diff options
| author | vvvv <[email protected]> | 2024-02-06 20:01:22 +0300 | 
|---|---|---|
| committer | vvvv <[email protected]> | 2024-02-06 20:22:16 +0300 | 
| commit | 0203b7a9a40828bb2bd4c32029b79ff0ea3d1f8f (patch) | |
| tree | e630d0d5bd0bd29fc8c2d2842ed2cfde781b993a /contrib/libs/llvm16/lib/Target/X86/X86VZeroUpper.cpp | |
| parent | ba27db76d99d12a4f1c06960b5449423218614c4 (diff) | |
llvm16 targets
Diffstat (limited to 'contrib/libs/llvm16/lib/Target/X86/X86VZeroUpper.cpp')
| -rw-r--r-- | contrib/libs/llvm16/lib/Target/X86/X86VZeroUpper.cpp | 354 | 
1 files changed, 354 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Target/X86/X86VZeroUpper.cpp b/contrib/libs/llvm16/lib/Target/X86/X86VZeroUpper.cpp new file mode 100644 index 00000000000..5a3e5efeb40 --- /dev/null +++ b/contrib/libs/llvm16/lib/Target/X86/X86VZeroUpper.cpp @@ -0,0 +1,354 @@ +//===- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter ------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the pass which inserts x86 AVX vzeroupper instructions +// before calls to SSE encoded functions. This avoids transition latency +// penalty when transferring control between AVX encoded instructions and old +// SSE encoding mode. +// +//===----------------------------------------------------------------------===// + +#include "X86.h" +#include "X86InstrInfo.h" +#include "X86Subtarget.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Function.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> + +using namespace llvm; + +#define DEBUG_TYPE "x86-vzeroupper" + +static cl::opt<bool> +UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, +  cl::desc("Minimize AVX to SSE transition penalty"), +  cl::init(true)); + +STATISTIC(NumVZU, "Number of vzeroupper instructions inserted"); + +namespace { + +  class VZeroUpperInserter : public MachineFunctionPass { +  public: +    VZeroUpperInserter() : MachineFunctionPass(ID) {} + +    bool runOnMachineFunction(MachineFunction &MF) override; + +    MachineFunctionProperties getRequiredProperties() const override { +      return MachineFunctionProperties().set( +          MachineFunctionProperties::Property::NoVRegs); +    } + +    StringRef getPassName() const override { return "X86 vzeroupper inserter"; } + +  private: +    void processBasicBlock(MachineBasicBlock &MBB); +    void insertVZeroUpper(MachineBasicBlock::iterator I, +                          MachineBasicBlock &MBB); +    void addDirtySuccessor(MachineBasicBlock &MBB); + +    using BlockExitState = enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY }; + +    static const char* getBlockExitStateName(BlockExitState ST); + +    // Core algorithm state: +    // BlockState - Each block is either: +    //   - PASS_THROUGH: There are neither YMM/ZMM dirtying instructions nor +    //                   vzeroupper instructions in this block. +    //   - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this +    //                  block that will ensure that YMM/ZMM is clean on exit. +    //   - EXITS_DIRTY: An instruction in the block dirties YMM/ZMM and no +    //                  subsequent vzeroupper in the block clears it. +    // +    // AddedToDirtySuccessors - This flag is raised when a block is added to the +    //                          DirtySuccessors list to ensure that it's not +    //                          added multiple times. +    // +    // FirstUnguardedCall - Records the location of the first unguarded call in +    //                      each basic block that may need to be guarded by a +    //                      vzeroupper. We won't know whether it actually needs +    //                      to be guarded until we discover a predecessor that +    //                      is DIRTY_OUT. +    struct BlockState { +      BlockExitState ExitState = PASS_THROUGH; +      bool AddedToDirtySuccessors = false; +      MachineBasicBlock::iterator FirstUnguardedCall; + +      BlockState() = default; +    }; + +    using BlockStateMap = SmallVector<BlockState, 8>; +    using DirtySuccessorsWorkList = SmallVector<MachineBasicBlock *, 8>; + +    BlockStateMap BlockStates; +    DirtySuccessorsWorkList DirtySuccessors; +    bool EverMadeChange; +    bool IsX86INTR; +    const TargetInstrInfo *TII; + +    static char ID; +  }; + +} // end anonymous namespace + +char VZeroUpperInserter::ID = 0; + +FunctionPass *llvm::createX86IssueVZeroUpperPass() { +  return new VZeroUpperInserter(); +} + +#ifndef NDEBUG +const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) { +  switch (ST) { +    case PASS_THROUGH: return "Pass-through"; +    case EXITS_DIRTY: return "Exits-dirty"; +    case EXITS_CLEAN: return "Exits-clean"; +  } +  llvm_unreachable("Invalid block exit state."); +} +#endif + +/// VZEROUPPER cleans state that is related to Y/ZMM0-15 only. +/// Thus, there is no need to check for Y/ZMM16 and above. +static bool isYmmOrZmmReg(unsigned Reg) { +  return (Reg >= X86::YMM0 && Reg <= X86::YMM15) || +         (Reg >= X86::ZMM0 && Reg <= X86::ZMM15); +} + +static bool checkFnHasLiveInYmmOrZmm(MachineRegisterInfo &MRI) { +  for (std::pair<unsigned, unsigned> LI : MRI.liveins()) +    if (isYmmOrZmmReg(LI.first)) +      return true; + +  return false; +} + +static bool clobbersAllYmmAndZmmRegs(const MachineOperand &MO) { +  for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) { +    if (!MO.clobbersPhysReg(reg)) +      return false; +  } +  for (unsigned reg = X86::ZMM0; reg <= X86::ZMM15; ++reg) { +    if (!MO.clobbersPhysReg(reg)) +      return false; +  } +  return true; +} + +static bool hasYmmOrZmmReg(MachineInstr &MI) { +  for (const MachineOperand &MO : MI.operands()) { +    if (MI.isCall() && MO.isRegMask() && !clobbersAllYmmAndZmmRegs(MO)) +      return true; +    if (!MO.isReg()) +      continue; +    if (MO.isDebug()) +      continue; +    if (isYmmOrZmmReg(MO.getReg())) +      return true; +  } +  return false; +} + +/// Check if given call instruction has a RegMask operand. +static bool callHasRegMask(MachineInstr &MI) { +  assert(MI.isCall() && "Can only be called on call instructions."); +  for (const MachineOperand &MO : MI.operands()) { +    if (MO.isRegMask()) +      return true; +  } +  return false; +} + +/// Insert a vzeroupper instruction before I. +void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I, +                                          MachineBasicBlock &MBB) { +  BuildMI(MBB, I, I->getDebugLoc(), TII->get(X86::VZEROUPPER)); +  ++NumVZU; +  EverMadeChange = true; +} + +/// Add MBB to the DirtySuccessors list if it hasn't already been added. +void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) { +  if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) { +    DirtySuccessors.push_back(&MBB); +    BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true; +  } +} + +/// Loop over all of the instructions in the basic block, inserting vzeroupper +/// instructions before function calls. +void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) { +  // Start by assuming that the block is PASS_THROUGH which implies no unguarded +  // calls. +  BlockExitState CurState = PASS_THROUGH; +  BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end(); + +  for (MachineInstr &MI : MBB) { +    bool IsCall = MI.isCall(); +    bool IsReturn = MI.isReturn(); +    bool IsControlFlow = IsCall || IsReturn; + +    // No need for vzeroupper before iret in interrupt handler function, +    // epilogue will restore YMM/ZMM registers if needed. +    if (IsX86INTR && IsReturn) +      continue; + +    // An existing VZERO* instruction resets the state. +    if (MI.getOpcode() == X86::VZEROALL || MI.getOpcode() == X86::VZEROUPPER) { +      CurState = EXITS_CLEAN; +      continue; +    } + +    // Shortcut: don't need to check regular instructions in dirty state. +    if (!IsControlFlow && CurState == EXITS_DIRTY) +      continue; + +    if (hasYmmOrZmmReg(MI)) { +      // We found a ymm/zmm-using instruction; this could be an AVX/AVX512 +      // instruction, or it could be control flow. +      CurState = EXITS_DIRTY; +      continue; +    } + +    // Check for control-flow out of the current function (which might +    // indirectly execute SSE instructions). +    if (!IsControlFlow) +      continue; + +    // If the call has no RegMask, skip it as well. It usually happens on +    // helper function calls (such as '_chkstk', '_ftol2') where standard +    // calling convention is not used (RegMask is not used to mark register +    // clobbered and register usage (def/implicit-def/use) is well-defined and +    // explicitly specified. +    if (IsCall && !callHasRegMask(MI)) +      continue; + +    // The VZEROUPPER instruction resets the upper 128 bits of YMM0-YMM15 +    // registers. In addition, the processor changes back to Clean state, after +    // which execution of SSE instructions or AVX instructions has no transition +    // penalty. Add the VZEROUPPER instruction before any function call/return +    // that might execute SSE code. +    // FIXME: In some cases, we may want to move the VZEROUPPER into a +    // predecessor block. +    if (CurState == EXITS_DIRTY) { +      // After the inserted VZEROUPPER the state becomes clean again, but +      // other YMM/ZMM may appear before other subsequent calls or even before +      // the end of the BB. +      insertVZeroUpper(MI, MBB); +      CurState = EXITS_CLEAN; +    } else if (CurState == PASS_THROUGH) { +      // If this block is currently in pass-through state and we encounter a +      // call then whether we need a vzeroupper or not depends on whether this +      // block has successors that exit dirty. Record the location of the call, +      // and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet. +      // It will be inserted later if necessary. +      BlockStates[MBB.getNumber()].FirstUnguardedCall = MI; +      CurState = EXITS_CLEAN; +    } +  } + +  LLVM_DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: " +                    << getBlockExitStateName(CurState) << '\n'); + +  if (CurState == EXITS_DIRTY) +    for (MachineBasicBlock *Succ : MBB.successors()) +      addDirtySuccessor(*Succ); + +  BlockStates[MBB.getNumber()].ExitState = CurState; +} + +/// Loop over all of the basic blocks, inserting vzeroupper instructions before +/// function calls. +bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) { +  if (!UseVZeroUpper) +    return false; + +  const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); +  if (!ST.hasAVX() || !ST.insertVZEROUPPER()) +    return false; +  TII = ST.getInstrInfo(); +  MachineRegisterInfo &MRI = MF.getRegInfo(); +  EverMadeChange = false; +  IsX86INTR = MF.getFunction().getCallingConv() == CallingConv::X86_INTR; + +  bool FnHasLiveInYmmOrZmm = checkFnHasLiveInYmmOrZmm(MRI); + +  // Fast check: if the function doesn't use any ymm/zmm registers, we don't +  // need to insert any VZEROUPPER instructions.  This is constant-time, so it +  // is cheap in the common case of no ymm/zmm use. +  bool YmmOrZmmUsed = FnHasLiveInYmmOrZmm; +  for (const auto *RC : {&X86::VR256RegClass, &X86::VR512_0_15RegClass}) { +    if (!YmmOrZmmUsed) { +      for (MCPhysReg R : *RC) { +        if (!MRI.reg_nodbg_empty(R)) { +          YmmOrZmmUsed = true; +          break; +        } +      } +    } +  } +  if (!YmmOrZmmUsed) +    return false; + +  assert(BlockStates.empty() && DirtySuccessors.empty() && +         "X86VZeroUpper state should be clear"); +  BlockStates.resize(MF.getNumBlockIDs()); + +  // Process all blocks. This will compute block exit states, record the first +  // unguarded call in each block, and add successors of dirty blocks to the +  // DirtySuccessors list. +  for (MachineBasicBlock &MBB : MF) +    processBasicBlock(MBB); + +  // If any YMM/ZMM regs are live-in to this function, add the entry block to +  // the DirtySuccessors list +  if (FnHasLiveInYmmOrZmm) +    addDirtySuccessor(MF.front()); + +  // Re-visit all blocks that are successors of EXITS_DIRTY blocks. Add +  // vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY +  // through PASS_THROUGH blocks. +  while (!DirtySuccessors.empty()) { +    MachineBasicBlock &MBB = *DirtySuccessors.back(); +    DirtySuccessors.pop_back(); +    BlockState &BBState = BlockStates[MBB.getNumber()]; + +    // MBB is a successor of a dirty block, so its first call needs to be +    // guarded. +    if (BBState.FirstUnguardedCall != MBB.end()) +      insertVZeroUpper(BBState.FirstUnguardedCall, MBB); + +    // If this successor was a pass-through block, then it is now dirty. Its +    // successors need to be added to the worklist (if they haven't been +    // already). +    if (BBState.ExitState == PASS_THROUGH) { +      LLVM_DEBUG(dbgs() << "MBB #" << MBB.getNumber() +                        << " was Pass-through, is now Dirty-out.\n"); +      for (MachineBasicBlock *Succ : MBB.successors()) +        addDirtySuccessor(*Succ); +    } +  } + +  BlockStates.clear(); +  return EverMadeChange; +}  | 
