout &DL = F->getParent()->getDataLayout();
+ unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
+ if (IntptrSize == OriginSize)
+ return Origin;
+ assert(IntptrSize == OriginSize * 2);
+ Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false);
+ return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8));
+}
+
+void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin,
+ Value *StoreOriginAddr,
+ uint64_t StoreOriginSize, Align Alignment) {
+ const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
+ const DataLayout &DL = F->getParent()->getDataLayout();
+ const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy);
+ unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
+ assert(IntptrAlignment >= MinOriginAlignment);
+ assert(IntptrSize >= OriginSize);
+
+ unsigned Ofs = 0;
+ Align CurrentAlignment = Alignment;
+ if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) {
+ Value *IntptrOrigin = originToIntptr(IRB, Origin);
+ Value *IntptrStoreOriginPtr = IRB.CreatePointerCast(
+ StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0));
+ for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) {
+ Value *Ptr =
+ I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I)
+ : IntptrStoreOriginPtr;
+ IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
+ Ofs += IntptrSize / OriginSize;
+ CurrentAlignment = IntptrAlignment;
+ }
+ }
+
+ for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize;
+ ++I) {
+ Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I)
+ : StoreOriginAddr;
+ IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
+ CurrentAlignment = MinOriginAlignment;
+ }
+}
+
+Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB,
+ const Twine &Name) {
+ Type *VTy = V->getType();
+ assert(VTy->isIntegerTy());
+ if (VTy->getIntegerBitWidth() == 1)
+ // Just converting a bool to a bool, so do nothing.
+ return V;
+ return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name);
+}
+
+void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size,
+ Value *Shadow, Value *Origin,
+ Value *StoreOriginAddr, Align InstAlignment) {
+ // Do not write origins for zero shadows because we do not trace origins for
+ // untainted sinks.
+ const Align OriginAlignment = getOriginAlign(InstAlignment);
+ Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos);
+ IRBuilder<> IRB(Pos);
+ if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) {
+ if (!ConstantShadow->isZeroValue())
+ paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size,
+ OriginAlignment);
+ return;
+ }
+
+ if (shouldInstrumentWithCall()) {
+ IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn,
+ {CollapsedShadow,
+ IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
+ ConstantInt::get(DFS.IntptrTy, Size), Origin});
+ } else {
+ Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp");
+ Instruction *CheckTerm = SplitBlockAndInsertIfThen(
+ Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT);
+ IRBuilder<> IRBNew(CheckTerm);
+ paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size,
+ OriginAlignment);
+ ++NumOriginStores;
+ }
+}
+
+void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size,
+ Align ShadowAlign,
+ Instruction *Pos) {
+ IRBuilder<> IRB(Pos);
+ IntegerType *ShadowTy =
+ IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits);
+ Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
+ Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
+ Value *ExtShadowAddr =
+ IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
+ IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
+ // Do not write origins for 0 shadows because we do not trace origins for
+ // untainted sinks.
+}
+
+void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
+ Align InstAlignment,
+ Value *PrimitiveShadow,
+ Value *Origin,
+ Instruction *Pos) {
+ const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin;
+
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
+ const auto SI = AllocaShadowMap.find(AI);
+ if (SI != AllocaShadowMap.end()) {
+ IRBuilder<> IRB(Pos);
+ IRB.CreateStore(PrimitiveShadow, SI->second);
+
+ // Do not write origins for 0 shadows because we do not trace origins for
+ // untainted sinks.
+ if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) {
+ const auto OI = AllocaOriginMap.find(AI);
+ assert(OI != AllocaOriginMap.end() && Origin);
+ IRB.CreateStore(Origin, OI->second);
+ }
+ return;
+ }
+ }
+
+ const Align ShadowAlign = getShadowAlign(InstAlignment);
+ if (DFS.isZeroShadow(PrimitiveShadow)) {
+ storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos);
+ return;
+ }
+
+ IRBuilder<> IRB(Pos);
+ Value *ShadowAddr, *OriginAddr;
+ std::tie(ShadowAddr, OriginAddr) =
+ DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
+
+ const unsigned ShadowVecSize = 8;
+ assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 &&
+ "Shadow vector is too large!");
+
+ uint64_t Offset = 0;
+ uint64_t LeftSize = Size;
+ if (LeftSize >= ShadowVecSize) {
+ auto *ShadowVecTy =
+ FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize);
+ Value *ShadowVec = PoisonValue::get(ShadowVecTy);
+ for (unsigned I = 0; I != ShadowVecSize; ++I) {
+ ShadowVec = IRB.CreateInsertElement(
+ ShadowVec, PrimitiveShadow,
+ ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I));
+ }
+ Value *ShadowVecAddr =
+ IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
+ do {
+ Value *CurShadowVecAddr =
+ IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
+ IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
+ LeftSize -= ShadowVecSize;
+ ++Offset;
+ } while (LeftSize >= ShadowVecSize);
+ Offset *= ShadowVecSize;
+ }
+ while (LeftSize > 0) {
+ Value *CurShadowAddr =
+ IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset);
+ IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign);
+ --LeftSize;
+ ++Offset;
+ }
+
+ if (ShouldTrackOrigins) {
+ storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr,
+ InstAlignment);
+ }
+}
+
+static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) {
+ switch (AO) {
+ case AtomicOrdering::NotAtomic:
+ return AtomicOrdering::NotAtomic;
+ case AtomicOrdering::Unordered:
+ case AtomicOrdering::Monotonic:
+ case AtomicOrdering::Release:
+ return AtomicOrdering::Release;
+ case AtomicOrdering::Acquire:
+ case AtomicOrdering::AcquireRelease:
+ return AtomicOrdering::AcquireRelease;
+ case AtomicOrdering::SequentiallyConsistent:
+ return AtomicOrdering::SequentiallyConsistent;
+ }
+ llvm_unreachable("Unknown ordering");
+}
+
+void DFSanVisitor::visitStoreInst(StoreInst &SI) {
+ auto &DL = SI.getModule()->getDataLayout();
+ Value *Val = SI.getValueOperand();
+ uint64_t Size = DL.getTypeStoreSize(Val->getType());
+ if (Size == 0)
+ return;
+
+ // When an application store is atomic, increase atomic ordering between
+ // atomic application loads and stores to ensure happen-before order; load
+ // shadow data after application data; store zero shadow data before
+ // application data. This ensure shadow loads return either labels of the
+ // initial application data or zeros.
+ if (SI.isAtomic())
+ SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
+
+ const bool ShouldTrackOrigins =
+ DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic();
+ std::vector<Value *> Shadows;
+ std::vector<Value *> Origins;
+
+ Value *Shadow =
+ SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val);
+
+ if (ShouldTrackOrigins) {
+ Shadows.push_back(Shadow);
+ Origins.push_back(DFSF.getOrigin(Val));
+ }
+
+ Value *PrimitiveShadow;
+ if (ClCombinePointerLabelsOnStore) {
+ Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
+ if (ShouldTrackOrigins) {
+ Shadows.push_back(PtrShadow);
+ Origins.push_back(DFSF.getOrigin(SI.getPointerOperand()));
+ }
+ PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
+ } else {
+ PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI);
+ }
+ Value *Origin = nullptr;
+ if (ShouldTrackOrigins)
+ Origin = DFSF.combineOrigins(Shadows, Origins, &SI);
+ DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(),
+ PrimitiveShadow, Origin, &SI);
+ if (ClEventCallbacks) {
+ IRBuilder<> IRB(&SI);
+ Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr);
+ CallInst *CI =
+ IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8});
+ CI->addParamAttr(0, Attribute::ZExt);
+ }
+}
+
+void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) {
+ assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
+
+ Value *Val = I.getOperand(1);
+ const auto &DL = I.getModule()->getDataLayout();
+ uint64_t Size = DL.getTypeStoreSize(Val->getType());
+ if (Size == 0)
+ return;
+
+ // Conservatively set data at stored addresses and return with zero shadow to
+ // prevent shadow data races.
+ IRBuilder<> IRB(&I);
+ Value *Addr = I.getOperand(0);
+ const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment);
+ DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I);
+ DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I));
+ DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
+}
+
+void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) {
+ visitCASOrRMW(I.getAlign(), I);
+ // TODO: The ordering change follows MSan. It is possible not to change
+ // ordering because we always set and use 0 shadows.
+ I.setOrdering(addReleaseOrdering(I.getOrdering()));
+}
+
+void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
+ visitCASOrRMW(I.getAlign(), I);
+ // TODO: The ordering change follows MSan. It is possible not to change
+ // ordering because we always set and use 0 shadows.
+ I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
+}
+
+void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) {
+ visitInstOperands(UO);
+}
+
+void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
+ visitInstOperands(BO);
+}
+
+void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) {
+ // Special case: if this is the bitcast (there is exactly 1 allowed) between
+ // a musttail call and a ret, don't instrument. New instructions are not
+ // allowed after a musttail call.
+ if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0)))
+ if (CI->isMustTailCall())
+ return;
+ visitInstOperands(BCI);
+}
+
+void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); }
+
+void DFSanVisitor::visitCmpInst(CmpInst &CI) {
+ visitInstOperands(CI);
+ if (ClEventCallbacks) {
+ IRBuilder<> IRB(&CI);
+ Value *CombinedShadow = DFSF.getShadow(&CI);
+ CallInst *CallI =
+ IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow);
+ CallI->addParamAttr(0, Attribute::ZExt);
+ }
+}
+
+void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) {
+ // We do not need to track data through LandingPadInst.
+ //
+ // For the C++ exceptions, if a value is thrown, this value will be stored
+ // in a memory location provided by __cxa_allocate_exception(...) (on the
+ // throw side) or __cxa_begin_catch(...) (on the catch side).
+ // This memory will have a shadow, so with the loads and stores we will be
+ // able to propagate labels on data thrown through exceptions, without any
+ // special handling of the LandingPadInst.
+ //
+ // The second element in the pair result of the LandingPadInst is a
+ // register value, but it is for a type ID and should never be tainted.
+ DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI));
+ DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin);
+}
+
+void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
+ if (ClCombineOffsetLabelsOnGEP ||
+ DFSF.isLookupTableConstant(
+ StripPointerGEPsAndCasts(GEPI.getPointerOperand()))) {
+ visitInstOperands(GEPI);
+ return;
+ }
+
+ // Only propagate shadow/origin of base pointer value but ignore those of
+ // offset operands.
+ Value *BasePointer = GEPI.getPointerOperand();
+ DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer));
+ if (DFSF.DFS.shouldTrackOrigins())
+ DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer));
+}
+
+void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
+ visitInstOperands(I);
+}
+
+void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
+ visitInstOperands(I);
+}
+
+void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
+ visitInstOperands(I);
+}
+
+void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *Agg = I.getAggregateOperand();
+ Value *AggShadow = DFSF.getShadow(Agg);
+ Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
+ DFSF.setShadow(&I, ResShadow);
+ visitInstOperandOrigins(I);
+}
+
+void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *AggShadow = DFSF.getShadow(I.getAggregateOperand());
+ Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand());
+ Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
+ DFSF.setShadow(&I, Res);
+ visitInstOperandOrigins(I);
+}
+
+void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
+ bool AllLoadsStores = true;
+ for (User *U : I.users()) {
+ if (isa<LoadInst>(U))
+ continue;
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
+ if (SI->getPointerOperand() == &I)
+ continue;
+ }
+
+ AllLoadsStores = false;
+ break;
+ }
+ if (AllLoadsStores) {
+ IRBuilder<> IRB(&I);
+ DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy);
+ if (DFSF.DFS.shouldTrackOrigins()) {
+ DFSF.AllocaOriginMap[&I] =
+ IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa");
+ }
+ }
+ DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow);
+ DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
+}
+
+void DFSanVisitor::visitSelectInst(SelectInst &I) {
+ Value *CondShadow = DFSF.getShadow(I.getCondition());
+ Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
+ Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
+ Value *ShadowSel = nullptr;
+ const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
+ std::vector<Value *> Shadows;
+ std::vector<Value *> Origins;
+ Value *TrueOrigin =
+ ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr;
+ Value *FalseOrigin =
+ ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr;
+
+ DFSF.addConditionalCallbacksIfEnabled(I, I.getCondition());
+
+ if (isa<VectorType>(I.getCondition()->getType())) {
+ ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow,
+ FalseShadow, &I);
+ if (ShouldTrackOrigins) {
+ Shadows.push_back(TrueShadow);
+ Shadows.push_back(FalseShadow);
+ Origins.push_back(TrueOrigin);
+ Origins.push_back(FalseOrigin);
+ }
+ } else {
+ if (TrueShadow == FalseShadow) {
+ ShadowSel = TrueShadow;
+ if (ShouldTrackOrigins) {
+ Shadows.push_back(TrueShadow);
+ Origins.push_back(TrueOrigin);
+ }
+ } else {
+ ShadowSel =
+ SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
+ if (ShouldTrackOrigins) {
+ Shadows.push_back(ShadowSel);
+ Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin,
+ FalseOrigin, "", &I));
+ }
+ }
+ }
+ DFSF.setShadow(&I, ClTrackSelectControlFlow
+ ? DFSF.combineShadowsThenConvert(
+ I.getType(), CondShadow, ShadowSel, &I)
+ : ShadowSel);
+ if (ShouldTrackOrigins) {
+ if (ClTrackSelectControlFlow) {
+ Shadows.push_back(CondShadow);
+ Origins.push_back(DFSF.getOrigin(I.getCondition()));
+ }
+ DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I));
+ }
+}
+
+void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *ValShadow = DFSF.getShadow(I.getValue());
+ Value *ValOrigin = DFSF.DFS.shouldTrackOrigins()
+ ? DFSF.getOrigin(I.getValue())
+ : DFSF.DFS.ZeroOrigin;
+ IRB.CreateCall(
+ DFSF.DFS.DFSanSetLabelFn,
+ {ValShadow, ValOrigin,
+ IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)),
+ IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
+}
+
+void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
+ IRBuilder<> IRB(&I);
+
+ // CopyOrMoveOrigin transfers origins by refering to their shadows. So we
+ // need to move origins before moving shadows.
+ if (DFSF.DFS.shouldTrackOrigins()) {
+ IRB.CreateCall(
+ DFSF.DFS.DFSanMemOriginTransferFn,
+ {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
+ IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)});
+ }
+
+ Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
+ Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
+ Value *LenShadow =
+ IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(),
+ DFSF.DFS.ShadowWidthBytes));
+ Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
+ Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr);
+ SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
+ auto *MTI = cast<MemTransferInst>(
+ IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
+ {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
+ MTI->setDestAlignment(DFSF.getShadowAlign(I.getDestAlign().valueOrOne()));
+ MTI->setSourceAlignment(DFSF.getShadowAlign(I.getSourceAlign().valueOrOne()));
+ if (ClEventCallbacks) {
+ IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn,
+ {RawDestShadow,
+ IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
+ }
+}
+
+void DFSanVisitor::visitBranchInst(BranchInst &BR) {
+ if (!BR.isConditional())
+ return;
+
+ DFSF.addConditionalCallbacksIfEnabled(BR, BR.getCondition());
+}
+
+void DFSanVisitor::visitSwitchInst(SwitchInst &SW) {
+ DFSF.addConditionalCallbacksIfEnabled(SW, SW.getCondition());
+}
+
+static bool isAMustTailRetVal(Value *RetVal) {
+ // Tail call may have a bitcast between return.
+ if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
+ RetVal = I->getOperand(0);
+ }
+ if (auto *I = dyn_cast<CallInst>(RetVal)) {
+ return I->isMustTailCall();
+ }
+ return false;
+}
+
+void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
+ if (!DFSF.IsNativeABI && RI.getReturnValue()) {
+ // Don't emit the instrumentation for musttail call returns.
+ if (isAMustTailRetVal(RI.getReturnValue()))
+ return;
+
+ Value *S = DFSF.getShadow(RI.getReturnValue());
+ IRBuilder<> IRB(&RI);
+ Type *RT = DFSF.F->getFunctionType()->getReturnType();
+ unsigned Size = getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT));
+ if (Size <= RetvalTLSSize) {
+ // If the size overflows, stores nothing. At callsite, oversized return
+ // shadows are set to zero.
+ IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), ShadowTLSAlignment);
+ }
+ if (DFSF.DFS.shouldTrackOrigins()) {
+ Value *O = DFSF.getOrigin(RI.getReturnValue());
+ IRB.CreateStore(O, DFSF.getRetvalOriginTLS());
+ }
+ }
+}
+
+void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB,
+ std::vector<Value *> &Args,
+ IRBuilder<> &IRB) {
+ FunctionType *FT = F.getFunctionType();
+
+ auto *I = CB.arg_begin();
+
+ // Adds non-variable argument shadows.
+ for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
+ Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB));
+
+ // Adds variable argument shadows.
+ if (FT->isVarArg()) {
+ auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy,
+ CB.arg_size() - FT->getNumParams());
+ auto *LabelVAAlloca =
+ new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(),
+ "labelva", &DFSF.F->getEntryBlock().front());
+
+ for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
+ auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N);
+ IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB),
+ LabelVAPtr);
+ }
+
+ Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
+ }
+
+ // Adds the return value shadow.
+ if (!FT->getReturnType()->isVoidTy()) {
+ if (!DFSF.LabelReturnAlloca) {
+ DFSF.LabelReturnAlloca = new AllocaInst(
+ DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(),
+ "labelreturn", &DFSF.F->getEntryBlock().front());
+ }
+ Args.push_back(DFSF.LabelReturnAlloca);
+ }
+}
+
+void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB,
+ std::vector<Value *> &Args,
+ IRBuilder<> &IRB) {
+ FunctionType *FT = F.getFunctionType();
+
+ auto *I = CB.arg_begin();
+
+ // Add non-variable argument origins.
+ for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
+ Args.push_back(DFSF.getOrigin(*I));
+
+ // Add variable argument origins.
+ if (FT->isVarArg()) {
+ auto *OriginVATy =
+ ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams());
+ auto *OriginVAAlloca =
+ new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(),
+ "originva", &DFSF.F->getEntryBlock().front());
+
+ for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
+ auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N);
+ IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr);
+ }
+
+ Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0));
+ }
+
+ // Add the return value origin.
+ if (!FT->getReturnType()->isVoidTy()) {
+ if (!DFSF.OriginReturnAlloca) {
+ DFSF.OriginReturnAlloca = new AllocaInst(
+ DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(),
+ "originreturn", &DFSF.F->getEntryBlock().front());
+ }
+ Args.push_back(DFSF.OriginReturnAlloca);
+ }
+}
+
+bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) {
+ IRBuilder<> IRB(&CB);
+ switch (DFSF.DFS.getWrapperKind(&F)) {
+ case DataFlowSanitizer::WK_Warning:
+ CB.setCalledFunction(&F);
+ IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
+ IRB.CreateGlobalStringPtr(F.getName()));
+ DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F);
+ DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
+ DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
+ return true;
+ case DataFlowSanitizer::WK_Discard:
+ CB.setCalledFunction(&F);
+ DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F);
+ DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
+ DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
+ return true;
+ case DataFlowSanitizer::WK_Functional:
+ CB.setCalledFunction(&F);
+ DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F);
+ visitInstOperands(CB);
+ return true;
+ case DataFlowSanitizer::WK_Custom:
+ // Don't try to handle invokes of custom functions, it's too complicated.
+ // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
+ // wrapper.
+ CallInst *CI = dyn_cast<CallInst>(&CB);
+ if (!CI)
+ return false;
+
+ const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
+ FunctionType *FT = F.getFunctionType();
+ TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
+ std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_";
+ CustomFName += F.getName();
+ FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction(
+ CustomFName, CustomFn.TransformedType);
+ if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) {
+ CustomFn->copyAttributesFrom(&F);
+
+ // Custom functions returning non-void will write to the return label.
+ if (!FT->getReturnType()->isVoidTy()) {
+ CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs);
+ }
+ }
+
+ std::vector<Value *> Args;
+
+ // Adds non-variable arguments.
+ auto *I = CB.arg_begin();
+ for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) {
+ Args.push_back(*I);
+ }
+
+ // Adds shadow arguments.
+ const unsigned ShadowArgStart = Args.size();
+ addShadowArguments(F, CB, Args, IRB);
+
+ // Adds origin arguments.
+ const unsigned OriginArgStart = Args.size();
+ if (ShouldTrackOrigins)
+ addOriginArguments(F, CB, Args, IRB);
+
+ // Adds variable arguments.
+ append_range(Args, drop_begin(CB.args(), FT->getNumParams()));
+
+ CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
+ CustomCI->setCallingConv(CI->getCallingConv());
+ CustomCI->setAttributes(transformFunctionAttributes(
+ CustomFn, CI->getContext(), CI->getAttributes()));
+
+ // Update the parameter attributes of the custom call instruction to
+ // zero extend the shadow parameters. This is required for targets
+ // which consider PrimitiveShadowTy an illegal type.
+ for (unsigned N = 0; N < FT->getNumParams(); N++) {
+ const unsigned ArgNo = ShadowArgStart + N;
+ if (CustomCI->getArgOperand(ArgNo)->getType() ==
+ DFSF.DFS.PrimitiveShadowTy)
+ CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
+ if (ShouldTrackOrigins) {
+ const unsigned OriginArgNo = OriginArgStart + N;
+ if (CustomCI->getArgOperand(OriginArgNo)->getType() ==
+ DFSF.DFS.OriginTy)
+ CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt);
+ }
+ }
+
+ // Loads the return value shadow and origin.
+ if (!FT->getReturnType()->isVoidTy()) {
+ LoadInst *LabelLoad =
+ IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca);
+ DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow(
+ FT->getReturnType(), LabelLoad, &CB));
+ if (ShouldTrackOrigins) {
+ LoadInst *OriginLoad =
+ IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca);
+ DFSF.setOrigin(CustomCI, OriginLoad);
+ }
+ }
+
+ CI->replaceAllUsesWith(CustomCI);
+ CI->eraseFromParent();
+ return true;
+ }
+ return false;
+}
+
+Value *DFSanVisitor::makeAddAcquireOrderingTable(IRBuilder<> &IRB) {
+ constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
+ uint32_t OrderingTable[NumOrderings] = {};
+
+ OrderingTable[(int)AtomicOrderingCABI::relaxed] =
+ OrderingTable[(int)AtomicOrderingCABI::acquire] =
+ OrderingTable[(int)AtomicOrderingCABI::consume] =
+ (int)AtomicOrderingCABI::acquire;
+ OrderingTable[(int)AtomicOrderingCABI::release] =
+ OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
+ (int)AtomicOrderingCABI::acq_rel;
+ OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
+ (int)AtomicOrderingCABI::seq_cst;
+
+ return ConstantDataVector::get(IRB.getContext(),
+ ArrayRef(OrderingTable, NumOrderings));
+}
+
+void DFSanVisitor::visitLibAtomicLoad(CallBase &CB) {
+ // Since we use getNextNode here, we can't have CB terminate the BB.
+ assert(isa<CallInst>(CB));
+
+ IRBuilder<> IRB(&CB);
+ Value *Size = CB.getArgOperand(0);
+ Value *SrcPtr = CB.getArgOperand(1);
+ Value *DstPtr = CB.getArgOperand(2);
+ Value *Ordering = CB.getArgOperand(3);
+ // Convert the call to have at least Acquire ordering to make sure
+ // the shadow operations aren't reordered before it.
+ Value *NewOrdering =
+ IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering);
+ CB.setArgOperand(3, NewOrdering);
+
+ IRBuilder<> NextIRB(CB.getNextNode());
+ NextIRB.SetCurrentDebugLocation(CB.getDebugLoc());
+
+ // TODO: Support ClCombinePointerLabelsOnLoad
+ // TODO: Support ClEventCallbacks
+
+ NextIRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn,
+ {NextIRB.CreatePointerCast(DstPtr, NextIRB.getInt8PtrTy()),
+ NextIRB.CreatePointerCast(SrcPtr, NextIRB.getInt8PtrTy()),
+ NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
+}
+
+Value *DFSanVisitor::makeAddReleaseOrderingTable(IRBuilder<> &IRB) {
+ constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
+ uint32_t OrderingTable[NumOrderings] = {};
+
+ OrderingTable[(int)AtomicOrderingCABI::relaxed] =
+ OrderingTable[(int)AtomicOrderingCABI::release] =
+ (int)AtomicOrderingCABI::release;
+ OrderingTable[(int)AtomicOrderingCABI::consume] =
+ OrderingTable[(int)AtomicOrderingCABI::acquire] =
+ OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
+ (int)AtomicOrderingCABI::acq_rel;
+ OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
+ (int)AtomicOrderingCABI::seq_cst;
+
+ return ConstantDataVector::get(IRB.getContext(),
+ ArrayRef(OrderingTable, NumOrderings));
+}
+
+void DFSanVisitor::visitLibAtomicStore(CallBase &CB) {
+ IRBuilder<> IRB(&CB);
+ Value *Size = CB.getArgOperand(0);
+ Value *SrcPtr = CB.getArgOperand(1);
+ Value *DstPtr = CB.getArgOperand(2);
+ Value *Ordering = CB.getArgOperand(3);
+ // Convert the call to have at least Release ordering to make sure
+ // the shadow operations aren't reordered after it.
+ Value *NewOrdering =
+ IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering);
+ CB.setArgOperand(3, NewOrdering);
+
+ // TODO: Support ClCombinePointerLabelsOnStore
+ // TODO: Support ClEventCallbacks
+
+ IRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn,
+ {IRB.CreatePointerCast(DstPtr, IRB.getInt8PtrTy()),
+ IRB.CreatePointerCast(SrcPtr, IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
+}
+
+void DFSanVisitor::visitLibAtomicExchange(CallBase &CB) {
+ // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, int
+ // ordering)
+ IRBuilder<> IRB(&CB);
+ Value *Size = CB.getArgOperand(0);
+ Value *TargetPtr = CB.getArgOperand(1);
+ Value *SrcPtr = CB.getArgOperand(2);
+ Value *DstPtr = CB.getArgOperand(3);
+
+ // This operation is not atomic for the shadow and origin memory.
+ // This could result in DFSan false positives or false negatives.
+ // For now we will assume these operations are rare, and
+ // the additional complexity to address this is not warrented.
+
+ // Current Target to Dest
+ IRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn,
+ {IRB.CreatePointerCast(DstPtr, IRB.getInt8PtrTy()),
+ IRB.CreatePointerCast(TargetPtr, IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
+
+ // Current Src to Target (overriding)
+ IRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn,
+ {IRB.CreatePointerCast(TargetPtr, IRB.getInt8PtrTy()),
+ IRB.CreatePointerCast(SrcPtr, IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
+}
+
+void DFSanVisitor::visitLibAtomicCompareExchange(CallBase &CB) {
+ // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, void
+ // *desired, int success_order, int failure_order)
+ Value *Size = CB.getArgOperand(0);
+ Value *TargetPtr = CB.getArgOperand(1);
+ Value *ExpectedPtr = CB.getArgOperand(2);
+ Value *DesiredPtr = CB.getArgOperand(3);
+
+ // This operation is not atomic for the shadow and origin memory.
+ // This could result in DFSan false positives or false negatives.
+ // For now we will assume these operations are rare, and
+ // the additional complexity to address this is not warrented.
+
+ IRBuilder<> NextIRB(CB.getNextNode());
+ NextIRB.SetCurrentDebugLocation(CB.getDebugLoc());
+
+ DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
+
+ // If original call returned true, copy Desired to Target.
+ // If original call returned false, copy Target to Expected.
+ NextIRB.CreateCall(
+ DFSF.DFS.DFSanMemShadowOriginConditionalExchangeFn,
+ {NextIRB.CreateIntCast(&CB, NextIRB.getInt8Ty(), false),
+ NextIRB.CreatePointerCast(TargetPtr, NextIRB.getInt8PtrTy()),
+ NextIRB.CreatePointerCast(ExpectedPtr, NextIRB.getInt8PtrTy()),
+ NextIRB.CreatePointerCast(DesiredPtr, NextIRB.getInt8PtrTy()),
+ NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
+}
+
+void DFSanVisitor::visitCallBase(CallBase &CB) {
+ Function *F = CB.getCalledFunction();
+ if ((F && F->isIntrinsic()) || CB.isInlineAsm()) {
+ visitInstOperands(CB);
+ return;
+ }
+
+ // Calls to this function are synthesized in wrappers, and we shouldn't
+ // instrument them.
+ if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts())
+ return;
+
+ LibFunc LF;
+ if (DFSF.TLI.getLibFunc(CB, LF)) {
+ // libatomic.a functions need to have special handling because there isn't
+ // a good way to intercept them or compile the library with
+ // instrumentation.
+ switch (LF) {
+ case LibFunc_atomic_load:
+ if (!isa<CallInst>(CB)) {
+ llvm::errs() << "DFSAN -- cannot instrument invoke of libatomic load. "
+ "Ignoring!\n";
+ break;
+ }
+ visitLibAtomicLoad(CB);
+ return;
+ case LibFunc_atomic_store:
+ visitLibAtomicStore(CB);
+ return;
+ default:
+ break;
+ }
+ }
+
+ // TODO: These are not supported by TLI? They are not in the enum.
+ if (F && F->hasName() && !F->isVarArg()) {
+ if (F->getName() == "__atomic_exchange") {
+ visitLibAtomicExchange(CB);
+ return;
+ }
+ if (F->getName() == "__atomic_compare_exchange") {
+ visitLibAtomicCompareExchange(CB);
+ return;
+ }
+ }
+
+ DenseMap<Value *, Function *>::iterator UnwrappedFnIt =
+ DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand());
+ if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end())
+ if (visitWrappedCallBase(*UnwrappedFnIt->second, CB))
+ return;
+
+ IRBuilder<> IRB(&CB);
+
+ const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
+ FunctionType *FT = CB.getFunctionType();
+ const DataLayout &DL = getDataLayout();
+
+ // Stores argument shadows.
+ unsigned ArgOffset = 0;
+ for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) {
+ if (ShouldTrackOrigins) {
+ // Ignore overflowed origins
+ Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I));
+ if (I < DFSF.DFS.NumOfElementsInArgOrgTLS &&
+ !DFSF.DFS.isZeroShadow(ArgShadow))
+ IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)),
+ DFSF.getArgOriginTLS(I, IRB));
+ }
+
+ unsigned Size =
+ DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I)));
+ // Stop storing if arguments' size overflows. Inside a function, arguments
+ // after overflow have zero shadow values.
+ if (ArgOffset + Size > ArgTLSSize)
+ break;
+ IRB.CreateAlignedStore(DFSF.getShadow(CB.getArgOperand(I)),
+ DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB),
+ ShadowTLSAlignment);
+ ArgOffset += alignTo(Size, ShadowTLSAlignment);
+ }
+
+ Instruction *Next = nullptr;
+ if (!CB.getType()->isVoidTy()) {
+ if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
+ if (II->getNormalDest()->getSinglePredecessor()) {
+ Next = &II->getNormalDest()->front();
+ } else {
+ BasicBlock *NewBB =
+ SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
+ Next = &NewBB->front();
+ }
+ } else {
+ assert(CB.getIterator() != CB.getParent()->end());
+ Next = CB.getNextNode();
+ }
+
+ // Don't emit the epilogue for musttail call returns.
+ if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall())
+ return;
+
+ // Loads the return value shadow.
+ IRBuilder<> NextIRB(Next);
+ unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB));
+ if (Size > RetvalTLSSize) {
+ // Set overflowed return shadow to be zero.
+ DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
+ } else {
+ LoadInst *LI = NextIRB.CreateAlignedLoad(
+ DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB),
+ ShadowTLSAlignment, "_dfsret");
+ DFSF.SkipInsts.insert(LI);
+ DFSF.setShadow(&CB, LI);
+ DFSF.NonZeroChecks.push_back(LI);
+ }
+
+ if (ShouldTrackOrigins) {
+ LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.OriginTy,
+ DFSF.getRetvalOriginTLS(), "_dfsret_o");
+ DFSF.SkipInsts.insert(LI);
+ DFSF.setOrigin(&CB, LI);
+ }
+
+ DFSF.addReachesFunctionCallbacksIfEnabled(NextIRB, CB, &CB);
+ }
+}
+
+void DFSanVisitor::visitPHINode(PHINode &PN) {
+ Type *ShadowTy = DFSF.DFS.getShadowTy(&PN);
+ PHINode *ShadowPN =
+ PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN);
+
+ // Give the shadow phi node valid predecessors to fool SplitEdge into working.
+ Value *UndefShadow = UndefValue::get(ShadowTy);
+ for (BasicBlock *BB : PN.blocks())
+ ShadowPN->addIncoming(UndefShadow, BB);
+
+ DFSF.setShadow(&PN, ShadowPN);
+
+ PHINode *OriginPN = nullptr;
+ if (DFSF.DFS.shouldTrackOrigins()) {
+ OriginPN =
+ PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN);
+ Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy);
+ for (BasicBlock *BB : PN.blocks())
+ OriginPN->addIncoming(UndefOrigin, BB);
+ DFSF.setOrigin(&PN, OriginPN);
+ }
+
+ DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN});
+}
+
+PreservedAnalyses DataFlowSanitizerPass::run(Module &M,
+ ModuleAnalysisManager &AM) {
+ auto GetTLI = [&](Function &F) -> TargetLibraryInfo & {
+ auto &FAM =
+ AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
+ return FAM.getResult<TargetLibraryAnalysis>(F);
+ };
+ if (!DataFlowSanitizer(ABIListFiles).runImpl(M, GetTLI))
+ return PreservedAnalyses::all();
+
+ PreservedAnalyses PA = PreservedAnalyses::none();
+ // GlobalsAA is considered stateless and does not get invalidated unless
+ // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers
+ // make changes that require GlobalsAA to be invalidated.
+ PA.abandon<GlobalsAA>();
+ return PA;
+}