aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Target/RISCV/RISCVISelLowering.cpp
diff options
context:
space:
mode:
authormaxim-yurchuk <maxim-yurchuk@yandex-team.com>2024-10-09 12:29:46 +0300
committermaxim-yurchuk <maxim-yurchuk@yandex-team.com>2024-10-09 13:14:22 +0300
commit9731d8a4bb7ee2cc8554eaf133bb85498a4c7d80 (patch)
treea8fb3181d5947c0d78cf402aa56e686130179049 /contrib/libs/llvm16/lib/Target/RISCV/RISCVISelLowering.cpp
parenta44b779cd359f06c3ebbef4ec98c6b38609d9d85 (diff)
downloadydb-9731d8a4bb7ee2cc8554eaf133bb85498a4c7d80.tar.gz
publishFullContrib: true for ydb
<HIDDEN_URL> commit_hash:c82a80ac4594723cebf2c7387dec9c60217f603e
Diffstat (limited to 'contrib/libs/llvm16/lib/Target/RISCV/RISCVISelLowering.cpp')
-rw-r--r--contrib/libs/llvm16/lib/Target/RISCV/RISCVISelLowering.cpp14257
1 files changed, 14257 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Target/RISCV/RISCVISelLowering.cpp b/contrib/libs/llvm16/lib/Target/RISCV/RISCVISelLowering.cpp
new file mode 100644
index 0000000000..6eea169f89
--- /dev/null
+++ b/contrib/libs/llvm16/lib/Target/RISCV/RISCVISelLowering.cpp
@@ -0,0 +1,14257 @@
+//===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that RISCV uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "RISCVISelLowering.h"
+#include "MCTargetDesc/RISCVMatInt.h"
+#include "RISCV.h"
+#include "RISCVMachineFunctionInfo.h"
+#include "RISCVRegisterInfo.h"
+#include "RISCVSubtarget.h"
+#include "RISCVTargetMachine.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/MemoryLocation.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/DiagnosticPrinter.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicsRISCV.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <optional>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "riscv-lower"
+
+STATISTIC(NumTailCalls, "Number of tail calls");
+
+static cl::opt<unsigned> ExtensionMaxWebSize(
+ DEBUG_TYPE "-ext-max-web-size", cl::Hidden,
+ cl::desc("Give the maximum size (in number of nodes) of the web of "
+ "instructions that we will consider for VW expansion"),
+ cl::init(18));
+
+static cl::opt<bool>
+ AllowSplatInVW_W(DEBUG_TYPE "-form-vw-w-with-splat", cl::Hidden,
+ cl::desc("Allow the formation of VW_W operations (e.g., "
+ "VWADD_W) with splat constants"),
+ cl::init(false));
+
+static cl::opt<unsigned> NumRepeatedDivisors(
+ DEBUG_TYPE "-fp-repeated-divisors", cl::Hidden,
+ cl::desc("Set the minimum number of repetitions of a divisor to allow "
+ "transformation to multiplications by the reciprocal"),
+ cl::init(2));
+
+RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
+ const RISCVSubtarget &STI)
+ : TargetLowering(TM), Subtarget(STI) {
+
+ if (Subtarget.isRV32E())
+ report_fatal_error("Codegen not yet implemented for RV32E");
+
+ RISCVABI::ABI ABI = Subtarget.getTargetABI();
+ assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
+
+ if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
+ !Subtarget.hasStdExtF()) {
+ errs() << "Hard-float 'f' ABI can't be used for a target that "
+ "doesn't support the F instruction set extension (ignoring "
+ "target-abi)\n";
+ ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
+ } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
+ !Subtarget.hasStdExtD()) {
+ errs() << "Hard-float 'd' ABI can't be used for a target that "
+ "doesn't support the D instruction set extension (ignoring "
+ "target-abi)\n";
+ ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
+ }
+
+ switch (ABI) {
+ default:
+ report_fatal_error("Don't know how to lower this ABI");
+ case RISCVABI::ABI_ILP32:
+ case RISCVABI::ABI_ILP32F:
+ case RISCVABI::ABI_ILP32D:
+ case RISCVABI::ABI_LP64:
+ case RISCVABI::ABI_LP64F:
+ case RISCVABI::ABI_LP64D:
+ break;
+ }
+
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ // Set up the register classes.
+ addRegisterClass(XLenVT, &RISCV::GPRRegClass);
+
+ if (Subtarget.hasStdExtZfhOrZfhmin())
+ addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
+ if (Subtarget.hasStdExtF())
+ addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
+ if (Subtarget.hasStdExtD())
+ addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
+
+ static const MVT::SimpleValueType BoolVecVTs[] = {
+ MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1,
+ MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
+ static const MVT::SimpleValueType IntVecVTs[] = {
+ MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8,
+ MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16,
+ MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
+ MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
+ MVT::nxv4i64, MVT::nxv8i64};
+ static const MVT::SimpleValueType F16VecVTs[] = {
+ MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16,
+ MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
+ static const MVT::SimpleValueType F32VecVTs[] = {
+ MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
+ static const MVT::SimpleValueType F64VecVTs[] = {
+ MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
+
+ if (Subtarget.hasVInstructions()) {
+ auto addRegClassForRVV = [this](MVT VT) {
+ // Disable the smallest fractional LMUL types if ELEN is less than
+ // RVVBitsPerBlock.
+ unsigned MinElts = RISCV::RVVBitsPerBlock / Subtarget.getELEN();
+ if (VT.getVectorMinNumElements() < MinElts)
+ return;
+
+ unsigned Size = VT.getSizeInBits().getKnownMinValue();
+ const TargetRegisterClass *RC;
+ if (Size <= RISCV::RVVBitsPerBlock)
+ RC = &RISCV::VRRegClass;
+ else if (Size == 2 * RISCV::RVVBitsPerBlock)
+ RC = &RISCV::VRM2RegClass;
+ else if (Size == 4 * RISCV::RVVBitsPerBlock)
+ RC = &RISCV::VRM4RegClass;
+ else if (Size == 8 * RISCV::RVVBitsPerBlock)
+ RC = &RISCV::VRM8RegClass;
+ else
+ llvm_unreachable("Unexpected size");
+
+ addRegisterClass(VT, RC);
+ };
+
+ for (MVT VT : BoolVecVTs)
+ addRegClassForRVV(VT);
+ for (MVT VT : IntVecVTs) {
+ if (VT.getVectorElementType() == MVT::i64 &&
+ !Subtarget.hasVInstructionsI64())
+ continue;
+ addRegClassForRVV(VT);
+ }
+
+ if (Subtarget.hasVInstructionsF16())
+ for (MVT VT : F16VecVTs)
+ addRegClassForRVV(VT);
+
+ if (Subtarget.hasVInstructionsF32())
+ for (MVT VT : F32VecVTs)
+ addRegClassForRVV(VT);
+
+ if (Subtarget.hasVInstructionsF64())
+ for (MVT VT : F64VecVTs)
+ addRegClassForRVV(VT);
+
+ if (Subtarget.useRVVForFixedLengthVectors()) {
+ auto addRegClassForFixedVectors = [this](MVT VT) {
+ MVT ContainerVT = getContainerForFixedLengthVector(VT);
+ unsigned RCID = getRegClassIDForVecVT(ContainerVT);
+ const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
+ addRegisterClass(VT, TRI.getRegClass(RCID));
+ };
+ for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
+ if (useRVVForFixedLengthVectorVT(VT))
+ addRegClassForFixedVectors(VT);
+
+ for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
+ if (useRVVForFixedLengthVectorVT(VT))
+ addRegClassForFixedVectors(VT);
+ }
+ }
+
+ // Compute derived properties from the register classes.
+ computeRegisterProperties(STI.getRegisterInfo());
+
+ setStackPointerRegisterToSaveRestore(RISCV::X2);
+
+ setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT,
+ MVT::i1, Promote);
+ // DAGCombiner can call isLoadExtLegal for types that aren't legal.
+ setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i32,
+ MVT::i1, Promote);
+
+ // TODO: add all necessary setOperationAction calls.
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
+
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+ setOperationAction(ISD::BR_CC, XLenVT, Expand);
+ setOperationAction(ISD::BRCOND, MVT::Other, Custom);
+ setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
+
+ setCondCodeAction(ISD::SETLE, XLenVT, Expand);
+ setCondCodeAction(ISD::SETGT, XLenVT, Custom);
+ setCondCodeAction(ISD::SETGE, XLenVT, Expand);
+ setCondCodeAction(ISD::SETULE, XLenVT, Expand);
+ setCondCodeAction(ISD::SETUGT, XLenVT, Custom);
+ setCondCodeAction(ISD::SETUGE, XLenVT, Expand);
+
+ setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand);
+
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+ setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand);
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+
+ setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
+
+ if (!Subtarget.hasStdExtZbb())
+ setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand);
+
+ if (Subtarget.is64Bit()) {
+ setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
+
+ setOperationAction(ISD::LOAD, MVT::i32, Custom);
+
+ setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL},
+ MVT::i32, Custom);
+
+ setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT},
+ MVT::i32, Custom);
+ } else {
+ setLibcallName(
+ {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128},
+ nullptr);
+ setLibcallName(RTLIB::MULO_I64, nullptr);
+ }
+
+ if (!Subtarget.hasStdExtM() && !Subtarget.hasStdExtZmmul()) {
+ setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU}, XLenVT, Expand);
+ } else {
+ if (Subtarget.is64Bit()) {
+ setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom);
+ } else {
+ setOperationAction(ISD::MUL, MVT::i64, Custom);
+ }
+ }
+
+ if (!Subtarget.hasStdExtM()) {
+ setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM},
+ XLenVT, Expand);
+ } else {
+ if (Subtarget.is64Bit()) {
+ setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM},
+ {MVT::i8, MVT::i16, MVT::i32}, Custom);
+ }
+ }
+
+ setOperationAction(
+ {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT,
+ Expand);
+
+ setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT,
+ Custom);
+
+ if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) {
+ if (Subtarget.is64Bit())
+ setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom);
+ } else {
+ setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand);
+ }
+
+ // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
+ // pattern match it directly in isel.
+ setOperationAction(ISD::BSWAP, XLenVT,
+ (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
+ ? Legal
+ : Expand);
+ // Zbkb can use rev8+brev8 to implement bitreverse.
+ setOperationAction(ISD::BITREVERSE, XLenVT,
+ Subtarget.hasStdExtZbkb() ? Custom : Expand);
+
+ if (Subtarget.hasStdExtZbb()) {
+ setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT,
+ Legal);
+
+ if (Subtarget.is64Bit())
+ setOperationAction(
+ {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF},
+ MVT::i32, Custom);
+ } else {
+ setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand);
+ }
+
+ if (Subtarget.is64Bit())
+ setOperationAction(ISD::ABS, MVT::i32, Custom);
+
+ if (!Subtarget.hasVendorXVentanaCondOps())
+ setOperationAction(ISD::SELECT, XLenVT, Custom);
+
+ static const unsigned FPLegalNodeTypes[] = {
+ ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT,
+ ISD::LLRINT, ISD::LROUND, ISD::LLROUND,
+ ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
+ ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD,
+ ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV,
+ ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
+
+ static const ISD::CondCode FPCCToExpand[] = {
+ ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
+ ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
+ ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO};
+
+ static const unsigned FPOpToExpand[] = {
+ ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW,
+ ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
+
+ static const unsigned FPRndMode[] = {
+ ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FRINT, ISD::FROUND,
+ ISD::FROUNDEVEN};
+
+ if (Subtarget.hasStdExtZfhOrZfhmin())
+ setOperationAction(ISD::BITCAST, MVT::i16, Custom);
+
+ if (Subtarget.hasStdExtZfhOrZfhmin()) {
+ if (Subtarget.hasStdExtZfh()) {
+ setOperationAction(FPLegalNodeTypes, MVT::f16, Legal);
+ setOperationAction(FPRndMode, MVT::f16, Custom);
+ setOperationAction(ISD::SELECT, MVT::f16, Custom);
+ } else {
+ static const unsigned ZfhminPromoteOps[] = {
+ ISD::FMINNUM, ISD::FMAXNUM, ISD::FADD,
+ ISD::FSUB, ISD::FMUL, ISD::FMA,
+ ISD::FDIV, ISD::FSQRT, ISD::FABS,
+ ISD::FNEG, ISD::STRICT_FMA, ISD::STRICT_FADD,
+ ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV,
+ ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS,
+ ISD::SETCC, ISD::FCEIL, ISD::FFLOOR,
+ ISD::FTRUNC, ISD::FRINT, ISD::FROUND,
+ ISD::FROUNDEVEN, ISD::SELECT};
+
+ setOperationAction(ZfhminPromoteOps, MVT::f16, Promote);
+ setOperationAction({ISD::STRICT_LRINT, ISD::STRICT_LLRINT,
+ ISD::STRICT_LROUND, ISD::STRICT_LLROUND},
+ MVT::f16, Legal);
+ // FIXME: Need to promote f16 FCOPYSIGN to f32, but the
+ // DAGCombiner::visitFP_ROUND probably needs improvements first.
+ setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
+ }
+
+ setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
+ setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
+ setCondCodeAction(FPCCToExpand, MVT::f16, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
+ setOperationAction(ISD::BR_CC, MVT::f16, Expand);
+
+ setOperationAction({ISD::FREM, ISD::FNEARBYINT, ISD::FPOW, ISD::FPOWI,
+ ISD::FCOS, ISD::FSIN, ISD::FSINCOS, ISD::FEXP,
+ ISD::FEXP2, ISD::FLOG, ISD::FLOG2, ISD::FLOG10},
+ MVT::f16, Promote);
+
+ // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
+ // complete support for all operations in LegalizeDAG.
+ setOperationAction({ISD::STRICT_FCEIL, ISD::STRICT_FFLOOR,
+ ISD::STRICT_FNEARBYINT, ISD::STRICT_FRINT,
+ ISD::STRICT_FROUND, ISD::STRICT_FROUNDEVEN,
+ ISD::STRICT_FTRUNC},
+ MVT::f16, Promote);
+
+ // We need to custom promote this.
+ if (Subtarget.is64Bit())
+ setOperationAction(ISD::FPOWI, MVT::i32, Custom);
+ }
+
+ if (Subtarget.hasStdExtF()) {
+ setOperationAction(FPLegalNodeTypes, MVT::f32, Legal);
+ setOperationAction(FPRndMode, MVT::f32, Custom);
+ setCondCodeAction(FPCCToExpand, MVT::f32, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
+ setOperationAction(ISD::SELECT, MVT::f32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f32, Expand);
+ setOperationAction(FPOpToExpand, MVT::f32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f32, MVT::f16, Expand);
+ }
+
+ if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
+ setOperationAction(ISD::BITCAST, MVT::i32, Custom);
+
+ if (Subtarget.hasStdExtD()) {
+ setOperationAction(FPLegalNodeTypes, MVT::f64, Legal);
+ if (Subtarget.is64Bit()) {
+ setOperationAction(FPRndMode, MVT::f64, Custom);
+ }
+ setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
+ setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
+ setCondCodeAction(FPCCToExpand, MVT::f64, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
+ setOperationAction(ISD::SELECT, MVT::f64, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f64, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+ setOperationAction(FPOpToExpand, MVT::f64, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f16, Expand);
+ }
+
+ if (Subtarget.is64Bit())
+ setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT,
+ ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT},
+ MVT::i32, Custom);
+
+ if (Subtarget.hasStdExtF()) {
+ setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT,
+ Custom);
+
+ setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT,
+ ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP},
+ XLenVT, Legal);
+
+ setOperationAction(ISD::GET_ROUNDING, XLenVT, Custom);
+ setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
+ }
+
+ setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool,
+ ISD::JumpTable},
+ XLenVT, Custom);
+
+ setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
+
+ if (Subtarget.is64Bit())
+ setOperationAction(ISD::Constant, MVT::i64, Custom);
+
+ // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
+ // Unfortunately this can't be determined just from the ISA naming string.
+ setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
+ Subtarget.is64Bit() ? Legal : Custom);
+
+ setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal);
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+ if (Subtarget.is64Bit())
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
+
+ if (Subtarget.hasStdExtA()) {
+ setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
+ setMinCmpXchgSizeInBits(32);
+ } else if (Subtarget.hasForcedAtomics()) {
+ setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
+ } else {
+ setMaxAtomicSizeInBitsSupported(0);
+ }
+
+ setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
+
+ setBooleanContents(ZeroOrOneBooleanContent);
+
+ if (Subtarget.hasVInstructions()) {
+ setBooleanVectorContents(ZeroOrOneBooleanContent);
+
+ setOperationAction(ISD::VSCALE, XLenVT, Custom);
+
+ // RVV intrinsics may have illegal operands.
+ // We also need to custom legalize vmv.x.s.
+ setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
+ {MVT::i8, MVT::i16}, Custom);
+ if (Subtarget.is64Bit())
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
+ else
+ setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
+ MVT::i64, Custom);
+
+ setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID},
+ MVT::Other, Custom);
+
+ static const unsigned IntegerVPOps[] = {
+ ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL,
+ ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM,
+ ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR,
+ ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR,
+ ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
+ ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX,
+ ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
+ ISD::VP_MERGE, ISD::VP_SELECT, ISD::VP_FP_TO_SINT,
+ ISD::VP_FP_TO_UINT, ISD::VP_SETCC, ISD::VP_SIGN_EXTEND,
+ ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE, ISD::VP_SMIN,
+ ISD::VP_SMAX, ISD::VP_UMIN, ISD::VP_UMAX,
+ ISD::VP_ABS};
+
+ static const unsigned FloatingPointVPOps[] = {
+ ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL,
+ ISD::VP_FDIV, ISD::VP_FNEG, ISD::VP_FABS,
+ ISD::VP_FMA, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
+ ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_MERGE,
+ ISD::VP_SELECT, ISD::VP_SINT_TO_FP, ISD::VP_UINT_TO_FP,
+ ISD::VP_SETCC, ISD::VP_FP_ROUND, ISD::VP_FP_EXTEND,
+ ISD::VP_SQRT, ISD::VP_FMINNUM, ISD::VP_FMAXNUM,
+ ISD::VP_FCEIL, ISD::VP_FFLOOR, ISD::VP_FROUND,
+ ISD::VP_FROUNDEVEN, ISD::VP_FCOPYSIGN, ISD::VP_FROUNDTOZERO,
+ ISD::VP_FRINT, ISD::VP_FNEARBYINT};
+
+ static const unsigned IntegerVecReduceOps[] = {
+ ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
+ ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
+ ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN};
+
+ static const unsigned FloatingPointVecReduceOps[] = {
+ ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_FMIN,
+ ISD::VECREDUCE_FMAX};
+
+ if (!Subtarget.is64Bit()) {
+ // We must custom-lower certain vXi64 operations on RV32 due to the vector
+ // element type being illegal.
+ setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
+ MVT::i64, Custom);
+
+ setOperationAction(IntegerVecReduceOps, MVT::i64, Custom);
+
+ setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
+ ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR,
+ ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN,
+ ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN},
+ MVT::i64, Custom);
+ }
+
+ for (MVT VT : BoolVecVTs) {
+ if (!isTypeLegal(VT))
+ continue;
+
+ setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
+
+ // Mask VTs are custom-expanded into a series of standard nodes
+ setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS,
+ ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
+ VT, Custom);
+
+ setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
+ Custom);
+
+ setOperationAction(ISD::SELECT, VT, Custom);
+ setOperationAction(
+ {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT,
+ Expand);
+
+ setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom);
+
+ setOperationAction(
+ {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
+ Custom);
+
+ setOperationAction(
+ {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
+ Custom);
+
+ // RVV has native int->float & float->int conversions where the
+ // element type sizes are within one power-of-two of each other. Any
+ // wider distances between type sizes have to be lowered as sequences
+ // which progressively narrow the gap in stages.
+ setOperationAction(
+ {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
+ VT, Custom);
+ setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT,
+ Custom);
+
+ // Expand all extending loads to types larger than this, and truncating
+ // stores from types larger than this.
+ for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
+ setTruncStoreAction(OtherVT, VT, Expand);
+ setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
+ VT, Expand);
+ }
+
+ setOperationAction({ISD::VP_FP_TO_SINT, ISD::VP_FP_TO_UINT,
+ ISD::VP_TRUNCATE, ISD::VP_SETCC},
+ VT, Custom);
+ setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
+
+ setOperationPromotedToType(
+ ISD::VECTOR_SPLICE, VT,
+ MVT::getVectorVT(MVT::i8, VT.getVectorElementCount()));
+ }
+
+ for (MVT VT : IntVecVTs) {
+ if (!isTypeLegal(VT))
+ continue;
+
+ setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
+ setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
+
+ // Vectors implement MULHS/MULHU.
+ setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand);
+
+ // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
+ if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV())
+ setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand);
+
+ setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT,
+ Legal);
+
+ setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand);
+
+ setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, VT, Expand);
+
+ setOperationAction(ISD::BSWAP, VT, Expand);
+ setOperationAction({ISD::VP_BSWAP, ISD::VP_BITREVERSE}, VT, Expand);
+ setOperationAction({ISD::VP_FSHL, ISD::VP_FSHR}, VT, Expand);
+ setOperationAction({ISD::VP_CTLZ, ISD::VP_CTLZ_ZERO_UNDEF, ISD::VP_CTTZ,
+ ISD::VP_CTTZ_ZERO_UNDEF, ISD::VP_CTPOP},
+ VT, Expand);
+
+ // Custom-lower extensions and truncations from/to mask types.
+ setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND},
+ VT, Custom);
+
+ // RVV has native int->float & float->int conversions where the
+ // element type sizes are within one power-of-two of each other. Any
+ // wider distances between type sizes have to be lowered as sequences
+ // which progressively narrow the gap in stages.
+ setOperationAction(
+ {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
+ VT, Custom);
+ setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT,
+ Custom);
+
+ setOperationAction(
+ {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal);
+
+ // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
+ // nodes which truncate by one power of two at a time.
+ setOperationAction(ISD::TRUNCATE, VT, Custom);
+
+ // Custom-lower insert/extract operations to simplify patterns.
+ setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
+ Custom);
+
+ // Custom-lower reduction operations to set up the corresponding custom
+ // nodes' operands.
+ setOperationAction(IntegerVecReduceOps, VT, Custom);
+
+ setOperationAction(IntegerVPOps, VT, Custom);
+
+ setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
+
+ setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
+ VT, Custom);
+
+ setOperationAction(
+ {ISD::VP_LOAD, ISD::VP_STORE, ISD::EXPERIMENTAL_VP_STRIDED_LOAD,
+ ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, ISD::VP_SCATTER},
+ VT, Custom);
+
+ setOperationAction(
+ {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
+ VT, Custom);
+
+ setOperationAction(ISD::SELECT, VT, Custom);
+ setOperationAction(ISD::SELECT_CC, VT, Expand);
+
+ setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom);
+
+ for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
+ setTruncStoreAction(VT, OtherVT, Expand);
+ setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
+ VT, Expand);
+ }
+
+ // Splice
+ setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
+
+ // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if element of VT in the range
+ // of f32.
+ EVT FloatVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
+ if (isTypeLegal(FloatVT)) {
+ setOperationAction(
+ {ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
+ Custom);
+ }
+ }
+
+ // Expand various CCs to best match the RVV ISA, which natively supports UNE
+ // but no other unordered comparisons, and supports all ordered comparisons
+ // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
+ // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
+ // and we pattern-match those back to the "original", swapping operands once
+ // more. This way we catch both operations and both "vf" and "fv" forms with
+ // fewer patterns.
+ static const ISD::CondCode VFPCCToExpand[] = {
+ ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
+ ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
+ ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE,
+ };
+
+ // Sets common operation actions on RVV floating-point vector types.
+ const auto SetCommonVFPActions = [&](MVT VT) {
+ setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
+ // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
+ // sizes are within one power-of-two of each other. Therefore conversions
+ // between vXf16 and vXf64 must be lowered as sequences which convert via
+ // vXf32.
+ setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
+ // Custom-lower insert/extract operations to simplify patterns.
+ setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
+ Custom);
+ // Expand various condition codes (explained above).
+ setCondCodeAction(VFPCCToExpand, VT, Expand);
+
+ setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal);
+
+ setOperationAction(
+ {ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND, ISD::FROUNDEVEN},
+ VT, Custom);
+
+ setOperationAction(FloatingPointVecReduceOps, VT, Custom);
+
+ // Expand FP operations that need libcalls.
+ setOperationAction(ISD::FREM, VT, Expand);
+ setOperationAction(ISD::FPOW, VT, Expand);
+ setOperationAction(ISD::FCOS, VT, Expand);
+ setOperationAction(ISD::FSIN, VT, Expand);
+ setOperationAction(ISD::FSINCOS, VT, Expand);
+ setOperationAction(ISD::FEXP, VT, Expand);
+ setOperationAction(ISD::FEXP2, VT, Expand);
+ setOperationAction(ISD::FLOG, VT, Expand);
+ setOperationAction(ISD::FLOG2, VT, Expand);
+ setOperationAction(ISD::FLOG10, VT, Expand);
+ setOperationAction(ISD::FRINT, VT, Expand);
+ setOperationAction(ISD::FNEARBYINT, VT, Expand);
+
+ setOperationAction(ISD::FCOPYSIGN, VT, Legal);
+
+ setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
+
+ setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
+ VT, Custom);
+
+ setOperationAction(
+ {ISD::VP_LOAD, ISD::VP_STORE, ISD::EXPERIMENTAL_VP_STRIDED_LOAD,
+ ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, ISD::VP_SCATTER},
+ VT, Custom);
+
+ setOperationAction(ISD::SELECT, VT, Custom);
+ setOperationAction(ISD::SELECT_CC, VT, Expand);
+
+ setOperationAction(
+ {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
+ VT, Custom);
+
+ setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom);
+
+ setOperationAction(FloatingPointVPOps, VT, Custom);
+ };
+
+ // Sets common extload/truncstore actions on RVV floating-point vector
+ // types.
+ const auto SetCommonVFPExtLoadTruncStoreActions =
+ [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
+ for (auto SmallVT : SmallerVTs) {
+ setTruncStoreAction(VT, SmallVT, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
+ }
+ };
+
+ if (Subtarget.hasVInstructionsF16()) {
+ for (MVT VT : F16VecVTs) {
+ if (!isTypeLegal(VT))
+ continue;
+ SetCommonVFPActions(VT);
+ }
+ }
+
+ if (Subtarget.hasVInstructionsF32()) {
+ for (MVT VT : F32VecVTs) {
+ if (!isTypeLegal(VT))
+ continue;
+ SetCommonVFPActions(VT);
+ SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
+ }
+ }
+
+ if (Subtarget.hasVInstructionsF64()) {
+ for (MVT VT : F64VecVTs) {
+ if (!isTypeLegal(VT))
+ continue;
+ SetCommonVFPActions(VT);
+ SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
+ SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
+ }
+ }
+
+ if (Subtarget.useRVVForFixedLengthVectors()) {
+ for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
+ if (!useRVVForFixedLengthVectorVT(VT))
+ continue;
+
+ // By default everything must be expanded.
+ for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
+ setOperationAction(Op, VT, Expand);
+ for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
+ setTruncStoreAction(VT, OtherVT, Expand);
+ setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD},
+ OtherVT, VT, Expand);
+ }
+
+ // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
+ setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
+ Custom);
+
+ setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT,
+ Custom);
+
+ setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
+ VT, Custom);
+
+ setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
+
+ setOperationAction(ISD::SETCC, VT, Custom);
+
+ setOperationAction(ISD::SELECT, VT, Custom);
+
+ setOperationAction(ISD::TRUNCATE, VT, Custom);
+
+ setOperationAction(ISD::BITCAST, VT, Custom);
+
+ setOperationAction(
+ {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
+ Custom);
+
+ setOperationAction(
+ {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
+ Custom);
+
+ setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT,
+ ISD::FP_TO_UINT},
+ VT, Custom);
+ setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT,
+ Custom);
+
+ // Operations below are different for between masks and other vectors.
+ if (VT.getVectorElementType() == MVT::i1) {
+ setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND,
+ ISD::OR, ISD::XOR},
+ VT, Custom);
+
+ setOperationAction({ISD::VP_FP_TO_SINT, ISD::VP_FP_TO_UINT,
+ ISD::VP_SETCC, ISD::VP_TRUNCATE},
+ VT, Custom);
+ continue;
+ }
+
+ // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
+ // it before type legalization for i64 vectors on RV32. It will then be
+ // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
+ // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
+ // improvements first.
+ if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
+ setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
+ setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
+ }
+
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
+
+ setOperationAction(
+ {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom);
+
+ setOperationAction({ISD::VP_LOAD, ISD::VP_STORE,
+ ISD::EXPERIMENTAL_VP_STRIDED_LOAD,
+ ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER,
+ ISD::VP_SCATTER},
+ VT, Custom);
+
+ setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR,
+ ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV,
+ ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL},
+ VT, Custom);
+
+ setOperationAction(
+ {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom);
+
+ // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
+ if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV())
+ setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom);
+
+ setOperationAction(
+ {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT,
+ Custom);
+
+ setOperationAction(ISD::VSELECT, VT, Custom);
+ setOperationAction(ISD::SELECT_CC, VT, Expand);
+
+ setOperationAction(
+ {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom);
+
+ // Custom-lower reduction operations to set up the corresponding custom
+ // nodes' operands.
+ setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX,
+ ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX,
+ ISD::VECREDUCE_UMIN},
+ VT, Custom);
+
+ setOperationAction(IntegerVPOps, VT, Custom);
+
+ // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if element of VT in the
+ // range of f32.
+ EVT FloatVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
+ if (isTypeLegal(FloatVT))
+ setOperationAction(
+ {ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
+ Custom);
+ }
+
+ for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
+ if (!useRVVForFixedLengthVectorVT(VT))
+ continue;
+
+ // By default everything must be expanded.
+ for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
+ setOperationAction(Op, VT, Expand);
+ for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
+ setTruncStoreAction(VT, OtherVT, Expand);
+ }
+
+ // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
+ setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
+ Custom);
+
+ setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS,
+ ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT,
+ ISD::EXTRACT_VECTOR_ELT},
+ VT, Custom);
+
+ setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE,
+ ISD::MGATHER, ISD::MSCATTER},
+ VT, Custom);
+
+ setOperationAction({ISD::VP_LOAD, ISD::VP_STORE,
+ ISD::EXPERIMENTAL_VP_STRIDED_LOAD,
+ ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER,
+ ISD::VP_SCATTER},
+ VT, Custom);
+
+ setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV,
+ ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT,
+ ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM},
+ VT, Custom);
+
+ setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
+
+ setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND,
+ ISD::FROUNDEVEN},
+ VT, Custom);
+
+ setCondCodeAction(VFPCCToExpand, VT, Expand);
+
+ setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom);
+ setOperationAction(ISD::SELECT_CC, VT, Expand);
+
+ setOperationAction(ISD::BITCAST, VT, Custom);
+
+ setOperationAction(FloatingPointVecReduceOps, VT, Custom);
+
+ setOperationAction(FloatingPointVPOps, VT, Custom);
+ }
+
+ // Custom-legalize bitcasts from fixed-length vectors to scalar types.
+ setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64},
+ Custom);
+ if (Subtarget.hasStdExtZfhOrZfhmin())
+ setOperationAction(ISD::BITCAST, MVT::f16, Custom);
+ if (Subtarget.hasStdExtF())
+ setOperationAction(ISD::BITCAST, MVT::f32, Custom);
+ if (Subtarget.hasStdExtD())
+ setOperationAction(ISD::BITCAST, MVT::f64, Custom);
+ }
+ }
+
+ if (Subtarget.hasForcedAtomics()) {
+ // Set atomic rmw/cas operations to expand to force __sync libcalls.
+ setOperationAction(
+ {ISD::ATOMIC_CMP_SWAP, ISD::ATOMIC_SWAP, ISD::ATOMIC_LOAD_ADD,
+ ISD::ATOMIC_LOAD_SUB, ISD::ATOMIC_LOAD_AND, ISD::ATOMIC_LOAD_OR,
+ ISD::ATOMIC_LOAD_XOR, ISD::ATOMIC_LOAD_NAND, ISD::ATOMIC_LOAD_MIN,
+ ISD::ATOMIC_LOAD_MAX, ISD::ATOMIC_LOAD_UMIN, ISD::ATOMIC_LOAD_UMAX},
+ XLenVT, Expand);
+ }
+
+ // Function alignments.
+ const Align FunctionAlignment(Subtarget.hasStdExtCOrZca() ? 2 : 4);
+ setMinFunctionAlignment(FunctionAlignment);
+ setPrefFunctionAlignment(FunctionAlignment);
+
+ setMinimumJumpTableEntries(5);
+
+ // Jumps are expensive, compared to logic
+ setJumpIsExpensive();
+
+ setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND,
+ ISD::OR, ISD::XOR, ISD::SETCC, ISD::SELECT});
+ if (Subtarget.is64Bit())
+ setTargetDAGCombine(ISD::SRA);
+
+ if (Subtarget.hasStdExtF())
+ setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM});
+
+ if (Subtarget.hasStdExtZbb())
+ setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN});
+
+ if (Subtarget.hasStdExtZbs() && Subtarget.is64Bit())
+ setTargetDAGCombine(ISD::TRUNCATE);
+
+ if (Subtarget.hasStdExtZbkb())
+ setTargetDAGCombine(ISD::BITREVERSE);
+ if (Subtarget.hasStdExtZfhOrZfhmin())
+ setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
+ if (Subtarget.hasStdExtF())
+ setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
+ ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT});
+ if (Subtarget.hasVInstructions())
+ setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER,
+ ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL,
+ ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR});
+ if (Subtarget.useRVVForFixedLengthVectors())
+ setTargetDAGCombine(ISD::BITCAST);
+
+ setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
+ setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
+}
+
+EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
+ LLVMContext &Context,
+ EVT VT) const {
+ if (!VT.isVector())
+ return getPointerTy(DL);
+ if (Subtarget.hasVInstructions() &&
+ (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
+ return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
+ return VT.changeVectorElementTypeToInteger();
+}
+
+MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
+ return Subtarget.getXLenVT();
+}
+
+bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
+ const CallInst &I,
+ MachineFunction &MF,
+ unsigned Intrinsic) const {
+ auto &DL = I.getModule()->getDataLayout();
+ switch (Intrinsic) {
+ default:
+ return false;
+ case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
+ case Intrinsic::riscv_masked_atomicrmw_add_i32:
+ case Intrinsic::riscv_masked_atomicrmw_sub_i32:
+ case Intrinsic::riscv_masked_atomicrmw_nand_i32:
+ case Intrinsic::riscv_masked_atomicrmw_max_i32:
+ case Intrinsic::riscv_masked_atomicrmw_min_i32:
+ case Intrinsic::riscv_masked_atomicrmw_umax_i32:
+ case Intrinsic::riscv_masked_atomicrmw_umin_i32:
+ case Intrinsic::riscv_masked_cmpxchg_i32:
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::i32;
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Info.align = Align(4);
+ Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
+ MachineMemOperand::MOVolatile;
+ return true;
+ case Intrinsic::riscv_masked_strided_load:
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.ptrVal = I.getArgOperand(1);
+ Info.memVT = getValueType(DL, I.getType()->getScalarType());
+ Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
+ Info.size = MemoryLocation::UnknownSize;
+ Info.flags |= MachineMemOperand::MOLoad;
+ return true;
+ case Intrinsic::riscv_masked_strided_store:
+ Info.opc = ISD::INTRINSIC_VOID;
+ Info.ptrVal = I.getArgOperand(1);
+ Info.memVT =
+ getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
+ Info.align = Align(
+ DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
+ 8);
+ Info.size = MemoryLocation::UnknownSize;
+ Info.flags |= MachineMemOperand::MOStore;
+ return true;
+ case Intrinsic::riscv_seg2_load:
+ case Intrinsic::riscv_seg3_load:
+ case Intrinsic::riscv_seg4_load:
+ case Intrinsic::riscv_seg5_load:
+ case Intrinsic::riscv_seg6_load:
+ case Intrinsic::riscv_seg7_load:
+ case Intrinsic::riscv_seg8_load:
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.ptrVal = I.getArgOperand(0);
+ Info.memVT =
+ getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
+ Info.align =
+ Align(DL.getTypeSizeInBits(
+ I.getType()->getStructElementType(0)->getScalarType()) /
+ 8);
+ Info.size = MemoryLocation::UnknownSize;
+ Info.flags |= MachineMemOperand::MOLoad;
+ return true;
+ }
+}
+
+bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
+ const AddrMode &AM, Type *Ty,
+ unsigned AS,
+ Instruction *I) const {
+ // No global is ever allowed as a base.
+ if (AM.BaseGV)
+ return false;
+
+ // RVV instructions only support register addressing.
+ if (Subtarget.hasVInstructions() && isa<VectorType>(Ty))
+ return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs;
+
+ // Require a 12-bit signed offset.
+ if (!isInt<12>(AM.BaseOffs))
+ return false;
+
+ switch (AM.Scale) {
+ case 0: // "r+i" or just "i", depending on HasBaseReg.
+ break;
+ case 1:
+ if (!AM.HasBaseReg) // allow "r+i".
+ break;
+ return false; // disallow "r+r" or "r+r+i".
+ default:
+ return false;
+ }
+
+ return true;
+}
+
+bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
+ return isInt<12>(Imm);
+}
+
+bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
+ return isInt<12>(Imm);
+}
+
+// On RV32, 64-bit integers are split into their high and low parts and held
+// in two different registers, so the trunc is free since the low register can
+// just be used.
+// FIXME: Should we consider i64->i32 free on RV64 to match the EVT version of
+// isTruncateFree?
+bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
+ if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
+ return false;
+ unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
+ unsigned DestBits = DstTy->getPrimitiveSizeInBits();
+ return (SrcBits == 64 && DestBits == 32);
+}
+
+bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
+ // We consider i64->i32 free on RV64 since we have good selection of W
+ // instructions that make promoting operations back to i64 free in many cases.
+ if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
+ !DstVT.isInteger())
+ return false;
+ unsigned SrcBits = SrcVT.getSizeInBits();
+ unsigned DestBits = DstVT.getSizeInBits();
+ return (SrcBits == 64 && DestBits == 32);
+}
+
+bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
+ // Zexts are free if they can be combined with a load.
+ // Don't advertise i32->i64 zextload as being free for RV64. It interacts
+ // poorly with type legalization of compares preferring sext.
+ if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
+ EVT MemVT = LD->getMemoryVT();
+ if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
+ (LD->getExtensionType() == ISD::NON_EXTLOAD ||
+ LD->getExtensionType() == ISD::ZEXTLOAD))
+ return true;
+ }
+
+ return TargetLowering::isZExtFree(Val, VT2);
+}
+
+bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
+ return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
+}
+
+bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const {
+ return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32);
+}
+
+bool RISCVTargetLowering::isCheapToSpeculateCttz(Type *Ty) const {
+ return Subtarget.hasStdExtZbb();
+}
+
+bool RISCVTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const {
+ return Subtarget.hasStdExtZbb();
+}
+
+bool RISCVTargetLowering::isMaskAndCmp0FoldingBeneficial(
+ const Instruction &AndI) const {
+ // We expect to be able to match a bit extraction instruction if the Zbs
+ // extension is supported and the mask is a power of two. However, we
+ // conservatively return false if the mask would fit in an ANDI instruction,
+ // on the basis that it's possible the sinking+duplication of the AND in
+ // CodeGenPrepare triggered by this hook wouldn't decrease the instruction
+ // count and would increase code size (e.g. ANDI+BNEZ => BEXTI+BNEZ).
+ if (!Subtarget.hasStdExtZbs())
+ return false;
+ ConstantInt *Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
+ if (!Mask)
+ return false;
+ return !Mask->getValue().isSignedIntN(12) && Mask->getValue().isPowerOf2();
+}
+
+bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
+ EVT VT = Y.getValueType();
+
+ // FIXME: Support vectors once we have tests.
+ if (VT.isVector())
+ return false;
+
+ return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) &&
+ !isa<ConstantSDNode>(Y);
+}
+
+bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
+ // Zbs provides BEXT[_I], which can be used with SEQZ/SNEZ as a bit test.
+ if (Subtarget.hasStdExtZbs())
+ return X.getValueType().isScalarInteger();
+ // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position.
+ auto *C = dyn_cast<ConstantSDNode>(Y);
+ return C && C->getAPIntValue().ule(10);
+}
+
+bool RISCVTargetLowering::shouldFoldSelectWithIdentityConstant(unsigned Opcode,
+ EVT VT) const {
+ // Only enable for rvv.
+ if (!VT.isVector() || !Subtarget.hasVInstructions())
+ return false;
+
+ if (VT.isFixedLengthVector() && !isTypeLegal(VT))
+ return false;
+
+ return true;
+}
+
+bool RISCVTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
+ Type *Ty) const {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getIntegerBitWidth();
+ if (BitSize > Subtarget.getXLen())
+ return false;
+
+ // Fast path, assume 32-bit immediates are cheap.
+ int64_t Val = Imm.getSExtValue();
+ if (isInt<32>(Val))
+ return true;
+
+ // A constant pool entry may be more aligned thant he load we're trying to
+ // replace. If we don't support unaligned scalar mem, prefer the constant
+ // pool.
+ // TODO: Can the caller pass down the alignment?
+ if (!Subtarget.enableUnalignedScalarMem())
+ return true;
+
+ // Prefer to keep the load if it would require many instructions.
+ // This uses the same threshold we use for constant pools but doesn't
+ // check useConstantPoolForLargeInts.
+ // TODO: Should we keep the load only when we're definitely going to emit a
+ // constant pool?
+
+ RISCVMatInt::InstSeq Seq =
+ RISCVMatInt::generateInstSeq(Val, Subtarget.getFeatureBits());
+ return Seq.size() <= Subtarget.getMaxBuildIntsCost();
+}
+
+bool RISCVTargetLowering::
+ shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
+ SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
+ unsigned OldShiftOpcode, unsigned NewShiftOpcode,
+ SelectionDAG &DAG) const {
+ // One interesting pattern that we'd want to form is 'bit extract':
+ // ((1 >> Y) & 1) ==/!= 0
+ // But we also need to be careful not to try to reverse that fold.
+
+ // Is this '((1 >> Y) & 1)'?
+ if (XC && OldShiftOpcode == ISD::SRL && XC->isOne())
+ return false; // Keep the 'bit extract' pattern.
+
+ // Will this be '((1 >> Y) & 1)' after the transform?
+ if (NewShiftOpcode == ISD::SRL && CC->isOne())
+ return true; // Do form the 'bit extract' pattern.
+
+ // If 'X' is a constant, and we transform, then we will immediately
+ // try to undo the fold, thus causing endless combine loop.
+ // So only do the transform if X is not a constant. This matches the default
+ // implementation of this function.
+ return !XC;
+}
+
+bool RISCVTargetLowering::canSplatOperand(unsigned Opcode, int Operand) const {
+ switch (Opcode) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::FAdd:
+ case Instruction::FSub:
+ case Instruction::FMul:
+ case Instruction::FDiv:
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ return true;
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ return Operand == 1;
+ default:
+ return false;
+ }
+}
+
+
+bool RISCVTargetLowering::canSplatOperand(Instruction *I, int Operand) const {
+ if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
+ return false;
+
+ if (canSplatOperand(I->getOpcode(), Operand))
+ return true;
+
+ auto *II = dyn_cast<IntrinsicInst>(I);
+ if (!II)
+ return false;
+
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::fma:
+ case Intrinsic::vp_fma:
+ return Operand == 0 || Operand == 1;
+ case Intrinsic::vp_shl:
+ case Intrinsic::vp_lshr:
+ case Intrinsic::vp_ashr:
+ case Intrinsic::vp_udiv:
+ case Intrinsic::vp_sdiv:
+ case Intrinsic::vp_urem:
+ case Intrinsic::vp_srem:
+ return Operand == 1;
+ // These intrinsics are commutative.
+ case Intrinsic::vp_add:
+ case Intrinsic::vp_mul:
+ case Intrinsic::vp_and:
+ case Intrinsic::vp_or:
+ case Intrinsic::vp_xor:
+ case Intrinsic::vp_fadd:
+ case Intrinsic::vp_fmul:
+ // These intrinsics have 'vr' versions.
+ case Intrinsic::vp_sub:
+ case Intrinsic::vp_fsub:
+ case Intrinsic::vp_fdiv:
+ return Operand == 0 || Operand == 1;
+ default:
+ return false;
+ }
+}
+
+/// Check if sinking \p I's operands to I's basic block is profitable, because
+/// the operands can be folded into a target instruction, e.g.
+/// splats of scalars can fold into vector instructions.
+bool RISCVTargetLowering::shouldSinkOperands(
+ Instruction *I, SmallVectorImpl<Use *> &Ops) const {
+ using namespace llvm::PatternMatch;
+
+ if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
+ return false;
+
+ for (auto OpIdx : enumerate(I->operands())) {
+ if (!canSplatOperand(I, OpIdx.index()))
+ continue;
+
+ Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
+ // Make sure we are not already sinking this operand
+ if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
+ continue;
+
+ // We are looking for a splat that can be sunk.
+ if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
+ m_Undef(), m_ZeroMask())))
+ continue;
+
+ // All uses of the shuffle should be sunk to avoid duplicating it across gpr
+ // and vector registers
+ for (Use &U : Op->uses()) {
+ Instruction *Insn = cast<Instruction>(U.getUser());
+ if (!canSplatOperand(Insn, U.getOperandNo()))
+ return false;
+ }
+
+ Ops.push_back(&Op->getOperandUse(0));
+ Ops.push_back(&OpIdx.value());
+ }
+ return true;
+}
+
+bool RISCVTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
+ unsigned Opc = VecOp.getOpcode();
+
+ // Assume target opcodes can't be scalarized.
+ // TODO - do we have any exceptions?
+ if (Opc >= ISD::BUILTIN_OP_END)
+ return false;
+
+ // If the vector op is not supported, try to convert to scalar.
+ EVT VecVT = VecOp.getValueType();
+ if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
+ return true;
+
+ // If the vector op is supported, but the scalar op is not, the transform may
+ // not be worthwhile.
+ EVT ScalarVT = VecVT.getScalarType();
+ return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
+}
+
+bool RISCVTargetLowering::isOffsetFoldingLegal(
+ const GlobalAddressSDNode *GA) const {
+ // In order to maximise the opportunity for common subexpression elimination,
+ // keep a separate ADD node for the global address offset instead of folding
+ // it in the global address node. Later peephole optimisations may choose to
+ // fold it back in when profitable.
+ return false;
+}
+
+bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
+ bool ForCodeSize) const {
+ if (VT == MVT::f16 && !Subtarget.hasStdExtZfhOrZfhmin())
+ return false;
+ if (VT == MVT::f32 && !Subtarget.hasStdExtF())
+ return false;
+ if (VT == MVT::f64 && !Subtarget.hasStdExtD())
+ return false;
+ return Imm.isZero();
+}
+
+// TODO: This is very conservative.
+bool RISCVTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
+ unsigned Index) const {
+ if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
+ return false;
+
+ // Only support extracting a fixed from a fixed vector for now.
+ if (ResVT.isScalableVector() || SrcVT.isScalableVector())
+ return false;
+
+ unsigned ResElts = ResVT.getVectorNumElements();
+ unsigned SrcElts = SrcVT.getVectorNumElements();
+
+ // Convervatively only handle extracting half of a vector.
+ // TODO: Relax this.
+ if ((ResElts * 2) != SrcElts)
+ return false;
+
+ // The smallest type we can slide is i8.
+ // TODO: We can extract index 0 from a mask vector without a slide.
+ if (ResVT.getVectorElementType() == MVT::i1)
+ return false;
+
+ // Slide can support arbitrary index, but we only treat vslidedown.vi as
+ // cheap.
+ if (Index >= 32)
+ return false;
+
+ // TODO: We can do arbitrary slidedowns, but for now only support extracting
+ // the upper half of a vector until we have more test coverage.
+ return Index == 0 || Index == ResElts;
+}
+
+bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
+ return (VT == MVT::f16 && Subtarget.hasStdExtZfhOrZfhmin()) ||
+ (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
+ (VT == MVT::f64 && Subtarget.hasStdExtD());
+}
+
+MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
+ CallingConv::ID CC,
+ EVT VT) const {
+ // Use f32 to pass f16 if it is legal and Zfh/Zfhmin is not enabled.
+ // We might still end up using a GPR but that will be decided based on ABI.
+ if (VT == MVT::f16 && Subtarget.hasStdExtF() &&
+ !Subtarget.hasStdExtZfhOrZfhmin())
+ return MVT::f32;
+
+ return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
+}
+
+unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
+ CallingConv::ID CC,
+ EVT VT) const {
+ // Use f32 to pass f16 if it is legal and Zfh/Zfhmin is not enabled.
+ // We might still end up using a GPR but that will be decided based on ABI.
+ if (VT == MVT::f16 && Subtarget.hasStdExtF() &&
+ !Subtarget.hasStdExtZfhOrZfhmin())
+ return 1;
+
+ return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
+}
+
+// Changes the condition code and swaps operands if necessary, so the SetCC
+// operation matches one of the comparisons supported directly by branches
+// in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
+// with 1/-1.
+static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
+ ISD::CondCode &CC, SelectionDAG &DAG) {
+ // If this is a single bit test that can't be handled by ANDI, shift the
+ // bit to be tested to the MSB and perform a signed compare with 0.
+ if (isIntEqualitySetCC(CC) && isNullConstant(RHS) &&
+ LHS.getOpcode() == ISD::AND && LHS.hasOneUse() &&
+ isa<ConstantSDNode>(LHS.getOperand(1))) {
+ uint64_t Mask = LHS.getConstantOperandVal(1);
+ if ((isPowerOf2_64(Mask) || isMask_64(Mask)) && !isInt<12>(Mask)) {
+ unsigned ShAmt = 0;
+ if (isPowerOf2_64(Mask)) {
+ CC = CC == ISD::SETEQ ? ISD::SETGE : ISD::SETLT;
+ ShAmt = LHS.getValueSizeInBits() - 1 - Log2_64(Mask);
+ } else {
+ ShAmt = LHS.getValueSizeInBits() - llvm::bit_width(Mask);
+ }
+
+ LHS = LHS.getOperand(0);
+ if (ShAmt != 0)
+ LHS = DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS,
+ DAG.getConstant(ShAmt, DL, LHS.getValueType()));
+ return;
+ }
+ }
+
+ if (auto *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
+ int64_t C = RHSC->getSExtValue();
+ switch (CC) {
+ default: break;
+ case ISD::SETGT:
+ // Convert X > -1 to X >= 0.
+ if (C == -1) {
+ RHS = DAG.getConstant(0, DL, RHS.getValueType());
+ CC = ISD::SETGE;
+ return;
+ }
+ break;
+ case ISD::SETLT:
+ // Convert X < 1 to 0 <= X.
+ if (C == 1) {
+ RHS = LHS;
+ LHS = DAG.getConstant(0, DL, RHS.getValueType());
+ CC = ISD::SETGE;
+ return;
+ }
+ break;
+ }
+ }
+
+ switch (CC) {
+ default:
+ break;
+ case ISD::SETGT:
+ case ISD::SETLE:
+ case ISD::SETUGT:
+ case ISD::SETULE:
+ CC = ISD::getSetCCSwappedOperands(CC);
+ std::swap(LHS, RHS);
+ break;
+ }
+}
+
+RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
+ assert(VT.isScalableVector() && "Expecting a scalable vector type");
+ unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
+ if (VT.getVectorElementType() == MVT::i1)
+ KnownSize *= 8;
+
+ switch (KnownSize) {
+ default:
+ llvm_unreachable("Invalid LMUL.");
+ case 8:
+ return RISCVII::VLMUL::LMUL_F8;
+ case 16:
+ return RISCVII::VLMUL::LMUL_F4;
+ case 32:
+ return RISCVII::VLMUL::LMUL_F2;
+ case 64:
+ return RISCVII::VLMUL::LMUL_1;
+ case 128:
+ return RISCVII::VLMUL::LMUL_2;
+ case 256:
+ return RISCVII::VLMUL::LMUL_4;
+ case 512:
+ return RISCVII::VLMUL::LMUL_8;
+ }
+}
+
+unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
+ switch (LMul) {
+ default:
+ llvm_unreachable("Invalid LMUL.");
+ case RISCVII::VLMUL::LMUL_F8:
+ case RISCVII::VLMUL::LMUL_F4:
+ case RISCVII::VLMUL::LMUL_F2:
+ case RISCVII::VLMUL::LMUL_1:
+ return RISCV::VRRegClassID;
+ case RISCVII::VLMUL::LMUL_2:
+ return RISCV::VRM2RegClassID;
+ case RISCVII::VLMUL::LMUL_4:
+ return RISCV::VRM4RegClassID;
+ case RISCVII::VLMUL::LMUL_8:
+ return RISCV::VRM8RegClassID;
+ }
+}
+
+unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
+ RISCVII::VLMUL LMUL = getLMUL(VT);
+ if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
+ LMUL == RISCVII::VLMUL::LMUL_F4 ||
+ LMUL == RISCVII::VLMUL::LMUL_F2 ||
+ LMUL == RISCVII::VLMUL::LMUL_1) {
+ static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
+ "Unexpected subreg numbering");
+ return RISCV::sub_vrm1_0 + Index;
+ }
+ if (LMUL == RISCVII::VLMUL::LMUL_2) {
+ static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
+ "Unexpected subreg numbering");
+ return RISCV::sub_vrm2_0 + Index;
+ }
+ if (LMUL == RISCVII::VLMUL::LMUL_4) {
+ static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
+ "Unexpected subreg numbering");
+ return RISCV::sub_vrm4_0 + Index;
+ }
+ llvm_unreachable("Invalid vector type.");
+}
+
+unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
+ if (VT.getVectorElementType() == MVT::i1)
+ return RISCV::VRRegClassID;
+ return getRegClassIDForLMUL(getLMUL(VT));
+}
+
+// Attempt to decompose a subvector insert/extract between VecVT and
+// SubVecVT via subregister indices. Returns the subregister index that
+// can perform the subvector insert/extract with the given element index, as
+// well as the index corresponding to any leftover subvectors that must be
+// further inserted/extracted within the register class for SubVecVT.
+std::pair<unsigned, unsigned>
+RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
+ MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
+ const RISCVRegisterInfo *TRI) {
+ static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
+ RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
+ RISCV::VRM2RegClassID > RISCV::VRRegClassID),
+ "Register classes not ordered");
+ unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
+ unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
+ // Try to compose a subregister index that takes us from the incoming
+ // LMUL>1 register class down to the outgoing one. At each step we half
+ // the LMUL:
+ // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
+ // Note that this is not guaranteed to find a subregister index, such as
+ // when we are extracting from one VR type to another.
+ unsigned SubRegIdx = RISCV::NoSubRegister;
+ for (const unsigned RCID :
+ {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
+ if (VecRegClassID > RCID && SubRegClassID <= RCID) {
+ VecVT = VecVT.getHalfNumVectorElementsVT();
+ bool IsHi =
+ InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
+ SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
+ getSubregIndexByMVT(VecVT, IsHi));
+ if (IsHi)
+ InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
+ }
+ return {SubRegIdx, InsertExtractIdx};
+}
+
+// Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
+// stores for those types.
+bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
+ return !Subtarget.useRVVForFixedLengthVectors() ||
+ (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
+}
+
+bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
+ if (ScalarTy->isPointerTy())
+ return true;
+
+ if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
+ ScalarTy->isIntegerTy(32))
+ return true;
+
+ if (ScalarTy->isIntegerTy(64))
+ return Subtarget.hasVInstructionsI64();
+
+ if (ScalarTy->isHalfTy())
+ return Subtarget.hasVInstructionsF16();
+ if (ScalarTy->isFloatTy())
+ return Subtarget.hasVInstructionsF32();
+ if (ScalarTy->isDoubleTy())
+ return Subtarget.hasVInstructionsF64();
+
+ return false;
+}
+
+unsigned RISCVTargetLowering::combineRepeatedFPDivisors() const {
+ return NumRepeatedDivisors;
+}
+
+static SDValue getVLOperand(SDValue Op) {
+ assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
+ "Unexpected opcode");
+ bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
+ unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
+ const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
+ RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
+ if (!II)
+ return SDValue();
+ return Op.getOperand(II->VLOperand + 1 + HasChain);
+}
+
+static bool useRVVForFixedLengthVectorVT(MVT VT,
+ const RISCVSubtarget &Subtarget) {
+ assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
+ if (!Subtarget.useRVVForFixedLengthVectors())
+ return false;
+
+ // We only support a set of vector types with a consistent maximum fixed size
+ // across all supported vector element types to avoid legalization issues.
+ // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
+ // fixed-length vector type we support is 1024 bytes.
+ if (VT.getFixedSizeInBits() > 1024 * 8)
+ return false;
+
+ unsigned MinVLen = Subtarget.getRealMinVLen();
+
+ MVT EltVT = VT.getVectorElementType();
+
+ // Don't use RVV for vectors we cannot scalarize if required.
+ switch (EltVT.SimpleTy) {
+ // i1 is supported but has different rules.
+ default:
+ return false;
+ case MVT::i1:
+ // Masks can only use a single register.
+ if (VT.getVectorNumElements() > MinVLen)
+ return false;
+ MinVLen /= 8;
+ break;
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ break;
+ case MVT::i64:
+ if (!Subtarget.hasVInstructionsI64())
+ return false;
+ break;
+ case MVT::f16:
+ if (!Subtarget.hasVInstructionsF16())
+ return false;
+ break;
+ case MVT::f32:
+ if (!Subtarget.hasVInstructionsF32())
+ return false;
+ break;
+ case MVT::f64:
+ if (!Subtarget.hasVInstructionsF64())
+ return false;
+ break;
+ }
+
+ // Reject elements larger than ELEN.
+ if (EltVT.getSizeInBits() > Subtarget.getELEN())
+ return false;
+
+ unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
+ // Don't use RVV for types that don't fit.
+ if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
+ return false;
+
+ // TODO: Perhaps an artificial restriction, but worth having whilst getting
+ // the base fixed length RVV support in place.
+ if (!VT.isPow2VectorType())
+ return false;
+
+ return true;
+}
+
+bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
+ return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
+}
+
+// Return the largest legal scalable vector type that matches VT's element type.
+static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
+ const RISCVSubtarget &Subtarget) {
+ // This may be called before legal types are setup.
+ assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
+ useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
+ "Expected legal fixed length vector!");
+
+ unsigned MinVLen = Subtarget.getRealMinVLen();
+ unsigned MaxELen = Subtarget.getELEN();
+
+ MVT EltVT = VT.getVectorElementType();
+ switch (EltVT.SimpleTy) {
+ default:
+ llvm_unreachable("unexpected element type for RVV container");
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ case MVT::i64:
+ case MVT::f16:
+ case MVT::f32:
+ case MVT::f64: {
+ // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
+ // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
+ // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
+ unsigned NumElts =
+ (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
+ NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
+ assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
+ return MVT::getScalableVectorVT(EltVT, NumElts);
+ }
+ }
+}
+
+static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
+ const RISCVSubtarget &Subtarget) {
+ return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
+ Subtarget);
+}
+
+MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
+ return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
+}
+
+// Grow V to consume an entire RVV register.
+static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ assert(VT.isScalableVector() &&
+ "Expected to convert into a scalable vector!");
+ assert(V.getValueType().isFixedLengthVector() &&
+ "Expected a fixed length vector operand!");
+ SDLoc DL(V);
+ SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
+}
+
+// Shrink V so it's just big enough to maintain a VT's worth of data.
+static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ assert(VT.isFixedLengthVector() &&
+ "Expected to convert into a fixed length vector!");
+ assert(V.getValueType().isScalableVector() &&
+ "Expected a scalable vector operand!");
+ SDLoc DL(V);
+ SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
+}
+
+/// Return the type of the mask type suitable for masking the provided
+/// vector type. This is simply an i1 element type vector of the same
+/// (possibly scalable) length.
+static MVT getMaskTypeFor(MVT VecVT) {
+ assert(VecVT.isVector());
+ ElementCount EC = VecVT.getVectorElementCount();
+ return MVT::getVectorVT(MVT::i1, EC);
+}
+
+/// Creates an all ones mask suitable for masking a vector of type VecTy with
+/// vector length VL. .
+static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL,
+ SelectionDAG &DAG) {
+ MVT MaskVT = getMaskTypeFor(VecVT);
+ return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
+}
+
+static SDValue getVLOp(uint64_t NumElts, SDLoc DL, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ return DAG.getConstant(NumElts, DL, Subtarget.getXLenVT());
+}
+
+static std::pair<SDValue, SDValue>
+getDefaultVLOps(uint64_t NumElts, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
+ SDValue VL = getVLOp(NumElts, DL, DAG, Subtarget);
+ SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
+ return {Mask, VL};
+}
+
+// Gets the two common "VL" operands: an all-ones mask and the vector length.
+// VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
+// the vector type that the fixed-length vector is contained in. Otherwise if
+// VecVT is scalable, then ContainerVT should be the same as VecVT.
+static std::pair<SDValue, SDValue>
+getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ if (VecVT.isFixedLengthVector())
+ return getDefaultVLOps(VecVT.getVectorNumElements(), ContainerVT, DL, DAG,
+ Subtarget);
+ assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
+ MVT XLenVT = Subtarget.getXLenVT();
+ SDValue VL = DAG.getRegister(RISCV::X0, XLenVT);
+ SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
+ return {Mask, VL};
+}
+
+// As above but assuming the given type is a scalable vector type.
+static std::pair<SDValue, SDValue>
+getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ assert(VecVT.isScalableVector() && "Expecting a scalable vector");
+ return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
+}
+
+// The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
+// of either is (currently) supported. This can get us into an infinite loop
+// where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
+// as a ..., etc.
+// Until either (or both) of these can reliably lower any node, reporting that
+// we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
+// the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
+// which is not desirable.
+bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
+ EVT VT, unsigned DefinedValues) const {
+ return false;
+}
+
+static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ // RISCV FP-to-int conversions saturate to the destination register size, but
+ // don't produce 0 for nan. We can use a conversion instruction and fix the
+ // nan case with a compare and a select.
+ SDValue Src = Op.getOperand(0);
+
+ MVT DstVT = Op.getSimpleValueType();
+ EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+
+ bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
+
+ if (!DstVT.isVector()) {
+ // In absense of Zfh, promote f16 to f32, then saturate the result.
+ if (Src.getSimpleValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) {
+ Src = DAG.getNode(ISD::FP_EXTEND, SDLoc(Op), MVT::f32, Src);
+ }
+
+ unsigned Opc;
+ if (SatVT == DstVT)
+ Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
+ else if (DstVT == MVT::i64 && SatVT == MVT::i32)
+ Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
+ else
+ return SDValue();
+ // FIXME: Support other SatVTs by clamping before or after the conversion.
+
+ SDLoc DL(Op);
+ SDValue FpToInt = DAG.getNode(
+ Opc, DL, DstVT, Src,
+ DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
+
+ if (Opc == RISCVISD::FCVT_WU_RV64)
+ FpToInt = DAG.getZeroExtendInReg(FpToInt, DL, MVT::i32);
+
+ SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
+ return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt,
+ ISD::CondCode::SETUO);
+ }
+
+ // Vectors.
+
+ MVT DstEltVT = DstVT.getVectorElementType();
+ MVT SrcVT = Src.getSimpleValueType();
+ MVT SrcEltVT = SrcVT.getVectorElementType();
+ unsigned SrcEltSize = SrcEltVT.getSizeInBits();
+ unsigned DstEltSize = DstEltVT.getSizeInBits();
+
+ // Only handle saturating to the destination type.
+ if (SatVT != DstEltVT)
+ return SDValue();
+
+ // FIXME: Don't support narrowing by more than 1 steps for now.
+ if (SrcEltSize > (2 * DstEltSize))
+ return SDValue();
+
+ MVT DstContainerVT = DstVT;
+ MVT SrcContainerVT = SrcVT;
+ if (DstVT.isFixedLengthVector()) {
+ DstContainerVT = getContainerForFixedLengthVector(DAG, DstVT, Subtarget);
+ SrcContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget);
+ assert(DstContainerVT.getVectorElementCount() ==
+ SrcContainerVT.getVectorElementCount() &&
+ "Expected same element count");
+ Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
+ }
+
+ SDLoc DL(Op);
+
+ auto [Mask, VL] = getDefaultVLOps(DstVT, DstContainerVT, DL, DAG, Subtarget);
+
+ SDValue IsNan = DAG.getNode(RISCVISD::SETCC_VL, DL, Mask.getValueType(),
+ {Src, Src, DAG.getCondCode(ISD::SETNE),
+ DAG.getUNDEF(Mask.getValueType()), Mask, VL});
+
+ // Need to widen by more than 1 step, promote the FP type, then do a widening
+ // convert.
+ if (DstEltSize > (2 * SrcEltSize)) {
+ assert(SrcContainerVT.getVectorElementType() == MVT::f16 && "Unexpected VT!");
+ MVT InterVT = SrcContainerVT.changeVectorElementType(MVT::f32);
+ Src = DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterVT, Src, Mask, VL);
+ }
+
+ unsigned RVVOpc =
+ IsSigned ? RISCVISD::VFCVT_RTZ_X_F_VL : RISCVISD::VFCVT_RTZ_XU_F_VL;
+ SDValue Res = DAG.getNode(RVVOpc, DL, DstContainerVT, Src, Mask, VL);
+
+ SDValue SplatZero = DAG.getNode(
+ RISCVISD::VMV_V_X_VL, DL, DstContainerVT, DAG.getUNDEF(DstContainerVT),
+ DAG.getConstant(0, DL, Subtarget.getXLenVT()), VL);
+ Res = DAG.getNode(RISCVISD::VSELECT_VL, DL, DstContainerVT, IsNan, SplatZero,
+ Res, VL);
+
+ if (DstVT.isFixedLengthVector())
+ Res = convertFromScalableVector(DstVT, Res, DAG, Subtarget);
+
+ return Res;
+}
+
+static RISCVFPRndMode::RoundingMode matchRoundingOp(unsigned Opc) {
+ switch (Opc) {
+ case ISD::FROUNDEVEN:
+ case ISD::VP_FROUNDEVEN:
+ return RISCVFPRndMode::RNE;
+ case ISD::FTRUNC:
+ case ISD::VP_FROUNDTOZERO:
+ return RISCVFPRndMode::RTZ;
+ case ISD::FFLOOR:
+ case ISD::VP_FFLOOR:
+ return RISCVFPRndMode::RDN;
+ case ISD::FCEIL:
+ case ISD::VP_FCEIL:
+ return RISCVFPRndMode::RUP;
+ case ISD::FROUND:
+ case ISD::VP_FROUND:
+ return RISCVFPRndMode::RMM;
+ case ISD::FRINT:
+ return RISCVFPRndMode::DYN;
+ }
+
+ return RISCVFPRndMode::Invalid;
+}
+
+// Expand vector FTRUNC, FCEIL, FFLOOR, FROUND, VP_FCEIL, VP_FFLOOR, VP_FROUND
+// VP_FROUNDEVEN, VP_FROUNDTOZERO, VP_FRINT and VP_FNEARBYINT by converting to
+// the integer domain and back. Taking care to avoid converting values that are
+// nan or already correct.
+static SDValue
+lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(SDValue Op, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ MVT VT = Op.getSimpleValueType();
+ assert(VT.isVector() && "Unexpected type");
+
+ SDLoc DL(Op);
+
+ SDValue Src = Op.getOperand(0);
+
+ MVT ContainerVT = VT;
+ if (VT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
+ Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
+ }
+
+ SDValue Mask, VL;
+ if (Op->isVPOpcode()) {
+ Mask = Op.getOperand(1);
+ VL = Op.getOperand(2);
+ } else {
+ std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
+ }
+
+ // Freeze the source since we are increasing the number of uses.
+ Src = DAG.getFreeze(Src);
+
+ // We do the conversion on the absolute value and fix the sign at the end.
+ SDValue Abs = DAG.getNode(RISCVISD::FABS_VL, DL, ContainerVT, Src, Mask, VL);
+
+ // Determine the largest integer that can be represented exactly. This and
+ // values larger than it don't have any fractional bits so don't need to
+ // be converted.
+ const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(ContainerVT);
+ unsigned Precision = APFloat::semanticsPrecision(FltSem);
+ APFloat MaxVal = APFloat(FltSem);
+ MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
+ /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
+ SDValue MaxValNode =
+ DAG.getConstantFP(MaxVal, DL, ContainerVT.getVectorElementType());
+ SDValue MaxValSplat = DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, ContainerVT,
+ DAG.getUNDEF(ContainerVT), MaxValNode, VL);
+
+ // If abs(Src) was larger than MaxVal or nan, keep it.
+ MVT SetccVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
+ Mask =
+ DAG.getNode(RISCVISD::SETCC_VL, DL, SetccVT,
+ {Abs, MaxValSplat, DAG.getCondCode(ISD::SETOLT),
+ Mask, Mask, VL});
+
+ // Truncate to integer and convert back to FP.
+ MVT IntVT = ContainerVT.changeVectorElementTypeToInteger();
+ MVT XLenVT = Subtarget.getXLenVT();
+ SDValue Truncated;
+
+ switch (Op.getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected opcode");
+ case ISD::FCEIL:
+ case ISD::VP_FCEIL:
+ case ISD::FFLOOR:
+ case ISD::VP_FFLOOR:
+ case ISD::FROUND:
+ case ISD::FROUNDEVEN:
+ case ISD::VP_FROUND:
+ case ISD::VP_FROUNDEVEN:
+ case ISD::VP_FROUNDTOZERO: {
+ RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Op.getOpcode());
+ assert(FRM != RISCVFPRndMode::Invalid);
+ Truncated = DAG.getNode(RISCVISD::VFCVT_RM_X_F_VL, DL, IntVT, Src, Mask,
+ DAG.getTargetConstant(FRM, DL, XLenVT), VL);
+ break;
+ }
+ case ISD::FTRUNC:
+ Truncated = DAG.getNode(RISCVISD::VFCVT_RTZ_X_F_VL, DL, IntVT, Src,
+ Mask, VL);
+ break;
+ case ISD::VP_FRINT:
+ Truncated = DAG.getNode(RISCVISD::VFCVT_X_F_VL, DL, IntVT, Src, Mask, VL);
+ break;
+ case ISD::VP_FNEARBYINT:
+ Truncated = DAG.getNode(RISCVISD::VFROUND_NOEXCEPT_VL, DL, ContainerVT, Src,
+ Mask, VL);
+ break;
+ }
+
+ // VFROUND_NOEXCEPT_VL includes SINT_TO_FP_VL.
+ if (Op.getOpcode() != ISD::VP_FNEARBYINT)
+ Truncated = DAG.getNode(RISCVISD::SINT_TO_FP_VL, DL, ContainerVT, Truncated,
+ Mask, VL);
+
+ // Restore the original sign so that -0.0 is preserved.
+ Truncated = DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Truncated,
+ Src, Src, Mask, VL);
+
+ if (!VT.isFixedLengthVector())
+ return Truncated;
+
+ return convertFromScalableVector(VT, Truncated, DAG, Subtarget);
+}
+
+static SDValue
+lowerFTRUNC_FCEIL_FFLOOR_FROUND(SDValue Op, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ MVT VT = Op.getSimpleValueType();
+ if (VT.isVector())
+ return lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget);
+
+ if (DAG.shouldOptForSize())
+ return SDValue();
+
+ SDLoc DL(Op);
+ SDValue Src = Op.getOperand(0);
+
+ // Create an integer the size of the mantissa with the MSB set. This and all
+ // values larger than it don't have any fractional bits so don't need to be
+ // converted.
+ const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
+ unsigned Precision = APFloat::semanticsPrecision(FltSem);
+ APFloat MaxVal = APFloat(FltSem);
+ MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
+ /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
+ SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
+
+ RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Op.getOpcode());
+ return DAG.getNode(RISCVISD::FROUND, DL, VT, Src, MaxValNode,
+ DAG.getTargetConstant(FRM, DL, Subtarget.getXLenVT()));
+}
+
+struct VIDSequence {
+ int64_t StepNumerator;
+ unsigned StepDenominator;
+ int64_t Addend;
+};
+
+static std::optional<uint64_t> getExactInteger(const APFloat &APF,
+ uint32_t BitWidth) {
+ APSInt ValInt(BitWidth, !APF.isNegative());
+ // We use an arbitrary rounding mode here. If a floating-point is an exact
+ // integer (e.g., 1.0), the rounding mode does not affect the output value. If
+ // the rounding mode changes the output value, then it is not an exact
+ // integer.
+ RoundingMode ArbitraryRM = RoundingMode::TowardZero;
+ bool IsExact;
+ // If it is out of signed integer range, it will return an invalid operation.
+ // If it is not an exact integer, IsExact is false.
+ if ((APF.convertToInteger(ValInt, ArbitraryRM, &IsExact) ==
+ APFloatBase::opInvalidOp) ||
+ !IsExact)
+ return std::nullopt;
+ return ValInt.extractBitsAsZExtValue(BitWidth, 0);
+}
+
+// Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
+// to the (non-zero) step S and start value X. This can be then lowered as the
+// RVV sequence (VID * S) + X, for example.
+// The step S is represented as an integer numerator divided by a positive
+// denominator. Note that the implementation currently only identifies
+// sequences in which either the numerator is +/- 1 or the denominator is 1. It
+// cannot detect 2/3, for example.
+// Note that this method will also match potentially unappealing index
+// sequences, like <i32 0, i32 50939494>, however it is left to the caller to
+// determine whether this is worth generating code for.
+static std::optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
+ unsigned NumElts = Op.getNumOperands();
+ assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
+ bool IsInteger = Op.getValueType().isInteger();
+
+ std::optional<unsigned> SeqStepDenom;
+ std::optional<int64_t> SeqStepNum, SeqAddend;
+ std::optional<std::pair<uint64_t, unsigned>> PrevElt;
+ unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
+ for (unsigned Idx = 0; Idx < NumElts; Idx++) {
+ // Assume undef elements match the sequence; we just have to be careful
+ // when interpolating across them.
+ if (Op.getOperand(Idx).isUndef())
+ continue;
+
+ uint64_t Val;
+ if (IsInteger) {
+ // The BUILD_VECTOR must be all constants.
+ if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
+ return std::nullopt;
+ Val = Op.getConstantOperandVal(Idx) &
+ maskTrailingOnes<uint64_t>(EltSizeInBits);
+ } else {
+ // The BUILD_VECTOR must be all constants.
+ if (!isa<ConstantFPSDNode>(Op.getOperand(Idx)))
+ return std::nullopt;
+ if (auto ExactInteger = getExactInteger(
+ cast<ConstantFPSDNode>(Op.getOperand(Idx))->getValueAPF(),
+ EltSizeInBits))
+ Val = *ExactInteger;
+ else
+ return std::nullopt;
+ }
+
+ if (PrevElt) {
+ // Calculate the step since the last non-undef element, and ensure
+ // it's consistent across the entire sequence.
+ unsigned IdxDiff = Idx - PrevElt->second;
+ int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
+
+ // A zero-value value difference means that we're somewhere in the middle
+ // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
+ // step change before evaluating the sequence.
+ if (ValDiff == 0)
+ continue;
+
+ int64_t Remainder = ValDiff % IdxDiff;
+ // Normalize the step if it's greater than 1.
+ if (Remainder != ValDiff) {
+ // The difference must cleanly divide the element span.
+ if (Remainder != 0)
+ return std::nullopt;
+ ValDiff /= IdxDiff;
+ IdxDiff = 1;
+ }
+
+ if (!SeqStepNum)
+ SeqStepNum = ValDiff;
+ else if (ValDiff != SeqStepNum)
+ return std::nullopt;
+
+ if (!SeqStepDenom)
+ SeqStepDenom = IdxDiff;
+ else if (IdxDiff != *SeqStepDenom)
+ return std::nullopt;
+ }
+
+ // Record this non-undef element for later.
+ if (!PrevElt || PrevElt->first != Val)
+ PrevElt = std::make_pair(Val, Idx);
+ }
+
+ // We need to have logged a step for this to count as a legal index sequence.
+ if (!SeqStepNum || !SeqStepDenom)
+ return std::nullopt;
+
+ // Loop back through the sequence and validate elements we might have skipped
+ // while waiting for a valid step. While doing this, log any sequence addend.
+ for (unsigned Idx = 0; Idx < NumElts; Idx++) {
+ if (Op.getOperand(Idx).isUndef())
+ continue;
+ uint64_t Val;
+ if (IsInteger) {
+ Val = Op.getConstantOperandVal(Idx) &
+ maskTrailingOnes<uint64_t>(EltSizeInBits);
+ } else {
+ Val = *getExactInteger(
+ cast<ConstantFPSDNode>(Op.getOperand(Idx))->getValueAPF(),
+ EltSizeInBits);
+ }
+ uint64_t ExpectedVal =
+ (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
+ int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
+ if (!SeqAddend)
+ SeqAddend = Addend;
+ else if (Addend != SeqAddend)
+ return std::nullopt;
+ }
+
+ assert(SeqAddend && "Must have an addend if we have a step");
+
+ return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
+}
+
+// Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
+// and lower it as a VRGATHER_VX_VL from the source vector.
+static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
+ SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+ SDValue Vec = SplatVal.getOperand(0);
+ // Only perform this optimization on vectors of the same size for simplicity.
+ // Don't perform this optimization for i1 vectors.
+ // FIXME: Support i1 vectors, maybe by promoting to i8?
+ if (Vec.getValueType() != VT || VT.getVectorElementType() == MVT::i1)
+ return SDValue();
+ SDValue Idx = SplatVal.getOperand(1);
+ // The index must be a legal type.
+ if (Idx.getValueType() != Subtarget.getXLenVT())
+ return SDValue();
+
+ MVT ContainerVT = VT;
+ if (VT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
+ Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
+ }
+
+ auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
+
+ SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
+ Idx, DAG.getUNDEF(ContainerVT), Mask, VL);
+
+ if (!VT.isFixedLengthVector())
+ return Gather;
+
+ return convertFromScalableVector(VT, Gather, DAG, Subtarget);
+}
+
+static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ MVT VT = Op.getSimpleValueType();
+ assert(VT.isFixedLengthVector() && "Unexpected vector!");
+
+ MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
+
+ SDLoc DL(Op);
+ auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
+
+ MVT XLenVT = Subtarget.getXLenVT();
+ unsigned NumElts = Op.getNumOperands();
+
+ if (VT.getVectorElementType() == MVT::i1) {
+ if (ISD::isBuildVectorAllZeros(Op.getNode())) {
+ SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
+ return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
+ }
+
+ if (ISD::isBuildVectorAllOnes(Op.getNode())) {
+ SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
+ return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
+ }
+
+ // Lower constant mask BUILD_VECTORs via an integer vector type, in
+ // scalar integer chunks whose bit-width depends on the number of mask
+ // bits and XLEN.
+ // First, determine the most appropriate scalar integer type to use. This
+ // is at most XLenVT, but may be shrunk to a smaller vector element type
+ // according to the size of the final vector - use i8 chunks rather than
+ // XLenVT if we're producing a v8i1. This results in more consistent
+ // codegen across RV32 and RV64.
+ unsigned NumViaIntegerBits =
+ std::min(std::max(NumElts, 8u), Subtarget.getXLen());
+ NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN());
+ if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
+ // If we have to use more than one INSERT_VECTOR_ELT then this
+ // optimization is likely to increase code size; avoid peforming it in
+ // such a case. We can use a load from a constant pool in this case.
+ if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
+ return SDValue();
+ // Now we can create our integer vector type. Note that it may be larger
+ // than the resulting mask type: v4i1 would use v1i8 as its integer type.
+ MVT IntegerViaVecVT =
+ MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
+ divideCeil(NumElts, NumViaIntegerBits));
+
+ uint64_t Bits = 0;
+ unsigned BitPos = 0, IntegerEltIdx = 0;
+ SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
+
+ for (unsigned I = 0; I < NumElts; I++, BitPos++) {
+ // Once we accumulate enough bits to fill our scalar type, insert into
+ // our vector and clear our accumulated data.
+ if (I != 0 && I % NumViaIntegerBits == 0) {
+ if (NumViaIntegerBits <= 32)
+ Bits = SignExtend64<32>(Bits);
+ SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
+ Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
+ Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
+ Bits = 0;
+ BitPos = 0;
+ IntegerEltIdx++;
+ }
+ SDValue V = Op.getOperand(I);
+ bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
+ Bits |= ((uint64_t)BitValue << BitPos);
+ }
+
+ // Insert the (remaining) scalar value into position in our integer
+ // vector type.
+ if (NumViaIntegerBits <= 32)
+ Bits = SignExtend64<32>(Bits);
+ SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
+ Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
+ DAG.getConstant(IntegerEltIdx, DL, XLenVT));
+
+ if (NumElts < NumViaIntegerBits) {
+ // If we're producing a smaller vector than our minimum legal integer
+ // type, bitcast to the equivalent (known-legal) mask type, and extract
+ // our final mask.
+ assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
+ Vec = DAG.getBitcast(MVT::v8i1, Vec);
+ Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
+ DAG.getConstant(0, DL, XLenVT));
+ } else {
+ // Else we must have produced an integer type with the same size as the
+ // mask type; bitcast for the final result.
+ assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
+ Vec = DAG.getBitcast(VT, Vec);
+ }
+
+ return Vec;
+ }
+
+ // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
+ // vector type, we have a legal equivalently-sized i8 type, so we can use
+ // that.
+ MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
+ SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
+
+ SDValue WideVec;
+ if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
+ // For a splat, perform a scalar truncate before creating the wider
+ // vector.
+ assert(Splat.getValueType() == XLenVT &&
+ "Unexpected type for i1 splat value");
+ Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
+ DAG.getConstant(1, DL, XLenVT));
+ WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
+ } else {
+ SmallVector<SDValue, 8> Ops(Op->op_values());
+ WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
+ SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
+ WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
+ }
+
+ return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
+ }
+
+ if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
+ if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
+ return Gather;
+ unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
+ : RISCVISD::VMV_V_X_VL;
+ Splat =
+ DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
+ return convertFromScalableVector(VT, Splat, DAG, Subtarget);
+ }
+
+ // Try and match index sequences, which we can lower to the vid instruction
+ // with optional modifications. An all-undef vector is matched by
+ // getSplatValue, above.
+ if (auto SimpleVID = isSimpleVIDSequence(Op)) {
+ int64_t StepNumerator = SimpleVID->StepNumerator;
+ unsigned StepDenominator = SimpleVID->StepDenominator;
+ int64_t Addend = SimpleVID->Addend;
+
+ assert(StepNumerator != 0 && "Invalid step");
+ bool Negate = false;
+ int64_t SplatStepVal = StepNumerator;
+ unsigned StepOpcode = ISD::MUL;
+ if (StepNumerator != 1) {
+ if (isPowerOf2_64(std::abs(StepNumerator))) {
+ Negate = StepNumerator < 0;
+ StepOpcode = ISD::SHL;
+ SplatStepVal = Log2_64(std::abs(StepNumerator));
+ }
+ }
+
+ // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
+ // threshold since it's the immediate value many RVV instructions accept.
+ // There is no vmul.vi instruction so ensure multiply constant can fit in
+ // a single addi instruction.
+ if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
+ (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
+ isPowerOf2_32(StepDenominator) &&
+ (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) {
+ MVT VIDVT =
+ VT.isFloatingPoint() ? VT.changeVectorElementTypeToInteger() : VT;
+ MVT VIDContainerVT =
+ getContainerForFixedLengthVector(DAG, VIDVT, Subtarget);
+ SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VIDContainerVT, Mask, VL);
+ // Convert right out of the scalable type so we can use standard ISD
+ // nodes for the rest of the computation. If we used scalable types with
+ // these, we'd lose the fixed-length vector info and generate worse
+ // vsetvli code.
+ VID = convertFromScalableVector(VIDVT, VID, DAG, Subtarget);
+ if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
+ (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
+ SDValue SplatStep = DAG.getSplatBuildVector(
+ VIDVT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
+ VID = DAG.getNode(StepOpcode, DL, VIDVT, VID, SplatStep);
+ }
+ if (StepDenominator != 1) {
+ SDValue SplatStep = DAG.getSplatBuildVector(
+ VIDVT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
+ VID = DAG.getNode(ISD::SRL, DL, VIDVT, VID, SplatStep);
+ }
+ if (Addend != 0 || Negate) {
+ SDValue SplatAddend = DAG.getSplatBuildVector(
+ VIDVT, DL, DAG.getConstant(Addend, DL, XLenVT));
+ VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VIDVT, SplatAddend,
+ VID);
+ }
+ if (VT.isFloatingPoint()) {
+ // TODO: Use vfwcvt to reduce register pressure.
+ VID = DAG.getNode(ISD::SINT_TO_FP, DL, VT, VID);
+ }
+ return VID;
+ }
+ }
+
+ // Attempt to detect "hidden" splats, which only reveal themselves as splats
+ // when re-interpreted as a vector with a larger element type. For example,
+ // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
+ // could be instead splat as
+ // v2i32 = build_vector i32 0x00010000, i32 0x00010000
+ // TODO: This optimization could also work on non-constant splats, but it
+ // would require bit-manipulation instructions to construct the splat value.
+ SmallVector<SDValue> Sequence;
+ unsigned EltBitSize = VT.getScalarSizeInBits();
+ const auto *BV = cast<BuildVectorSDNode>(Op);
+ if (VT.isInteger() && EltBitSize < 64 &&
+ ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
+ BV->getRepeatedSequence(Sequence) &&
+ (Sequence.size() * EltBitSize) <= 64) {
+ unsigned SeqLen = Sequence.size();
+ MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
+ MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
+ assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
+ ViaIntVT == MVT::i64) &&
+ "Unexpected sequence type");
+
+ unsigned EltIdx = 0;
+ uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
+ uint64_t SplatValue = 0;
+ // Construct the amalgamated value which can be splatted as this larger
+ // vector type.
+ for (const auto &SeqV : Sequence) {
+ if (!SeqV.isUndef())
+ SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
+ << (EltIdx * EltBitSize));
+ EltIdx++;
+ }
+
+ // On RV64, sign-extend from 32 to 64 bits where possible in order to
+ // achieve better constant materializion.
+ if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
+ SplatValue = SignExtend64<32>(SplatValue);
+
+ // Since we can't introduce illegal i64 types at this stage, we can only
+ // perform an i64 splat on RV32 if it is its own sign-extended value. That
+ // way we can use RVV instructions to splat.
+ assert((ViaIntVT.bitsLE(XLenVT) ||
+ (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
+ "Unexpected bitcast sequence");
+ if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
+ SDValue ViaVL =
+ DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
+ MVT ViaContainerVT =
+ getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
+ SDValue Splat =
+ DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
+ DAG.getUNDEF(ViaContainerVT),
+ DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
+ Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
+ return DAG.getBitcast(VT, Splat);
+ }
+ }
+
+ // Try and optimize BUILD_VECTORs with "dominant values" - these are values
+ // which constitute a large proportion of the elements. In such cases we can
+ // splat a vector with the dominant element and make up the shortfall with
+ // INSERT_VECTOR_ELTs.
+ // Note that this includes vectors of 2 elements by association. The
+ // upper-most element is the "dominant" one, allowing us to use a splat to
+ // "insert" the upper element, and an insert of the lower element at position
+ // 0, which improves codegen.
+ SDValue DominantValue;
+ unsigned MostCommonCount = 0;
+ DenseMap<SDValue, unsigned> ValueCounts;
+ unsigned NumUndefElts =
+ count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
+
+ // Track the number of scalar loads we know we'd be inserting, estimated as
+ // any non-zero floating-point constant. Other kinds of element are either
+ // already in registers or are materialized on demand. The threshold at which
+ // a vector load is more desirable than several scalar materializion and
+ // vector-insertion instructions is not known.
+ unsigned NumScalarLoads = 0;
+
+ for (SDValue V : Op->op_values()) {
+ if (V.isUndef())
+ continue;
+
+ ValueCounts.insert(std::make_pair(V, 0));
+ unsigned &Count = ValueCounts[V];
+
+ if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
+ NumScalarLoads += !CFP->isExactlyValue(+0.0);
+
+ // Is this value dominant? In case of a tie, prefer the highest element as
+ // it's cheaper to insert near the beginning of a vector than it is at the
+ // end.
+ if (++Count >= MostCommonCount) {
+ DominantValue = V;
+ MostCommonCount = Count;
+ }
+ }
+
+ assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
+ unsigned NumDefElts = NumElts - NumUndefElts;
+ unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
+
+ // Don't perform this optimization when optimizing for size, since
+ // materializing elements and inserting them tends to cause code bloat.
+ if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
+ ((MostCommonCount > DominantValueCountThreshold) ||
+ (ValueCounts.size() <= Log2_32(NumDefElts)))) {
+ // Start by splatting the most common element.
+ SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
+
+ DenseSet<SDValue> Processed{DominantValue};
+ MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
+ for (const auto &OpIdx : enumerate(Op->ops())) {
+ const SDValue &V = OpIdx.value();
+ if (V.isUndef() || !Processed.insert(V).second)
+ continue;
+ if (ValueCounts[V] == 1) {
+ Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
+ DAG.getConstant(OpIdx.index(), DL, XLenVT));
+ } else {
+ // Blend in all instances of this value using a VSELECT, using a
+ // mask where each bit signals whether that element is the one
+ // we're after.
+ SmallVector<SDValue> Ops;
+ transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
+ return DAG.getConstant(V == V1, DL, XLenVT);
+ });
+ Vec = DAG.getNode(ISD::VSELECT, DL, VT,
+ DAG.getBuildVector(SelMaskTy, DL, Ops),
+ DAG.getSplatBuildVector(VT, DL, V), Vec);
+ }
+ }
+
+ return Vec;
+ }
+
+ return SDValue();
+}
+
+static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
+ SDValue Lo, SDValue Hi, SDValue VL,
+ SelectionDAG &DAG) {
+ if (!Passthru)
+ Passthru = DAG.getUNDEF(VT);
+ if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
+ int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
+ int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
+ // If Hi constant is all the same sign bit as Lo, lower this as a custom
+ // node in order to try and match RVV vector/scalar instructions.
+ if ((LoC >> 31) == HiC)
+ return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
+
+ // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
+ // vmv.v.x whose EEW = 32 to lower it.
+ auto *Const = dyn_cast<ConstantSDNode>(VL);
+ if (LoC == HiC && Const && Const->isAllOnesValue()) {
+ MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
+ // TODO: if vl <= min(VLMAX), we can also do this. But we could not
+ // access the subtarget here now.
+ auto InterVec = DAG.getNode(
+ RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
+ DAG.getRegister(RISCV::X0, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
+ }
+ }
+
+ // Fall back to a stack store and stride x0 vector load.
+ return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
+ Hi, VL);
+}
+
+// Called by type legalization to handle splat of i64 on RV32.
+// FIXME: We can optimize this when the type has sign or zero bits in one
+// of the halves.
+static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
+ SDValue Scalar, SDValue VL,
+ SelectionDAG &DAG) {
+ assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
+ DAG.getConstant(0, DL, MVT::i32));
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
+ DAG.getConstant(1, DL, MVT::i32));
+ return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
+}
+
+// This function lowers a splat of a scalar operand Splat with the vector
+// length VL. It ensures the final sequence is type legal, which is useful when
+// lowering a splat after type legalization.
+static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
+ MVT VT, SDLoc DL, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ bool HasPassthru = Passthru && !Passthru.isUndef();
+ if (!HasPassthru && !Passthru)
+ Passthru = DAG.getUNDEF(VT);
+ if (VT.isFloatingPoint()) {
+ // If VL is 1, we could use vfmv.s.f.
+ if (isOneConstant(VL))
+ return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
+ return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
+ }
+
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ // Simplest case is that the operand needs to be promoted to XLenVT.
+ if (Scalar.getValueType().bitsLE(XLenVT)) {
+ // If the operand is a constant, sign extend to increase our chances
+ // of being able to use a .vi instruction. ANY_EXTEND would become a
+ // a zero extend and the simm5 check in isel would fail.
+ // FIXME: Should we ignore the upper bits in isel instead?
+ unsigned ExtOpc =
+ isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
+ Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
+ ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
+ // If VL is 1 and the scalar value won't benefit from immediate, we could
+ // use vmv.s.x.
+ if (isOneConstant(VL) &&
+ (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
+ return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
+ return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
+ }
+
+ assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
+ "Unexpected scalar for splat lowering!");
+
+ if (isOneConstant(VL) && isNullConstant(Scalar))
+ return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
+ DAG.getConstant(0, DL, XLenVT), VL);
+
+ // Otherwise use the more complicated splatting algorithm.
+ return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
+}
+
+static MVT getLMUL1VT(MVT VT) {
+ assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
+ "Unexpected vector MVT");
+ return MVT::getScalableVectorVT(
+ VT.getVectorElementType(),
+ RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
+}
+
+// This function lowers an insert of a scalar operand Scalar into lane
+// 0 of the vector regardless of the value of VL. The contents of the
+// remaining lanes of the result vector are unspecified. VL is assumed
+// to be non-zero.
+static SDValue lowerScalarInsert(SDValue Scalar, SDValue VL,
+ MVT VT, SDLoc DL, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ const MVT XLenVT = Subtarget.getXLenVT();
+
+ SDValue Passthru = DAG.getUNDEF(VT);
+ if (VT.isFloatingPoint()) {
+ // TODO: Use vmv.v.i for appropriate constants
+ // Use M1 or smaller to avoid over constraining register allocation
+ const MVT M1VT = getLMUL1VT(VT);
+ auto InnerVT = VT.bitsLE(M1VT) ? VT : M1VT;
+ SDValue Result = DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, InnerVT,
+ DAG.getUNDEF(InnerVT), Scalar, VL);
+ if (VT != InnerVT)
+ Result = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
+ DAG.getUNDEF(VT),
+ Result, DAG.getConstant(0, DL, XLenVT));
+ return Result;
+ }
+
+
+ // Avoid the tricky legalization cases by falling back to using the
+ // splat code which already handles it gracefully.
+ if (!Scalar.getValueType().bitsLE(XLenVT))
+ return lowerScalarSplat(DAG.getUNDEF(VT), Scalar,
+ DAG.getConstant(1, DL, XLenVT),
+ VT, DL, DAG, Subtarget);
+
+ // If the operand is a constant, sign extend to increase our chances
+ // of being able to use a .vi instruction. ANY_EXTEND would become a
+ // a zero extend and the simm5 check in isel would fail.
+ // FIXME: Should we ignore the upper bits in isel instead?
+ unsigned ExtOpc =
+ isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
+ Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
+ // We use a vmv.v.i if possible. We limit this to LMUL1. LMUL2 or
+ // higher would involve overly constraining the register allocator for
+ // no purpose.
+ if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar)) {
+ if (!isNullConstant(Scalar) && isInt<5>(Const->getSExtValue()) &&
+ VT.bitsLE(getLMUL1VT(VT)))
+ return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
+ }
+ // Use M1 or smaller to avoid over constraining register allocation
+ const MVT M1VT = getLMUL1VT(VT);
+ auto InnerVT = VT.bitsLE(M1VT) ? VT : M1VT;
+ SDValue Result = DAG.getNode(RISCVISD::VMV_S_X_VL, DL, InnerVT,
+ DAG.getUNDEF(InnerVT), Scalar, VL);
+ if (VT != InnerVT)
+ Result = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
+ DAG.getUNDEF(VT),
+ Result, DAG.getConstant(0, DL, XLenVT));
+ return Result;
+
+}
+
+static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
+ const RISCVSubtarget &Subtarget) {
+ // We need to be able to widen elements to the next larger integer type.
+ if (VT.getScalarSizeInBits() >= Subtarget.getELEN())
+ return false;
+
+ int Size = Mask.size();
+ assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
+
+ int Srcs[] = {-1, -1};
+ for (int i = 0; i != Size; ++i) {
+ // Ignore undef elements.
+ if (Mask[i] < 0)
+ continue;
+
+ // Is this an even or odd element.
+ int Pol = i % 2;
+
+ // Ensure we consistently use the same source for this element polarity.
+ int Src = Mask[i] / Size;
+ if (Srcs[Pol] < 0)
+ Srcs[Pol] = Src;
+ if (Srcs[Pol] != Src)
+ return false;
+
+ // Make sure the element within the source is appropriate for this element
+ // in the destination.
+ int Elt = Mask[i] % Size;
+ if (Elt != i / 2)
+ return false;
+ }
+
+ // We need to find a source for each polarity and they can't be the same.
+ if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
+ return false;
+
+ // Swap the sources if the second source was in the even polarity.
+ SwapSources = Srcs[0] > Srcs[1];
+
+ return true;
+}
+
+/// Match shuffles that concatenate two vectors, rotate the concatenation,
+/// and then extract the original number of elements from the rotated result.
+/// This is equivalent to vector.splice or X86's PALIGNR instruction. The
+/// returned rotation amount is for a rotate right, where elements move from
+/// higher elements to lower elements. \p LoSrc indicates the first source
+/// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
+/// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
+/// 0 or 1 if a rotation is found.
+///
+/// NOTE: We talk about rotate to the right which matches how bit shift and
+/// rotate instructions are described where LSBs are on the right, but LLVM IR
+/// and the table below write vectors with the lowest elements on the left.
+static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
+ int Size = Mask.size();
+
+ // We need to detect various ways of spelling a rotation:
+ // [11, 12, 13, 14, 15, 0, 1, 2]
+ // [-1, 12, 13, 14, -1, -1, 1, -1]
+ // [-1, -1, -1, -1, -1, -1, 1, 2]
+ // [ 3, 4, 5, 6, 7, 8, 9, 10]
+ // [-1, 4, 5, 6, -1, -1, 9, -1]
+ // [-1, 4, 5, 6, -1, -1, -1, -1]
+ int Rotation = 0;
+ LoSrc = -1;
+ HiSrc = -1;
+ for (int i = 0; i != Size; ++i) {
+ int M = Mask[i];
+ if (M < 0)
+ continue;
+
+ // Determine where a rotate vector would have started.
+ int StartIdx = i - (M % Size);
+ // The identity rotation isn't interesting, stop.
+ if (StartIdx == 0)
+ return -1;
+
+ // If we found the tail of a vector the rotation must be the missing
+ // front. If we found the head of a vector, it must be how much of the
+ // head.
+ int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
+
+ if (Rotation == 0)
+ Rotation = CandidateRotation;
+ else if (Rotation != CandidateRotation)
+ // The rotations don't match, so we can't match this mask.
+ return -1;
+
+ // Compute which value this mask is pointing at.
+ int MaskSrc = M < Size ? 0 : 1;
+
+ // Compute which of the two target values this index should be assigned to.
+ // This reflects whether the high elements are remaining or the low elemnts
+ // are remaining.
+ int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
+
+ // Either set up this value if we've not encountered it before, or check
+ // that it remains consistent.
+ if (TargetSrc < 0)
+ TargetSrc = MaskSrc;
+ else if (TargetSrc != MaskSrc)
+ // This may be a rotation, but it pulls from the inputs in some
+ // unsupported interleaving.
+ return -1;
+ }
+
+ // Check that we successfully analyzed the mask, and normalize the results.
+ assert(Rotation != 0 && "Failed to locate a viable rotation!");
+ assert((LoSrc >= 0 || HiSrc >= 0) &&
+ "Failed to find a rotated input vector!");
+
+ return Rotation;
+}
+
+// Lower the following shuffles to vnsrl.
+// t34: v8i8 = extract_subvector t11, Constant:i64<0>
+// t33: v8i8 = extract_subvector t11, Constant:i64<8>
+// a) t35: v8i8 = vector_shuffle<0,2,4,6,8,10,12,14> t34, t33
+// b) t35: v8i8 = vector_shuffle<1,3,5,7,9,11,13,15> t34, t33
+static SDValue lowerVECTOR_SHUFFLEAsVNSRL(const SDLoc &DL, MVT VT,
+ MVT ContainerVT, SDValue V1,
+ SDValue V2, SDValue TrueMask,
+ SDValue VL, ArrayRef<int> Mask,
+ const RISCVSubtarget &Subtarget,
+ SelectionDAG &DAG) {
+ // Need to be able to widen the vector.
+ if (VT.getScalarSizeInBits() >= Subtarget.getELEN())
+ return SDValue();
+
+ // Both input must be extracts.
+ if (V1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
+ V2.getOpcode() != ISD::EXTRACT_SUBVECTOR)
+ return SDValue();
+
+ // Extracting from the same source.
+ SDValue Src = V1.getOperand(0);
+ if (Src != V2.getOperand(0))
+ return SDValue();
+
+ // Src needs to have twice the number of elements.
+ if (Src.getValueType().getVectorNumElements() != (Mask.size() * 2))
+ return SDValue();
+
+ // The extracts must extract the two halves of the source.
+ if (V1.getConstantOperandVal(1) != 0 ||
+ V2.getConstantOperandVal(1) != Mask.size())
+ return SDValue();
+
+ // First index must be the first even or odd element from V1.
+ if (Mask[0] != 0 && Mask[0] != 1)
+ return SDValue();
+
+ // The others must increase by 2 each time.
+ // TODO: Support undef elements?
+ for (unsigned i = 1; i != Mask.size(); ++i)
+ if (Mask[i] != Mask[i - 1] + 2)
+ return SDValue();
+
+ // Convert the source using a container type with twice the elements. Since
+ // source VT is legal and twice this VT, we know VT isn't LMUL=8 so it is
+ // safe to double.
+ MVT DoubleContainerVT =
+ MVT::getVectorVT(ContainerVT.getVectorElementType(),
+ ContainerVT.getVectorElementCount() * 2);
+ Src = convertToScalableVector(DoubleContainerVT, Src, DAG, Subtarget);
+
+ // Convert the vector to a wider integer type with the original element
+ // count. This also converts FP to int.
+ unsigned EltBits = ContainerVT.getScalarSizeInBits();
+ MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
+ MVT WideIntContainerVT =
+ MVT::getVectorVT(WideIntEltVT, ContainerVT.getVectorElementCount());
+ Src = DAG.getBitcast(WideIntContainerVT, Src);
+
+ // Convert to the integer version of the container type.
+ MVT IntEltVT = MVT::getIntegerVT(EltBits);
+ MVT IntContainerVT =
+ MVT::getVectorVT(IntEltVT, ContainerVT.getVectorElementCount());
+
+ // If we want even elements, then the shift amount is 0. Otherwise, shift by
+ // the original element size.
+ unsigned Shift = Mask[0] == 0 ? 0 : EltBits;
+ SDValue SplatShift = DAG.getNode(
+ RISCVISD::VMV_V_X_VL, DL, IntContainerVT, DAG.getUNDEF(ContainerVT),
+ DAG.getConstant(Shift, DL, Subtarget.getXLenVT()), VL);
+ SDValue Res =
+ DAG.getNode(RISCVISD::VNSRL_VL, DL, IntContainerVT, Src, SplatShift,
+ DAG.getUNDEF(IntContainerVT), TrueMask, VL);
+ // Cast back to FP if needed.
+ Res = DAG.getBitcast(ContainerVT, Res);
+
+ return convertFromScalableVector(VT, Res, DAG, Subtarget);
+}
+
+static SDValue
+getVSlidedown(SelectionDAG &DAG, const RISCVSubtarget &Subtarget, SDLoc DL,
+ EVT VT, SDValue Merge, SDValue Op, SDValue Offset, SDValue Mask,
+ SDValue VL,
+ unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED) {
+ if (Merge.isUndef())
+ Policy = RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC;
+ SDValue PolicyOp = DAG.getTargetConstant(Policy, DL, Subtarget.getXLenVT());
+ SDValue Ops[] = {Merge, Op, Offset, Mask, VL, PolicyOp};
+ return DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VT, Ops);
+}
+
+static SDValue
+getVSlideup(SelectionDAG &DAG, const RISCVSubtarget &Subtarget, SDLoc DL,
+ EVT VT, SDValue Merge, SDValue Op, SDValue Offset, SDValue Mask,
+ SDValue VL,
+ unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED) {
+ if (Merge.isUndef())
+ Policy = RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC;
+ SDValue PolicyOp = DAG.getTargetConstant(Policy, DL, Subtarget.getXLenVT());
+ SDValue Ops[] = {Merge, Op, Offset, Mask, VL, PolicyOp};
+ return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VT, Ops);
+}
+
+// Lower the following shuffle to vslidedown.
+// a)
+// t49: v8i8 = extract_subvector t13, Constant:i64<0>
+// t109: v8i8 = extract_subvector t13, Constant:i64<8>
+// t108: v8i8 = vector_shuffle<1,2,3,4,5,6,7,8> t49, t106
+// b)
+// t69: v16i16 = extract_subvector t68, Constant:i64<0>
+// t23: v8i16 = extract_subvector t69, Constant:i64<0>
+// t29: v4i16 = extract_subvector t23, Constant:i64<4>
+// t26: v8i16 = extract_subvector t69, Constant:i64<8>
+// t30: v4i16 = extract_subvector t26, Constant:i64<0>
+// t54: v4i16 = vector_shuffle<1,2,3,4> t29, t30
+static SDValue lowerVECTOR_SHUFFLEAsVSlidedown(const SDLoc &DL, MVT VT,
+ SDValue V1, SDValue V2,
+ ArrayRef<int> Mask,
+ const RISCVSubtarget &Subtarget,
+ SelectionDAG &DAG) {
+ auto findNonEXTRACT_SUBVECTORParent =
+ [](SDValue Parent) -> std::pair<SDValue, uint64_t> {
+ uint64_t Offset = 0;
+ while (Parent.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
+ // EXTRACT_SUBVECTOR can be used to extract a fixed-width vector from
+ // a scalable vector. But we don't want to match the case.
+ Parent.getOperand(0).getSimpleValueType().isFixedLengthVector()) {
+ Offset += Parent.getConstantOperandVal(1);
+ Parent = Parent.getOperand(0);
+ }
+ return std::make_pair(Parent, Offset);
+ };
+
+ auto [V1Src, V1IndexOffset] = findNonEXTRACT_SUBVECTORParent(V1);
+ auto [V2Src, V2IndexOffset] = findNonEXTRACT_SUBVECTORParent(V2);
+
+ // Extracting from the same source.
+ SDValue Src = V1Src;
+ if (Src != V2Src)
+ return SDValue();
+
+ // Rebuild mask because Src may be from multiple EXTRACT_SUBVECTORs.
+ SmallVector<int, 16> NewMask(Mask);
+ for (size_t i = 0; i != NewMask.size(); ++i) {
+ if (NewMask[i] == -1)
+ continue;
+
+ if (static_cast<size_t>(NewMask[i]) < NewMask.size()) {
+ NewMask[i] = NewMask[i] + V1IndexOffset;
+ } else {
+ // Minus NewMask.size() is needed. Otherwise, the b case would be
+ // <5,6,7,12> instead of <5,6,7,8>.
+ NewMask[i] = NewMask[i] - NewMask.size() + V2IndexOffset;
+ }
+ }
+
+ // First index must be known and non-zero. It will be used as the slidedown
+ // amount.
+ if (NewMask[0] <= 0)
+ return SDValue();
+
+ // NewMask is also continuous.
+ for (unsigned i = 1; i != NewMask.size(); ++i)
+ if (NewMask[i - 1] + 1 != NewMask[i])
+ return SDValue();
+
+ MVT XLenVT = Subtarget.getXLenVT();
+ MVT SrcVT = Src.getSimpleValueType();
+ MVT ContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget);
+ auto [TrueMask, VL] = getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
+ SDValue Slidedown =
+ getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
+ convertToScalableVector(ContainerVT, Src, DAG, Subtarget),
+ DAG.getConstant(NewMask[0], DL, XLenVT), TrueMask, VL);
+ return DAG.getNode(
+ ISD::EXTRACT_SUBVECTOR, DL, VT,
+ convertFromScalableVector(SrcVT, Slidedown, DAG, Subtarget),
+ DAG.getConstant(0, DL, XLenVT));
+}
+
+static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ SDLoc DL(Op);
+ MVT XLenVT = Subtarget.getXLenVT();
+ MVT VT = Op.getSimpleValueType();
+ unsigned NumElts = VT.getVectorNumElements();
+ ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
+
+ MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
+
+ auto [TrueMask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
+
+ if (SVN->isSplat()) {
+ const int Lane = SVN->getSplatIndex();
+ if (Lane >= 0) {
+ MVT SVT = VT.getVectorElementType();
+
+ // Turn splatted vector load into a strided load with an X0 stride.
+ SDValue V = V1;
+ // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
+ // with undef.
+ // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
+ int Offset = Lane;
+ if (V.getOpcode() == ISD::CONCAT_VECTORS) {
+ int OpElements =
+ V.getOperand(0).getSimpleValueType().getVectorNumElements();
+ V = V.getOperand(Offset / OpElements);
+ Offset %= OpElements;
+ }
+
+ // We need to ensure the load isn't atomic or volatile.
+ if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
+ auto *Ld = cast<LoadSDNode>(V);
+ Offset *= SVT.getStoreSize();
+ SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
+ TypeSize::Fixed(Offset), DL);
+
+ // If this is SEW=64 on RV32, use a strided load with a stride of x0.
+ if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
+ SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
+ SDValue IntID =
+ DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
+ SDValue Ops[] = {Ld->getChain(),
+ IntID,
+ DAG.getUNDEF(ContainerVT),
+ NewAddr,
+ DAG.getRegister(RISCV::X0, XLenVT),
+ VL};
+ SDValue NewLoad = DAG.getMemIntrinsicNode(
+ ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
+ DAG.getMachineFunction().getMachineMemOperand(
+ Ld->getMemOperand(), Offset, SVT.getStoreSize()));
+ DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
+ return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
+ }
+
+ // Otherwise use a scalar load and splat. This will give the best
+ // opportunity to fold a splat into the operation. ISel can turn it into
+ // the x0 strided load if we aren't able to fold away the select.
+ if (SVT.isFloatingPoint())
+ V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
+ Ld->getPointerInfo().getWithOffset(Offset),
+ Ld->getOriginalAlign(),
+ Ld->getMemOperand()->getFlags());
+ else
+ V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
+ Ld->getPointerInfo().getWithOffset(Offset), SVT,
+ Ld->getOriginalAlign(),
+ Ld->getMemOperand()->getFlags());
+ DAG.makeEquivalentMemoryOrdering(Ld, V);
+
+ unsigned Opc =
+ VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
+ SDValue Splat =
+ DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
+ return convertFromScalableVector(VT, Splat, DAG, Subtarget);
+ }
+
+ V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
+ assert(Lane < (int)NumElts && "Unexpected lane!");
+ SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT,
+ V1, DAG.getConstant(Lane, DL, XLenVT),
+ DAG.getUNDEF(ContainerVT), TrueMask, VL);
+ return convertFromScalableVector(VT, Gather, DAG, Subtarget);
+ }
+ }
+
+ ArrayRef<int> Mask = SVN->getMask();
+
+ if (SDValue V =
+ lowerVECTOR_SHUFFLEAsVSlidedown(DL, VT, V1, V2, Mask, Subtarget, DAG))
+ return V;
+
+ // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
+ // be undef which can be handled with a single SLIDEDOWN/UP.
+ int LoSrc, HiSrc;
+ int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
+ if (Rotation > 0) {
+ SDValue LoV, HiV;
+ if (LoSrc >= 0) {
+ LoV = LoSrc == 0 ? V1 : V2;
+ LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
+ }
+ if (HiSrc >= 0) {
+ HiV = HiSrc == 0 ? V1 : V2;
+ HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
+ }
+
+ // We found a rotation. We need to slide HiV down by Rotation. Then we need
+ // to slide LoV up by (NumElts - Rotation).
+ unsigned InvRotate = NumElts - Rotation;
+
+ SDValue Res = DAG.getUNDEF(ContainerVT);
+ if (HiV) {
+ // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
+ // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
+ // causes multiple vsetvlis in some test cases such as lowering
+ // reduce.mul
+ SDValue DownVL = VL;
+ if (LoV)
+ DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
+ Res = getVSlidedown(DAG, Subtarget, DL, ContainerVT, Res, HiV,
+ DAG.getConstant(Rotation, DL, XLenVT), TrueMask,
+ DownVL);
+ }
+ if (LoV)
+ Res = getVSlideup(DAG, Subtarget, DL, ContainerVT, Res, LoV,
+ DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL,
+ RISCVII::TAIL_AGNOSTIC);
+
+ return convertFromScalableVector(VT, Res, DAG, Subtarget);
+ }
+
+ if (SDValue V = lowerVECTOR_SHUFFLEAsVNSRL(
+ DL, VT, ContainerVT, V1, V2, TrueMask, VL, Mask, Subtarget, DAG))
+ return V;
+
+ // Detect an interleave shuffle and lower to
+ // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
+ bool SwapSources;
+ if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
+ // Swap sources if needed.
+ if (SwapSources)
+ std::swap(V1, V2);
+
+ // Extract the lower half of the vectors.
+ MVT HalfVT = VT.getHalfNumVectorElementsVT();
+ V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
+ DAG.getConstant(0, DL, XLenVT));
+ V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
+ DAG.getConstant(0, DL, XLenVT));
+
+ // Double the element width and halve the number of elements in an int type.
+ unsigned EltBits = VT.getScalarSizeInBits();
+ MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
+ MVT WideIntVT =
+ MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
+ // Convert this to a scalable vector. We need to base this on the
+ // destination size to ensure there's always a type with a smaller LMUL.
+ MVT WideIntContainerVT =
+ getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
+
+ // Convert sources to scalable vectors with the same element count as the
+ // larger type.
+ MVT HalfContainerVT = MVT::getVectorVT(
+ VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
+ V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
+ V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
+
+ // Cast sources to integer.
+ MVT IntEltVT = MVT::getIntegerVT(EltBits);
+ MVT IntHalfVT =
+ MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
+ V1 = DAG.getBitcast(IntHalfVT, V1);
+ V2 = DAG.getBitcast(IntHalfVT, V2);
+
+ // Freeze V2 since we use it twice and we need to be sure that the add and
+ // multiply see the same value.
+ V2 = DAG.getFreeze(V2);
+
+ // Recreate TrueMask using the widened type's element count.
+ TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG);
+
+ // Widen V1 and V2 with 0s and add one copy of V2 to V1.
+ SDValue Add =
+ DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, V2,
+ DAG.getUNDEF(WideIntContainerVT), TrueMask, VL);
+ // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
+ SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
+ DAG.getUNDEF(IntHalfVT),
+ DAG.getAllOnesConstant(DL, XLenVT), VL);
+ SDValue WidenMul =
+ DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, V2, Multiplier,
+ DAG.getUNDEF(WideIntContainerVT), TrueMask, VL);
+ // Add the new copies to our previous addition giving us 2^eltbits copies of
+ // V2. This is equivalent to shifting V2 left by eltbits. This should
+ // combine with the vwmulu.vv above to form vwmaccu.vv.
+ Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
+ DAG.getUNDEF(WideIntContainerVT), TrueMask, VL);
+ // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
+ // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
+ // vector VT.
+ ContainerVT =
+ MVT::getVectorVT(VT.getVectorElementType(),
+ WideIntContainerVT.getVectorElementCount() * 2);
+ Add = DAG.getBitcast(ContainerVT, Add);
+ return convertFromScalableVector(VT, Add, DAG, Subtarget);
+ }
+
+ // Detect shuffles which can be re-expressed as vector selects; these are
+ // shuffles in which each element in the destination is taken from an element
+ // at the corresponding index in either source vectors.
+ bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
+ int MaskIndex = MaskIdx.value();
+ return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
+ });
+
+ assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
+
+ SmallVector<SDValue> MaskVals;
+ // As a backup, shuffles can be lowered via a vrgather instruction, possibly
+ // merged with a second vrgather.
+ SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
+
+ // By default we preserve the original operand order, and use a mask to
+ // select LHS as true and RHS as false. However, since RVV vector selects may
+ // feature splats but only on the LHS, we may choose to invert our mask and
+ // instead select between RHS and LHS.
+ bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
+ bool InvertMask = IsSelect == SwapOps;
+
+ // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
+ // half.
+ DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
+
+ // Now construct the mask that will be used by the vselect or blended
+ // vrgather operation. For vrgathers, construct the appropriate indices into
+ // each vector.
+ for (int MaskIndex : Mask) {
+ bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
+ MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
+ if (!IsSelect) {
+ bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
+ GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
+ ? DAG.getConstant(MaskIndex, DL, XLenVT)
+ : DAG.getUNDEF(XLenVT));
+ GatherIndicesRHS.push_back(
+ IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
+ : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
+ if (IsLHSOrUndefIndex && MaskIndex >= 0)
+ ++LHSIndexCounts[MaskIndex];
+ if (!IsLHSOrUndefIndex)
+ ++RHSIndexCounts[MaskIndex - NumElts];
+ }
+ }
+
+ if (SwapOps) {
+ std::swap(V1, V2);
+ std::swap(GatherIndicesLHS, GatherIndicesRHS);
+ }
+
+ assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
+ SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
+
+ if (IsSelect)
+ return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
+
+ if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
+ // On such a large vector we're unable to use i8 as the index type.
+ // FIXME: We could promote the index to i16 and use vrgatherei16, but that
+ // may involve vector splitting if we're already at LMUL=8, or our
+ // user-supplied maximum fixed-length LMUL.
+ return SDValue();
+ }
+
+ unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
+ unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
+ MVT IndexVT = VT.changeTypeToInteger();
+ // Since we can't introduce illegal index types at this stage, use i16 and
+ // vrgatherei16 if the corresponding index type for plain vrgather is greater
+ // than XLenVT.
+ if (IndexVT.getScalarType().bitsGT(XLenVT)) {
+ GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
+ IndexVT = IndexVT.changeVectorElementType(MVT::i16);
+ }
+
+ MVT IndexContainerVT =
+ ContainerVT.changeVectorElementType(IndexVT.getScalarType());
+
+ SDValue Gather;
+ // TODO: This doesn't trigger for i64 vectors on RV32, since there we
+ // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
+ if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
+ Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
+ Subtarget);
+ } else {
+ V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
+ // If only one index is used, we can use a "splat" vrgather.
+ // TODO: We can splat the most-common index and fix-up any stragglers, if
+ // that's beneficial.
+ if (LHSIndexCounts.size() == 1) {
+ int SplatIndex = LHSIndexCounts.begin()->getFirst();
+ Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
+ DAG.getConstant(SplatIndex, DL, XLenVT),
+ DAG.getUNDEF(ContainerVT), TrueMask, VL);
+ } else {
+ SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
+ LHSIndices =
+ convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
+
+ Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
+ DAG.getUNDEF(ContainerVT), TrueMask, VL);
+ }
+ }
+
+ // If a second vector operand is used by this shuffle, blend it in with an
+ // additional vrgather.
+ if (!V2.isUndef()) {
+ V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
+
+ MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
+ SelectMask =
+ convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
+
+ // If only one index is used, we can use a "splat" vrgather.
+ // TODO: We can splat the most-common index and fix-up any stragglers, if
+ // that's beneficial.
+ if (RHSIndexCounts.size() == 1) {
+ int SplatIndex = RHSIndexCounts.begin()->getFirst();
+ Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
+ DAG.getConstant(SplatIndex, DL, XLenVT), Gather,
+ SelectMask, VL);
+ } else {
+ SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
+ RHSIndices =
+ convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
+ Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, Gather,
+ SelectMask, VL);
+ }
+ }
+
+ return convertFromScalableVector(VT, Gather, DAG, Subtarget);
+}
+
+bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
+ // Support splats for any type. These should type legalize well.
+ if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
+ return true;
+
+ // Only support legal VTs for other shuffles for now.
+ if (!isTypeLegal(VT))
+ return false;
+
+ MVT SVT = VT.getSimpleVT();
+
+ bool SwapSources;
+ int LoSrc, HiSrc;
+ return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
+ isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
+}
+
+// Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
+// the exponent.
+SDValue
+RISCVTargetLowering::lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op,
+ SelectionDAG &DAG) const {
+ MVT VT = Op.getSimpleValueType();
+ unsigned EltSize = VT.getScalarSizeInBits();
+ SDValue Src = Op.getOperand(0);
+ SDLoc DL(Op);
+
+ // We choose FP type that can represent the value if possible. Otherwise, we
+ // use rounding to zero conversion for correct exponent of the result.
+ // TODO: Use f16 for i8 when possible?
+ MVT FloatEltVT = (EltSize >= 32) ? MVT::f64 : MVT::f32;
+ if (!isTypeLegal(MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount())))
+ FloatEltVT = MVT::f32;
+ MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
+
+ // Legal types should have been checked in the RISCVTargetLowering
+ // constructor.
+ // TODO: Splitting may make sense in some cases.
+ assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
+ "Expected legal float type!");
+
+ // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
+ // The trailing zero count is equal to log2 of this single bit value.
+ if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
+ SDValue Neg = DAG.getNegative(Src, DL, VT);
+ Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
+ }
+
+ // We have a legal FP type, convert to it.
+ SDValue FloatVal;
+ if (FloatVT.bitsGT(VT)) {
+ FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
+ } else {
+ // Use RTZ to avoid rounding influencing exponent of FloatVal.
+ MVT ContainerVT = VT;
+ if (VT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VT);
+ Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
+ }
+
+ auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
+ SDValue RTZRM =
+ DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT());
+ MVT ContainerFloatVT =
+ MVT::getVectorVT(FloatEltVT, ContainerVT.getVectorElementCount());
+ FloatVal = DAG.getNode(RISCVISD::VFCVT_RM_F_XU_VL, DL, ContainerFloatVT,
+ Src, Mask, RTZRM, VL);
+ if (VT.isFixedLengthVector())
+ FloatVal = convertFromScalableVector(FloatVT, FloatVal, DAG, Subtarget);
+ }
+ // Bitcast to integer and shift the exponent to the LSB.
+ EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
+ SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
+ unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
+ SDValue Exp = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
+ DAG.getConstant(ShiftAmt, DL, IntVT));
+ // Restore back to original type. Truncation after SRL is to generate vnsrl.
+ if (IntVT.bitsLT(VT))
+ Exp = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Exp);
+ else if (IntVT.bitsGT(VT))
+ Exp = DAG.getNode(ISD::TRUNCATE, DL, VT, Exp);
+ // The exponent contains log2 of the value in biased form.
+ unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
+
+ // For trailing zeros, we just need to subtract the bias.
+ if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
+ return DAG.getNode(ISD::SUB, DL, VT, Exp,
+ DAG.getConstant(ExponentBias, DL, VT));
+
+ // For leading zeros, we need to remove the bias and convert from log2 to
+ // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
+ unsigned Adjust = ExponentBias + (EltSize - 1);
+ SDValue Res =
+ DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Exp);
+ // The above result with zero input equals to Adjust which is greater than
+ // EltSize. Hence, we can do min(Res, EltSize) for CTLZ.
+ if (Op.getOpcode() == ISD::CTLZ)
+ Res = DAG.getNode(ISD::UMIN, DL, VT, Res, DAG.getConstant(EltSize, DL, VT));
+ return Res;
+}
+
+// While RVV has alignment restrictions, we should always be able to load as a
+// legal equivalently-sized byte-typed vector instead. This method is
+// responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
+// the load is already correctly-aligned, it returns SDValue().
+SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
+ SelectionDAG &DAG) const {
+ auto *Load = cast<LoadSDNode>(Op);
+ assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
+
+ if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
+ Load->getMemoryVT(),
+ *Load->getMemOperand()))
+ return SDValue();
+
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+ unsigned EltSizeBits = VT.getScalarSizeInBits();
+ assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
+ "Unexpected unaligned RVV load type");
+ MVT NewVT =
+ MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
+ assert(NewVT.isValid() &&
+ "Expecting equally-sized RVV vector types to be legal");
+ SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
+ Load->getPointerInfo(), Load->getOriginalAlign(),
+ Load->getMemOperand()->getFlags());
+ return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
+}
+
+// While RVV has alignment restrictions, we should always be able to store as a
+// legal equivalently-sized byte-typed vector instead. This method is
+// responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
+// returns SDValue() if the store is already correctly aligned.
+SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
+ SelectionDAG &DAG) const {
+ auto *Store = cast<StoreSDNode>(Op);
+ assert(Store && Store->getValue().getValueType().isVector() &&
+ "Expected vector store");
+
+ if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
+ Store->getMemoryVT(),
+ *Store->getMemOperand()))
+ return SDValue();
+
+ SDLoc DL(Op);
+ SDValue StoredVal = Store->getValue();
+ MVT VT = StoredVal.getSimpleValueType();
+ unsigned EltSizeBits = VT.getScalarSizeInBits();
+ assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
+ "Unexpected unaligned RVV store type");
+ MVT NewVT =
+ MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
+ assert(NewVT.isValid() &&
+ "Expecting equally-sized RVV vector types to be legal");
+ StoredVal = DAG.getBitcast(NewVT, StoredVal);
+ return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
+ Store->getPointerInfo(), Store->getOriginalAlign(),
+ Store->getMemOperand()->getFlags());
+}
+
+static SDValue lowerConstant(SDValue Op, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ assert(Op.getValueType() == MVT::i64 && "Unexpected VT");
+
+ int64_t Imm = cast<ConstantSDNode>(Op)->getSExtValue();
+
+ // All simm32 constants should be handled by isel.
+ // NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making
+ // this check redundant, but small immediates are common so this check
+ // should have better compile time.
+ if (isInt<32>(Imm))
+ return Op;
+
+ // We only need to cost the immediate, if constant pool lowering is enabled.
+ if (!Subtarget.useConstantPoolForLargeInts())
+ return Op;
+
+ RISCVMatInt::InstSeq Seq =
+ RISCVMatInt::generateInstSeq(Imm, Subtarget.getFeatureBits());
+ if (Seq.size() <= Subtarget.getMaxBuildIntsCost())
+ return Op;
+
+ // Expand to a constant pool using the default expansion code.
+ return SDValue();
+}
+
+static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ SyncScope::ID FenceSSID =
+ static_cast<SyncScope::ID>(Op.getConstantOperandVal(2));
+
+ // singlethread fences only synchronize with signal handlers on the same
+ // thread and thus only need to preserve instruction order, not actually
+ // enforce memory ordering.
+ if (FenceSSID == SyncScope::SingleThread)
+ // MEMBARRIER is a compiler barrier; it codegens to a no-op.
+ return DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
+
+ return Op;
+}
+
+SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
+ SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default:
+ report_fatal_error("unimplemented operand");
+ case ISD::ATOMIC_FENCE:
+ return LowerATOMIC_FENCE(Op, DAG);
+ case ISD::GlobalAddress:
+ return lowerGlobalAddress(Op, DAG);
+ case ISD::BlockAddress:
+ return lowerBlockAddress(Op, DAG);
+ case ISD::ConstantPool:
+ return lowerConstantPool(Op, DAG);
+ case ISD::JumpTable:
+ return lowerJumpTable(Op, DAG);
+ case ISD::GlobalTLSAddress:
+ return lowerGlobalTLSAddress(Op, DAG);
+ case ISD::Constant:
+ return lowerConstant(Op, DAG, Subtarget);
+ case ISD::SELECT:
+ return lowerSELECT(Op, DAG);
+ case ISD::BRCOND:
+ return lowerBRCOND(Op, DAG);
+ case ISD::VASTART:
+ return lowerVASTART(Op, DAG);
+ case ISD::FRAMEADDR:
+ return lowerFRAMEADDR(Op, DAG);
+ case ISD::RETURNADDR:
+ return lowerRETURNADDR(Op, DAG);
+ case ISD::SHL_PARTS:
+ return lowerShiftLeftParts(Op, DAG);
+ case ISD::SRA_PARTS:
+ return lowerShiftRightParts(Op, DAG, true);
+ case ISD::SRL_PARTS:
+ return lowerShiftRightParts(Op, DAG, false);
+ case ISD::BITCAST: {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue Op0 = Op.getOperand(0);
+ EVT Op0VT = Op0.getValueType();
+ MVT XLenVT = Subtarget.getXLenVT();
+ if (VT == MVT::f16 && Op0VT == MVT::i16 &&
+ Subtarget.hasStdExtZfhOrZfhmin()) {
+ SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
+ SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
+ return FPConv;
+ }
+ if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
+ Subtarget.hasStdExtF()) {
+ SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
+ SDValue FPConv =
+ DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
+ return FPConv;
+ }
+
+ // Consider other scalar<->scalar casts as legal if the types are legal.
+ // Otherwise expand them.
+ if (!VT.isVector() && !Op0VT.isVector()) {
+ if (isTypeLegal(VT) && isTypeLegal(Op0VT))
+ return Op;
+ return SDValue();
+ }
+
+ assert(!VT.isScalableVector() && !Op0VT.isScalableVector() &&
+ "Unexpected types");
+
+ if (VT.isFixedLengthVector()) {
+ // We can handle fixed length vector bitcasts with a simple replacement
+ // in isel.
+ if (Op0VT.isFixedLengthVector())
+ return Op;
+ // When bitcasting from scalar to fixed-length vector, insert the scalar
+ // into a one-element vector of the result type, and perform a vector
+ // bitcast.
+ if (!Op0VT.isVector()) {
+ EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
+ if (!isTypeLegal(BVT))
+ return SDValue();
+ return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
+ DAG.getUNDEF(BVT), Op0,
+ DAG.getConstant(0, DL, XLenVT)));
+ }
+ return SDValue();
+ }
+ // Custom-legalize bitcasts from fixed-length vector types to scalar types
+ // thus: bitcast the vector to a one-element vector type whose element type
+ // is the same as the result type, and extract the first element.
+ if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
+ EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
+ if (!isTypeLegal(BVT))
+ return SDValue();
+ SDValue BVec = DAG.getBitcast(BVT, Op0);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
+ DAG.getConstant(0, DL, XLenVT));
+ }
+ return SDValue();
+ }
+ case ISD::INTRINSIC_WO_CHAIN:
+ return LowerINTRINSIC_WO_CHAIN(Op, DAG);
+ case ISD::INTRINSIC_W_CHAIN:
+ return LowerINTRINSIC_W_CHAIN(Op, DAG);
+ case ISD::INTRINSIC_VOID:
+ return LowerINTRINSIC_VOID(Op, DAG);
+ case ISD::BITREVERSE: {
+ MVT VT = Op.getSimpleValueType();
+ SDLoc DL(Op);
+ assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
+ assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
+ // Expand bitreverse to a bswap(rev8) followed by brev8.
+ SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
+ return DAG.getNode(RISCVISD::BREV8, DL, VT, BSwap);
+ }
+ case ISD::TRUNCATE:
+ // Only custom-lower vector truncates
+ if (!Op.getSimpleValueType().isVector())
+ return Op;
+ return lowerVectorTruncLike(Op, DAG);
+ case ISD::ANY_EXTEND:
+ case ISD::ZERO_EXTEND:
+ if (Op.getOperand(0).getValueType().isVector() &&
+ Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
+ return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
+ return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
+ case ISD::SIGN_EXTEND:
+ if (Op.getOperand(0).getValueType().isVector() &&
+ Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
+ return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
+ return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
+ case ISD::SPLAT_VECTOR_PARTS:
+ return lowerSPLAT_VECTOR_PARTS(Op, DAG);
+ case ISD::INSERT_VECTOR_ELT:
+ return lowerINSERT_VECTOR_ELT(Op, DAG);
+ case ISD::EXTRACT_VECTOR_ELT:
+ return lowerEXTRACT_VECTOR_ELT(Op, DAG);
+ case ISD::VSCALE: {
+ MVT VT = Op.getSimpleValueType();
+ SDLoc DL(Op);
+ SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
+ // We define our scalable vector types for lmul=1 to use a 64 bit known
+ // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
+ // vscale as VLENB / 8.
+ static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
+ if (Subtarget.getRealMinVLen() < RISCV::RVVBitsPerBlock)
+ report_fatal_error("Support for VLEN==32 is incomplete.");
+ // We assume VLENB is a multiple of 8. We manually choose the best shift
+ // here because SimplifyDemandedBits isn't always able to simplify it.
+ uint64_t Val = Op.getConstantOperandVal(0);
+ if (isPowerOf2_64(Val)) {
+ uint64_t Log2 = Log2_64(Val);
+ if (Log2 < 3)
+ return DAG.getNode(ISD::SRL, DL, VT, VLENB,
+ DAG.getConstant(3 - Log2, DL, VT));
+ if (Log2 > 3)
+ return DAG.getNode(ISD::SHL, DL, VT, VLENB,
+ DAG.getConstant(Log2 - 3, DL, VT));
+ return VLENB;
+ }
+ // If the multiplier is a multiple of 8, scale it down to avoid needing
+ // to shift the VLENB value.
+ if ((Val % 8) == 0)
+ return DAG.getNode(ISD::MUL, DL, VT, VLENB,
+ DAG.getConstant(Val / 8, DL, VT));
+
+ SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
+ DAG.getConstant(3, DL, VT));
+ return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
+ }
+ case ISD::FPOWI: {
+ // Custom promote f16 powi with illegal i32 integer type on RV64. Once
+ // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
+ if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
+ Op.getOperand(1).getValueType() == MVT::i32) {
+ SDLoc DL(Op);
+ SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
+ SDValue Powi =
+ DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
+ return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
+ DAG.getIntPtrConstant(0, DL, /*isTarget=*/true));
+ }
+ return SDValue();
+ }
+ case ISD::FP_EXTEND:
+ case ISD::FP_ROUND:
+ if (!Op.getValueType().isVector())
+ return Op;
+ return lowerVectorFPExtendOrRoundLike(Op, DAG);
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT:
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP: {
+ // RVV can only do fp<->int conversions to types half/double the size as
+ // the source. We custom-lower any conversions that do two hops into
+ // sequences.
+ MVT VT = Op.getSimpleValueType();
+ if (!VT.isVector())
+ return Op;
+ SDLoc DL(Op);
+ SDValue Src = Op.getOperand(0);
+ MVT EltVT = VT.getVectorElementType();
+ MVT SrcVT = Src.getSimpleValueType();
+ MVT SrcEltVT = SrcVT.getVectorElementType();
+ unsigned EltSize = EltVT.getSizeInBits();
+ unsigned SrcEltSize = SrcEltVT.getSizeInBits();
+ assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
+ "Unexpected vector element types");
+
+ bool IsInt2FP = SrcEltVT.isInteger();
+ // Widening conversions
+ if (EltSize > (2 * SrcEltSize)) {
+ if (IsInt2FP) {
+ // Do a regular integer sign/zero extension then convert to float.
+ MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize / 2),
+ VT.getVectorElementCount());
+ unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
+ ? ISD::ZERO_EXTEND
+ : ISD::SIGN_EXTEND;
+ SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
+ return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
+ }
+ // FP2Int
+ assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
+ // Do one doubling fp_extend then complete the operation by converting
+ // to int.
+ MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
+ SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
+ return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
+ }
+
+ // Narrowing conversions
+ if (SrcEltSize > (2 * EltSize)) {
+ if (IsInt2FP) {
+ // One narrowing int_to_fp, then an fp_round.
+ assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
+ MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
+ SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
+ return DAG.getFPExtendOrRound(Int2FP, DL, VT);
+ }
+ // FP2Int
+ // One narrowing fp_to_int, then truncate the integer. If the float isn't
+ // representable by the integer, the result is poison.
+ MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
+ VT.getVectorElementCount());
+ SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
+ return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
+ }
+
+ // Scalable vectors can exit here. Patterns will handle equally-sized
+ // conversions halving/doubling ones.
+ if (!VT.isFixedLengthVector())
+ return Op;
+
+ // For fixed-length vectors we lower to a custom "VL" node.
+ unsigned RVVOpc = 0;
+ switch (Op.getOpcode()) {
+ default:
+ llvm_unreachable("Impossible opcode");
+ case ISD::FP_TO_SINT:
+ RVVOpc = RISCVISD::VFCVT_RTZ_X_F_VL;
+ break;
+ case ISD::FP_TO_UINT:
+ RVVOpc = RISCVISD::VFCVT_RTZ_XU_F_VL;
+ break;
+ case ISD::SINT_TO_FP:
+ RVVOpc = RISCVISD::SINT_TO_FP_VL;
+ break;
+ case ISD::UINT_TO_FP:
+ RVVOpc = RISCVISD::UINT_TO_FP_VL;
+ break;
+ }
+
+ MVT ContainerVT = getContainerForFixedLengthVector(VT);
+ MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
+ assert(ContainerVT.getVectorElementCount() == SrcContainerVT.getVectorElementCount() &&
+ "Expected same element count");
+
+ auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
+
+ Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
+ Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
+ return convertFromScalableVector(VT, Src, DAG, Subtarget);
+ }
+ case ISD::FP_TO_SINT_SAT:
+ case ISD::FP_TO_UINT_SAT:
+ return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
+ case ISD::FTRUNC:
+ case ISD::FCEIL:
+ case ISD::FFLOOR:
+ case ISD::FRINT:
+ case ISD::FROUND:
+ case ISD::FROUNDEVEN:
+ return lowerFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget);
+ case ISD::VECREDUCE_ADD:
+ case ISD::VECREDUCE_UMAX:
+ case ISD::VECREDUCE_SMAX:
+ case ISD::VECREDUCE_UMIN:
+ case ISD::VECREDUCE_SMIN:
+ return lowerVECREDUCE(Op, DAG);
+ case ISD::VECREDUCE_AND:
+ case ISD::VECREDUCE_OR:
+ case ISD::VECREDUCE_XOR:
+ if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
+ return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
+ return lowerVECREDUCE(Op, DAG);
+ case ISD::VECREDUCE_FADD:
+ case ISD::VECREDUCE_SEQ_FADD:
+ case ISD::VECREDUCE_FMIN:
+ case ISD::VECREDUCE_FMAX:
+ return lowerFPVECREDUCE(Op, DAG);
+ case ISD::VP_REDUCE_ADD:
+ case ISD::VP_REDUCE_UMAX:
+ case ISD::VP_REDUCE_SMAX:
+ case ISD::VP_REDUCE_UMIN:
+ case ISD::VP_REDUCE_SMIN:
+ case ISD::VP_REDUCE_FADD:
+ case ISD::VP_REDUCE_SEQ_FADD:
+ case ISD::VP_REDUCE_FMIN:
+ case ISD::VP_REDUCE_FMAX:
+ return lowerVPREDUCE(Op, DAG);
+ case ISD::VP_REDUCE_AND:
+ case ISD::VP_REDUCE_OR:
+ case ISD::VP_REDUCE_XOR:
+ if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
+ return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
+ return lowerVPREDUCE(Op, DAG);
+ case ISD::INSERT_SUBVECTOR:
+ return lowerINSERT_SUBVECTOR(Op, DAG);
+ case ISD::EXTRACT_SUBVECTOR:
+ return lowerEXTRACT_SUBVECTOR(Op, DAG);
+ case ISD::STEP_VECTOR:
+ return lowerSTEP_VECTOR(Op, DAG);
+ case ISD::VECTOR_REVERSE:
+ return lowerVECTOR_REVERSE(Op, DAG);
+ case ISD::VECTOR_SPLICE:
+ return lowerVECTOR_SPLICE(Op, DAG);
+ case ISD::BUILD_VECTOR:
+ return lowerBUILD_VECTOR(Op, DAG, Subtarget);
+ case ISD::SPLAT_VECTOR:
+ if (Op.getValueType().getVectorElementType() == MVT::i1)
+ return lowerVectorMaskSplat(Op, DAG);
+ return SDValue();
+ case ISD::VECTOR_SHUFFLE:
+ return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
+ case ISD::CONCAT_VECTORS: {
+ // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
+ // better than going through the stack, as the default expansion does.
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+ unsigned NumOpElts =
+ Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
+ SDValue Vec = DAG.getUNDEF(VT);
+ for (const auto &OpIdx : enumerate(Op->ops())) {
+ SDValue SubVec = OpIdx.value();
+ // Don't insert undef subvectors.
+ if (SubVec.isUndef())
+ continue;
+ Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
+ DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
+ }
+ return Vec;
+ }
+ case ISD::LOAD:
+ if (auto V = expandUnalignedRVVLoad(Op, DAG))
+ return V;
+ if (Op.getValueType().isFixedLengthVector())
+ return lowerFixedLengthVectorLoadToRVV(Op, DAG);
+ return Op;
+ case ISD::STORE:
+ if (auto V = expandUnalignedRVVStore(Op, DAG))
+ return V;
+ if (Op.getOperand(1).getValueType().isFixedLengthVector())
+ return lowerFixedLengthVectorStoreToRVV(Op, DAG);
+ return Op;
+ case ISD::MLOAD:
+ case ISD::VP_LOAD:
+ return lowerMaskedLoad(Op, DAG);
+ case ISD::MSTORE:
+ case ISD::VP_STORE:
+ return lowerMaskedStore(Op, DAG);
+ case ISD::SELECT_CC: {
+ // This occurs because we custom legalize SETGT and SETUGT for setcc. That
+ // causes LegalizeDAG to think we need to custom legalize select_cc. Expand
+ // into separate SETCC+SELECT_CC just like LegalizeDAG.
+ SDValue Tmp1 = Op.getOperand(0);
+ SDValue Tmp2 = Op.getOperand(1);
+ SDValue True = Op.getOperand(2);
+ SDValue False = Op.getOperand(3);
+ EVT VT = Op.getValueType();
+ SDValue CC = Op.getOperand(4);
+ EVT CmpVT = Tmp1.getValueType();
+ EVT CCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT);
+ SDLoc DL(Op);
+ SDValue Cond =
+ DAG.getNode(ISD::SETCC, DL, CCVT, Tmp1, Tmp2, CC, Op->getFlags());
+ return DAG.getSelect(DL, VT, Cond, True, False);
+ }
+ case ISD::SETCC: {
+ MVT OpVT = Op.getOperand(0).getSimpleValueType();
+ if (OpVT.isScalarInteger()) {
+ MVT VT = Op.getSimpleValueType();
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ ISD::CondCode CCVal = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ assert((CCVal == ISD::SETGT || CCVal == ISD::SETUGT) &&
+ "Unexpected CondCode");
+
+ SDLoc DL(Op);
+
+ // If the RHS is a constant in the range [-2049, 0) or (0, 2046], we can
+ // convert this to the equivalent of (set(u)ge X, C+1) by using
+ // (xori (slti(u) X, C+1), 1). This avoids materializing a small constant
+ // in a register.
+ if (isa<ConstantSDNode>(RHS)) {
+ int64_t Imm = cast<ConstantSDNode>(RHS)->getSExtValue();
+ if (Imm != 0 && isInt<12>((uint64_t)Imm + 1)) {
+ // X > -1 should have been replaced with false.
+ assert((CCVal != ISD::SETUGT || Imm != -1) &&
+ "Missing canonicalization");
+ // Using getSetCCSwappedOperands will convert SET(U)GT->SET(U)LT.
+ CCVal = ISD::getSetCCSwappedOperands(CCVal);
+ SDValue SetCC = DAG.getSetCC(
+ DL, VT, LHS, DAG.getConstant(Imm + 1, DL, OpVT), CCVal);
+ return DAG.getLogicalNOT(DL, SetCC, VT);
+ }
+ }
+
+ // Not a constant we could handle, swap the operands and condition code to
+ // SETLT/SETULT.
+ CCVal = ISD::getSetCCSwappedOperands(CCVal);
+ return DAG.getSetCC(DL, VT, RHS, LHS, CCVal);
+ }
+
+ return lowerFixedLengthVectorSetccToRVV(Op, DAG);
+ }
+ case ISD::ADD:
+ return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL, /*HasMergeOp*/ true);
+ case ISD::SUB:
+ return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL, /*HasMergeOp*/ true);
+ case ISD::MUL:
+ return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL, /*HasMergeOp*/ true);
+ case ISD::MULHS:
+ return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL, /*HasMergeOp*/ true);
+ case ISD::MULHU:
+ return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL, /*HasMergeOp*/ true);
+ case ISD::AND:
+ return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
+ RISCVISD::AND_VL);
+ case ISD::OR:
+ return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
+ RISCVISD::OR_VL);
+ case ISD::XOR:
+ return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
+ RISCVISD::XOR_VL);
+ case ISD::SDIV:
+ return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL, /*HasMergeOp*/ true);
+ case ISD::SREM:
+ return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL, /*HasMergeOp*/ true);
+ case ISD::UDIV:
+ return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL, /*HasMergeOp*/ true);
+ case ISD::UREM:
+ return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL, /*HasMergeOp*/ true);
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL:
+ if (Op.getSimpleValueType().isFixedLengthVector())
+ return lowerFixedLengthVectorShiftToRVV(Op, DAG);
+ // This can be called for an i32 shift amount that needs to be promoted.
+ assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
+ "Unexpected custom legalisation");
+ return SDValue();
+ case ISD::SADDSAT:
+ return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL,
+ /*HasMergeOp*/ true);
+ case ISD::UADDSAT:
+ return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL,
+ /*HasMergeOp*/ true);
+ case ISD::SSUBSAT:
+ return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL,
+ /*HasMergeOp*/ true);
+ case ISD::USUBSAT:
+ return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL,
+ /*HasMergeOp*/ true);
+ case ISD::FADD:
+ return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL, /*HasMergeOp*/ true);
+ case ISD::FSUB:
+ return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL, /*HasMergeOp*/ true);
+ case ISD::FMUL:
+ return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL, /*HasMergeOp*/ true);
+ case ISD::FDIV:
+ return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL, /*HasMergeOp*/ true);
+ case ISD::FNEG:
+ return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
+ case ISD::FABS:
+ return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
+ case ISD::FSQRT:
+ return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
+ case ISD::FMA:
+ return lowerToScalableOp(Op, DAG, RISCVISD::VFMADD_VL);
+ case ISD::SMIN:
+ return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL, /*HasMergeOp*/ true);
+ case ISD::SMAX:
+ return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL, /*HasMergeOp*/ true);
+ case ISD::UMIN:
+ return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL, /*HasMergeOp*/ true);
+ case ISD::UMAX:
+ return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL, /*HasMergeOp*/ true);
+ case ISD::FMINNUM:
+ return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL,
+ /*HasMergeOp*/ true);
+ case ISD::FMAXNUM:
+ return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL,
+ /*HasMergeOp*/ true);
+ case ISD::ABS:
+ case ISD::VP_ABS:
+ return lowerABS(Op, DAG);
+ case ISD::CTLZ:
+ case ISD::CTLZ_ZERO_UNDEF:
+ case ISD::CTTZ_ZERO_UNDEF:
+ return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
+ case ISD::VSELECT:
+ return lowerFixedLengthVectorSelectToRVV(Op, DAG);
+ case ISD::FCOPYSIGN:
+ return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
+ case ISD::MGATHER:
+ case ISD::VP_GATHER:
+ return lowerMaskedGather(Op, DAG);
+ case ISD::MSCATTER:
+ case ISD::VP_SCATTER:
+ return lowerMaskedScatter(Op, DAG);
+ case ISD::GET_ROUNDING:
+ return lowerGET_ROUNDING(Op, DAG);
+ case ISD::SET_ROUNDING:
+ return lowerSET_ROUNDING(Op, DAG);
+ case ISD::EH_DWARF_CFA:
+ return lowerEH_DWARF_CFA(Op, DAG);
+ case ISD::VP_SELECT:
+ return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
+ case ISD::VP_MERGE:
+ return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
+ case ISD::VP_ADD:
+ return lowerVPOp(Op, DAG, RISCVISD::ADD_VL, /*HasMergeOp*/ true);
+ case ISD::VP_SUB:
+ return lowerVPOp(Op, DAG, RISCVISD::SUB_VL, /*HasMergeOp*/ true);
+ case ISD::VP_MUL:
+ return lowerVPOp(Op, DAG, RISCVISD::MUL_VL, /*HasMergeOp*/ true);
+ case ISD::VP_SDIV:
+ return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL, /*HasMergeOp*/ true);
+ case ISD::VP_UDIV:
+ return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL, /*HasMergeOp*/ true);
+ case ISD::VP_SREM:
+ return lowerVPOp(Op, DAG, RISCVISD::SREM_VL, /*HasMergeOp*/ true);
+ case ISD::VP_UREM:
+ return lowerVPOp(Op, DAG, RISCVISD::UREM_VL, /*HasMergeOp*/ true);
+ case ISD::VP_AND:
+ return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
+ case ISD::VP_OR:
+ return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
+ case ISD::VP_XOR:
+ return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
+ case ISD::VP_ASHR:
+ return lowerVPOp(Op, DAG, RISCVISD::SRA_VL, /*HasMergeOp*/ true);
+ case ISD::VP_LSHR:
+ return lowerVPOp(Op, DAG, RISCVISD::SRL_VL, /*HasMergeOp*/ true);
+ case ISD::VP_SHL:
+ return lowerVPOp(Op, DAG, RISCVISD::SHL_VL, /*HasMergeOp*/ true);
+ case ISD::VP_FADD:
+ return lowerVPOp(Op, DAG, RISCVISD::FADD_VL, /*HasMergeOp*/ true);
+ case ISD::VP_FSUB:
+ return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL, /*HasMergeOp*/ true);
+ case ISD::VP_FMUL:
+ return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL, /*HasMergeOp*/ true);
+ case ISD::VP_FDIV:
+ return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL, /*HasMergeOp*/ true);
+ case ISD::VP_FNEG:
+ return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
+ case ISD::VP_FABS:
+ return lowerVPOp(Op, DAG, RISCVISD::FABS_VL);
+ case ISD::VP_SQRT:
+ return lowerVPOp(Op, DAG, RISCVISD::FSQRT_VL);
+ case ISD::VP_FMA:
+ return lowerVPOp(Op, DAG, RISCVISD::VFMADD_VL);
+ case ISD::VP_FMINNUM:
+ return lowerVPOp(Op, DAG, RISCVISD::FMINNUM_VL, /*HasMergeOp*/ true);
+ case ISD::VP_FMAXNUM:
+ return lowerVPOp(Op, DAG, RISCVISD::FMAXNUM_VL, /*HasMergeOp*/ true);
+ case ISD::VP_FCOPYSIGN:
+ return lowerVPOp(Op, DAG, RISCVISD::FCOPYSIGN_VL, /*HasMergeOp*/ true);
+ case ISD::VP_SIGN_EXTEND:
+ case ISD::VP_ZERO_EXTEND:
+ if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
+ return lowerVPExtMaskOp(Op, DAG);
+ return lowerVPOp(Op, DAG,
+ Op.getOpcode() == ISD::VP_SIGN_EXTEND
+ ? RISCVISD::VSEXT_VL
+ : RISCVISD::VZEXT_VL);
+ case ISD::VP_TRUNCATE:
+ return lowerVectorTruncLike(Op, DAG);
+ case ISD::VP_FP_EXTEND:
+ case ISD::VP_FP_ROUND:
+ return lowerVectorFPExtendOrRoundLike(Op, DAG);
+ case ISD::VP_FP_TO_SINT:
+ return lowerVPFPIntConvOp(Op, DAG, RISCVISD::VFCVT_RTZ_X_F_VL);
+ case ISD::VP_FP_TO_UINT:
+ return lowerVPFPIntConvOp(Op, DAG, RISCVISD::VFCVT_RTZ_XU_F_VL);
+ case ISD::VP_SINT_TO_FP:
+ return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL);
+ case ISD::VP_UINT_TO_FP:
+ return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL);
+ case ISD::VP_SETCC:
+ if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
+ return lowerVPSetCCMaskOp(Op, DAG);
+ return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL, /*HasMergeOp*/ true);
+ case ISD::VP_SMIN:
+ return lowerVPOp(Op, DAG, RISCVISD::SMIN_VL, /*HasMergeOp*/ true);
+ case ISD::VP_SMAX:
+ return lowerVPOp(Op, DAG, RISCVISD::SMAX_VL, /*HasMergeOp*/ true);
+ case ISD::VP_UMIN:
+ return lowerVPOp(Op, DAG, RISCVISD::UMIN_VL, /*HasMergeOp*/ true);
+ case ISD::VP_UMAX:
+ return lowerVPOp(Op, DAG, RISCVISD::UMAX_VL, /*HasMergeOp*/ true);
+ case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
+ return lowerVPStridedLoad(Op, DAG);
+ case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
+ return lowerVPStridedStore(Op, DAG);
+ case ISD::VP_FCEIL:
+ case ISD::VP_FFLOOR:
+ case ISD::VP_FRINT:
+ case ISD::VP_FNEARBYINT:
+ case ISD::VP_FROUND:
+ case ISD::VP_FROUNDEVEN:
+ case ISD::VP_FROUNDTOZERO:
+ return lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget);
+ }
+}
+
+static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
+ SelectionDAG &DAG, unsigned Flags) {
+ return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
+}
+
+static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
+ SelectionDAG &DAG, unsigned Flags) {
+ return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
+ Flags);
+}
+
+static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
+ SelectionDAG &DAG, unsigned Flags) {
+ return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
+ N->getOffset(), Flags);
+}
+
+static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
+ SelectionDAG &DAG, unsigned Flags) {
+ return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
+}
+
+template <class NodeTy>
+SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
+ bool IsLocal) const {
+ SDLoc DL(N);
+ EVT Ty = getPointerTy(DAG.getDataLayout());
+
+ // When HWASAN is used and tagging of global variables is enabled
+ // they should be accessed via the GOT, since the tagged address of a global
+ // is incompatible with existing code models. This also applies to non-pic
+ // mode.
+ if (isPositionIndependent() || Subtarget.allowTaggedGlobals()) {
+ SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
+ if (IsLocal && !Subtarget.allowTaggedGlobals())
+ // Use PC-relative addressing to access the symbol. This generates the
+ // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
+ // %pcrel_lo(auipc)).
+ return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
+
+ // Use PC-relative addressing to access the GOT for this symbol, then load
+ // the address from the GOT. This generates the pattern (PseudoLA sym),
+ // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineMemOperand *MemOp = MF.getMachineMemOperand(
+ MachinePointerInfo::getGOT(MF),
+ MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
+ MachineMemOperand::MOInvariant,
+ LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
+ SDValue Load =
+ DAG.getMemIntrinsicNode(RISCVISD::LA, DL, DAG.getVTList(Ty, MVT::Other),
+ {DAG.getEntryNode(), Addr}, Ty, MemOp);
+ return Load;
+ }
+
+ switch (getTargetMachine().getCodeModel()) {
+ default:
+ report_fatal_error("Unsupported code model for lowering");
+ case CodeModel::Small: {
+ // Generate a sequence for accessing addresses within the first 2 GiB of
+ // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
+ SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
+ SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
+ SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
+ return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNHi, AddrLo);
+ }
+ case CodeModel::Medium: {
+ // Generate a sequence for accessing addresses within any 2GiB range within
+ // the address space. This generates the pattern (PseudoLLA sym), which
+ // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
+ SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
+ return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
+ }
+ }
+}
+
+SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
+ assert(N->getOffset() == 0 && "unexpected offset in global node");
+ return getAddr(N, DAG, N->getGlobal()->isDSOLocal());
+}
+
+SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
+
+ return getAddr(N, DAG);
+}
+
+SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
+ SelectionDAG &DAG) const {
+ ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
+
+ return getAddr(N, DAG);
+}
+
+SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
+ SelectionDAG &DAG) const {
+ JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
+
+ return getAddr(N, DAG);
+}
+
+SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
+ SelectionDAG &DAG,
+ bool UseGOT) const {
+ SDLoc DL(N);
+ EVT Ty = getPointerTy(DAG.getDataLayout());
+ const GlobalValue *GV = N->getGlobal();
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ if (UseGOT) {
+ // Use PC-relative addressing to access the GOT for this TLS symbol, then
+ // load the address from the GOT and add the thread pointer. This generates
+ // the pattern (PseudoLA_TLS_IE sym), which expands to
+ // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
+ SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineMemOperand *MemOp = MF.getMachineMemOperand(
+ MachinePointerInfo::getGOT(MF),
+ MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
+ MachineMemOperand::MOInvariant,
+ LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
+ SDValue Load = DAG.getMemIntrinsicNode(
+ RISCVISD::LA_TLS_IE, DL, DAG.getVTList(Ty, MVT::Other),
+ {DAG.getEntryNode(), Addr}, Ty, MemOp);
+
+ // Add the thread pointer.
+ SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
+ return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
+ }
+
+ // Generate a sequence for accessing the address relative to the thread
+ // pointer, with the appropriate adjustment for the thread pointer offset.
+ // This generates the pattern
+ // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
+ SDValue AddrHi =
+ DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
+ SDValue AddrAdd =
+ DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
+ SDValue AddrLo =
+ DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
+
+ SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
+ SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
+ SDValue MNAdd =
+ DAG.getNode(RISCVISD::ADD_TPREL, DL, Ty, MNHi, TPReg, AddrAdd);
+ return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNAdd, AddrLo);
+}
+
+SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
+ SelectionDAG &DAG) const {
+ SDLoc DL(N);
+ EVT Ty = getPointerTy(DAG.getDataLayout());
+ IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
+ const GlobalValue *GV = N->getGlobal();
+
+ // Use a PC-relative addressing mode to access the global dynamic GOT address.
+ // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
+ // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
+ SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
+ SDValue Load = DAG.getNode(RISCVISD::LA_TLS_GD, DL, Ty, Addr);
+
+ // Prepare argument list to generate call.
+ ArgListTy Args;
+ ArgListEntry Entry;
+ Entry.Node = Load;
+ Entry.Ty = CallTy;
+ Args.push_back(Entry);
+
+ // Setup call to __tls_get_addr.
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(DL)
+ .setChain(DAG.getEntryNode())
+ .setLibCallee(CallingConv::C, CallTy,
+ DAG.getExternalSymbol("__tls_get_addr", Ty),
+ std::move(Args));
+
+ return LowerCallTo(CLI).first;
+}
+
+SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
+ assert(N->getOffset() == 0 && "unexpected offset in global node");
+
+ TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
+
+ if (DAG.getMachineFunction().getFunction().getCallingConv() ==
+ CallingConv::GHC)
+ report_fatal_error("In GHC calling convention TLS is not supported");
+
+ SDValue Addr;
+ switch (Model) {
+ case TLSModel::LocalExec:
+ Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
+ break;
+ case TLSModel::InitialExec:
+ Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
+ break;
+ case TLSModel::LocalDynamic:
+ case TLSModel::GeneralDynamic:
+ Addr = getDynamicTLSAddr(N, DAG);
+ break;
+ }
+
+ return Addr;
+}
+
+SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
+ SDValue CondV = Op.getOperand(0);
+ SDValue TrueV = Op.getOperand(1);
+ SDValue FalseV = Op.getOperand(2);
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ // Lower vector SELECTs to VSELECTs by splatting the condition.
+ if (VT.isVector()) {
+ MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
+ SDValue CondSplat = DAG.getSplat(SplatCondVT, DL, CondV);
+ return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
+ }
+
+ if (!Subtarget.hasShortForwardBranchOpt()) {
+ // (select c, -1, y) -> -c | y
+ if (isAllOnesConstant(TrueV)) {
+ SDValue Neg = DAG.getNegative(CondV, DL, VT);
+ return DAG.getNode(ISD::OR, DL, VT, Neg, FalseV);
+ }
+ // (select c, y, -1) -> (c-1) | y
+ if (isAllOnesConstant(FalseV)) {
+ SDValue Neg = DAG.getNode(ISD::ADD, DL, VT, CondV,
+ DAG.getAllOnesConstant(DL, VT));
+ return DAG.getNode(ISD::OR, DL, VT, Neg, TrueV);
+ }
+
+ // (select c, 0, y) -> (c-1) & y
+ if (isNullConstant(TrueV)) {
+ SDValue Neg = DAG.getNode(ISD::ADD, DL, VT, CondV,
+ DAG.getAllOnesConstant(DL, VT));
+ return DAG.getNode(ISD::AND, DL, VT, Neg, FalseV);
+ }
+ // (select c, y, 0) -> -c & y
+ if (isNullConstant(FalseV)) {
+ SDValue Neg = DAG.getNegative(CondV, DL, VT);
+ return DAG.getNode(ISD::AND, DL, VT, Neg, TrueV);
+ }
+ }
+
+ // If the condition is not an integer SETCC which operates on XLenVT, we need
+ // to emit a RISCVISD::SELECT_CC comparing the condition to zero. i.e.:
+ // (select condv, truev, falsev)
+ // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
+ if (CondV.getOpcode() != ISD::SETCC ||
+ CondV.getOperand(0).getSimpleValueType() != XLenVT) {
+ SDValue Zero = DAG.getConstant(0, DL, XLenVT);
+ SDValue SetNE = DAG.getCondCode(ISD::SETNE);
+
+ SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
+
+ return DAG.getNode(RISCVISD::SELECT_CC, DL, VT, Ops);
+ }
+
+ // If the CondV is the output of a SETCC node which operates on XLenVT inputs,
+ // then merge the SETCC node into the lowered RISCVISD::SELECT_CC to take
+ // advantage of the integer compare+branch instructions. i.e.:
+ // (select (setcc lhs, rhs, cc), truev, falsev)
+ // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
+ SDValue LHS = CondV.getOperand(0);
+ SDValue RHS = CondV.getOperand(1);
+ ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
+
+ // Special case for a select of 2 constants that have a diffence of 1.
+ // Normally this is done by DAGCombine, but if the select is introduced by
+ // type legalization or op legalization, we miss it. Restricting to SETLT
+ // case for now because that is what signed saturating add/sub need.
+ // FIXME: We don't need the condition to be SETLT or even a SETCC,
+ // but we would probably want to swap the true/false values if the condition
+ // is SETGE/SETLE to avoid an XORI.
+ if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
+ CCVal == ISD::SETLT) {
+ const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
+ const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
+ if (TrueVal - 1 == FalseVal)
+ return DAG.getNode(ISD::ADD, DL, VT, CondV, FalseV);
+ if (TrueVal + 1 == FalseVal)
+ return DAG.getNode(ISD::SUB, DL, VT, FalseV, CondV);
+ }
+
+ translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
+ // 1 < x ? x : 1 -> 0 < x ? x : 1
+ if (isOneConstant(LHS) && (CCVal == ISD::SETLT || CCVal == ISD::SETULT) &&
+ RHS == TrueV && LHS == FalseV) {
+ LHS = DAG.getConstant(0, DL, VT);
+ // 0 <u x is the same as x != 0.
+ if (CCVal == ISD::SETULT) {
+ std::swap(LHS, RHS);
+ CCVal = ISD::SETNE;
+ }
+ }
+
+ // x <s -1 ? x : -1 -> x <s 0 ? x : -1
+ if (isAllOnesConstant(RHS) && CCVal == ISD::SETLT && LHS == TrueV &&
+ RHS == FalseV) {
+ RHS = DAG.getConstant(0, DL, VT);
+ }
+
+ SDValue TargetCC = DAG.getCondCode(CCVal);
+
+ if (isa<ConstantSDNode>(TrueV) && !isa<ConstantSDNode>(FalseV)) {
+ // (select (setcc lhs, rhs, CC), constant, falsev)
+ // -> (select (setcc lhs, rhs, InverseCC), falsev, constant)
+ std::swap(TrueV, FalseV);
+ TargetCC = DAG.getCondCode(ISD::getSetCCInverse(CCVal, LHS.getValueType()));
+ }
+
+ SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
+ return DAG.getNode(RISCVISD::SELECT_CC, DL, VT, Ops);
+}
+
+SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
+ SDValue CondV = Op.getOperand(1);
+ SDLoc DL(Op);
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ if (CondV.getOpcode() == ISD::SETCC &&
+ CondV.getOperand(0).getValueType() == XLenVT) {
+ SDValue LHS = CondV.getOperand(0);
+ SDValue RHS = CondV.getOperand(1);
+ ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
+
+ translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
+
+ SDValue TargetCC = DAG.getCondCode(CCVal);
+ return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
+ LHS, RHS, TargetCC, Op.getOperand(2));
+ }
+
+ return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
+ CondV, DAG.getConstant(0, DL, XLenVT),
+ DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
+}
+
+SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
+
+ SDLoc DL(Op);
+ SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
+ getPointerTy(MF.getDataLayout()));
+
+ // vastart just stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
+ MachinePointerInfo(SV));
+}
+
+SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ MFI.setFrameAddressIsTaken(true);
+ Register FrameReg = RI.getFrameRegister(MF);
+ int XLenInBytes = Subtarget.getXLen() / 8;
+
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ while (Depth--) {
+ int Offset = -(XLenInBytes * 2);
+ SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
+ DAG.getIntPtrConstant(Offset, DL));
+ FrameAddr =
+ DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
+ }
+ return FrameAddr;
+}
+
+SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ MFI.setReturnAddressIsTaken(true);
+ MVT XLenVT = Subtarget.getXLenVT();
+ int XLenInBytes = Subtarget.getXLen() / 8;
+
+ if (verifyReturnAddressArgumentIsConstant(Op, DAG))
+ return SDValue();
+
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ if (Depth) {
+ int Off = -XLenInBytes;
+ SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
+ SDValue Offset = DAG.getConstant(Off, DL, VT);
+ return DAG.getLoad(VT, DL, DAG.getEntryNode(),
+ DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
+ MachinePointerInfo());
+ }
+
+ // Return the value of the return address register, marking it an implicit
+ // live-in.
+ Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
+ return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
+}
+
+SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ SDValue Lo = Op.getOperand(0);
+ SDValue Hi = Op.getOperand(1);
+ SDValue Shamt = Op.getOperand(2);
+ EVT VT = Lo.getValueType();
+
+ // if Shamt-XLEN < 0: // Shamt < XLEN
+ // Lo = Lo << Shamt
+ // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
+ // else:
+ // Lo = 0
+ // Hi = Lo << (Shamt-XLEN)
+
+ SDValue Zero = DAG.getConstant(0, DL, VT);
+ SDValue One = DAG.getConstant(1, DL, VT);
+ SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
+ SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
+ SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
+ SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
+
+ SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
+ SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
+ SDValue ShiftRightLo =
+ DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
+ SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
+ SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
+ SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
+
+ SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
+
+ Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
+ Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
+
+ SDValue Parts[2] = {Lo, Hi};
+ return DAG.getMergeValues(Parts, DL);
+}
+
+SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
+ bool IsSRA) const {
+ SDLoc DL(Op);
+ SDValue Lo = Op.getOperand(0);
+ SDValue Hi = Op.getOperand(1);
+ SDValue Shamt = Op.getOperand(2);
+ EVT VT = Lo.getValueType();
+
+ // SRA expansion:
+ // if Shamt-XLEN < 0: // Shamt < XLEN
+ // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
+ // Hi = Hi >>s Shamt
+ // else:
+ // Lo = Hi >>s (Shamt-XLEN);
+ // Hi = Hi >>s (XLEN-1)
+ //
+ // SRL expansion:
+ // if Shamt-XLEN < 0: // Shamt < XLEN
+ // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
+ // Hi = Hi >>u Shamt
+ // else:
+ // Lo = Hi >>u (Shamt-XLEN);
+ // Hi = 0;
+
+ unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
+
+ SDValue Zero = DAG.getConstant(0, DL, VT);
+ SDValue One = DAG.getConstant(1, DL, VT);
+ SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
+ SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
+ SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
+ SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
+
+ SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
+ SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
+ SDValue ShiftLeftHi =
+ DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
+ SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
+ SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
+ SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
+ SDValue HiFalse =
+ IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
+
+ SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
+
+ Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
+ Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
+
+ SDValue Parts[2] = {Lo, Hi};
+ return DAG.getMergeValues(Parts, DL);
+}
+
+// Lower splats of i1 types to SETCC. For each mask vector type, we have a
+// legal equivalently-sized i8 type, so we can use that as a go-between.
+SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+ SDValue SplatVal = Op.getOperand(0);
+ // All-zeros or all-ones splats are handled specially.
+ if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
+ SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
+ return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
+ }
+ if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
+ SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
+ return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
+ }
+ MVT XLenVT = Subtarget.getXLenVT();
+ assert(SplatVal.getValueType() == XLenVT &&
+ "Unexpected type for i1 splat value");
+ MVT InterVT = VT.changeVectorElementType(MVT::i8);
+ SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
+ DAG.getConstant(1, DL, XLenVT));
+ SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
+ SDValue Zero = DAG.getConstant(0, DL, InterVT);
+ return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
+}
+
+// Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
+// illegal (currently only vXi64 RV32).
+// FIXME: We could also catch non-constant sign-extended i32 values and lower
+// them to VMV_V_X_VL.
+SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ MVT VecVT = Op.getSimpleValueType();
+ assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
+ "Unexpected SPLAT_VECTOR_PARTS lowering");
+
+ assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
+ SDValue Lo = Op.getOperand(0);
+ SDValue Hi = Op.getOperand(1);
+
+ if (VecVT.isFixedLengthVector()) {
+ MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
+ SDLoc DL(Op);
+ auto VL = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).second;
+
+ SDValue Res =
+ splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
+ return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
+ }
+
+ if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
+ int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
+ int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
+ // If Hi constant is all the same sign bit as Lo, lower this as a custom
+ // node in order to try and match RVV vector/scalar instructions.
+ if ((LoC >> 31) == HiC)
+ return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
+ Lo, DAG.getRegister(RISCV::X0, MVT::i32));
+ }
+
+ // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
+ if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
+ isa<ConstantSDNode>(Hi.getOperand(1)) &&
+ Hi.getConstantOperandVal(1) == 31)
+ return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
+ DAG.getRegister(RISCV::X0, MVT::i32));
+
+ // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
+ return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
+ DAG.getUNDEF(VecVT), Lo, Hi,
+ DAG.getRegister(RISCV::X0, MVT::i32));
+}
+
+// Custom-lower extensions from mask vectors by using a vselect either with 1
+// for zero/any-extension or -1 for sign-extension:
+// (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
+// Note that any-extension is lowered identically to zero-extension.
+SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
+ int64_t ExtTrueVal) const {
+ SDLoc DL(Op);
+ MVT VecVT = Op.getSimpleValueType();
+ SDValue Src = Op.getOperand(0);
+ // Only custom-lower extensions from mask types
+ assert(Src.getValueType().isVector() &&
+ Src.getValueType().getVectorElementType() == MVT::i1);
+
+ if (VecVT.isScalableVector()) {
+ SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
+ SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
+ return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
+ }
+
+ MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
+ MVT I1ContainerVT =
+ MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
+
+ SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
+
+ SDValue VL = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).second;
+
+ MVT XLenVT = Subtarget.getXLenVT();
+ SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
+ SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
+
+ SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
+ DAG.getUNDEF(ContainerVT), SplatZero, VL);
+ SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
+ DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
+ SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
+ SplatTrueVal, SplatZero, VL);
+
+ return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
+}
+
+SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
+ SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
+ MVT ExtVT = Op.getSimpleValueType();
+ // Only custom-lower extensions from fixed-length vector types.
+ if (!ExtVT.isFixedLengthVector())
+ return Op;
+ MVT VT = Op.getOperand(0).getSimpleValueType();
+ // Grab the canonical container type for the extended type. Infer the smaller
+ // type from that to ensure the same number of vector elements, as we know
+ // the LMUL will be sufficient to hold the smaller type.
+ MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
+ // Get the extended container type manually to ensure the same number of
+ // vector elements between source and dest.
+ MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
+ ContainerExtVT.getVectorElementCount());
+
+ SDValue Op1 =
+ convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
+
+ SDLoc DL(Op);
+ auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
+
+ SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
+
+ return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
+}
+
+// Custom-lower truncations from vectors to mask vectors by using a mask and a
+// setcc operation:
+// (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
+SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op,
+ SelectionDAG &DAG) const {
+ bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
+ SDLoc DL(Op);
+ EVT MaskVT = Op.getValueType();
+ // Only expect to custom-lower truncations to mask types
+ assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
+ "Unexpected type for vector mask lowering");
+ SDValue Src = Op.getOperand(0);
+ MVT VecVT = Src.getSimpleValueType();
+ SDValue Mask, VL;
+ if (IsVPTrunc) {
+ Mask = Op.getOperand(1);
+ VL = Op.getOperand(2);
+ }
+ // If this is a fixed vector, we need to convert it to a scalable vector.
+ MVT ContainerVT = VecVT;
+
+ if (VecVT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VecVT);
+ Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
+ if (IsVPTrunc) {
+ MVT MaskContainerVT =
+ getContainerForFixedLengthVector(Mask.getSimpleValueType());
+ Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
+ }
+ }
+
+ if (!IsVPTrunc) {
+ std::tie(Mask, VL) =
+ getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
+ }
+
+ SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
+ SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
+
+ SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
+ DAG.getUNDEF(ContainerVT), SplatOne, VL);
+ SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
+ DAG.getUNDEF(ContainerVT), SplatZero, VL);
+
+ MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
+ SDValue Trunc = DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne,
+ DAG.getUNDEF(ContainerVT), Mask, VL);
+ Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT,
+ {Trunc, SplatZero, DAG.getCondCode(ISD::SETNE),
+ DAG.getUNDEF(MaskContainerVT), Mask, VL});
+ if (MaskVT.isFixedLengthVector())
+ Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
+ return Trunc;
+}
+
+SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op,
+ SelectionDAG &DAG) const {
+ bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
+ SDLoc DL(Op);
+
+ MVT VT = Op.getSimpleValueType();
+ // Only custom-lower vector truncates
+ assert(VT.isVector() && "Unexpected type for vector truncate lowering");
+
+ // Truncates to mask types are handled differently
+ if (VT.getVectorElementType() == MVT::i1)
+ return lowerVectorMaskTruncLike(Op, DAG);
+
+ // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
+ // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
+ // truncate by one power of two at a time.
+ MVT DstEltVT = VT.getVectorElementType();
+
+ SDValue Src = Op.getOperand(0);
+ MVT SrcVT = Src.getSimpleValueType();
+ MVT SrcEltVT = SrcVT.getVectorElementType();
+
+ assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) &&
+ isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
+ "Unexpected vector truncate lowering");
+
+ MVT ContainerVT = SrcVT;
+ SDValue Mask, VL;
+ if (IsVPTrunc) {
+ Mask = Op.getOperand(1);
+ VL = Op.getOperand(2);
+ }
+ if (SrcVT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(SrcVT);
+ Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
+ if (IsVPTrunc) {
+ MVT MaskVT = getMaskTypeFor(ContainerVT);
+ Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
+ }
+ }
+
+ SDValue Result = Src;
+ if (!IsVPTrunc) {
+ std::tie(Mask, VL) =
+ getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
+ }
+
+ LLVMContext &Context = *DAG.getContext();
+ const ElementCount Count = ContainerVT.getVectorElementCount();
+ do {
+ SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
+ EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
+ Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
+ Mask, VL);
+ } while (SrcEltVT != DstEltVT);
+
+ if (SrcVT.isFixedLengthVector())
+ Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
+
+ return Result;
+}
+
+SDValue
+RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op,
+ SelectionDAG &DAG) const {
+ bool IsVP =
+ Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND;
+ bool IsExtend =
+ Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND;
+ // RVV can only do truncate fp to types half the size as the source. We
+ // custom-lower f64->f16 rounds via RVV's round-to-odd float
+ // conversion instruction.
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+
+ assert(VT.isVector() && "Unexpected type for vector truncate lowering");
+
+ SDValue Src = Op.getOperand(0);
+ MVT SrcVT = Src.getSimpleValueType();
+
+ bool IsDirectExtend = IsExtend && (VT.getVectorElementType() != MVT::f64 ||
+ SrcVT.getVectorElementType() != MVT::f16);
+ bool IsDirectTrunc = !IsExtend && (VT.getVectorElementType() != MVT::f16 ||
+ SrcVT.getVectorElementType() != MVT::f64);
+
+ bool IsDirectConv = IsDirectExtend || IsDirectTrunc;
+
+ // Prepare any fixed-length vector operands.
+ MVT ContainerVT = VT;
+ SDValue Mask, VL;
+ if (IsVP) {
+ Mask = Op.getOperand(1);
+ VL = Op.getOperand(2);
+ }
+ if (VT.isFixedLengthVector()) {
+ MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
+ ContainerVT =
+ SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
+ Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
+ if (IsVP) {
+ MVT MaskVT = getMaskTypeFor(ContainerVT);
+ Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
+ }
+ }
+
+ if (!IsVP)
+ std::tie(Mask, VL) =
+ getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
+
+ unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL;
+
+ if (IsDirectConv) {
+ Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL);
+ if (VT.isFixedLengthVector())
+ Src = convertFromScalableVector(VT, Src, DAG, Subtarget);
+ return Src;
+ }
+
+ unsigned InterConvOpc =
+ IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL;
+
+ MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
+ SDValue IntermediateConv =
+ DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL);
+ SDValue Result =
+ DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL);
+ if (VT.isFixedLengthVector())
+ return convertFromScalableVector(VT, Result, DAG, Subtarget);
+ return Result;
+}
+
+// Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
+// first position of a vector, and that vector is slid up to the insert index.
+// By limiting the active vector length to index+1 and merging with the
+// original vector (with an undisturbed tail policy for elements >= VL), we
+// achieve the desired result of leaving all elements untouched except the one
+// at VL-1, which is replaced with the desired value.
+SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ MVT VecVT = Op.getSimpleValueType();
+ SDValue Vec = Op.getOperand(0);
+ SDValue Val = Op.getOperand(1);
+ SDValue Idx = Op.getOperand(2);
+
+ if (VecVT.getVectorElementType() == MVT::i1) {
+ // FIXME: For now we just promote to an i8 vector and insert into that,
+ // but this is probably not optimal.
+ MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
+ Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
+ Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
+ return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
+ }
+
+ MVT ContainerVT = VecVT;
+ // If the operand is a fixed-length vector, convert to a scalable one.
+ if (VecVT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VecVT);
+ Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
+ }
+
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ SDValue Zero = DAG.getConstant(0, DL, XLenVT);
+ bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
+ // Even i64-element vectors on RV32 can be lowered without scalar
+ // legalization if the most-significant 32 bits of the value are not affected
+ // by the sign-extension of the lower 32 bits.
+ // TODO: We could also catch sign extensions of a 32-bit value.
+ if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
+ const auto *CVal = cast<ConstantSDNode>(Val);
+ if (isInt<32>(CVal->getSExtValue())) {
+ IsLegalInsert = true;
+ Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
+ }
+ }
+
+ auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
+
+ SDValue ValInVec;
+
+ if (IsLegalInsert) {
+ unsigned Opc =
+ VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
+ if (isNullConstant(Idx)) {
+ Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
+ if (!VecVT.isFixedLengthVector())
+ return Vec;
+ return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
+ }
+ ValInVec = lowerScalarInsert(Val, VL, ContainerVT, DL, DAG, Subtarget);
+ } else {
+ // On RV32, i64-element vectors must be specially handled to place the
+ // value at element 0, by using two vslide1down instructions in sequence on
+ // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
+ // this.
+ SDValue One = DAG.getConstant(1, DL, XLenVT);
+ SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
+ SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
+ MVT I32ContainerVT =
+ MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
+ SDValue I32Mask =
+ getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
+ // Limit the active VL to two.
+ SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
+ // If the Idx is 0 we can insert directly into the vector.
+ if (isNullConstant(Idx)) {
+ // First slide in the lo value, then the hi in above it. We use slide1down
+ // to avoid the register group overlap constraint of vslide1up.
+ ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT,
+ Vec, Vec, ValLo, I32Mask, InsertI64VL);
+ // If the source vector is undef don't pass along the tail elements from
+ // the previous slide1down.
+ SDValue Tail = Vec.isUndef() ? Vec : ValInVec;
+ ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT,
+ Tail, ValInVec, ValHi, I32Mask, InsertI64VL);
+ // Bitcast back to the right container type.
+ ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
+
+ if (!VecVT.isFixedLengthVector())
+ return ValInVec;
+ return convertFromScalableVector(VecVT, ValInVec, DAG, Subtarget);
+ }
+
+ // First slide in the lo value, then the hi in above it. We use slide1down
+ // to avoid the register group overlap constraint of vslide1up.
+ ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT,
+ DAG.getUNDEF(I32ContainerVT),
+ DAG.getUNDEF(I32ContainerVT), ValLo,
+ I32Mask, InsertI64VL);
+ ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT,
+ DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
+ I32Mask, InsertI64VL);
+ // Bitcast back to the right container type.
+ ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
+ }
+
+ // Now that the value is in a vector, slide it into position.
+ SDValue InsertVL =
+ DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
+
+ // Use tail agnostic policy if Idx is the last index of Vec.
+ unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED;
+ if (VecVT.isFixedLengthVector() && isa<ConstantSDNode>(Idx) &&
+ cast<ConstantSDNode>(Idx)->getZExtValue() + 1 ==
+ VecVT.getVectorNumElements())
+ Policy = RISCVII::TAIL_AGNOSTIC;
+ SDValue Slideup = getVSlideup(DAG, Subtarget, DL, ContainerVT, Vec, ValInVec,
+ Idx, Mask, InsertVL, Policy);
+ if (!VecVT.isFixedLengthVector())
+ return Slideup;
+ return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
+}
+
+// Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
+// extract the first element: (extractelt (slidedown vec, idx), 0). For integer
+// types this is done using VMV_X_S to allow us to glean information about the
+// sign bits of the result.
+SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ SDValue Idx = Op.getOperand(1);
+ SDValue Vec = Op.getOperand(0);
+ EVT EltVT = Op.getValueType();
+ MVT VecVT = Vec.getSimpleValueType();
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ if (VecVT.getVectorElementType() == MVT::i1) {
+ // Use vfirst.m to extract the first bit.
+ if (isNullConstant(Idx)) {
+ MVT ContainerVT = VecVT;
+ if (VecVT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VecVT);
+ Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
+ }
+ auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
+ SDValue Vfirst =
+ DAG.getNode(RISCVISD::VFIRST_VL, DL, XLenVT, Vec, Mask, VL);
+ return DAG.getSetCC(DL, XLenVT, Vfirst, DAG.getConstant(0, DL, XLenVT),
+ ISD::SETEQ);
+ }
+ if (VecVT.isFixedLengthVector()) {
+ unsigned NumElts = VecVT.getVectorNumElements();
+ if (NumElts >= 8) {
+ MVT WideEltVT;
+ unsigned WidenVecLen;
+ SDValue ExtractElementIdx;
+ SDValue ExtractBitIdx;
+ unsigned MaxEEW = Subtarget.getELEN();
+ MVT LargestEltVT = MVT::getIntegerVT(
+ std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
+ if (NumElts <= LargestEltVT.getSizeInBits()) {
+ assert(isPowerOf2_32(NumElts) &&
+ "the number of elements should be power of 2");
+ WideEltVT = MVT::getIntegerVT(NumElts);
+ WidenVecLen = 1;
+ ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
+ ExtractBitIdx = Idx;
+ } else {
+ WideEltVT = LargestEltVT;
+ WidenVecLen = NumElts / WideEltVT.getSizeInBits();
+ // extract element index = index / element width
+ ExtractElementIdx = DAG.getNode(
+ ISD::SRL, DL, XLenVT, Idx,
+ DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
+ // mask bit index = index % element width
+ ExtractBitIdx = DAG.getNode(
+ ISD::AND, DL, XLenVT, Idx,
+ DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
+ }
+ MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
+ Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
+ SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
+ Vec, ExtractElementIdx);
+ // Extract the bit from GPR.
+ SDValue ShiftRight =
+ DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
+ return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
+ DAG.getConstant(1, DL, XLenVT));
+ }
+ }
+ // Otherwise, promote to an i8 vector and extract from that.
+ MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
+ Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
+ }
+
+ // If this is a fixed vector, we need to convert it to a scalable vector.
+ MVT ContainerVT = VecVT;
+ if (VecVT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VecVT);
+ Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
+ }
+
+ // If the index is 0, the vector is already in the right position.
+ if (!isNullConstant(Idx)) {
+ // Use a VL of 1 to avoid processing more elements than we need.
+ auto [Mask, VL] = getDefaultVLOps(1, ContainerVT, DL, DAG, Subtarget);
+ Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT,
+ DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
+ }
+
+ if (!EltVT.isInteger()) {
+ // Floating-point extracts are handled in TableGen.
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
+ DAG.getConstant(0, DL, XLenVT));
+ }
+
+ SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
+ return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
+}
+
+// Some RVV intrinsics may claim that they want an integer operand to be
+// promoted or expanded.
+static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
+ "Unexpected opcode");
+
+ if (!Subtarget.hasVInstructions())
+ return SDValue();
+
+ bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
+ unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
+ SDLoc DL(Op);
+
+ const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
+ RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
+ if (!II || !II->hasScalarOperand())
+ return SDValue();
+
+ unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
+ assert(SplatOp < Op.getNumOperands());
+
+ SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
+ SDValue &ScalarOp = Operands[SplatOp];
+ MVT OpVT = ScalarOp.getSimpleValueType();
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ // If this isn't a scalar, or its type is XLenVT we're done.
+ if (!OpVT.isScalarInteger() || OpVT == XLenVT)
+ return SDValue();
+
+ // Simplest case is that the operand needs to be promoted to XLenVT.
+ if (OpVT.bitsLT(XLenVT)) {
+ // If the operand is a constant, sign extend to increase our chances
+ // of being able to use a .vi instruction. ANY_EXTEND would become a
+ // a zero extend and the simm5 check in isel would fail.
+ // FIXME: Should we ignore the upper bits in isel instead?
+ unsigned ExtOpc =
+ isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
+ ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
+ return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
+ }
+
+ // Use the previous operand to get the vXi64 VT. The result might be a mask
+ // VT for compares. Using the previous operand assumes that the previous
+ // operand will never have a smaller element size than a scalar operand and
+ // that a widening operation never uses SEW=64.
+ // NOTE: If this fails the below assert, we can probably just find the
+ // element count from any operand or result and use it to construct the VT.
+ assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
+ MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
+
+ // The more complex case is when the scalar is larger than XLenVT.
+ assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
+ VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
+
+ // If this is a sign-extended 32-bit value, we can truncate it and rely on the
+ // instruction to sign-extend since SEW>XLEN.
+ if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
+ ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
+ return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
+ }
+
+ switch (IntNo) {
+ case Intrinsic::riscv_vslide1up:
+ case Intrinsic::riscv_vslide1down:
+ case Intrinsic::riscv_vslide1up_mask:
+ case Intrinsic::riscv_vslide1down_mask: {
+ // We need to special case these when the scalar is larger than XLen.
+ unsigned NumOps = Op.getNumOperands();
+ bool IsMasked = NumOps == 7;
+
+ // Convert the vector source to the equivalent nxvXi32 vector.
+ MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
+ SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
+
+ SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
+ DAG.getConstant(0, DL, XLenVT));
+ SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
+ DAG.getConstant(1, DL, XLenVT));
+
+ // Double the VL since we halved SEW.
+ SDValue AVL = getVLOperand(Op);
+ SDValue I32VL;
+
+ // Optimize for constant AVL
+ if (isa<ConstantSDNode>(AVL)) {
+ unsigned EltSize = VT.getScalarSizeInBits();
+ unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
+
+ unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
+ unsigned MaxVLMAX =
+ RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
+
+ unsigned VectorBitsMin = Subtarget.getRealMinVLen();
+ unsigned MinVLMAX =
+ RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
+
+ uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
+ if (AVLInt <= MinVLMAX) {
+ I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
+ } else if (AVLInt >= 2 * MaxVLMAX) {
+ // Just set vl to VLMAX in this situation
+ RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
+ SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
+ unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
+ SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
+ SDValue SETVLMAX = DAG.getTargetConstant(
+ Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
+ I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
+ LMUL);
+ } else {
+ // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
+ // is related to the hardware implementation.
+ // So let the following code handle
+ }
+ }
+ if (!I32VL) {
+ RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
+ SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
+ unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
+ SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
+ SDValue SETVL =
+ DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
+ // Using vsetvli instruction to get actually used length which related to
+ // the hardware implementation
+ SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
+ SEW, LMUL);
+ I32VL =
+ DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
+ }
+
+ SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG);
+
+ // Shift the two scalar parts in using SEW=32 slide1up/slide1down
+ // instructions.
+ SDValue Passthru;
+ if (IsMasked)
+ Passthru = DAG.getUNDEF(I32VT);
+ else
+ Passthru = DAG.getBitcast(I32VT, Operands[1]);
+
+ if (IntNo == Intrinsic::riscv_vslide1up ||
+ IntNo == Intrinsic::riscv_vslide1up_mask) {
+ Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
+ ScalarHi, I32Mask, I32VL);
+ Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
+ ScalarLo, I32Mask, I32VL);
+ } else {
+ Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
+ ScalarLo, I32Mask, I32VL);
+ Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
+ ScalarHi, I32Mask, I32VL);
+ }
+
+ // Convert back to nxvXi64.
+ Vec = DAG.getBitcast(VT, Vec);
+
+ if (!IsMasked)
+ return Vec;
+ // Apply mask after the operation.
+ SDValue Mask = Operands[NumOps - 3];
+ SDValue MaskedOff = Operands[1];
+ // Assume Policy operand is the last operand.
+ uint64_t Policy =
+ cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
+ // We don't need to select maskedoff if it's undef.
+ if (MaskedOff.isUndef())
+ return Vec;
+ // TAMU
+ if (Policy == RISCVII::TAIL_AGNOSTIC)
+ return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
+ AVL);
+ // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
+ // It's fine because vmerge does not care mask policy.
+ return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
+ AVL);
+ }
+ }
+
+ // We need to convert the scalar to a splat vector.
+ SDValue VL = getVLOperand(Op);
+ assert(VL.getValueType() == XLenVT);
+ ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
+ return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
+}
+
+SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
+ SelectionDAG &DAG) const {
+ unsigned IntNo = Op.getConstantOperandVal(0);
+ SDLoc DL(Op);
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ switch (IntNo) {
+ default:
+ break; // Don't custom lower most intrinsics.
+ case Intrinsic::thread_pointer: {
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+ return DAG.getRegister(RISCV::X4, PtrVT);
+ }
+ case Intrinsic::riscv_orc_b:
+ case Intrinsic::riscv_brev8: {
+ unsigned Opc =
+ IntNo == Intrinsic::riscv_brev8 ? RISCVISD::BREV8 : RISCVISD::ORC_B;
+ return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1));
+ }
+ case Intrinsic::riscv_zip:
+ case Intrinsic::riscv_unzip: {
+ unsigned Opc =
+ IntNo == Intrinsic::riscv_zip ? RISCVISD::ZIP : RISCVISD::UNZIP;
+ return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1));
+ }
+ case Intrinsic::riscv_vmv_x_s:
+ assert(Op.getValueType() == XLenVT && "Unexpected VT!");
+ return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
+ Op.getOperand(1));
+ case Intrinsic::riscv_vfmv_f_s:
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
+ Op.getOperand(1), DAG.getConstant(0, DL, XLenVT));
+ case Intrinsic::riscv_vmv_v_x:
+ return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
+ Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
+ Subtarget);
+ case Intrinsic::riscv_vfmv_v_f:
+ return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
+ case Intrinsic::riscv_vmv_s_x: {
+ SDValue Scalar = Op.getOperand(2);
+
+ if (Scalar.getValueType().bitsLE(XLenVT)) {
+ Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
+ return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
+ Op.getOperand(1), Scalar, Op.getOperand(3));
+ }
+
+ assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
+
+ // This is an i64 value that lives in two scalar registers. We have to
+ // insert this in a convoluted way. First we build vXi64 splat containing
+ // the two values that we assemble using some bit math. Next we'll use
+ // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
+ // to merge element 0 from our splat into the source vector.
+ // FIXME: This is probably not the best way to do this, but it is
+ // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
+ // point.
+ // sw lo, (a0)
+ // sw hi, 4(a0)
+ // vlse vX, (a0)
+ //
+ // vid.v vVid
+ // vmseq.vx mMask, vVid, 0
+ // vmerge.vvm vDest, vSrc, vVal, mMask
+ MVT VT = Op.getSimpleValueType();
+ SDValue Vec = Op.getOperand(1);
+ SDValue VL = getVLOperand(Op);
+
+ SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
+ if (Op.getOperand(1).isUndef())
+ return SplattedVal;
+ SDValue SplattedIdx =
+ DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
+ DAG.getConstant(0, DL, MVT::i32), VL);
+
+ MVT MaskVT = getMaskTypeFor(VT);
+ SDValue Mask = getAllOnesMask(VT, VL, DL, DAG);
+ SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
+ SDValue SelectCond =
+ DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT,
+ {VID, SplattedIdx, DAG.getCondCode(ISD::SETEQ),
+ DAG.getUNDEF(MaskVT), Mask, VL});
+ return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
+ Vec, VL);
+ }
+ }
+
+ return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
+}
+
+SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
+ SelectionDAG &DAG) const {
+ unsigned IntNo = Op.getConstantOperandVal(1);
+ switch (IntNo) {
+ default:
+ break;
+ case Intrinsic::riscv_masked_strided_load: {
+ SDLoc DL(Op);
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ // If the mask is known to be all ones, optimize to an unmasked intrinsic;
+ // the selection of the masked intrinsics doesn't do this for us.
+ SDValue Mask = Op.getOperand(5);
+ bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
+
+ MVT VT = Op->getSimpleValueType(0);
+ MVT ContainerVT = VT;
+ if (VT.isFixedLengthVector())
+ ContainerVT = getContainerForFixedLengthVector(VT);
+
+ SDValue PassThru = Op.getOperand(2);
+ if (!IsUnmasked) {
+ MVT MaskVT = getMaskTypeFor(ContainerVT);
+ if (VT.isFixedLengthVector()) {
+ Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
+ PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
+ }
+ }
+
+ auto *Load = cast<MemIntrinsicSDNode>(Op);
+ SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
+ SDValue Ptr = Op.getOperand(3);
+ SDValue Stride = Op.getOperand(4);
+ SDValue Result, Chain;
+
+ // TODO: We restrict this to unmasked loads currently in consideration of
+ // the complexity of hanlding all falses masks.
+ if (IsUnmasked && isNullConstant(Stride)) {
+ MVT ScalarVT = ContainerVT.getVectorElementType();
+ SDValue ScalarLoad =
+ DAG.getExtLoad(ISD::ZEXTLOAD, DL, XLenVT, Load->getChain(), Ptr,
+ ScalarVT, Load->getMemOperand());
+ Chain = ScalarLoad.getValue(1);
+ Result = lowerScalarSplat(SDValue(), ScalarLoad, VL, ContainerVT, DL, DAG,
+ Subtarget);
+ } else {
+ SDValue IntID = DAG.getTargetConstant(
+ IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
+ XLenVT);
+
+ SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
+ if (IsUnmasked)
+ Ops.push_back(DAG.getUNDEF(ContainerVT));
+ else
+ Ops.push_back(PassThru);
+ Ops.push_back(Ptr);
+ Ops.push_back(Stride);
+ if (!IsUnmasked)
+ Ops.push_back(Mask);
+ Ops.push_back(VL);
+ if (!IsUnmasked) {
+ SDValue Policy =
+ DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
+ Ops.push_back(Policy);
+ }
+
+ SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
+ Result =
+ DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
+ Load->getMemoryVT(), Load->getMemOperand());
+ Chain = Result.getValue(1);
+ }
+ if (VT.isFixedLengthVector())
+ Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
+ return DAG.getMergeValues({Result, Chain}, DL);
+ }
+ case Intrinsic::riscv_seg2_load:
+ case Intrinsic::riscv_seg3_load:
+ case Intrinsic::riscv_seg4_load:
+ case Intrinsic::riscv_seg5_load:
+ case Intrinsic::riscv_seg6_load:
+ case Intrinsic::riscv_seg7_load:
+ case Intrinsic::riscv_seg8_load: {
+ SDLoc DL(Op);
+ static const Intrinsic::ID VlsegInts[7] = {
+ Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
+ Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
+ Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
+ Intrinsic::riscv_vlseg8};
+ unsigned NF = Op->getNumValues() - 1;
+ assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
+ MVT XLenVT = Subtarget.getXLenVT();
+ MVT VT = Op->getSimpleValueType(0);
+ MVT ContainerVT = getContainerForFixedLengthVector(VT);
+
+ SDValue VL = getVLOp(VT.getVectorNumElements(), DL, DAG, Subtarget);
+ SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
+ auto *Load = cast<MemIntrinsicSDNode>(Op);
+ SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
+ ContainerVTs.push_back(MVT::Other);
+ SDVTList VTs = DAG.getVTList(ContainerVTs);
+ SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID};
+ Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT));
+ Ops.push_back(Op.getOperand(2));
+ Ops.push_back(VL);
+ SDValue Result =
+ DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
+ Load->getMemoryVT(), Load->getMemOperand());
+ SmallVector<SDValue, 9> Results;
+ for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
+ Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
+ DAG, Subtarget));
+ Results.push_back(Result.getValue(NF));
+ return DAG.getMergeValues(Results, DL);
+ }
+ }
+
+ return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
+}
+
+SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
+ SelectionDAG &DAG) const {
+ unsigned IntNo = Op.getConstantOperandVal(1);
+ switch (IntNo) {
+ default:
+ break;
+ case Intrinsic::riscv_masked_strided_store: {
+ SDLoc DL(Op);
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ // If the mask is known to be all ones, optimize to an unmasked intrinsic;
+ // the selection of the masked intrinsics doesn't do this for us.
+ SDValue Mask = Op.getOperand(5);
+ bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
+
+ SDValue Val = Op.getOperand(2);
+ MVT VT = Val.getSimpleValueType();
+ MVT ContainerVT = VT;
+ if (VT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VT);
+ Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
+ }
+ if (!IsUnmasked) {
+ MVT MaskVT = getMaskTypeFor(ContainerVT);
+ if (VT.isFixedLengthVector())
+ Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
+ }
+
+ SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
+
+ SDValue IntID = DAG.getTargetConstant(
+ IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
+ XLenVT);
+
+ auto *Store = cast<MemIntrinsicSDNode>(Op);
+ SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
+ Ops.push_back(Val);
+ Ops.push_back(Op.getOperand(3)); // Ptr
+ Ops.push_back(Op.getOperand(4)); // Stride
+ if (!IsUnmasked)
+ Ops.push_back(Mask);
+ Ops.push_back(VL);
+
+ return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
+ Ops, Store->getMemoryVT(),
+ Store->getMemOperand());
+ }
+ }
+
+ return SDValue();
+}
+
+static unsigned getRVVReductionOp(unsigned ISDOpcode) {
+ switch (ISDOpcode) {
+ default:
+ llvm_unreachable("Unhandled reduction");
+ case ISD::VECREDUCE_ADD:
+ return RISCVISD::VECREDUCE_ADD_VL;
+ case ISD::VECREDUCE_UMAX:
+ return RISCVISD::VECREDUCE_UMAX_VL;
+ case ISD::VECREDUCE_SMAX:
+ return RISCVISD::VECREDUCE_SMAX_VL;
+ case ISD::VECREDUCE_UMIN:
+ return RISCVISD::VECREDUCE_UMIN_VL;
+ case ISD::VECREDUCE_SMIN:
+ return RISCVISD::VECREDUCE_SMIN_VL;
+ case ISD::VECREDUCE_AND:
+ return RISCVISD::VECREDUCE_AND_VL;
+ case ISD::VECREDUCE_OR:
+ return RISCVISD::VECREDUCE_OR_VL;
+ case ISD::VECREDUCE_XOR:
+ return RISCVISD::VECREDUCE_XOR_VL;
+ }
+}
+
+SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
+ SelectionDAG &DAG,
+ bool IsVP) const {
+ SDLoc DL(Op);
+ SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
+ MVT VecVT = Vec.getSimpleValueType();
+ assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
+ Op.getOpcode() == ISD::VECREDUCE_OR ||
+ Op.getOpcode() == ISD::VECREDUCE_XOR ||
+ Op.getOpcode() == ISD::VP_REDUCE_AND ||
+ Op.getOpcode() == ISD::VP_REDUCE_OR ||
+ Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
+ "Unexpected reduction lowering");
+
+ MVT XLenVT = Subtarget.getXLenVT();
+ assert(Op.getValueType() == XLenVT &&
+ "Expected reduction output to be legalized to XLenVT");
+
+ MVT ContainerVT = VecVT;
+ if (VecVT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VecVT);
+ Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
+ }
+
+ SDValue Mask, VL;
+ if (IsVP) {
+ Mask = Op.getOperand(2);
+ VL = Op.getOperand(3);
+ } else {
+ std::tie(Mask, VL) =
+ getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
+ }
+
+ unsigned BaseOpc;
+ ISD::CondCode CC;
+ SDValue Zero = DAG.getConstant(0, DL, XLenVT);
+
+ switch (Op.getOpcode()) {
+ default:
+ llvm_unreachable("Unhandled reduction");
+ case ISD::VECREDUCE_AND:
+ case ISD::VP_REDUCE_AND: {
+ // vcpop ~x == 0
+ SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
+ Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
+ Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
+ CC = ISD::SETEQ;
+ BaseOpc = ISD::AND;
+ break;
+ }
+ case ISD::VECREDUCE_OR:
+ case ISD::VP_REDUCE_OR:
+ // vcpop x != 0
+ Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
+ CC = ISD::SETNE;
+ BaseOpc = ISD::OR;
+ break;
+ case ISD::VECREDUCE_XOR:
+ case ISD::VP_REDUCE_XOR: {
+ // ((vcpop x) & 1) != 0
+ SDValue One = DAG.getConstant(1, DL, XLenVT);
+ Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
+ Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
+ CC = ISD::SETNE;
+ BaseOpc = ISD::XOR;
+ break;
+ }
+ }
+
+ SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
+
+ if (!IsVP)
+ return SetCC;
+
+ // Now include the start value in the operation.
+ // Note that we must return the start value when no elements are operated
+ // upon. The vcpop instructions we've emitted in each case above will return
+ // 0 for an inactive vector, and so we've already received the neutral value:
+ // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
+ // can simply include the start value.
+ return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
+}
+
+static bool hasNonZeroAVL(SDValue AVL) {
+ auto *RegisterAVL = dyn_cast<RegisterSDNode>(AVL);
+ auto *ImmAVL = dyn_cast<ConstantSDNode>(AVL);
+ return (RegisterAVL && RegisterAVL->getReg() == RISCV::X0) ||
+ (ImmAVL && ImmAVL->getZExtValue() >= 1);
+}
+
+/// Helper to lower a reduction sequence of the form:
+/// scalar = reduce_op vec, scalar_start
+static SDValue lowerReductionSeq(unsigned RVVOpcode, MVT ResVT,
+ SDValue StartValue, SDValue Vec, SDValue Mask,
+ SDValue VL, SDLoc DL, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ const MVT VecVT = Vec.getSimpleValueType();
+ const MVT M1VT = getLMUL1VT(VecVT);
+ const MVT XLenVT = Subtarget.getXLenVT();
+ const bool NonZeroAVL = hasNonZeroAVL(VL);
+
+ // The reduction needs an LMUL1 input; do the splat at either LMUL1
+ // or the original VT if fractional.
+ auto InnerVT = VecVT.bitsLE(M1VT) ? VecVT : M1VT;
+ // We reuse the VL of the reduction to reduce vsetvli toggles if we can
+ // prove it is non-zero. For the AVL=0 case, we need the scalar to
+ // be the result of the reduction operation.
+ auto InnerVL = NonZeroAVL ? VL : DAG.getConstant(1, DL, XLenVT);
+ SDValue InitialValue = lowerScalarInsert(StartValue, InnerVL, InnerVT, DL,
+ DAG, Subtarget);
+ if (M1VT != InnerVT)
+ InitialValue = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, M1VT,
+ DAG.getUNDEF(M1VT),
+ InitialValue, DAG.getConstant(0, DL, XLenVT));
+ SDValue PassThru = NonZeroAVL ? DAG.getUNDEF(M1VT) : InitialValue;
+ SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, PassThru, Vec,
+ InitialValue, Mask, VL);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
+ DAG.getConstant(0, DL, XLenVT));
+}
+
+SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ SDValue Vec = Op.getOperand(0);
+ EVT VecEVT = Vec.getValueType();
+
+ unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
+
+ // Due to ordering in legalize types we may have a vector type that needs to
+ // be split. Do that manually so we can get down to a legal type.
+ while (getTypeAction(*DAG.getContext(), VecEVT) ==
+ TargetLowering::TypeSplitVector) {
+ auto [Lo, Hi] = DAG.SplitVector(Vec, DL);
+ VecEVT = Lo.getValueType();
+ Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
+ }
+
+ // TODO: The type may need to be widened rather than split. Or widened before
+ // it can be split.
+ if (!isTypeLegal(VecEVT))
+ return SDValue();
+
+ MVT VecVT = VecEVT.getSimpleVT();
+ MVT VecEltVT = VecVT.getVectorElementType();
+ unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
+
+ MVT ContainerVT = VecVT;
+ if (VecVT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VecVT);
+ Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
+ }
+
+ auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
+
+ SDValue NeutralElem =
+ DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
+ return lowerReductionSeq(RVVOpcode, Op.getSimpleValueType(), NeutralElem, Vec,
+ Mask, VL, DL, DAG, Subtarget);
+}
+
+// Given a reduction op, this function returns the matching reduction opcode,
+// the vector SDValue and the scalar SDValue required to lower this to a
+// RISCVISD node.
+static std::tuple<unsigned, SDValue, SDValue>
+getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
+ SDLoc DL(Op);
+ auto Flags = Op->getFlags();
+ unsigned Opcode = Op.getOpcode();
+ unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
+ switch (Opcode) {
+ default:
+ llvm_unreachable("Unhandled reduction");
+ case ISD::VECREDUCE_FADD: {
+ // Use positive zero if we can. It is cheaper to materialize.
+ SDValue Zero =
+ DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
+ return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
+ }
+ case ISD::VECREDUCE_SEQ_FADD:
+ return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
+ Op.getOperand(0));
+ case ISD::VECREDUCE_FMIN:
+ return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
+ DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
+ case ISD::VECREDUCE_FMAX:
+ return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
+ DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
+ }
+}
+
+SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ MVT VecEltVT = Op.getSimpleValueType();
+
+ unsigned RVVOpcode;
+ SDValue VectorVal, ScalarVal;
+ std::tie(RVVOpcode, VectorVal, ScalarVal) =
+ getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
+ MVT VecVT = VectorVal.getSimpleValueType();
+
+ MVT ContainerVT = VecVT;
+ if (VecVT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VecVT);
+ VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
+ }
+
+ auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
+ return lowerReductionSeq(RVVOpcode, Op.getSimpleValueType(), ScalarVal,
+ VectorVal, Mask, VL, DL, DAG, Subtarget);
+}
+
+static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
+ switch (ISDOpcode) {
+ default:
+ llvm_unreachable("Unhandled reduction");
+ case ISD::VP_REDUCE_ADD:
+ return RISCVISD::VECREDUCE_ADD_VL;
+ case ISD::VP_REDUCE_UMAX:
+ return RISCVISD::VECREDUCE_UMAX_VL;
+ case ISD::VP_REDUCE_SMAX:
+ return RISCVISD::VECREDUCE_SMAX_VL;
+ case ISD::VP_REDUCE_UMIN:
+ return RISCVISD::VECREDUCE_UMIN_VL;
+ case ISD::VP_REDUCE_SMIN:
+ return RISCVISD::VECREDUCE_SMIN_VL;
+ case ISD::VP_REDUCE_AND:
+ return RISCVISD::VECREDUCE_AND_VL;
+ case ISD::VP_REDUCE_OR:
+ return RISCVISD::VECREDUCE_OR_VL;
+ case ISD::VP_REDUCE_XOR:
+ return RISCVISD::VECREDUCE_XOR_VL;
+ case ISD::VP_REDUCE_FADD:
+ return RISCVISD::VECREDUCE_FADD_VL;
+ case ISD::VP_REDUCE_SEQ_FADD:
+ return RISCVISD::VECREDUCE_SEQ_FADD_VL;
+ case ISD::VP_REDUCE_FMAX:
+ return RISCVISD::VECREDUCE_FMAX_VL;
+ case ISD::VP_REDUCE_FMIN:
+ return RISCVISD::VECREDUCE_FMIN_VL;
+ }
+}
+
+SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ SDValue Vec = Op.getOperand(1);
+ EVT VecEVT = Vec.getValueType();
+
+ // TODO: The type may need to be widened rather than split. Or widened before
+ // it can be split.
+ if (!isTypeLegal(VecEVT))
+ return SDValue();
+
+ MVT VecVT = VecEVT.getSimpleVT();
+ unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
+
+ if (VecVT.isFixedLengthVector()) {
+ auto ContainerVT = getContainerForFixedLengthVector(VecVT);
+ Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
+ }
+
+ SDValue VL = Op.getOperand(3);
+ SDValue Mask = Op.getOperand(2);
+ return lowerReductionSeq(RVVOpcode, Op.getSimpleValueType(), Op.getOperand(0),
+ Vec, Mask, VL, DL, DAG, Subtarget);
+}
+
+SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Vec = Op.getOperand(0);
+ SDValue SubVec = Op.getOperand(1);
+ MVT VecVT = Vec.getSimpleValueType();
+ MVT SubVecVT = SubVec.getSimpleValueType();
+
+ SDLoc DL(Op);
+ MVT XLenVT = Subtarget.getXLenVT();
+ unsigned OrigIdx = Op.getConstantOperandVal(2);
+ const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
+
+ // We don't have the ability to slide mask vectors up indexed by their i1
+ // elements; the smallest we can do is i8. Often we are able to bitcast to
+ // equivalent i8 vectors. Note that when inserting a fixed-length vector
+ // into a scalable one, we might not necessarily have enough scalable
+ // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
+ if (SubVecVT.getVectorElementType() == MVT::i1 &&
+ (OrigIdx != 0 || !Vec.isUndef())) {
+ if (VecVT.getVectorMinNumElements() >= 8 &&
+ SubVecVT.getVectorMinNumElements() >= 8) {
+ assert(OrigIdx % 8 == 0 && "Invalid index");
+ assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
+ SubVecVT.getVectorMinNumElements() % 8 == 0 &&
+ "Unexpected mask vector lowering");
+ OrigIdx /= 8;
+ SubVecVT =
+ MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
+ SubVecVT.isScalableVector());
+ VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
+ VecVT.isScalableVector());
+ Vec = DAG.getBitcast(VecVT, Vec);
+ SubVec = DAG.getBitcast(SubVecVT, SubVec);
+ } else {
+ // We can't slide this mask vector up indexed by its i1 elements.
+ // This poses a problem when we wish to insert a scalable vector which
+ // can't be re-expressed as a larger type. Just choose the slow path and
+ // extend to a larger type, then truncate back down.
+ MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
+ MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
+ Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
+ SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
+ Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
+ Op.getOperand(2));
+ SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
+ return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
+ }
+ }
+
+ // If the subvector vector is a fixed-length type, we cannot use subregister
+ // manipulation to simplify the codegen; we don't know which register of a
+ // LMUL group contains the specific subvector as we only know the minimum
+ // register size. Therefore we must slide the vector group up the full
+ // amount.
+ if (SubVecVT.isFixedLengthVector()) {
+ if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
+ return Op;
+ MVT ContainerVT = VecVT;
+ if (VecVT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VecVT);
+ Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
+ }
+ SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
+ DAG.getUNDEF(ContainerVT), SubVec,
+ DAG.getConstant(0, DL, XLenVT));
+ if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
+ SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
+ return DAG.getBitcast(Op.getValueType(), SubVec);
+ }
+ SDValue Mask =
+ getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
+ // Set the vector length to only the number of elements we care about. Note
+ // that for slideup this includes the offset.
+ SDValue VL =
+ getVLOp(OrigIdx + SubVecVT.getVectorNumElements(), DL, DAG, Subtarget);
+ SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
+
+ // Use tail agnostic policy if OrigIdx is the last index of Vec.
+ unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED;
+ if (VecVT.isFixedLengthVector() &&
+ OrigIdx + 1 == VecVT.getVectorNumElements())
+ Policy = RISCVII::TAIL_AGNOSTIC;
+ SDValue Slideup = getVSlideup(DAG, Subtarget, DL, ContainerVT, Vec, SubVec,
+ SlideupAmt, Mask, VL, Policy);
+ if (VecVT.isFixedLengthVector())
+ Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
+ return DAG.getBitcast(Op.getValueType(), Slideup);
+ }
+
+ unsigned SubRegIdx, RemIdx;
+ std::tie(SubRegIdx, RemIdx) =
+ RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
+ VecVT, SubVecVT, OrigIdx, TRI);
+
+ RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
+ bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
+ SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
+ SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
+
+ // 1. If the Idx has been completely eliminated and this subvector's size is
+ // a vector register or a multiple thereof, or the surrounding elements are
+ // undef, then this is a subvector insert which naturally aligns to a vector
+ // register. These can easily be handled using subregister manipulation.
+ // 2. If the subvector is smaller than a vector register, then the insertion
+ // must preserve the undisturbed elements of the register. We do this by
+ // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
+ // (which resolves to a subregister copy), performing a VSLIDEUP to place the
+ // subvector within the vector register, and an INSERT_SUBVECTOR of that
+ // LMUL=1 type back into the larger vector (resolving to another subregister
+ // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
+ // to avoid allocating a large register group to hold our subvector.
+ if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
+ return Op;
+
+ // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
+ // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
+ // (in our case undisturbed). This means we can set up a subvector insertion
+ // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
+ // size of the subvector.
+ MVT InterSubVT = VecVT;
+ SDValue AlignedExtract = Vec;
+ unsigned AlignedIdx = OrigIdx - RemIdx;
+ if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
+ InterSubVT = getLMUL1VT(VecVT);
+ // Extract a subvector equal to the nearest full vector register type. This
+ // should resolve to a EXTRACT_SUBREG instruction.
+ AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
+ DAG.getConstant(AlignedIdx, DL, XLenVT));
+ }
+
+ SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
+ // For scalable vectors this must be further multiplied by vscale.
+ SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
+
+ auto [Mask, VL] = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
+
+ // Construct the vector length corresponding to RemIdx + length(SubVecVT).
+ VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
+ VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
+ VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
+
+ SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
+ DAG.getUNDEF(InterSubVT), SubVec,
+ DAG.getConstant(0, DL, XLenVT));
+
+ SDValue Slideup = getVSlideup(DAG, Subtarget, DL, InterSubVT, AlignedExtract,
+ SubVec, SlideupAmt, Mask, VL);
+
+ // If required, insert this subvector back into the correct vector register.
+ // This should resolve to an INSERT_SUBREG instruction.
+ if (VecVT.bitsGT(InterSubVT))
+ Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
+ DAG.getConstant(AlignedIdx, DL, XLenVT));
+
+ // We might have bitcast from a mask type: cast back to the original type if
+ // required.
+ return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
+}
+
+SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Vec = Op.getOperand(0);
+ MVT SubVecVT = Op.getSimpleValueType();
+ MVT VecVT = Vec.getSimpleValueType();
+
+ SDLoc DL(Op);
+ MVT XLenVT = Subtarget.getXLenVT();
+ unsigned OrigIdx = Op.getConstantOperandVal(1);
+ const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
+
+ // We don't have the ability to slide mask vectors down indexed by their i1
+ // elements; the smallest we can do is i8. Often we are able to bitcast to
+ // equivalent i8 vectors. Note that when extracting a fixed-length vector
+ // from a scalable one, we might not necessarily have enough scalable
+ // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
+ if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
+ if (VecVT.getVectorMinNumElements() >= 8 &&
+ SubVecVT.getVectorMinNumElements() >= 8) {
+ assert(OrigIdx % 8 == 0 && "Invalid index");
+ assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
+ SubVecVT.getVectorMinNumElements() % 8 == 0 &&
+ "Unexpected mask vector lowering");
+ OrigIdx /= 8;
+ SubVecVT =
+ MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
+ SubVecVT.isScalableVector());
+ VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
+ VecVT.isScalableVector());
+ Vec = DAG.getBitcast(VecVT, Vec);
+ } else {
+ // We can't slide this mask vector down, indexed by its i1 elements.
+ // This poses a problem when we wish to extract a scalable vector which
+ // can't be re-expressed as a larger type. Just choose the slow path and
+ // extend to a larger type, then truncate back down.
+ // TODO: We could probably improve this when extracting certain fixed
+ // from fixed, where we can extract as i8 and shift the correct element
+ // right to reach the desired subvector?
+ MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
+ MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
+ Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
+ Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
+ Op.getOperand(1));
+ SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
+ return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
+ }
+ }
+
+ // If the subvector vector is a fixed-length type, we cannot use subregister
+ // manipulation to simplify the codegen; we don't know which register of a
+ // LMUL group contains the specific subvector as we only know the minimum
+ // register size. Therefore we must slide the vector group down the full
+ // amount.
+ if (SubVecVT.isFixedLengthVector()) {
+ // With an index of 0 this is a cast-like subvector, which can be performed
+ // with subregister operations.
+ if (OrigIdx == 0)
+ return Op;
+ MVT ContainerVT = VecVT;
+ if (VecVT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VecVT);
+ Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
+ }
+ SDValue Mask =
+ getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
+ // Set the vector length to only the number of elements we care about. This
+ // avoids sliding down elements we're going to discard straight away.
+ SDValue VL = getVLOp(SubVecVT.getVectorNumElements(), DL, DAG, Subtarget);
+ SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
+ SDValue Slidedown =
+ getVSlidedown(DAG, Subtarget, DL, ContainerVT,
+ DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
+ // Now we can use a cast-like subvector extract to get the result.
+ Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
+ DAG.getConstant(0, DL, XLenVT));
+ return DAG.getBitcast(Op.getValueType(), Slidedown);
+ }
+
+ unsigned SubRegIdx, RemIdx;
+ std::tie(SubRegIdx, RemIdx) =
+ RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
+ VecVT, SubVecVT, OrigIdx, TRI);
+
+ // If the Idx has been completely eliminated then this is a subvector extract
+ // which naturally aligns to a vector register. These can easily be handled
+ // using subregister manipulation.
+ if (RemIdx == 0)
+ return Op;
+
+ // Else we must shift our vector register directly to extract the subvector.
+ // Do this using VSLIDEDOWN.
+
+ // If the vector type is an LMUL-group type, extract a subvector equal to the
+ // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
+ // instruction.
+ MVT InterSubVT = VecVT;
+ if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
+ InterSubVT = getLMUL1VT(VecVT);
+ Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
+ DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
+ }
+
+ // Slide this vector register down by the desired number of elements in order
+ // to place the desired subvector starting at element 0.
+ SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
+ // For scalable vectors this must be further multiplied by vscale.
+ SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
+
+ auto [Mask, VL] = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
+ SDValue Slidedown =
+ getVSlidedown(DAG, Subtarget, DL, InterSubVT, DAG.getUNDEF(InterSubVT),
+ Vec, SlidedownAmt, Mask, VL);
+
+ // Now the vector is in the right position, extract our final subvector. This
+ // should resolve to a COPY.
+ Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
+ DAG.getConstant(0, DL, XLenVT));
+
+ // We might have bitcast from a mask type: cast back to the original type if
+ // required.
+ return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
+}
+
+// Lower step_vector to the vid instruction. Any non-identity step value must
+// be accounted for my manual expansion.
+SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+ assert(VT.isScalableVector() && "Expected scalable vector");
+ MVT XLenVT = Subtarget.getXLenVT();
+ auto [Mask, VL] = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
+ SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
+ uint64_t StepValImm = Op.getConstantOperandVal(0);
+ if (StepValImm != 1) {
+ if (isPowerOf2_64(StepValImm)) {
+ SDValue StepVal =
+ DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
+ DAG.getConstant(Log2_64(StepValImm), DL, XLenVT), VL);
+ StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
+ } else {
+ SDValue StepVal = lowerScalarSplat(
+ SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
+ VL, VT, DL, DAG, Subtarget);
+ StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
+ }
+ }
+ return StepVec;
+}
+
+// Implement vector_reverse using vrgather.vv with indices determined by
+// subtracting the id of each element from (VLMAX-1). This will convert
+// the indices like so:
+// (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
+// TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
+SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ MVT VecVT = Op.getSimpleValueType();
+ if (VecVT.getVectorElementType() == MVT::i1) {
+ MVT WidenVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
+ SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, Op.getOperand(0));
+ SDValue Op2 = DAG.getNode(ISD::VECTOR_REVERSE, DL, WidenVT, Op1);
+ return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Op2);
+ }
+ unsigned EltSize = VecVT.getScalarSizeInBits();
+ unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
+ unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
+ unsigned MaxVLMAX =
+ RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
+
+ unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
+ MVT IntVT = VecVT.changeVectorElementTypeToInteger();
+
+ // If this is SEW=8 and VLMAX is potentially more than 256, we need
+ // to use vrgatherei16.vv.
+ // TODO: It's also possible to use vrgatherei16.vv for other types to
+ // decrease register width for the index calculation.
+ if (MaxVLMAX > 256 && EltSize == 8) {
+ // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
+ // Reverse each half, then reassemble them in reverse order.
+ // NOTE: It's also possible that after splitting that VLMAX no longer
+ // requires vrgatherei16.vv.
+ if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
+ auto [Lo, Hi] = DAG.SplitVectorOperand(Op.getNode(), 0);
+ auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VecVT);
+ Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
+ Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
+ // Reassemble the low and high pieces reversed.
+ // FIXME: This is a CONCAT_VECTORS.
+ SDValue Res =
+ DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
+ DAG.getIntPtrConstant(0, DL));
+ return DAG.getNode(
+ ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
+ DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
+ }
+
+ // Just promote the int type to i16 which will double the LMUL.
+ IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
+ GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
+ }
+
+ MVT XLenVT = Subtarget.getXLenVT();
+ auto [Mask, VL] = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
+
+ // Calculate VLMAX-1 for the desired SEW.
+ unsigned MinElts = VecVT.getVectorMinNumElements();
+ SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
+ getVLOp(MinElts, DL, DAG, Subtarget));
+ SDValue VLMinus1 =
+ DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
+
+ // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
+ bool IsRV32E64 =
+ !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
+ SDValue SplatVL;
+ if (!IsRV32E64)
+ SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
+ else
+ SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
+ VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
+
+ SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
+ SDValue Indices = DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID,
+ DAG.getUNDEF(IntVT), Mask, VL);
+
+ return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices,
+ DAG.getUNDEF(VecVT), Mask, VL);
+}
+
+SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ MVT XLenVT = Subtarget.getXLenVT();
+ MVT VecVT = Op.getSimpleValueType();
+
+ unsigned MinElts = VecVT.getVectorMinNumElements();
+ SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
+ getVLOp(MinElts, DL, DAG, Subtarget));
+
+ int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
+ SDValue DownOffset, UpOffset;
+ if (ImmValue >= 0) {
+ // The operand is a TargetConstant, we need to rebuild it as a regular
+ // constant.
+ DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
+ UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
+ } else {
+ // The operand is a TargetConstant, we need to rebuild it as a regular
+ // constant rather than negating the original operand.
+ UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
+ DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
+ }
+
+ SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG);
+
+ SDValue SlideDown =
+ getVSlidedown(DAG, Subtarget, DL, VecVT, DAG.getUNDEF(VecVT), V1,
+ DownOffset, TrueMask, UpOffset);
+ return getVSlideup(DAG, Subtarget, DL, VecVT, SlideDown, V2, UpOffset,
+ TrueMask, DAG.getRegister(RISCV::X0, XLenVT),
+ RISCVII::TAIL_AGNOSTIC);
+}
+
+SDValue
+RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ auto *Load = cast<LoadSDNode>(Op);
+
+ assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
+ Load->getMemoryVT(),
+ *Load->getMemOperand()) &&
+ "Expecting a correctly-aligned load");
+
+ MVT VT = Op.getSimpleValueType();
+ MVT XLenVT = Subtarget.getXLenVT();
+ MVT ContainerVT = getContainerForFixedLengthVector(VT);
+
+ SDValue VL = getVLOp(VT.getVectorNumElements(), DL, DAG, Subtarget);
+
+ bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
+ SDValue IntID = DAG.getTargetConstant(
+ IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
+ SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
+ if (!IsMaskOp)
+ Ops.push_back(DAG.getUNDEF(ContainerVT));
+ Ops.push_back(Load->getBasePtr());
+ Ops.push_back(VL);
+ SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
+ SDValue NewLoad =
+ DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
+ Load->getMemoryVT(), Load->getMemOperand());
+
+ SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
+ return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL);
+}
+
+SDValue
+RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ auto *Store = cast<StoreSDNode>(Op);
+
+ assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
+ Store->getMemoryVT(),
+ *Store->getMemOperand()) &&
+ "Expecting a correctly-aligned store");
+
+ SDValue StoreVal = Store->getValue();
+ MVT VT = StoreVal.getSimpleValueType();
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ // If the size less than a byte, we need to pad with zeros to make a byte.
+ if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
+ VT = MVT::v8i1;
+ StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
+ DAG.getConstant(0, DL, VT), StoreVal,
+ DAG.getIntPtrConstant(0, DL));
+ }
+
+ MVT ContainerVT = getContainerForFixedLengthVector(VT);
+
+ SDValue VL = getVLOp(VT.getVectorNumElements(), DL, DAG, Subtarget);
+
+ SDValue NewValue =
+ convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
+
+ bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
+ SDValue IntID = DAG.getTargetConstant(
+ IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
+ return DAG.getMemIntrinsicNode(
+ ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
+ {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
+ Store->getMemoryVT(), Store->getMemOperand());
+}
+
+SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+
+ const auto *MemSD = cast<MemSDNode>(Op);
+ EVT MemVT = MemSD->getMemoryVT();
+ MachineMemOperand *MMO = MemSD->getMemOperand();
+ SDValue Chain = MemSD->getChain();
+ SDValue BasePtr = MemSD->getBasePtr();
+
+ SDValue Mask, PassThru, VL;
+ if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
+ Mask = VPLoad->getMask();
+ PassThru = DAG.getUNDEF(VT);
+ VL = VPLoad->getVectorLength();
+ } else {
+ const auto *MLoad = cast<MaskedLoadSDNode>(Op);
+ Mask = MLoad->getMask();
+ PassThru = MLoad->getPassThru();
+ }
+
+ bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
+
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ MVT ContainerVT = VT;
+ if (VT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VT);
+ PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
+ if (!IsUnmasked) {
+ MVT MaskVT = getMaskTypeFor(ContainerVT);
+ Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
+ }
+ }
+
+ if (!VL)
+ VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
+
+ unsigned IntID =
+ IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
+ SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
+ if (IsUnmasked)
+ Ops.push_back(DAG.getUNDEF(ContainerVT));
+ else
+ Ops.push_back(PassThru);
+ Ops.push_back(BasePtr);
+ if (!IsUnmasked)
+ Ops.push_back(Mask);
+ Ops.push_back(VL);
+ if (!IsUnmasked)
+ Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
+
+ SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
+
+ SDValue Result =
+ DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
+ Chain = Result.getValue(1);
+
+ if (VT.isFixedLengthVector())
+ Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
+
+ return DAG.getMergeValues({Result, Chain}, DL);
+}
+
+SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+
+ const auto *MemSD = cast<MemSDNode>(Op);
+ EVT MemVT = MemSD->getMemoryVT();
+ MachineMemOperand *MMO = MemSD->getMemOperand();
+ SDValue Chain = MemSD->getChain();
+ SDValue BasePtr = MemSD->getBasePtr();
+ SDValue Val, Mask, VL;
+
+ if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
+ Val = VPStore->getValue();
+ Mask = VPStore->getMask();
+ VL = VPStore->getVectorLength();
+ } else {
+ const auto *MStore = cast<MaskedStoreSDNode>(Op);
+ Val = MStore->getValue();
+ Mask = MStore->getMask();
+ }
+
+ bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
+
+ MVT VT = Val.getSimpleValueType();
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ MVT ContainerVT = VT;
+ if (VT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VT);
+
+ Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
+ if (!IsUnmasked) {
+ MVT MaskVT = getMaskTypeFor(ContainerVT);
+ Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
+ }
+ }
+
+ if (!VL)
+ VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
+
+ unsigned IntID =
+ IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
+ SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
+ Ops.push_back(Val);
+ Ops.push_back(BasePtr);
+ if (!IsUnmasked)
+ Ops.push_back(Mask);
+ Ops.push_back(VL);
+
+ return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
+ DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
+}
+
+SDValue
+RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
+ SelectionDAG &DAG) const {
+ MVT InVT = Op.getOperand(0).getSimpleValueType();
+ MVT ContainerVT = getContainerForFixedLengthVector(InVT);
+
+ MVT VT = Op.getSimpleValueType();
+
+ SDValue Op1 =
+ convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
+ SDValue Op2 =
+ convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
+
+ SDLoc DL(Op);
+ auto [Mask, VL] = getDefaultVLOps(VT.getVectorNumElements(), ContainerVT, DL,
+ DAG, Subtarget);
+ MVT MaskVT = getMaskTypeFor(ContainerVT);
+
+ SDValue Cmp =
+ DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT,
+ {Op1, Op2, Op.getOperand(2), DAG.getUNDEF(MaskVT), Mask, VL});
+
+ return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
+}
+
+SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
+ SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
+ MVT VT = Op.getSimpleValueType();
+
+ if (VT.getVectorElementType() == MVT::i1)
+ return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMergeOp*/ false,
+ /*HasMask*/ false);
+
+ return lowerToScalableOp(Op, DAG, VecOpc, /*HasMergeOp*/ true);
+}
+
+SDValue
+RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
+ SelectionDAG &DAG) const {
+ unsigned Opc;
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Unexpected opcode!");
+ case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
+ case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
+ case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
+ }
+
+ return lowerToScalableOp(Op, DAG, Opc, /*HasMergeOp*/ true);
+}
+
+// Lower vector ABS to smax(X, sub(0, X)).
+SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+ SDValue X = Op.getOperand(0);
+
+ assert((Op.getOpcode() == ISD::VP_ABS || VT.isFixedLengthVector()) &&
+ "Unexpected type for ISD::ABS");
+
+ MVT ContainerVT = VT;
+ if (VT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VT);
+ X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
+ }
+
+ SDValue Mask, VL;
+ if (Op->getOpcode() == ISD::VP_ABS) {
+ Mask = Op->getOperand(1);
+ VL = Op->getOperand(2);
+ } else
+ std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
+
+ SDValue SplatZero = DAG.getNode(
+ RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
+ DAG.getConstant(0, DL, Subtarget.getXLenVT()), VL);
+ SDValue NegX = DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X,
+ DAG.getUNDEF(ContainerVT), Mask, VL);
+ SDValue Max = DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX,
+ DAG.getUNDEF(ContainerVT), Mask, VL);
+
+ if (VT.isFixedLengthVector())
+ Max = convertFromScalableVector(VT, Max, DAG, Subtarget);
+ return Max;
+}
+
+SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
+ SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+ SDValue Mag = Op.getOperand(0);
+ SDValue Sign = Op.getOperand(1);
+ assert(Mag.getValueType() == Sign.getValueType() &&
+ "Can only handle COPYSIGN with matching types.");
+
+ MVT ContainerVT = getContainerForFixedLengthVector(VT);
+ Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
+ Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
+
+ auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
+
+ SDValue CopySign = DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag,
+ Sign, DAG.getUNDEF(ContainerVT), Mask, VL);
+
+ return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
+}
+
+SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
+ SDValue Op, SelectionDAG &DAG) const {
+ MVT VT = Op.getSimpleValueType();
+ MVT ContainerVT = getContainerForFixedLengthVector(VT);
+
+ MVT I1ContainerVT =
+ MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
+
+ SDValue CC =
+ convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
+ SDValue Op1 =
+ convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
+ SDValue Op2 =
+ convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
+
+ SDLoc DL(Op);
+ SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
+
+ SDValue Select =
+ DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
+
+ return convertFromScalableVector(VT, Select, DAG, Subtarget);
+}
+
+SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
+ unsigned NewOpc, bool HasMergeOp,
+ bool HasMask) const {
+ MVT VT = Op.getSimpleValueType();
+ MVT ContainerVT = getContainerForFixedLengthVector(VT);
+
+ // Create list of operands by converting existing ones to scalable types.
+ SmallVector<SDValue, 6> Ops;
+ for (const SDValue &V : Op->op_values()) {
+ assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
+
+ // Pass through non-vector operands.
+ if (!V.getValueType().isVector()) {
+ Ops.push_back(V);
+ continue;
+ }
+
+ // "cast" fixed length vector to a scalable vector.
+ assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
+ "Only fixed length vectors are supported!");
+ Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
+ }
+
+ SDLoc DL(Op);
+ auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
+ if (HasMergeOp)
+ Ops.push_back(DAG.getUNDEF(ContainerVT));
+ if (HasMask)
+ Ops.push_back(Mask);
+ Ops.push_back(VL);
+
+ SDValue ScalableRes =
+ DAG.getNode(NewOpc, DL, ContainerVT, Ops, Op->getFlags());
+ return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
+}
+
+// Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
+// * Operands of each node are assumed to be in the same order.
+// * The EVL operand is promoted from i32 to i64 on RV64.
+// * Fixed-length vectors are converted to their scalable-vector container
+// types.
+SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
+ unsigned RISCVISDOpc,
+ bool HasMergeOp) const {
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+ SmallVector<SDValue, 4> Ops;
+
+ MVT ContainerVT = VT;
+ if (VT.isFixedLengthVector())
+ ContainerVT = getContainerForFixedLengthVector(VT);
+
+ for (const auto &OpIdx : enumerate(Op->ops())) {
+ SDValue V = OpIdx.value();
+ assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
+ // Add dummy merge value before the mask.
+ if (HasMergeOp && *ISD::getVPMaskIdx(Op.getOpcode()) == OpIdx.index())
+ Ops.push_back(DAG.getUNDEF(ContainerVT));
+ // Pass through operands which aren't fixed-length vectors.
+ if (!V.getValueType().isFixedLengthVector()) {
+ Ops.push_back(V);
+ continue;
+ }
+ // "cast" fixed length vector to a scalable vector.
+ MVT OpVT = V.getSimpleValueType();
+ MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
+ assert(useRVVForFixedLengthVectorVT(OpVT) &&
+ "Only fixed length vectors are supported!");
+ Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
+ }
+
+ if (!VT.isFixedLengthVector())
+ return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags());
+
+ SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags());
+
+ return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
+}
+
+SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+
+ SDValue Src = Op.getOperand(0);
+ // NOTE: Mask is dropped.
+ SDValue VL = Op.getOperand(2);
+
+ MVT ContainerVT = VT;
+ if (VT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VT);
+ MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
+ Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
+ }
+
+ MVT XLenVT = Subtarget.getXLenVT();
+ SDValue Zero = DAG.getConstant(0, DL, XLenVT);
+ SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
+ DAG.getUNDEF(ContainerVT), Zero, VL);
+
+ SDValue SplatValue = DAG.getConstant(
+ Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT);
+ SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
+ DAG.getUNDEF(ContainerVT), SplatValue, VL);
+
+ SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src,
+ Splat, ZeroSplat, VL);
+ if (!VT.isFixedLengthVector())
+ return Result;
+ return convertFromScalableVector(VT, Result, DAG, Subtarget);
+}
+
+SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+
+ SDValue Op1 = Op.getOperand(0);
+ SDValue Op2 = Op.getOperand(1);
+ ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ // NOTE: Mask is dropped.
+ SDValue VL = Op.getOperand(4);
+
+ MVT ContainerVT = VT;
+ if (VT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VT);
+ Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
+ Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
+ }
+
+ SDValue Result;
+ SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
+
+ switch (Condition) {
+ default:
+ break;
+ // X != Y --> (X^Y)
+ case ISD::SETNE:
+ Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
+ break;
+ // X == Y --> ~(X^Y)
+ case ISD::SETEQ: {
+ SDValue Temp =
+ DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
+ Result =
+ DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL);
+ break;
+ }
+ // X >s Y --> X == 0 & Y == 1 --> ~X & Y
+ // X <u Y --> X == 0 & Y == 1 --> ~X & Y
+ case ISD::SETGT:
+ case ISD::SETULT: {
+ SDValue Temp =
+ DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
+ Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL);
+ break;
+ }
+ // X <s Y --> X == 1 & Y == 0 --> ~Y & X
+ // X >u Y --> X == 1 & Y == 0 --> ~Y & X
+ case ISD::SETLT:
+ case ISD::SETUGT: {
+ SDValue Temp =
+ DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
+ Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL);
+ break;
+ }
+ // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
+ // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
+ case ISD::SETGE:
+ case ISD::SETULE: {
+ SDValue Temp =
+ DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
+ Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL);
+ break;
+ }
+ // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
+ // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
+ case ISD::SETLE:
+ case ISD::SETUGE: {
+ SDValue Temp =
+ DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
+ Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL);
+ break;
+ }
+ }
+
+ if (!VT.isFixedLengthVector())
+ return Result;
+ return convertFromScalableVector(VT, Result, DAG, Subtarget);
+}
+
+// Lower Floating-Point/Integer Type-Convert VP SDNodes
+SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG,
+ unsigned RISCVISDOpc) const {
+ SDLoc DL(Op);
+
+ SDValue Src = Op.getOperand(0);
+ SDValue Mask = Op.getOperand(1);
+ SDValue VL = Op.getOperand(2);
+
+ MVT DstVT = Op.getSimpleValueType();
+ MVT SrcVT = Src.getSimpleValueType();
+ if (DstVT.isFixedLengthVector()) {
+ DstVT = getContainerForFixedLengthVector(DstVT);
+ SrcVT = getContainerForFixedLengthVector(SrcVT);
+ Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
+ MVT MaskVT = getMaskTypeFor(DstVT);
+ Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
+ }
+
+ unsigned DstEltSize = DstVT.getScalarSizeInBits();
+ unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
+
+ SDValue Result;
+ if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion.
+ if (SrcVT.isInteger()) {
+ assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
+
+ unsigned RISCVISDExtOpc = RISCVISDOpc == RISCVISD::SINT_TO_FP_VL
+ ? RISCVISD::VSEXT_VL
+ : RISCVISD::VZEXT_VL;
+
+ // Do we need to do any pre-widening before converting?
+ if (SrcEltSize == 1) {
+ MVT IntVT = DstVT.changeVectorElementTypeToInteger();
+ MVT XLenVT = Subtarget.getXLenVT();
+ SDValue Zero = DAG.getConstant(0, DL, XLenVT);
+ SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
+ DAG.getUNDEF(IntVT), Zero, VL);
+ SDValue One = DAG.getConstant(
+ RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT);
+ SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
+ DAG.getUNDEF(IntVT), One, VL);
+ Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat,
+ ZeroSplat, VL);
+ } else if (DstEltSize > (2 * SrcEltSize)) {
+ // Widen before converting.
+ MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2),
+ DstVT.getVectorElementCount());
+ Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL);
+ }
+
+ Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
+ } else {
+ assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
+ "Wrong input/output vector types");
+
+ // Convert f16 to f32 then convert f32 to i64.
+ if (DstEltSize > (2 * SrcEltSize)) {
+ assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
+ MVT InterimFVT =
+ MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
+ Src =
+ DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL);
+ }
+
+ Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
+ }
+ } else { // Narrowing + Conversion
+ if (SrcVT.isInteger()) {
+ assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
+ // First do a narrowing convert to an FP type half the size, then round
+ // the FP type to a small FP type if needed.
+
+ MVT InterimFVT = DstVT;
+ if (SrcEltSize > (2 * DstEltSize)) {
+ assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!");
+ assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
+ InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
+ }
+
+ Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL);
+
+ if (InterimFVT != DstVT) {
+ Src = Result;
+ Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL);
+ }
+ } else {
+ assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
+ "Wrong input/output vector types");
+ // First do a narrowing conversion to an integer half the size, then
+ // truncate if needed.
+
+ if (DstEltSize == 1) {
+ // First convert to the same size integer, then convert to mask using
+ // setcc.
+ assert(SrcEltSize >= 16 && "Unexpected FP type!");
+ MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize),
+ DstVT.getVectorElementCount());
+ Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
+
+ // Compare the integer result to 0. The integer should be 0 or 1/-1,
+ // otherwise the conversion was undefined.
+ MVT XLenVT = Subtarget.getXLenVT();
+ SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
+ SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT,
+ DAG.getUNDEF(InterimIVT), SplatZero, VL);
+ Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT,
+ {Result, SplatZero, DAG.getCondCode(ISD::SETNE),
+ DAG.getUNDEF(DstVT), Mask, VL});
+ } else {
+ MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
+ DstVT.getVectorElementCount());
+
+ Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
+
+ while (InterimIVT != DstVT) {
+ SrcEltSize /= 2;
+ Src = Result;
+ InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
+ DstVT.getVectorElementCount());
+ Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT,
+ Src, Mask, VL);
+ }
+ }
+ }
+ }
+
+ MVT VT = Op.getSimpleValueType();
+ if (!VT.isFixedLengthVector())
+ return Result;
+ return convertFromScalableVector(VT, Result, DAG, Subtarget);
+}
+
+SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
+ unsigned MaskOpc,
+ unsigned VecOpc) const {
+ MVT VT = Op.getSimpleValueType();
+ if (VT.getVectorElementType() != MVT::i1)
+ return lowerVPOp(Op, DAG, VecOpc, true);
+
+ // It is safe to drop mask parameter as masked-off elements are undef.
+ SDValue Op1 = Op->getOperand(0);
+ SDValue Op2 = Op->getOperand(1);
+ SDValue VL = Op->getOperand(3);
+
+ MVT ContainerVT = VT;
+ const bool IsFixed = VT.isFixedLengthVector();
+ if (IsFixed) {
+ ContainerVT = getContainerForFixedLengthVector(VT);
+ Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
+ Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
+ }
+
+ SDLoc DL(Op);
+ SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
+ if (!IsFixed)
+ return Val;
+ return convertFromScalableVector(VT, Val, DAG, Subtarget);
+}
+
+SDValue RISCVTargetLowering::lowerVPStridedLoad(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ MVT XLenVT = Subtarget.getXLenVT();
+ MVT VT = Op.getSimpleValueType();
+ MVT ContainerVT = VT;
+ if (VT.isFixedLengthVector())
+ ContainerVT = getContainerForFixedLengthVector(VT);
+
+ SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
+
+ auto *VPNode = cast<VPStridedLoadSDNode>(Op);
+ // Check if the mask is known to be all ones
+ SDValue Mask = VPNode->getMask();
+ bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
+
+ SDValue IntID = DAG.getTargetConstant(IsUnmasked ? Intrinsic::riscv_vlse
+ : Intrinsic::riscv_vlse_mask,
+ DL, XLenVT);
+ SmallVector<SDValue, 8> Ops{VPNode->getChain(), IntID,
+ DAG.getUNDEF(ContainerVT), VPNode->getBasePtr(),
+ VPNode->getStride()};
+ if (!IsUnmasked) {
+ if (VT.isFixedLengthVector()) {
+ MVT MaskVT = ContainerVT.changeVectorElementType(MVT::i1);
+ Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
+ }
+ Ops.push_back(Mask);
+ }
+ Ops.push_back(VPNode->getVectorLength());
+ if (!IsUnmasked) {
+ SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
+ Ops.push_back(Policy);
+ }
+
+ SDValue Result =
+ DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
+ VPNode->getMemoryVT(), VPNode->getMemOperand());
+ SDValue Chain = Result.getValue(1);
+
+ if (VT.isFixedLengthVector())
+ Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
+
+ return DAG.getMergeValues({Result, Chain}, DL);
+}
+
+SDValue RISCVTargetLowering::lowerVPStridedStore(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ auto *VPNode = cast<VPStridedStoreSDNode>(Op);
+ SDValue StoreVal = VPNode->getValue();
+ MVT VT = StoreVal.getSimpleValueType();
+ MVT ContainerVT = VT;
+ if (VT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VT);
+ StoreVal = convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
+ }
+
+ // Check if the mask is known to be all ones
+ SDValue Mask = VPNode->getMask();
+ bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
+
+ SDValue IntID = DAG.getTargetConstant(IsUnmasked ? Intrinsic::riscv_vsse
+ : Intrinsic::riscv_vsse_mask,
+ DL, XLenVT);
+ SmallVector<SDValue, 8> Ops{VPNode->getChain(), IntID, StoreVal,
+ VPNode->getBasePtr(), VPNode->getStride()};
+ if (!IsUnmasked) {
+ if (VT.isFixedLengthVector()) {
+ MVT MaskVT = ContainerVT.changeVectorElementType(MVT::i1);
+ Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
+ }
+ Ops.push_back(Mask);
+ }
+ Ops.push_back(VPNode->getVectorLength());
+
+ return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, VPNode->getVTList(),
+ Ops, VPNode->getMemoryVT(),
+ VPNode->getMemOperand());
+}
+
+// Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
+// matched to a RVV indexed load. The RVV indexed load instructions only
+// support the "unsigned unscaled" addressing mode; indices are implicitly
+// zero-extended or truncated to XLEN and are treated as byte offsets. Any
+// signed or scaled indexing is extended to the XLEN value type and scaled
+// accordingly.
+SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+
+ const auto *MemSD = cast<MemSDNode>(Op.getNode());
+ EVT MemVT = MemSD->getMemoryVT();
+ MachineMemOperand *MMO = MemSD->getMemOperand();
+ SDValue Chain = MemSD->getChain();
+ SDValue BasePtr = MemSD->getBasePtr();
+
+ ISD::LoadExtType LoadExtType;
+ SDValue Index, Mask, PassThru, VL;
+
+ if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
+ Index = VPGN->getIndex();
+ Mask = VPGN->getMask();
+ PassThru = DAG.getUNDEF(VT);
+ VL = VPGN->getVectorLength();
+ // VP doesn't support extending loads.
+ LoadExtType = ISD::NON_EXTLOAD;
+ } else {
+ // Else it must be a MGATHER.
+ auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
+ Index = MGN->getIndex();
+ Mask = MGN->getMask();
+ PassThru = MGN->getPassThru();
+ LoadExtType = MGN->getExtensionType();
+ }
+
+ MVT IndexVT = Index.getSimpleValueType();
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
+ "Unexpected VTs!");
+ assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
+ // Targets have to explicitly opt-in for extending vector loads.
+ assert(LoadExtType == ISD::NON_EXTLOAD &&
+ "Unexpected extending MGATHER/VP_GATHER");
+ (void)LoadExtType;
+
+ // If the mask is known to be all ones, optimize to an unmasked intrinsic;
+ // the selection of the masked intrinsics doesn't do this for us.
+ bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
+
+ MVT ContainerVT = VT;
+ if (VT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VT);
+ IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
+ ContainerVT.getVectorElementCount());
+
+ Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
+
+ if (!IsUnmasked) {
+ MVT MaskVT = getMaskTypeFor(ContainerVT);
+ Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
+ PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
+ }
+ }
+
+ if (!VL)
+ VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
+
+ if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
+ IndexVT = IndexVT.changeVectorElementType(XLenVT);
+ SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
+ VL);
+ Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
+ TrueMask, VL);
+ }
+
+ unsigned IntID =
+ IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
+ SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
+ if (IsUnmasked)
+ Ops.push_back(DAG.getUNDEF(ContainerVT));
+ else
+ Ops.push_back(PassThru);
+ Ops.push_back(BasePtr);
+ Ops.push_back(Index);
+ if (!IsUnmasked)
+ Ops.push_back(Mask);
+ Ops.push_back(VL);
+ if (!IsUnmasked)
+ Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
+
+ SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
+ SDValue Result =
+ DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
+ Chain = Result.getValue(1);
+
+ if (VT.isFixedLengthVector())
+ Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
+
+ return DAG.getMergeValues({Result, Chain}, DL);
+}
+
+// Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
+// matched to a RVV indexed store. The RVV indexed store instructions only
+// support the "unsigned unscaled" addressing mode; indices are implicitly
+// zero-extended or truncated to XLEN and are treated as byte offsets. Any
+// signed or scaled indexing is extended to the XLEN value type and scaled
+// accordingly.
+SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ const auto *MemSD = cast<MemSDNode>(Op.getNode());
+ EVT MemVT = MemSD->getMemoryVT();
+ MachineMemOperand *MMO = MemSD->getMemOperand();
+ SDValue Chain = MemSD->getChain();
+ SDValue BasePtr = MemSD->getBasePtr();
+
+ bool IsTruncatingStore = false;
+ SDValue Index, Mask, Val, VL;
+
+ if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
+ Index = VPSN->getIndex();
+ Mask = VPSN->getMask();
+ Val = VPSN->getValue();
+ VL = VPSN->getVectorLength();
+ // VP doesn't support truncating stores.
+ IsTruncatingStore = false;
+ } else {
+ // Else it must be a MSCATTER.
+ auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
+ Index = MSN->getIndex();
+ Mask = MSN->getMask();
+ Val = MSN->getValue();
+ IsTruncatingStore = MSN->isTruncatingStore();
+ }
+
+ MVT VT = Val.getSimpleValueType();
+ MVT IndexVT = Index.getSimpleValueType();
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
+ "Unexpected VTs!");
+ assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
+ // Targets have to explicitly opt-in for extending vector loads and
+ // truncating vector stores.
+ assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
+ (void)IsTruncatingStore;
+
+ // If the mask is known to be all ones, optimize to an unmasked intrinsic;
+ // the selection of the masked intrinsics doesn't do this for us.
+ bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
+
+ MVT ContainerVT = VT;
+ if (VT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VT);
+ IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
+ ContainerVT.getVectorElementCount());
+
+ Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
+ Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
+
+ if (!IsUnmasked) {
+ MVT MaskVT = getMaskTypeFor(ContainerVT);
+ Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
+ }
+ }
+
+ if (!VL)
+ VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
+
+ if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
+ IndexVT = IndexVT.changeVectorElementType(XLenVT);
+ SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
+ VL);
+ Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
+ TrueMask, VL);
+ }
+
+ unsigned IntID =
+ IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
+ SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
+ Ops.push_back(Val);
+ Ops.push_back(BasePtr);
+ Ops.push_back(Index);
+ if (!IsUnmasked)
+ Ops.push_back(Mask);
+ Ops.push_back(VL);
+
+ return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
+ DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
+}
+
+SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
+ SelectionDAG &DAG) const {
+ const MVT XLenVT = Subtarget.getXLenVT();
+ SDLoc DL(Op);
+ SDValue Chain = Op->getOperand(0);
+ SDValue SysRegNo = DAG.getTargetConstant(
+ RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
+ SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
+ SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
+
+ // Encoding used for rounding mode in RISCV differs from that used in
+ // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
+ // table, which consists of a sequence of 4-bit fields, each representing
+ // corresponding FLT_ROUNDS mode.
+ static const int Table =
+ (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
+ (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
+ (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
+ (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
+ (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
+
+ SDValue Shift =
+ DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
+ SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
+ DAG.getConstant(Table, DL, XLenVT), Shift);
+ SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
+ DAG.getConstant(7, DL, XLenVT));
+
+ return DAG.getMergeValues({Masked, Chain}, DL);
+}
+
+SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
+ SelectionDAG &DAG) const {
+ const MVT XLenVT = Subtarget.getXLenVT();
+ SDLoc DL(Op);
+ SDValue Chain = Op->getOperand(0);
+ SDValue RMValue = Op->getOperand(1);
+ SDValue SysRegNo = DAG.getTargetConstant(
+ RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
+
+ // Encoding used for rounding mode in RISCV differs from that used in
+ // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
+ // a table, which consists of a sequence of 4-bit fields, each representing
+ // corresponding RISCV mode.
+ static const unsigned Table =
+ (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
+ (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
+ (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
+ (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
+ (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
+
+ SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
+ DAG.getConstant(2, DL, XLenVT));
+ SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
+ DAG.getConstant(Table, DL, XLenVT), Shift);
+ RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
+ DAG.getConstant(0x7, DL, XLenVT));
+ return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
+ RMValue);
+}
+
+SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ bool isRISCV64 = Subtarget.is64Bit();
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+
+ int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false);
+ return DAG.getFrameIndex(FI, PtrVT);
+}
+
+// Returns the opcode of the target-specific SDNode that implements the 32-bit
+// form of the given Opcode.
+static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ llvm_unreachable("Unexpected opcode");
+ case ISD::SHL:
+ return RISCVISD::SLLW;
+ case ISD::SRA:
+ return RISCVISD::SRAW;
+ case ISD::SRL:
+ return RISCVISD::SRLW;
+ case ISD::SDIV:
+ return RISCVISD::DIVW;
+ case ISD::UDIV:
+ return RISCVISD::DIVUW;
+ case ISD::UREM:
+ return RISCVISD::REMUW;
+ case ISD::ROTL:
+ return RISCVISD::ROLW;
+ case ISD::ROTR:
+ return RISCVISD::RORW;
+ }
+}
+
+// Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
+// node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
+// otherwise be promoted to i64, making it difficult to select the
+// SLLW/DIVUW/.../*W later one because the fact the operation was originally of
+// type i8/i16/i32 is lost.
+static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
+ unsigned ExtOpc = ISD::ANY_EXTEND) {
+ SDLoc DL(N);
+ RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
+ SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
+ SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
+ SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
+ // ReplaceNodeResults requires we maintain the same type for the return value.
+ return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
+}
+
+// Converts the given 32-bit operation to a i64 operation with signed extension
+// semantic to reduce the signed extension instructions.
+static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
+ SDLoc DL(N);
+ SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
+ SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
+ SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
+ SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
+ DAG.getValueType(MVT::i32));
+ return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
+}
+
+void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const {
+ SDLoc DL(N);
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Don't know how to custom type legalize this operation!");
+ case ISD::STRICT_FP_TO_SINT:
+ case ISD::STRICT_FP_TO_UINT:
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT: {
+ assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
+ "Unexpected custom legalisation");
+ bool IsStrict = N->isStrictFPOpcode();
+ bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
+ N->getOpcode() == ISD::STRICT_FP_TO_SINT;
+ SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
+ if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
+ TargetLowering::TypeSoftenFloat) {
+ if (!isTypeLegal(Op0.getValueType()))
+ return;
+ if (IsStrict) {
+ SDValue Chain = N->getOperand(0);
+ // In absense of Zfh, promote f16 to f32, then convert.
+ if (Op0.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) {
+ Op0 = DAG.getNode(ISD::STRICT_FP_EXTEND, DL, {MVT::f32, MVT::Other},
+ {Chain, Op0});
+ Chain = Op0.getValue(1);
+ }
+ unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
+ : RISCVISD::STRICT_FCVT_WU_RV64;
+ SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
+ SDValue Res = DAG.getNode(
+ Opc, DL, VTs, Chain, Op0,
+ DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
+ Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
+ Results.push_back(Res.getValue(1));
+ return;
+ }
+ // In absense of Zfh, promote f16 to f32, then convert.
+ if (Op0.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
+ Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op0);
+
+ unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
+ SDValue Res =
+ DAG.getNode(Opc, DL, MVT::i64, Op0,
+ DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
+ Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
+ return;
+ }
+ // If the FP type needs to be softened, emit a library call using the 'si'
+ // version. If we left it to default legalization we'd end up with 'di'. If
+ // the FP type doesn't need to be softened just let generic type
+ // legalization promote the result type.
+ RTLIB::Libcall LC;
+ if (IsSigned)
+ LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
+ else
+ LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
+ MakeLibCallOptions CallOptions;
+ EVT OpVT = Op0.getValueType();
+ CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
+ SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
+ SDValue Result;
+ std::tie(Result, Chain) =
+ makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
+ Results.push_back(Result);
+ if (IsStrict)
+ Results.push_back(Chain);
+ break;
+ }
+ case ISD::READCYCLECOUNTER: {
+ assert(!Subtarget.is64Bit() &&
+ "READCYCLECOUNTER only has custom type legalization on riscv32");
+
+ SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
+ SDValue RCW =
+ DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
+
+ Results.push_back(
+ DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
+ Results.push_back(RCW.getValue(2));
+ break;
+ }
+ case ISD::LOAD: {
+ if (!ISD::isNON_EXTLoad(N))
+ return;
+
+ // Use a SEXTLOAD instead of the default EXTLOAD. Similar to the
+ // sext_inreg we emit for ADD/SUB/MUL/SLLI.
+ LoadSDNode *Ld = cast<LoadSDNode>(N);
+
+ SDLoc dl(N);
+ SDValue Res = DAG.getExtLoad(ISD::SEXTLOAD, dl, MVT::i64, Ld->getChain(),
+ Ld->getBasePtr(), Ld->getMemoryVT(),
+ Ld->getMemOperand());
+ Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Res));
+ Results.push_back(Res.getValue(1));
+ return;
+ }
+ case ISD::MUL: {
+ unsigned Size = N->getSimpleValueType(0).getSizeInBits();
+ unsigned XLen = Subtarget.getXLen();
+ // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
+ if (Size > XLen) {
+ assert(Size == (XLen * 2) && "Unexpected custom legalisation");
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ APInt HighMask = APInt::getHighBitsSet(Size, XLen);
+
+ bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
+ bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
+ // We need exactly one side to be unsigned.
+ if (LHSIsU == RHSIsU)
+ return;
+
+ auto MakeMULPair = [&](SDValue S, SDValue U) {
+ MVT XLenVT = Subtarget.getXLenVT();
+ S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
+ U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
+ SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
+ SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
+ return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
+ };
+
+ bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
+ bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
+
+ // The other operand should be signed, but still prefer MULH when
+ // possible.
+ if (RHSIsU && LHSIsS && !RHSIsS)
+ Results.push_back(MakeMULPair(LHS, RHS));
+ else if (LHSIsU && RHSIsS && !LHSIsS)
+ Results.push_back(MakeMULPair(RHS, LHS));
+
+ return;
+ }
+ [[fallthrough]];
+ }
+ case ISD::ADD:
+ case ISD::SUB:
+ assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
+ "Unexpected custom legalisation");
+ Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
+ break;
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL:
+ assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
+ "Unexpected custom legalisation");
+ if (N->getOperand(1).getOpcode() != ISD::Constant) {
+ // If we can use a BSET instruction, allow default promotion to apply.
+ if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() &&
+ isOneConstant(N->getOperand(0)))
+ break;
+ Results.push_back(customLegalizeToWOp(N, DAG));
+ break;
+ }
+
+ // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
+ // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
+ // shift amount.
+ if (N->getOpcode() == ISD::SHL) {
+ SDLoc DL(N);
+ SDValue NewOp0 =
+ DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
+ SDValue NewOp1 =
+ DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
+ SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
+ SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
+ DAG.getValueType(MVT::i32));
+ Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
+ }
+
+ break;
+ case ISD::ROTL:
+ case ISD::ROTR:
+ assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
+ "Unexpected custom legalisation");
+ Results.push_back(customLegalizeToWOp(N, DAG));
+ break;
+ case ISD::CTTZ:
+ case ISD::CTTZ_ZERO_UNDEF:
+ case ISD::CTLZ:
+ case ISD::CTLZ_ZERO_UNDEF: {
+ assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
+ "Unexpected custom legalisation");
+
+ SDValue NewOp0 =
+ DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
+ bool IsCTZ =
+ N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
+ unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
+ SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
+ Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
+ return;
+ }
+ case ISD::SDIV:
+ case ISD::UDIV:
+ case ISD::UREM: {
+ MVT VT = N->getSimpleValueType(0);
+ assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
+ Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
+ "Unexpected custom legalisation");
+ // Don't promote division/remainder by constant since we should expand those
+ // to multiply by magic constant.
+ AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
+ if (N->getOperand(1).getOpcode() == ISD::Constant &&
+ !isIntDivCheap(N->getValueType(0), Attr))
+ return;
+
+ // If the input is i32, use ANY_EXTEND since the W instructions don't read
+ // the upper 32 bits. For other types we need to sign or zero extend
+ // based on the opcode.
+ unsigned ExtOpc = ISD::ANY_EXTEND;
+ if (VT != MVT::i32)
+ ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
+ : ISD::ZERO_EXTEND;
+
+ Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
+ break;
+ }
+ case ISD::UADDO:
+ case ISD::USUBO: {
+ assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
+ "Unexpected custom legalisation");
+ bool IsAdd = N->getOpcode() == ISD::UADDO;
+ // Create an ADDW or SUBW.
+ SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
+ SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
+ SDValue Res =
+ DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
+ Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
+ DAG.getValueType(MVT::i32));
+
+ SDValue Overflow;
+ if (IsAdd && isOneConstant(RHS)) {
+ // Special case uaddo X, 1 overflowed if the addition result is 0.
+ // The general case (X + C) < C is not necessarily beneficial. Although we
+ // reduce the live range of X, we may introduce the materialization of
+ // constant C, especially when the setcc result is used by branch. We have
+ // no compare with constant and branch instructions.
+ Overflow = DAG.getSetCC(DL, N->getValueType(1), Res,
+ DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ);
+ } else {
+ // Sign extend the LHS and perform an unsigned compare with the ADDW
+ // result. Since the inputs are sign extended from i32, this is equivalent
+ // to comparing the lower 32 bits.
+ LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
+ Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
+ IsAdd ? ISD::SETULT : ISD::SETUGT);
+ }
+
+ Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
+ Results.push_back(Overflow);
+ return;
+ }
+ case ISD::UADDSAT:
+ case ISD::USUBSAT: {
+ assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
+ "Unexpected custom legalisation");
+ if (Subtarget.hasStdExtZbb()) {
+ // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
+ // sign extend allows overflow of the lower 32 bits to be detected on
+ // the promoted size.
+ SDValue LHS =
+ DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
+ SDValue RHS =
+ DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
+ SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
+ Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
+ return;
+ }
+
+ // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
+ // promotion for UADDO/USUBO.
+ Results.push_back(expandAddSubSat(N, DAG));
+ return;
+ }
+ case ISD::ABS: {
+ assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
+ "Unexpected custom legalisation");
+
+ if (Subtarget.hasStdExtZbb()) {
+ // Emit a special ABSW node that will be expanded to NEGW+MAX at isel.
+ // This allows us to remember that the result is sign extended. Expanding
+ // to NEGW+MAX here requires a Freeze which breaks ComputeNumSignBits.
+ SDValue Src = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64,
+ N->getOperand(0));
+ SDValue Abs = DAG.getNode(RISCVISD::ABSW, DL, MVT::i64, Src);
+ Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Abs));
+ return;
+ }
+
+ // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
+ SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
+
+ // Freeze the source so we can increase it's use count.
+ Src = DAG.getFreeze(Src);
+
+ // Copy sign bit to all bits using the sraiw pattern.
+ SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
+ DAG.getValueType(MVT::i32));
+ SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
+ DAG.getConstant(31, DL, MVT::i64));
+
+ SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
+ NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
+
+ // NOTE: The result is only required to be anyextended, but sext is
+ // consistent with type legalization of sub.
+ NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
+ DAG.getValueType(MVT::i32));
+ Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
+ return;
+ }
+ case ISD::BITCAST: {
+ EVT VT = N->getValueType(0);
+ assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
+ SDValue Op0 = N->getOperand(0);
+ EVT Op0VT = Op0.getValueType();
+ MVT XLenVT = Subtarget.getXLenVT();
+ if (VT == MVT::i16 && Op0VT == MVT::f16 &&
+ Subtarget.hasStdExtZfhOrZfhmin()) {
+ SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
+ Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
+ } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
+ Subtarget.hasStdExtF()) {
+ SDValue FPConv =
+ DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
+ Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
+ } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
+ isTypeLegal(Op0VT)) {
+ // Custom-legalize bitcasts from fixed-length vector types to illegal
+ // scalar types in order to improve codegen. Bitcast the vector to a
+ // one-element vector type whose element type is the same as the result
+ // type, and extract the first element.
+ EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
+ if (isTypeLegal(BVT)) {
+ SDValue BVec = DAG.getBitcast(BVT, Op0);
+ Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
+ DAG.getConstant(0, DL, XLenVT)));
+ }
+ }
+ break;
+ }
+ case RISCVISD::BREV8: {
+ MVT VT = N->getSimpleValueType(0);
+ MVT XLenVT = Subtarget.getXLenVT();
+ assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
+ "Unexpected custom legalisation");
+ assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
+ SDValue NewOp = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
+ SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp);
+ // ReplaceNodeResults requires we maintain the same type for the return
+ // value.
+ Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
+ break;
+ }
+ case ISD::EXTRACT_VECTOR_ELT: {
+ // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
+ // type is illegal (currently only vXi64 RV32).
+ // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
+ // transferred to the destination register. We issue two of these from the
+ // upper- and lower- halves of the SEW-bit vector element, slid down to the
+ // first element.
+ SDValue Vec = N->getOperand(0);
+ SDValue Idx = N->getOperand(1);
+
+ // The vector type hasn't been legalized yet so we can't issue target
+ // specific nodes if it needs legalization.
+ // FIXME: We would manually legalize if it's important.
+ if (!isTypeLegal(Vec.getValueType()))
+ return;
+
+ MVT VecVT = Vec.getSimpleValueType();
+
+ assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
+ VecVT.getVectorElementType() == MVT::i64 &&
+ "Unexpected EXTRACT_VECTOR_ELT legalization");
+
+ // If this is a fixed vector, we need to convert it to a scalable vector.
+ MVT ContainerVT = VecVT;
+ if (VecVT.isFixedLengthVector()) {
+ ContainerVT = getContainerForFixedLengthVector(VecVT);
+ Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
+ }
+
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ // Use a VL of 1 to avoid processing more elements than we need.
+ auto [Mask, VL] = getDefaultVLOps(1, ContainerVT, DL, DAG, Subtarget);
+
+ // Unless the index is known to be 0, we must slide the vector down to get
+ // the desired element into index 0.
+ if (!isNullConstant(Idx)) {
+ Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT,
+ DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
+ }
+
+ // Extract the lower XLEN bits of the correct vector element.
+ SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
+
+ // To extract the upper XLEN bits of the vector element, shift the first
+ // element right by 32 bits and re-extract the lower XLEN bits.
+ SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
+ DAG.getUNDEF(ContainerVT),
+ DAG.getConstant(32, DL, XLenVT), VL);
+ SDValue LShr32 =
+ DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, ThirtyTwoV,
+ DAG.getUNDEF(ContainerVT), Mask, VL);
+
+ SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
+
+ Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
+ break;
+ }
+ case ISD::INTRINSIC_WO_CHAIN: {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
+ switch (IntNo) {
+ default:
+ llvm_unreachable(
+ "Don't know how to custom type legalize this intrinsic!");
+ case Intrinsic::riscv_orc_b: {
+ SDValue NewOp =
+ DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
+ SDValue Res = DAG.getNode(RISCVISD::ORC_B, DL, MVT::i64, NewOp);
+ Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
+ return;
+ }
+ case Intrinsic::riscv_vmv_x_s: {
+ EVT VT = N->getValueType(0);
+ MVT XLenVT = Subtarget.getXLenVT();
+ if (VT.bitsLT(XLenVT)) {
+ // Simple case just extract using vmv.x.s and truncate.
+ SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
+ Subtarget.getXLenVT(), N->getOperand(1));
+ Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
+ return;
+ }
+
+ assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
+ "Unexpected custom legalization");
+
+ // We need to do the move in two steps.
+ SDValue Vec = N->getOperand(1);
+ MVT VecVT = Vec.getSimpleValueType();
+
+ // First extract the lower XLEN bits of the element.
+ SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
+
+ // To extract the upper XLEN bits of the vector element, shift the first
+ // element right by 32 bits and re-extract the lower XLEN bits.
+ auto [Mask, VL] = getDefaultVLOps(1, VecVT, DL, DAG, Subtarget);
+
+ SDValue ThirtyTwoV =
+ DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
+ DAG.getConstant(32, DL, XLenVT), VL);
+ SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV,
+ DAG.getUNDEF(VecVT), Mask, VL);
+ SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
+
+ Results.push_back(
+ DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
+ break;
+ }
+ }
+ break;
+ }
+ case ISD::VECREDUCE_ADD:
+ case ISD::VECREDUCE_AND:
+ case ISD::VECREDUCE_OR:
+ case ISD::VECREDUCE_XOR:
+ case ISD::VECREDUCE_SMAX:
+ case ISD::VECREDUCE_UMAX:
+ case ISD::VECREDUCE_SMIN:
+ case ISD::VECREDUCE_UMIN:
+ if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
+ Results.push_back(V);
+ break;
+ case ISD::VP_REDUCE_ADD:
+ case ISD::VP_REDUCE_AND:
+ case ISD::VP_REDUCE_OR:
+ case ISD::VP_REDUCE_XOR:
+ case ISD::VP_REDUCE_SMAX:
+ case ISD::VP_REDUCE_UMAX:
+ case ISD::VP_REDUCE_SMIN:
+ case ISD::VP_REDUCE_UMIN:
+ if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
+ Results.push_back(V);
+ break;
+ case ISD::GET_ROUNDING: {
+ SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
+ SDValue Res = DAG.getNode(ISD::GET_ROUNDING, DL, VTs, N->getOperand(0));
+ Results.push_back(Res.getValue(0));
+ Results.push_back(Res.getValue(1));
+ break;
+ }
+ }
+}
+
+// Try to fold (<bop> x, (reduction.<bop> vec, start))
+static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ auto BinOpToRVVReduce = [](unsigned Opc) {
+ switch (Opc) {
+ default:
+ llvm_unreachable("Unhandled binary to transfrom reduction");
+ case ISD::ADD:
+ return RISCVISD::VECREDUCE_ADD_VL;
+ case ISD::UMAX:
+ return RISCVISD::VECREDUCE_UMAX_VL;
+ case ISD::SMAX:
+ return RISCVISD::VECREDUCE_SMAX_VL;
+ case ISD::UMIN:
+ return RISCVISD::VECREDUCE_UMIN_VL;
+ case ISD::SMIN:
+ return RISCVISD::VECREDUCE_SMIN_VL;
+ case ISD::AND:
+ return RISCVISD::VECREDUCE_AND_VL;
+ case ISD::OR:
+ return RISCVISD::VECREDUCE_OR_VL;
+ case ISD::XOR:
+ return RISCVISD::VECREDUCE_XOR_VL;
+ case ISD::FADD:
+ return RISCVISD::VECREDUCE_FADD_VL;
+ case ISD::FMAXNUM:
+ return RISCVISD::VECREDUCE_FMAX_VL;
+ case ISD::FMINNUM:
+ return RISCVISD::VECREDUCE_FMIN_VL;
+ }
+ };
+
+ auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) {
+ return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ isNullConstant(V.getOperand(1)) &&
+ V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc);
+ };
+
+ unsigned Opc = N->getOpcode();
+ unsigned ReduceIdx;
+ if (IsReduction(N->getOperand(0), Opc))
+ ReduceIdx = 0;
+ else if (IsReduction(N->getOperand(1), Opc))
+ ReduceIdx = 1;
+ else
+ return SDValue();
+
+ // Skip if FADD disallows reassociation but the combiner needs.
+ if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation())
+ return SDValue();
+
+ SDValue Extract = N->getOperand(ReduceIdx);
+ SDValue Reduce = Extract.getOperand(0);
+ if (!Reduce.hasOneUse())
+ return SDValue();
+
+ SDValue ScalarV = Reduce.getOperand(2);
+ EVT ScalarVT = ScalarV.getValueType();
+ if (ScalarV.getOpcode() == ISD::INSERT_SUBVECTOR &&
+ ScalarV.getOperand(0)->isUndef())
+ ScalarV = ScalarV.getOperand(1);
+
+ // Make sure that ScalarV is a splat with VL=1.
+ if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL &&
+ ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL &&
+ ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL)
+ return SDValue();
+
+ if (!hasNonZeroAVL(ScalarV.getOperand(2)))
+ return SDValue();
+
+ // Check the scalar of ScalarV is neutral element
+ // TODO: Deal with value other than neutral element.
+ if (!isNeutralConstant(N->getOpcode(), N->getFlags(), ScalarV.getOperand(1),
+ 0))
+ return SDValue();
+
+ if (!ScalarV.hasOneUse())
+ return SDValue();
+
+ SDValue NewStart = N->getOperand(1 - ReduceIdx);
+
+ SDLoc DL(N);
+ SDValue NewScalarV =
+ lowerScalarInsert(NewStart, ScalarV.getOperand(2),
+ ScalarV.getSimpleValueType(), DL, DAG, Subtarget);
+
+ // If we looked through an INSERT_SUBVECTOR we need to restore it.
+ if (ScalarVT != ScalarV.getValueType())
+ NewScalarV =
+ DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ScalarVT, DAG.getUNDEF(ScalarVT),
+ NewScalarV, DAG.getConstant(0, DL, Subtarget.getXLenVT()));
+
+ SDValue NewReduce =
+ DAG.getNode(Reduce.getOpcode(), DL, Reduce.getValueType(),
+ Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV,
+ Reduce.getOperand(3), Reduce.getOperand(4));
+ return DAG.getNode(Extract.getOpcode(), DL, Extract.getValueType(), NewReduce,
+ Extract.getOperand(1));
+}
+
+// Optimize (add (shl x, c0), (shl y, c1)) ->
+// (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
+static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ // Perform this optimization only in the zba extension.
+ if (!Subtarget.hasStdExtZba())
+ return SDValue();
+
+ // Skip for vector types and larger types.
+ EVT VT = N->getValueType(0);
+ if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
+ return SDValue();
+
+ // The two operand nodes must be SHL and have no other use.
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
+ !N0->hasOneUse() || !N1->hasOneUse())
+ return SDValue();
+
+ // Check c0 and c1.
+ auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
+ auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
+ if (!N0C || !N1C)
+ return SDValue();
+ int64_t C0 = N0C->getSExtValue();
+ int64_t C1 = N1C->getSExtValue();
+ if (C0 <= 0 || C1 <= 0)
+ return SDValue();
+
+ // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
+ int64_t Bits = std::min(C0, C1);
+ int64_t Diff = std::abs(C0 - C1);
+ if (Diff != 1 && Diff != 2 && Diff != 3)
+ return SDValue();
+
+ // Build nodes.
+ SDLoc DL(N);
+ SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
+ SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
+ SDValue NA0 =
+ DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
+ SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
+ return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
+}
+
+// Combine a constant select operand into its use:
+//
+// (and (select cond, -1, c), x)
+// -> (select cond, x, (and x, c)) [AllOnes=1]
+// (or (select cond, 0, c), x)
+// -> (select cond, x, (or x, c)) [AllOnes=0]
+// (xor (select cond, 0, c), x)
+// -> (select cond, x, (xor x, c)) [AllOnes=0]
+// (add (select cond, 0, c), x)
+// -> (select cond, x, (add x, c)) [AllOnes=0]
+// (sub x, (select cond, 0, c))
+// -> (select cond, x, (sub x, c)) [AllOnes=0]
+static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
+ SelectionDAG &DAG, bool AllOnes,
+ const RISCVSubtarget &Subtarget) {
+ EVT VT = N->getValueType(0);
+
+ // Skip vectors.
+ if (VT.isVector())
+ return SDValue();
+
+ if (!Subtarget.hasShortForwardBranchOpt() ||
+ (Slct.getOpcode() != ISD::SELECT &&
+ Slct.getOpcode() != RISCVISD::SELECT_CC) ||
+ !Slct.hasOneUse())
+ return SDValue();
+
+ auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
+ return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
+ };
+
+ bool SwapSelectOps;
+ unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
+ SDValue TrueVal = Slct.getOperand(1 + OpOffset);
+ SDValue FalseVal = Slct.getOperand(2 + OpOffset);
+ SDValue NonConstantVal;
+ if (isZeroOrAllOnes(TrueVal, AllOnes)) {
+ SwapSelectOps = false;
+ NonConstantVal = FalseVal;
+ } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
+ SwapSelectOps = true;
+ NonConstantVal = TrueVal;
+ } else
+ return SDValue();
+
+ // Slct is now know to be the desired identity constant when CC is true.
+ TrueVal = OtherOp;
+ FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
+ // Unless SwapSelectOps says the condition should be false.
+ if (SwapSelectOps)
+ std::swap(TrueVal, FalseVal);
+
+ if (Slct.getOpcode() == RISCVISD::SELECT_CC)
+ return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
+ {Slct.getOperand(0), Slct.getOperand(1),
+ Slct.getOperand(2), TrueVal, FalseVal});
+
+ return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
+ {Slct.getOperand(0), TrueVal, FalseVal});
+}
+
+// Attempt combineSelectAndUse on each operand of a commutative operator N.
+static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
+ bool AllOnes,
+ const RISCVSubtarget &Subtarget) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes, Subtarget))
+ return Result;
+ if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes, Subtarget))
+ return Result;
+ return SDValue();
+}
+
+// Transform (add (mul x, c0), c1) ->
+// (add (mul (add x, c1/c0), c0), c1%c0).
+// if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
+// that should be excluded is when c0*(c1/c0) is simm12, which will lead
+// to an infinite loop in DAGCombine if transformed.
+// Or transform (add (mul x, c0), c1) ->
+// (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
+// if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
+// case that should be excluded is when c0*(c1/c0+1) is simm12, which will
+// lead to an infinite loop in DAGCombine if transformed.
+// Or transform (add (mul x, c0), c1) ->
+// (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
+// if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
+// case that should be excluded is when c0*(c1/c0-1) is simm12, which will
+// lead to an infinite loop in DAGCombine if transformed.
+// Or transform (add (mul x, c0), c1) ->
+// (mul (add x, c1/c0), c0).
+// if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
+static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ // Skip for vector types and larger types.
+ EVT VT = N->getValueType(0);
+ if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
+ return SDValue();
+ // The first operand node must be a MUL and has no other use.
+ SDValue N0 = N->getOperand(0);
+ if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
+ return SDValue();
+ // Check if c0 and c1 match above conditions.
+ auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
+ auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!N0C || !N1C)
+ return SDValue();
+ // If N0C has multiple uses it's possible one of the cases in
+ // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
+ // in an infinite loop.
+ if (!N0C->hasOneUse())
+ return SDValue();
+ int64_t C0 = N0C->getSExtValue();
+ int64_t C1 = N1C->getSExtValue();
+ int64_t CA, CB;
+ if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
+ return SDValue();
+ // Search for proper CA (non-zero) and CB that both are simm12.
+ if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
+ !isInt<12>(C0 * (C1 / C0))) {
+ CA = C1 / C0;
+ CB = C1 % C0;
+ } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
+ isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
+ CA = C1 / C0 + 1;
+ CB = C1 % C0 - C0;
+ } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
+ isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
+ CA = C1 / C0 - 1;
+ CB = C1 % C0 + C0;
+ } else
+ return SDValue();
+ // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
+ SDLoc DL(N);
+ SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
+ DAG.getConstant(CA, DL, VT));
+ SDValue New1 =
+ DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
+ return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
+}
+
+static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
+ return V;
+ if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
+ return V;
+ if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget))
+ return V;
+ // fold (add (select lhs, rhs, cc, 0, y), x) ->
+ // (select lhs, rhs, cc, x, (add x, y))
+ return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget);
+}
+
+// Try to turn a sub boolean RHS and constant LHS into an addi.
+static SDValue combineSubOfBoolean(SDNode *N, SelectionDAG &DAG) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+
+ // Require a constant LHS.
+ auto *N0C = dyn_cast<ConstantSDNode>(N0);
+ if (!N0C)
+ return SDValue();
+
+ // All our optimizations involve subtracting 1 from the immediate and forming
+ // an ADDI. Make sure the new immediate is valid for an ADDI.
+ APInt ImmValMinus1 = N0C->getAPIntValue() - 1;
+ if (!ImmValMinus1.isSignedIntN(12))
+ return SDValue();
+
+ SDValue NewLHS;
+ if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse()) {
+ // (sub constant, (setcc x, y, eq/neq)) ->
+ // (add (setcc x, y, neq/eq), constant - 1)
+ ISD::CondCode CCVal = cast<CondCodeSDNode>(N1.getOperand(2))->get();
+ EVT SetCCOpVT = N1.getOperand(0).getValueType();
+ if (!isIntEqualitySetCC(CCVal) || !SetCCOpVT.isInteger())
+ return SDValue();
+ CCVal = ISD::getSetCCInverse(CCVal, SetCCOpVT);
+ NewLHS =
+ DAG.getSetCC(SDLoc(N1), VT, N1.getOperand(0), N1.getOperand(1), CCVal);
+ } else if (N1.getOpcode() == ISD::XOR && isOneConstant(N1.getOperand(1)) &&
+ N1.getOperand(0).getOpcode() == ISD::SETCC) {
+ // (sub C, (xor (setcc), 1)) -> (add (setcc), C-1).
+ // Since setcc returns a bool the xor is equivalent to 1-setcc.
+ NewLHS = N1.getOperand(0);
+ } else
+ return SDValue();
+
+ SDValue NewRHS = DAG.getConstant(ImmValMinus1, DL, VT);
+ return DAG.getNode(ISD::ADD, DL, VT, NewLHS, NewRHS);
+}
+
+static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ if (SDValue V = combineSubOfBoolean(N, DAG))
+ return V;
+
+ // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
+ // (select lhs, rhs, cc, x, (sub x, y))
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false, Subtarget);
+}
+
+// Apply DeMorgan's law to (and/or (xor X, 1), (xor Y, 1)) if X and Y are 0/1.
+// Legalizing setcc can introduce xors like this. Doing this transform reduces
+// the number of xors and may allow the xor to fold into a branch condition.
+static SDValue combineDeMorganOfBoolean(SDNode *N, SelectionDAG &DAG) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ bool IsAnd = N->getOpcode() == ISD::AND;
+
+ if (N0.getOpcode() != ISD::XOR || N1.getOpcode() != ISD::XOR)
+ return SDValue();
+
+ if (!N0.hasOneUse() || !N1.hasOneUse())
+ return SDValue();
+
+ SDValue N01 = N0.getOperand(1);
+ SDValue N11 = N1.getOperand(1);
+
+ // For AND, SimplifyDemandedBits may have turned one of the (xor X, 1) into
+ // (xor X, -1) based on the upper bits of the other operand being 0. If the
+ // operation is And, allow one of the Xors to use -1.
+ if (isOneConstant(N01)) {
+ if (!isOneConstant(N11) && !(IsAnd && isAllOnesConstant(N11)))
+ return SDValue();
+ } else if (isOneConstant(N11)) {
+ // N01 and N11 being 1 was already handled. Handle N11==1 and N01==-1.
+ if (!(IsAnd && isAllOnesConstant(N01)))
+ return SDValue();
+ } else
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+
+ SDValue N00 = N0.getOperand(0);
+ SDValue N10 = N1.getOperand(0);
+
+ // The LHS of the xors needs to be 0/1.
+ APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), 1);
+ if (!DAG.MaskedValueIsZero(N00, Mask) || !DAG.MaskedValueIsZero(N10, Mask))
+ return SDValue();
+
+ // Invert the opcode and insert a new xor.
+ SDLoc DL(N);
+ unsigned Opc = IsAnd ? ISD::OR : ISD::AND;
+ SDValue Logic = DAG.getNode(Opc, DL, VT, N00, N10);
+ return DAG.getNode(ISD::XOR, DL, VT, Logic, DAG.getConstant(1, DL, VT));
+}
+
+static SDValue performTRUNCATECombine(SDNode *N, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // Pre-promote (i1 (truncate (srl X, Y))) on RV64 with Zbs without zero
+ // extending X. This is safe since we only need the LSB after the shift and
+ // shift amounts larger than 31 would produce poison. If we wait until
+ // type legalization, we'll create RISCVISD::SRLW and we can't recover it
+ // to use a BEXT instruction.
+ if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() && VT == MVT::i1 &&
+ N0.getValueType() == MVT::i32 && N0.getOpcode() == ISD::SRL &&
+ !isa<ConstantSDNode>(N0.getOperand(1)) && N0.hasOneUse()) {
+ SDLoc DL(N0);
+ SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
+ SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
+ SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1);
+ return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Srl);
+ }
+
+ return SDValue();
+}
+
+namespace {
+// Helper class contains information about comparison operation.
+// The first two operands of this operation are compared values and the
+// last one is the operation.
+// Compared values are stored in Ops.
+// Comparison operation is stored in CCode.
+class CmpOpInfo {
+ static unsigned constexpr Size = 2u;
+
+ // Type for storing operands of compare operation.
+ using OpsArray = std::array<SDValue, Size>;
+ OpsArray Ops;
+
+ using const_iterator = OpsArray::const_iterator;
+ const_iterator begin() const { return Ops.begin(); }
+ const_iterator end() const { return Ops.end(); }
+
+ ISD::CondCode CCode;
+
+ unsigned CommonPos{Size};
+ unsigned DifferPos{Size};
+
+ // Sets CommonPos and DifferPos based on incoming position
+ // of common operand CPos.
+ void setPositions(const_iterator CPos) {
+ assert(CPos != Ops.end() && "Common operand has to be in OpsArray.\n");
+ CommonPos = CPos == Ops.begin() ? 0 : 1;
+ DifferPos = 1 - CommonPos;
+ assert((DifferPos == 0 || DifferPos == 1) &&
+ "Positions can be only 0 or 1.");
+ }
+
+ // Private constructor of comparison info based on comparison operator.
+ // It is private because CmpOpInfo only reasonable relative to other
+ // comparison operator. Therefore, infos about comparison operation
+ // have to be collected simultaneously via CmpOpInfo::getInfoAbout().
+ CmpOpInfo(const SDValue &CmpOp)
+ : Ops{CmpOp.getOperand(0), CmpOp.getOperand(1)},
+ CCode{cast<CondCodeSDNode>(CmpOp.getOperand(2))->get()} {}
+
+ // Finds common operand of Op1 and Op2 and finishes filling CmpOpInfos.
+ // Returns true if common operand is found. Otherwise - false.
+ static bool establishCorrespondence(CmpOpInfo &Op1, CmpOpInfo &Op2) {
+ const auto CommonOpIt1 =
+ std::find_first_of(Op1.begin(), Op1.end(), Op2.begin(), Op2.end());
+ if (CommonOpIt1 == Op1.end())
+ return false;
+
+ const auto CommonOpIt2 = std::find(Op2.begin(), Op2.end(), *CommonOpIt1);
+ assert(CommonOpIt2 != Op2.end() &&
+ "Cannot find common operand in the second comparison operation.");
+
+ Op1.setPositions(CommonOpIt1);
+ Op2.setPositions(CommonOpIt2);
+
+ return true;
+ }
+
+public:
+ CmpOpInfo(const CmpOpInfo &) = default;
+ CmpOpInfo(CmpOpInfo &&) = default;
+
+ SDValue const &operator[](unsigned Pos) const {
+ assert(Pos < Size && "Out of range\n");
+ return Ops[Pos];
+ }
+
+ // Creates infos about comparison operations CmpOp0 and CmpOp1.
+ // If there is no common operand returns None. Otherwise, returns
+ // correspondence info about comparison operations.
+ static std::optional<std::pair<CmpOpInfo, CmpOpInfo>>
+ getInfoAbout(SDValue const &CmpOp0, SDValue const &CmpOp1) {
+ CmpOpInfo Op0{CmpOp0};
+ CmpOpInfo Op1{CmpOp1};
+ if (!establishCorrespondence(Op0, Op1))
+ return std::nullopt;
+ return std::make_pair(Op0, Op1);
+ }
+
+ // Returns position of common operand.
+ unsigned getCPos() const { return CommonPos; }
+
+ // Returns position of differ operand.
+ unsigned getDPos() const { return DifferPos; }
+
+ // Returns common operand.
+ SDValue const &getCOp() const { return operator[](CommonPos); }
+
+ // Returns differ operand.
+ SDValue const &getDOp() const { return operator[](DifferPos); }
+
+ // Returns consition code of comparison operation.
+ ISD::CondCode getCondCode() const { return CCode; }
+};
+} // namespace
+
+// Verifies conditions to apply an optimization.
+// Returns Reference comparison code and three operands A, B, C.
+// Conditions for optimization:
+// One operand of the compasions has to be common.
+// This operand is written to C.
+// Two others operands are differend. They are written to A and B.
+// Comparisons has to be similar with respect to common operand C.
+// e.g. A < C; C > B are similar
+// but A < C; B > C are not.
+// Reference comparison code is the comparison code if
+// common operand is right placed.
+// e.g. C > A will be swapped to A < C.
+static std::optional<std::tuple<ISD::CondCode, SDValue, SDValue, SDValue>>
+verifyCompareConds(SDNode *N, SelectionDAG &DAG) {
+ LLVM_DEBUG(
+ dbgs() << "Checking conditions for comparison operation combining.\n";);
+
+ SDValue V0 = N->getOperand(0);
+ SDValue V1 = N->getOperand(1);
+ assert(V0.getValueType() == V1.getValueType() &&
+ "Operations must have the same value type.");
+
+ // Condition 1. Operations have to be used only in logic operation.
+ if (!V0.hasOneUse() || !V1.hasOneUse())
+ return std::nullopt;
+
+ // Condition 2. Operands have to be comparison operations.
+ if (V0.getOpcode() != ISD::SETCC || V1.getOpcode() != ISD::SETCC)
+ return std::nullopt;
+
+ // Condition 3.1. Operations only with integers.
+ if (!V0.getOperand(0).getValueType().isInteger())
+ return std::nullopt;
+
+ const auto ComparisonInfo = CmpOpInfo::getInfoAbout(V0, V1);
+ // Condition 3.2. Common operand has to be in comparison.
+ if (!ComparisonInfo)
+ return std::nullopt;
+
+ const auto [Op0, Op1] = ComparisonInfo.value();
+
+ LLVM_DEBUG(dbgs() << "Shared operands are on positions: " << Op0.getCPos()
+ << " and " << Op1.getCPos() << '\n';);
+ // If common operand at the first position then swap operation to convert to
+ // strict pattern. Common operand has to be right hand side.
+ ISD::CondCode RefCond = Op0.getCondCode();
+ ISD::CondCode AssistCode = Op1.getCondCode();
+ if (!Op0.getCPos())
+ RefCond = ISD::getSetCCSwappedOperands(RefCond);
+ if (!Op1.getCPos())
+ AssistCode = ISD::getSetCCSwappedOperands(AssistCode);
+ LLVM_DEBUG(dbgs() << "Reference condition is: " << RefCond << '\n';);
+ // If there are different comparison operations then do not perform an
+ // optimization. a < c; c < b -> will be changed to b > c.
+ if (RefCond != AssistCode)
+ return std::nullopt;
+
+ // Conditions can be only similar to Less or Greater. (>, >=, <, <=)
+ // Applying this mask to the operation will determine Less and Greater
+ // operations.
+ const unsigned CmpMask = 0b110;
+ const unsigned MaskedOpcode = CmpMask & RefCond;
+ // If masking gave 0b110, then this is an operation NE, O or TRUE.
+ if (MaskedOpcode == CmpMask)
+ return std::nullopt;
+ // If masking gave 00000, then this is an operation E, O or FALSE.
+ if (MaskedOpcode == 0)
+ return std::nullopt;
+ // Everything else is similar to Less or Greater.
+
+ SDValue A = Op0.getDOp();
+ SDValue B = Op1.getDOp();
+ SDValue C = Op0.getCOp();
+
+ LLVM_DEBUG(
+ dbgs() << "The conditions for combining comparisons are satisfied.\n";);
+ return std::make_tuple(RefCond, A, B, C);
+}
+
+static ISD::NodeType getSelectionCode(bool IsUnsigned, bool IsAnd,
+ bool IsGreaterOp) {
+ // Codes of selection operation. The first index selects signed or unsigned,
+ // the second index selects MIN/MAX.
+ static constexpr ISD::NodeType SelectionCodes[2][2] = {
+ {ISD::SMIN, ISD::SMAX}, {ISD::UMIN, ISD::UMAX}};
+ const bool ChooseSelCode = IsAnd ^ IsGreaterOp;
+ return SelectionCodes[IsUnsigned][ChooseSelCode];
+}
+
+// Combines two comparison operation and logic operation to one selection
+// operation(min, max) and logic operation. Returns new constructed Node if
+// conditions for optimization are satisfied.
+static SDValue combineCmpOp(SDNode *N, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ if (!Subtarget.hasStdExtZbb())
+ return SDValue();
+
+ const unsigned BitOpcode = N->getOpcode();
+ assert((BitOpcode == ISD::AND || BitOpcode == ISD::OR) &&
+ "This optimization can be used only with AND/OR operations");
+
+ const auto Props = verifyCompareConds(N, DAG);
+ // If conditions are invalidated then do not perform an optimization.
+ if (!Props)
+ return SDValue();
+
+ const auto [RefOpcode, A, B, C] = Props.value();
+ const EVT CmpOpVT = A.getValueType();
+
+ const bool IsGreaterOp = RefOpcode & 0b10;
+ const bool IsUnsigned = ISD::isUnsignedIntSetCC(RefOpcode);
+ assert((IsUnsigned || ISD::isSignedIntSetCC(RefOpcode)) &&
+ "Operation neither with signed or unsigned integers.");
+
+ const bool IsAnd = BitOpcode == ISD::AND;
+ const ISD::NodeType PickCode =
+ getSelectionCode(IsUnsigned, IsAnd, IsGreaterOp);
+
+ SDLoc DL(N);
+ SDValue Pick = DAG.getNode(PickCode, DL, CmpOpVT, A, B);
+ SDValue Cmp =
+ DAG.getSetCC(DL, N->getOperand(0).getValueType(), Pick, C, RefOpcode);
+
+ return Cmp;
+}
+
+static SDValue performANDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const RISCVSubtarget &Subtarget) {
+ SelectionDAG &DAG = DCI.DAG;
+
+ SDValue N0 = N->getOperand(0);
+ // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero
+ // extending X. This is safe since we only need the LSB after the shift and
+ // shift amounts larger than 31 would produce poison. If we wait until
+ // type legalization, we'll create RISCVISD::SRLW and we can't recover it
+ // to use a BEXT instruction.
+ if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() &&
+ N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) &&
+ N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) &&
+ N0.hasOneUse()) {
+ SDLoc DL(N);
+ SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
+ SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
+ SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1);
+ SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl,
+ DAG.getConstant(1, DL, MVT::i64));
+ return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And);
+ }
+
+ if (SDValue V = combineCmpOp(N, DAG, Subtarget))
+ return V;
+
+ if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget))
+ return V;
+
+ if (DCI.isAfterLegalizeDAG())
+ if (SDValue V = combineDeMorganOfBoolean(N, DAG))
+ return V;
+
+ // fold (and (select lhs, rhs, cc, -1, y), x) ->
+ // (select lhs, rhs, cc, x, (and x, y))
+ return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true, Subtarget);
+}
+
+static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
+ const RISCVSubtarget &Subtarget) {
+ SelectionDAG &DAG = DCI.DAG;
+
+ if (SDValue V = combineCmpOp(N, DAG, Subtarget))
+ return V;
+
+ if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget))
+ return V;
+
+ if (DCI.isAfterLegalizeDAG())
+ if (SDValue V = combineDeMorganOfBoolean(N, DAG))
+ return V;
+
+ // fold (or (select cond, 0, y), x) ->
+ // (select cond, x, (or x, y))
+ return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget);
+}
+
+static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ // fold (xor (sllw 1, x), -1) -> (rolw ~1, x)
+ // NOTE: Assumes ROL being legal means ROLW is legal.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (N0.getOpcode() == RISCVISD::SLLW &&
+ isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) &&
+ TLI.isOperationLegal(ISD::ROTL, MVT::i64)) {
+ SDLoc DL(N);
+ return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64,
+ DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1));
+ }
+
+ if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget))
+ return V;
+ // fold (xor (select cond, 0, y), x) ->
+ // (select cond, x, (xor x, y))
+ return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget);
+}
+
+// Replace (seteq (i64 (and X, 0xffffffff)), C1) with
+// (seteq (i64 (sext_inreg (X, i32)), C1')) where C1' is C1 sign extended from
+// bit 31. Same for setne. C1' may be cheaper to materialize and the sext_inreg
+// can become a sext.w instead of a shift pair.
+static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+ EVT OpVT = N0.getValueType();
+
+ if (OpVT != MVT::i64 || !Subtarget.is64Bit())
+ return SDValue();
+
+ // RHS needs to be a constant.
+ auto *N1C = dyn_cast<ConstantSDNode>(N1);
+ if (!N1C)
+ return SDValue();
+
+ // LHS needs to be (and X, 0xffffffff).
+ if (N0.getOpcode() != ISD::AND || !N0.hasOneUse() ||
+ !isa<ConstantSDNode>(N0.getOperand(1)) ||
+ N0.getConstantOperandVal(1) != UINT64_C(0xffffffff))
+ return SDValue();
+
+ // Looking for an equality compare.
+ ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
+ if (!isIntEqualitySetCC(Cond))
+ return SDValue();
+
+ // Don't do this if the sign bit is provably zero, it will be turned back into
+ // an AND.
+ APInt SignMask = APInt::getOneBitSet(64, 31);
+ if (DAG.MaskedValueIsZero(N0.getOperand(0), SignMask))
+ return SDValue();
+
+ const APInt &C1 = N1C->getAPIntValue();
+
+ SDLoc dl(N);
+ // If the constant is larger than 2^32 - 1 it is impossible for both sides
+ // to be equal.
+ if (C1.getActiveBits() > 32)
+ return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
+
+ SDValue SExtOp = DAG.getNode(ISD::SIGN_EXTEND_INREG, N, OpVT,
+ N0.getOperand(0), DAG.getValueType(MVT::i32));
+ return DAG.getSetCC(dl, VT, SExtOp, DAG.getConstant(C1.trunc(32).sext(64),
+ dl, OpVT), Cond);
+}
+
+static SDValue
+performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ SDValue Src = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
+ if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
+ cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
+ return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
+ Src.getOperand(0));
+
+ return SDValue();
+}
+
+namespace {
+// Forward declaration of the structure holding the necessary information to
+// apply a combine.
+struct CombineResult;
+
+/// Helper class for folding sign/zero extensions.
+/// In particular, this class is used for the following combines:
+/// add_vl -> vwadd(u) | vwadd(u)_w
+/// sub_vl -> vwsub(u) | vwsub(u)_w
+/// mul_vl -> vwmul(u) | vwmul_su
+///
+/// An object of this class represents an operand of the operation we want to
+/// combine.
+/// E.g., when trying to combine `mul_vl a, b`, we will have one instance of
+/// NodeExtensionHelper for `a` and one for `b`.
+///
+/// This class abstracts away how the extension is materialized and
+/// how its Mask, VL, number of users affect the combines.
+///
+/// In particular:
+/// - VWADD_W is conceptually == add(op0, sext(op1))
+/// - VWADDU_W == add(op0, zext(op1))
+/// - VWSUB_W == sub(op0, sext(op1))
+/// - VWSUBU_W == sub(op0, zext(op1))
+///
+/// And VMV_V_X_VL, depending on the value, is conceptually equivalent to
+/// zext|sext(smaller_value).
+struct NodeExtensionHelper {
+ /// Records if this operand is like being zero extended.
+ bool SupportsZExt;
+ /// Records if this operand is like being sign extended.
+ /// Note: SupportsZExt and SupportsSExt are not mutually exclusive. For
+ /// instance, a splat constant (e.g., 3), would support being both sign and
+ /// zero extended.
+ bool SupportsSExt;
+ /// This boolean captures whether we care if this operand would still be
+ /// around after the folding happens.
+ bool EnforceOneUse;
+ /// Records if this operand's mask needs to match the mask of the operation
+ /// that it will fold into.
+ bool CheckMask;
+ /// Value of the Mask for this operand.
+ /// It may be SDValue().
+ SDValue Mask;
+ /// Value of the vector length operand.
+ /// It may be SDValue().
+ SDValue VL;
+ /// Original value that this NodeExtensionHelper represents.
+ SDValue OrigOperand;
+
+ /// Get the value feeding the extension or the value itself.
+ /// E.g., for zext(a), this would return a.
+ SDValue getSource() const {
+ switch (OrigOperand.getOpcode()) {
+ case RISCVISD::VSEXT_VL:
+ case RISCVISD::VZEXT_VL:
+ return OrigOperand.getOperand(0);
+ default:
+ return OrigOperand;
+ }
+ }
+
+ /// Check if this instance represents a splat.
+ bool isSplat() const {
+ return OrigOperand.getOpcode() == RISCVISD::VMV_V_X_VL;
+ }
+
+ /// Get or create a value that can feed \p Root with the given extension \p
+ /// SExt. If \p SExt is None, this returns the source of this operand.
+ /// \see ::getSource().
+ SDValue getOrCreateExtendedOp(const SDNode *Root, SelectionDAG &DAG,
+ std::optional<bool> SExt) const {
+ if (!SExt.has_value())
+ return OrigOperand;
+
+ MVT NarrowVT = getNarrowType(Root);
+
+ SDValue Source = getSource();
+ if (Source.getValueType() == NarrowVT)
+ return Source;
+
+ unsigned ExtOpc = *SExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
+
+ // If we need an extension, we should be changing the type.
+ SDLoc DL(Root);
+ auto [Mask, VL] = getMaskAndVL(Root);
+ switch (OrigOperand.getOpcode()) {
+ case RISCVISD::VSEXT_VL:
+ case RISCVISD::VZEXT_VL:
+ return DAG.getNode(ExtOpc, DL, NarrowVT, Source, Mask, VL);
+ case RISCVISD::VMV_V_X_VL:
+ return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
+ DAG.getUNDEF(NarrowVT), Source.getOperand(1), VL);
+ default:
+ // Other opcodes can only come from the original LHS of VW(ADD|SUB)_W_VL
+ // and that operand should already have the right NarrowVT so no
+ // extension should be required at this point.
+ llvm_unreachable("Unsupported opcode");
+ }
+ }
+
+ /// Helper function to get the narrow type for \p Root.
+ /// The narrow type is the type of \p Root where we divided the size of each
+ /// element by 2. E.g., if Root's type <2xi16> -> narrow type <2xi8>.
+ /// \pre The size of the type of the elements of Root must be a multiple of 2
+ /// and be greater than 16.
+ static MVT getNarrowType(const SDNode *Root) {
+ MVT VT = Root->getSimpleValueType(0);
+
+ // Determine the narrow size.
+ unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
+ assert(NarrowSize >= 8 && "Trying to extend something we can't represent");
+ MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
+ VT.getVectorElementCount());
+ return NarrowVT;
+ }
+
+ /// Return the opcode required to materialize the folding of the sign
+ /// extensions (\p IsSExt == true) or zero extensions (IsSExt == false) for
+ /// both operands for \p Opcode.
+ /// Put differently, get the opcode to materialize:
+ /// - ISExt == true: \p Opcode(sext(a), sext(b)) -> newOpcode(a, b)
+ /// - ISExt == false: \p Opcode(zext(a), zext(b)) -> newOpcode(a, b)
+ /// \pre \p Opcode represents a supported root (\see ::isSupportedRoot()).
+ static unsigned getSameExtensionOpcode(unsigned Opcode, bool IsSExt) {
+ switch (Opcode) {
+ case RISCVISD::ADD_VL:
+ case RISCVISD::VWADD_W_VL:
+ case RISCVISD::VWADDU_W_VL:
+ return IsSExt ? RISCVISD::VWADD_VL : RISCVISD::VWADDU_VL;
+ case RISCVISD::MUL_VL:
+ return IsSExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
+ case RISCVISD::SUB_VL:
+ case RISCVISD::VWSUB_W_VL:
+ case RISCVISD::VWSUBU_W_VL:
+ return IsSExt ? RISCVISD::VWSUB_VL : RISCVISD::VWSUBU_VL;
+ default:
+ llvm_unreachable("Unexpected opcode");
+ }
+ }
+
+ /// Get the opcode to materialize \p Opcode(sext(a), zext(b)) ->
+ /// newOpcode(a, b).
+ static unsigned getSUOpcode(unsigned Opcode) {
+ assert(Opcode == RISCVISD::MUL_VL && "SU is only supported for MUL");
+ return RISCVISD::VWMULSU_VL;
+ }
+
+ /// Get the opcode to materialize \p Opcode(a, s|zext(b)) ->
+ /// newOpcode(a, b).
+ static unsigned getWOpcode(unsigned Opcode, bool IsSExt) {
+ switch (Opcode) {
+ case RISCVISD::ADD_VL:
+ return IsSExt ? RISCVISD::VWADD_W_VL : RISCVISD::VWADDU_W_VL;
+ case RISCVISD::SUB_VL:
+ return IsSExt ? RISCVISD::VWSUB_W_VL : RISCVISD::VWSUBU_W_VL;
+ default:
+ llvm_unreachable("Unexpected opcode");
+ }
+ }
+
+ using CombineToTry = std::function<std::optional<CombineResult>(
+ SDNode * /*Root*/, const NodeExtensionHelper & /*LHS*/,
+ const NodeExtensionHelper & /*RHS*/)>;
+
+ /// Check if this node needs to be fully folded or extended for all users.
+ bool needToPromoteOtherUsers() const { return EnforceOneUse; }
+
+ /// Helper method to set the various fields of this struct based on the
+ /// type of \p Root.
+ void fillUpExtensionSupport(SDNode *Root, SelectionDAG &DAG) {
+ SupportsZExt = false;
+ SupportsSExt = false;
+ EnforceOneUse = true;
+ CheckMask = true;
+ switch (OrigOperand.getOpcode()) {
+ case RISCVISD::VZEXT_VL:
+ SupportsZExt = true;
+ Mask = OrigOperand.getOperand(1);
+ VL = OrigOperand.getOperand(2);
+ break;
+ case RISCVISD::VSEXT_VL:
+ SupportsSExt = true;
+ Mask = OrigOperand.getOperand(1);
+ VL = OrigOperand.getOperand(2);
+ break;
+ case RISCVISD::VMV_V_X_VL: {
+ // Historically, we didn't care about splat values not disappearing during
+ // combines.
+ EnforceOneUse = false;
+ CheckMask = false;
+ VL = OrigOperand.getOperand(2);
+
+ // The operand is a splat of a scalar.
+
+ // The pasthru must be undef for tail agnostic.
+ if (!OrigOperand.getOperand(0).isUndef())
+ break;
+
+ // Get the scalar value.
+ SDValue Op = OrigOperand.getOperand(1);
+
+ // See if we have enough sign bits or zero bits in the scalar to use a
+ // widening opcode by splatting to smaller element size.
+ MVT VT = Root->getSimpleValueType(0);
+ unsigned EltBits = VT.getScalarSizeInBits();
+ unsigned ScalarBits = Op.getValueSizeInBits();
+ // Make sure we're getting all element bits from the scalar register.
+ // FIXME: Support implicit sign extension of vmv.v.x?
+ if (ScalarBits < EltBits)
+ break;
+
+ unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
+ // If the narrow type cannot be expressed with a legal VMV,
+ // this is not a valid candidate.
+ if (NarrowSize < 8)
+ break;
+
+ if (DAG.ComputeMaxSignificantBits(Op) <= NarrowSize)
+ SupportsSExt = true;
+ if (DAG.MaskedValueIsZero(Op,
+ APInt::getBitsSetFrom(ScalarBits, NarrowSize)))
+ SupportsZExt = true;
+ break;
+ }
+ default:
+ break;
+ }
+ }
+
+ /// Check if \p Root supports any extension folding combines.
+ static bool isSupportedRoot(const SDNode *Root) {
+ switch (Root->getOpcode()) {
+ case RISCVISD::ADD_VL:
+ case RISCVISD::MUL_VL:
+ case RISCVISD::VWADD_W_VL:
+ case RISCVISD::VWADDU_W_VL:
+ case RISCVISD::SUB_VL:
+ case RISCVISD::VWSUB_W_VL:
+ case RISCVISD::VWSUBU_W_VL:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ /// Build a NodeExtensionHelper for \p Root.getOperand(\p OperandIdx).
+ NodeExtensionHelper(SDNode *Root, unsigned OperandIdx, SelectionDAG &DAG) {
+ assert(isSupportedRoot(Root) && "Trying to build an helper with an "
+ "unsupported root");
+ assert(OperandIdx < 2 && "Requesting something else than LHS or RHS");
+ OrigOperand = Root->getOperand(OperandIdx);
+
+ unsigned Opc = Root->getOpcode();
+ switch (Opc) {
+ // We consider VW<ADD|SUB>(U)_W(LHS, RHS) as if they were
+ // <ADD|SUB>(LHS, S|ZEXT(RHS))
+ case RISCVISD::VWADD_W_VL:
+ case RISCVISD::VWADDU_W_VL:
+ case RISCVISD::VWSUB_W_VL:
+ case RISCVISD::VWSUBU_W_VL:
+ if (OperandIdx == 1) {
+ SupportsZExt =
+ Opc == RISCVISD::VWADDU_W_VL || Opc == RISCVISD::VWSUBU_W_VL;
+ SupportsSExt = !SupportsZExt;
+ std::tie(Mask, VL) = getMaskAndVL(Root);
+ CheckMask = true;
+ // There's no existing extension here, so we don't have to worry about
+ // making sure it gets removed.
+ EnforceOneUse = false;
+ break;
+ }
+ [[fallthrough]];
+ default:
+ fillUpExtensionSupport(Root, DAG);
+ break;
+ }
+ }
+
+ /// Check if this operand is compatible with the given vector length \p VL.
+ bool isVLCompatible(SDValue VL) const {
+ return this->VL != SDValue() && this->VL == VL;
+ }
+
+ /// Check if this operand is compatible with the given \p Mask.
+ bool isMaskCompatible(SDValue Mask) const {
+ return !CheckMask || (this->Mask != SDValue() && this->Mask == Mask);
+ }
+
+ /// Helper function to get the Mask and VL from \p Root.
+ static std::pair<SDValue, SDValue> getMaskAndVL(const SDNode *Root) {
+ assert(isSupportedRoot(Root) && "Unexpected root");
+ return std::make_pair(Root->getOperand(3), Root->getOperand(4));
+ }
+
+ /// Check if the Mask and VL of this operand are compatible with \p Root.
+ bool areVLAndMaskCompatible(const SDNode *Root) const {
+ auto [Mask, VL] = getMaskAndVL(Root);
+ return isMaskCompatible(Mask) && isVLCompatible(VL);
+ }
+
+ /// Helper function to check if \p N is commutative with respect to the
+ /// foldings that are supported by this class.
+ static bool isCommutative(const SDNode *N) {
+ switch (N->getOpcode()) {
+ case RISCVISD::ADD_VL:
+ case RISCVISD::MUL_VL:
+ case RISCVISD::VWADD_W_VL:
+ case RISCVISD::VWADDU_W_VL:
+ return true;
+ case RISCVISD::SUB_VL:
+ case RISCVISD::VWSUB_W_VL:
+ case RISCVISD::VWSUBU_W_VL:
+ return false;
+ default:
+ llvm_unreachable("Unexpected opcode");
+ }
+ }
+
+ /// Get a list of combine to try for folding extensions in \p Root.
+ /// Note that each returned CombineToTry function doesn't actually modify
+ /// anything. Instead they produce an optional CombineResult that if not None,
+ /// need to be materialized for the combine to be applied.
+ /// \see CombineResult::materialize.
+ /// If the related CombineToTry function returns std::nullopt, that means the
+ /// combine didn't match.
+ static SmallVector<CombineToTry> getSupportedFoldings(const SDNode *Root);
+};
+
+/// Helper structure that holds all the necessary information to materialize a
+/// combine that does some extension folding.
+struct CombineResult {
+ /// Opcode to be generated when materializing the combine.
+ unsigned TargetOpcode;
+ // No value means no extension is needed. If extension is needed, the value
+ // indicates if it needs to be sign extended.
+ std::optional<bool> SExtLHS;
+ std::optional<bool> SExtRHS;
+ /// Root of the combine.
+ SDNode *Root;
+ /// LHS of the TargetOpcode.
+ NodeExtensionHelper LHS;
+ /// RHS of the TargetOpcode.
+ NodeExtensionHelper RHS;
+
+ CombineResult(unsigned TargetOpcode, SDNode *Root,
+ const NodeExtensionHelper &LHS, std::optional<bool> SExtLHS,
+ const NodeExtensionHelper &RHS, std::optional<bool> SExtRHS)
+ : TargetOpcode(TargetOpcode), SExtLHS(SExtLHS), SExtRHS(SExtRHS),
+ Root(Root), LHS(LHS), RHS(RHS) {}
+
+ /// Return a value that uses TargetOpcode and that can be used to replace
+ /// Root.
+ /// The actual replacement is *not* done in that method.
+ SDValue materialize(SelectionDAG &DAG) const {
+ SDValue Mask, VL, Merge;
+ std::tie(Mask, VL) = NodeExtensionHelper::getMaskAndVL(Root);
+ Merge = Root->getOperand(2);
+ return DAG.getNode(TargetOpcode, SDLoc(Root), Root->getValueType(0),
+ LHS.getOrCreateExtendedOp(Root, DAG, SExtLHS),
+ RHS.getOrCreateExtendedOp(Root, DAG, SExtRHS), Merge,
+ Mask, VL);
+ }
+};
+
+/// Check if \p Root follows a pattern Root(ext(LHS), ext(RHS))
+/// where `ext` is the same for both LHS and RHS (i.e., both are sext or both
+/// are zext) and LHS and RHS can be folded into Root.
+/// AllowSExt and AllozZExt define which form `ext` can take in this pattern.
+///
+/// \note If the pattern can match with both zext and sext, the returned
+/// CombineResult will feature the zext result.
+///
+/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
+/// can be used to apply the pattern.
+static std::optional<CombineResult>
+canFoldToVWWithSameExtensionImpl(SDNode *Root, const NodeExtensionHelper &LHS,
+ const NodeExtensionHelper &RHS, bool AllowSExt,
+ bool AllowZExt) {
+ assert((AllowSExt || AllowZExt) && "Forgot to set what you want?");
+ if (!LHS.areVLAndMaskCompatible(Root) || !RHS.areVLAndMaskCompatible(Root))
+ return std::nullopt;
+ if (AllowZExt && LHS.SupportsZExt && RHS.SupportsZExt)
+ return CombineResult(NodeExtensionHelper::getSameExtensionOpcode(
+ Root->getOpcode(), /*IsSExt=*/false),
+ Root, LHS, /*SExtLHS=*/false, RHS,
+ /*SExtRHS=*/false);
+ if (AllowSExt && LHS.SupportsSExt && RHS.SupportsSExt)
+ return CombineResult(NodeExtensionHelper::getSameExtensionOpcode(
+ Root->getOpcode(), /*IsSExt=*/true),
+ Root, LHS, /*SExtLHS=*/true, RHS,
+ /*SExtRHS=*/true);
+ return std::nullopt;
+}
+
+/// Check if \p Root follows a pattern Root(ext(LHS), ext(RHS))
+/// where `ext` is the same for both LHS and RHS (i.e., both are sext or both
+/// are zext) and LHS and RHS can be folded into Root.
+///
+/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
+/// can be used to apply the pattern.
+static std::optional<CombineResult>
+canFoldToVWWithSameExtension(SDNode *Root, const NodeExtensionHelper &LHS,
+ const NodeExtensionHelper &RHS) {
+ return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, /*AllowSExt=*/true,
+ /*AllowZExt=*/true);
+}
+
+/// Check if \p Root follows a pattern Root(LHS, ext(RHS))
+///
+/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
+/// can be used to apply the pattern.
+static std::optional<CombineResult>
+canFoldToVW_W(SDNode *Root, const NodeExtensionHelper &LHS,
+ const NodeExtensionHelper &RHS) {
+ if (!RHS.areVLAndMaskCompatible(Root))
+ return std::nullopt;
+
+ // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
+ // sext/zext?
+ // Control this behavior behind an option (AllowSplatInVW_W) for testing
+ // purposes.
+ if (RHS.SupportsZExt && (!RHS.isSplat() || AllowSplatInVW_W))
+ return CombineResult(
+ NodeExtensionHelper::getWOpcode(Root->getOpcode(), /*IsSExt=*/false),
+ Root, LHS, /*SExtLHS=*/std::nullopt, RHS, /*SExtRHS=*/false);
+ if (RHS.SupportsSExt && (!RHS.isSplat() || AllowSplatInVW_W))
+ return CombineResult(
+ NodeExtensionHelper::getWOpcode(Root->getOpcode(), /*IsSExt=*/true),
+ Root, LHS, /*SExtLHS=*/std::nullopt, RHS, /*SExtRHS=*/true);
+ return std::nullopt;
+}
+
+/// Check if \p Root follows a pattern Root(sext(LHS), sext(RHS))
+///
+/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
+/// can be used to apply the pattern.
+static std::optional<CombineResult>
+canFoldToVWWithSEXT(SDNode *Root, const NodeExtensionHelper &LHS,
+ const NodeExtensionHelper &RHS) {
+ return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, /*AllowSExt=*/true,
+ /*AllowZExt=*/false);
+}
+
+/// Check if \p Root follows a pattern Root(zext(LHS), zext(RHS))
+///
+/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
+/// can be used to apply the pattern.
+static std::optional<CombineResult>
+canFoldToVWWithZEXT(SDNode *Root, const NodeExtensionHelper &LHS,
+ const NodeExtensionHelper &RHS) {
+ return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, /*AllowSExt=*/false,
+ /*AllowZExt=*/true);
+}
+
+/// Check if \p Root follows a pattern Root(sext(LHS), zext(RHS))
+///
+/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
+/// can be used to apply the pattern.
+static std::optional<CombineResult>
+canFoldToVW_SU(SDNode *Root, const NodeExtensionHelper &LHS,
+ const NodeExtensionHelper &RHS) {
+ if (!LHS.SupportsSExt || !RHS.SupportsZExt)
+ return std::nullopt;
+ if (!LHS.areVLAndMaskCompatible(Root) || !RHS.areVLAndMaskCompatible(Root))
+ return std::nullopt;
+ return CombineResult(NodeExtensionHelper::getSUOpcode(Root->getOpcode()),
+ Root, LHS, /*SExtLHS=*/true, RHS, /*SExtRHS=*/false);
+}
+
+SmallVector<NodeExtensionHelper::CombineToTry>
+NodeExtensionHelper::getSupportedFoldings(const SDNode *Root) {
+ SmallVector<CombineToTry> Strategies;
+ switch (Root->getOpcode()) {
+ case RISCVISD::ADD_VL:
+ case RISCVISD::SUB_VL:
+ // add|sub -> vwadd(u)|vwsub(u)
+ Strategies.push_back(canFoldToVWWithSameExtension);
+ // add|sub -> vwadd(u)_w|vwsub(u)_w
+ Strategies.push_back(canFoldToVW_W);
+ break;
+ case RISCVISD::MUL_VL:
+ // mul -> vwmul(u)
+ Strategies.push_back(canFoldToVWWithSameExtension);
+ // mul -> vwmulsu
+ Strategies.push_back(canFoldToVW_SU);
+ break;
+ case RISCVISD::VWADD_W_VL:
+ case RISCVISD::VWSUB_W_VL:
+ // vwadd_w|vwsub_w -> vwadd|vwsub
+ Strategies.push_back(canFoldToVWWithSEXT);
+ break;
+ case RISCVISD::VWADDU_W_VL:
+ case RISCVISD::VWSUBU_W_VL:
+ // vwaddu_w|vwsubu_w -> vwaddu|vwsubu
+ Strategies.push_back(canFoldToVWWithZEXT);
+ break;
+ default:
+ llvm_unreachable("Unexpected opcode");
+ }
+ return Strategies;
+}
+} // End anonymous namespace.
+
+/// Combine a binary operation to its equivalent VW or VW_W form.
+/// The supported combines are:
+/// add_vl -> vwadd(u) | vwadd(u)_w
+/// sub_vl -> vwsub(u) | vwsub(u)_w
+/// mul_vl -> vwmul(u) | vwmul_su
+/// vwadd_w(u) -> vwadd(u)
+/// vwub_w(u) -> vwadd(u)
+static SDValue
+combineBinOp_VLToVWBinOp_VL(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
+ SelectionDAG &DAG = DCI.DAG;
+
+ assert(NodeExtensionHelper::isSupportedRoot(N) &&
+ "Shouldn't have called this method");
+ SmallVector<SDNode *> Worklist;
+ SmallSet<SDNode *, 8> Inserted;
+ Worklist.push_back(N);
+ Inserted.insert(N);
+ SmallVector<CombineResult> CombinesToApply;
+
+ while (!Worklist.empty()) {
+ SDNode *Root = Worklist.pop_back_val();
+ if (!NodeExtensionHelper::isSupportedRoot(Root))
+ return SDValue();
+
+ NodeExtensionHelper LHS(N, 0, DAG);
+ NodeExtensionHelper RHS(N, 1, DAG);
+ auto AppendUsersIfNeeded = [&Worklist,
+ &Inserted](const NodeExtensionHelper &Op) {
+ if (Op.needToPromoteOtherUsers()) {
+ for (SDNode *TheUse : Op.OrigOperand->uses()) {
+ if (Inserted.insert(TheUse).second)
+ Worklist.push_back(TheUse);
+ }
+ }
+ };
+
+ // Control the compile time by limiting the number of node we look at in
+ // total.
+ if (Inserted.size() > ExtensionMaxWebSize)
+ return SDValue();
+
+ SmallVector<NodeExtensionHelper::CombineToTry> FoldingStrategies =
+ NodeExtensionHelper::getSupportedFoldings(N);
+
+ assert(!FoldingStrategies.empty() && "Nothing to be folded");
+ bool Matched = false;
+ for (int Attempt = 0;
+ (Attempt != 1 + NodeExtensionHelper::isCommutative(N)) && !Matched;
+ ++Attempt) {
+
+ for (NodeExtensionHelper::CombineToTry FoldingStrategy :
+ FoldingStrategies) {
+ std::optional<CombineResult> Res = FoldingStrategy(N, LHS, RHS);
+ if (Res) {
+ Matched = true;
+ CombinesToApply.push_back(*Res);
+ // All the inputs that are extended need to be folded, otherwise
+ // we would be leaving the old input (since it is may still be used),
+ // and the new one.
+ if (Res->SExtLHS.has_value())
+ AppendUsersIfNeeded(LHS);
+ if (Res->SExtRHS.has_value())
+ AppendUsersIfNeeded(RHS);
+ break;
+ }
+ }
+ std::swap(LHS, RHS);
+ }
+ // Right now we do an all or nothing approach.
+ if (!Matched)
+ return SDValue();
+ }
+ // Store the value for the replacement of the input node separately.
+ SDValue InputRootReplacement;
+ // We do the RAUW after we materialize all the combines, because some replaced
+ // nodes may be feeding some of the yet-to-be-replaced nodes. Put differently,
+ // some of these nodes may appear in the NodeExtensionHelpers of some of the
+ // yet-to-be-visited CombinesToApply roots.
+ SmallVector<std::pair<SDValue, SDValue>> ValuesToReplace;
+ ValuesToReplace.reserve(CombinesToApply.size());
+ for (CombineResult Res : CombinesToApply) {
+ SDValue NewValue = Res.materialize(DAG);
+ if (!InputRootReplacement) {
+ assert(Res.Root == N &&
+ "First element is expected to be the current node");
+ InputRootReplacement = NewValue;
+ } else {
+ ValuesToReplace.emplace_back(SDValue(Res.Root, 0), NewValue);
+ }
+ }
+ for (std::pair<SDValue, SDValue> OldNewValues : ValuesToReplace) {
+ DAG.ReplaceAllUsesOfValueWith(OldNewValues.first, OldNewValues.second);
+ DCI.AddToWorklist(OldNewValues.second.getNode());
+ }
+ return InputRootReplacement;
+}
+
+// Fold
+// (fp_to_int (froundeven X)) -> fcvt X, rne
+// (fp_to_int (ftrunc X)) -> fcvt X, rtz
+// (fp_to_int (ffloor X)) -> fcvt X, rdn
+// (fp_to_int (fceil X)) -> fcvt X, rup
+// (fp_to_int (fround X)) -> fcvt X, rmm
+static SDValue performFP_TO_INTCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const RISCVSubtarget &Subtarget) {
+ SelectionDAG &DAG = DCI.DAG;
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ SDValue Src = N->getOperand(0);
+
+ // Ensure the FP type is legal.
+ if (!TLI.isTypeLegal(Src.getValueType()))
+ return SDValue();
+
+ // Don't do this for f16 with Zfhmin and not Zfh.
+ if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
+ return SDValue();
+
+ RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src.getOpcode());
+ if (FRM == RISCVFPRndMode::Invalid)
+ return SDValue();
+
+ SDLoc DL(N);
+ bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
+ EVT VT = N->getValueType(0);
+
+ if (VT.isVector() && TLI.isTypeLegal(VT)) {
+ MVT SrcVT = Src.getSimpleValueType();
+ MVT SrcContainerVT = SrcVT;
+ MVT ContainerVT = VT.getSimpleVT();
+ SDValue XVal = Src.getOperand(0);
+
+ // For widening and narrowing conversions we just combine it into a
+ // VFCVT_..._VL node, as there are no specific VFWCVT/VFNCVT VL nodes. They
+ // end up getting lowered to their appropriate pseudo instructions based on
+ // their operand types
+ if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits() * 2 ||
+ VT.getScalarSizeInBits() * 2 < SrcVT.getScalarSizeInBits())
+ return SDValue();
+
+ // Make fixed-length vectors scalable first
+ if (SrcVT.isFixedLengthVector()) {
+ SrcContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget);
+ XVal = convertToScalableVector(SrcContainerVT, XVal, DAG, Subtarget);
+ ContainerVT =
+ getContainerForFixedLengthVector(DAG, ContainerVT, Subtarget);
+ }
+
+ auto [Mask, VL] =
+ getDefaultVLOps(SrcVT, SrcContainerVT, DL, DAG, Subtarget);
+
+ SDValue FpToInt;
+ if (FRM == RISCVFPRndMode::RTZ) {
+ // Use the dedicated trunc static rounding mode if we're truncating so we
+ // don't need to generate calls to fsrmi/fsrm
+ unsigned Opc =
+ IsSigned ? RISCVISD::VFCVT_RTZ_X_F_VL : RISCVISD::VFCVT_RTZ_XU_F_VL;
+ FpToInt = DAG.getNode(Opc, DL, ContainerVT, XVal, Mask, VL);
+ } else {
+ unsigned Opc =
+ IsSigned ? RISCVISD::VFCVT_RM_X_F_VL : RISCVISD::VFCVT_RM_XU_F_VL;
+ FpToInt = DAG.getNode(Opc, DL, ContainerVT, XVal, Mask,
+ DAG.getTargetConstant(FRM, DL, XLenVT), VL);
+ }
+
+ // If converted from fixed-length to scalable, convert back
+ if (VT.isFixedLengthVector())
+ FpToInt = convertFromScalableVector(VT, FpToInt, DAG, Subtarget);
+
+ return FpToInt;
+ }
+
+ // Only handle XLen or i32 types. Other types narrower than XLen will
+ // eventually be legalized to XLenVT.
+ if (VT != MVT::i32 && VT != XLenVT)
+ return SDValue();
+
+ unsigned Opc;
+ if (VT == XLenVT)
+ Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
+ else
+ Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
+
+ SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
+ DAG.getTargetConstant(FRM, DL, XLenVT));
+ return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
+}
+
+// Fold
+// (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
+// (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz))
+// (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn))
+// (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup))
+// (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm))
+static SDValue performFP_TO_INT_SATCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const RISCVSubtarget &Subtarget) {
+ SelectionDAG &DAG = DCI.DAG;
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ // Only handle XLen types. Other types narrower than XLen will eventually be
+ // legalized to XLenVT.
+ EVT DstVT = N->getValueType(0);
+ if (DstVT != XLenVT)
+ return SDValue();
+
+ SDValue Src = N->getOperand(0);
+
+ // Ensure the FP type is also legal.
+ if (!TLI.isTypeLegal(Src.getValueType()))
+ return SDValue();
+
+ // Don't do this for f16 with Zfhmin and not Zfh.
+ if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
+ return SDValue();
+
+ EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
+
+ RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src.getOpcode());
+ if (FRM == RISCVFPRndMode::Invalid)
+ return SDValue();
+
+ bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
+
+ unsigned Opc;
+ if (SatVT == DstVT)
+ Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
+ else if (DstVT == MVT::i64 && SatVT == MVT::i32)
+ Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
+ else
+ return SDValue();
+ // FIXME: Support other SatVTs by clamping before or after the conversion.
+
+ Src = Src.getOperand(0);
+
+ SDLoc DL(N);
+ SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
+ DAG.getTargetConstant(FRM, DL, XLenVT));
+
+ // fcvt.wu.* sign extends bit 31 on RV64. FP_TO_UINT_SAT expects to zero
+ // extend.
+ if (Opc == RISCVISD::FCVT_WU_RV64)
+ FpToInt = DAG.getZeroExtendInReg(FpToInt, DL, MVT::i32);
+
+ // RISCV FP-to-int conversions saturate to the destination register size, but
+ // don't produce 0 for nan.
+ SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
+ return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
+}
+
+// Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
+// smaller than XLenVT.
+static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
+
+ SDValue Src = N->getOperand(0);
+ if (Src.getOpcode() != ISD::BSWAP)
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
+ !isPowerOf2_32(VT.getSizeInBits()))
+ return SDValue();
+
+ SDLoc DL(N);
+ return DAG.getNode(RISCVISD::BREV8, DL, VT, Src.getOperand(0));
+}
+
+// Convert from one FMA opcode to another based on whether we are negating the
+// multiply result and/or the accumulator.
+// NOTE: Only supports RVV operations with VL.
+static unsigned negateFMAOpcode(unsigned Opcode, bool NegMul, bool NegAcc) {
+ assert((NegMul || NegAcc) && "Not negating anything?");
+
+ // Negating the multiply result changes ADD<->SUB and toggles 'N'.
+ if (NegMul) {
+ // clang-format off
+ switch (Opcode) {
+ default: llvm_unreachable("Unexpected opcode");
+ case RISCVISD::VFMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break;
+ case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFMADD_VL; break;
+ case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFMSUB_VL; break;
+ case RISCVISD::VFMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break;
+ }
+ // clang-format on
+ }
+
+ // Negating the accumulator changes ADD<->SUB.
+ if (NegAcc) {
+ // clang-format off
+ switch (Opcode) {
+ default: llvm_unreachable("Unexpected opcode");
+ case RISCVISD::VFMADD_VL: Opcode = RISCVISD::VFMSUB_VL; break;
+ case RISCVISD::VFMSUB_VL: Opcode = RISCVISD::VFMADD_VL; break;
+ case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break;
+ case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break;
+ }
+ // clang-format on
+ }
+
+ return Opcode;
+}
+
+static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ assert(N->getOpcode() == ISD::SRA && "Unexpected opcode");
+
+ if (N->getValueType(0) != MVT::i64 || !Subtarget.is64Bit())
+ return SDValue();
+
+ if (!isa<ConstantSDNode>(N->getOperand(1)))
+ return SDValue();
+ uint64_t ShAmt = N->getConstantOperandVal(1);
+ if (ShAmt > 32)
+ return SDValue();
+
+ SDValue N0 = N->getOperand(0);
+
+ // Combine (sra (sext_inreg (shl X, C1), i32), C2) ->
+ // (sra (shl X, C1+32), C2+32) so it gets selected as SLLI+SRAI instead of
+ // SLLIW+SRAIW. SLLI+SRAI have compressed forms.
+ if (ShAmt < 32 &&
+ N0.getOpcode() == ISD::SIGN_EXTEND_INREG && N0.hasOneUse() &&
+ cast<VTSDNode>(N0.getOperand(1))->getVT() == MVT::i32 &&
+ N0.getOperand(0).getOpcode() == ISD::SHL && N0.getOperand(0).hasOneUse() &&
+ isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
+ uint64_t LShAmt = N0.getOperand(0).getConstantOperandVal(1);
+ if (LShAmt < 32) {
+ SDLoc ShlDL(N0.getOperand(0));
+ SDValue Shl = DAG.getNode(ISD::SHL, ShlDL, MVT::i64,
+ N0.getOperand(0).getOperand(0),
+ DAG.getConstant(LShAmt + 32, ShlDL, MVT::i64));
+ SDLoc DL(N);
+ return DAG.getNode(ISD::SRA, DL, MVT::i64, Shl,
+ DAG.getConstant(ShAmt + 32, DL, MVT::i64));
+ }
+ }
+
+ // Combine (sra (shl X, 32), 32 - C) -> (shl (sext_inreg X, i32), C)
+ // FIXME: Should this be a generic combine? There's a similar combine on X86.
+ //
+ // Also try these folds where an add or sub is in the middle.
+ // (sra (add (shl X, 32), C1), 32 - C) -> (shl (sext_inreg (add X, C1), C)
+ // (sra (sub C1, (shl X, 32)), 32 - C) -> (shl (sext_inreg (sub C1, X), C)
+ SDValue Shl;
+ ConstantSDNode *AddC = nullptr;
+
+ // We might have an ADD or SUB between the SRA and SHL.
+ bool IsAdd = N0.getOpcode() == ISD::ADD;
+ if ((IsAdd || N0.getOpcode() == ISD::SUB)) {
+ // Other operand needs to be a constant we can modify.
+ AddC = dyn_cast<ConstantSDNode>(N0.getOperand(IsAdd ? 1 : 0));
+ if (!AddC)
+ return SDValue();
+
+ // AddC needs to have at least 32 trailing zeros.
+ if (AddC->getAPIntValue().countTrailingZeros() < 32)
+ return SDValue();
+
+ // All users should be a shift by constant less than or equal to 32. This
+ // ensures we'll do this optimization for each of them to produce an
+ // add/sub+sext_inreg they can all share.
+ for (SDNode *U : N0->uses()) {
+ if (U->getOpcode() != ISD::SRA ||
+ !isa<ConstantSDNode>(U->getOperand(1)) ||
+ cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() > 32)
+ return SDValue();
+ }
+
+ Shl = N0.getOperand(IsAdd ? 0 : 1);
+ } else {
+ // Not an ADD or SUB.
+ Shl = N0;
+ }
+
+ // Look for a shift left by 32.
+ if (Shl.getOpcode() != ISD::SHL || !isa<ConstantSDNode>(Shl.getOperand(1)) ||
+ Shl.getConstantOperandVal(1) != 32)
+ return SDValue();
+
+ // We if we didn't look through an add/sub, then the shl should have one use.
+ // If we did look through an add/sub, the sext_inreg we create is free so
+ // we're only creating 2 new instructions. It's enough to only remove the
+ // original sra+add/sub.
+ if (!AddC && !Shl.hasOneUse())
+ return SDValue();
+
+ SDLoc DL(N);
+ SDValue In = Shl.getOperand(0);
+
+ // If we looked through an ADD or SUB, we need to rebuild it with the shifted
+ // constant.
+ if (AddC) {
+ SDValue ShiftedAddC =
+ DAG.getConstant(AddC->getAPIntValue().lshr(32), DL, MVT::i64);
+ if (IsAdd)
+ In = DAG.getNode(ISD::ADD, DL, MVT::i64, In, ShiftedAddC);
+ else
+ In = DAG.getNode(ISD::SUB, DL, MVT::i64, ShiftedAddC, In);
+ }
+
+ SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, In,
+ DAG.getValueType(MVT::i32));
+ if (ShAmt == 32)
+ return SExt;
+
+ return DAG.getNode(
+ ISD::SHL, DL, MVT::i64, SExt,
+ DAG.getConstant(32 - ShAmt, DL, MVT::i64));
+}
+
+// Invert (and/or (set cc X, Y), (xor Z, 1)) to (or/and (set !cc X, Y)), Z) if
+// the result is used as the conditon of a br_cc or select_cc we can invert,
+// inverting the setcc is free, and Z is 0/1. Caller will invert the
+// br_cc/select_cc.
+static SDValue tryDemorganOfBooleanCondition(SDValue Cond, SelectionDAG &DAG) {
+ bool IsAnd = Cond.getOpcode() == ISD::AND;
+ if (!IsAnd && Cond.getOpcode() != ISD::OR)
+ return SDValue();
+
+ if (!Cond.hasOneUse())
+ return SDValue();
+
+ SDValue Setcc = Cond.getOperand(0);
+ SDValue Xor = Cond.getOperand(1);
+ // Canonicalize setcc to LHS.
+ if (Setcc.getOpcode() != ISD::SETCC)
+ std::swap(Setcc, Xor);
+ // LHS should be a setcc and RHS should be an xor.
+ if (Setcc.getOpcode() != ISD::SETCC || !Setcc.hasOneUse() ||
+ Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse())
+ return SDValue();
+
+ // If the condition is an And, SimplifyDemandedBits may have changed
+ // (xor Z, 1) to (not Z).
+ SDValue Xor1 = Xor.getOperand(1);
+ if (!isOneConstant(Xor1) && !(IsAnd && isAllOnesConstant(Xor1)))
+ return SDValue();
+
+ EVT VT = Cond.getValueType();
+ SDValue Xor0 = Xor.getOperand(0);
+
+ // The LHS of the xor needs to be 0/1.
+ APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), 1);
+ if (!DAG.MaskedValueIsZero(Xor0, Mask))
+ return SDValue();
+
+ // We can only invert integer setccs.
+ EVT SetCCOpVT = Setcc.getOperand(0).getValueType();
+ if (!SetCCOpVT.isScalarInteger())
+ return SDValue();
+
+ ISD::CondCode CCVal = cast<CondCodeSDNode>(Setcc.getOperand(2))->get();
+ if (ISD::isIntEqualitySetCC(CCVal)) {
+ CCVal = ISD::getSetCCInverse(CCVal, SetCCOpVT);
+ Setcc = DAG.getSetCC(SDLoc(Setcc), VT, Setcc.getOperand(0),
+ Setcc.getOperand(1), CCVal);
+ } else if (CCVal == ISD::SETLT && isNullConstant(Setcc.getOperand(0))) {
+ // Invert (setlt 0, X) by converting to (setlt X, 1).
+ Setcc = DAG.getSetCC(SDLoc(Setcc), VT, Setcc.getOperand(1),
+ DAG.getConstant(1, SDLoc(Setcc), VT), CCVal);
+ } else if (CCVal == ISD::SETLT && isOneConstant(Setcc.getOperand(1))) {
+ // (setlt X, 1) by converting to (setlt 0, X).
+ Setcc = DAG.getSetCC(SDLoc(Setcc), VT,
+ DAG.getConstant(0, SDLoc(Setcc), VT),
+ Setcc.getOperand(0), CCVal);
+ } else
+ return SDValue();
+
+ unsigned Opc = IsAnd ? ISD::OR : ISD::AND;
+ return DAG.getNode(Opc, SDLoc(Cond), VT, Setcc, Xor.getOperand(0));
+}
+
+// Perform common combines for BR_CC and SELECT_CC condtions.
+static bool combine_CC(SDValue &LHS, SDValue &RHS, SDValue &CC, const SDLoc &DL,
+ SelectionDAG &DAG, const RISCVSubtarget &Subtarget) {
+ ISD::CondCode CCVal = cast<CondCodeSDNode>(CC)->get();
+
+ // As far as arithmetic right shift always saves the sign,
+ // shift can be omitted.
+ // Fold setlt (sra X, N), 0 -> setlt X, 0 and
+ // setge (sra X, N), 0 -> setge X, 0
+ if (auto *RHSConst = dyn_cast<ConstantSDNode>(RHS.getNode())) {
+ if ((CCVal == ISD::SETGE || CCVal == ISD::SETLT) &&
+ LHS.getOpcode() == ISD::SRA && RHSConst->isZero()) {
+ LHS = LHS.getOperand(0);
+ return true;
+ }
+ }
+
+ if (!ISD::isIntEqualitySetCC(CCVal))
+ return false;
+
+ // Fold ((setlt X, Y), 0, ne) -> (X, Y, lt)
+ // Sometimes the setcc is introduced after br_cc/select_cc has been formed.
+ if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
+ LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
+ // If we're looking for eq 0 instead of ne 0, we need to invert the
+ // condition.
+ bool Invert = CCVal == ISD::SETEQ;
+ CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
+ if (Invert)
+ CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
+
+ RHS = LHS.getOperand(1);
+ LHS = LHS.getOperand(0);
+ translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
+
+ CC = DAG.getCondCode(CCVal);
+ return true;
+ }
+
+ // Fold ((xor X, Y), 0, eq/ne) -> (X, Y, eq/ne)
+ if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) {
+ RHS = LHS.getOperand(1);
+ LHS = LHS.getOperand(0);
+ return true;
+ }
+
+ // Fold ((srl (and X, 1<<C), C), 0, eq/ne) -> ((shl X, XLen-1-C), 0, ge/lt)
+ if (isNullConstant(RHS) && LHS.getOpcode() == ISD::SRL && LHS.hasOneUse() &&
+ LHS.getOperand(1).getOpcode() == ISD::Constant) {
+ SDValue LHS0 = LHS.getOperand(0);
+ if (LHS0.getOpcode() == ISD::AND &&
+ LHS0.getOperand(1).getOpcode() == ISD::Constant) {
+ uint64_t Mask = LHS0.getConstantOperandVal(1);
+ uint64_t ShAmt = LHS.getConstantOperandVal(1);
+ if (isPowerOf2_64(Mask) && Log2_64(Mask) == ShAmt) {
+ CCVal = CCVal == ISD::SETEQ ? ISD::SETGE : ISD::SETLT;
+ CC = DAG.getCondCode(CCVal);
+
+ ShAmt = LHS.getValueSizeInBits() - 1 - ShAmt;
+ LHS = LHS0.getOperand(0);
+ if (ShAmt != 0)
+ LHS =
+ DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS0.getOperand(0),
+ DAG.getConstant(ShAmt, DL, LHS.getValueType()));
+ return true;
+ }
+ }
+ }
+
+ // (X, 1, setne) -> // (X, 0, seteq) if we can prove X is 0/1.
+ // This can occur when legalizing some floating point comparisons.
+ APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
+ if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
+ CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
+ CC = DAG.getCondCode(CCVal);
+ RHS = DAG.getConstant(0, DL, LHS.getValueType());
+ return true;
+ }
+
+ if (isNullConstant(RHS)) {
+ if (SDValue NewCond = tryDemorganOfBooleanCondition(LHS, DAG)) {
+ CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
+ CC = DAG.getCondCode(CCVal);
+ LHS = NewCond;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// Fold
+// (select C, (add Y, X), Y) -> (add Y, (select C, X, 0)).
+// (select C, (sub Y, X), Y) -> (sub Y, (select C, X, 0)).
+// (select C, (or Y, X), Y) -> (or Y, (select C, X, 0)).
+// (select C, (xor Y, X), Y) -> (xor Y, (select C, X, 0)).
+static SDValue tryFoldSelectIntoOp(SDNode *N, SelectionDAG &DAG,
+ SDValue TrueVal, SDValue FalseVal,
+ bool Swapped) {
+ bool Commutative = true;
+ switch (TrueVal.getOpcode()) {
+ default:
+ return SDValue();
+ case ISD::SUB:
+ Commutative = false;
+ break;
+ case ISD::ADD:
+ case ISD::OR:
+ case ISD::XOR:
+ break;
+ }
+
+ if (!TrueVal.hasOneUse() || isa<ConstantSDNode>(FalseVal))
+ return SDValue();
+
+ unsigned OpToFold;
+ if (FalseVal == TrueVal.getOperand(0))
+ OpToFold = 0;
+ else if (Commutative && FalseVal == TrueVal.getOperand(1))
+ OpToFold = 1;
+ else
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+ SDValue Zero = DAG.getConstant(0, DL, VT);
+ SDValue OtherOp = TrueVal.getOperand(1 - OpToFold);
+
+ if (Swapped)
+ std::swap(OtherOp, Zero);
+ SDValue NewSel = DAG.getSelect(DL, VT, N->getOperand(0), OtherOp, Zero);
+ return DAG.getNode(TrueVal.getOpcode(), DL, VT, FalseVal, NewSel);
+}
+
+static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
+ const RISCVSubtarget &Subtarget) {
+ if (Subtarget.hasShortForwardBranchOpt())
+ return SDValue();
+
+ // Only support XLenVT.
+ if (N->getValueType(0) != Subtarget.getXLenVT())
+ return SDValue();
+
+ SDValue TrueVal = N->getOperand(1);
+ SDValue FalseVal = N->getOperand(2);
+ if (SDValue V = tryFoldSelectIntoOp(N, DAG, TrueVal, FalseVal, /*Swapped*/false))
+ return V;
+ return tryFoldSelectIntoOp(N, DAG, FalseVal, TrueVal, /*Swapped*/true);
+}
+
+SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+
+ // Helper to call SimplifyDemandedBits on an operand of N where only some low
+ // bits are demanded. N will be added to the Worklist if it was not deleted.
+ // Caller should return SDValue(N, 0) if this returns true.
+ auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
+ SDValue Op = N->getOperand(OpNo);
+ APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
+ if (!SimplifyDemandedBits(Op, Mask, DCI))
+ return false;
+
+ if (N->getOpcode() != ISD::DELETED_NODE)
+ DCI.AddToWorklist(N);
+ return true;
+ };
+
+ switch (N->getOpcode()) {
+ default:
+ break;
+ case RISCVISD::SplitF64: {
+ SDValue Op0 = N->getOperand(0);
+ // If the input to SplitF64 is just BuildPairF64 then the operation is
+ // redundant. Instead, use BuildPairF64's operands directly.
+ if (Op0->getOpcode() == RISCVISD::BuildPairF64)
+ return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
+
+ if (Op0->isUndef()) {
+ SDValue Lo = DAG.getUNDEF(MVT::i32);
+ SDValue Hi = DAG.getUNDEF(MVT::i32);
+ return DCI.CombineTo(N, Lo, Hi);
+ }
+
+ SDLoc DL(N);
+
+ // It's cheaper to materialise two 32-bit integers than to load a double
+ // from the constant pool and transfer it to integer registers through the
+ // stack.
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
+ APInt V = C->getValueAPF().bitcastToAPInt();
+ SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
+ SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
+ return DCI.CombineTo(N, Lo, Hi);
+ }
+
+ // This is a target-specific version of a DAGCombine performed in
+ // DAGCombiner::visitBITCAST. It performs the equivalent of:
+ // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
+ // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
+ if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
+ !Op0.getNode()->hasOneUse())
+ break;
+ SDValue NewSplitF64 =
+ DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
+ Op0.getOperand(0));
+ SDValue Lo = NewSplitF64.getValue(0);
+ SDValue Hi = NewSplitF64.getValue(1);
+ APInt SignBit = APInt::getSignMask(32);
+ if (Op0.getOpcode() == ISD::FNEG) {
+ SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
+ DAG.getConstant(SignBit, DL, MVT::i32));
+ return DCI.CombineTo(N, Lo, NewHi);
+ }
+ assert(Op0.getOpcode() == ISD::FABS);
+ SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
+ DAG.getConstant(~SignBit, DL, MVT::i32));
+ return DCI.CombineTo(N, Lo, NewHi);
+ }
+ case RISCVISD::SLLW:
+ case RISCVISD::SRAW:
+ case RISCVISD::SRLW:
+ case RISCVISD::RORW:
+ case RISCVISD::ROLW: {
+ // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
+ if (SimplifyDemandedLowBitsHelper(0, 32) ||
+ SimplifyDemandedLowBitsHelper(1, 5))
+ return SDValue(N, 0);
+
+ break;
+ }
+ case RISCVISD::CLZW:
+ case RISCVISD::CTZW: {
+ // Only the lower 32 bits of the first operand are read
+ if (SimplifyDemandedLowBitsHelper(0, 32))
+ return SDValue(N, 0);
+ break;
+ }
+ case RISCVISD::FMV_X_ANYEXTH:
+ case RISCVISD::FMV_X_ANYEXTW_RV64: {
+ SDLoc DL(N);
+ SDValue Op0 = N->getOperand(0);
+ MVT VT = N->getSimpleValueType(0);
+ // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
+ // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
+ // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
+ if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
+ Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
+ (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
+ Op0->getOpcode() == RISCVISD::FMV_H_X)) {
+ assert(Op0.getOperand(0).getValueType() == VT &&
+ "Unexpected value type!");
+ return Op0.getOperand(0);
+ }
+
+ // This is a target-specific version of a DAGCombine performed in
+ // DAGCombiner::visitBITCAST. It performs the equivalent of:
+ // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
+ // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
+ if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
+ !Op0.getNode()->hasOneUse())
+ break;
+ SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
+ unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
+ APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits());
+ if (Op0.getOpcode() == ISD::FNEG)
+ return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
+ DAG.getConstant(SignBit, DL, VT));
+
+ assert(Op0.getOpcode() == ISD::FABS);
+ return DAG.getNode(ISD::AND, DL, VT, NewFMV,
+ DAG.getConstant(~SignBit, DL, VT));
+ }
+ case ISD::ADD:
+ return performADDCombine(N, DAG, Subtarget);
+ case ISD::SUB:
+ return performSUBCombine(N, DAG, Subtarget);
+ case ISD::AND:
+ return performANDCombine(N, DCI, Subtarget);
+ case ISD::OR:
+ return performORCombine(N, DCI, Subtarget);
+ case ISD::XOR:
+ return performXORCombine(N, DAG, Subtarget);
+ case ISD::FADD:
+ case ISD::UMAX:
+ case ISD::UMIN:
+ case ISD::SMAX:
+ case ISD::SMIN:
+ case ISD::FMAXNUM:
+ case ISD::FMINNUM:
+ return combineBinOpToReduce(N, DAG, Subtarget);
+ case ISD::SETCC:
+ return performSETCCCombine(N, DAG, Subtarget);
+ case ISD::SIGN_EXTEND_INREG:
+ return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
+ case ISD::ZERO_EXTEND:
+ // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
+ // type legalization. This is safe because fp_to_uint produces poison if
+ // it overflows.
+ if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
+ SDValue Src = N->getOperand(0);
+ if (Src.getOpcode() == ISD::FP_TO_UINT &&
+ isTypeLegal(Src.getOperand(0).getValueType()))
+ return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
+ Src.getOperand(0));
+ if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
+ isTypeLegal(Src.getOperand(1).getValueType())) {
+ SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
+ SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
+ Src.getOperand(0), Src.getOperand(1));
+ DCI.CombineTo(N, Res);
+ DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
+ DCI.recursivelyDeleteUnusedNodes(Src.getNode());
+ return SDValue(N, 0); // Return N so it doesn't get rechecked.
+ }
+ }
+ return SDValue();
+ case ISD::TRUNCATE:
+ return performTRUNCATECombine(N, DAG, Subtarget);
+ case ISD::SELECT:
+ return performSELECTCombine(N, DAG, Subtarget);
+ case RISCVISD::SELECT_CC: {
+ // Transform
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ SDValue CC = N->getOperand(2);
+ ISD::CondCode CCVal = cast<CondCodeSDNode>(CC)->get();
+ SDValue TrueV = N->getOperand(3);
+ SDValue FalseV = N->getOperand(4);
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+
+ // If the True and False values are the same, we don't need a select_cc.
+ if (TrueV == FalseV)
+ return TrueV;
+
+ // (select (x < 0), y, z) -> x >> (XLEN - 1) & (y - z) + z
+ // (select (x >= 0), y, z) -> x >> (XLEN - 1) & (z - y) + y
+ if (!Subtarget.hasShortForwardBranchOpt() && isa<ConstantSDNode>(TrueV) &&
+ isa<ConstantSDNode>(FalseV) && isNullConstant(RHS) &&
+ (CCVal == ISD::CondCode::SETLT || CCVal == ISD::CondCode::SETGE)) {
+ if (CCVal == ISD::CondCode::SETGE)
+ std::swap(TrueV, FalseV);
+
+ int64_t TrueSImm = cast<ConstantSDNode>(TrueV)->getSExtValue();
+ int64_t FalseSImm = cast<ConstantSDNode>(FalseV)->getSExtValue();
+ // Only handle simm12, if it is not in this range, it can be considered as
+ // register.
+ if (isInt<12>(TrueSImm) && isInt<12>(FalseSImm) &&
+ isInt<12>(TrueSImm - FalseSImm)) {
+ SDValue SRA =
+ DAG.getNode(ISD::SRA, DL, VT, LHS,
+ DAG.getConstant(Subtarget.getXLen() - 1, DL, VT));
+ SDValue AND =
+ DAG.getNode(ISD::AND, DL, VT, SRA,
+ DAG.getConstant(TrueSImm - FalseSImm, DL, VT));
+ return DAG.getNode(ISD::ADD, DL, VT, AND, FalseV);
+ }
+
+ if (CCVal == ISD::CondCode::SETGE)
+ std::swap(TrueV, FalseV);
+ }
+
+ if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget))
+ return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
+ {LHS, RHS, CC, TrueV, FalseV});
+
+ if (!Subtarget.hasShortForwardBranchOpt()) {
+ // (select c, -1, y) -> -c | y
+ if (isAllOnesConstant(TrueV)) {
+ SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, CCVal);
+ SDValue Neg = DAG.getNegative(C, DL, VT);
+ return DAG.getNode(ISD::OR, DL, VT, Neg, FalseV);
+ }
+ // (select c, y, -1) -> -!c | y
+ if (isAllOnesConstant(FalseV)) {
+ SDValue C =
+ DAG.getSetCC(DL, VT, LHS, RHS, ISD::getSetCCInverse(CCVal, VT));
+ SDValue Neg = DAG.getNegative(C, DL, VT);
+ return DAG.getNode(ISD::OR, DL, VT, Neg, TrueV);
+ }
+
+ // (select c, 0, y) -> -!c & y
+ if (isNullConstant(TrueV)) {
+ SDValue C =
+ DAG.getSetCC(DL, VT, LHS, RHS, ISD::getSetCCInverse(CCVal, VT));
+ SDValue Neg = DAG.getNegative(C, DL, VT);
+ return DAG.getNode(ISD::AND, DL, VT, Neg, FalseV);
+ }
+ // (select c, y, 0) -> -c & y
+ if (isNullConstant(FalseV)) {
+ SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, CCVal);
+ SDValue Neg = DAG.getNegative(C, DL, VT);
+ return DAG.getNode(ISD::AND, DL, VT, Neg, TrueV);
+ }
+ }
+
+ return SDValue();
+ }
+ case RISCVISD::BR_CC: {
+ SDValue LHS = N->getOperand(1);
+ SDValue RHS = N->getOperand(2);
+ SDValue CC = N->getOperand(3);
+ SDLoc DL(N);
+
+ if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget))
+ return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
+ N->getOperand(0), LHS, RHS, CC, N->getOperand(4));
+
+ return SDValue();
+ }
+ case ISD::BITREVERSE:
+ return performBITREVERSECombine(N, DAG, Subtarget);
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT:
+ return performFP_TO_INTCombine(N, DCI, Subtarget);
+ case ISD::FP_TO_SINT_SAT:
+ case ISD::FP_TO_UINT_SAT:
+ return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
+ case ISD::FCOPYSIGN: {
+ EVT VT = N->getValueType(0);
+ if (!VT.isVector())
+ break;
+ // There is a form of VFSGNJ which injects the negated sign of its second
+ // operand. Try and bubble any FNEG up after the extend/round to produce
+ // this optimized pattern. Avoid modifying cases where FP_ROUND and
+ // TRUNC=1.
+ SDValue In2 = N->getOperand(1);
+ // Avoid cases where the extend/round has multiple uses, as duplicating
+ // those is typically more expensive than removing a fneg.
+ if (!In2.hasOneUse())
+ break;
+ if (In2.getOpcode() != ISD::FP_EXTEND &&
+ (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
+ break;
+ In2 = In2.getOperand(0);
+ if (In2.getOpcode() != ISD::FNEG)
+ break;
+ SDLoc DL(N);
+ SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
+ return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
+ DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
+ }
+ case ISD::MGATHER:
+ case ISD::MSCATTER:
+ case ISD::VP_GATHER:
+ case ISD::VP_SCATTER: {
+ if (!DCI.isBeforeLegalize())
+ break;
+ SDValue Index, ScaleOp;
+ bool IsIndexSigned = false;
+ if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
+ Index = VPGSN->getIndex();
+ ScaleOp = VPGSN->getScale();
+ IsIndexSigned = VPGSN->isIndexSigned();
+ assert(!VPGSN->isIndexScaled() &&
+ "Scaled gather/scatter should not be formed");
+ } else {
+ const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
+ Index = MGSN->getIndex();
+ ScaleOp = MGSN->getScale();
+ IsIndexSigned = MGSN->isIndexSigned();
+ assert(!MGSN->isIndexScaled() &&
+ "Scaled gather/scatter should not be formed");
+
+ }
+ EVT IndexVT = Index.getValueType();
+ MVT XLenVT = Subtarget.getXLenVT();
+ // RISCV indexed loads only support the "unsigned unscaled" addressing
+ // mode, so anything else must be manually legalized.
+ bool NeedsIdxLegalization =
+ (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
+ if (!NeedsIdxLegalization)
+ break;
+
+ SDLoc DL(N);
+
+ // Any index legalization should first promote to XLenVT, so we don't lose
+ // bits when scaling. This may create an illegal index type so we let
+ // LLVM's legalization take care of the splitting.
+ // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
+ if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
+ IndexVT = IndexVT.changeVectorElementType(XLenVT);
+ Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
+ DL, IndexVT, Index);
+ }
+
+ ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_SCALED;
+ if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
+ return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
+ {VPGN->getChain(), VPGN->getBasePtr(), Index,
+ ScaleOp, VPGN->getMask(),
+ VPGN->getVectorLength()},
+ VPGN->getMemOperand(), NewIndexTy);
+ if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
+ return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
+ {VPSN->getChain(), VPSN->getValue(),
+ VPSN->getBasePtr(), Index, ScaleOp,
+ VPSN->getMask(), VPSN->getVectorLength()},
+ VPSN->getMemOperand(), NewIndexTy);
+ if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
+ return DAG.getMaskedGather(
+ N->getVTList(), MGN->getMemoryVT(), DL,
+ {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
+ MGN->getBasePtr(), Index, ScaleOp},
+ MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
+ const auto *MSN = cast<MaskedScatterSDNode>(N);
+ return DAG.getMaskedScatter(
+ N->getVTList(), MSN->getMemoryVT(), DL,
+ {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
+ Index, ScaleOp},
+ MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
+ }
+ case RISCVISD::SRA_VL:
+ case RISCVISD::SRL_VL:
+ case RISCVISD::SHL_VL: {
+ SDValue ShAmt = N->getOperand(1);
+ if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
+ // We don't need the upper 32 bits of a 64-bit element for a shift amount.
+ SDLoc DL(N);
+ SDValue VL = N->getOperand(3);
+ EVT VT = N->getValueType(0);
+ ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
+ ShAmt.getOperand(1), VL);
+ return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
+ N->getOperand(2), N->getOperand(3), N->getOperand(4));
+ }
+ break;
+ }
+ case ISD::SRA:
+ if (SDValue V = performSRACombine(N, DAG, Subtarget))
+ return V;
+ [[fallthrough]];
+ case ISD::SRL:
+ case ISD::SHL: {
+ SDValue ShAmt = N->getOperand(1);
+ if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
+ // We don't need the upper 32 bits of a 64-bit element for a shift amount.
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+ ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
+ ShAmt.getOperand(1),
+ DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
+ return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
+ }
+ break;
+ }
+ case RISCVISD::ADD_VL:
+ case RISCVISD::SUB_VL:
+ case RISCVISD::VWADD_W_VL:
+ case RISCVISD::VWADDU_W_VL:
+ case RISCVISD::VWSUB_W_VL:
+ case RISCVISD::VWSUBU_W_VL:
+ case RISCVISD::MUL_VL:
+ return combineBinOp_VLToVWBinOp_VL(N, DCI);
+ case RISCVISD::VFMADD_VL:
+ case RISCVISD::VFNMADD_VL:
+ case RISCVISD::VFMSUB_VL:
+ case RISCVISD::VFNMSUB_VL: {
+ // Fold FNEG_VL into FMA opcodes.
+ SDValue A = N->getOperand(0);
+ SDValue B = N->getOperand(1);
+ SDValue C = N->getOperand(2);
+ SDValue Mask = N->getOperand(3);
+ SDValue VL = N->getOperand(4);
+
+ auto invertIfNegative = [&Mask, &VL](SDValue &V) {
+ if (V.getOpcode() == RISCVISD::FNEG_VL && V.getOperand(1) == Mask &&
+ V.getOperand(2) == VL) {
+ // Return the negated input.
+ V = V.getOperand(0);
+ return true;
+ }
+
+ return false;
+ };
+
+ bool NegA = invertIfNegative(A);
+ bool NegB = invertIfNegative(B);
+ bool NegC = invertIfNegative(C);
+
+ // If no operands are negated, we're done.
+ if (!NegA && !NegB && !NegC)
+ return SDValue();
+
+ unsigned NewOpcode = negateFMAOpcode(N->getOpcode(), NegA != NegB, NegC);
+ return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), A, B, C, Mask,
+ VL);
+ }
+ case ISD::STORE: {
+ auto *Store = cast<StoreSDNode>(N);
+ SDValue Val = Store->getValue();
+ // Combine store of vmv.x.s/vfmv.f.s to vse with VL of 1.
+ // vfmv.f.s is represented as extract element from 0. Match it late to avoid
+ // any illegal types.
+ if (Val.getOpcode() == RISCVISD::VMV_X_S ||
+ (DCI.isAfterLegalizeDAG() &&
+ Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ isNullConstant(Val.getOperand(1)))) {
+ SDValue Src = Val.getOperand(0);
+ MVT VecVT = Src.getSimpleValueType();
+ EVT MemVT = Store->getMemoryVT();
+ // VecVT should be scalable and memory VT should match the element type.
+ if (VecVT.isScalableVector() &&
+ MemVT == VecVT.getVectorElementType()) {
+ SDLoc DL(N);
+ MVT MaskVT = getMaskTypeFor(VecVT);
+ return DAG.getStoreVP(
+ Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
+ DAG.getConstant(1, DL, MaskVT),
+ DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
+ Store->getMemOperand(), Store->getAddressingMode(),
+ Store->isTruncatingStore(), /*IsCompress*/ false);
+ }
+ }
+
+ break;
+ }
+ case ISD::SPLAT_VECTOR: {
+ EVT VT = N->getValueType(0);
+ // Only perform this combine on legal MVT types.
+ if (!isTypeLegal(VT))
+ break;
+ if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
+ DAG, Subtarget))
+ return Gather;
+ break;
+ }
+ case RISCVISD::VMV_V_X_VL: {
+ // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
+ // scalar input.
+ unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
+ unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
+ if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
+ if (SimplifyDemandedLowBitsHelper(1, EltWidth))
+ return SDValue(N, 0);
+
+ break;
+ }
+ case RISCVISD::VFMV_S_F_VL: {
+ SDValue Src = N->getOperand(1);
+ // Try to remove vector->scalar->vector if the scalar->vector is inserting
+ // into an undef vector.
+ // TODO: Could use a vslide or vmv.v.v for non-undef.
+ if (N->getOperand(0).isUndef() &&
+ Src.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ isNullConstant(Src.getOperand(1)) &&
+ Src.getOperand(0).getValueType().isScalableVector()) {
+ EVT VT = N->getValueType(0);
+ EVT SrcVT = Src.getOperand(0).getValueType();
+ assert(SrcVT.getVectorElementType() == VT.getVectorElementType());
+ // Widths match, just return the original vector.
+ if (SrcVT == VT)
+ return Src.getOperand(0);
+ // TODO: Use insert_subvector/extract_subvector to change widen/narrow?
+ }
+ break;
+ }
+ case ISD::INTRINSIC_WO_CHAIN: {
+ unsigned IntNo = N->getConstantOperandVal(0);
+ switch (IntNo) {
+ // By default we do not combine any intrinsic.
+ default:
+ return SDValue();
+ case Intrinsic::riscv_vcpop:
+ case Intrinsic::riscv_vcpop_mask:
+ case Intrinsic::riscv_vfirst:
+ case Intrinsic::riscv_vfirst_mask: {
+ SDValue VL = N->getOperand(2);
+ if (IntNo == Intrinsic::riscv_vcpop_mask ||
+ IntNo == Intrinsic::riscv_vfirst_mask)
+ VL = N->getOperand(3);
+ if (!isNullConstant(VL))
+ return SDValue();
+ // If VL is 0, vcpop -> li 0, vfirst -> li -1.
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+ if (IntNo == Intrinsic::riscv_vfirst ||
+ IntNo == Intrinsic::riscv_vfirst_mask)
+ return DAG.getConstant(-1, DL, VT);
+ return DAG.getConstant(0, DL, VT);
+ }
+ }
+ }
+ case ISD::BITCAST: {
+ assert(Subtarget.useRVVForFixedLengthVectors());
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ EVT SrcVT = N0.getValueType();
+ // If this is a bitcast between a MVT::v4i1/v2i1/v1i1 and an illegal integer
+ // type, widen both sides to avoid a trip through memory.
+ if ((SrcVT == MVT::v1i1 || SrcVT == MVT::v2i1 || SrcVT == MVT::v4i1) &&
+ VT.isScalarInteger()) {
+ unsigned NumConcats = 8 / SrcVT.getVectorNumElements();
+ SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT));
+ Ops[0] = N0;
+ SDLoc DL(N);
+ N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i1, Ops);
+ N0 = DAG.getBitcast(MVT::i8, N0);
+ return DAG.getNode(ISD::TRUNCATE, DL, VT, N0);
+ }
+
+ return SDValue();
+ }
+ }
+
+ return SDValue();
+}
+
+bool RISCVTargetLowering::isDesirableToCommuteWithShift(
+ const SDNode *N, CombineLevel Level) const {
+ assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA ||
+ N->getOpcode() == ISD::SRL) &&
+ "Expected shift op");
+
+ // The following folds are only desirable if `(OP _, c1 << c2)` can be
+ // materialised in fewer instructions than `(OP _, c1)`:
+ //
+ // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
+ // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
+ SDValue N0 = N->getOperand(0);
+ EVT Ty = N0.getValueType();
+ if (Ty.isScalarInteger() &&
+ (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
+ auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
+ auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (C1 && C2) {
+ const APInt &C1Int = C1->getAPIntValue();
+ APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
+
+ // We can materialise `c1 << c2` into an add immediate, so it's "free",
+ // and the combine should happen, to potentially allow further combines
+ // later.
+ if (ShiftedC1Int.getMinSignedBits() <= 64 &&
+ isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
+ return true;
+
+ // We can materialise `c1` in an add immediate, so it's "free", and the
+ // combine should be prevented.
+ if (C1Int.getMinSignedBits() <= 64 &&
+ isLegalAddImmediate(C1Int.getSExtValue()))
+ return false;
+
+ // Neither constant will fit into an immediate, so find materialisation
+ // costs.
+ int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
+ Subtarget.getFeatureBits(),
+ /*CompressionCost*/true);
+ int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
+ ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
+ /*CompressionCost*/true);
+
+ // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
+ // combine should be prevented.
+ if (C1Cost < ShiftedC1Cost)
+ return false;
+ }
+ }
+ return true;
+}
+
+bool RISCVTargetLowering::targetShrinkDemandedConstant(
+ SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
+ TargetLoweringOpt &TLO) const {
+ // Delay this optimization as late as possible.
+ if (!TLO.LegalOps)
+ return false;
+
+ EVT VT = Op.getValueType();
+ if (VT.isVector())
+ return false;
+
+ unsigned Opcode = Op.getOpcode();
+ if (Opcode != ISD::AND && Opcode != ISD::OR && Opcode != ISD::XOR)
+ return false;
+
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ if (!C)
+ return false;
+
+ const APInt &Mask = C->getAPIntValue();
+
+ // Clear all non-demanded bits initially.
+ APInt ShrunkMask = Mask & DemandedBits;
+
+ // Try to make a smaller immediate by setting undemanded bits.
+
+ APInt ExpandedMask = Mask | ~DemandedBits;
+
+ auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
+ return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
+ };
+ auto UseMask = [Mask, Op, &TLO](const APInt &NewMask) -> bool {
+ if (NewMask == Mask)
+ return true;
+ SDLoc DL(Op);
+ SDValue NewC = TLO.DAG.getConstant(NewMask, DL, Op.getValueType());
+ SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), DL, Op.getValueType(),
+ Op.getOperand(0), NewC);
+ return TLO.CombineTo(Op, NewOp);
+ };
+
+ // If the shrunk mask fits in sign extended 12 bits, let the target
+ // independent code apply it.
+ if (ShrunkMask.isSignedIntN(12))
+ return false;
+
+ // And has a few special cases for zext.
+ if (Opcode == ISD::AND) {
+ // Preserve (and X, 0xffff), if zext.h exists use zext.h,
+ // otherwise use SLLI + SRLI.
+ APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
+ if (IsLegalMask(NewMask))
+ return UseMask(NewMask);
+
+ // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
+ if (VT == MVT::i64) {
+ APInt NewMask = APInt(64, 0xffffffff);
+ if (IsLegalMask(NewMask))
+ return UseMask(NewMask);
+ }
+ }
+
+ // For the remaining optimizations, we need to be able to make a negative
+ // number through a combination of mask and undemanded bits.
+ if (!ExpandedMask.isNegative())
+ return false;
+
+ // What is the fewest number of bits we need to represent the negative number.
+ unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
+
+ // Try to make a 12 bit negative immediate. If that fails try to make a 32
+ // bit negative immediate unless the shrunk immediate already fits in 32 bits.
+ // If we can't create a simm12, we shouldn't change opaque constants.
+ APInt NewMask = ShrunkMask;
+ if (MinSignedBits <= 12)
+ NewMask.setBitsFrom(11);
+ else if (!C->isOpaque() && MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
+ NewMask.setBitsFrom(31);
+ else
+ return false;
+
+ // Check that our new mask is a subset of the demanded mask.
+ assert(IsLegalMask(NewMask));
+ return UseMask(NewMask);
+}
+
+static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) {
+ static const uint64_t GREVMasks[] = {
+ 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
+ 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
+
+ for (unsigned Stage = 0; Stage != 6; ++Stage) {
+ unsigned Shift = 1 << Stage;
+ if (ShAmt & Shift) {
+ uint64_t Mask = GREVMasks[Stage];
+ uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask);
+ if (IsGORC)
+ Res |= x;
+ x = Res;
+ }
+ }
+
+ return x;
+}
+
+void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
+ KnownBits &Known,
+ const APInt &DemandedElts,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ unsigned BitWidth = Known.getBitWidth();
+ unsigned Opc = Op.getOpcode();
+ assert((Opc >= ISD::BUILTIN_OP_END ||
+ Opc == ISD::INTRINSIC_WO_CHAIN ||
+ Opc == ISD::INTRINSIC_W_CHAIN ||
+ Opc == ISD::INTRINSIC_VOID) &&
+ "Should use MaskedValueIsZero if you don't know whether Op"
+ " is a target node!");
+
+ Known.resetAll();
+ switch (Opc) {
+ default: break;
+ case RISCVISD::SELECT_CC: {
+ Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
+ // If we don't know any bits, early out.
+ if (Known.isUnknown())
+ break;
+ KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
+
+ // Only known if known in both the LHS and RHS.
+ Known = KnownBits::commonBits(Known, Known2);
+ break;
+ }
+ case RISCVISD::REMUW: {
+ KnownBits Known2;
+ Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
+ // We only care about the lower 32 bits.
+ Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
+ // Restore the original width by sign extending.
+ Known = Known.sext(BitWidth);
+ break;
+ }
+ case RISCVISD::DIVUW: {
+ KnownBits Known2;
+ Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
+ // We only care about the lower 32 bits.
+ Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
+ // Restore the original width by sign extending.
+ Known = Known.sext(BitWidth);
+ break;
+ }
+ case RISCVISD::CTZW: {
+ KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
+ unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
+ unsigned LowBits = llvm::bit_width(PossibleTZ);
+ Known.Zero.setBitsFrom(LowBits);
+ break;
+ }
+ case RISCVISD::CLZW: {
+ KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
+ unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
+ unsigned LowBits = llvm::bit_width(PossibleLZ);
+ Known.Zero.setBitsFrom(LowBits);
+ break;
+ }
+ case RISCVISD::BREV8:
+ case RISCVISD::ORC_B: {
+ // FIXME: This is based on the non-ratified Zbp GREV and GORC where a
+ // control value of 7 is equivalent to brev8 and orc.b.
+ Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
+ bool IsGORC = Op.getOpcode() == RISCVISD::ORC_B;
+ // To compute zeros, we need to invert the value and invert it back after.
+ Known.Zero =
+ ~computeGREVOrGORC(~Known.Zero.getZExtValue(), 7, IsGORC);
+ Known.One = computeGREVOrGORC(Known.One.getZExtValue(), 7, IsGORC);
+ break;
+ }
+ case RISCVISD::READ_VLENB: {
+ // We can use the minimum and maximum VLEN values to bound VLENB. We
+ // know VLEN must be a power of two.
+ const unsigned MinVLenB = Subtarget.getRealMinVLen() / 8;
+ const unsigned MaxVLenB = Subtarget.getRealMaxVLen() / 8;
+ assert(MinVLenB > 0 && "READ_VLENB without vector extension enabled?");
+ Known.Zero.setLowBits(Log2_32(MinVLenB));
+ Known.Zero.setBitsFrom(Log2_32(MaxVLenB)+1);
+ if (MaxVLenB == MinVLenB)
+ Known.One.setBit(Log2_32(MinVLenB));
+ break;
+ }
+ case ISD::INTRINSIC_W_CHAIN:
+ case ISD::INTRINSIC_WO_CHAIN: {
+ unsigned IntNo =
+ Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
+ switch (IntNo) {
+ default:
+ // We can't do anything for most intrinsics.
+ break;
+ case Intrinsic::riscv_vsetvli:
+ case Intrinsic::riscv_vsetvlimax:
+ case Intrinsic::riscv_vsetvli_opt:
+ case Intrinsic::riscv_vsetvlimax_opt:
+ // Assume that VL output is positive and would fit in an int32_t.
+ // TODO: VLEN might be capped at 16 bits in a future V spec update.
+ if (BitWidth >= 32)
+ Known.Zero.setBitsFrom(31);
+ break;
+ }
+ break;
+ }
+ }
+}
+
+unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
+ SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
+ unsigned Depth) const {
+ switch (Op.getOpcode()) {
+ default:
+ break;
+ case RISCVISD::SELECT_CC: {
+ unsigned Tmp =
+ DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
+ if (Tmp == 1) return 1; // Early out.
+ unsigned Tmp2 =
+ DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
+ return std::min(Tmp, Tmp2);
+ }
+ case RISCVISD::ABSW: {
+ // We expand this at isel to negw+max. The result will have 33 sign bits
+ // if the input has at least 33 sign bits.
+ unsigned Tmp =
+ DAG.ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
+ if (Tmp < 33) return 1;
+ return 33;
+ }
+ case RISCVISD::SLLW:
+ case RISCVISD::SRAW:
+ case RISCVISD::SRLW:
+ case RISCVISD::DIVW:
+ case RISCVISD::DIVUW:
+ case RISCVISD::REMUW:
+ case RISCVISD::ROLW:
+ case RISCVISD::RORW:
+ case RISCVISD::FCVT_W_RV64:
+ case RISCVISD::FCVT_WU_RV64:
+ case RISCVISD::STRICT_FCVT_W_RV64:
+ case RISCVISD::STRICT_FCVT_WU_RV64:
+ // TODO: As the result is sign-extended, this is conservatively correct. A
+ // more precise answer could be calculated for SRAW depending on known
+ // bits in the shift amount.
+ return 33;
+ case RISCVISD::VMV_X_S: {
+ // The number of sign bits of the scalar result is computed by obtaining the
+ // element type of the input vector operand, subtracting its width from the
+ // XLEN, and then adding one (sign bit within the element type). If the
+ // element type is wider than XLen, the least-significant XLEN bits are
+ // taken.
+ unsigned XLen = Subtarget.getXLen();
+ unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
+ if (EltBits <= XLen)
+ return XLen - EltBits + 1;
+ break;
+ }
+ case ISD::INTRINSIC_W_CHAIN: {
+ unsigned IntNo = Op.getConstantOperandVal(1);
+ switch (IntNo) {
+ default:
+ break;
+ case Intrinsic::riscv_masked_atomicrmw_xchg_i64:
+ case Intrinsic::riscv_masked_atomicrmw_add_i64:
+ case Intrinsic::riscv_masked_atomicrmw_sub_i64:
+ case Intrinsic::riscv_masked_atomicrmw_nand_i64:
+ case Intrinsic::riscv_masked_atomicrmw_max_i64:
+ case Intrinsic::riscv_masked_atomicrmw_min_i64:
+ case Intrinsic::riscv_masked_atomicrmw_umax_i64:
+ case Intrinsic::riscv_masked_atomicrmw_umin_i64:
+ case Intrinsic::riscv_masked_cmpxchg_i64:
+ // riscv_masked_{atomicrmw_*,cmpxchg} intrinsics represent an emulated
+ // narrow atomic operation. These are implemented using atomic
+ // operations at the minimum supported atomicrmw/cmpxchg width whose
+ // result is then sign extended to XLEN. With +A, the minimum width is
+ // 32 for both 64 and 32.
+ assert(Subtarget.getXLen() == 64);
+ assert(getMinCmpXchgSizeInBits() == 32);
+ assert(Subtarget.hasStdExtA());
+ return 33;
+ }
+ }
+ }
+
+ return 1;
+}
+
+const Constant *
+RISCVTargetLowering::getTargetConstantFromLoad(LoadSDNode *Ld) const {
+ assert(Ld && "Unexpected null LoadSDNode");
+ if (!ISD::isNormalLoad(Ld))
+ return nullptr;
+
+ SDValue Ptr = Ld->getBasePtr();
+
+ // Only constant pools with no offset are supported.
+ auto GetSupportedConstantPool = [](SDValue Ptr) -> ConstantPoolSDNode * {
+ auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr);
+ if (!CNode || CNode->isMachineConstantPoolEntry() ||
+ CNode->getOffset() != 0)
+ return nullptr;
+
+ return CNode;
+ };
+
+ // Simple case, LLA.
+ if (Ptr.getOpcode() == RISCVISD::LLA) {
+ auto *CNode = GetSupportedConstantPool(Ptr);
+ if (!CNode || CNode->getTargetFlags() != 0)
+ return nullptr;
+
+ return CNode->getConstVal();
+ }
+
+ // Look for a HI and ADD_LO pair.
+ if (Ptr.getOpcode() != RISCVISD::ADD_LO ||
+ Ptr.getOperand(0).getOpcode() != RISCVISD::HI)
+ return nullptr;
+
+ auto *CNodeLo = GetSupportedConstantPool(Ptr.getOperand(1));
+ auto *CNodeHi = GetSupportedConstantPool(Ptr.getOperand(0).getOperand(0));
+
+ if (!CNodeLo || CNodeLo->getTargetFlags() != RISCVII::MO_LO ||
+ !CNodeHi || CNodeHi->getTargetFlags() != RISCVII::MO_HI)
+ return nullptr;
+
+ if (CNodeLo->getConstVal() != CNodeHi->getConstVal())
+ return nullptr;
+
+ return CNodeLo->getConstVal();
+}
+
+static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
+ MachineBasicBlock *BB) {
+ assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
+
+ // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
+ // Should the count have wrapped while it was being read, we need to try
+ // again.
+ // ...
+ // read:
+ // rdcycleh x3 # load high word of cycle
+ // rdcycle x2 # load low word of cycle
+ // rdcycleh x4 # load high word of cycle
+ // bne x3, x4, read # check if high word reads match, otherwise try again
+ // ...
+
+ MachineFunction &MF = *BB->getParent();
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = ++BB->getIterator();
+
+ MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
+ MF.insert(It, LoopMBB);
+
+ MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
+ MF.insert(It, DoneMBB);
+
+ // Transfer the remainder of BB and its successor edges to DoneMBB.
+ DoneMBB->splice(DoneMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ BB->addSuccessor(LoopMBB);
+
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
+ Register LoReg = MI.getOperand(0).getReg();
+ Register HiReg = MI.getOperand(1).getReg();
+ DebugLoc DL = MI.getDebugLoc();
+
+ const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
+ BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
+ .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
+ .addReg(RISCV::X0);
+ BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
+ .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
+ .addReg(RISCV::X0);
+ BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
+ .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
+ .addReg(RISCV::X0);
+
+ BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
+ .addReg(HiReg)
+ .addReg(ReadAgainReg)
+ .addMBB(LoopMBB);
+
+ LoopMBB->addSuccessor(LoopMBB);
+ LoopMBB->addSuccessor(DoneMBB);
+
+ MI.eraseFromParent();
+
+ return DoneMBB;
+}
+
+static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
+ MachineBasicBlock *BB) {
+ assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
+
+ MachineFunction &MF = *BB->getParent();
+ DebugLoc DL = MI.getDebugLoc();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
+ const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
+ Register LoReg = MI.getOperand(0).getReg();
+ Register HiReg = MI.getOperand(1).getReg();
+ Register SrcReg = MI.getOperand(2).getReg();
+ const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
+ int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
+
+ TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
+ RI, Register());
+ MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
+ MachineMemOperand *MMOLo =
+ MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
+ MachineMemOperand *MMOHi = MF.getMachineMemOperand(
+ MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
+ BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
+ .addFrameIndex(FI)
+ .addImm(0)
+ .addMemOperand(MMOLo);
+ BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
+ .addFrameIndex(FI)
+ .addImm(4)
+ .addMemOperand(MMOHi);
+ MI.eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
+ MachineBasicBlock *BB) {
+ assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
+ "Unexpected instruction");
+
+ MachineFunction &MF = *BB->getParent();
+ DebugLoc DL = MI.getDebugLoc();
+ const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
+ const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
+ Register DstReg = MI.getOperand(0).getReg();
+ Register LoReg = MI.getOperand(1).getReg();
+ Register HiReg = MI.getOperand(2).getReg();
+ const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
+ int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
+
+ MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
+ MachineMemOperand *MMOLo =
+ MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
+ MachineMemOperand *MMOHi = MF.getMachineMemOperand(
+ MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
+ BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
+ .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
+ .addFrameIndex(FI)
+ .addImm(0)
+ .addMemOperand(MMOLo);
+ BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
+ .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
+ .addFrameIndex(FI)
+ .addImm(4)
+ .addMemOperand(MMOHi);
+ TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI, Register());
+ MI.eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+static bool isSelectPseudo(MachineInstr &MI) {
+ switch (MI.getOpcode()) {
+ default:
+ return false;
+ case RISCV::Select_GPR_Using_CC_GPR:
+ case RISCV::Select_FPR16_Using_CC_GPR:
+ case RISCV::Select_FPR32_Using_CC_GPR:
+ case RISCV::Select_FPR64_Using_CC_GPR:
+ return true;
+ }
+}
+
+static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
+ unsigned RelOpcode, unsigned EqOpcode,
+ const RISCVSubtarget &Subtarget) {
+ DebugLoc DL = MI.getDebugLoc();
+ Register DstReg = MI.getOperand(0).getReg();
+ Register Src1Reg = MI.getOperand(1).getReg();
+ Register Src2Reg = MI.getOperand(2).getReg();
+ MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+ Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
+ const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
+
+ // Save the current FFLAGS.
+ BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
+
+ auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
+ .addReg(Src1Reg)
+ .addReg(Src2Reg);
+ if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
+ MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
+
+ // Restore the FFLAGS.
+ BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
+ .addReg(SavedFFlags, RegState::Kill);
+
+ // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
+ auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
+ .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
+ .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
+ if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
+ MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
+
+ // Erase the pseudoinstruction.
+ MI.eraseFromParent();
+ return BB;
+}
+
+static MachineBasicBlock *
+EmitLoweredCascadedSelect(MachineInstr &First, MachineInstr &Second,
+ MachineBasicBlock *ThisMBB,
+ const RISCVSubtarget &Subtarget) {
+ // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5)
+ // Without this, custom-inserter would have generated:
+ //
+ // A
+ // | \
+ // | B
+ // | /
+ // C
+ // | \
+ // | D
+ // | /
+ // E
+ //
+ // A: X = ...; Y = ...
+ // B: empty
+ // C: Z = PHI [X, A], [Y, B]
+ // D: empty
+ // E: PHI [X, C], [Z, D]
+ //
+ // If we lower both Select_FPRX_ in a single step, we can instead generate:
+ //
+ // A
+ // | \
+ // | C
+ // | /|
+ // |/ |
+ // | |
+ // | D
+ // | /
+ // E
+ //
+ // A: X = ...; Y = ...
+ // D: empty
+ // E: PHI [X, A], [X, C], [Y, D]
+
+ const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
+ const DebugLoc &DL = First.getDebugLoc();
+ const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
+ MachineFunction *F = ThisMBB->getParent();
+ MachineBasicBlock *FirstMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *SecondMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineFunction::iterator It = ++ThisMBB->getIterator();
+ F->insert(It, FirstMBB);
+ F->insert(It, SecondMBB);
+ F->insert(It, SinkMBB);
+
+ // Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
+ SinkMBB->splice(SinkMBB->begin(), ThisMBB,
+ std::next(MachineBasicBlock::iterator(First)),
+ ThisMBB->end());
+ SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
+
+ // Fallthrough block for ThisMBB.
+ ThisMBB->addSuccessor(FirstMBB);
+ // Fallthrough block for FirstMBB.
+ FirstMBB->addSuccessor(SecondMBB);
+ ThisMBB->addSuccessor(SinkMBB);
+ FirstMBB->addSuccessor(SinkMBB);
+ // This is fallthrough.
+ SecondMBB->addSuccessor(SinkMBB);
+
+ auto FirstCC = static_cast<RISCVCC::CondCode>(First.getOperand(3).getImm());
+ Register FLHS = First.getOperand(1).getReg();
+ Register FRHS = First.getOperand(2).getReg();
+ // Insert appropriate branch.
+ BuildMI(FirstMBB, DL, TII.getBrCond(FirstCC))
+ .addReg(FLHS)
+ .addReg(FRHS)
+ .addMBB(SinkMBB);
+
+ Register SLHS = Second.getOperand(1).getReg();
+ Register SRHS = Second.getOperand(2).getReg();
+ Register Op1Reg4 = First.getOperand(4).getReg();
+ Register Op1Reg5 = First.getOperand(5).getReg();
+
+ auto SecondCC = static_cast<RISCVCC::CondCode>(Second.getOperand(3).getImm());
+ // Insert appropriate branch.
+ BuildMI(ThisMBB, DL, TII.getBrCond(SecondCC))
+ .addReg(SLHS)
+ .addReg(SRHS)
+ .addMBB(SinkMBB);
+
+ Register DestReg = Second.getOperand(0).getReg();
+ Register Op2Reg4 = Second.getOperand(4).getReg();
+ BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII.get(RISCV::PHI), DestReg)
+ .addReg(Op2Reg4)
+ .addMBB(ThisMBB)
+ .addReg(Op1Reg4)
+ .addMBB(FirstMBB)
+ .addReg(Op1Reg5)
+ .addMBB(SecondMBB);
+
+ // Now remove the Select_FPRX_s.
+ First.eraseFromParent();
+ Second.eraseFromParent();
+ return SinkMBB;
+}
+
+static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
+ MachineBasicBlock *BB,
+ const RISCVSubtarget &Subtarget) {
+ // To "insert" Select_* instructions, we actually have to insert the triangle
+ // control-flow pattern. The incoming instructions know the destination vreg
+ // to set, the condition code register to branch on, the true/false values to
+ // select between, and the condcode to use to select the appropriate branch.
+ //
+ // We produce the following control flow:
+ // HeadMBB
+ // | \
+ // | IfFalseMBB
+ // | /
+ // TailMBB
+ //
+ // When we find a sequence of selects we attempt to optimize their emission
+ // by sharing the control flow. Currently we only handle cases where we have
+ // multiple selects with the exact same condition (same LHS, RHS and CC).
+ // The selects may be interleaved with other instructions if the other
+ // instructions meet some requirements we deem safe:
+ // - They are not pseudo instructions.
+ // - They are debug instructions. Otherwise,
+ // - They do not have side-effects, do not access memory and their inputs do
+ // not depend on the results of the select pseudo-instructions.
+ // The TrueV/FalseV operands of the selects cannot depend on the result of
+ // previous selects in the sequence.
+ // These conditions could be further relaxed. See the X86 target for a
+ // related approach and more information.
+ //
+ // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5))
+ // is checked here and handled by a separate function -
+ // EmitLoweredCascadedSelect.
+ Register LHS = MI.getOperand(1).getReg();
+ Register RHS = MI.getOperand(2).getReg();
+ auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
+
+ SmallVector<MachineInstr *, 4> SelectDebugValues;
+ SmallSet<Register, 4> SelectDests;
+ SelectDests.insert(MI.getOperand(0).getReg());
+
+ MachineInstr *LastSelectPseudo = &MI;
+ auto Next = next_nodbg(MI.getIterator(), BB->instr_end());
+ if (MI.getOpcode() != RISCV::Select_GPR_Using_CC_GPR && Next != BB->end() &&
+ Next->getOpcode() == MI.getOpcode() &&
+ Next->getOperand(5).getReg() == MI.getOperand(0).getReg() &&
+ Next->getOperand(5).isKill()) {
+ return EmitLoweredCascadedSelect(MI, *Next, BB, Subtarget);
+ }
+
+ for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
+ SequenceMBBI != E; ++SequenceMBBI) {
+ if (SequenceMBBI->isDebugInstr())
+ continue;
+ if (isSelectPseudo(*SequenceMBBI)) {
+ if (SequenceMBBI->getOperand(1).getReg() != LHS ||
+ SequenceMBBI->getOperand(2).getReg() != RHS ||
+ SequenceMBBI->getOperand(3).getImm() != CC ||
+ SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
+ SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
+ break;
+ LastSelectPseudo = &*SequenceMBBI;
+ SequenceMBBI->collectDebugValues(SelectDebugValues);
+ SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
+ continue;
+ }
+ if (SequenceMBBI->hasUnmodeledSideEffects() ||
+ SequenceMBBI->mayLoadOrStore() ||
+ SequenceMBBI->usesCustomInsertionHook())
+ break;
+ if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
+ return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
+ }))
+ break;
+ }
+
+ const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ DebugLoc DL = MI.getDebugLoc();
+ MachineFunction::iterator I = ++BB->getIterator();
+
+ MachineBasicBlock *HeadMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
+
+ F->insert(I, IfFalseMBB);
+ F->insert(I, TailMBB);
+
+ // Transfer debug instructions associated with the selects to TailMBB.
+ for (MachineInstr *DebugInstr : SelectDebugValues) {
+ TailMBB->push_back(DebugInstr->removeFromParent());
+ }
+
+ // Move all instructions after the sequence to TailMBB.
+ TailMBB->splice(TailMBB->end(), HeadMBB,
+ std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
+ // Update machine-CFG edges by transferring all successors of the current
+ // block to the new block which will contain the Phi nodes for the selects.
+ TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
+ // Set the successors for HeadMBB.
+ HeadMBB->addSuccessor(IfFalseMBB);
+ HeadMBB->addSuccessor(TailMBB);
+
+ // Insert appropriate branch.
+ BuildMI(HeadMBB, DL, TII.getBrCond(CC))
+ .addReg(LHS)
+ .addReg(RHS)
+ .addMBB(TailMBB);
+
+ // IfFalseMBB just falls through to TailMBB.
+ IfFalseMBB->addSuccessor(TailMBB);
+
+ // Create PHIs for all of the select pseudo-instructions.
+ auto SelectMBBI = MI.getIterator();
+ auto SelectEnd = std::next(LastSelectPseudo->getIterator());
+ auto InsertionPoint = TailMBB->begin();
+ while (SelectMBBI != SelectEnd) {
+ auto Next = std::next(SelectMBBI);
+ if (isSelectPseudo(*SelectMBBI)) {
+ // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
+ BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
+ TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
+ .addReg(SelectMBBI->getOperand(4).getReg())
+ .addMBB(HeadMBB)
+ .addReg(SelectMBBI->getOperand(5).getReg())
+ .addMBB(IfFalseMBB);
+ SelectMBBI->eraseFromParent();
+ }
+ SelectMBBI = Next;
+ }
+
+ F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
+ return TailMBB;
+}
+
+static MachineBasicBlock *
+emitVFCVT_RM_MASK(MachineInstr &MI, MachineBasicBlock *BB, unsigned Opcode) {
+ DebugLoc DL = MI.getDebugLoc();
+
+ const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
+
+ MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+ Register SavedFRM = MRI.createVirtualRegister(&RISCV::GPRRegClass);
+
+ // Update FRM and save the old value.
+ BuildMI(*BB, MI, DL, TII.get(RISCV::SwapFRMImm), SavedFRM)
+ .addImm(MI.getOperand(4).getImm());
+
+ // Emit an VFCVT without the FRM operand.
+ assert(MI.getNumOperands() == 8);
+ auto MIB = BuildMI(*BB, MI, DL, TII.get(Opcode))
+ .add(MI.getOperand(0))
+ .add(MI.getOperand(1))
+ .add(MI.getOperand(2))
+ .add(MI.getOperand(3))
+ .add(MI.getOperand(5))
+ .add(MI.getOperand(6))
+ .add(MI.getOperand(7));
+ if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
+ MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
+
+ // Restore FRM.
+ BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFRM))
+ .addReg(SavedFRM, RegState::Kill);
+
+ // Erase the pseudoinstruction.
+ MI.eraseFromParent();
+ return BB;
+}
+
+static MachineBasicBlock *emitVFROUND_NOEXCEPT_MASK(MachineInstr &MI,
+ MachineBasicBlock *BB,
+ unsigned CVTXOpc,
+ unsigned CVTFOpc) {
+ DebugLoc DL = MI.getDebugLoc();
+
+ const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
+
+ MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+ Register SavedFFLAGS = MRI.createVirtualRegister(&RISCV::GPRRegClass);
+
+ // Save the old value of FFLAGS.
+ BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFLAGS);
+
+ assert(MI.getNumOperands() == 7);
+
+ // Emit a VFCVT_X_F
+ const TargetRegisterInfo *TRI =
+ BB->getParent()->getSubtarget().getRegisterInfo();
+ const TargetRegisterClass *RC = MI.getRegClassConstraint(0, &TII, TRI);
+ Register Tmp = MRI.createVirtualRegister(RC);
+ BuildMI(*BB, MI, DL, TII.get(CVTXOpc), Tmp)
+ .add(MI.getOperand(1))
+ .add(MI.getOperand(2))
+ .add(MI.getOperand(3))
+ .add(MI.getOperand(4))
+ .add(MI.getOperand(5))
+ .add(MI.getOperand(6));
+
+ // Emit a VFCVT_F_X
+ BuildMI(*BB, MI, DL, TII.get(CVTFOpc))
+ .add(MI.getOperand(0))
+ .add(MI.getOperand(1))
+ .addReg(Tmp)
+ .add(MI.getOperand(3))
+ .add(MI.getOperand(4))
+ .add(MI.getOperand(5))
+ .add(MI.getOperand(6));
+
+ // Restore FFLAGS.
+ BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
+ .addReg(SavedFFLAGS, RegState::Kill);
+
+ // Erase the pseudoinstruction.
+ MI.eraseFromParent();
+ return BB;
+}
+
+static MachineBasicBlock *emitFROUND(MachineInstr &MI, MachineBasicBlock *MBB,
+ const RISCVSubtarget &Subtarget) {
+ unsigned CmpOpc, F2IOpc, I2FOpc, FSGNJOpc, FSGNJXOpc;
+ const TargetRegisterClass *RC;
+ switch (MI.getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected opcode");
+ case RISCV::PseudoFROUND_H:
+ CmpOpc = RISCV::FLT_H;
+ F2IOpc = RISCV::FCVT_W_H;
+ I2FOpc = RISCV::FCVT_H_W;
+ FSGNJOpc = RISCV::FSGNJ_H;
+ FSGNJXOpc = RISCV::FSGNJX_H;
+ RC = &RISCV::FPR16RegClass;
+ break;
+ case RISCV::PseudoFROUND_S:
+ CmpOpc = RISCV::FLT_S;
+ F2IOpc = RISCV::FCVT_W_S;
+ I2FOpc = RISCV::FCVT_S_W;
+ FSGNJOpc = RISCV::FSGNJ_S;
+ FSGNJXOpc = RISCV::FSGNJX_S;
+ RC = &RISCV::FPR32RegClass;
+ break;
+ case RISCV::PseudoFROUND_D:
+ assert(Subtarget.is64Bit() && "Expected 64-bit GPR.");
+ CmpOpc = RISCV::FLT_D;
+ F2IOpc = RISCV::FCVT_L_D;
+ I2FOpc = RISCV::FCVT_D_L;
+ FSGNJOpc = RISCV::FSGNJ_D;
+ FSGNJXOpc = RISCV::FSGNJX_D;
+ RC = &RISCV::FPR64RegClass;
+ break;
+ }
+
+ const BasicBlock *BB = MBB->getBasicBlock();
+ DebugLoc DL = MI.getDebugLoc();
+ MachineFunction::iterator I = ++MBB->getIterator();
+
+ MachineFunction *F = MBB->getParent();
+ MachineBasicBlock *CvtMBB = F->CreateMachineBasicBlock(BB);
+ MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(BB);
+
+ F->insert(I, CvtMBB);
+ F->insert(I, DoneMBB);
+ // Move all instructions after the sequence to DoneMBB.
+ DoneMBB->splice(DoneMBB->end(), MBB, MachineBasicBlock::iterator(MI),
+ MBB->end());
+ // Update machine-CFG edges by transferring all successors of the current
+ // block to the new block which will contain the Phi nodes for the selects.
+ DoneMBB->transferSuccessorsAndUpdatePHIs(MBB);
+ // Set the successors for MBB.
+ MBB->addSuccessor(CvtMBB);
+ MBB->addSuccessor(DoneMBB);
+
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ Register MaxReg = MI.getOperand(2).getReg();
+ int64_t FRM = MI.getOperand(3).getImm();
+
+ const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
+ MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
+
+ Register FabsReg = MRI.createVirtualRegister(RC);
+ BuildMI(MBB, DL, TII.get(FSGNJXOpc), FabsReg).addReg(SrcReg).addReg(SrcReg);
+
+ // Compare the FP value to the max value.
+ Register CmpReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
+ auto MIB =
+ BuildMI(MBB, DL, TII.get(CmpOpc), CmpReg).addReg(FabsReg).addReg(MaxReg);
+ if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
+ MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
+
+ // Insert branch.
+ BuildMI(MBB, DL, TII.get(RISCV::BEQ))
+ .addReg(CmpReg)
+ .addReg(RISCV::X0)
+ .addMBB(DoneMBB);
+
+ CvtMBB->addSuccessor(DoneMBB);
+
+ // Convert to integer.
+ Register F2IReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
+ MIB = BuildMI(CvtMBB, DL, TII.get(F2IOpc), F2IReg).addReg(SrcReg).addImm(FRM);
+ if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
+ MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
+
+ // Convert back to FP.
+ Register I2FReg = MRI.createVirtualRegister(RC);
+ MIB = BuildMI(CvtMBB, DL, TII.get(I2FOpc), I2FReg).addReg(F2IReg).addImm(FRM);
+ if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
+ MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
+
+ // Restore the sign bit.
+ Register CvtReg = MRI.createVirtualRegister(RC);
+ BuildMI(CvtMBB, DL, TII.get(FSGNJOpc), CvtReg).addReg(I2FReg).addReg(SrcReg);
+
+ // Merge the results.
+ BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(RISCV::PHI), DstReg)
+ .addReg(SrcReg)
+ .addMBB(MBB)
+ .addReg(CvtReg)
+ .addMBB(CvtMBB);
+
+ MI.eraseFromParent();
+ return DoneMBB;
+}
+
+MachineBasicBlock *
+RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
+ MachineBasicBlock *BB) const {
+ switch (MI.getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected instr type to insert");
+ case RISCV::ReadCycleWide:
+ assert(!Subtarget.is64Bit() &&
+ "ReadCycleWrite is only to be used on riscv32");
+ return emitReadCycleWidePseudo(MI, BB);
+ case RISCV::Select_GPR_Using_CC_GPR:
+ case RISCV::Select_FPR16_Using_CC_GPR:
+ case RISCV::Select_FPR32_Using_CC_GPR:
+ case RISCV::Select_FPR64_Using_CC_GPR:
+ return emitSelectPseudo(MI, BB, Subtarget);
+ case RISCV::BuildPairF64Pseudo:
+ return emitBuildPairF64Pseudo(MI, BB);
+ case RISCV::SplitF64Pseudo:
+ return emitSplitF64Pseudo(MI, BB);
+ case RISCV::PseudoQuietFLE_H:
+ return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
+ case RISCV::PseudoQuietFLT_H:
+ return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
+ case RISCV::PseudoQuietFLE_S:
+ return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
+ case RISCV::PseudoQuietFLT_S:
+ return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
+ case RISCV::PseudoQuietFLE_D:
+ return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
+ case RISCV::PseudoQuietFLT_D:
+ return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
+
+ // =========================================================================
+ // VFCVT
+ // =========================================================================
+
+ case RISCV::PseudoVFCVT_RM_X_F_V_M1_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M1_MASK);
+ case RISCV::PseudoVFCVT_RM_X_F_V_M2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M2_MASK);
+ case RISCV::PseudoVFCVT_RM_X_F_V_M4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M4_MASK);
+ case RISCV::PseudoVFCVT_RM_X_F_V_M8_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M8_MASK);
+ case RISCV::PseudoVFCVT_RM_X_F_V_MF2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF2_MASK);
+ case RISCV::PseudoVFCVT_RM_X_F_V_MF4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF4_MASK);
+
+ case RISCV::PseudoVFCVT_RM_XU_F_V_M1_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_XU_F_V_M1_MASK);
+ case RISCV::PseudoVFCVT_RM_XU_F_V_M2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_XU_F_V_M2_MASK);
+ case RISCV::PseudoVFCVT_RM_XU_F_V_M4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_XU_F_V_M4_MASK);
+ case RISCV::PseudoVFCVT_RM_XU_F_V_M8_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_XU_F_V_M8_MASK);
+ case RISCV::PseudoVFCVT_RM_XU_F_V_MF2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_XU_F_V_MF2_MASK);
+ case RISCV::PseudoVFCVT_RM_XU_F_V_MF4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_XU_F_V_MF4_MASK);
+
+ case RISCV::PseudoVFCVT_RM_F_XU_V_M1_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_XU_V_M1_MASK);
+ case RISCV::PseudoVFCVT_RM_F_XU_V_M2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_XU_V_M2_MASK);
+ case RISCV::PseudoVFCVT_RM_F_XU_V_M4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_XU_V_M4_MASK);
+ case RISCV::PseudoVFCVT_RM_F_XU_V_M8_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_XU_V_M8_MASK);
+ case RISCV::PseudoVFCVT_RM_F_XU_V_MF2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_XU_V_MF2_MASK);
+ case RISCV::PseudoVFCVT_RM_F_XU_V_MF4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_XU_V_MF4_MASK);
+
+ case RISCV::PseudoVFCVT_RM_F_X_V_M1_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_X_V_M1_MASK);
+ case RISCV::PseudoVFCVT_RM_F_X_V_M2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_X_V_M2_MASK);
+ case RISCV::PseudoVFCVT_RM_F_X_V_M4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_X_V_M4_MASK);
+ case RISCV::PseudoVFCVT_RM_F_X_V_M8_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_X_V_M8_MASK);
+ case RISCV::PseudoVFCVT_RM_F_X_V_MF2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_X_V_MF2_MASK);
+ case RISCV::PseudoVFCVT_RM_F_X_V_MF4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_X_V_MF4_MASK);
+
+ // =========================================================================
+ // VFWCVT
+ // =========================================================================
+
+ case RISCV::PseudoVFWCVT_RM_XU_F_V_M1_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_M1_MASK);
+ case RISCV::PseudoVFWCVT_RM_XU_F_V_M2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_M2_MASK);
+ case RISCV::PseudoVFWCVT_RM_XU_F_V_M4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_M4_MASK);
+ case RISCV::PseudoVFWCVT_RM_XU_F_V_MF2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_MF2_MASK);
+ case RISCV::PseudoVFWCVT_RM_XU_F_V_MF4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_MF4_MASK);
+
+ case RISCV::PseudoVFWCVT_RM_X_F_V_M1_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_M1_MASK);
+ case RISCV::PseudoVFWCVT_RM_X_F_V_M2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_M2_MASK);
+ case RISCV::PseudoVFWCVT_RM_X_F_V_M4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_M4_MASK);
+ case RISCV::PseudoVFWCVT_RM_X_F_V_MF2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_MF2_MASK);
+ case RISCV::PseudoVFWCVT_RM_X_F_V_MF4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_MF4_MASK);
+
+ case RISCV::PseudoVFWCVT_RM_F_XU_V_M1_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_M1_MASK);
+ case RISCV::PseudoVFWCVT_RM_F_XU_V_M2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_M2_MASK);
+ case RISCV::PseudoVFWCVT_RM_F_XU_V_M4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_M4_MASK);
+ case RISCV::PseudoVFWCVT_RM_F_XU_V_MF2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_MF2_MASK);
+ case RISCV::PseudoVFWCVT_RM_F_XU_V_MF4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_MF4_MASK);
+ case RISCV::PseudoVFWCVT_RM_F_XU_V_MF8_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_MF8_MASK);
+
+ case RISCV::PseudoVFWCVT_RM_F_X_V_M1_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_M1_MASK);
+ case RISCV::PseudoVFWCVT_RM_F_X_V_M2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_M2_MASK);
+ case RISCV::PseudoVFWCVT_RM_F_X_V_M4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_M4_MASK);
+ case RISCV::PseudoVFWCVT_RM_F_X_V_MF2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_MF2_MASK);
+ case RISCV::PseudoVFWCVT_RM_F_X_V_MF4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_MF4_MASK);
+ case RISCV::PseudoVFWCVT_RM_F_X_V_MF8_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_MF8_MASK);
+
+ // =========================================================================
+ // VFNCVT
+ // =========================================================================
+
+ case RISCV::PseudoVFNCVT_RM_XU_F_W_M1_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_M1_MASK);
+ case RISCV::PseudoVFNCVT_RM_XU_F_W_M2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_M2_MASK);
+ case RISCV::PseudoVFNCVT_RM_XU_F_W_M4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_M4_MASK);
+ case RISCV::PseudoVFNCVT_RM_XU_F_W_MF2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_MF2_MASK);
+ case RISCV::PseudoVFNCVT_RM_XU_F_W_MF4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_MF4_MASK);
+ case RISCV::PseudoVFNCVT_RM_XU_F_W_MF8_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_XU_F_W_MF8_MASK);
+
+ case RISCV::PseudoVFNCVT_RM_X_F_W_M1_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_M1_MASK);
+ case RISCV::PseudoVFNCVT_RM_X_F_W_M2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_M2_MASK);
+ case RISCV::PseudoVFNCVT_RM_X_F_W_M4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_M4_MASK);
+ case RISCV::PseudoVFNCVT_RM_X_F_W_MF2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_MF2_MASK);
+ case RISCV::PseudoVFNCVT_RM_X_F_W_MF4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_MF4_MASK);
+ case RISCV::PseudoVFNCVT_RM_X_F_W_MF8_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_MF8_MASK);
+
+ case RISCV::PseudoVFNCVT_RM_F_XU_W_M1_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_M1_MASK);
+ case RISCV::PseudoVFNCVT_RM_F_XU_W_M2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_M2_MASK);
+ case RISCV::PseudoVFNCVT_RM_F_XU_W_M4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_M4_MASK);
+ case RISCV::PseudoVFNCVT_RM_F_XU_W_MF2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_MF2_MASK);
+ case RISCV::PseudoVFNCVT_RM_F_XU_W_MF4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_MF4_MASK);
+
+ case RISCV::PseudoVFNCVT_RM_F_X_W_M1_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_M1_MASK);
+ case RISCV::PseudoVFNCVT_RM_F_X_W_M2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_M2_MASK);
+ case RISCV::PseudoVFNCVT_RM_F_X_W_M4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_M4_MASK);
+ case RISCV::PseudoVFNCVT_RM_F_X_W_MF2_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_MF2_MASK);
+ case RISCV::PseudoVFNCVT_RM_F_X_W_MF4_MASK:
+ return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_MF4_MASK);
+
+ case RISCV::PseudoVFROUND_NOEXCEPT_V_M1_MASK:
+ return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M1_MASK,
+ RISCV::PseudoVFCVT_F_X_V_M1_MASK);
+ case RISCV::PseudoVFROUND_NOEXCEPT_V_M2_MASK:
+ return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M2_MASK,
+ RISCV::PseudoVFCVT_F_X_V_M2_MASK);
+ case RISCV::PseudoVFROUND_NOEXCEPT_V_M4_MASK:
+ return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M4_MASK,
+ RISCV::PseudoVFCVT_F_X_V_M4_MASK);
+ case RISCV::PseudoVFROUND_NOEXCEPT_V_M8_MASK:
+ return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M8_MASK,
+ RISCV::PseudoVFCVT_F_X_V_M8_MASK);
+ case RISCV::PseudoVFROUND_NOEXCEPT_V_MF2_MASK:
+ return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF2_MASK,
+ RISCV::PseudoVFCVT_F_X_V_MF2_MASK);
+ case RISCV::PseudoVFROUND_NOEXCEPT_V_MF4_MASK:
+ return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF4_MASK,
+ RISCV::PseudoVFCVT_F_X_V_MF4_MASK);
+ case RISCV::PseudoFROUND_H:
+ case RISCV::PseudoFROUND_S:
+ case RISCV::PseudoFROUND_D:
+ return emitFROUND(MI, BB, Subtarget);
+ }
+}
+
+void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
+ SDNode *Node) const {
+ // Add FRM dependency to any instructions with dynamic rounding mode.
+ unsigned Opc = MI.getOpcode();
+ auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
+ if (Idx < 0)
+ return;
+ if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
+ return;
+ // If the instruction already reads FRM, don't add another read.
+ if (MI.readsRegister(RISCV::FRM))
+ return;
+ MI.addOperand(
+ MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
+}
+
+// Calling Convention Implementation.
+// The expectations for frontend ABI lowering vary from target to target.
+// Ideally, an LLVM frontend would be able to avoid worrying about many ABI
+// details, but this is a longer term goal. For now, we simply try to keep the
+// role of the frontend as simple and well-defined as possible. The rules can
+// be summarised as:
+// * Never split up large scalar arguments. We handle them here.
+// * If a hardfloat calling convention is being used, and the struct may be
+// passed in a pair of registers (fp+fp, int+fp), and both registers are
+// available, then pass as two separate arguments. If either the GPRs or FPRs
+// are exhausted, then pass according to the rule below.
+// * If a struct could never be passed in registers or directly in a stack
+// slot (as it is larger than 2*XLEN and the floating point rules don't
+// apply), then pass it using a pointer with the byval attribute.
+// * If a struct is less than 2*XLEN, then coerce to either a two-element
+// word-sized array or a 2*XLEN scalar (depending on alignment).
+// * The frontend can determine whether a struct is returned by reference or
+// not based on its size and fields. If it will be returned by reference, the
+// frontend must modify the prototype so a pointer with the sret annotation is
+// passed as the first argument. This is not necessary for large scalar
+// returns.
+// * Struct return values and varargs should be coerced to structs containing
+// register-size fields in the same situations they would be for fixed
+// arguments.
+
+static const MCPhysReg ArgGPRs[] = {
+ RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
+ RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
+};
+static const MCPhysReg ArgFPR16s[] = {
+ RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
+ RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
+};
+static const MCPhysReg ArgFPR32s[] = {
+ RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
+ RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
+};
+static const MCPhysReg ArgFPR64s[] = {
+ RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
+ RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
+};
+// This is an interim calling convention and it may be changed in the future.
+static const MCPhysReg ArgVRs[] = {
+ RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
+ RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
+ RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
+static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2,
+ RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
+ RISCV::V20M2, RISCV::V22M2};
+static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
+ RISCV::V20M4};
+static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
+
+// Pass a 2*XLEN argument that has been split into two XLEN values through
+// registers or the stack as necessary.
+static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
+ ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
+ MVT ValVT2, MVT LocVT2,
+ ISD::ArgFlagsTy ArgFlags2) {
+ unsigned XLenInBytes = XLen / 8;
+ if (Register Reg = State.AllocateReg(ArgGPRs)) {
+ // At least one half can be passed via register.
+ State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
+ VA1.getLocVT(), CCValAssign::Full));
+ } else {
+ // Both halves must be passed on the stack, with proper alignment.
+ Align StackAlign =
+ std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
+ State.addLoc(
+ CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
+ State.AllocateStack(XLenInBytes, StackAlign),
+ VA1.getLocVT(), CCValAssign::Full));
+ State.addLoc(CCValAssign::getMem(
+ ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
+ LocVT2, CCValAssign::Full));
+ return false;
+ }
+
+ if (Register Reg = State.AllocateReg(ArgGPRs)) {
+ // The second half can also be passed via register.
+ State.addLoc(
+ CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
+ } else {
+ // The second half is passed via the stack, without additional alignment.
+ State.addLoc(CCValAssign::getMem(
+ ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
+ LocVT2, CCValAssign::Full));
+ }
+
+ return false;
+}
+
+static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
+ std::optional<unsigned> FirstMaskArgument,
+ CCState &State, const RISCVTargetLowering &TLI) {
+ const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
+ if (RC == &RISCV::VRRegClass) {
+ // Assign the first mask argument to V0.
+ // This is an interim calling convention and it may be changed in the
+ // future.
+ if (FirstMaskArgument && ValNo == *FirstMaskArgument)
+ return State.AllocateReg(RISCV::V0);
+ return State.AllocateReg(ArgVRs);
+ }
+ if (RC == &RISCV::VRM2RegClass)
+ return State.AllocateReg(ArgVRM2s);
+ if (RC == &RISCV::VRM4RegClass)
+ return State.AllocateReg(ArgVRM4s);
+ if (RC == &RISCV::VRM8RegClass)
+ return State.AllocateReg(ArgVRM8s);
+ llvm_unreachable("Unhandled register class for ValueType");
+}
+
+// Implements the RISC-V calling convention. Returns true upon failure.
+static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
+ MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
+ bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
+ std::optional<unsigned> FirstMaskArgument) {
+ unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
+ assert(XLen == 32 || XLen == 64);
+ MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
+
+ // Static chain parameter must not be passed in normal argument registers,
+ // so we assign t2 for it as done in GCC's __builtin_call_with_static_chain
+ if (ArgFlags.isNest()) {
+ if (unsigned Reg = State.AllocateReg(RISCV::X7)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+ }
+
+ // Any return value split in to more than two values can't be returned
+ // directly. Vectors are returned via the available vector registers.
+ if (!LocVT.isVector() && IsRet && ValNo > 1)
+ return true;
+
+ // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
+ // variadic argument, or if no F16/F32 argument registers are available.
+ bool UseGPRForF16_F32 = true;
+ // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
+ // variadic argument, or if no F64 argument registers are available.
+ bool UseGPRForF64 = true;
+
+ switch (ABI) {
+ default:
+ llvm_unreachable("Unexpected ABI");
+ case RISCVABI::ABI_ILP32:
+ case RISCVABI::ABI_LP64:
+ break;
+ case RISCVABI::ABI_ILP32F:
+ case RISCVABI::ABI_LP64F:
+ UseGPRForF16_F32 = !IsFixed;
+ break;
+ case RISCVABI::ABI_ILP32D:
+ case RISCVABI::ABI_LP64D:
+ UseGPRForF16_F32 = !IsFixed;
+ UseGPRForF64 = !IsFixed;
+ break;
+ }
+
+ // FPR16, FPR32, and FPR64 alias each other.
+ if (State.getFirstUnallocated(ArgFPR32s) == std::size(ArgFPR32s)) {
+ UseGPRForF16_F32 = true;
+ UseGPRForF64 = true;
+ }
+
+ // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
+ // similar local variables rather than directly checking against the target
+ // ABI.
+
+ if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
+ LocVT = XLenVT;
+ LocInfo = CCValAssign::BCvt;
+ } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
+ LocVT = MVT::i64;
+ LocInfo = CCValAssign::BCvt;
+ }
+
+ // If this is a variadic argument, the RISC-V calling convention requires
+ // that it is assigned an 'even' or 'aligned' register if it has 8-byte
+ // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
+ // be used regardless of whether the original argument was split during
+ // legalisation or not. The argument will not be passed by registers if the
+ // original type is larger than 2*XLEN, so the register alignment rule does
+ // not apply.
+ unsigned TwoXLenInBytes = (2 * XLen) / 8;
+ if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
+ DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
+ unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
+ // Skip 'odd' register if necessary.
+ if (RegIdx != std::size(ArgGPRs) && RegIdx % 2 == 1)
+ State.AllocateReg(ArgGPRs);
+ }
+
+ SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
+ SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
+ State.getPendingArgFlags();
+
+ assert(PendingLocs.size() == PendingArgFlags.size() &&
+ "PendingLocs and PendingArgFlags out of sync");
+
+ // Handle passing f64 on RV32D with a soft float ABI or when floating point
+ // registers are exhausted.
+ if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
+ assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
+ "Can't lower f64 if it is split");
+ // Depending on available argument GPRS, f64 may be passed in a pair of
+ // GPRs, split between a GPR and the stack, or passed completely on the
+ // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
+ // cases.
+ Register Reg = State.AllocateReg(ArgGPRs);
+ LocVT = MVT::i32;
+ if (!Reg) {
+ unsigned StackOffset = State.AllocateStack(8, Align(8));
+ State.addLoc(
+ CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
+ return false;
+ }
+ if (!State.AllocateReg(ArgGPRs))
+ State.AllocateStack(4, Align(4));
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+
+ // Fixed-length vectors are located in the corresponding scalable-vector
+ // container types.
+ if (ValVT.isFixedLengthVector())
+ LocVT = TLI.getContainerForFixedLengthVector(LocVT);
+
+ // Split arguments might be passed indirectly, so keep track of the pending
+ // values. Split vectors are passed via a mix of registers and indirectly, so
+ // treat them as we would any other argument.
+ if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
+ LocVT = XLenVT;
+ LocInfo = CCValAssign::Indirect;
+ PendingLocs.push_back(
+ CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
+ PendingArgFlags.push_back(ArgFlags);
+ if (!ArgFlags.isSplitEnd()) {
+ return false;
+ }
+ }
+
+ // If the split argument only had two elements, it should be passed directly
+ // in registers or on the stack.
+ if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
+ PendingLocs.size() <= 2) {
+ assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
+ // Apply the normal calling convention rules to the first half of the
+ // split argument.
+ CCValAssign VA = PendingLocs[0];
+ ISD::ArgFlagsTy AF = PendingArgFlags[0];
+ PendingLocs.clear();
+ PendingArgFlags.clear();
+ return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
+ ArgFlags);
+ }
+
+ // Allocate to a register if possible, or else a stack slot.
+ Register Reg;
+ unsigned StoreSizeBytes = XLen / 8;
+ Align StackAlign = Align(XLen / 8);
+
+ if (ValVT == MVT::f16 && !UseGPRForF16_F32)
+ Reg = State.AllocateReg(ArgFPR16s);
+ else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
+ Reg = State.AllocateReg(ArgFPR32s);
+ else if (ValVT == MVT::f64 && !UseGPRForF64)
+ Reg = State.AllocateReg(ArgFPR64s);
+ else if (ValVT.isVector()) {
+ Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
+ if (!Reg) {
+ // For return values, the vector must be passed fully via registers or
+ // via the stack.
+ // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
+ // but we're using all of them.
+ if (IsRet)
+ return true;
+ // Try using a GPR to pass the address
+ if ((Reg = State.AllocateReg(ArgGPRs))) {
+ LocVT = XLenVT;
+ LocInfo = CCValAssign::Indirect;
+ } else if (ValVT.isScalableVector()) {
+ LocVT = XLenVT;
+ LocInfo = CCValAssign::Indirect;
+ } else {
+ // Pass fixed-length vectors on the stack.
+ LocVT = ValVT;
+ StoreSizeBytes = ValVT.getStoreSize();
+ // Align vectors to their element sizes, being careful for vXi1
+ // vectors.
+ StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
+ }
+ }
+ } else {
+ Reg = State.AllocateReg(ArgGPRs);
+ }
+
+ unsigned StackOffset =
+ Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
+
+ // If we reach this point and PendingLocs is non-empty, we must be at the
+ // end of a split argument that must be passed indirectly.
+ if (!PendingLocs.empty()) {
+ assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
+ assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
+
+ for (auto &It : PendingLocs) {
+ if (Reg)
+ It.convertToReg(Reg);
+ else
+ It.convertToMem(StackOffset);
+ State.addLoc(It);
+ }
+ PendingLocs.clear();
+ PendingArgFlags.clear();
+ return false;
+ }
+
+ assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
+ (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
+ "Expected an XLenVT or vector types at this stage");
+
+ if (Reg) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+
+ // When a floating-point value is passed on the stack, no bit-conversion is
+ // needed.
+ if (ValVT.isFloatingPoint()) {
+ LocVT = ValVT;
+ LocInfo = CCValAssign::Full;
+ }
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
+ return false;
+}
+
+template <typename ArgTy>
+static std::optional<unsigned> preAssignMask(const ArgTy &Args) {
+ for (const auto &ArgIdx : enumerate(Args)) {
+ MVT ArgVT = ArgIdx.value().VT;
+ if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
+ return ArgIdx.index();
+ }
+ return std::nullopt;
+}
+
+void RISCVTargetLowering::analyzeInputArgs(
+ MachineFunction &MF, CCState &CCInfo,
+ const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
+ RISCVCCAssignFn Fn) const {
+ unsigned NumArgs = Ins.size();
+ FunctionType *FType = MF.getFunction().getFunctionType();
+
+ std::optional<unsigned> FirstMaskArgument;
+ if (Subtarget.hasVInstructions())
+ FirstMaskArgument = preAssignMask(Ins);
+
+ for (unsigned i = 0; i != NumArgs; ++i) {
+ MVT ArgVT = Ins[i].VT;
+ ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
+
+ Type *ArgTy = nullptr;
+ if (IsRet)
+ ArgTy = FType->getReturnType();
+ else if (Ins[i].isOrigArg())
+ ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
+
+ RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
+ if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
+ ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
+ FirstMaskArgument)) {
+ LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
+ << EVT(ArgVT).getEVTString() << '\n');
+ llvm_unreachable(nullptr);
+ }
+ }
+}
+
+void RISCVTargetLowering::analyzeOutputArgs(
+ MachineFunction &MF, CCState &CCInfo,
+ const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
+ CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
+ unsigned NumArgs = Outs.size();
+
+ std::optional<unsigned> FirstMaskArgument;
+ if (Subtarget.hasVInstructions())
+ FirstMaskArgument = preAssignMask(Outs);
+
+ for (unsigned i = 0; i != NumArgs; i++) {
+ MVT ArgVT = Outs[i].VT;
+ ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
+ Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
+
+ RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
+ if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
+ ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
+ FirstMaskArgument)) {
+ LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
+ << EVT(ArgVT).getEVTString() << "\n");
+ llvm_unreachable(nullptr);
+ }
+ }
+}
+
+// Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
+// values.
+static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
+ const CCValAssign &VA, const SDLoc &DL,
+ const RISCVSubtarget &Subtarget) {
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unexpected CCValAssign::LocInfo");
+ case CCValAssign::Full:
+ if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
+ Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
+ break;
+ case CCValAssign::BCvt:
+ if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
+ Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
+ else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
+ Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
+ else
+ Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
+ break;
+ }
+ return Val;
+}
+
+// The caller is responsible for loading the full value if the argument is
+// passed with CCValAssign::Indirect.
+static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
+ const CCValAssign &VA, const SDLoc &DL,
+ const ISD::InputArg &In,
+ const RISCVTargetLowering &TLI) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ EVT LocVT = VA.getLocVT();
+ SDValue Val;
+ const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
+ Register VReg = RegInfo.createVirtualRegister(RC);
+ RegInfo.addLiveIn(VA.getLocReg(), VReg);
+ Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
+
+ // If input is sign extended from 32 bits, note it for the SExtWRemoval pass.
+ if (In.isOrigArg()) {
+ Argument *OrigArg = MF.getFunction().getArg(In.getOrigArgIndex());
+ if (OrigArg->getType()->isIntegerTy()) {
+ unsigned BitWidth = OrigArg->getType()->getIntegerBitWidth();
+ // An input zero extended from i31 can also be considered sign extended.
+ if ((BitWidth <= 32 && In.Flags.isSExt()) ||
+ (BitWidth < 32 && In.Flags.isZExt())) {
+ RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
+ RVFI->addSExt32Register(VReg);
+ }
+ }
+ }
+
+ if (VA.getLocInfo() == CCValAssign::Indirect)
+ return Val;
+
+ return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
+}
+
+static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
+ const CCValAssign &VA, const SDLoc &DL,
+ const RISCVSubtarget &Subtarget) {
+ EVT LocVT = VA.getLocVT();
+
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unexpected CCValAssign::LocInfo");
+ case CCValAssign::Full:
+ if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
+ Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
+ break;
+ case CCValAssign::BCvt:
+ if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
+ Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
+ else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
+ Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
+ else
+ Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
+ break;
+ }
+ return Val;
+}
+
+// The caller is responsible for loading the full value if the argument is
+// passed with CCValAssign::Indirect.
+static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
+ const CCValAssign &VA, const SDLoc &DL) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ EVT LocVT = VA.getLocVT();
+ EVT ValVT = VA.getValVT();
+ EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
+ if (ValVT.isScalableVector()) {
+ // When the value is a scalable vector, we save the pointer which points to
+ // the scalable vector value in the stack. The ValVT will be the pointer
+ // type, instead of the scalable vector type.
+ ValVT = LocVT;
+ }
+ int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
+ /*IsImmutable=*/true);
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ SDValue Val;
+
+ ISD::LoadExtType ExtType;
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unexpected CCValAssign::LocInfo");
+ case CCValAssign::Full:
+ case CCValAssign::Indirect:
+ case CCValAssign::BCvt:
+ ExtType = ISD::NON_EXTLOAD;
+ break;
+ }
+ Val = DAG.getExtLoad(
+ ExtType, DL, LocVT, Chain, FIN,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
+ return Val;
+}
+
+static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
+ const CCValAssign &VA, const SDLoc &DL) {
+ assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
+ "Unexpected VA");
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+
+ if (VA.isMemLoc()) {
+ // f64 is passed on the stack.
+ int FI =
+ MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
+ SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
+ return DAG.getLoad(MVT::f64, DL, Chain, FIN,
+ MachinePointerInfo::getFixedStack(MF, FI));
+ }
+
+ assert(VA.isRegLoc() && "Expected register VA assignment");
+
+ Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
+ RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
+ SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
+ SDValue Hi;
+ if (VA.getLocReg() == RISCV::X17) {
+ // Second half of f64 is passed on the stack.
+ int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
+ SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
+ Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
+ MachinePointerInfo::getFixedStack(MF, FI));
+ } else {
+ // Second half of f64 is passed in another GPR.
+ Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
+ RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
+ Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
+ }
+ return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
+}
+
+// FastCC has less than 1% performance improvement for some particular
+// benchmark. But theoretically, it may has benenfit for some cases.
+static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
+ unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State,
+ bool IsFixed, bool IsRet, Type *OrigTy,
+ const RISCVTargetLowering &TLI,
+ std::optional<unsigned> FirstMaskArgument) {
+
+ // X5 and X6 might be used for save-restore libcall.
+ static const MCPhysReg GPRList[] = {
+ RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
+ RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28,
+ RISCV::X29, RISCV::X30, RISCV::X31};
+
+ if (LocVT == MVT::i32 || LocVT == MVT::i64) {
+ if (unsigned Reg = State.AllocateReg(GPRList)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+ }
+
+ if (LocVT == MVT::f16) {
+ static const MCPhysReg FPR16List[] = {
+ RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
+ RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H,
+ RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H,
+ RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
+ if (unsigned Reg = State.AllocateReg(FPR16List)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+ }
+
+ if (LocVT == MVT::f32) {
+ static const MCPhysReg FPR32List[] = {
+ RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
+ RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F,
+ RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F,
+ RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
+ if (unsigned Reg = State.AllocateReg(FPR32List)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+ }
+
+ if (LocVT == MVT::f64) {
+ static const MCPhysReg FPR64List[] = {
+ RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
+ RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D,
+ RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D,
+ RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
+ if (unsigned Reg = State.AllocateReg(FPR64List)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+ }
+
+ if (LocVT == MVT::i32 || LocVT == MVT::f32) {
+ unsigned Offset4 = State.AllocateStack(4, Align(4));
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
+ return false;
+ }
+
+ if (LocVT == MVT::i64 || LocVT == MVT::f64) {
+ unsigned Offset5 = State.AllocateStack(8, Align(8));
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
+ return false;
+ }
+
+ if (LocVT.isVector()) {
+ if (unsigned Reg =
+ allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
+ // Fixed-length vectors are located in the corresponding scalable-vector
+ // container types.
+ if (ValVT.isFixedLengthVector())
+ LocVT = TLI.getContainerForFixedLengthVector(LocVT);
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ } else {
+ // Try and pass the address via a "fast" GPR.
+ if (unsigned GPRReg = State.AllocateReg(GPRList)) {
+ LocInfo = CCValAssign::Indirect;
+ LocVT = TLI.getSubtarget().getXLenVT();
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
+ } else if (ValVT.isFixedLengthVector()) {
+ auto StackAlign =
+ MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
+ unsigned StackOffset =
+ State.AllocateStack(ValVT.getStoreSize(), StackAlign);
+ State.addLoc(
+ CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
+ } else {
+ // Can't pass scalable vectors on the stack.
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+ return true; // CC didn't match.
+}
+
+static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+
+ if (ArgFlags.isNest()) {
+ report_fatal_error(
+ "Attribute 'nest' is not supported in GHC calling convention");
+ }
+
+ if (LocVT == MVT::i32 || LocVT == MVT::i64) {
+ // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
+ // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
+ static const MCPhysReg GPRList[] = {
+ RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
+ RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
+ if (unsigned Reg = State.AllocateReg(GPRList)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+ }
+
+ if (LocVT == MVT::f32) {
+ // Pass in STG registers: F1, ..., F6
+ // fs0 ... fs5
+ static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
+ RISCV::F18_F, RISCV::F19_F,
+ RISCV::F20_F, RISCV::F21_F};
+ if (unsigned Reg = State.AllocateReg(FPR32List)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+ }
+
+ if (LocVT == MVT::f64) {
+ // Pass in STG registers: D1, ..., D6
+ // fs6 ... fs11
+ static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
+ RISCV::F24_D, RISCV::F25_D,
+ RISCV::F26_D, RISCV::F27_D};
+ if (unsigned Reg = State.AllocateReg(FPR64List)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+ }
+
+ report_fatal_error("No registers left in GHC calling convention");
+ return true;
+}
+
+// Transform physical registers into virtual registers.
+SDValue RISCVTargetLowering::LowerFormalArguments(
+ SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
+ SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
+
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ switch (CallConv) {
+ default:
+ report_fatal_error("Unsupported calling convention");
+ case CallingConv::C:
+ case CallingConv::Fast:
+ break;
+ case CallingConv::GHC:
+ if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
+ !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
+ report_fatal_error(
+ "GHC calling convention requires the F and D instruction set extensions");
+ }
+
+ const Function &Func = MF.getFunction();
+ if (Func.hasFnAttribute("interrupt")) {
+ if (!Func.arg_empty())
+ report_fatal_error(
+ "Functions with the interrupt attribute cannot have arguments!");
+
+ StringRef Kind =
+ MF.getFunction().getFnAttribute("interrupt").getValueAsString();
+
+ if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
+ report_fatal_error(
+ "Function interrupt attribute argument not supported!");
+ }
+
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+ MVT XLenVT = Subtarget.getXLenVT();
+ unsigned XLenInBytes = Subtarget.getXLen() / 8;
+ // Used with vargs to acumulate store chains.
+ std::vector<SDValue> OutChains;
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
+
+ if (CallConv == CallingConv::GHC)
+ CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
+ else
+ analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
+ CallConv == CallingConv::Fast ? CC_RISCV_FastCC
+ : CC_RISCV);
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue ArgValue;
+ // Passing f64 on RV32D with a soft float ABI must be handled as a special
+ // case.
+ if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
+ ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
+ else if (VA.isRegLoc())
+ ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, Ins[i], *this);
+ else
+ ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
+
+ if (VA.getLocInfo() == CCValAssign::Indirect) {
+ // If the original argument was split and passed by reference (e.g. i128
+ // on RV32), we need to load all parts of it here (using the same
+ // address). Vectors may be partly split to registers and partly to the
+ // stack, in which case the base address is partly offset and subsequent
+ // stores are relative to that.
+ InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
+ MachinePointerInfo()));
+ unsigned ArgIndex = Ins[i].OrigArgIndex;
+ unsigned ArgPartOffset = Ins[i].PartOffset;
+ assert(VA.getValVT().isVector() || ArgPartOffset == 0);
+ while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
+ CCValAssign &PartVA = ArgLocs[i + 1];
+ unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
+ SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
+ if (PartVA.getValVT().isScalableVector())
+ Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
+ SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
+ InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
+ MachinePointerInfo()));
+ ++i;
+ }
+ continue;
+ }
+ InVals.push_back(ArgValue);
+ }
+
+ if (any_of(ArgLocs,
+ [](CCValAssign &VA) { return VA.getLocVT().isScalableVector(); }))
+ MF.getInfo<RISCVMachineFunctionInfo>()->setIsVectorCall();
+
+ if (IsVarArg) {
+ ArrayRef<MCPhysReg> ArgRegs = ArrayRef(ArgGPRs);
+ unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
+ const TargetRegisterClass *RC = &RISCV::GPRRegClass;
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
+
+ // Offset of the first variable argument from stack pointer, and size of
+ // the vararg save area. For now, the varargs save area is either zero or
+ // large enough to hold a0-a7.
+ int VaArgOffset, VarArgsSaveSize;
+
+ // If all registers are allocated, then all varargs must be passed on the
+ // stack and we don't need to save any argregs.
+ if (ArgRegs.size() == Idx) {
+ VaArgOffset = CCInfo.getNextStackOffset();
+ VarArgsSaveSize = 0;
+ } else {
+ VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
+ VaArgOffset = -VarArgsSaveSize;
+ }
+
+ // Record the frame index of the first variable argument
+ // which is a value necessary to VASTART.
+ int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
+ RVFI->setVarArgsFrameIndex(FI);
+
+ // If saving an odd number of registers then create an extra stack slot to
+ // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
+ // offsets to even-numbered registered remain 2*XLEN-aligned.
+ if (Idx % 2) {
+ MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
+ VarArgsSaveSize += XLenInBytes;
+ }
+
+ // Copy the integer registers that may have been used for passing varargs
+ // to the vararg save area.
+ for (unsigned I = Idx; I < ArgRegs.size();
+ ++I, VaArgOffset += XLenInBytes) {
+ const Register Reg = RegInfo.createVirtualRegister(RC);
+ RegInfo.addLiveIn(ArgRegs[I], Reg);
+ SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
+ FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
+ SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
+ SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
+ MachinePointerInfo::getFixedStack(MF, FI));
+ cast<StoreSDNode>(Store.getNode())
+ ->getMemOperand()
+ ->setValue((Value *)nullptr);
+ OutChains.push_back(Store);
+ }
+ RVFI->setVarArgsSaveSize(VarArgsSaveSize);
+ }
+
+ // All stores are grouped in one node to allow the matching between
+ // the size of Ins and InVals. This only happens for vararg functions.
+ if (!OutChains.empty()) {
+ OutChains.push_back(Chain);
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
+ }
+
+ return Chain;
+}
+
+/// isEligibleForTailCallOptimization - Check whether the call is eligible
+/// for tail call optimization.
+/// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
+bool RISCVTargetLowering::isEligibleForTailCallOptimization(
+ CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
+ const SmallVector<CCValAssign, 16> &ArgLocs) const {
+
+ auto &Callee = CLI.Callee;
+ auto CalleeCC = CLI.CallConv;
+ auto &Outs = CLI.Outs;
+ auto &Caller = MF.getFunction();
+ auto CallerCC = Caller.getCallingConv();
+
+ // Exception-handling functions need a special set of instructions to
+ // indicate a return to the hardware. Tail-calling another function would
+ // probably break this.
+ // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
+ // should be expanded as new function attributes are introduced.
+ if (Caller.hasFnAttribute("interrupt"))
+ return false;
+
+ // Do not tail call opt if the stack is used to pass parameters.
+ if (CCInfo.getNextStackOffset() != 0)
+ return false;
+
+ // Do not tail call opt if any parameters need to be passed indirectly.
+ // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
+ // passed indirectly. So the address of the value will be passed in a
+ // register, or if not available, then the address is put on the stack. In
+ // order to pass indirectly, space on the stack often needs to be allocated
+ // in order to store the value. In this case the CCInfo.getNextStackOffset()
+ // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
+ // are passed CCValAssign::Indirect.
+ for (auto &VA : ArgLocs)
+ if (VA.getLocInfo() == CCValAssign::Indirect)
+ return false;
+
+ // Do not tail call opt if either caller or callee uses struct return
+ // semantics.
+ auto IsCallerStructRet = Caller.hasStructRetAttr();
+ auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
+ if (IsCallerStructRet || IsCalleeStructRet)
+ return false;
+
+ // Externally-defined functions with weak linkage should not be
+ // tail-called. The behaviour of branch instructions in this situation (as
+ // used for tail calls) is implementation-defined, so we cannot rely on the
+ // linker replacing the tail call with a return.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = G->getGlobal();
+ if (GV->hasExternalWeakLinkage())
+ return false;
+ }
+
+ // The callee has to preserve all registers the caller needs to preserve.
+ const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
+ const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
+ if (CalleeCC != CallerCC) {
+ const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
+ if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
+ return false;
+ }
+
+ // Byval parameters hand the function a pointer directly into the stack area
+ // we want to reuse during a tail call. Working around this *is* possible
+ // but less efficient and uglier in LowerCall.
+ for (auto &Arg : Outs)
+ if (Arg.Flags.isByVal())
+ return false;
+
+ return true;
+}
+
+static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
+ return DAG.getDataLayout().getPrefTypeAlign(
+ VT.getTypeForEVT(*DAG.getContext()));
+}
+
+// Lower a call to a callseq_start + CALL + callseq_end chain, and add input
+// and output parameter nodes.
+SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &DL = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &IsTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool IsVarArg = CLI.IsVarArg;
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+ MVT XLenVT = Subtarget.getXLenVT();
+
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // Analyze the operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
+
+ if (CallConv == CallingConv::GHC)
+ ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
+ else
+ analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
+ CallConv == CallingConv::Fast ? CC_RISCV_FastCC
+ : CC_RISCV);
+
+ // Check if it's really possible to do a tail call.
+ if (IsTailCall)
+ IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
+
+ if (IsTailCall)
+ ++NumTailCalls;
+ else if (CLI.CB && CLI.CB->isMustTailCall())
+ report_fatal_error("failed to perform tail call elimination on a call "
+ "site marked musttail");
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = ArgCCInfo.getNextStackOffset();
+
+ // Create local copies for byval args
+ SmallVector<SDValue, 8> ByValArgs;
+ for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ if (!Flags.isByVal())
+ continue;
+
+ SDValue Arg = OutVals[i];
+ unsigned Size = Flags.getByValSize();
+ Align Alignment = Flags.getNonZeroByValAlign();
+
+ int FI =
+ MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
+ SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
+ SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
+
+ Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
+ /*IsVolatile=*/false,
+ /*AlwaysInline=*/false, IsTailCall,
+ MachinePointerInfo(), MachinePointerInfo());
+ ByValArgs.push_back(FIPtr);
+ }
+
+ if (!IsTailCall)
+ Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
+
+ // Copy argument values to their designated locations.
+ SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+ SDValue StackPtr;
+ for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue ArgValue = OutVals[i];
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+
+ // Handle passing f64 on RV32D with a soft float ABI as a special case.
+ bool IsF64OnRV32DSoftABI =
+ VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
+ if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
+ SDValue SplitF64 = DAG.getNode(
+ RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
+ SDValue Lo = SplitF64.getValue(0);
+ SDValue Hi = SplitF64.getValue(1);
+
+ Register RegLo = VA.getLocReg();
+ RegsToPass.push_back(std::make_pair(RegLo, Lo));
+
+ if (RegLo == RISCV::X17) {
+ // Second half of f64 is passed on the stack.
+ // Work out the address of the stack slot.
+ if (!StackPtr.getNode())
+ StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
+ // Emit the store.
+ MemOpChains.push_back(
+ DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
+ } else {
+ // Second half of f64 is passed in another GPR.
+ assert(RegLo < RISCV::X31 && "Invalid register pair");
+ Register RegHigh = RegLo + 1;
+ RegsToPass.push_back(std::make_pair(RegHigh, Hi));
+ }
+ continue;
+ }
+
+ // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
+ // as any other MemLoc.
+
+ // Promote the value if needed.
+ // For now, only handle fully promoted and indirect arguments.
+ if (VA.getLocInfo() == CCValAssign::Indirect) {
+ // Store the argument in a stack slot and pass its address.
+ Align StackAlign =
+ std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
+ getPrefTypeAlign(ArgValue.getValueType(), DAG));
+ TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
+ // If the original argument was split (e.g. i128), we need
+ // to store the required parts of it here (and pass just one address).
+ // Vectors may be partly split to registers and partly to the stack, in
+ // which case the base address is partly offset and subsequent stores are
+ // relative to that.
+ unsigned ArgIndex = Outs[i].OrigArgIndex;
+ unsigned ArgPartOffset = Outs[i].PartOffset;
+ assert(VA.getValVT().isVector() || ArgPartOffset == 0);
+ // Calculate the total size to store. We don't have access to what we're
+ // actually storing other than performing the loop and collecting the
+ // info.
+ SmallVector<std::pair<SDValue, SDValue>> Parts;
+ while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
+ SDValue PartValue = OutVals[i + 1];
+ unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
+ SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
+ EVT PartVT = PartValue.getValueType();
+ if (PartVT.isScalableVector())
+ Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
+ StoredSize += PartVT.getStoreSize();
+ StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
+ Parts.push_back(std::make_pair(PartValue, Offset));
+ ++i;
+ }
+ SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
+ int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
+ MemOpChains.push_back(
+ DAG.getStore(Chain, DL, ArgValue, SpillSlot,
+ MachinePointerInfo::getFixedStack(MF, FI)));
+ for (const auto &Part : Parts) {
+ SDValue PartValue = Part.first;
+ SDValue PartOffset = Part.second;
+ SDValue Address =
+ DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
+ MemOpChains.push_back(
+ DAG.getStore(Chain, DL, PartValue, Address,
+ MachinePointerInfo::getFixedStack(MF, FI)));
+ }
+ ArgValue = SpillSlot;
+ } else {
+ ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
+ }
+
+ // Use local copy if it is a byval arg.
+ if (Flags.isByVal())
+ ArgValue = ByValArgs[j++];
+
+ if (VA.isRegLoc()) {
+ // Queue up the argument copies and emit them at the end.
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
+ } else {
+ assert(VA.isMemLoc() && "Argument not register or memory");
+ assert(!IsTailCall && "Tail call not allowed if stack is used "
+ "for passing parameters");
+
+ // Work out the address of the stack slot.
+ if (!StackPtr.getNode())
+ StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
+ SDValue Address =
+ DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
+ DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
+
+ // Emit the store.
+ MemOpChains.push_back(
+ DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
+ }
+ }
+
+ // Join the stores, which are independent of one another.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
+
+ SDValue Glue;
+
+ // Build a sequence of copy-to-reg nodes, chained and glued together.
+ for (auto &Reg : RegsToPass) {
+ Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
+ Glue = Chain.getValue(1);
+ }
+
+ // Validate that none of the argument registers have been marked as
+ // reserved, if so report an error. Do the same for the return address if this
+ // is not a tailcall.
+ validateCCReservedRegs(RegsToPass, MF);
+ if (!IsTailCall &&
+ MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
+ MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
+ MF.getFunction(),
+ "Return address register required, but has been reserved."});
+
+ // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
+ // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
+ // split it and then direct call can be matched by PseudoCALL.
+ if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = S->getGlobal();
+
+ unsigned OpFlags = RISCVII::MO_CALL;
+ if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
+ OpFlags = RISCVII::MO_PLT;
+
+ Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
+ } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ unsigned OpFlags = RISCVII::MO_CALL;
+
+ if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
+ nullptr))
+ OpFlags = RISCVII::MO_PLT;
+
+ Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
+ }
+
+ // The first call operand is the chain and the second is the target address.
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ // Add argument registers to the end of the list so that they are
+ // known live into the call.
+ for (auto &Reg : RegsToPass)
+ Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
+
+ if (!IsTailCall) {
+ // Add a register mask operand representing the call-preserved registers.
+ const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
+ const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
+ assert(Mask && "Missing call preserved mask for calling convention");
+ Ops.push_back(DAG.getRegisterMask(Mask));
+ }
+
+ // Glue the call to the argument copies, if any.
+ if (Glue.getNode())
+ Ops.push_back(Glue);
+
+ // Emit the call.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+
+ if (IsTailCall) {
+ MF.getFrameInfo().setHasTailCall();
+ return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
+ }
+
+ Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
+ DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
+ Glue = Chain.getValue(1);
+
+ // Mark the end of the call, which is glued to the call itself.
+ Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL);
+ Glue = Chain.getValue(1);
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
+ analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (auto &VA : RVLocs) {
+ // Copy the value out
+ SDValue RetValue =
+ DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
+ // Glue the RetValue to the end of the call sequence
+ Chain = RetValue.getValue(1);
+ Glue = RetValue.getValue(2);
+
+ if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
+ assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
+ SDValue RetValue2 =
+ DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
+ Chain = RetValue2.getValue(1);
+ Glue = RetValue2.getValue(2);
+ RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
+ RetValue2);
+ }
+
+ RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
+
+ InVals.push_back(RetValue);
+ }
+
+ return Chain;
+}
+
+bool RISCVTargetLowering::CanLowerReturn(
+ CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
+
+ std::optional<unsigned> FirstMaskArgument;
+ if (Subtarget.hasVInstructions())
+ FirstMaskArgument = preAssignMask(Outs);
+
+ for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
+ MVT VT = Outs[i].VT;
+ ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
+ RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
+ if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
+ ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
+ *this, FirstMaskArgument))
+ return false;
+ }
+ return true;
+}
+
+SDValue
+RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
+ bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SDLoc &DL, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
+
+ // Stores the assignment of the return value to a location.
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // Info about the registers and stack slot.
+ CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
+
+ analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
+ nullptr, CC_RISCV);
+
+ if (CallConv == CallingConv::GHC && !RVLocs.empty())
+ report_fatal_error("GHC functions return void only");
+
+ SDValue Glue;
+ SmallVector<SDValue, 4> RetOps(1, Chain);
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
+ SDValue Val = OutVals[i];
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
+ // Handle returning f64 on RV32D with a soft float ABI.
+ assert(VA.isRegLoc() && "Expected return via registers");
+ SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
+ DAG.getVTList(MVT::i32, MVT::i32), Val);
+ SDValue Lo = SplitF64.getValue(0);
+ SDValue Hi = SplitF64.getValue(1);
+ Register RegLo = VA.getLocReg();
+ assert(RegLo < RISCV::X31 && "Invalid register pair");
+ Register RegHi = RegLo + 1;
+
+ if (STI.isRegisterReservedByUser(RegLo) ||
+ STI.isRegisterReservedByUser(RegHi))
+ MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
+ MF.getFunction(),
+ "Return value register required, but has been reserved."});
+
+ Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
+ Glue = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
+ Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
+ Glue = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
+ } else {
+ // Handle a 'normal' return.
+ Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
+ Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
+
+ if (STI.isRegisterReservedByUser(VA.getLocReg()))
+ MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
+ MF.getFunction(),
+ "Return value register required, but has been reserved."});
+
+ // Guarantee that all emitted copies are stuck together.
+ Glue = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+ }
+
+ RetOps[0] = Chain; // Update chain.
+
+ // Add the glue node if we have it.
+ if (Glue.getNode()) {
+ RetOps.push_back(Glue);
+ }
+
+ if (any_of(RVLocs,
+ [](CCValAssign &VA) { return VA.getLocVT().isScalableVector(); }))
+ MF.getInfo<RISCVMachineFunctionInfo>()->setIsVectorCall();
+
+ unsigned RetOpc = RISCVISD::RET_FLAG;
+ // Interrupt service routines use different return instructions.
+ const Function &Func = DAG.getMachineFunction().getFunction();
+ if (Func.hasFnAttribute("interrupt")) {
+ if (!Func.getReturnType()->isVoidTy())
+ report_fatal_error(
+ "Functions with the interrupt attribute must have void return type!");
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ StringRef Kind =
+ MF.getFunction().getFnAttribute("interrupt").getValueAsString();
+
+ if (Kind == "user")
+ RetOpc = RISCVISD::URET_FLAG;
+ else if (Kind == "supervisor")
+ RetOpc = RISCVISD::SRET_FLAG;
+ else
+ RetOpc = RISCVISD::MRET_FLAG;
+ }
+
+ return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
+}
+
+void RISCVTargetLowering::validateCCReservedRegs(
+ const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
+ MachineFunction &MF) const {
+ const Function &F = MF.getFunction();
+ const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
+
+ if (llvm::any_of(Regs, [&STI](auto Reg) {
+ return STI.isRegisterReservedByUser(Reg.first);
+ }))
+ F.getContext().diagnose(DiagnosticInfoUnsupported{
+ F, "Argument register required, but has been reserved."});
+}
+
+// Check if the result of the node is only used as a return value, as
+// otherwise we can't perform a tail-call.
+bool RISCVTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
+ if (N->getNumValues() != 1)
+ return false;
+ if (!N->hasNUsesOfValue(1, 0))
+ return false;
+
+ SDNode *Copy = *N->use_begin();
+ // TODO: Handle additional opcodes in order to support tail-calling libcalls
+ // with soft float ABIs.
+ if (Copy->getOpcode() != ISD::CopyToReg) {
+ return false;
+ }
+
+ // If the ISD::CopyToReg has a glue operand, we conservatively assume it
+ // isn't safe to perform a tail call.
+ if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == MVT::Glue)
+ return false;
+
+ // The copy must be used by a RISCVISD::RET_FLAG, and nothing else.
+ bool HasRet = false;
+ for (SDNode *Node : Copy->uses()) {
+ if (Node->getOpcode() != RISCVISD::RET_FLAG)
+ return false;
+ HasRet = true;
+ }
+ if (!HasRet)
+ return false;
+
+ Chain = Copy->getOperand(0);
+ return true;
+}
+
+bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
+ return CI->isTailCall();
+}
+
+const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
+#define NODE_NAME_CASE(NODE) \
+ case RISCVISD::NODE: \
+ return "RISCVISD::" #NODE;
+ // clang-format off
+ switch ((RISCVISD::NodeType)Opcode) {
+ case RISCVISD::FIRST_NUMBER:
+ break;
+ NODE_NAME_CASE(RET_FLAG)
+ NODE_NAME_CASE(URET_FLAG)
+ NODE_NAME_CASE(SRET_FLAG)
+ NODE_NAME_CASE(MRET_FLAG)
+ NODE_NAME_CASE(CALL)
+ NODE_NAME_CASE(SELECT_CC)
+ NODE_NAME_CASE(BR_CC)
+ NODE_NAME_CASE(BuildPairF64)
+ NODE_NAME_CASE(SplitF64)
+ NODE_NAME_CASE(TAIL)
+ NODE_NAME_CASE(ADD_LO)
+ NODE_NAME_CASE(HI)
+ NODE_NAME_CASE(LLA)
+ NODE_NAME_CASE(ADD_TPREL)
+ NODE_NAME_CASE(LA)
+ NODE_NAME_CASE(LA_TLS_IE)
+ NODE_NAME_CASE(LA_TLS_GD)
+ NODE_NAME_CASE(MULHSU)
+ NODE_NAME_CASE(SLLW)
+ NODE_NAME_CASE(SRAW)
+ NODE_NAME_CASE(SRLW)
+ NODE_NAME_CASE(DIVW)
+ NODE_NAME_CASE(DIVUW)
+ NODE_NAME_CASE(REMUW)
+ NODE_NAME_CASE(ROLW)
+ NODE_NAME_CASE(RORW)
+ NODE_NAME_CASE(CLZW)
+ NODE_NAME_CASE(CTZW)
+ NODE_NAME_CASE(ABSW)
+ NODE_NAME_CASE(FMV_H_X)
+ NODE_NAME_CASE(FMV_X_ANYEXTH)
+ NODE_NAME_CASE(FMV_X_SIGNEXTH)
+ NODE_NAME_CASE(FMV_W_X_RV64)
+ NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
+ NODE_NAME_CASE(FCVT_X)
+ NODE_NAME_CASE(FCVT_XU)
+ NODE_NAME_CASE(FCVT_W_RV64)
+ NODE_NAME_CASE(FCVT_WU_RV64)
+ NODE_NAME_CASE(STRICT_FCVT_W_RV64)
+ NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
+ NODE_NAME_CASE(FROUND)
+ NODE_NAME_CASE(READ_CYCLE_WIDE)
+ NODE_NAME_CASE(BREV8)
+ NODE_NAME_CASE(ORC_B)
+ NODE_NAME_CASE(ZIP)
+ NODE_NAME_CASE(UNZIP)
+ NODE_NAME_CASE(VMV_V_X_VL)
+ NODE_NAME_CASE(VFMV_V_F_VL)
+ NODE_NAME_CASE(VMV_X_S)
+ NODE_NAME_CASE(VMV_S_X_VL)
+ NODE_NAME_CASE(VFMV_S_F_VL)
+ NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
+ NODE_NAME_CASE(READ_VLENB)
+ NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
+ NODE_NAME_CASE(VSLIDEUP_VL)
+ NODE_NAME_CASE(VSLIDE1UP_VL)
+ NODE_NAME_CASE(VSLIDEDOWN_VL)
+ NODE_NAME_CASE(VSLIDE1DOWN_VL)
+ NODE_NAME_CASE(VID_VL)
+ NODE_NAME_CASE(VFNCVT_ROD_VL)
+ NODE_NAME_CASE(VECREDUCE_ADD_VL)
+ NODE_NAME_CASE(VECREDUCE_UMAX_VL)
+ NODE_NAME_CASE(VECREDUCE_SMAX_VL)
+ NODE_NAME_CASE(VECREDUCE_UMIN_VL)
+ NODE_NAME_CASE(VECREDUCE_SMIN_VL)
+ NODE_NAME_CASE(VECREDUCE_AND_VL)
+ NODE_NAME_CASE(VECREDUCE_OR_VL)
+ NODE_NAME_CASE(VECREDUCE_XOR_VL)
+ NODE_NAME_CASE(VECREDUCE_FADD_VL)
+ NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
+ NODE_NAME_CASE(VECREDUCE_FMIN_VL)
+ NODE_NAME_CASE(VECREDUCE_FMAX_VL)
+ NODE_NAME_CASE(ADD_VL)
+ NODE_NAME_CASE(AND_VL)
+ NODE_NAME_CASE(MUL_VL)
+ NODE_NAME_CASE(OR_VL)
+ NODE_NAME_CASE(SDIV_VL)
+ NODE_NAME_CASE(SHL_VL)
+ NODE_NAME_CASE(SREM_VL)
+ NODE_NAME_CASE(SRA_VL)
+ NODE_NAME_CASE(SRL_VL)
+ NODE_NAME_CASE(SUB_VL)
+ NODE_NAME_CASE(UDIV_VL)
+ NODE_NAME_CASE(UREM_VL)
+ NODE_NAME_CASE(XOR_VL)
+ NODE_NAME_CASE(SADDSAT_VL)
+ NODE_NAME_CASE(UADDSAT_VL)
+ NODE_NAME_CASE(SSUBSAT_VL)
+ NODE_NAME_CASE(USUBSAT_VL)
+ NODE_NAME_CASE(FADD_VL)
+ NODE_NAME_CASE(FSUB_VL)
+ NODE_NAME_CASE(FMUL_VL)
+ NODE_NAME_CASE(FDIV_VL)
+ NODE_NAME_CASE(FNEG_VL)
+ NODE_NAME_CASE(FABS_VL)
+ NODE_NAME_CASE(FSQRT_VL)
+ NODE_NAME_CASE(VFMADD_VL)
+ NODE_NAME_CASE(VFNMADD_VL)
+ NODE_NAME_CASE(VFMSUB_VL)
+ NODE_NAME_CASE(VFNMSUB_VL)
+ NODE_NAME_CASE(FCOPYSIGN_VL)
+ NODE_NAME_CASE(SMIN_VL)
+ NODE_NAME_CASE(SMAX_VL)
+ NODE_NAME_CASE(UMIN_VL)
+ NODE_NAME_CASE(UMAX_VL)
+ NODE_NAME_CASE(FMINNUM_VL)
+ NODE_NAME_CASE(FMAXNUM_VL)
+ NODE_NAME_CASE(MULHS_VL)
+ NODE_NAME_CASE(MULHU_VL)
+ NODE_NAME_CASE(VFCVT_RTZ_X_F_VL)
+ NODE_NAME_CASE(VFCVT_RTZ_XU_F_VL)
+ NODE_NAME_CASE(VFCVT_RM_X_F_VL)
+ NODE_NAME_CASE(VFCVT_RM_XU_F_VL)
+ NODE_NAME_CASE(VFCVT_X_F_VL)
+ NODE_NAME_CASE(VFCVT_XU_F_VL)
+ NODE_NAME_CASE(VFROUND_NOEXCEPT_VL)
+ NODE_NAME_CASE(SINT_TO_FP_VL)
+ NODE_NAME_CASE(UINT_TO_FP_VL)
+ NODE_NAME_CASE(VFCVT_RM_F_XU_VL)
+ NODE_NAME_CASE(VFCVT_RM_F_X_VL)
+ NODE_NAME_CASE(FP_EXTEND_VL)
+ NODE_NAME_CASE(FP_ROUND_VL)
+ NODE_NAME_CASE(VWMUL_VL)
+ NODE_NAME_CASE(VWMULU_VL)
+ NODE_NAME_CASE(VWMULSU_VL)
+ NODE_NAME_CASE(VWADD_VL)
+ NODE_NAME_CASE(VWADDU_VL)
+ NODE_NAME_CASE(VWSUB_VL)
+ NODE_NAME_CASE(VWSUBU_VL)
+ NODE_NAME_CASE(VWADD_W_VL)
+ NODE_NAME_CASE(VWADDU_W_VL)
+ NODE_NAME_CASE(VWSUB_W_VL)
+ NODE_NAME_CASE(VWSUBU_W_VL)
+ NODE_NAME_CASE(VNSRL_VL)
+ NODE_NAME_CASE(SETCC_VL)
+ NODE_NAME_CASE(VSELECT_VL)
+ NODE_NAME_CASE(VP_MERGE_VL)
+ NODE_NAME_CASE(VMAND_VL)
+ NODE_NAME_CASE(VMOR_VL)
+ NODE_NAME_CASE(VMXOR_VL)
+ NODE_NAME_CASE(VMCLR_VL)
+ NODE_NAME_CASE(VMSET_VL)
+ NODE_NAME_CASE(VRGATHER_VX_VL)
+ NODE_NAME_CASE(VRGATHER_VV_VL)
+ NODE_NAME_CASE(VRGATHEREI16_VV_VL)
+ NODE_NAME_CASE(VSEXT_VL)
+ NODE_NAME_CASE(VZEXT_VL)
+ NODE_NAME_CASE(VCPOP_VL)
+ NODE_NAME_CASE(VFIRST_VL)
+ NODE_NAME_CASE(READ_CSR)
+ NODE_NAME_CASE(WRITE_CSR)
+ NODE_NAME_CASE(SWAP_CSR)
+ }
+ // clang-format on
+ return nullptr;
+#undef NODE_NAME_CASE
+}
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+RISCVTargetLowering::ConstraintType
+RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default:
+ break;
+ case 'f':
+ return C_RegisterClass;
+ case 'I':
+ case 'J':
+ case 'K':
+ return C_Immediate;
+ case 'A':
+ return C_Memory;
+ case 'S': // A symbolic address
+ return C_Other;
+ }
+ } else {
+ if (Constraint == "vr" || Constraint == "vm")
+ return C_RegisterClass;
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+std::pair<unsigned, const TargetRegisterClass *>
+RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
+ StringRef Constraint,
+ MVT VT) const {
+ // First, see if this is a constraint that directly corresponds to a
+ // RISCV register class.
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'r':
+ // TODO: Support fixed vectors up to XLen for P extension?
+ if (VT.isVector())
+ break;
+ return std::make_pair(0U, &RISCV::GPRRegClass);
+ case 'f':
+ if (Subtarget.hasStdExtZfhOrZfhmin() && VT == MVT::f16)
+ return std::make_pair(0U, &RISCV::FPR16RegClass);
+ if (Subtarget.hasStdExtF() && VT == MVT::f32)
+ return std::make_pair(0U, &RISCV::FPR32RegClass);
+ if (Subtarget.hasStdExtD() && VT == MVT::f64)
+ return std::make_pair(0U, &RISCV::FPR64RegClass);
+ break;
+ default:
+ break;
+ }
+ } else if (Constraint == "vr") {
+ for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
+ &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
+ if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
+ return std::make_pair(0U, RC);
+ }
+ } else if (Constraint == "vm") {
+ if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
+ return std::make_pair(0U, &RISCV::VMV0RegClass);
+ }
+
+ // Clang will correctly decode the usage of register name aliases into their
+ // official names. However, other frontends like `rustc` do not. This allows
+ // users of these frontends to use the ABI names for registers in LLVM-style
+ // register constraints.
+ unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
+ .Case("{zero}", RISCV::X0)
+ .Case("{ra}", RISCV::X1)
+ .Case("{sp}", RISCV::X2)
+ .Case("{gp}", RISCV::X3)
+ .Case("{tp}", RISCV::X4)
+ .Case("{t0}", RISCV::X5)
+ .Case("{t1}", RISCV::X6)
+ .Case("{t2}", RISCV::X7)
+ .Cases("{s0}", "{fp}", RISCV::X8)
+ .Case("{s1}", RISCV::X9)
+ .Case("{a0}", RISCV::X10)
+ .Case("{a1}", RISCV::X11)
+ .Case("{a2}", RISCV::X12)
+ .Case("{a3}", RISCV::X13)
+ .Case("{a4}", RISCV::X14)
+ .Case("{a5}", RISCV::X15)
+ .Case("{a6}", RISCV::X16)
+ .Case("{a7}", RISCV::X17)
+ .Case("{s2}", RISCV::X18)
+ .Case("{s3}", RISCV::X19)
+ .Case("{s4}", RISCV::X20)
+ .Case("{s5}", RISCV::X21)
+ .Case("{s6}", RISCV::X22)
+ .Case("{s7}", RISCV::X23)
+ .Case("{s8}", RISCV::X24)
+ .Case("{s9}", RISCV::X25)
+ .Case("{s10}", RISCV::X26)
+ .Case("{s11}", RISCV::X27)
+ .Case("{t3}", RISCV::X28)
+ .Case("{t4}", RISCV::X29)
+ .Case("{t5}", RISCV::X30)
+ .Case("{t6}", RISCV::X31)
+ .Default(RISCV::NoRegister);
+ if (XRegFromAlias != RISCV::NoRegister)
+ return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
+
+ // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
+ // TableGen record rather than the AsmName to choose registers for InlineAsm
+ // constraints, plus we want to match those names to the widest floating point
+ // register type available, manually select floating point registers here.
+ //
+ // The second case is the ABI name of the register, so that frontends can also
+ // use the ABI names in register constraint lists.
+ if (Subtarget.hasStdExtF()) {
+ unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
+ .Cases("{f0}", "{ft0}", RISCV::F0_F)
+ .Cases("{f1}", "{ft1}", RISCV::F1_F)
+ .Cases("{f2}", "{ft2}", RISCV::F2_F)
+ .Cases("{f3}", "{ft3}", RISCV::F3_F)
+ .Cases("{f4}", "{ft4}", RISCV::F4_F)
+ .Cases("{f5}", "{ft5}", RISCV::F5_F)
+ .Cases("{f6}", "{ft6}", RISCV::F6_F)
+ .Cases("{f7}", "{ft7}", RISCV::F7_F)
+ .Cases("{f8}", "{fs0}", RISCV::F8_F)
+ .Cases("{f9}", "{fs1}", RISCV::F9_F)
+ .Cases("{f10}", "{fa0}", RISCV::F10_F)
+ .Cases("{f11}", "{fa1}", RISCV::F11_F)
+ .Cases("{f12}", "{fa2}", RISCV::F12_F)
+ .Cases("{f13}", "{fa3}", RISCV::F13_F)
+ .Cases("{f14}", "{fa4}", RISCV::F14_F)
+ .Cases("{f15}", "{fa5}", RISCV::F15_F)
+ .Cases("{f16}", "{fa6}", RISCV::F16_F)
+ .Cases("{f17}", "{fa7}", RISCV::F17_F)
+ .Cases("{f18}", "{fs2}", RISCV::F18_F)
+ .Cases("{f19}", "{fs3}", RISCV::F19_F)
+ .Cases("{f20}", "{fs4}", RISCV::F20_F)
+ .Cases("{f21}", "{fs5}", RISCV::F21_F)
+ .Cases("{f22}", "{fs6}", RISCV::F22_F)
+ .Cases("{f23}", "{fs7}", RISCV::F23_F)
+ .Cases("{f24}", "{fs8}", RISCV::F24_F)
+ .Cases("{f25}", "{fs9}", RISCV::F25_F)
+ .Cases("{f26}", "{fs10}", RISCV::F26_F)
+ .Cases("{f27}", "{fs11}", RISCV::F27_F)
+ .Cases("{f28}", "{ft8}", RISCV::F28_F)
+ .Cases("{f29}", "{ft9}", RISCV::F29_F)
+ .Cases("{f30}", "{ft10}", RISCV::F30_F)
+ .Cases("{f31}", "{ft11}", RISCV::F31_F)
+ .Default(RISCV::NoRegister);
+ if (FReg != RISCV::NoRegister) {
+ assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
+ if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
+ unsigned RegNo = FReg - RISCV::F0_F;
+ unsigned DReg = RISCV::F0_D + RegNo;
+ return std::make_pair(DReg, &RISCV::FPR64RegClass);
+ }
+ if (VT == MVT::f32 || VT == MVT::Other)
+ return std::make_pair(FReg, &RISCV::FPR32RegClass);
+ if (Subtarget.hasStdExtZfhOrZfhmin() && VT == MVT::f16) {
+ unsigned RegNo = FReg - RISCV::F0_F;
+ unsigned HReg = RISCV::F0_H + RegNo;
+ return std::make_pair(HReg, &RISCV::FPR16RegClass);
+ }
+ }
+ }
+
+ if (Subtarget.hasVInstructions()) {
+ Register VReg = StringSwitch<Register>(Constraint.lower())
+ .Case("{v0}", RISCV::V0)
+ .Case("{v1}", RISCV::V1)
+ .Case("{v2}", RISCV::V2)
+ .Case("{v3}", RISCV::V3)
+ .Case("{v4}", RISCV::V4)
+ .Case("{v5}", RISCV::V5)
+ .Case("{v6}", RISCV::V6)
+ .Case("{v7}", RISCV::V7)
+ .Case("{v8}", RISCV::V8)
+ .Case("{v9}", RISCV::V9)
+ .Case("{v10}", RISCV::V10)
+ .Case("{v11}", RISCV::V11)
+ .Case("{v12}", RISCV::V12)
+ .Case("{v13}", RISCV::V13)
+ .Case("{v14}", RISCV::V14)
+ .Case("{v15}", RISCV::V15)
+ .Case("{v16}", RISCV::V16)
+ .Case("{v17}", RISCV::V17)
+ .Case("{v18}", RISCV::V18)
+ .Case("{v19}", RISCV::V19)
+ .Case("{v20}", RISCV::V20)
+ .Case("{v21}", RISCV::V21)
+ .Case("{v22}", RISCV::V22)
+ .Case("{v23}", RISCV::V23)
+ .Case("{v24}", RISCV::V24)
+ .Case("{v25}", RISCV::V25)
+ .Case("{v26}", RISCV::V26)
+ .Case("{v27}", RISCV::V27)
+ .Case("{v28}", RISCV::V28)
+ .Case("{v29}", RISCV::V29)
+ .Case("{v30}", RISCV::V30)
+ .Case("{v31}", RISCV::V31)
+ .Default(RISCV::NoRegister);
+ if (VReg != RISCV::NoRegister) {
+ if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
+ return std::make_pair(VReg, &RISCV::VMRegClass);
+ if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
+ return std::make_pair(VReg, &RISCV::VRRegClass);
+ for (const auto *RC :
+ {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
+ if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
+ VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
+ return std::make_pair(VReg, RC);
+ }
+ }
+ }
+ }
+
+ std::pair<Register, const TargetRegisterClass *> Res =
+ TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
+
+ // If we picked one of the Zfinx register classes, remap it to the GPR class.
+ // FIXME: When Zfinx is supported in CodeGen this will need to take the
+ // Subtarget into account.
+ if (Res.second == &RISCV::GPRF16RegClass ||
+ Res.second == &RISCV::GPRF32RegClass ||
+ Res.second == &RISCV::GPRF64RegClass)
+ return std::make_pair(Res.first, &RISCV::GPRRegClass);
+
+ return Res;
+}
+
+unsigned
+RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
+ // Currently only support length 1 constraints.
+ if (ConstraintCode.size() == 1) {
+ switch (ConstraintCode[0]) {
+ case 'A':
+ return InlineAsm::Constraint_A;
+ default:
+ break;
+ }
+ }
+
+ return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
+}
+
+void RISCVTargetLowering::LowerAsmOperandForConstraint(
+ SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const {
+ // Currently only support length 1 constraints.
+ if (Constraint.length() == 1) {
+ switch (Constraint[0]) {
+ case 'I':
+ // Validate & create a 12-bit signed immediate operand.
+ if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
+ uint64_t CVal = C->getSExtValue();
+ if (isInt<12>(CVal))
+ Ops.push_back(
+ DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
+ }
+ return;
+ case 'J':
+ // Validate & create an integer zero operand.
+ if (auto *C = dyn_cast<ConstantSDNode>(Op))
+ if (C->getZExtValue() == 0)
+ Ops.push_back(
+ DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
+ return;
+ case 'K':
+ // Validate & create a 5-bit unsigned immediate operand.
+ if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
+ uint64_t CVal = C->getZExtValue();
+ if (isUInt<5>(CVal))
+ Ops.push_back(
+ DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
+ }
+ return;
+ case 'S':
+ if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
+ Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
+ GA->getValueType(0)));
+ } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
+ Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
+ BA->getValueType(0)));
+ }
+ return;
+ default:
+ break;
+ }
+ }
+ TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
+ Instruction *Inst,
+ AtomicOrdering Ord) const {
+ if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
+ return Builder.CreateFence(Ord);
+ if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
+ return Builder.CreateFence(AtomicOrdering::Release);
+ return nullptr;
+}
+
+Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
+ Instruction *Inst,
+ AtomicOrdering Ord) const {
+ if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
+ return Builder.CreateFence(AtomicOrdering::Acquire);
+ return nullptr;
+}
+
+TargetLowering::AtomicExpansionKind
+RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
+ // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
+ // point operations can't be used in an lr/sc sequence without breaking the
+ // forward-progress guarantee.
+ if (AI->isFloatingPointOperation() ||
+ AI->getOperation() == AtomicRMWInst::UIncWrap ||
+ AI->getOperation() == AtomicRMWInst::UDecWrap)
+ return AtomicExpansionKind::CmpXChg;
+
+ // Don't expand forced atomics, we want to have __sync libcalls instead.
+ if (Subtarget.hasForcedAtomics())
+ return AtomicExpansionKind::None;
+
+ unsigned Size = AI->getType()->getPrimitiveSizeInBits();
+ if (Size == 8 || Size == 16)
+ return AtomicExpansionKind::MaskedIntrinsic;
+ return AtomicExpansionKind::None;
+}
+
+static Intrinsic::ID
+getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
+ if (XLen == 32) {
+ switch (BinOp) {
+ default:
+ llvm_unreachable("Unexpected AtomicRMW BinOp");
+ case AtomicRMWInst::Xchg:
+ return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
+ case AtomicRMWInst::Add:
+ return Intrinsic::riscv_masked_atomicrmw_add_i32;
+ case AtomicRMWInst::Sub:
+ return Intrinsic::riscv_masked_atomicrmw_sub_i32;
+ case AtomicRMWInst::Nand:
+ return Intrinsic::riscv_masked_atomicrmw_nand_i32;
+ case AtomicRMWInst::Max:
+ return Intrinsic::riscv_masked_atomicrmw_max_i32;
+ case AtomicRMWInst::Min:
+ return Intrinsic::riscv_masked_atomicrmw_min_i32;
+ case AtomicRMWInst::UMax:
+ return Intrinsic::riscv_masked_atomicrmw_umax_i32;
+ case AtomicRMWInst::UMin:
+ return Intrinsic::riscv_masked_atomicrmw_umin_i32;
+ }
+ }
+
+ if (XLen == 64) {
+ switch (BinOp) {
+ default:
+ llvm_unreachable("Unexpected AtomicRMW BinOp");
+ case AtomicRMWInst::Xchg:
+ return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
+ case AtomicRMWInst::Add:
+ return Intrinsic::riscv_masked_atomicrmw_add_i64;
+ case AtomicRMWInst::Sub:
+ return Intrinsic::riscv_masked_atomicrmw_sub_i64;
+ case AtomicRMWInst::Nand:
+ return Intrinsic::riscv_masked_atomicrmw_nand_i64;
+ case AtomicRMWInst::Max:
+ return Intrinsic::riscv_masked_atomicrmw_max_i64;
+ case AtomicRMWInst::Min:
+ return Intrinsic::riscv_masked_atomicrmw_min_i64;
+ case AtomicRMWInst::UMax:
+ return Intrinsic::riscv_masked_atomicrmw_umax_i64;
+ case AtomicRMWInst::UMin:
+ return Intrinsic::riscv_masked_atomicrmw_umin_i64;
+ }
+ }
+
+ llvm_unreachable("Unexpected XLen\n");
+}
+
+Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
+ IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
+ Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
+ unsigned XLen = Subtarget.getXLen();
+ Value *Ordering =
+ Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
+ Type *Tys[] = {AlignedAddr->getType()};
+ Function *LrwOpScwLoop = Intrinsic::getDeclaration(
+ AI->getModule(),
+ getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
+
+ if (XLen == 64) {
+ Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
+ Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
+ ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
+ }
+
+ Value *Result;
+
+ // Must pass the shift amount needed to sign extend the loaded value prior
+ // to performing a signed comparison for min/max. ShiftAmt is the number of
+ // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
+ // is the number of bits to left+right shift the value in order to
+ // sign-extend.
+ if (AI->getOperation() == AtomicRMWInst::Min ||
+ AI->getOperation() == AtomicRMWInst::Max) {
+ const DataLayout &DL = AI->getModule()->getDataLayout();
+ unsigned ValWidth =
+ DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
+ Value *SextShamt =
+ Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
+ Result = Builder.CreateCall(LrwOpScwLoop,
+ {AlignedAddr, Incr, Mask, SextShamt, Ordering});
+ } else {
+ Result =
+ Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
+ }
+
+ if (XLen == 64)
+ Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
+ return Result;
+}
+
+TargetLowering::AtomicExpansionKind
+RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
+ AtomicCmpXchgInst *CI) const {
+ // Don't expand forced atomics, we want to have __sync libcalls instead.
+ if (Subtarget.hasForcedAtomics())
+ return AtomicExpansionKind::None;
+
+ unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
+ if (Size == 8 || Size == 16)
+ return AtomicExpansionKind::MaskedIntrinsic;
+ return AtomicExpansionKind::None;
+}
+
+Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
+ IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
+ Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
+ unsigned XLen = Subtarget.getXLen();
+ Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
+ Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
+ if (XLen == 64) {
+ CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
+ NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
+ Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
+ CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
+ }
+ Type *Tys[] = {AlignedAddr->getType()};
+ Function *MaskedCmpXchg =
+ Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
+ Value *Result = Builder.CreateCall(
+ MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
+ if (XLen == 64)
+ Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
+ return Result;
+}
+
+bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT IndexVT,
+ EVT DataVT) const {
+ return false;
+}
+
+bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
+ EVT VT) const {
+ if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
+ return false;
+
+ switch (FPVT.getSimpleVT().SimpleTy) {
+ case MVT::f16:
+ return Subtarget.hasStdExtZfhOrZfhmin();
+ case MVT::f32:
+ return Subtarget.hasStdExtF();
+ case MVT::f64:
+ return Subtarget.hasStdExtD();
+ default:
+ return false;
+ }
+}
+
+unsigned RISCVTargetLowering::getJumpTableEncoding() const {
+ // If we are using the small code model, we can reduce size of jump table
+ // entry to 4 bytes.
+ if (Subtarget.is64Bit() && !isPositionIndependent() &&
+ getTargetMachine().getCodeModel() == CodeModel::Small) {
+ return MachineJumpTableInfo::EK_Custom32;
+ }
+ return TargetLowering::getJumpTableEncoding();
+}
+
+const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
+ const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
+ unsigned uid, MCContext &Ctx) const {
+ assert(Subtarget.is64Bit() && !isPositionIndependent() &&
+ getTargetMachine().getCodeModel() == CodeModel::Small);
+ return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
+}
+
+bool RISCVTargetLowering::isVScaleKnownToBeAPowerOfTwo() const {
+ // We define vscale to be VLEN/RVVBitsPerBlock. VLEN is always a power
+ // of two >= 64, and RVVBitsPerBlock is 64. Thus, vscale must be
+ // a power of two as well.
+ // FIXME: This doesn't work for zve32, but that's already broken
+ // elsewhere for the same reason.
+ assert(Subtarget.getRealMinVLen() >= 64 && "zve32* unsupported");
+ static_assert(RISCV::RVVBitsPerBlock == 64,
+ "RVVBitsPerBlock changed, audit needed");
+ return true;
+}
+
+bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
+ EVT VT) const {
+ EVT SVT = VT.getScalarType();
+
+ if (!SVT.isSimple())
+ return false;
+
+ switch (SVT.getSimpleVT().SimpleTy) {
+ case MVT::f16:
+ return VT.isVector() ? Subtarget.hasVInstructionsF16()
+ : Subtarget.hasStdExtZfh();
+ case MVT::f32:
+ return Subtarget.hasStdExtF();
+ case MVT::f64:
+ return Subtarget.hasStdExtD();
+ default:
+ break;
+ }
+
+ return false;
+}
+
+Register RISCVTargetLowering::getExceptionPointerRegister(
+ const Constant *PersonalityFn) const {
+ return RISCV::X10;
+}
+
+Register RISCVTargetLowering::getExceptionSelectorRegister(
+ const Constant *PersonalityFn) const {
+ return RISCV::X11;
+}
+
+bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
+ // Return false to suppress the unnecessary extensions if the LibCall
+ // arguments or return value is f32 type for LP64 ABI.
+ RISCVABI::ABI ABI = Subtarget.getTargetABI();
+ if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
+ return false;
+
+ return true;
+}
+
+bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
+ if (Subtarget.is64Bit() && Type == MVT::i32)
+ return true;
+
+ return IsSigned;
+}
+
+bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
+ SDValue C) const {
+ // Check integral scalar types.
+ const bool HasExtMOrZmmul =
+ Subtarget.hasStdExtM() || Subtarget.hasStdExtZmmul();
+ if (VT.isScalarInteger()) {
+ // Omit the optimization if the sub target has the M extension and the data
+ // size exceeds XLen.
+ if (HasExtMOrZmmul && VT.getSizeInBits() > Subtarget.getXLen())
+ return false;
+ if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
+ // Break the MUL to a SLLI and an ADD/SUB.
+ const APInt &Imm = ConstNode->getAPIntValue();
+ if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
+ (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
+ return true;
+ // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
+ if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
+ ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
+ (Imm - 8).isPowerOf2()))
+ return true;
+ // Omit the following optimization if the sub target has the M extension
+ // and the data size >= XLen.
+ if (HasExtMOrZmmul && VT.getSizeInBits() >= Subtarget.getXLen())
+ return false;
+ // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
+ // a pair of LUI/ADDI.
+ if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
+ APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
+ if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
+ (1 - ImmS).isPowerOf2())
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
+ SDValue ConstNode) const {
+ // Let the DAGCombiner decide for vectors.
+ EVT VT = AddNode.getValueType();
+ if (VT.isVector())
+ return true;
+
+ // Let the DAGCombiner decide for larger types.
+ if (VT.getScalarSizeInBits() > Subtarget.getXLen())
+ return true;
+
+ // It is worse if c1 is simm12 while c1*c2 is not.
+ ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
+ ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
+ const APInt &C1 = C1Node->getAPIntValue();
+ const APInt &C2 = C2Node->getAPIntValue();
+ if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
+ return false;
+
+ // Default to true and let the DAGCombiner decide.
+ return true;
+}
+
+bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
+ EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
+ unsigned *Fast) const {
+ if (!VT.isVector()) {
+ if (Fast)
+ *Fast = 0;
+ return Subtarget.enableUnalignedScalarMem();
+ }
+
+ // All vector implementations must support element alignment
+ EVT ElemVT = VT.getVectorElementType();
+ if (Alignment >= ElemVT.getStoreSize()) {
+ if (Fast)
+ *Fast = 1;
+ return true;
+ }
+
+ return false;
+}
+
+bool RISCVTargetLowering::splitValueIntoRegisterParts(
+ SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
+ unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
+ bool IsABIRegCopy = CC.has_value();
+ EVT ValueVT = Val.getValueType();
+ if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
+ // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
+ // and cast to f32.
+ Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
+ Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
+ Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
+ DAG.getConstant(0xFFFF0000, DL, MVT::i32));
+ Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
+ Parts[0] = Val;
+ return true;
+ }
+
+ if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
+ LLVMContext &Context = *DAG.getContext();
+ EVT ValueEltVT = ValueVT.getVectorElementType();
+ EVT PartEltVT = PartVT.getVectorElementType();
+ unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinValue();
+ unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinValue();
+ if (PartVTBitSize % ValueVTBitSize == 0) {
+ assert(PartVTBitSize >= ValueVTBitSize);
+ // If the element types are different, bitcast to the same element type of
+ // PartVT first.
+ // Give an example here, we want copy a <vscale x 1 x i8> value to
+ // <vscale x 4 x i16>.
+ // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
+ // subvector, then we can bitcast to <vscale x 4 x i16>.
+ if (ValueEltVT != PartEltVT) {
+ if (PartVTBitSize > ValueVTBitSize) {
+ unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
+ assert(Count != 0 && "The number of element should not be zero.");
+ EVT SameEltTypeVT =
+ EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
+ Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
+ DAG.getUNDEF(SameEltTypeVT), Val,
+ DAG.getVectorIdxConstant(0, DL));
+ }
+ Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
+ } else {
+ Val =
+ DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
+ Val, DAG.getVectorIdxConstant(0, DL));
+ }
+ Parts[0] = Val;
+ return true;
+ }
+ }
+ return false;
+}
+
+SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
+ SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
+ MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const {
+ bool IsABIRegCopy = CC.has_value();
+ if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
+ SDValue Val = Parts[0];
+
+ // Cast the f32 to i32, truncate to i16, and cast back to f16.
+ Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
+ Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
+ Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
+ return Val;
+ }
+
+ if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
+ LLVMContext &Context = *DAG.getContext();
+ SDValue Val = Parts[0];
+ EVT ValueEltVT = ValueVT.getVectorElementType();
+ EVT PartEltVT = PartVT.getVectorElementType();
+ unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinValue();
+ unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinValue();
+ if (PartVTBitSize % ValueVTBitSize == 0) {
+ assert(PartVTBitSize >= ValueVTBitSize);
+ EVT SameEltTypeVT = ValueVT;
+ // If the element types are different, convert it to the same element type
+ // of PartVT.
+ // Give an example here, we want copy a <vscale x 1 x i8> value from
+ // <vscale x 4 x i16>.
+ // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
+ // then we can extract <vscale x 1 x i8>.
+ if (ValueEltVT != PartEltVT) {
+ unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
+ assert(Count != 0 && "The number of element should not be zero.");
+ SameEltTypeVT =
+ EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
+ Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
+ }
+ Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
+ DAG.getVectorIdxConstant(0, DL));
+ return Val;
+ }
+ }
+ return SDValue();
+}
+
+bool RISCVTargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
+ // When aggressively optimizing for code size, we prefer to use a div
+ // instruction, as it is usually smaller than the alternative sequence.
+ // TODO: Add vector division?
+ bool OptSize = Attr.hasFnAttr(Attribute::MinSize);
+ return OptSize && !VT.isVector();
+}
+
+bool RISCVTargetLowering::preferScalarizeSplat(unsigned Opc) const {
+ // Scalarize zero_ext and sign_ext might stop match to widening instruction in
+ // some situation.
+ if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND)
+ return false;
+ return true;
+}
+
+static Value *useTpOffset(IRBuilderBase &IRB, unsigned Offset) {
+ Module *M = IRB.GetInsertBlock()->getParent()->getParent();
+ Function *ThreadPointerFunc =
+ Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
+ return IRB.CreatePointerCast(
+ IRB.CreateConstGEP1_32(IRB.getInt8Ty(),
+ IRB.CreateCall(ThreadPointerFunc), Offset),
+ IRB.getInt8PtrTy()->getPointerTo(0));
+}
+
+Value *RISCVTargetLowering::getIRStackGuard(IRBuilderBase &IRB) const {
+ // Fuchsia provides a fixed TLS slot for the stack cookie.
+ // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
+ if (Subtarget.isTargetFuchsia())
+ return useTpOffset(IRB, -0x10);
+
+ return TargetLowering::getIRStackGuard(IRB);
+}
+
+#define GET_REGISTER_MATCHER
+#include "RISCVGenAsmMatcher.inc"
+
+Register
+RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
+ const MachineFunction &MF) const {
+ Register Reg = MatchRegisterAltName(RegName);
+ if (Reg == RISCV::NoRegister)
+ Reg = MatchRegisterName(RegName);
+ if (Reg == RISCV::NoRegister)
+ report_fatal_error(
+ Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
+ BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
+ if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
+ report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
+ StringRef(RegName) + "\"."));
+ return Reg;
+}
+
+namespace llvm::RISCVVIntrinsicsTable {
+
+#define GET_RISCVVIntrinsicsTable_IMPL
+#include "RISCVGenSearchableTables.inc"
+
+} // namespace llvm::RISCVVIntrinsicsTable