diff options
| author | vvvv <[email protected]> | 2024-02-06 20:01:22 +0300 | 
|---|---|---|
| committer | vvvv <[email protected]> | 2024-02-06 20:22:16 +0300 | 
| commit | 0203b7a9a40828bb2bd4c32029b79ff0ea3d1f8f (patch) | |
| tree | e630d0d5bd0bd29fc8c2d2842ed2cfde781b993a /contrib/libs/llvm16/lib/Target/X86/X86FastISel.cpp | |
| parent | ba27db76d99d12a4f1c06960b5449423218614c4 (diff) | |
llvm16 targets
Diffstat (limited to 'contrib/libs/llvm16/lib/Target/X86/X86FastISel.cpp')
| -rw-r--r-- | contrib/libs/llvm16/lib/Target/X86/X86FastISel.cpp | 4015 | 
1 files changed, 4015 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Target/X86/X86FastISel.cpp b/contrib/libs/llvm16/lib/Target/X86/X86FastISel.cpp new file mode 100644 index 00000000000..ade4ff61762 --- /dev/null +++ b/contrib/libs/llvm16/lib/Target/X86/X86FastISel.cpp @@ -0,0 +1,4015 @@ +//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the X86-specific support for the FastISel class. Much +// of the target-specific code is generated by tablegen in the file +// X86GenFastISel.inc, which is #included here. +// +//===----------------------------------------------------------------------===// + +#include "X86.h" +#include "X86CallingConv.h" +#include "X86InstrBuilder.h" +#include "X86InstrInfo.h" +#include "X86MachineFunctionInfo.h" +#include "X86RegisterInfo.h" +#include "X86Subtarget.h" +#include "X86TargetMachine.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/CodeGen/FastISel.h" +#include "llvm/CodeGen/FunctionLoweringInfo.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/IntrinsicsX86.h" +#include "llvm/IR/Operator.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Target/TargetOptions.h" +using namespace llvm; + +namespace { + +class X86FastISel final : public FastISel { +  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can +  /// make the right decision when generating code for different targets. +  const X86Subtarget *Subtarget; + +public: +  explicit X86FastISel(FunctionLoweringInfo &funcInfo, +                       const TargetLibraryInfo *libInfo) +      : FastISel(funcInfo, libInfo) { +    Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>(); +  } + +  bool fastSelectInstruction(const Instruction *I) override; + +  /// The specified machine instr operand is a vreg, and that +  /// vreg is being provided by the specified load instruction.  If possible, +  /// try to fold the load as an operand to the instruction, returning true if +  /// possible. +  bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, +                           const LoadInst *LI) override; + +  bool fastLowerArguments() override; +  bool fastLowerCall(CallLoweringInfo &CLI) override; +  bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; + +#include "X86GenFastISel.inc" + +private: +  bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, +                          const DebugLoc &DL); + +  bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO, +                       unsigned &ResultReg, unsigned Alignment = 1); + +  bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM, +                        MachineMemOperand *MMO = nullptr, bool Aligned = false); +  bool X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM, +                        MachineMemOperand *MMO = nullptr, bool Aligned = false); + +  bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, +                         unsigned &ResultReg); + +  bool X86SelectAddress(const Value *V, X86AddressMode &AM); +  bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); + +  bool X86SelectLoad(const Instruction *I); + +  bool X86SelectStore(const Instruction *I); + +  bool X86SelectRet(const Instruction *I); + +  bool X86SelectCmp(const Instruction *I); + +  bool X86SelectZExt(const Instruction *I); + +  bool X86SelectSExt(const Instruction *I); + +  bool X86SelectBranch(const Instruction *I); + +  bool X86SelectShift(const Instruction *I); + +  bool X86SelectDivRem(const Instruction *I); + +  bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I); + +  bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I); + +  bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I); + +  bool X86SelectSelect(const Instruction *I); + +  bool X86SelectTrunc(const Instruction *I); + +  bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc, +                               const TargetRegisterClass *RC); + +  bool X86SelectFPExt(const Instruction *I); +  bool X86SelectFPTrunc(const Instruction *I); +  bool X86SelectSIToFP(const Instruction *I); +  bool X86SelectUIToFP(const Instruction *I); +  bool X86SelectIntToFP(const Instruction *I, bool IsSigned); + +  const X86InstrInfo *getInstrInfo() const { +    return Subtarget->getInstrInfo(); +  } +  const X86TargetMachine *getTargetMachine() const { +    return static_cast<const X86TargetMachine *>(&TM); +  } + +  bool handleConstantAddresses(const Value *V, X86AddressMode &AM); + +  unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT); +  unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT); +  unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT); +  unsigned fastMaterializeConstant(const Constant *C) override; + +  unsigned fastMaterializeAlloca(const AllocaInst *C) override; + +  unsigned fastMaterializeFloatZero(const ConstantFP *CF) override; + +  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is +  /// computed in an SSE register, not on the X87 floating point stack. +  bool isScalarFPTypeInSSEReg(EVT VT) const { +    return (VT == MVT::f64 && Subtarget->hasSSE2()) || +           (VT == MVT::f32 && Subtarget->hasSSE1()) || VT == MVT::f16; +  } + +  bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); + +  bool IsMemcpySmall(uint64_t Len); + +  bool TryEmitSmallMemcpy(X86AddressMode DestAM, +                          X86AddressMode SrcAM, uint64_t Len); + +  bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, +                            const Value *Cond); + +  const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB, +                                            X86AddressMode &AM); + +  unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode, +                             const TargetRegisterClass *RC, unsigned Op0, +                             unsigned Op1, unsigned Op2, unsigned Op3); +}; + +} // end anonymous namespace. + +static std::pair<unsigned, bool> +getX86SSEConditionCode(CmpInst::Predicate Predicate) { +  unsigned CC; +  bool NeedSwap = false; + +  // SSE Condition code mapping: +  //  0 - EQ +  //  1 - LT +  //  2 - LE +  //  3 - UNORD +  //  4 - NEQ +  //  5 - NLT +  //  6 - NLE +  //  7 - ORD +  switch (Predicate) { +  default: llvm_unreachable("Unexpected predicate"); +  case CmpInst::FCMP_OEQ: CC = 0;          break; +  case CmpInst::FCMP_OGT: NeedSwap = true; [[fallthrough]]; +  case CmpInst::FCMP_OLT: CC = 1;          break; +  case CmpInst::FCMP_OGE: NeedSwap = true; [[fallthrough]]; +  case CmpInst::FCMP_OLE: CC = 2;          break; +  case CmpInst::FCMP_UNO: CC = 3;          break; +  case CmpInst::FCMP_UNE: CC = 4;          break; +  case CmpInst::FCMP_ULE: NeedSwap = true; [[fallthrough]]; +  case CmpInst::FCMP_UGE: CC = 5;          break; +  case CmpInst::FCMP_ULT: NeedSwap = true; [[fallthrough]]; +  case CmpInst::FCMP_UGT: CC = 6;          break; +  case CmpInst::FCMP_ORD: CC = 7;          break; +  case CmpInst::FCMP_UEQ: CC = 8;          break; +  case CmpInst::FCMP_ONE: CC = 12;         break; +  } + +  return std::make_pair(CC, NeedSwap); +} + +/// Adds a complex addressing mode to the given machine instr builder. +/// Note, this will constrain the index register.  If its not possible to +/// constrain the given index register, then a new one will be created.  The +/// IndexReg field of the addressing mode will be updated to match in this case. +const MachineInstrBuilder & +X86FastISel::addFullAddress(const MachineInstrBuilder &MIB, +                            X86AddressMode &AM) { +  // First constrain the index register.  It needs to be a GR64_NOSP. +  AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg, +                                         MIB->getNumOperands() + +                                         X86::AddrIndexReg); +  return ::addFullAddress(MIB, AM); +} + +/// Check if it is possible to fold the condition from the XALU intrinsic +/// into the user. The condition code will only be updated on success. +bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, +                                       const Value *Cond) { +  if (!isa<ExtractValueInst>(Cond)) +    return false; + +  const auto *EV = cast<ExtractValueInst>(Cond); +  if (!isa<IntrinsicInst>(EV->getAggregateOperand())) +    return false; + +  const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand()); +  MVT RetVT; +  const Function *Callee = II->getCalledFunction(); +  Type *RetTy = +    cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U); +  if (!isTypeLegal(RetTy, RetVT)) +    return false; + +  if (RetVT != MVT::i32 && RetVT != MVT::i64) +    return false; + +  X86::CondCode TmpCC; +  switch (II->getIntrinsicID()) { +  default: return false; +  case Intrinsic::sadd_with_overflow: +  case Intrinsic::ssub_with_overflow: +  case Intrinsic::smul_with_overflow: +  case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break; +  case Intrinsic::uadd_with_overflow: +  case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break; +  } + +  // Check if both instructions are in the same basic block. +  if (II->getParent() != I->getParent()) +    return false; + +  // Make sure nothing is in the way +  BasicBlock::const_iterator Start(I); +  BasicBlock::const_iterator End(II); +  for (auto Itr = std::prev(Start); Itr != End; --Itr) { +    // We only expect extractvalue instructions between the intrinsic and the +    // instruction to be selected. +    if (!isa<ExtractValueInst>(Itr)) +      return false; + +    // Check that the extractvalue operand comes from the intrinsic. +    const auto *EVI = cast<ExtractValueInst>(Itr); +    if (EVI->getAggregateOperand() != II) +      return false; +  } + +  // Make sure no potentially eflags clobbering phi moves can be inserted in +  // between. +  auto HasPhis = [](const BasicBlock *Succ) { return !Succ->phis().empty(); }; +  if (I->isTerminator() && llvm::any_of(successors(I), HasPhis)) +    return false; + +  // Make sure there are no potentially eflags clobbering constant +  // materializations in between. +  if (llvm::any_of(I->operands(), [](Value *V) { return isa<Constant>(V); })) +    return false; + +  CC = TmpCC; +  return true; +} + +bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { +  EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true); +  if (evt == MVT::Other || !evt.isSimple()) +    // Unhandled type. Halt "fast" selection and bail. +    return false; + +  VT = evt.getSimpleVT(); +  // For now, require SSE/SSE2 for performing floating-point operations, +  // since x87 requires additional work. +  if (VT == MVT::f64 && !Subtarget->hasSSE2()) +    return false; +  if (VT == MVT::f32 && !Subtarget->hasSSE1()) +    return false; +  // Similarly, no f80 support yet. +  if (VT == MVT::f80) +    return false; +  // We only handle legal types. For example, on x86-32 the instruction +  // selector contains all of the 64-bit instructions from x86-64, +  // under the assumption that i64 won't be used if the target doesn't +  // support it. +  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); +} + +/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. +/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. +/// Return true and the result register by reference if it is possible. +bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM, +                                  MachineMemOperand *MMO, unsigned &ResultReg, +                                  unsigned Alignment) { +  bool HasSSE1 = Subtarget->hasSSE1(); +  bool HasSSE2 = Subtarget->hasSSE2(); +  bool HasSSE41 = Subtarget->hasSSE41(); +  bool HasAVX = Subtarget->hasAVX(); +  bool HasAVX2 = Subtarget->hasAVX2(); +  bool HasAVX512 = Subtarget->hasAVX512(); +  bool HasVLX = Subtarget->hasVLX(); +  bool IsNonTemporal = MMO && MMO->isNonTemporal(); + +  // Treat i1 loads the same as i8 loads. Masking will be done when storing. +  if (VT == MVT::i1) +    VT = MVT::i8; + +  // Get opcode and regclass of the output for the given load instruction. +  unsigned Opc = 0; +  switch (VT.SimpleTy) { +  default: return false; +  case MVT::i8: +    Opc = X86::MOV8rm; +    break; +  case MVT::i16: +    Opc = X86::MOV16rm; +    break; +  case MVT::i32: +    Opc = X86::MOV32rm; +    break; +  case MVT::i64: +    // Must be in x86-64 mode. +    Opc = X86::MOV64rm; +    break; +  case MVT::f32: +    Opc = HasAVX512 ? X86::VMOVSSZrm_alt +          : HasAVX  ? X86::VMOVSSrm_alt +          : HasSSE1 ? X86::MOVSSrm_alt +                    : X86::LD_Fp32m; +    break; +  case MVT::f64: +    Opc = HasAVX512 ? X86::VMOVSDZrm_alt +          : HasAVX  ? X86::VMOVSDrm_alt +          : HasSSE2 ? X86::MOVSDrm_alt +                    : X86::LD_Fp64m; +    break; +  case MVT::f80: +    // No f80 support yet. +    return false; +  case MVT::v4f32: +    if (IsNonTemporal && Alignment >= 16 && HasSSE41) +      Opc = HasVLX ? X86::VMOVNTDQAZ128rm : +            HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; +    else if (Alignment >= 16) +      Opc = HasVLX ? X86::VMOVAPSZ128rm : +            HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm; +    else +      Opc = HasVLX ? X86::VMOVUPSZ128rm : +            HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm; +    break; +  case MVT::v2f64: +    if (IsNonTemporal && Alignment >= 16 && HasSSE41) +      Opc = HasVLX ? X86::VMOVNTDQAZ128rm : +            HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; +    else if (Alignment >= 16) +      Opc = HasVLX ? X86::VMOVAPDZ128rm : +            HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm; +    else +      Opc = HasVLX ? X86::VMOVUPDZ128rm : +            HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm; +    break; +  case MVT::v4i32: +  case MVT::v2i64: +  case MVT::v8i16: +  case MVT::v16i8: +    if (IsNonTemporal && Alignment >= 16 && HasSSE41) +      Opc = HasVLX ? X86::VMOVNTDQAZ128rm : +            HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; +    else if (Alignment >= 16) +      Opc = HasVLX ? X86::VMOVDQA64Z128rm : +            HasAVX ? X86::VMOVDQArm : X86::MOVDQArm; +    else +      Opc = HasVLX ? X86::VMOVDQU64Z128rm : +            HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm; +    break; +  case MVT::v8f32: +    assert(HasAVX); +    if (IsNonTemporal && Alignment >= 32 && HasAVX2) +      Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; +    else if (IsNonTemporal && Alignment >= 16) +      return false; // Force split for X86::VMOVNTDQArm +    else if (Alignment >= 32) +      Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm; +    else +      Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm; +    break; +  case MVT::v4f64: +    assert(HasAVX); +    if (IsNonTemporal && Alignment >= 32 && HasAVX2) +      Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; +    else if (IsNonTemporal && Alignment >= 16) +      return false; // Force split for X86::VMOVNTDQArm +    else if (Alignment >= 32) +      Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm; +    else +      Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm; +    break; +  case MVT::v8i32: +  case MVT::v4i64: +  case MVT::v16i16: +  case MVT::v32i8: +    assert(HasAVX); +    if (IsNonTemporal && Alignment >= 32 && HasAVX2) +      Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; +    else if (IsNonTemporal && Alignment >= 16) +      return false; // Force split for X86::VMOVNTDQArm +    else if (Alignment >= 32) +      Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm; +    else +      Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm; +    break; +  case MVT::v16f32: +    assert(HasAVX512); +    if (IsNonTemporal && Alignment >= 64) +      Opc = X86::VMOVNTDQAZrm; +    else +      Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm; +    break; +  case MVT::v8f64: +    assert(HasAVX512); +    if (IsNonTemporal && Alignment >= 64) +      Opc = X86::VMOVNTDQAZrm; +    else +      Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm; +    break; +  case MVT::v8i64: +  case MVT::v16i32: +  case MVT::v32i16: +  case MVT::v64i8: +    assert(HasAVX512); +    // Note: There are a lot more choices based on type with AVX-512, but +    // there's really no advantage when the load isn't masked. +    if (IsNonTemporal && Alignment >= 64) +      Opc = X86::VMOVNTDQAZrm; +    else +      Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm; +    break; +  } + +  const TargetRegisterClass *RC = TLI.getRegClassFor(VT); + +  ResultReg = createResultReg(RC); +  MachineInstrBuilder MIB = +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg); +  addFullAddress(MIB, AM); +  if (MMO) +    MIB->addMemOperand(*FuncInfo.MF, MMO); +  return true; +} + +/// X86FastEmitStore - Emit a machine instruction to store a value Val of +/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr +/// and a displacement offset, or a GlobalAddress, +/// i.e. V. Return true if it is possible. +bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM, +                                   MachineMemOperand *MMO, bool Aligned) { +  bool HasSSE1 = Subtarget->hasSSE1(); +  bool HasSSE2 = Subtarget->hasSSE2(); +  bool HasSSE4A = Subtarget->hasSSE4A(); +  bool HasAVX = Subtarget->hasAVX(); +  bool HasAVX512 = Subtarget->hasAVX512(); +  bool HasVLX = Subtarget->hasVLX(); +  bool IsNonTemporal = MMO && MMO->isNonTemporal(); + +  // Get opcode and regclass of the output for the given store instruction. +  unsigned Opc = 0; +  switch (VT.getSimpleVT().SimpleTy) { +  case MVT::f80: // No f80 support yet. +  default: return false; +  case MVT::i1: { +    // Mask out all but lowest bit. +    Register AndResult = createResultReg(&X86::GR8RegClass); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +            TII.get(X86::AND8ri), AndResult) +      .addReg(ValReg).addImm(1); +    ValReg = AndResult; +    [[fallthrough]]; // handle i1 as i8. +  } +  case MVT::i8:  Opc = X86::MOV8mr;  break; +  case MVT::i16: Opc = X86::MOV16mr; break; +  case MVT::i32: +    Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr; +    break; +  case MVT::i64: +    // Must be in x86-64 mode. +    Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr; +    break; +  case MVT::f32: +    if (HasSSE1) { +      if (IsNonTemporal && HasSSE4A) +        Opc = X86::MOVNTSS; +      else +        Opc = HasAVX512 ? X86::VMOVSSZmr : +              HasAVX ? X86::VMOVSSmr : X86::MOVSSmr; +    } else +      Opc = X86::ST_Fp32m; +    break; +  case MVT::f64: +    if (HasSSE2) { +      if (IsNonTemporal && HasSSE4A) +        Opc = X86::MOVNTSD; +      else +        Opc = HasAVX512 ? X86::VMOVSDZmr : +              HasAVX ? X86::VMOVSDmr : X86::MOVSDmr; +    } else +      Opc = X86::ST_Fp64m; +    break; +  case MVT::x86mmx: +    Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr; +    break; +  case MVT::v4f32: +    if (Aligned) { +      if (IsNonTemporal) +        Opc = HasVLX ? X86::VMOVNTPSZ128mr : +              HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr; +      else +        Opc = HasVLX ? X86::VMOVAPSZ128mr : +              HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr; +    } else +      Opc = HasVLX ? X86::VMOVUPSZ128mr : +            HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr; +    break; +  case MVT::v2f64: +    if (Aligned) { +      if (IsNonTemporal) +        Opc = HasVLX ? X86::VMOVNTPDZ128mr : +              HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr; +      else +        Opc = HasVLX ? X86::VMOVAPDZ128mr : +              HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr; +    } else +      Opc = HasVLX ? X86::VMOVUPDZ128mr : +            HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr; +    break; +  case MVT::v4i32: +  case MVT::v2i64: +  case MVT::v8i16: +  case MVT::v16i8: +    if (Aligned) { +      if (IsNonTemporal) +        Opc = HasVLX ? X86::VMOVNTDQZ128mr : +              HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr; +      else +        Opc = HasVLX ? X86::VMOVDQA64Z128mr : +              HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr; +    } else +      Opc = HasVLX ? X86::VMOVDQU64Z128mr : +            HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr; +    break; +  case MVT::v8f32: +    assert(HasAVX); +    if (Aligned) { +      if (IsNonTemporal) +        Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr; +      else +        Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr; +    } else +      Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr; +    break; +  case MVT::v4f64: +    assert(HasAVX); +    if (Aligned) { +      if (IsNonTemporal) +        Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr; +      else +        Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr; +    } else +      Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr; +    break; +  case MVT::v8i32: +  case MVT::v4i64: +  case MVT::v16i16: +  case MVT::v32i8: +    assert(HasAVX); +    if (Aligned) { +      if (IsNonTemporal) +        Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr; +      else +        Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr; +    } else +      Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr; +    break; +  case MVT::v16f32: +    assert(HasAVX512); +    if (Aligned) +      Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr; +    else +      Opc = X86::VMOVUPSZmr; +    break; +  case MVT::v8f64: +    assert(HasAVX512); +    if (Aligned) { +      Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr; +    } else +      Opc = X86::VMOVUPDZmr; +    break; +  case MVT::v8i64: +  case MVT::v16i32: +  case MVT::v32i16: +  case MVT::v64i8: +    assert(HasAVX512); +    // Note: There are a lot more choices based on type with AVX-512, but +    // there's really no advantage when the store isn't masked. +    if (Aligned) +      Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr; +    else +      Opc = X86::VMOVDQU64Zmr; +    break; +  } + +  const MCInstrDesc &Desc = TII.get(Opc); +  // Some of the instructions in the previous switch use FR128 instead +  // of FR32 for ValReg. Make sure the register we feed the instruction +  // matches its register class constraints. +  // Note: This is fine to do a copy from FR32 to FR128, this is the +  // same registers behind the scene and actually why it did not trigger +  // any bugs before. +  ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1); +  MachineInstrBuilder MIB = +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, Desc); +  addFullAddress(MIB, AM).addReg(ValReg); +  if (MMO) +    MIB->addMemOperand(*FuncInfo.MF, MMO); + +  return true; +} + +bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, +                                   X86AddressMode &AM, +                                   MachineMemOperand *MMO, bool Aligned) { +  // Handle 'null' like i32/i64 0. +  if (isa<ConstantPointerNull>(Val)) +    Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext())); + +  // If this is a store of a simple constant, fold the constant into the store. +  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { +    unsigned Opc = 0; +    bool Signed = true; +    switch (VT.getSimpleVT().SimpleTy) { +    default: break; +    case MVT::i1: +      Signed = false; +      [[fallthrough]]; // Handle as i8. +    case MVT::i8:  Opc = X86::MOV8mi;  break; +    case MVT::i16: Opc = X86::MOV16mi; break; +    case MVT::i32: Opc = X86::MOV32mi; break; +    case MVT::i64: +      // Must be a 32-bit sign extended value. +      if (isInt<32>(CI->getSExtValue())) +        Opc = X86::MOV64mi32; +      break; +    } + +    if (Opc) { +      MachineInstrBuilder MIB = +        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc)); +      addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue() +                                            : CI->getZExtValue()); +      if (MMO) +        MIB->addMemOperand(*FuncInfo.MF, MMO); +      return true; +    } +  } + +  Register ValReg = getRegForValue(Val); +  if (ValReg == 0) +    return false; + +  return X86FastEmitStore(VT, ValReg, AM, MMO, Aligned); +} + +/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of +/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. +/// ISD::SIGN_EXTEND). +bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, +                                    unsigned Src, EVT SrcVT, +                                    unsigned &ResultReg) { +  unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src); +  if (RR == 0) +    return false; + +  ResultReg = RR; +  return true; +} + +bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { +  // Handle constant address. +  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { +    // Can't handle alternate code models yet. +    if (TM.getCodeModel() != CodeModel::Small) +      return false; + +    // Can't handle TLS yet. +    if (GV->isThreadLocal()) +      return false; + +    // Can't handle !absolute_symbol references yet. +    if (GV->isAbsoluteSymbolRef()) +      return false; + +    // RIP-relative addresses can't have additional register operands, so if +    // we've already folded stuff into the addressing mode, just force the +    // global value into its own register, which we can use as the basereg. +    if (!Subtarget->isPICStyleRIPRel() || +        (AM.Base.Reg == 0 && AM.IndexReg == 0)) { +      // Okay, we've committed to selecting this global. Set up the address. +      AM.GV = GV; + +      // Allow the subtarget to classify the global. +      unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); + +      // If this reference is relative to the pic base, set it now. +      if (isGlobalRelativeToPICBase(GVFlags)) { +        // FIXME: How do we know Base.Reg is free?? +        AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); +      } + +      // Unless the ABI requires an extra load, return a direct reference to +      // the global. +      if (!isGlobalStubReference(GVFlags)) { +        if (Subtarget->isPICStyleRIPRel()) { +          // Use rip-relative addressing if we can.  Above we verified that the +          // base and index registers are unused. +          assert(AM.Base.Reg == 0 && AM.IndexReg == 0); +          AM.Base.Reg = X86::RIP; +        } +        AM.GVOpFlags = GVFlags; +        return true; +      } + +      // Ok, we need to do a load from a stub.  If we've already loaded from +      // this stub, reuse the loaded pointer, otherwise emit the load now. +      DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(V); +      Register LoadReg; +      if (I != LocalValueMap.end() && I->second) { +        LoadReg = I->second; +      } else { +        // Issue load from stub. +        unsigned Opc = 0; +        const TargetRegisterClass *RC = nullptr; +        X86AddressMode StubAM; +        StubAM.Base.Reg = AM.Base.Reg; +        StubAM.GV = GV; +        StubAM.GVOpFlags = GVFlags; + +        // Prepare for inserting code in the local-value area. +        SavePoint SaveInsertPt = enterLocalValueArea(); + +        if (TLI.getPointerTy(DL) == MVT::i64) { +          Opc = X86::MOV64rm; +          RC  = &X86::GR64RegClass; +        } else { +          Opc = X86::MOV32rm; +          RC  = &X86::GR32RegClass; +        } + +        if (Subtarget->isPICStyleRIPRel() || GVFlags == X86II::MO_GOTPCREL || +            GVFlags == X86II::MO_GOTPCREL_NORELAX) +          StubAM.Base.Reg = X86::RIP; + +        LoadReg = createResultReg(RC); +        MachineInstrBuilder LoadMI = +          BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), LoadReg); +        addFullAddress(LoadMI, StubAM); + +        // Ok, back to normal mode. +        leaveLocalValueArea(SaveInsertPt); + +        // Prevent loading GV stub multiple times in same MBB. +        LocalValueMap[V] = LoadReg; +      } + +      // Now construct the final address. Note that the Disp, Scale, +      // and Index values may already be set here. +      AM.Base.Reg = LoadReg; +      AM.GV = nullptr; +      return true; +    } +  } + +  // If all else fails, try to materialize the value in a register. +  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { +    if (AM.Base.Reg == 0) { +      AM.Base.Reg = getRegForValue(V); +      return AM.Base.Reg != 0; +    } +    if (AM.IndexReg == 0) { +      assert(AM.Scale == 1 && "Scale with no index!"); +      AM.IndexReg = getRegForValue(V); +      return AM.IndexReg != 0; +    } +  } + +  return false; +} + +/// X86SelectAddress - Attempt to fill in an address from the given value. +/// +bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { +  SmallVector<const Value *, 32> GEPs; +redo_gep: +  const User *U = nullptr; +  unsigned Opcode = Instruction::UserOp1; +  if (const Instruction *I = dyn_cast<Instruction>(V)) { +    // Don't walk into other basic blocks; it's possible we haven't +    // visited them yet, so the instructions may not yet be assigned +    // virtual registers. +    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) || +        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { +      Opcode = I->getOpcode(); +      U = I; +    } +  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { +    Opcode = C->getOpcode(); +    U = C; +  } + +  if (PointerType *Ty = dyn_cast<PointerType>(V->getType())) +    if (Ty->getAddressSpace() > 255) +      // Fast instruction selection doesn't support the special +      // address spaces. +      return false; + +  switch (Opcode) { +  default: break; +  case Instruction::BitCast: +    // Look past bitcasts. +    return X86SelectAddress(U->getOperand(0), AM); + +  case Instruction::IntToPtr: +    // Look past no-op inttoptrs. +    if (TLI.getValueType(DL, U->getOperand(0)->getType()) == +        TLI.getPointerTy(DL)) +      return X86SelectAddress(U->getOperand(0), AM); +    break; + +  case Instruction::PtrToInt: +    // Look past no-op ptrtoints. +    if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) +      return X86SelectAddress(U->getOperand(0), AM); +    break; + +  case Instruction::Alloca: { +    // Do static allocas. +    const AllocaInst *A = cast<AllocaInst>(V); +    DenseMap<const AllocaInst *, int>::iterator SI = +      FuncInfo.StaticAllocaMap.find(A); +    if (SI != FuncInfo.StaticAllocaMap.end()) { +      AM.BaseType = X86AddressMode::FrameIndexBase; +      AM.Base.FrameIndex = SI->second; +      return true; +    } +    break; +  } + +  case Instruction::Add: { +    // Adds of constants are common and easy enough. +    if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { +      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); +      // They have to fit in the 32-bit signed displacement field though. +      if (isInt<32>(Disp)) { +        AM.Disp = (uint32_t)Disp; +        return X86SelectAddress(U->getOperand(0), AM); +      } +    } +    break; +  } + +  case Instruction::GetElementPtr: { +    X86AddressMode SavedAM = AM; + +    // Pattern-match simple GEPs. +    uint64_t Disp = (int32_t)AM.Disp; +    unsigned IndexReg = AM.IndexReg; +    unsigned Scale = AM.Scale; +    gep_type_iterator GTI = gep_type_begin(U); +    // Iterate through the indices, folding what we can. Constants can be +    // folded, and one dynamic index can be handled, if the scale is supported. +    for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); +         i != e; ++i, ++GTI) { +      const Value *Op = *i; +      if (StructType *STy = GTI.getStructTypeOrNull()) { +        const StructLayout *SL = DL.getStructLayout(STy); +        Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); +        continue; +      } + +      // A array/variable index is always of the form i*S where S is the +      // constant scale size.  See if we can push the scale into immediates. +      uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); +      for (;;) { +        if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { +          // Constant-offset addressing. +          Disp += CI->getSExtValue() * S; +          break; +        } +        if (canFoldAddIntoGEP(U, Op)) { +          // A compatible add with a constant operand. Fold the constant. +          ConstantInt *CI = +            cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); +          Disp += CI->getSExtValue() * S; +          // Iterate on the other operand. +          Op = cast<AddOperator>(Op)->getOperand(0); +          continue; +        } +        if (IndexReg == 0 && +            (!AM.GV || !Subtarget->isPICStyleRIPRel()) && +            (S == 1 || S == 2 || S == 4 || S == 8)) { +          // Scaled-index addressing. +          Scale = S; +          IndexReg = getRegForGEPIndex(Op); +          if (IndexReg == 0) +            return false; +          break; +        } +        // Unsupported. +        goto unsupported_gep; +      } +    } + +    // Check for displacement overflow. +    if (!isInt<32>(Disp)) +      break; + +    AM.IndexReg = IndexReg; +    AM.Scale = Scale; +    AM.Disp = (uint32_t)Disp; +    GEPs.push_back(V); + +    if (const GetElementPtrInst *GEP = +          dyn_cast<GetElementPtrInst>(U->getOperand(0))) { +      // Ok, the GEP indices were covered by constant-offset and scaled-index +      // addressing. Update the address state and move on to examining the base. +      V = GEP; +      goto redo_gep; +    } else if (X86SelectAddress(U->getOperand(0), AM)) { +      return true; +    } + +    // If we couldn't merge the gep value into this addr mode, revert back to +    // our address and just match the value instead of completely failing. +    AM = SavedAM; + +    for (const Value *I : reverse(GEPs)) +      if (handleConstantAddresses(I, AM)) +        return true; + +    return false; +  unsupported_gep: +    // Ok, the GEP indices weren't all covered. +    break; +  } +  } + +  return handleConstantAddresses(V, AM); +} + +/// X86SelectCallAddress - Attempt to fill in an address from the given value. +/// +bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { +  const User *U = nullptr; +  unsigned Opcode = Instruction::UserOp1; +  const Instruction *I = dyn_cast<Instruction>(V); +  // Record if the value is defined in the same basic block. +  // +  // This information is crucial to know whether or not folding an +  // operand is valid. +  // Indeed, FastISel generates or reuses a virtual register for all +  // operands of all instructions it selects. Obviously, the definition and +  // its uses must use the same virtual register otherwise the produced +  // code is incorrect. +  // Before instruction selection, FunctionLoweringInfo::set sets the virtual +  // registers for values that are alive across basic blocks. This ensures +  // that the values are consistently set between across basic block, even +  // if different instruction selection mechanisms are used (e.g., a mix of +  // SDISel and FastISel). +  // For values local to a basic block, the instruction selection process +  // generates these virtual registers with whatever method is appropriate +  // for its needs. In particular, FastISel and SDISel do not share the way +  // local virtual registers are set. +  // Therefore, this is impossible (or at least unsafe) to share values +  // between basic blocks unless they use the same instruction selection +  // method, which is not guarantee for X86. +  // Moreover, things like hasOneUse could not be used accurately, if we +  // allow to reference values across basic blocks whereas they are not +  // alive across basic blocks initially. +  bool InMBB = true; +  if (I) { +    Opcode = I->getOpcode(); +    U = I; +    InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); +  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { +    Opcode = C->getOpcode(); +    U = C; +  } + +  switch (Opcode) { +  default: break; +  case Instruction::BitCast: +    // Look past bitcasts if its operand is in the same BB. +    if (InMBB) +      return X86SelectCallAddress(U->getOperand(0), AM); +    break; + +  case Instruction::IntToPtr: +    // Look past no-op inttoptrs if its operand is in the same BB. +    if (InMBB && +        TLI.getValueType(DL, U->getOperand(0)->getType()) == +            TLI.getPointerTy(DL)) +      return X86SelectCallAddress(U->getOperand(0), AM); +    break; + +  case Instruction::PtrToInt: +    // Look past no-op ptrtoints if its operand is in the same BB. +    if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) +      return X86SelectCallAddress(U->getOperand(0), AM); +    break; +  } + +  // Handle constant address. +  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { +    // Can't handle alternate code models yet. +    if (TM.getCodeModel() != CodeModel::Small) +      return false; + +    // RIP-relative addresses can't have additional register operands. +    if (Subtarget->isPICStyleRIPRel() && +        (AM.Base.Reg != 0 || AM.IndexReg != 0)) +      return false; + +    // Can't handle TLS. +    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) +      if (GVar->isThreadLocal()) +        return false; + +    // Okay, we've committed to selecting this global. Set up the basic address. +    AM.GV = GV; + +    // Return a direct reference to the global. Fastisel can handle calls to +    // functions that require loads, such as dllimport and nonlazybind +    // functions. +    if (Subtarget->isPICStyleRIPRel()) { +      // Use rip-relative addressing if we can.  Above we verified that the +      // base and index registers are unused. +      assert(AM.Base.Reg == 0 && AM.IndexReg == 0); +      AM.Base.Reg = X86::RIP; +    } else { +      AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr); +    } + +    return true; +  } + +  // If all else fails, try to materialize the value in a register. +  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { +    auto GetCallRegForValue = [this](const Value *V) { +      Register Reg = getRegForValue(V); + +      // In 64-bit mode, we need a 64-bit register even if pointers are 32 bits. +      if (Reg && Subtarget->isTarget64BitILP32()) { +        Register CopyReg = createResultReg(&X86::GR32RegClass); +        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32rr), +                CopyReg) +            .addReg(Reg); + +        Register ExtReg = createResultReg(&X86::GR64RegClass); +        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +                TII.get(TargetOpcode::SUBREG_TO_REG), ExtReg) +            .addImm(0) +            .addReg(CopyReg) +            .addImm(X86::sub_32bit); +        Reg = ExtReg; +      } + +      return Reg; +    }; + +    if (AM.Base.Reg == 0) { +      AM.Base.Reg = GetCallRegForValue(V); +      return AM.Base.Reg != 0; +    } +    if (AM.IndexReg == 0) { +      assert(AM.Scale == 1 && "Scale with no index!"); +      AM.IndexReg = GetCallRegForValue(V); +      return AM.IndexReg != 0; +    } +  } + +  return false; +} + + +/// X86SelectStore - Select and emit code to implement store instructions. +bool X86FastISel::X86SelectStore(const Instruction *I) { +  // Atomic stores need special handling. +  const StoreInst *S = cast<StoreInst>(I); + +  if (S->isAtomic()) +    return false; + +  const Value *PtrV = I->getOperand(1); +  if (TLI.supportSwiftError()) { +    // Swifterror values can come from either a function parameter with +    // swifterror attribute or an alloca with swifterror attribute. +    if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { +      if (Arg->hasSwiftErrorAttr()) +        return false; +    } + +    if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { +      if (Alloca->isSwiftError()) +        return false; +    } +  } + +  const Value *Val = S->getValueOperand(); +  const Value *Ptr = S->getPointerOperand(); + +  MVT VT; +  if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true)) +    return false; + +  Align Alignment = S->getAlign(); +  Align ABIAlignment = DL.getABITypeAlign(Val->getType()); +  bool Aligned = Alignment >= ABIAlignment; + +  X86AddressMode AM; +  if (!X86SelectAddress(Ptr, AM)) +    return false; + +  return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned); +} + +/// X86SelectRet - Select and emit code to implement ret instructions. +bool X86FastISel::X86SelectRet(const Instruction *I) { +  const ReturnInst *Ret = cast<ReturnInst>(I); +  const Function &F = *I->getParent()->getParent(); +  const X86MachineFunctionInfo *X86MFInfo = +      FuncInfo.MF->getInfo<X86MachineFunctionInfo>(); + +  if (!FuncInfo.CanLowerReturn) +    return false; + +  if (TLI.supportSwiftError() && +      F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) +    return false; + +  if (TLI.supportSplitCSR(FuncInfo.MF)) +    return false; + +  CallingConv::ID CC = F.getCallingConv(); +  if (CC != CallingConv::C && +      CC != CallingConv::Fast && +      CC != CallingConv::Tail && +      CC != CallingConv::SwiftTail && +      CC != CallingConv::X86_FastCall && +      CC != CallingConv::X86_StdCall && +      CC != CallingConv::X86_ThisCall && +      CC != CallingConv::X86_64_SysV && +      CC != CallingConv::Win64) +    return false; + +  // Don't handle popping bytes if they don't fit the ret's immediate. +  if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn())) +    return false; + +  // fastcc with -tailcallopt is intended to provide a guaranteed +  // tail call optimization. Fastisel doesn't know how to do that. +  if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || +      CC == CallingConv::Tail || CC == CallingConv::SwiftTail) +    return false; + +  // Let SDISel handle vararg functions. +  if (F.isVarArg()) +    return false; + +  // Build a list of return value registers. +  SmallVector<unsigned, 4> RetRegs; + +  if (Ret->getNumOperands() > 0) { +    SmallVector<ISD::OutputArg, 4> Outs; +    GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); + +    // Analyze operands of the call, assigning locations to each operand. +    SmallVector<CCValAssign, 16> ValLocs; +    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); +    CCInfo.AnalyzeReturn(Outs, RetCC_X86); + +    const Value *RV = Ret->getOperand(0); +    Register Reg = getRegForValue(RV); +    if (Reg == 0) +      return false; + +    // Only handle a single return value for now. +    if (ValLocs.size() != 1) +      return false; + +    CCValAssign &VA = ValLocs[0]; + +    // Don't bother handling odd stuff for now. +    if (VA.getLocInfo() != CCValAssign::Full) +      return false; +    // Only handle register returns for now. +    if (!VA.isRegLoc()) +      return false; + +    // The calling-convention tables for x87 returns don't tell +    // the whole story. +    if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) +      return false; + +    unsigned SrcReg = Reg + VA.getValNo(); +    EVT SrcVT = TLI.getValueType(DL, RV->getType()); +    EVT DstVT = VA.getValVT(); +    // Special handling for extended integers. +    if (SrcVT != DstVT) { +      if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) +        return false; + +      if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) +        return false; + +      assert(DstVT == MVT::i32 && "X86 should always ext to i32"); + +      if (SrcVT == MVT::i1) { +        if (Outs[0].Flags.isSExt()) +          return false; +        // TODO +        SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg); +        SrcVT = MVT::i8; +      } +      unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : +                                             ISD::SIGN_EXTEND; +      // TODO +      SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, SrcReg); +    } + +    // Make the copy. +    Register DstReg = VA.getLocReg(); +    const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg); +    // Avoid a cross-class copy. This is very unlikely. +    if (!SrcRC->contains(DstReg)) +      return false; +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +            TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); + +    // Add register to return instruction. +    RetRegs.push_back(VA.getLocReg()); +  } + +  // Swift calling convention does not require we copy the sret argument +  // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. + +  // All x86 ABIs require that for returning structs by value we copy +  // the sret argument into %rax/%eax (depending on ABI) for the return. +  // We saved the argument into a virtual register in the entry block, +  // so now we copy the value out and into %rax/%eax. +  if (F.hasStructRetAttr() && CC != CallingConv::Swift && +      CC != CallingConv::SwiftTail) { +    Register Reg = X86MFInfo->getSRetReturnReg(); +    assert(Reg && +           "SRetReturnReg should have been set in LowerFormalArguments()!"); +    unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX; +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +            TII.get(TargetOpcode::COPY), RetReg).addReg(Reg); +    RetRegs.push_back(RetReg); +  } + +  // Now emit the RET. +  MachineInstrBuilder MIB; +  if (X86MFInfo->getBytesToPopOnReturn()) { +    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +                  TII.get(Subtarget->is64Bit() ? X86::RETI64 : X86::RETI32)) +              .addImm(X86MFInfo->getBytesToPopOnReturn()); +  } else { +    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +                  TII.get(Subtarget->is64Bit() ? X86::RET64 : X86::RET32)); +  } +  for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) +    MIB.addReg(RetRegs[i], RegState::Implicit); +  return true; +} + +/// X86SelectLoad - Select and emit code to implement load instructions. +/// +bool X86FastISel::X86SelectLoad(const Instruction *I) { +  const LoadInst *LI = cast<LoadInst>(I); + +  // Atomic loads need special handling. +  if (LI->isAtomic()) +    return false; + +  const Value *SV = I->getOperand(0); +  if (TLI.supportSwiftError()) { +    // Swifterror values can come from either a function parameter with +    // swifterror attribute or an alloca with swifterror attribute. +    if (const Argument *Arg = dyn_cast<Argument>(SV)) { +      if (Arg->hasSwiftErrorAttr()) +        return false; +    } + +    if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { +      if (Alloca->isSwiftError()) +        return false; +    } +  } + +  MVT VT; +  if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true)) +    return false; + +  const Value *Ptr = LI->getPointerOperand(); + +  X86AddressMode AM; +  if (!X86SelectAddress(Ptr, AM)) +    return false; + +  unsigned ResultReg = 0; +  if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg, +                       LI->getAlign().value())) +    return false; + +  updateValueMap(I, ResultReg); +  return true; +} + +static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { +  bool HasAVX512 = Subtarget->hasAVX512(); +  bool HasAVX = Subtarget->hasAVX(); +  bool HasSSE1 = Subtarget->hasSSE1(); +  bool HasSSE2 = Subtarget->hasSSE2(); + +  switch (VT.getSimpleVT().SimpleTy) { +  default:       return 0; +  case MVT::i8:  return X86::CMP8rr; +  case MVT::i16: return X86::CMP16rr; +  case MVT::i32: return X86::CMP32rr; +  case MVT::i64: return X86::CMP64rr; +  case MVT::f32: +    return HasAVX512 ? X86::VUCOMISSZrr +           : HasAVX  ? X86::VUCOMISSrr +           : HasSSE1 ? X86::UCOMISSrr +                     : 0; +  case MVT::f64: +    return HasAVX512 ? X86::VUCOMISDZrr +           : HasAVX  ? X86::VUCOMISDrr +           : HasSSE2 ? X86::UCOMISDrr +                     : 0; +  } +} + +/// If we have a comparison with RHS as the RHS  of the comparison, return an +/// opcode that works for the compare (e.g. CMP32ri) otherwise return 0. +static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { +  int64_t Val = RHSC->getSExtValue(); +  switch (VT.getSimpleVT().SimpleTy) { +  // Otherwise, we can't fold the immediate into this comparison. +  default: +    return 0; +  case MVT::i8: +    return X86::CMP8ri; +  case MVT::i16: +    if (isInt<8>(Val)) +      return X86::CMP16ri8; +    return X86::CMP16ri; +  case MVT::i32: +    if (isInt<8>(Val)) +      return X86::CMP32ri8; +    return X86::CMP32ri; +  case MVT::i64: +    if (isInt<8>(Val)) +      return X86::CMP64ri8; +    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext +    // field. +    if (isInt<32>(Val)) +      return X86::CMP64ri32; +    return 0; +  } +} + +bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT, +                                     const DebugLoc &CurMIMD) { +  Register Op0Reg = getRegForValue(Op0); +  if (Op0Reg == 0) return false; + +  // Handle 'null' like i32/i64 0. +  if (isa<ConstantPointerNull>(Op1)) +    Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext())); + +  // We have two options: compare with register or immediate.  If the RHS of +  // the compare is an immediate that we can fold into this compare, use +  // CMPri, otherwise use CMPrr. +  if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { +    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareImmOpc)) +        .addReg(Op0Reg) +        .addImm(Op1C->getSExtValue()); +      return true; +    } +  } + +  unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); +  if (CompareOpc == 0) return false; + +  Register Op1Reg = getRegForValue(Op1); +  if (Op1Reg == 0) return false; +  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareOpc)) +    .addReg(Op0Reg) +    .addReg(Op1Reg); + +  return true; +} + +bool X86FastISel::X86SelectCmp(const Instruction *I) { +  const CmpInst *CI = cast<CmpInst>(I); + +  MVT VT; +  if (!isTypeLegal(I->getOperand(0)->getType(), VT)) +    return false; + +  // Below code only works for scalars. +  if (VT.isVector()) +    return false; + +  // Try to optimize or fold the cmp. +  CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); +  unsigned ResultReg = 0; +  switch (Predicate) { +  default: break; +  case CmpInst::FCMP_FALSE: { +    ResultReg = createResultReg(&X86::GR32RegClass); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32r0), +            ResultReg); +    ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, X86::sub_8bit); +    if (!ResultReg) +      return false; +    break; +  } +  case CmpInst::FCMP_TRUE: { +    ResultReg = createResultReg(&X86::GR8RegClass); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri), +            ResultReg).addImm(1); +    break; +  } +  } + +  if (ResultReg) { +    updateValueMap(I, ResultReg); +    return true; +  } + +  const Value *LHS = CI->getOperand(0); +  const Value *RHS = CI->getOperand(1); + +  // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. +  // We don't have to materialize a zero constant for this case and can just use +  // %x again on the RHS. +  if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { +    const auto *RHSC = dyn_cast<ConstantFP>(RHS); +    if (RHSC && RHSC->isNullValue()) +      RHS = LHS; +  } + +  // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. +  static const uint16_t SETFOpcTable[2][3] = { +    { X86::COND_E,  X86::COND_NP, X86::AND8rr }, +    { X86::COND_NE, X86::COND_P,  X86::OR8rr  } +  }; +  const uint16_t *SETFOpc = nullptr; +  switch (Predicate) { +  default: break; +  case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break; +  case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break; +  } + +  ResultReg = createResultReg(&X86::GR8RegClass); +  if (SETFOpc) { +    if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) +      return false; + +    Register FlagReg1 = createResultReg(&X86::GR8RegClass); +    Register FlagReg2 = createResultReg(&X86::GR8RegClass); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), +            FlagReg1).addImm(SETFOpc[0]); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), +            FlagReg2).addImm(SETFOpc[1]); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(SETFOpc[2]), +            ResultReg).addReg(FlagReg1).addReg(FlagReg2); +    updateValueMap(I, ResultReg); +    return true; +  } + +  X86::CondCode CC; +  bool SwapArgs; +  std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); +  assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); + +  if (SwapArgs) +    std::swap(LHS, RHS); + +  // Emit a compare of LHS/RHS. +  if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) +    return false; + +  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), +          ResultReg).addImm(CC); +  updateValueMap(I, ResultReg); +  return true; +} + +bool X86FastISel::X86SelectZExt(const Instruction *I) { +  EVT DstVT = TLI.getValueType(DL, I->getType()); +  if (!TLI.isTypeLegal(DstVT)) +    return false; + +  Register ResultReg = getRegForValue(I->getOperand(0)); +  if (ResultReg == 0) +    return false; + +  // Handle zero-extension from i1 to i8, which is common. +  MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); +  if (SrcVT == MVT::i1) { +    // Set the high bits to zero. +    ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg); +    SrcVT = MVT::i8; + +    if (ResultReg == 0) +      return false; +  } + +  if (DstVT == MVT::i64) { +    // Handle extension to 64-bits via sub-register shenanigans. +    unsigned MovInst; + +    switch (SrcVT.SimpleTy) { +    case MVT::i8:  MovInst = X86::MOVZX32rr8;  break; +    case MVT::i16: MovInst = X86::MOVZX32rr16; break; +    case MVT::i32: MovInst = X86::MOV32rr;     break; +    default: llvm_unreachable("Unexpected zext to i64 source type"); +    } + +    Register Result32 = createResultReg(&X86::GR32RegClass); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovInst), Result32) +      .addReg(ResultReg); + +    ResultReg = createResultReg(&X86::GR64RegClass); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::SUBREG_TO_REG), +            ResultReg) +      .addImm(0).addReg(Result32).addImm(X86::sub_32bit); +  } else if (DstVT == MVT::i16) { +    // i8->i16 doesn't exist in the autogenerated isel table. Need to zero +    // extend to 32-bits and then extract down to 16-bits. +    Register Result32 = createResultReg(&X86::GR32RegClass); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVZX32rr8), +            Result32).addReg(ResultReg); + +    ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit); +  } else if (DstVT != MVT::i8) { +    ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, +                           ResultReg); +    if (ResultReg == 0) +      return false; +  } + +  updateValueMap(I, ResultReg); +  return true; +} + +bool X86FastISel::X86SelectSExt(const Instruction *I) { +  EVT DstVT = TLI.getValueType(DL, I->getType()); +  if (!TLI.isTypeLegal(DstVT)) +    return false; + +  Register ResultReg = getRegForValue(I->getOperand(0)); +  if (ResultReg == 0) +    return false; + +  // Handle sign-extension from i1 to i8. +  MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); +  if (SrcVT == MVT::i1) { +    // Set the high bits to zero. +    Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg); +    if (ZExtReg == 0) +      return false; + +    // Negate the result to make an 8-bit sign extended value. +    ResultReg = createResultReg(&X86::GR8RegClass); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::NEG8r), +            ResultReg).addReg(ZExtReg); + +    SrcVT = MVT::i8; +  } + +  if (DstVT == MVT::i16) { +    // i8->i16 doesn't exist in the autogenerated isel table. Need to sign +    // extend to 32-bits and then extract down to 16-bits. +    Register Result32 = createResultReg(&X86::GR32RegClass); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVSX32rr8), +            Result32).addReg(ResultReg); + +    ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit); +  } else if (DstVT != MVT::i8) { +    ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND, +                           ResultReg); +    if (ResultReg == 0) +      return false; +  } + +  updateValueMap(I, ResultReg); +  return true; +} + +bool X86FastISel::X86SelectBranch(const Instruction *I) { +  // Unconditional branches are selected by tablegen-generated code. +  // Handle a conditional branch. +  const BranchInst *BI = cast<BranchInst>(I); +  MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; +  MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; + +  // Fold the common case of a conditional branch with a comparison +  // in the same block (values defined on other blocks may not have +  // initialized registers). +  X86::CondCode CC; +  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { +    if (CI->hasOneUse() && CI->getParent() == I->getParent()) { +      EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType()); + +      // Try to optimize or fold the cmp. +      CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); +      switch (Predicate) { +      default: break; +      case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, MIMD.getDL()); return true; +      case CmpInst::FCMP_TRUE:  fastEmitBranch(TrueMBB, MIMD.getDL()); return true; +      } + +      const Value *CmpLHS = CI->getOperand(0); +      const Value *CmpRHS = CI->getOperand(1); + +      // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, +      // 0.0. +      // We don't have to materialize a zero constant for this case and can just +      // use %x again on the RHS. +      if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { +        const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); +        if (CmpRHSC && CmpRHSC->isNullValue()) +          CmpRHS = CmpLHS; +      } + +      // Try to take advantage of fallthrough opportunities. +      if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { +        std::swap(TrueMBB, FalseMBB); +        Predicate = CmpInst::getInversePredicate(Predicate); +      } + +      // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition +      // code check. Instead two branch instructions are required to check all +      // the flags. First we change the predicate to a supported condition code, +      // which will be the first branch. Later one we will emit the second +      // branch. +      bool NeedExtraBranch = false; +      switch (Predicate) { +      default: break; +      case CmpInst::FCMP_OEQ: +        std::swap(TrueMBB, FalseMBB); +        [[fallthrough]]; +      case CmpInst::FCMP_UNE: +        NeedExtraBranch = true; +        Predicate = CmpInst::FCMP_ONE; +        break; +      } + +      bool SwapArgs; +      std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); +      assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); + +      if (SwapArgs) +        std::swap(CmpLHS, CmpRHS); + +      // Emit a compare of the LHS and RHS, setting the flags. +      if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc())) +        return false; + +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) +        .addMBB(TrueMBB).addImm(CC); + +      // X86 requires a second branch to handle UNE (and OEQ, which is mapped +      // to UNE above). +      if (NeedExtraBranch) { +        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) +          .addMBB(TrueMBB).addImm(X86::COND_P); +      } + +      finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); +      return true; +    } +  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { +    // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which +    // typically happen for _Bool and C++ bools. +    MVT SourceVT; +    if (TI->hasOneUse() && TI->getParent() == I->getParent() && +        isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { +      unsigned TestOpc = 0; +      switch (SourceVT.SimpleTy) { +      default: break; +      case MVT::i8:  TestOpc = X86::TEST8ri; break; +      case MVT::i16: TestOpc = X86::TEST16ri; break; +      case MVT::i32: TestOpc = X86::TEST32ri; break; +      case MVT::i64: TestOpc = X86::TEST64ri32; break; +      } +      if (TestOpc) { +        Register OpReg = getRegForValue(TI->getOperand(0)); +        if (OpReg == 0) return false; + +        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TestOpc)) +          .addReg(OpReg).addImm(1); + +        unsigned JmpCond = X86::COND_NE; +        if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { +          std::swap(TrueMBB, FalseMBB); +          JmpCond = X86::COND_E; +        } + +        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) +          .addMBB(TrueMBB).addImm(JmpCond); + +        finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); +        return true; +      } +    } +  } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) { +    // Fake request the condition, otherwise the intrinsic might be completely +    // optimized away. +    Register TmpReg = getRegForValue(BI->getCondition()); +    if (TmpReg == 0) +      return false; + +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) +      .addMBB(TrueMBB).addImm(CC); +    finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); +    return true; +  } + +  // Otherwise do a clumsy setcc and re-test it. +  // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used +  // in an explicit cast, so make sure to handle that correctly. +  Register OpReg = getRegForValue(BI->getCondition()); +  if (OpReg == 0) return false; + +  // In case OpReg is a K register, COPY to a GPR +  if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) { +    unsigned KOpReg = OpReg; +    OpReg = createResultReg(&X86::GR32RegClass); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +            TII.get(TargetOpcode::COPY), OpReg) +        .addReg(KOpReg); +    OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, X86::sub_8bit); +  } +  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri)) +      .addReg(OpReg) +      .addImm(1); +  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) +    .addMBB(TrueMBB).addImm(X86::COND_NE); +  finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); +  return true; +} + +bool X86FastISel::X86SelectShift(const Instruction *I) { +  unsigned CReg = 0, OpReg = 0; +  const TargetRegisterClass *RC = nullptr; +  if (I->getType()->isIntegerTy(8)) { +    CReg = X86::CL; +    RC = &X86::GR8RegClass; +    switch (I->getOpcode()) { +    case Instruction::LShr: OpReg = X86::SHR8rCL; break; +    case Instruction::AShr: OpReg = X86::SAR8rCL; break; +    case Instruction::Shl:  OpReg = X86::SHL8rCL; break; +    default: return false; +    } +  } else if (I->getType()->isIntegerTy(16)) { +    CReg = X86::CX; +    RC = &X86::GR16RegClass; +    switch (I->getOpcode()) { +    default: llvm_unreachable("Unexpected shift opcode"); +    case Instruction::LShr: OpReg = X86::SHR16rCL; break; +    case Instruction::AShr: OpReg = X86::SAR16rCL; break; +    case Instruction::Shl:  OpReg = X86::SHL16rCL; break; +    } +  } else if (I->getType()->isIntegerTy(32)) { +    CReg = X86::ECX; +    RC = &X86::GR32RegClass; +    switch (I->getOpcode()) { +    default: llvm_unreachable("Unexpected shift opcode"); +    case Instruction::LShr: OpReg = X86::SHR32rCL; break; +    case Instruction::AShr: OpReg = X86::SAR32rCL; break; +    case Instruction::Shl:  OpReg = X86::SHL32rCL; break; +    } +  } else if (I->getType()->isIntegerTy(64)) { +    CReg = X86::RCX; +    RC = &X86::GR64RegClass; +    switch (I->getOpcode()) { +    default: llvm_unreachable("Unexpected shift opcode"); +    case Instruction::LShr: OpReg = X86::SHR64rCL; break; +    case Instruction::AShr: OpReg = X86::SAR64rCL; break; +    case Instruction::Shl:  OpReg = X86::SHL64rCL; break; +    } +  } else { +    return false; +  } + +  MVT VT; +  if (!isTypeLegal(I->getType(), VT)) +    return false; + +  Register Op0Reg = getRegForValue(I->getOperand(0)); +  if (Op0Reg == 0) return false; + +  Register Op1Reg = getRegForValue(I->getOperand(1)); +  if (Op1Reg == 0) return false; +  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), +          CReg).addReg(Op1Reg); + +  // The shift instruction uses X86::CL. If we defined a super-register +  // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. +  if (CReg != X86::CL) +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +            TII.get(TargetOpcode::KILL), X86::CL) +      .addReg(CReg, RegState::Kill); + +  Register ResultReg = createResultReg(RC); +  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(OpReg), ResultReg) +    .addReg(Op0Reg); +  updateValueMap(I, ResultReg); +  return true; +} + +bool X86FastISel::X86SelectDivRem(const Instruction *I) { +  const static unsigned NumTypes = 4; // i8, i16, i32, i64 +  const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem +  const static bool S = true;  // IsSigned +  const static bool U = false; // !IsSigned +  const static unsigned Copy = TargetOpcode::COPY; +  // For the X86 DIV/IDIV instruction, in most cases the dividend +  // (numerator) must be in a specific register pair highreg:lowreg, +  // producing the quotient in lowreg and the remainder in highreg. +  // For most data types, to set up the instruction, the dividend is +  // copied into lowreg, and lowreg is sign-extended or zero-extended +  // into highreg.  The exception is i8, where the dividend is defined +  // as a single register rather than a register pair, and we +  // therefore directly sign-extend or zero-extend the dividend into +  // lowreg, instead of copying, and ignore the highreg. +  const static struct DivRemEntry { +    // The following portion depends only on the data type. +    const TargetRegisterClass *RC; +    unsigned LowInReg;  // low part of the register pair +    unsigned HighInReg; // high part of the register pair +    // The following portion depends on both the data type and the operation. +    struct DivRemResult { +    unsigned OpDivRem;        // The specific DIV/IDIV opcode to use. +    unsigned OpSignExtend;    // Opcode for sign-extending lowreg into +                              // highreg, or copying a zero into highreg. +    unsigned OpCopy;          // Opcode for copying dividend into lowreg, or +                              // zero/sign-extending into lowreg for i8. +    unsigned DivRemResultReg; // Register containing the desired result. +    bool IsOpSigned;          // Whether to use signed or unsigned form. +    } ResultTable[NumOps]; +  } OpTable[NumTypes] = { +    { &X86::GR8RegClass,  X86::AX,  0, { +        { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv +        { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem +        { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv +        { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem +      } +    }, // i8 +    { &X86::GR16RegClass, X86::AX,  X86::DX, { +        { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv +        { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem +        { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv +        { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem +      } +    }, // i16 +    { &X86::GR32RegClass, X86::EAX, X86::EDX, { +        { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv +        { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem +        { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv +        { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem +      } +    }, // i32 +    { &X86::GR64RegClass, X86::RAX, X86::RDX, { +        { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv +        { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem +        { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv +        { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem +      } +    }, // i64 +  }; + +  MVT VT; +  if (!isTypeLegal(I->getType(), VT)) +    return false; + +  unsigned TypeIndex, OpIndex; +  switch (VT.SimpleTy) { +  default: return false; +  case MVT::i8:  TypeIndex = 0; break; +  case MVT::i16: TypeIndex = 1; break; +  case MVT::i32: TypeIndex = 2; break; +  case MVT::i64: TypeIndex = 3; +    if (!Subtarget->is64Bit()) +      return false; +    break; +  } + +  switch (I->getOpcode()) { +  default: llvm_unreachable("Unexpected div/rem opcode"); +  case Instruction::SDiv: OpIndex = 0; break; +  case Instruction::SRem: OpIndex = 1; break; +  case Instruction::UDiv: OpIndex = 2; break; +  case Instruction::URem: OpIndex = 3; break; +  } + +  const DivRemEntry &TypeEntry = OpTable[TypeIndex]; +  const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; +  Register Op0Reg = getRegForValue(I->getOperand(0)); +  if (Op0Reg == 0) +    return false; +  Register Op1Reg = getRegForValue(I->getOperand(1)); +  if (Op1Reg == 0) +    return false; + +  // Move op0 into low-order input register. +  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +          TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg); +  // Zero-extend or sign-extend into high-order input register. +  if (OpEntry.OpSignExtend) { +    if (OpEntry.IsOpSigned) +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +              TII.get(OpEntry.OpSignExtend)); +    else { +      Register Zero32 = createResultReg(&X86::GR32RegClass); +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +              TII.get(X86::MOV32r0), Zero32); + +      // Copy the zero into the appropriate sub/super/identical physical +      // register. Unfortunately the operations needed are not uniform enough +      // to fit neatly into the table above. +      if (VT == MVT::i16) { +        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +                TII.get(Copy), TypeEntry.HighInReg) +          .addReg(Zero32, 0, X86::sub_16bit); +      } else if (VT == MVT::i32) { +        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +                TII.get(Copy), TypeEntry.HighInReg) +            .addReg(Zero32); +      } else if (VT == MVT::i64) { +        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +                TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) +            .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); +      } +    } +  } +  // Generate the DIV/IDIV instruction. +  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +          TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); +  // For i8 remainder, we can't reference ah directly, as we'll end +  // up with bogus copies like %r9b = COPY %ah. Reference ax +  // instead to prevent ah references in a rex instruction. +  // +  // The current assumption of the fast register allocator is that isel +  // won't generate explicit references to the GR8_NOREX registers. If +  // the allocator and/or the backend get enhanced to be more robust in +  // that regard, this can be, and should be, removed. +  unsigned ResultReg = 0; +  if ((I->getOpcode() == Instruction::SRem || +       I->getOpcode() == Instruction::URem) && +      OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { +    Register SourceSuperReg = createResultReg(&X86::GR16RegClass); +    Register ResultSuperReg = createResultReg(&X86::GR16RegClass); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +            TII.get(Copy), SourceSuperReg).addReg(X86::AX); + +    // Shift AX right by 8 bits instead of using AH. +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SHR16ri), +            ResultSuperReg).addReg(SourceSuperReg).addImm(8); + +    // Now reference the 8-bit subreg of the result. +    ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg, +                                           X86::sub_8bit); +  } +  // Copy the result out of the physreg if we haven't already. +  if (!ResultReg) { +    ResultReg = createResultReg(TypeEntry.RC); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Copy), ResultReg) +        .addReg(OpEntry.DivRemResultReg); +  } +  updateValueMap(I, ResultReg); + +  return true; +} + +/// Emit a conditional move instruction (if the are supported) to lower +/// the select. +bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) { +  // Check if the subtarget supports these instructions. +  if (!Subtarget->canUseCMOV()) +    return false; + +  // FIXME: Add support for i8. +  if (RetVT < MVT::i16 || RetVT > MVT::i64) +    return false; + +  const Value *Cond = I->getOperand(0); +  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); +  bool NeedTest = true; +  X86::CondCode CC = X86::COND_NE; + +  // Optimize conditions coming from a compare if both instructions are in the +  // same basic block (values defined in other basic blocks may not have +  // initialized registers). +  const auto *CI = dyn_cast<CmpInst>(Cond); +  if (CI && (CI->getParent() == I->getParent())) { +    CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); + +    // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. +    static const uint16_t SETFOpcTable[2][3] = { +      { X86::COND_NP, X86::COND_E,  X86::TEST8rr }, +      { X86::COND_P,  X86::COND_NE, X86::OR8rr   } +    }; +    const uint16_t *SETFOpc = nullptr; +    switch (Predicate) { +    default: break; +    case CmpInst::FCMP_OEQ: +      SETFOpc = &SETFOpcTable[0][0]; +      Predicate = CmpInst::ICMP_NE; +      break; +    case CmpInst::FCMP_UNE: +      SETFOpc = &SETFOpcTable[1][0]; +      Predicate = CmpInst::ICMP_NE; +      break; +    } + +    bool NeedSwap; +    std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate); +    assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); + +    const Value *CmpLHS = CI->getOperand(0); +    const Value *CmpRHS = CI->getOperand(1); +    if (NeedSwap) +      std::swap(CmpLHS, CmpRHS); + +    EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); +    // Emit a compare of the LHS and RHS, setting the flags. +    if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) +      return false; + +    if (SETFOpc) { +      Register FlagReg1 = createResultReg(&X86::GR8RegClass); +      Register FlagReg2 = createResultReg(&X86::GR8RegClass); +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), +              FlagReg1).addImm(SETFOpc[0]); +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), +              FlagReg2).addImm(SETFOpc[1]); +      auto const &II = TII.get(SETFOpc[2]); +      if (II.getNumDefs()) { +        Register TmpReg = createResultReg(&X86::GR8RegClass); +        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, TmpReg) +          .addReg(FlagReg2).addReg(FlagReg1); +      } else { +        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) +          .addReg(FlagReg2).addReg(FlagReg1); +      } +    } +    NeedTest = false; +  } else if (foldX86XALUIntrinsic(CC, I, Cond)) { +    // Fake request the condition, otherwise the intrinsic might be completely +    // optimized away. +    Register TmpReg = getRegForValue(Cond); +    if (TmpReg == 0) +      return false; + +    NeedTest = false; +  } + +  if (NeedTest) { +    // Selects operate on i1, however, CondReg is 8 bits width and may contain +    // garbage. Indeed, only the less significant bit is supposed to be +    // accurate. If we read more than the lsb, we may see non-zero values +    // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for +    // the select. This is achieved by performing TEST against 1. +    Register CondReg = getRegForValue(Cond); +    if (CondReg == 0) +      return false; + +    // In case OpReg is a K register, COPY to a GPR +    if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { +      unsigned KCondReg = CondReg; +      CondReg = createResultReg(&X86::GR32RegClass); +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +              TII.get(TargetOpcode::COPY), CondReg) +          .addReg(KCondReg); +      CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit); +    } +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri)) +        .addReg(CondReg) +        .addImm(1); +  } + +  const Value *LHS = I->getOperand(1); +  const Value *RHS = I->getOperand(2); + +  Register RHSReg = getRegForValue(RHS); +  Register LHSReg = getRegForValue(LHS); +  if (!LHSReg || !RHSReg) +    return false; + +  const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo(); +  unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8); +  Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC); +  updateValueMap(I, ResultReg); +  return true; +} + +/// Emit SSE or AVX instructions to lower the select. +/// +/// Try to use SSE1/SSE2 instructions to simulate a select without branches. +/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary +/// SSE instructions are available. If AVX is available, try to use a VBLENDV. +bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) { +  // Optimize conditions coming from a compare if both instructions are in the +  // same basic block (values defined in other basic blocks may not have +  // initialized registers). +  const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0)); +  if (!CI || (CI->getParent() != I->getParent())) +    return false; + +  if (I->getType() != CI->getOperand(0)->getType() || +      !((Subtarget->hasSSE1() && RetVT == MVT::f32) || +        (Subtarget->hasSSE2() && RetVT == MVT::f64))) +    return false; + +  const Value *CmpLHS = CI->getOperand(0); +  const Value *CmpRHS = CI->getOperand(1); +  CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); + +  // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. +  // We don't have to materialize a zero constant for this case and can just use +  // %x again on the RHS. +  if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { +    const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); +    if (CmpRHSC && CmpRHSC->isNullValue()) +      CmpRHS = CmpLHS; +  } + +  unsigned CC; +  bool NeedSwap; +  std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate); +  if (CC > 7 && !Subtarget->hasAVX()) +    return false; + +  if (NeedSwap) +    std::swap(CmpLHS, CmpRHS); + +  const Value *LHS = I->getOperand(1); +  const Value *RHS = I->getOperand(2); + +  Register LHSReg = getRegForValue(LHS); +  Register RHSReg = getRegForValue(RHS); +  Register CmpLHSReg = getRegForValue(CmpLHS); +  Register CmpRHSReg = getRegForValue(CmpRHS); +  if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg) +    return false; + +  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); +  unsigned ResultReg; + +  if (Subtarget->hasAVX512()) { +    // If we have AVX512 we can use a mask compare and masked movss/sd. +    const TargetRegisterClass *VR128X = &X86::VR128XRegClass; +    const TargetRegisterClass *VK1 = &X86::VK1RegClass; + +    unsigned CmpOpcode = +      (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr; +    Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpRHSReg, +                                       CC); + +    // Need an IMPLICIT_DEF for the input that is used to generate the upper +    // bits of the result register since its not based on any of the inputs. +    Register ImplicitDefReg = createResultReg(VR128X); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +            TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); + +    // Place RHSReg is the passthru of the masked movss/sd operation and put +    // LHS in the input. The mask input comes from the compare. +    unsigned MovOpcode = +      (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk; +    unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, CmpReg, +                                        ImplicitDefReg, LHSReg); + +    ResultReg = createResultReg(RC); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +            TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg); + +  } else if (Subtarget->hasAVX()) { +    const TargetRegisterClass *VR128 = &X86::VR128RegClass; + +    // If we have AVX, create 1 blendv instead of 3 logic instructions. +    // Blendv was introduced with SSE 4.1, but the 2 register form implicitly +    // uses XMM0 as the selection register. That may need just as many +    // instructions as the AND/ANDN/OR sequence due to register moves, so +    // don't bother. +    unsigned CmpOpcode = +      (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr; +    unsigned BlendOpcode = +      (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr; + +    Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpRHSReg, +                                       CC); +    Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, LHSReg, +                                          CmpReg); +    ResultReg = createResultReg(RC); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +            TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg); +  } else { +    // Choose the SSE instruction sequence based on data type (float or double). +    static const uint16_t OpcTable[2][4] = { +      { X86::CMPSSrr,  X86::ANDPSrr,  X86::ANDNPSrr,  X86::ORPSrr  }, +      { X86::CMPSDrr,  X86::ANDPDrr,  X86::ANDNPDrr,  X86::ORPDrr  } +    }; + +    const uint16_t *Opc = nullptr; +    switch (RetVT.SimpleTy) { +    default: return false; +    case MVT::f32: Opc = &OpcTable[0][0]; break; +    case MVT::f64: Opc = &OpcTable[1][0]; break; +    } + +    const TargetRegisterClass *VR128 = &X86::VR128RegClass; +    Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpRHSReg, CC); +    Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, LHSReg); +    Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, RHSReg); +    Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, AndReg); +    ResultReg = createResultReg(RC); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +            TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg); +  } +  updateValueMap(I, ResultReg); +  return true; +} + +bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) { +  // These are pseudo CMOV instructions and will be later expanded into control- +  // flow. +  unsigned Opc; +  switch (RetVT.SimpleTy) { +  default: return false; +  case MVT::i8:  Opc = X86::CMOV_GR8;   break; +  case MVT::i16: Opc = X86::CMOV_GR16;  break; +  case MVT::i32: Opc = X86::CMOV_GR32;  break; +  case MVT::f16: +    Opc = Subtarget->hasAVX512() ? X86::CMOV_FR16X : X86::CMOV_FR16; break; +  case MVT::f32: +    Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X : X86::CMOV_FR32; break; +  case MVT::f64: +    Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X : X86::CMOV_FR64; break; +  } + +  const Value *Cond = I->getOperand(0); +  X86::CondCode CC = X86::COND_NE; + +  // Optimize conditions coming from a compare if both instructions are in the +  // same basic block (values defined in other basic blocks may not have +  // initialized registers). +  const auto *CI = dyn_cast<CmpInst>(Cond); +  if (CI && (CI->getParent() == I->getParent())) { +    bool NeedSwap; +    std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate()); +    if (CC > X86::LAST_VALID_COND) +      return false; + +    const Value *CmpLHS = CI->getOperand(0); +    const Value *CmpRHS = CI->getOperand(1); + +    if (NeedSwap) +      std::swap(CmpLHS, CmpRHS); + +    EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); +    if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) +      return false; +  } else { +    Register CondReg = getRegForValue(Cond); +    if (CondReg == 0) +      return false; + +    // In case OpReg is a K register, COPY to a GPR +    if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { +      unsigned KCondReg = CondReg; +      CondReg = createResultReg(&X86::GR32RegClass); +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +              TII.get(TargetOpcode::COPY), CondReg) +          .addReg(KCondReg); +      CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit); +    } +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri)) +        .addReg(CondReg) +        .addImm(1); +  } + +  const Value *LHS = I->getOperand(1); +  const Value *RHS = I->getOperand(2); + +  Register LHSReg = getRegForValue(LHS); +  Register RHSReg = getRegForValue(RHS); +  if (!LHSReg || !RHSReg) +    return false; + +  const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); + +  Register ResultReg = +    fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC); +  updateValueMap(I, ResultReg); +  return true; +} + +bool X86FastISel::X86SelectSelect(const Instruction *I) { +  MVT RetVT; +  if (!isTypeLegal(I->getType(), RetVT)) +    return false; + +  // Check if we can fold the select. +  if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) { +    CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); +    const Value *Opnd = nullptr; +    switch (Predicate) { +    default:                              break; +    case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break; +    case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break; +    } +    // No need for a select anymore - this is an unconditional move. +    if (Opnd) { +      Register OpReg = getRegForValue(Opnd); +      if (OpReg == 0) +        return false; +      const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); +      Register ResultReg = createResultReg(RC); +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +              TII.get(TargetOpcode::COPY), ResultReg) +        .addReg(OpReg); +      updateValueMap(I, ResultReg); +      return true; +    } +  } + +  // First try to use real conditional move instructions. +  if (X86FastEmitCMoveSelect(RetVT, I)) +    return true; + +  // Try to use a sequence of SSE instructions to simulate a conditional move. +  if (X86FastEmitSSESelect(RetVT, I)) +    return true; + +  // Fall-back to pseudo conditional move instructions, which will be later +  // converted to control-flow. +  if (X86FastEmitPseudoSelect(RetVT, I)) +    return true; + +  return false; +} + +// Common code for X86SelectSIToFP and X86SelectUIToFP. +bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) { +  // The target-independent selection algorithm in FastISel already knows how +  // to select a SINT_TO_FP if the target is SSE but not AVX. +  // Early exit if the subtarget doesn't have AVX. +  // Unsigned conversion requires avx512. +  bool HasAVX512 = Subtarget->hasAVX512(); +  if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512)) +    return false; + +  // TODO: We could sign extend narrower types. +  MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); +  if (SrcVT != MVT::i32 && SrcVT != MVT::i64) +    return false; + +  // Select integer to float/double conversion. +  Register OpReg = getRegForValue(I->getOperand(0)); +  if (OpReg == 0) +    return false; + +  unsigned Opcode; + +  static const uint16_t SCvtOpc[2][2][2] = { +    { { X86::VCVTSI2SSrr,  X86::VCVTSI642SSrr }, +      { X86::VCVTSI2SDrr,  X86::VCVTSI642SDrr } }, +    { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr }, +      { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } }, +  }; +  static const uint16_t UCvtOpc[2][2] = { +    { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr }, +    { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr }, +  }; +  bool Is64Bit = SrcVT == MVT::i64; + +  if (I->getType()->isDoubleTy()) { +    // s/uitofp int -> double +    Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit]; +  } else if (I->getType()->isFloatTy()) { +    // s/uitofp int -> float +    Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit]; +  } else +    return false; + +  MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT(); +  const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT); +  Register ImplicitDefReg = createResultReg(RC); +  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +          TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); +  Register ResultReg = fastEmitInst_rr(Opcode, RC, ImplicitDefReg, OpReg); +  updateValueMap(I, ResultReg); +  return true; +} + +bool X86FastISel::X86SelectSIToFP(const Instruction *I) { +  return X86SelectIntToFP(I, /*IsSigned*/true); +} + +bool X86FastISel::X86SelectUIToFP(const Instruction *I) { +  return X86SelectIntToFP(I, /*IsSigned*/false); +} + +// Helper method used by X86SelectFPExt and X86SelectFPTrunc. +bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I, +                                          unsigned TargetOpc, +                                          const TargetRegisterClass *RC) { +  assert((I->getOpcode() == Instruction::FPExt || +          I->getOpcode() == Instruction::FPTrunc) && +         "Instruction must be an FPExt or FPTrunc!"); +  bool HasAVX = Subtarget->hasAVX(); + +  Register OpReg = getRegForValue(I->getOperand(0)); +  if (OpReg == 0) +    return false; + +  unsigned ImplicitDefReg; +  if (HasAVX) { +    ImplicitDefReg = createResultReg(RC); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +            TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); + +  } + +  Register ResultReg = createResultReg(RC); +  MachineInstrBuilder MIB; +  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpc), +                ResultReg); + +  if (HasAVX) +    MIB.addReg(ImplicitDefReg); + +  MIB.addReg(OpReg); +  updateValueMap(I, ResultReg); +  return true; +} + +bool X86FastISel::X86SelectFPExt(const Instruction *I) { +  if (Subtarget->hasSSE2() && I->getType()->isDoubleTy() && +      I->getOperand(0)->getType()->isFloatTy()) { +    bool HasAVX512 = Subtarget->hasAVX512(); +    // fpext from float to double. +    unsigned Opc = +        HasAVX512 ? X86::VCVTSS2SDZrr +                  : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr; +    return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64)); +  } + +  return false; +} + +bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { +  if (Subtarget->hasSSE2() && I->getType()->isFloatTy() && +      I->getOperand(0)->getType()->isDoubleTy()) { +    bool HasAVX512 = Subtarget->hasAVX512(); +    // fptrunc from double to float. +    unsigned Opc = +        HasAVX512 ? X86::VCVTSD2SSZrr +                  : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr; +    return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32)); +  } + +  return false; +} + +bool X86FastISel::X86SelectTrunc(const Instruction *I) { +  EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); +  EVT DstVT = TLI.getValueType(DL, I->getType()); + +  // This code only handles truncation to byte. +  if (DstVT != MVT::i8 && DstVT != MVT::i1) +    return false; +  if (!TLI.isTypeLegal(SrcVT)) +    return false; + +  Register InputReg = getRegForValue(I->getOperand(0)); +  if (!InputReg) +    // Unhandled operand.  Halt "fast" selection and bail. +    return false; + +  if (SrcVT == MVT::i8) { +    // Truncate from i8 to i1; no code needed. +    updateValueMap(I, InputReg); +    return true; +  } + +  // Issue an extract_subreg. +  Register ResultReg = fastEmitInst_extractsubreg(MVT::i8, InputReg, +                                                  X86::sub_8bit); +  if (!ResultReg) +    return false; + +  updateValueMap(I, ResultReg); +  return true; +} + +bool X86FastISel::IsMemcpySmall(uint64_t Len) { +  return Len <= (Subtarget->is64Bit() ? 32 : 16); +} + +bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, +                                     X86AddressMode SrcAM, uint64_t Len) { + +  // Make sure we don't bloat code by inlining very large memcpy's. +  if (!IsMemcpySmall(Len)) +    return false; + +  bool i64Legal = Subtarget->is64Bit(); + +  // We don't care about alignment here since we just emit integer accesses. +  while (Len) { +    MVT VT; +    if (Len >= 8 && i64Legal) +      VT = MVT::i64; +    else if (Len >= 4) +      VT = MVT::i32; +    else if (Len >= 2) +      VT = MVT::i16; +    else +      VT = MVT::i8; + +    unsigned Reg; +    bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg); +    RV &= X86FastEmitStore(VT, Reg, DestAM); +    assert(RV && "Failed to emit load or store??"); +    (void)RV; + +    unsigned Size = VT.getSizeInBits()/8; +    Len -= Size; +    DestAM.Disp += Size; +    SrcAM.Disp += Size; +  } + +  return true; +} + +bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { +  // FIXME: Handle more intrinsics. +  switch (II->getIntrinsicID()) { +  default: return false; +  case Intrinsic::convert_from_fp16: +  case Intrinsic::convert_to_fp16: { +    if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) +      return false; + +    const Value *Op = II->getArgOperand(0); +    Register InputReg = getRegForValue(Op); +    if (InputReg == 0) +      return false; + +    // F16C only allows converting from float to half and from half to float. +    bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16; +    if (IsFloatToHalf) { +      if (!Op->getType()->isFloatTy()) +        return false; +    } else { +      if (!II->getType()->isFloatTy()) +        return false; +    } + +    unsigned ResultReg = 0; +    const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16); +    if (IsFloatToHalf) { +      // 'InputReg' is implicitly promoted from register class FR32 to +      // register class VR128 by method 'constrainOperandRegClass' which is +      // directly called by 'fastEmitInst_ri'. +      // Instruction VCVTPS2PHrr takes an extra immediate operand which is +      // used to provide rounding control: use MXCSR.RC, encoded as 0b100. +      // It's consistent with the other FP instructions, which are usually +      // controlled by MXCSR. +      unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr +                                         : X86::VCVTPS2PHrr; +      InputReg = fastEmitInst_ri(Opc, RC, InputReg, 4); + +      // Move the lower 32-bits of ResultReg to another register of class GR32. +      Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr +                                   : X86::VMOVPDI2DIrr; +      ResultReg = createResultReg(&X86::GR32RegClass); +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) +          .addReg(InputReg, RegState::Kill); + +      // The result value is in the lower 16-bits of ResultReg. +      unsigned RegIdx = X86::sub_16bit; +      ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, RegIdx); +    } else { +      assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!"); +      // Explicitly zero-extend the input to 32-bit. +      InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::ZERO_EXTEND, InputReg); + +      // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr. +      InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR, +                            InputReg); + +      unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr +                                         : X86::VCVTPH2PSrr; +      InputReg = fastEmitInst_r(Opc, RC, InputReg); + +      // The result value is in the lower 32-bits of ResultReg. +      // Emit an explicit copy from register class VR128 to register class FR32. +      ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +              TII.get(TargetOpcode::COPY), ResultReg) +          .addReg(InputReg, RegState::Kill); +    } + +    updateValueMap(II, ResultReg); +    return true; +  } +  case Intrinsic::frameaddress: { +    MachineFunction *MF = FuncInfo.MF; +    if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI()) +      return false; + +    Type *RetTy = II->getCalledFunction()->getReturnType(); + +    MVT VT; +    if (!isTypeLegal(RetTy, VT)) +      return false; + +    unsigned Opc; +    const TargetRegisterClass *RC = nullptr; + +    switch (VT.SimpleTy) { +    default: llvm_unreachable("Invalid result type for frameaddress."); +    case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; +    case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; +    } + +    // This needs to be set before we call getPtrSizedFrameRegister, otherwise +    // we get the wrong frame register. +    MachineFrameInfo &MFI = MF->getFrameInfo(); +    MFI.setFrameAddressIsTaken(true); + +    const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); +    unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF); +    assert(((FrameReg == X86::RBP && VT == MVT::i64) || +            (FrameReg == X86::EBP && VT == MVT::i32)) && +           "Invalid Frame Register!"); + +    // Always make a copy of the frame register to a vreg first, so that we +    // never directly reference the frame register (the TwoAddressInstruction- +    // Pass doesn't like that). +    Register SrcReg = createResultReg(RC); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +            TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg); + +    // Now recursively load from the frame address. +    // movq (%rbp), %rax +    // movq (%rax), %rax +    // movq (%rax), %rax +    // ... +    unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue(); +    while (Depth--) { +      Register DestReg = createResultReg(RC); +      addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +                           TII.get(Opc), DestReg), SrcReg); +      SrcReg = DestReg; +    } + +    updateValueMap(II, SrcReg); +    return true; +  } +  case Intrinsic::memcpy: { +    const MemCpyInst *MCI = cast<MemCpyInst>(II); +    // Don't handle volatile or variable length memcpys. +    if (MCI->isVolatile()) +      return false; + +    if (isa<ConstantInt>(MCI->getLength())) { +      // Small memcpy's are common enough that we want to do them +      // without a call if possible. +      uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue(); +      if (IsMemcpySmall(Len)) { +        X86AddressMode DestAM, SrcAM; +        if (!X86SelectAddress(MCI->getRawDest(), DestAM) || +            !X86SelectAddress(MCI->getRawSource(), SrcAM)) +          return false; +        TryEmitSmallMemcpy(DestAM, SrcAM, Len); +        return true; +      } +    } + +    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; +    if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth)) +      return false; + +    if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255) +      return false; + +    return lowerCallTo(II, "memcpy", II->arg_size() - 1); +  } +  case Intrinsic::memset: { +    const MemSetInst *MSI = cast<MemSetInst>(II); + +    if (MSI->isVolatile()) +      return false; + +    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; +    if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth)) +      return false; + +    if (MSI->getDestAddressSpace() > 255) +      return false; + +    return lowerCallTo(II, "memset", II->arg_size() - 1); +  } +  case Intrinsic::stackprotector: { +    // Emit code to store the stack guard onto the stack. +    EVT PtrTy = TLI.getPointerTy(DL); + +    const Value *Op1 = II->getArgOperand(0); // The guard's value. +    const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1)); + +    MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]); + +    // Grab the frame index. +    X86AddressMode AM; +    if (!X86SelectAddress(Slot, AM)) return false; +    if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; +    return true; +  } +  case Intrinsic::dbg_declare: { +    const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); +    X86AddressMode AM; +    assert(DI->getAddress() && "Null address should be checked earlier!"); +    if (!X86SelectAddress(DI->getAddress(), AM)) +      return false; +    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); +    assert(DI->getVariable()->isValidLocationForIntrinsic(MIMD.getDL()) && +           "Expected inlined-at fields to agree"); +    addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II), AM) +        .addImm(0) +        .addMetadata(DI->getVariable()) +        .addMetadata(DI->getExpression()); +    return true; +  } +  case Intrinsic::trap: { +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TRAP)); +    return true; +  } +  case Intrinsic::sqrt: { +    if (!Subtarget->hasSSE1()) +      return false; + +    Type *RetTy = II->getCalledFunction()->getReturnType(); + +    MVT VT; +    if (!isTypeLegal(RetTy, VT)) +      return false; + +    // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT +    // is not generated by FastISel yet. +    // FIXME: Update this code once tablegen can handle it. +    static const uint16_t SqrtOpc[3][2] = { +      { X86::SQRTSSr,   X86::SQRTSDr }, +      { X86::VSQRTSSr,  X86::VSQRTSDr }, +      { X86::VSQRTSSZr, X86::VSQRTSDZr }, +    }; +    unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : +                        Subtarget->hasAVX()    ? 1 : +                                                 0; +    unsigned Opc; +    switch (VT.SimpleTy) { +    default: return false; +    case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break; +    case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break; +    } + +    const Value *SrcVal = II->getArgOperand(0); +    Register SrcReg = getRegForValue(SrcVal); + +    if (SrcReg == 0) +      return false; + +    const TargetRegisterClass *RC = TLI.getRegClassFor(VT); +    unsigned ImplicitDefReg = 0; +    if (AVXLevel > 0) { +      ImplicitDefReg = createResultReg(RC); +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +              TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); +    } + +    Register ResultReg = createResultReg(RC); +    MachineInstrBuilder MIB; +    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), +                  ResultReg); + +    if (ImplicitDefReg) +      MIB.addReg(ImplicitDefReg); + +    MIB.addReg(SrcReg); + +    updateValueMap(II, ResultReg); +    return true; +  } +  case Intrinsic::sadd_with_overflow: +  case Intrinsic::uadd_with_overflow: +  case Intrinsic::ssub_with_overflow: +  case Intrinsic::usub_with_overflow: +  case Intrinsic::smul_with_overflow: +  case Intrinsic::umul_with_overflow: { +    // This implements the basic lowering of the xalu with overflow intrinsics +    // into add/sub/mul followed by either seto or setb. +    const Function *Callee = II->getCalledFunction(); +    auto *Ty = cast<StructType>(Callee->getReturnType()); +    Type *RetTy = Ty->getTypeAtIndex(0U); +    assert(Ty->getTypeAtIndex(1)->isIntegerTy() && +           Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 && +           "Overflow value expected to be an i1"); + +    MVT VT; +    if (!isTypeLegal(RetTy, VT)) +      return false; + +    if (VT < MVT::i8 || VT > MVT::i64) +      return false; + +    const Value *LHS = II->getArgOperand(0); +    const Value *RHS = II->getArgOperand(1); + +    // Canonicalize immediate to the RHS. +    if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && II->isCommutative()) +      std::swap(LHS, RHS); + +    unsigned BaseOpc, CondCode; +    switch (II->getIntrinsicID()) { +    default: llvm_unreachable("Unexpected intrinsic!"); +    case Intrinsic::sadd_with_overflow: +      BaseOpc = ISD::ADD; CondCode = X86::COND_O; break; +    case Intrinsic::uadd_with_overflow: +      BaseOpc = ISD::ADD; CondCode = X86::COND_B; break; +    case Intrinsic::ssub_with_overflow: +      BaseOpc = ISD::SUB; CondCode = X86::COND_O; break; +    case Intrinsic::usub_with_overflow: +      BaseOpc = ISD::SUB; CondCode = X86::COND_B; break; +    case Intrinsic::smul_with_overflow: +      BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break; +    case Intrinsic::umul_with_overflow: +      BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break; +    } + +    Register LHSReg = getRegForValue(LHS); +    if (LHSReg == 0) +      return false; + +    unsigned ResultReg = 0; +    // Check if we have an immediate version. +    if (const auto *CI = dyn_cast<ConstantInt>(RHS)) { +      static const uint16_t Opc[2][4] = { +        { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r }, +        { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r } +      }; + +      if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) && +          CondCode == X86::COND_O) { +        // We can use INC/DEC. +        ResultReg = createResultReg(TLI.getRegClassFor(VT)); +        bool IsDec = BaseOpc == ISD::SUB; +        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +                TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg) +          .addReg(LHSReg); +      } else +        ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, CI->getZExtValue()); +    } + +    unsigned RHSReg; +    if (!ResultReg) { +      RHSReg = getRegForValue(RHS); +      if (RHSReg == 0) +        return false; +      ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, RHSReg); +    } + +    // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit +    // it manually. +    if (BaseOpc == X86ISD::UMUL && !ResultReg) { +      static const uint16_t MULOpc[] = +        { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r }; +      static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX }; +      // First copy the first operand into RAX, which is an implicit input to +      // the X86::MUL*r instruction. +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +              TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8]) +        .addReg(LHSReg); +      ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8], +                                 TLI.getRegClassFor(VT), RHSReg); +    } else if (BaseOpc == X86ISD::SMUL && !ResultReg) { +      static const uint16_t MULOpc[] = +        { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr }; +      if (VT == MVT::i8) { +        // Copy the first operand into AL, which is an implicit input to the +        // X86::IMUL8r instruction. +        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +               TII.get(TargetOpcode::COPY), X86::AL) +          .addReg(LHSReg); +        ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg); +      } else +        ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8], +                                    TLI.getRegClassFor(VT), LHSReg, RHSReg); +    } + +    if (!ResultReg) +      return false; + +    // Assign to a GPR since the overflow return value is lowered to a SETcc. +    Register ResultReg2 = createResultReg(&X86::GR8RegClass); +    assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers."); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), +            ResultReg2).addImm(CondCode); + +    updateValueMap(II, ResultReg, 2); +    return true; +  } +  case Intrinsic::x86_sse_cvttss2si: +  case Intrinsic::x86_sse_cvttss2si64: +  case Intrinsic::x86_sse2_cvttsd2si: +  case Intrinsic::x86_sse2_cvttsd2si64: { +    bool IsInputDouble; +    switch (II->getIntrinsicID()) { +    default: llvm_unreachable("Unexpected intrinsic."); +    case Intrinsic::x86_sse_cvttss2si: +    case Intrinsic::x86_sse_cvttss2si64: +      if (!Subtarget->hasSSE1()) +        return false; +      IsInputDouble = false; +      break; +    case Intrinsic::x86_sse2_cvttsd2si: +    case Intrinsic::x86_sse2_cvttsd2si64: +      if (!Subtarget->hasSSE2()) +        return false; +      IsInputDouble = true; +      break; +    } + +    Type *RetTy = II->getCalledFunction()->getReturnType(); +    MVT VT; +    if (!isTypeLegal(RetTy, VT)) +      return false; + +    static const uint16_t CvtOpc[3][2][2] = { +      { { X86::CVTTSS2SIrr,   X86::CVTTSS2SI64rr }, +        { X86::CVTTSD2SIrr,   X86::CVTTSD2SI64rr } }, +      { { X86::VCVTTSS2SIrr,  X86::VCVTTSS2SI64rr }, +        { X86::VCVTTSD2SIrr,  X86::VCVTTSD2SI64rr } }, +      { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr }, +        { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } }, +    }; +    unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : +                        Subtarget->hasAVX()    ? 1 : +                                                 0; +    unsigned Opc; +    switch (VT.SimpleTy) { +    default: llvm_unreachable("Unexpected result type."); +    case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break; +    case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break; +    } + +    // Check if we can fold insertelement instructions into the convert. +    const Value *Op = II->getArgOperand(0); +    while (auto *IE = dyn_cast<InsertElementInst>(Op)) { +      const Value *Index = IE->getOperand(2); +      if (!isa<ConstantInt>(Index)) +        break; +      unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); + +      if (Idx == 0) { +        Op = IE->getOperand(1); +        break; +      } +      Op = IE->getOperand(0); +    } + +    Register Reg = getRegForValue(Op); +    if (Reg == 0) +      return false; + +    Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) +      .addReg(Reg); + +    updateValueMap(II, ResultReg); +    return true; +  } +  } +} + +bool X86FastISel::fastLowerArguments() { +  if (!FuncInfo.CanLowerReturn) +    return false; + +  const Function *F = FuncInfo.Fn; +  if (F->isVarArg()) +    return false; + +  CallingConv::ID CC = F->getCallingConv(); +  if (CC != CallingConv::C) +    return false; + +  if (Subtarget->isCallingConvWin64(CC)) +    return false; + +  if (!Subtarget->is64Bit()) +    return false; + +  if (Subtarget->useSoftFloat()) +    return false; + +  // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. +  unsigned GPRCnt = 0; +  unsigned FPRCnt = 0; +  for (auto const &Arg : F->args()) { +    if (Arg.hasAttribute(Attribute::ByVal) || +        Arg.hasAttribute(Attribute::InReg) || +        Arg.hasAttribute(Attribute::StructRet) || +        Arg.hasAttribute(Attribute::SwiftSelf) || +        Arg.hasAttribute(Attribute::SwiftAsync) || +        Arg.hasAttribute(Attribute::SwiftError) || +        Arg.hasAttribute(Attribute::Nest)) +      return false; + +    Type *ArgTy = Arg.getType(); +    if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) +      return false; + +    EVT ArgVT = TLI.getValueType(DL, ArgTy); +    if (!ArgVT.isSimple()) return false; +    switch (ArgVT.getSimpleVT().SimpleTy) { +    default: return false; +    case MVT::i32: +    case MVT::i64: +      ++GPRCnt; +      break; +    case MVT::f32: +    case MVT::f64: +      if (!Subtarget->hasSSE1()) +        return false; +      ++FPRCnt; +      break; +    } + +    if (GPRCnt > 6) +      return false; + +    if (FPRCnt > 8) +      return false; +  } + +  static const MCPhysReg GPR32ArgRegs[] = { +    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D +  }; +  static const MCPhysReg GPR64ArgRegs[] = { +    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 +  }; +  static const MCPhysReg XMMArgRegs[] = { +    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, +    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 +  }; + +  unsigned GPRIdx = 0; +  unsigned FPRIdx = 0; +  for (auto const &Arg : F->args()) { +    MVT VT = TLI.getSimpleValueType(DL, Arg.getType()); +    const TargetRegisterClass *RC = TLI.getRegClassFor(VT); +    unsigned SrcReg; +    switch (VT.SimpleTy) { +    default: llvm_unreachable("Unexpected value type."); +    case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break; +    case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break; +    case MVT::f32: [[fallthrough]]; +    case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break; +    } +    Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); +    // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. +    // Without this, EmitLiveInCopies may eliminate the livein if its only +    // use is a bitcast (which isn't turned into an instruction). +    Register ResultReg = createResultReg(RC); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +            TII.get(TargetOpcode::COPY), ResultReg) +      .addReg(DstReg, getKillRegState(true)); +    updateValueMap(&Arg, ResultReg); +  } +  return true; +} + +static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget, +                                                  CallingConv::ID CC, +                                                  const CallBase *CB) { +  if (Subtarget->is64Bit()) +    return 0; +  if (Subtarget->getTargetTriple().isOSMSVCRT()) +    return 0; +  if (CC == CallingConv::Fast || CC == CallingConv::GHC || +      CC == CallingConv::HiPE || CC == CallingConv::Tail || +      CC == CallingConv::SwiftTail) +    return 0; + +  if (CB) +    if (CB->arg_empty() || !CB->paramHasAttr(0, Attribute::StructRet) || +        CB->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU()) +      return 0; + +  return 4; +} + +bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) { +  auto &OutVals       = CLI.OutVals; +  auto &OutFlags      = CLI.OutFlags; +  auto &OutRegs       = CLI.OutRegs; +  auto &Ins           = CLI.Ins; +  auto &InRegs        = CLI.InRegs; +  CallingConv::ID CC  = CLI.CallConv; +  bool &IsTailCall    = CLI.IsTailCall; +  bool IsVarArg       = CLI.IsVarArg; +  const Value *Callee = CLI.Callee; +  MCSymbol *Symbol    = CLI.Symbol; +  const auto *CB      = CLI.CB; + +  bool Is64Bit        = Subtarget->is64Bit(); +  bool IsWin64        = Subtarget->isCallingConvWin64(CC); + +  // Call / invoke instructions with NoCfCheck attribute require special +  // handling. +  if (CB && CB->doesNoCfCheck()) +    return false; + +  // Functions with no_caller_saved_registers that need special handling. +  if ((CB && isa<CallInst>(CB) && CB->hasFnAttr("no_caller_saved_registers"))) +    return false; + +  // Functions with no_callee_saved_registers that need special handling. +  if ((CB && CB->hasFnAttr("no_callee_saved_registers"))) +    return false; + +  // Indirect calls with CFI checks need special handling. +  if (CB && CB->isIndirectCall() && CB->getOperandBundle(LLVMContext::OB_kcfi)) +    return false; + +  // Functions using thunks for indirect calls need to use SDISel. +  if (Subtarget->useIndirectThunkCalls()) +    return false; + +  // Handle only C, fastcc, and webkit_js calling conventions for now. +  switch (CC) { +  default: return false; +  case CallingConv::C: +  case CallingConv::Fast: +  case CallingConv::Tail: +  case CallingConv::WebKit_JS: +  case CallingConv::Swift: +  case CallingConv::SwiftTail: +  case CallingConv::X86_FastCall: +  case CallingConv::X86_StdCall: +  case CallingConv::X86_ThisCall: +  case CallingConv::Win64: +  case CallingConv::X86_64_SysV: +  case CallingConv::CFGuard_Check: +    break; +  } + +  // Allow SelectionDAG isel to handle tail calls. +  if (IsTailCall) +    return false; + +  // fastcc with -tailcallopt is intended to provide a guaranteed +  // tail call optimization. Fastisel doesn't know how to do that. +  if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || +      CC == CallingConv::Tail || CC == CallingConv::SwiftTail) +    return false; + +  // Don't know how to handle Win64 varargs yet.  Nothing special needed for +  // x86-32. Special handling for x86-64 is implemented. +  if (IsVarArg && IsWin64) +    return false; + +  // Don't know about inalloca yet. +  if (CLI.CB && CLI.CB->hasInAllocaArgument()) +    return false; + +  for (auto Flag : CLI.OutFlags) +    if (Flag.isSwiftError() || Flag.isPreallocated()) +      return false; + +  SmallVector<MVT, 16> OutVTs; +  SmallVector<unsigned, 16> ArgRegs; + +  // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra +  // instruction. This is safe because it is common to all FastISel supported +  // calling conventions on x86. +  for (int i = 0, e = OutVals.size(); i != e; ++i) { +    Value *&Val = OutVals[i]; +    ISD::ArgFlagsTy Flags = OutFlags[i]; +    if (auto *CI = dyn_cast<ConstantInt>(Val)) { +      if (CI->getBitWidth() < 32) { +        if (Flags.isSExt()) +          Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext())); +        else +          Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext())); +      } +    } + +    // Passing bools around ends up doing a trunc to i1 and passing it. +    // Codegen this as an argument + "and 1". +    MVT VT; +    auto *TI = dyn_cast<TruncInst>(Val); +    unsigned ResultReg; +    if (TI && TI->getType()->isIntegerTy(1) && CLI.CB && +        (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) { +      Value *PrevVal = TI->getOperand(0); +      ResultReg = getRegForValue(PrevVal); + +      if (!ResultReg) +        return false; + +      if (!isTypeLegal(PrevVal->getType(), VT)) +        return false; + +      ResultReg = fastEmit_ri(VT, VT, ISD::AND, ResultReg, 1); +    } else { +      if (!isTypeLegal(Val->getType(), VT) || +          (VT.isVector() && VT.getVectorElementType() == MVT::i1)) +        return false; +      ResultReg = getRegForValue(Val); +    } + +    if (!ResultReg) +      return false; + +    ArgRegs.push_back(ResultReg); +    OutVTs.push_back(VT); +  } + +  // Analyze operands of the call, assigning locations to each operand. +  SmallVector<CCValAssign, 16> ArgLocs; +  CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext()); + +  // Allocate shadow area for Win64 +  if (IsWin64) +    CCInfo.AllocateStack(32, Align(8)); + +  CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86); + +  // Get a count of how many bytes are to be pushed on the stack. +  unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); + +  // Issue CALLSEQ_START +  unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); +  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown)) +    .addImm(NumBytes).addImm(0).addImm(0); + +  // Walk the register/memloc assignments, inserting copies/loads. +  const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); +  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { +    CCValAssign const &VA = ArgLocs[i]; +    const Value *ArgVal = OutVals[VA.getValNo()]; +    MVT ArgVT = OutVTs[VA.getValNo()]; + +    if (ArgVT == MVT::x86mmx) +      return false; + +    unsigned ArgReg = ArgRegs[VA.getValNo()]; + +    // Promote the value if needed. +    switch (VA.getLocInfo()) { +    case CCValAssign::Full: break; +    case CCValAssign::SExt: { +      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && +             "Unexpected extend"); + +      if (ArgVT == MVT::i1) +        return false; + +      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, +                                       ArgVT, ArgReg); +      assert(Emitted && "Failed to emit a sext!"); (void)Emitted; +      ArgVT = VA.getLocVT(); +      break; +    } +    case CCValAssign::ZExt: { +      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && +             "Unexpected extend"); + +      // Handle zero-extension from i1 to i8, which is common. +      if (ArgVT == MVT::i1) { +        // Set the high bits to zero. +        ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg); +        ArgVT = MVT::i8; + +        if (ArgReg == 0) +          return false; +      } + +      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, +                                       ArgVT, ArgReg); +      assert(Emitted && "Failed to emit a zext!"); (void)Emitted; +      ArgVT = VA.getLocVT(); +      break; +    } +    case CCValAssign::AExt: { +      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && +             "Unexpected extend"); +      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg, +                                       ArgVT, ArgReg); +      if (!Emitted) +        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, +                                    ArgVT, ArgReg); +      if (!Emitted) +        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, +                                    ArgVT, ArgReg); + +      assert(Emitted && "Failed to emit a aext!"); (void)Emitted; +      ArgVT = VA.getLocVT(); +      break; +    } +    case CCValAssign::BCvt: { +      ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg); +      assert(ArgReg && "Failed to emit a bitcast!"); +      ArgVT = VA.getLocVT(); +      break; +    } +    case CCValAssign::VExt: +      // VExt has not been implemented, so this should be impossible to reach +      // for now.  However, fallback to Selection DAG isel once implemented. +      return false; +    case CCValAssign::AExtUpper: +    case CCValAssign::SExtUpper: +    case CCValAssign::ZExtUpper: +    case CCValAssign::FPExt: +    case CCValAssign::Trunc: +      llvm_unreachable("Unexpected loc info!"); +    case CCValAssign::Indirect: +      // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully +      // support this. +      return false; +    } + +    if (VA.isRegLoc()) { +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +              TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); +      OutRegs.push_back(VA.getLocReg()); +    } else { +      assert(VA.isMemLoc() && "Unknown value location!"); + +      // Don't emit stores for undef values. +      if (isa<UndefValue>(ArgVal)) +        continue; + +      unsigned LocMemOffset = VA.getLocMemOffset(); +      X86AddressMode AM; +      AM.Base.Reg = RegInfo->getStackRegister(); +      AM.Disp = LocMemOffset; +      ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()]; +      Align Alignment = DL.getABITypeAlign(ArgVal->getType()); +      MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( +          MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset), +          MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); +      if (Flags.isByVal()) { +        X86AddressMode SrcAM; +        SrcAM.Base.Reg = ArgReg; +        if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize())) +          return false; +      } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) { +        // If this is a really simple value, emit this with the Value* version +        // of X86FastEmitStore.  If it isn't simple, we don't want to do this, +        // as it can cause us to reevaluate the argument. +        if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO)) +          return false; +      } else { +        if (!X86FastEmitStore(ArgVT, ArgReg, AM, MMO)) +          return false; +      } +    } +  } + +  // ELF / PIC requires GOT in the EBX register before function calls via PLT +  // GOT pointer. +  if (Subtarget->isPICStyleGOT()) { +    unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +            TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base); +  } + +  if (Is64Bit && IsVarArg && !IsWin64) { +    // From AMD64 ABI document: +    // For calls that may call functions that use varargs or stdargs +    // (prototype-less calls or calls to functions containing ellipsis (...) in +    // the declaration) %al is used as hidden argument to specify the number +    // of SSE registers used. The contents of %al do not need to match exactly +    // the number of registers, but must be an ubound on the number of SSE +    // registers used and is in the range 0 - 8 inclusive. + +    // Count the number of XMM registers allocated. +    static const MCPhysReg XMMArgRegs[] = { +      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, +      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 +    }; +    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); +    assert((Subtarget->hasSSE1() || !NumXMMRegs) +           && "SSE registers cannot be used when SSE is disabled"); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri), +            X86::AL).addImm(NumXMMRegs); +  } + +  // Materialize callee address in a register. FIXME: GV address can be +  // handled with a CALLpcrel32 instead. +  X86AddressMode CalleeAM; +  if (!X86SelectCallAddress(Callee, CalleeAM)) +    return false; + +  unsigned CalleeOp = 0; +  const GlobalValue *GV = nullptr; +  if (CalleeAM.GV != nullptr) { +    GV = CalleeAM.GV; +  } else if (CalleeAM.Base.Reg != 0) { +    CalleeOp = CalleeAM.Base.Reg; +  } else +    return false; + +  // Issue the call. +  MachineInstrBuilder MIB; +  if (CalleeOp) { +    // Register-indirect call. +    unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r; +    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc)) +      .addReg(CalleeOp); +  } else { +    // Direct call. +    assert(GV && "Not a direct call"); +    // See if we need any target-specific flags on the GV operand. +    unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV); + +    // This will be a direct call, or an indirect call through memory for +    // NonLazyBind calls or dllimport calls. +    bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT || +                    OpFlags == X86II::MO_GOTPCREL || +                    OpFlags == X86II::MO_GOTPCREL_NORELAX || +                    OpFlags == X86II::MO_COFFSTUB; +    unsigned CallOpc = NeedLoad +                           ? (Is64Bit ? X86::CALL64m : X86::CALL32m) +                           : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32); + +    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc)); +    if (NeedLoad) +      MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0); +    if (Symbol) +      MIB.addSym(Symbol, OpFlags); +    else +      MIB.addGlobalAddress(GV, 0, OpFlags); +    if (NeedLoad) +      MIB.addReg(0); +  } + +  // Add a register mask operand representing the call-preserved registers. +  // Proper defs for return values will be added by setPhysRegsDeadExcept(). +  MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); + +  // Add an implicit use GOT pointer in EBX. +  if (Subtarget->isPICStyleGOT()) +    MIB.addReg(X86::EBX, RegState::Implicit); + +  if (Is64Bit && IsVarArg && !IsWin64) +    MIB.addReg(X86::AL, RegState::Implicit); + +  // Add implicit physical register uses to the call. +  for (auto Reg : OutRegs) +    MIB.addReg(Reg, RegState::Implicit); + +  // Issue CALLSEQ_END +  unsigned NumBytesForCalleeToPop = +      X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg, +                       TM.Options.GuaranteedTailCallOpt) +          ? NumBytes // Callee pops everything. +          : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CB); +  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); +  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp)) +    .addImm(NumBytes).addImm(NumBytesForCalleeToPop); + +  // Now handle call return values. +  SmallVector<CCValAssign, 16> RVLocs; +  CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, +                    CLI.RetTy->getContext()); +  CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); + +  // Copy all of the result registers out of their specified physreg. +  Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy); +  for (unsigned i = 0; i != RVLocs.size(); ++i) { +    CCValAssign &VA = RVLocs[i]; +    EVT CopyVT = VA.getValVT(); +    unsigned CopyReg = ResultReg + i; +    Register SrcReg = VA.getLocReg(); + +    // If this is x86-64, and we disabled SSE, we can't return FP values +    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && +        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { +      report_fatal_error("SSE register return with SSE disabled"); +    } + +    // If we prefer to use the value in xmm registers, copy it out as f80 and +    // use a truncate to move it from fp stack reg to xmm reg. +    if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) && +        isScalarFPTypeInSSEReg(VA.getValVT())) { +      CopyVT = MVT::f80; +      CopyReg = createResultReg(&X86::RFP80RegClass); +    } + +    // Copy out the result. +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +            TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg); +    InRegs.push_back(VA.getLocReg()); + +    // Round the f80 to the right size, which also moves it to the appropriate +    // xmm register. This is accomplished by storing the f80 value in memory +    // and then loading it back. +    if (CopyVT != VA.getValVT()) { +      EVT ResVT = VA.getValVT(); +      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; +      unsigned MemSize = ResVT.getSizeInBits()/8; +      int FI = MFI.CreateStackObject(MemSize, Align(MemSize), false); +      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +                                TII.get(Opc)), FI) +        .addReg(CopyReg); +      Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt; +      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +                                TII.get(Opc), ResultReg + i), FI); +    } +  } + +  CLI.ResultReg = ResultReg; +  CLI.NumResultRegs = RVLocs.size(); +  CLI.Call = MIB; + +  return true; +} + +bool +X86FastISel::fastSelectInstruction(const Instruction *I)  { +  switch (I->getOpcode()) { +  default: break; +  case Instruction::Load: +    return X86SelectLoad(I); +  case Instruction::Store: +    return X86SelectStore(I); +  case Instruction::Ret: +    return X86SelectRet(I); +  case Instruction::ICmp: +  case Instruction::FCmp: +    return X86SelectCmp(I); +  case Instruction::ZExt: +    return X86SelectZExt(I); +  case Instruction::SExt: +    return X86SelectSExt(I); +  case Instruction::Br: +    return X86SelectBranch(I); +  case Instruction::LShr: +  case Instruction::AShr: +  case Instruction::Shl: +    return X86SelectShift(I); +  case Instruction::SDiv: +  case Instruction::UDiv: +  case Instruction::SRem: +  case Instruction::URem: +    return X86SelectDivRem(I); +  case Instruction::Select: +    return X86SelectSelect(I); +  case Instruction::Trunc: +    return X86SelectTrunc(I); +  case Instruction::FPExt: +    return X86SelectFPExt(I); +  case Instruction::FPTrunc: +    return X86SelectFPTrunc(I); +  case Instruction::SIToFP: +    return X86SelectSIToFP(I); +  case Instruction::UIToFP: +    return X86SelectUIToFP(I); +  case Instruction::IntToPtr: // Deliberate fall-through. +  case Instruction::PtrToInt: { +    EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); +    EVT DstVT = TLI.getValueType(DL, I->getType()); +    if (DstVT.bitsGT(SrcVT)) +      return X86SelectZExt(I); +    if (DstVT.bitsLT(SrcVT)) +      return X86SelectTrunc(I); +    Register Reg = getRegForValue(I->getOperand(0)); +    if (Reg == 0) return false; +    updateValueMap(I, Reg); +    return true; +  } +  case Instruction::BitCast: { +    // Select SSE2/AVX bitcasts between 128/256/512 bit vector types. +    if (!Subtarget->hasSSE2()) +      return false; + +    MVT SrcVT, DstVT; +    if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) || +        !isTypeLegal(I->getType(), DstVT)) +      return false; + +    // Only allow vectors that use xmm/ymm/zmm. +    if (!SrcVT.isVector() || !DstVT.isVector() || +        SrcVT.getVectorElementType() == MVT::i1 || +        DstVT.getVectorElementType() == MVT::i1) +      return false; + +    Register Reg = getRegForValue(I->getOperand(0)); +    if (!Reg) +      return false; + +    // Emit a reg-reg copy so we don't propagate cached known bits information +    // with the wrong VT if we fall out of fast isel after selecting this. +    const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); +    Register ResultReg = createResultReg(DstClass); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +              TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); + +    updateValueMap(I, ResultReg); +    return true; +  } +  } + +  return false; +} + +unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) { +  if (VT > MVT::i64) +    return 0; + +  uint64_t Imm = CI->getZExtValue(); +  if (Imm == 0) { +    Register SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass); +    switch (VT.SimpleTy) { +    default: llvm_unreachable("Unexpected value type"); +    case MVT::i1: +    case MVT::i8: +      return fastEmitInst_extractsubreg(MVT::i8, SrcReg, X86::sub_8bit); +    case MVT::i16: +      return fastEmitInst_extractsubreg(MVT::i16, SrcReg, X86::sub_16bit); +    case MVT::i32: +      return SrcReg; +    case MVT::i64: { +      Register ResultReg = createResultReg(&X86::GR64RegClass); +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +              TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) +        .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit); +      return ResultReg; +    } +    } +  } + +  unsigned Opc = 0; +  switch (VT.SimpleTy) { +  default: llvm_unreachable("Unexpected value type"); +  case MVT::i1: +    VT = MVT::i8; +    [[fallthrough]]; +  case MVT::i8:  Opc = X86::MOV8ri;  break; +  case MVT::i16: Opc = X86::MOV16ri; break; +  case MVT::i32: Opc = X86::MOV32ri; break; +  case MVT::i64: { +    if (isUInt<32>(Imm)) +      Opc = X86::MOV32ri64; +    else if (isInt<32>(Imm)) +      Opc = X86::MOV64ri32; +    else +      Opc = X86::MOV64ri; +    break; +  } +  } +  return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm); +} + +unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) { +  if (CFP->isNullValue()) +    return fastMaterializeFloatZero(CFP); + +  // Can't handle alternate code models yet. +  CodeModel::Model CM = TM.getCodeModel(); +  if (CM != CodeModel::Small && CM != CodeModel::Large) +    return 0; + +  // Get opcode and regclass of the output for the given load instruction. +  unsigned Opc = 0; +  bool HasSSE1 = Subtarget->hasSSE1(); +  bool HasSSE2 = Subtarget->hasSSE2(); +  bool HasAVX = Subtarget->hasAVX(); +  bool HasAVX512 = Subtarget->hasAVX512(); +  switch (VT.SimpleTy) { +  default: return 0; +  case MVT::f32: +    Opc = HasAVX512 ? X86::VMOVSSZrm_alt +          : HasAVX  ? X86::VMOVSSrm_alt +          : HasSSE1 ? X86::MOVSSrm_alt +                    : X86::LD_Fp32m; +    break; +  case MVT::f64: +    Opc = HasAVX512 ? X86::VMOVSDZrm_alt +          : HasAVX  ? X86::VMOVSDrm_alt +          : HasSSE2 ? X86::MOVSDrm_alt +                    : X86::LD_Fp64m; +    break; +  case MVT::f80: +    // No f80 support yet. +    return 0; +  } + +  // MachineConstantPool wants an explicit alignment. +  Align Alignment = DL.getPrefTypeAlign(CFP->getType()); + +  // x86-32 PIC requires a PIC base register for constant pools. +  unsigned PICBase = 0; +  unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr); +  if (OpFlag == X86II::MO_PIC_BASE_OFFSET) +    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); +  else if (OpFlag == X86II::MO_GOTOFF) +    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); +  else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small) +    PICBase = X86::RIP; + +  // Create the load from the constant pool. +  unsigned CPI = MCP.getConstantPoolIndex(CFP, Alignment); +  Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); + +  // Large code model only applies to 64-bit mode. +  if (Subtarget->is64Bit() && CM == CodeModel::Large) { +    Register AddrReg = createResultReg(&X86::GR64RegClass); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri), +            AddrReg) +      .addConstantPoolIndex(CPI, 0, OpFlag); +    MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +                                      TII.get(Opc), ResultReg); +    addRegReg(MIB, AddrReg, false, PICBase, false); +    MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( +        MachinePointerInfo::getConstantPool(*FuncInfo.MF), +        MachineMemOperand::MOLoad, DL.getPointerSize(), Alignment); +    MIB->addMemOperand(*FuncInfo.MF, MMO); +    return ResultReg; +  } + +  addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +                                   TII.get(Opc), ResultReg), +                           CPI, PICBase, OpFlag); +  return ResultReg; +} + +unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) { +  // Can't handle alternate code models yet. +  if (TM.getCodeModel() != CodeModel::Small) +    return 0; + +  // Materialize addresses with LEA/MOV instructions. +  X86AddressMode AM; +  if (X86SelectAddress(GV, AM)) { +    // If the expression is just a basereg, then we're done, otherwise we need +    // to emit an LEA. +    if (AM.BaseType == X86AddressMode::RegBase && +        AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr) +      return AM.Base.Reg; + +    Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); +    if (TM.getRelocationModel() == Reloc::Static && +        TLI.getPointerTy(DL) == MVT::i64) { +      // The displacement code could be more than 32 bits away so we need to use +      // an instruction with a 64 bit immediate +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri), +              ResultReg) +        .addGlobalAddress(GV); +    } else { +      unsigned Opc = +          TLI.getPointerTy(DL) == MVT::i32 +              ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) +              : X86::LEA64r; +      addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +                             TII.get(Opc), ResultReg), AM); +    } +    return ResultReg; +  } +  return 0; +} + +unsigned X86FastISel::fastMaterializeConstant(const Constant *C) { +  EVT CEVT = TLI.getValueType(DL, C->getType(), true); + +  // Only handle simple types. +  if (!CEVT.isSimple()) +    return 0; +  MVT VT = CEVT.getSimpleVT(); + +  if (const auto *CI = dyn_cast<ConstantInt>(C)) +    return X86MaterializeInt(CI, VT); +  if (const auto *CFP = dyn_cast<ConstantFP>(C)) +    return X86MaterializeFP(CFP, VT); +  if (const auto *GV = dyn_cast<GlobalValue>(C)) +    return X86MaterializeGV(GV, VT); +  if (isa<UndefValue>(C)) { +    unsigned Opc = 0; +    switch (VT.SimpleTy) { +    default: +      break; +    case MVT::f32: +      if (!Subtarget->hasSSE1()) +        Opc = X86::LD_Fp032; +      break; +    case MVT::f64: +      if (!Subtarget->hasSSE2()) +        Opc = X86::LD_Fp064; +      break; +    case MVT::f80: +      Opc = X86::LD_Fp080; +      break; +    } + +    if (Opc) { +      Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), +              ResultReg); +      return ResultReg; +    } +  } + +  return 0; +} + +unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) { +  // Fail on dynamic allocas. At this point, getRegForValue has already +  // checked its CSE maps, so if we're here trying to handle a dynamic +  // alloca, we're not going to succeed. X86SelectAddress has a +  // check for dynamic allocas, because it's called directly from +  // various places, but targetMaterializeAlloca also needs a check +  // in order to avoid recursion between getRegForValue, +  // X86SelectAddrss, and targetMaterializeAlloca. +  if (!FuncInfo.StaticAllocaMap.count(C)) +    return 0; +  assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?"); + +  X86AddressMode AM; +  if (!X86SelectAddress(C, AM)) +    return 0; +  unsigned Opc = +      TLI.getPointerTy(DL) == MVT::i32 +          ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) +          : X86::LEA64r; +  const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); +  Register ResultReg = createResultReg(RC); +  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, +                         TII.get(Opc), ResultReg), AM); +  return ResultReg; +} + +unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) { +  MVT VT; +  if (!isTypeLegal(CF->getType(), VT)) +    return 0; + +  // Get opcode and regclass for the given zero. +  bool HasSSE1 = Subtarget->hasSSE1(); +  bool HasSSE2 = Subtarget->hasSSE2(); +  bool HasAVX512 = Subtarget->hasAVX512(); +  unsigned Opc = 0; +  switch (VT.SimpleTy) { +  default: return 0; +  case MVT::f16: +    Opc = HasAVX512 ? X86::AVX512_FsFLD0SH : X86::FsFLD0SH; +    break; +  case MVT::f32: +    Opc = HasAVX512 ? X86::AVX512_FsFLD0SS +          : HasSSE1 ? X86::FsFLD0SS +                    : X86::LD_Fp032; +    break; +  case MVT::f64: +    Opc = HasAVX512 ? X86::AVX512_FsFLD0SD +          : HasSSE2 ? X86::FsFLD0SD +                    : X86::LD_Fp064; +    break; +  case MVT::f80: +    // No f80 support yet. +    return 0; +  } + +  Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); +  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg); +  return ResultReg; +} + + +bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, +                                      const LoadInst *LI) { +  const Value *Ptr = LI->getPointerOperand(); +  X86AddressMode AM; +  if (!X86SelectAddress(Ptr, AM)) +    return false; + +  const X86InstrInfo &XII = (const X86InstrInfo &)TII; + +  unsigned Size = DL.getTypeAllocSize(LI->getType()); + +  SmallVector<MachineOperand, 8> AddrOps; +  AM.getFullAddress(AddrOps); + +  MachineInstr *Result = XII.foldMemoryOperandImpl( +      *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(), +      /*AllowCommute=*/true); +  if (!Result) +    return false; + +  // The index register could be in the wrong register class.  Unfortunately, +  // foldMemoryOperandImpl could have commuted the instruction so its not enough +  // to just look at OpNo + the offset to the index reg.  We actually need to +  // scan the instruction to find the index reg and see if its the correct reg +  // class. +  unsigned OperandNo = 0; +  for (MachineInstr::mop_iterator I = Result->operands_begin(), +       E = Result->operands_end(); I != E; ++I, ++OperandNo) { +    MachineOperand &MO = *I; +    if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg) +      continue; +    // Found the index reg, now try to rewrite it. +    Register IndexReg = constrainOperandRegClass(Result->getDesc(), +                                                 MO.getReg(), OperandNo); +    if (IndexReg == MO.getReg()) +      continue; +    MO.setReg(IndexReg); +  } + +  Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI)); +  Result->cloneInstrSymbols(*FuncInfo.MF, *MI); +  MachineBasicBlock::iterator I(MI); +  removeDeadCode(I, std::next(I)); +  return true; +} + +unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode, +                                        const TargetRegisterClass *RC, +                                        unsigned Op0, unsigned Op1, +                                        unsigned Op2, unsigned Op3) { +  const MCInstrDesc &II = TII.get(MachineInstOpcode); + +  Register ResultReg = createResultReg(RC); +  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); +  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); +  Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); +  Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3); + +  if (II.getNumDefs() >= 1) +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) +        .addReg(Op0) +        .addReg(Op1) +        .addReg(Op2) +        .addReg(Op3); +  else { +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) +        .addReg(Op0) +        .addReg(Op1) +        .addReg(Op2) +        .addReg(Op3); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), +            ResultReg) +        .addReg(II.implicit_defs()[0]); +  } +  return ResultReg; +} + + +namespace llvm { +  FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, +                                const TargetLibraryInfo *libInfo) { +    return new X86FastISel(funcInfo, libInfo); +  } +}  | 
