diff options
author | maxim-yurchuk <maxim-yurchuk@yandex-team.com> | 2024-10-09 12:29:46 +0300 |
---|---|---|
committer | maxim-yurchuk <maxim-yurchuk@yandex-team.com> | 2024-10-09 13:14:22 +0300 |
commit | 9731d8a4bb7ee2cc8554eaf133bb85498a4c7d80 (patch) | |
tree | a8fb3181d5947c0d78cf402aa56e686130179049 /contrib/libs/llvm16/lib/Target/RISCV/RISCVISelLowering.cpp | |
parent | a44b779cd359f06c3ebbef4ec98c6b38609d9d85 (diff) | |
download | ydb-9731d8a4bb7ee2cc8554eaf133bb85498a4c7d80.tar.gz |
publishFullContrib: true for ydb
<HIDDEN_URL>
commit_hash:c82a80ac4594723cebf2c7387dec9c60217f603e
Diffstat (limited to 'contrib/libs/llvm16/lib/Target/RISCV/RISCVISelLowering.cpp')
-rw-r--r-- | contrib/libs/llvm16/lib/Target/RISCV/RISCVISelLowering.cpp | 14257 |
1 files changed, 14257 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Target/RISCV/RISCVISelLowering.cpp b/contrib/libs/llvm16/lib/Target/RISCV/RISCVISelLowering.cpp new file mode 100644 index 0000000000..6eea169f89 --- /dev/null +++ b/contrib/libs/llvm16/lib/Target/RISCV/RISCVISelLowering.cpp @@ -0,0 +1,14257 @@ +//===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the interfaces that RISCV uses to lower LLVM code into a +// selection DAG. +// +//===----------------------------------------------------------------------===// + +#include "RISCVISelLowering.h" +#include "MCTargetDesc/RISCVMatInt.h" +#include "RISCV.h" +#include "RISCVMachineFunctionInfo.h" +#include "RISCVRegisterInfo.h" +#include "RISCVSubtarget.h" +#include "RISCVTargetMachine.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/DiagnosticPrinter.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/IntrinsicsRISCV.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <optional> + +using namespace llvm; + +#define DEBUG_TYPE "riscv-lower" + +STATISTIC(NumTailCalls, "Number of tail calls"); + +static cl::opt<unsigned> ExtensionMaxWebSize( + DEBUG_TYPE "-ext-max-web-size", cl::Hidden, + cl::desc("Give the maximum size (in number of nodes) of the web of " + "instructions that we will consider for VW expansion"), + cl::init(18)); + +static cl::opt<bool> + AllowSplatInVW_W(DEBUG_TYPE "-form-vw-w-with-splat", cl::Hidden, + cl::desc("Allow the formation of VW_W operations (e.g., " + "VWADD_W) with splat constants"), + cl::init(false)); + +static cl::opt<unsigned> NumRepeatedDivisors( + DEBUG_TYPE "-fp-repeated-divisors", cl::Hidden, + cl::desc("Set the minimum number of repetitions of a divisor to allow " + "transformation to multiplications by the reciprocal"), + cl::init(2)); + +RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, + const RISCVSubtarget &STI) + : TargetLowering(TM), Subtarget(STI) { + + if (Subtarget.isRV32E()) + report_fatal_error("Codegen not yet implemented for RV32E"); + + RISCVABI::ABI ABI = Subtarget.getTargetABI(); + assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); + + if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && + !Subtarget.hasStdExtF()) { + errs() << "Hard-float 'f' ABI can't be used for a target that " + "doesn't support the F instruction set extension (ignoring " + "target-abi)\n"; + ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; + } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && + !Subtarget.hasStdExtD()) { + errs() << "Hard-float 'd' ABI can't be used for a target that " + "doesn't support the D instruction set extension (ignoring " + "target-abi)\n"; + ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; + } + + switch (ABI) { + default: + report_fatal_error("Don't know how to lower this ABI"); + case RISCVABI::ABI_ILP32: + case RISCVABI::ABI_ILP32F: + case RISCVABI::ABI_ILP32D: + case RISCVABI::ABI_LP64: + case RISCVABI::ABI_LP64F: + case RISCVABI::ABI_LP64D: + break; + } + + MVT XLenVT = Subtarget.getXLenVT(); + + // Set up the register classes. + addRegisterClass(XLenVT, &RISCV::GPRRegClass); + + if (Subtarget.hasStdExtZfhOrZfhmin()) + addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); + if (Subtarget.hasStdExtF()) + addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); + if (Subtarget.hasStdExtD()) + addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); + + static const MVT::SimpleValueType BoolVecVTs[] = { + MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, + MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; + static const MVT::SimpleValueType IntVecVTs[] = { + MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, + MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, + MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, + MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, + MVT::nxv4i64, MVT::nxv8i64}; + static const MVT::SimpleValueType F16VecVTs[] = { + MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, + MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; + static const MVT::SimpleValueType F32VecVTs[] = { + MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; + static const MVT::SimpleValueType F64VecVTs[] = { + MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; + + if (Subtarget.hasVInstructions()) { + auto addRegClassForRVV = [this](MVT VT) { + // Disable the smallest fractional LMUL types if ELEN is less than + // RVVBitsPerBlock. + unsigned MinElts = RISCV::RVVBitsPerBlock / Subtarget.getELEN(); + if (VT.getVectorMinNumElements() < MinElts) + return; + + unsigned Size = VT.getSizeInBits().getKnownMinValue(); + const TargetRegisterClass *RC; + if (Size <= RISCV::RVVBitsPerBlock) + RC = &RISCV::VRRegClass; + else if (Size == 2 * RISCV::RVVBitsPerBlock) + RC = &RISCV::VRM2RegClass; + else if (Size == 4 * RISCV::RVVBitsPerBlock) + RC = &RISCV::VRM4RegClass; + else if (Size == 8 * RISCV::RVVBitsPerBlock) + RC = &RISCV::VRM8RegClass; + else + llvm_unreachable("Unexpected size"); + + addRegisterClass(VT, RC); + }; + + for (MVT VT : BoolVecVTs) + addRegClassForRVV(VT); + for (MVT VT : IntVecVTs) { + if (VT.getVectorElementType() == MVT::i64 && + !Subtarget.hasVInstructionsI64()) + continue; + addRegClassForRVV(VT); + } + + if (Subtarget.hasVInstructionsF16()) + for (MVT VT : F16VecVTs) + addRegClassForRVV(VT); + + if (Subtarget.hasVInstructionsF32()) + for (MVT VT : F32VecVTs) + addRegClassForRVV(VT); + + if (Subtarget.hasVInstructionsF64()) + for (MVT VT : F64VecVTs) + addRegClassForRVV(VT); + + if (Subtarget.useRVVForFixedLengthVectors()) { + auto addRegClassForFixedVectors = [this](MVT VT) { + MVT ContainerVT = getContainerForFixedLengthVector(VT); + unsigned RCID = getRegClassIDForVecVT(ContainerVT); + const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); + addRegisterClass(VT, TRI.getRegClass(RCID)); + }; + for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) + if (useRVVForFixedLengthVectorVT(VT)) + addRegClassForFixedVectors(VT); + + for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) + if (useRVVForFixedLengthVectorVT(VT)) + addRegClassForFixedVectors(VT); + } + } + + // Compute derived properties from the register classes. + computeRegisterProperties(STI.getRegisterInfo()); + + setStackPointerRegisterToSaveRestore(RISCV::X2); + + setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT, + MVT::i1, Promote); + // DAGCombiner can call isLoadExtLegal for types that aren't legal. + setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i32, + MVT::i1, Promote); + + // TODO: add all necessary setOperationAction calls. + setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); + + setOperationAction(ISD::BR_JT, MVT::Other, Expand); + setOperationAction(ISD::BR_CC, XLenVT, Expand); + setOperationAction(ISD::BRCOND, MVT::Other, Custom); + setOperationAction(ISD::SELECT_CC, XLenVT, Expand); + + setCondCodeAction(ISD::SETLE, XLenVT, Expand); + setCondCodeAction(ISD::SETGT, XLenVT, Custom); + setCondCodeAction(ISD::SETGE, XLenVT, Expand); + setCondCodeAction(ISD::SETULE, XLenVT, Expand); + setCondCodeAction(ISD::SETUGT, XLenVT, Custom); + setCondCodeAction(ISD::SETUGE, XLenVT, Expand); + + setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand); + + setOperationAction(ISD::VASTART, MVT::Other, Custom); + setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand); + + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); + + setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); + + if (!Subtarget.hasStdExtZbb()) + setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand); + + if (Subtarget.is64Bit()) { + setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); + + setOperationAction(ISD::LOAD, MVT::i32, Custom); + + setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL}, + MVT::i32, Custom); + + setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT}, + MVT::i32, Custom); + } else { + setLibcallName( + {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128}, + nullptr); + setLibcallName(RTLIB::MULO_I64, nullptr); + } + + if (!Subtarget.hasStdExtM() && !Subtarget.hasStdExtZmmul()) { + setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU}, XLenVT, Expand); + } else { + if (Subtarget.is64Bit()) { + setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom); + } else { + setOperationAction(ISD::MUL, MVT::i64, Custom); + } + } + + if (!Subtarget.hasStdExtM()) { + setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM}, + XLenVT, Expand); + } else { + if (Subtarget.is64Bit()) { + setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM}, + {MVT::i8, MVT::i16, MVT::i32}, Custom); + } + } + + setOperationAction( + {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT, + Expand); + + setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT, + Custom); + + if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) { + if (Subtarget.is64Bit()) + setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom); + } else { + setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand); + } + + // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll + // pattern match it directly in isel. + setOperationAction(ISD::BSWAP, XLenVT, + (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) + ? Legal + : Expand); + // Zbkb can use rev8+brev8 to implement bitreverse. + setOperationAction(ISD::BITREVERSE, XLenVT, + Subtarget.hasStdExtZbkb() ? Custom : Expand); + + if (Subtarget.hasStdExtZbb()) { + setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT, + Legal); + + if (Subtarget.is64Bit()) + setOperationAction( + {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, + MVT::i32, Custom); + } else { + setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand); + } + + if (Subtarget.is64Bit()) + setOperationAction(ISD::ABS, MVT::i32, Custom); + + if (!Subtarget.hasVendorXVentanaCondOps()) + setOperationAction(ISD::SELECT, XLenVT, Custom); + + static const unsigned FPLegalNodeTypes[] = { + ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT, + ISD::LLRINT, ISD::LROUND, ISD::LLROUND, + ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND, + ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD, + ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, + ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS}; + + static const ISD::CondCode FPCCToExpand[] = { + ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, + ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, + ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; + + static const unsigned FPOpToExpand[] = { + ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, + ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16}; + + static const unsigned FPRndMode[] = { + ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FRINT, ISD::FROUND, + ISD::FROUNDEVEN}; + + if (Subtarget.hasStdExtZfhOrZfhmin()) + setOperationAction(ISD::BITCAST, MVT::i16, Custom); + + if (Subtarget.hasStdExtZfhOrZfhmin()) { + if (Subtarget.hasStdExtZfh()) { + setOperationAction(FPLegalNodeTypes, MVT::f16, Legal); + setOperationAction(FPRndMode, MVT::f16, Custom); + setOperationAction(ISD::SELECT, MVT::f16, Custom); + } else { + static const unsigned ZfhminPromoteOps[] = { + ISD::FMINNUM, ISD::FMAXNUM, ISD::FADD, + ISD::FSUB, ISD::FMUL, ISD::FMA, + ISD::FDIV, ISD::FSQRT, ISD::FABS, + ISD::FNEG, ISD::STRICT_FMA, ISD::STRICT_FADD, + ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, + ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS, + ISD::SETCC, ISD::FCEIL, ISD::FFLOOR, + ISD::FTRUNC, ISD::FRINT, ISD::FROUND, + ISD::FROUNDEVEN, ISD::SELECT}; + + setOperationAction(ZfhminPromoteOps, MVT::f16, Promote); + setOperationAction({ISD::STRICT_LRINT, ISD::STRICT_LLRINT, + ISD::STRICT_LROUND, ISD::STRICT_LLROUND}, + MVT::f16, Legal); + // FIXME: Need to promote f16 FCOPYSIGN to f32, but the + // DAGCombiner::visitFP_ROUND probably needs improvements first. + setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand); + } + + setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal); + setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); + setCondCodeAction(FPCCToExpand, MVT::f16, Expand); + setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); + setOperationAction(ISD::BR_CC, MVT::f16, Expand); + + setOperationAction({ISD::FREM, ISD::FNEARBYINT, ISD::FPOW, ISD::FPOWI, + ISD::FCOS, ISD::FSIN, ISD::FSINCOS, ISD::FEXP, + ISD::FEXP2, ISD::FLOG, ISD::FLOG2, ISD::FLOG10}, + MVT::f16, Promote); + + // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have + // complete support for all operations in LegalizeDAG. + setOperationAction({ISD::STRICT_FCEIL, ISD::STRICT_FFLOOR, + ISD::STRICT_FNEARBYINT, ISD::STRICT_FRINT, + ISD::STRICT_FROUND, ISD::STRICT_FROUNDEVEN, + ISD::STRICT_FTRUNC}, + MVT::f16, Promote); + + // We need to custom promote this. + if (Subtarget.is64Bit()) + setOperationAction(ISD::FPOWI, MVT::i32, Custom); + } + + if (Subtarget.hasStdExtF()) { + setOperationAction(FPLegalNodeTypes, MVT::f32, Legal); + setOperationAction(FPRndMode, MVT::f32, Custom); + setCondCodeAction(FPCCToExpand, MVT::f32, Expand); + setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); + setOperationAction(ISD::SELECT, MVT::f32, Custom); + setOperationAction(ISD::BR_CC, MVT::f32, Expand); + setOperationAction(FPOpToExpand, MVT::f32, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); + setTruncStoreAction(MVT::f32, MVT::f16, Expand); + } + + if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) + setOperationAction(ISD::BITCAST, MVT::i32, Custom); + + if (Subtarget.hasStdExtD()) { + setOperationAction(FPLegalNodeTypes, MVT::f64, Legal); + if (Subtarget.is64Bit()) { + setOperationAction(FPRndMode, MVT::f64, Custom); + } + setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); + setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); + setCondCodeAction(FPCCToExpand, MVT::f64, Expand); + setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); + setOperationAction(ISD::SELECT, MVT::f64, Custom); + setOperationAction(ISD::BR_CC, MVT::f64, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); + setTruncStoreAction(MVT::f64, MVT::f32, Expand); + setOperationAction(FPOpToExpand, MVT::f64, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); + setTruncStoreAction(MVT::f64, MVT::f16, Expand); + } + + if (Subtarget.is64Bit()) + setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT, + ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT}, + MVT::i32, Custom); + + if (Subtarget.hasStdExtF()) { + setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT, + Custom); + + setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT, + ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP}, + XLenVT, Legal); + + setOperationAction(ISD::GET_ROUNDING, XLenVT, Custom); + setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); + } + + setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool, + ISD::JumpTable}, + XLenVT, Custom); + + setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); + + if (Subtarget.is64Bit()) + setOperationAction(ISD::Constant, MVT::i64, Custom); + + // TODO: On M-mode only targets, the cycle[h] CSR may not be present. + // Unfortunately this can't be determined just from the ISA naming string. + setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, + Subtarget.is64Bit() ? Legal : Custom); + + setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal); + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); + if (Subtarget.is64Bit()) + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); + + if (Subtarget.hasStdExtA()) { + setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); + setMinCmpXchgSizeInBits(32); + } else if (Subtarget.hasForcedAtomics()) { + setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); + } else { + setMaxAtomicSizeInBitsSupported(0); + } + + setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); + + setBooleanContents(ZeroOrOneBooleanContent); + + if (Subtarget.hasVInstructions()) { + setBooleanVectorContents(ZeroOrOneBooleanContent); + + setOperationAction(ISD::VSCALE, XLenVT, Custom); + + // RVV intrinsics may have illegal operands. + // We also need to custom legalize vmv.x.s. + setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN}, + {MVT::i8, MVT::i16}, Custom); + if (Subtarget.is64Bit()) + setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); + else + setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN}, + MVT::i64, Custom); + + setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID}, + MVT::Other, Custom); + + static const unsigned IntegerVPOps[] = { + ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, + ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM, + ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, + ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR, + ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, + ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX, + ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN, + ISD::VP_MERGE, ISD::VP_SELECT, ISD::VP_FP_TO_SINT, + ISD::VP_FP_TO_UINT, ISD::VP_SETCC, ISD::VP_SIGN_EXTEND, + ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE, ISD::VP_SMIN, + ISD::VP_SMAX, ISD::VP_UMIN, ISD::VP_UMAX, + ISD::VP_ABS}; + + static const unsigned FloatingPointVPOps[] = { + ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL, + ISD::VP_FDIV, ISD::VP_FNEG, ISD::VP_FABS, + ISD::VP_FMA, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD, + ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_MERGE, + ISD::VP_SELECT, ISD::VP_SINT_TO_FP, ISD::VP_UINT_TO_FP, + ISD::VP_SETCC, ISD::VP_FP_ROUND, ISD::VP_FP_EXTEND, + ISD::VP_SQRT, ISD::VP_FMINNUM, ISD::VP_FMAXNUM, + ISD::VP_FCEIL, ISD::VP_FFLOOR, ISD::VP_FROUND, + ISD::VP_FROUNDEVEN, ISD::VP_FCOPYSIGN, ISD::VP_FROUNDTOZERO, + ISD::VP_FRINT, ISD::VP_FNEARBYINT}; + + static const unsigned IntegerVecReduceOps[] = { + ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, + ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, + ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN}; + + static const unsigned FloatingPointVecReduceOps[] = { + ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_FMIN, + ISD::VECREDUCE_FMAX}; + + if (!Subtarget.is64Bit()) { + // We must custom-lower certain vXi64 operations on RV32 due to the vector + // element type being illegal. + setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, + MVT::i64, Custom); + + setOperationAction(IntegerVecReduceOps, MVT::i64, Custom); + + setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND, + ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, + ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN, + ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN}, + MVT::i64, Custom); + } + + for (MVT VT : BoolVecVTs) { + if (!isTypeLegal(VT)) + continue; + + setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); + + // Mask VTs are custom-expanded into a series of standard nodes + setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS, + ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, + VT, Custom); + + setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, + Custom); + + setOperationAction(ISD::SELECT, VT, Custom); + setOperationAction( + {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT, + Expand); + + setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom); + + setOperationAction( + {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT, + Custom); + + setOperationAction( + {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT, + Custom); + + // RVV has native int->float & float->int conversions where the + // element type sizes are within one power-of-two of each other. Any + // wider distances between type sizes have to be lowered as sequences + // which progressively narrow the gap in stages. + setOperationAction( + {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, + VT, Custom); + setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT, + Custom); + + // Expand all extending loads to types larger than this, and truncating + // stores from types larger than this. + for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { + setTruncStoreAction(OtherVT, VT, Expand); + setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT, + VT, Expand); + } + + setOperationAction({ISD::VP_FP_TO_SINT, ISD::VP_FP_TO_UINT, + ISD::VP_TRUNCATE, ISD::VP_SETCC}, + VT, Custom); + setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); + + setOperationPromotedToType( + ISD::VECTOR_SPLICE, VT, + MVT::getVectorVT(MVT::i8, VT.getVectorElementCount())); + } + + for (MVT VT : IntVecVTs) { + if (!isTypeLegal(VT)) + continue; + + setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); + setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); + + // Vectors implement MULHS/MULHU. + setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand); + + // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*. + if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV()) + setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand); + + setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT, + Legal); + + setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand); + + setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, VT, Expand); + + setOperationAction(ISD::BSWAP, VT, Expand); + setOperationAction({ISD::VP_BSWAP, ISD::VP_BITREVERSE}, VT, Expand); + setOperationAction({ISD::VP_FSHL, ISD::VP_FSHR}, VT, Expand); + setOperationAction({ISD::VP_CTLZ, ISD::VP_CTLZ_ZERO_UNDEF, ISD::VP_CTTZ, + ISD::VP_CTTZ_ZERO_UNDEF, ISD::VP_CTPOP}, + VT, Expand); + + // Custom-lower extensions and truncations from/to mask types. + setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, + VT, Custom); + + // RVV has native int->float & float->int conversions where the + // element type sizes are within one power-of-two of each other. Any + // wider distances between type sizes have to be lowered as sequences + // which progressively narrow the gap in stages. + setOperationAction( + {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, + VT, Custom); + setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT, + Custom); + + setOperationAction( + {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal); + + // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" + // nodes which truncate by one power of two at a time. + setOperationAction(ISD::TRUNCATE, VT, Custom); + + // Custom-lower insert/extract operations to simplify patterns. + setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, + Custom); + + // Custom-lower reduction operations to set up the corresponding custom + // nodes' operands. + setOperationAction(IntegerVecReduceOps, VT, Custom); + + setOperationAction(IntegerVPOps, VT, Custom); + + setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); + + setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, + VT, Custom); + + setOperationAction( + {ISD::VP_LOAD, ISD::VP_STORE, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, + ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, + VT, Custom); + + setOperationAction( + {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, + VT, Custom); + + setOperationAction(ISD::SELECT, VT, Custom); + setOperationAction(ISD::SELECT_CC, VT, Expand); + + setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom); + + for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { + setTruncStoreAction(VT, OtherVT, Expand); + setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT, + VT, Expand); + } + + // Splice + setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); + + // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if element of VT in the range + // of f32. + EVT FloatVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); + if (isTypeLegal(FloatVT)) { + setOperationAction( + {ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, + Custom); + } + } + + // Expand various CCs to best match the RVV ISA, which natively supports UNE + // but no other unordered comparisons, and supports all ordered comparisons + // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization + // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), + // and we pattern-match those back to the "original", swapping operands once + // more. This way we catch both operations and both "vf" and "fv" forms with + // fewer patterns. + static const ISD::CondCode VFPCCToExpand[] = { + ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, + ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, + ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, + }; + + // Sets common operation actions on RVV floating-point vector types. + const auto SetCommonVFPActions = [&](MVT VT) { + setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); + // RVV has native FP_ROUND & FP_EXTEND conversions where the element type + // sizes are within one power-of-two of each other. Therefore conversions + // between vXf16 and vXf64 must be lowered as sequences which convert via + // vXf32. + setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); + // Custom-lower insert/extract operations to simplify patterns. + setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT, + Custom); + // Expand various condition codes (explained above). + setCondCodeAction(VFPCCToExpand, VT, Expand); + + setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal); + + setOperationAction( + {ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND, ISD::FROUNDEVEN}, + VT, Custom); + + setOperationAction(FloatingPointVecReduceOps, VT, Custom); + + // Expand FP operations that need libcalls. + setOperationAction(ISD::FREM, VT, Expand); + setOperationAction(ISD::FPOW, VT, Expand); + setOperationAction(ISD::FCOS, VT, Expand); + setOperationAction(ISD::FSIN, VT, Expand); + setOperationAction(ISD::FSINCOS, VT, Expand); + setOperationAction(ISD::FEXP, VT, Expand); + setOperationAction(ISD::FEXP2, VT, Expand); + setOperationAction(ISD::FLOG, VT, Expand); + setOperationAction(ISD::FLOG2, VT, Expand); + setOperationAction(ISD::FLOG10, VT, Expand); + setOperationAction(ISD::FRINT, VT, Expand); + setOperationAction(ISD::FNEARBYINT, VT, Expand); + + setOperationAction(ISD::FCOPYSIGN, VT, Legal); + + setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); + + setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, + VT, Custom); + + setOperationAction( + {ISD::VP_LOAD, ISD::VP_STORE, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, + ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, + VT, Custom); + + setOperationAction(ISD::SELECT, VT, Custom); + setOperationAction(ISD::SELECT_CC, VT, Expand); + + setOperationAction( + {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, + VT, Custom); + + setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom); + + setOperationAction(FloatingPointVPOps, VT, Custom); + }; + + // Sets common extload/truncstore actions on RVV floating-point vector + // types. + const auto SetCommonVFPExtLoadTruncStoreActions = + [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { + for (auto SmallVT : SmallerVTs) { + setTruncStoreAction(VT, SmallVT, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); + } + }; + + if (Subtarget.hasVInstructionsF16()) { + for (MVT VT : F16VecVTs) { + if (!isTypeLegal(VT)) + continue; + SetCommonVFPActions(VT); + } + } + + if (Subtarget.hasVInstructionsF32()) { + for (MVT VT : F32VecVTs) { + if (!isTypeLegal(VT)) + continue; + SetCommonVFPActions(VT); + SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); + } + } + + if (Subtarget.hasVInstructionsF64()) { + for (MVT VT : F64VecVTs) { + if (!isTypeLegal(VT)) + continue; + SetCommonVFPActions(VT); + SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); + SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); + } + } + + if (Subtarget.useRVVForFixedLengthVectors()) { + for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { + if (!useRVVForFixedLengthVectorVT(VT)) + continue; + + // By default everything must be expanded. + for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) + setOperationAction(Op, VT, Expand); + for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { + setTruncStoreAction(VT, OtherVT, Expand); + setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, + OtherVT, VT, Expand); + } + + // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. + setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT, + Custom); + + setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT, + Custom); + + setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, + VT, Custom); + + setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom); + + setOperationAction(ISD::SETCC, VT, Custom); + + setOperationAction(ISD::SELECT, VT, Custom); + + setOperationAction(ISD::TRUNCATE, VT, Custom); + + setOperationAction(ISD::BITCAST, VT, Custom); + + setOperationAction( + {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT, + Custom); + + setOperationAction( + {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT, + Custom); + + setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, + ISD::FP_TO_UINT}, + VT, Custom); + setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT, + Custom); + + // Operations below are different for between masks and other vectors. + if (VT.getVectorElementType() == MVT::i1) { + setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND, + ISD::OR, ISD::XOR}, + VT, Custom); + + setOperationAction({ISD::VP_FP_TO_SINT, ISD::VP_FP_TO_UINT, + ISD::VP_SETCC, ISD::VP_TRUNCATE}, + VT, Custom); + continue; + } + + // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to + // it before type legalization for i64 vectors on RV32. It will then be + // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle. + // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs + // improvements first. + if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { + setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); + setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); + } + + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); + + setOperationAction( + {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom); + + setOperationAction({ISD::VP_LOAD, ISD::VP_STORE, + ISD::EXPERIMENTAL_VP_STRIDED_LOAD, + ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, + ISD::VP_SCATTER}, + VT, Custom); + + setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR, + ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV, + ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL}, + VT, Custom); + + setOperationAction( + {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom); + + // vXi64 MULHS/MULHU requires the V extension instead of Zve64*. + if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV()) + setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom); + + setOperationAction( + {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, + Custom); + + setOperationAction(ISD::VSELECT, VT, Custom); + setOperationAction(ISD::SELECT_CC, VT, Expand); + + setOperationAction( + {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom); + + // Custom-lower reduction operations to set up the corresponding custom + // nodes' operands. + setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX, + ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX, + ISD::VECREDUCE_UMIN}, + VT, Custom); + + setOperationAction(IntegerVPOps, VT, Custom); + + // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if element of VT in the + // range of f32. + EVT FloatVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); + if (isTypeLegal(FloatVT)) + setOperationAction( + {ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, + Custom); + } + + for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { + if (!useRVVForFixedLengthVectorVT(VT)) + continue; + + // By default everything must be expanded. + for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) + setOperationAction(Op, VT, Expand); + for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { + setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); + setTruncStoreAction(VT, OtherVT, Expand); + } + + // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. + setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT, + Custom); + + setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS, + ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT, + ISD::EXTRACT_VECTOR_ELT}, + VT, Custom); + + setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE, + ISD::MGATHER, ISD::MSCATTER}, + VT, Custom); + + setOperationAction({ISD::VP_LOAD, ISD::VP_STORE, + ISD::EXPERIMENTAL_VP_STRIDED_LOAD, + ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, + ISD::VP_SCATTER}, + VT, Custom); + + setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV, + ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT, + ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM}, + VT, Custom); + + setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom); + + setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND, + ISD::FROUNDEVEN}, + VT, Custom); + + setCondCodeAction(VFPCCToExpand, VT, Expand); + + setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom); + setOperationAction(ISD::SELECT_CC, VT, Expand); + + setOperationAction(ISD::BITCAST, VT, Custom); + + setOperationAction(FloatingPointVecReduceOps, VT, Custom); + + setOperationAction(FloatingPointVPOps, VT, Custom); + } + + // Custom-legalize bitcasts from fixed-length vectors to scalar types. + setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64}, + Custom); + if (Subtarget.hasStdExtZfhOrZfhmin()) + setOperationAction(ISD::BITCAST, MVT::f16, Custom); + if (Subtarget.hasStdExtF()) + setOperationAction(ISD::BITCAST, MVT::f32, Custom); + if (Subtarget.hasStdExtD()) + setOperationAction(ISD::BITCAST, MVT::f64, Custom); + } + } + + if (Subtarget.hasForcedAtomics()) { + // Set atomic rmw/cas operations to expand to force __sync libcalls. + setOperationAction( + {ISD::ATOMIC_CMP_SWAP, ISD::ATOMIC_SWAP, ISD::ATOMIC_LOAD_ADD, + ISD::ATOMIC_LOAD_SUB, ISD::ATOMIC_LOAD_AND, ISD::ATOMIC_LOAD_OR, + ISD::ATOMIC_LOAD_XOR, ISD::ATOMIC_LOAD_NAND, ISD::ATOMIC_LOAD_MIN, + ISD::ATOMIC_LOAD_MAX, ISD::ATOMIC_LOAD_UMIN, ISD::ATOMIC_LOAD_UMAX}, + XLenVT, Expand); + } + + // Function alignments. + const Align FunctionAlignment(Subtarget.hasStdExtCOrZca() ? 2 : 4); + setMinFunctionAlignment(FunctionAlignment); + setPrefFunctionAlignment(FunctionAlignment); + + setMinimumJumpTableEntries(5); + + // Jumps are expensive, compared to logic + setJumpIsExpensive(); + + setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND, + ISD::OR, ISD::XOR, ISD::SETCC, ISD::SELECT}); + if (Subtarget.is64Bit()) + setTargetDAGCombine(ISD::SRA); + + if (Subtarget.hasStdExtF()) + setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM}); + + if (Subtarget.hasStdExtZbb()) + setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN}); + + if (Subtarget.hasStdExtZbs() && Subtarget.is64Bit()) + setTargetDAGCombine(ISD::TRUNCATE); + + if (Subtarget.hasStdExtZbkb()) + setTargetDAGCombine(ISD::BITREVERSE); + if (Subtarget.hasStdExtZfhOrZfhmin()) + setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); + if (Subtarget.hasStdExtF()) + setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT, + ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}); + if (Subtarget.hasVInstructions()) + setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER, + ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL, + ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR}); + if (Subtarget.useRVVForFixedLengthVectors()) + setTargetDAGCombine(ISD::BITCAST); + + setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); + setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); +} + +EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, + LLVMContext &Context, + EVT VT) const { + if (!VT.isVector()) + return getPointerTy(DL); + if (Subtarget.hasVInstructions() && + (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) + return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); + return VT.changeVectorElementTypeToInteger(); +} + +MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const { + return Subtarget.getXLenVT(); +} + +bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, + const CallInst &I, + MachineFunction &MF, + unsigned Intrinsic) const { + auto &DL = I.getModule()->getDataLayout(); + switch (Intrinsic) { + default: + return false; + case Intrinsic::riscv_masked_atomicrmw_xchg_i32: + case Intrinsic::riscv_masked_atomicrmw_add_i32: + case Intrinsic::riscv_masked_atomicrmw_sub_i32: + case Intrinsic::riscv_masked_atomicrmw_nand_i32: + case Intrinsic::riscv_masked_atomicrmw_max_i32: + case Intrinsic::riscv_masked_atomicrmw_min_i32: + case Intrinsic::riscv_masked_atomicrmw_umax_i32: + case Intrinsic::riscv_masked_atomicrmw_umin_i32: + case Intrinsic::riscv_masked_cmpxchg_i32: + Info.opc = ISD::INTRINSIC_W_CHAIN; + Info.memVT = MVT::i32; + Info.ptrVal = I.getArgOperand(0); + Info.offset = 0; + Info.align = Align(4); + Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | + MachineMemOperand::MOVolatile; + return true; + case Intrinsic::riscv_masked_strided_load: + Info.opc = ISD::INTRINSIC_W_CHAIN; + Info.ptrVal = I.getArgOperand(1); + Info.memVT = getValueType(DL, I.getType()->getScalarType()); + Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8); + Info.size = MemoryLocation::UnknownSize; + Info.flags |= MachineMemOperand::MOLoad; + return true; + case Intrinsic::riscv_masked_strided_store: + Info.opc = ISD::INTRINSIC_VOID; + Info.ptrVal = I.getArgOperand(1); + Info.memVT = + getValueType(DL, I.getArgOperand(0)->getType()->getScalarType()); + Info.align = Align( + DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) / + 8); + Info.size = MemoryLocation::UnknownSize; + Info.flags |= MachineMemOperand::MOStore; + return true; + case Intrinsic::riscv_seg2_load: + case Intrinsic::riscv_seg3_load: + case Intrinsic::riscv_seg4_load: + case Intrinsic::riscv_seg5_load: + case Intrinsic::riscv_seg6_load: + case Intrinsic::riscv_seg7_load: + case Intrinsic::riscv_seg8_load: + Info.opc = ISD::INTRINSIC_W_CHAIN; + Info.ptrVal = I.getArgOperand(0); + Info.memVT = + getValueType(DL, I.getType()->getStructElementType(0)->getScalarType()); + Info.align = + Align(DL.getTypeSizeInBits( + I.getType()->getStructElementType(0)->getScalarType()) / + 8); + Info.size = MemoryLocation::UnknownSize; + Info.flags |= MachineMemOperand::MOLoad; + return true; + } +} + +bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, + const AddrMode &AM, Type *Ty, + unsigned AS, + Instruction *I) const { + // No global is ever allowed as a base. + if (AM.BaseGV) + return false; + + // RVV instructions only support register addressing. + if (Subtarget.hasVInstructions() && isa<VectorType>(Ty)) + return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs; + + // Require a 12-bit signed offset. + if (!isInt<12>(AM.BaseOffs)) + return false; + + switch (AM.Scale) { + case 0: // "r+i" or just "i", depending on HasBaseReg. + break; + case 1: + if (!AM.HasBaseReg) // allow "r+i". + break; + return false; // disallow "r+r" or "r+r+i". + default: + return false; + } + + return true; +} + +bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { + return isInt<12>(Imm); +} + +bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { + return isInt<12>(Imm); +} + +// On RV32, 64-bit integers are split into their high and low parts and held +// in two different registers, so the trunc is free since the low register can +// just be used. +// FIXME: Should we consider i64->i32 free on RV64 to match the EVT version of +// isTruncateFree? +bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { + if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) + return false; + unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); + unsigned DestBits = DstTy->getPrimitiveSizeInBits(); + return (SrcBits == 64 && DestBits == 32); +} + +bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { + // We consider i64->i32 free on RV64 since we have good selection of W + // instructions that make promoting operations back to i64 free in many cases. + if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() || + !DstVT.isInteger()) + return false; + unsigned SrcBits = SrcVT.getSizeInBits(); + unsigned DestBits = DstVT.getSizeInBits(); + return (SrcBits == 64 && DestBits == 32); +} + +bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { + // Zexts are free if they can be combined with a load. + // Don't advertise i32->i64 zextload as being free for RV64. It interacts + // poorly with type legalization of compares preferring sext. + if (auto *LD = dyn_cast<LoadSDNode>(Val)) { + EVT MemVT = LD->getMemoryVT(); + if ((MemVT == MVT::i8 || MemVT == MVT::i16) && + (LD->getExtensionType() == ISD::NON_EXTLOAD || + LD->getExtensionType() == ISD::ZEXTLOAD)) + return true; + } + + return TargetLowering::isZExtFree(Val, VT2); +} + +bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { + return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; +} + +bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const { + return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32); +} + +bool RISCVTargetLowering::isCheapToSpeculateCttz(Type *Ty) const { + return Subtarget.hasStdExtZbb(); +} + +bool RISCVTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const { + return Subtarget.hasStdExtZbb(); +} + +bool RISCVTargetLowering::isMaskAndCmp0FoldingBeneficial( + const Instruction &AndI) const { + // We expect to be able to match a bit extraction instruction if the Zbs + // extension is supported and the mask is a power of two. However, we + // conservatively return false if the mask would fit in an ANDI instruction, + // on the basis that it's possible the sinking+duplication of the AND in + // CodeGenPrepare triggered by this hook wouldn't decrease the instruction + // count and would increase code size (e.g. ANDI+BNEZ => BEXTI+BNEZ). + if (!Subtarget.hasStdExtZbs()) + return false; + ConstantInt *Mask = dyn_cast<ConstantInt>(AndI.getOperand(1)); + if (!Mask) + return false; + return !Mask->getValue().isSignedIntN(12) && Mask->getValue().isPowerOf2(); +} + +bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const { + EVT VT = Y.getValueType(); + + // FIXME: Support vectors once we have tests. + if (VT.isVector()) + return false; + + return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) && + !isa<ConstantSDNode>(Y); +} + +bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const { + // Zbs provides BEXT[_I], which can be used with SEQZ/SNEZ as a bit test. + if (Subtarget.hasStdExtZbs()) + return X.getValueType().isScalarInteger(); + // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position. + auto *C = dyn_cast<ConstantSDNode>(Y); + return C && C->getAPIntValue().ule(10); +} + +bool RISCVTargetLowering::shouldFoldSelectWithIdentityConstant(unsigned Opcode, + EVT VT) const { + // Only enable for rvv. + if (!VT.isVector() || !Subtarget.hasVInstructions()) + return false; + + if (VT.isFixedLengthVector() && !isTypeLegal(VT)) + return false; + + return true; +} + +bool RISCVTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, + Type *Ty) const { + assert(Ty->isIntegerTy()); + + unsigned BitSize = Ty->getIntegerBitWidth(); + if (BitSize > Subtarget.getXLen()) + return false; + + // Fast path, assume 32-bit immediates are cheap. + int64_t Val = Imm.getSExtValue(); + if (isInt<32>(Val)) + return true; + + // A constant pool entry may be more aligned thant he load we're trying to + // replace. If we don't support unaligned scalar mem, prefer the constant + // pool. + // TODO: Can the caller pass down the alignment? + if (!Subtarget.enableUnalignedScalarMem()) + return true; + + // Prefer to keep the load if it would require many instructions. + // This uses the same threshold we use for constant pools but doesn't + // check useConstantPoolForLargeInts. + // TODO: Should we keep the load only when we're definitely going to emit a + // constant pool? + + RISCVMatInt::InstSeq Seq = + RISCVMatInt::generateInstSeq(Val, Subtarget.getFeatureBits()); + return Seq.size() <= Subtarget.getMaxBuildIntsCost(); +} + +bool RISCVTargetLowering:: + shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( + SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, + unsigned OldShiftOpcode, unsigned NewShiftOpcode, + SelectionDAG &DAG) const { + // One interesting pattern that we'd want to form is 'bit extract': + // ((1 >> Y) & 1) ==/!= 0 + // But we also need to be careful not to try to reverse that fold. + + // Is this '((1 >> Y) & 1)'? + if (XC && OldShiftOpcode == ISD::SRL && XC->isOne()) + return false; // Keep the 'bit extract' pattern. + + // Will this be '((1 >> Y) & 1)' after the transform? + if (NewShiftOpcode == ISD::SRL && CC->isOne()) + return true; // Do form the 'bit extract' pattern. + + // If 'X' is a constant, and we transform, then we will immediately + // try to undo the fold, thus causing endless combine loop. + // So only do the transform if X is not a constant. This matches the default + // implementation of this function. + return !XC; +} + +bool RISCVTargetLowering::canSplatOperand(unsigned Opcode, int Operand) const { + switch (Opcode) { + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + case Instruction::FAdd: + case Instruction::FSub: + case Instruction::FMul: + case Instruction::FDiv: + case Instruction::ICmp: + case Instruction::FCmp: + return true; + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::URem: + case Instruction::SRem: + return Operand == 1; + default: + return false; + } +} + + +bool RISCVTargetLowering::canSplatOperand(Instruction *I, int Operand) const { + if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) + return false; + + if (canSplatOperand(I->getOpcode(), Operand)) + return true; + + auto *II = dyn_cast<IntrinsicInst>(I); + if (!II) + return false; + + switch (II->getIntrinsicID()) { + case Intrinsic::fma: + case Intrinsic::vp_fma: + return Operand == 0 || Operand == 1; + case Intrinsic::vp_shl: + case Intrinsic::vp_lshr: + case Intrinsic::vp_ashr: + case Intrinsic::vp_udiv: + case Intrinsic::vp_sdiv: + case Intrinsic::vp_urem: + case Intrinsic::vp_srem: + return Operand == 1; + // These intrinsics are commutative. + case Intrinsic::vp_add: + case Intrinsic::vp_mul: + case Intrinsic::vp_and: + case Intrinsic::vp_or: + case Intrinsic::vp_xor: + case Intrinsic::vp_fadd: + case Intrinsic::vp_fmul: + // These intrinsics have 'vr' versions. + case Intrinsic::vp_sub: + case Intrinsic::vp_fsub: + case Intrinsic::vp_fdiv: + return Operand == 0 || Operand == 1; + default: + return false; + } +} + +/// Check if sinking \p I's operands to I's basic block is profitable, because +/// the operands can be folded into a target instruction, e.g. +/// splats of scalars can fold into vector instructions. +bool RISCVTargetLowering::shouldSinkOperands( + Instruction *I, SmallVectorImpl<Use *> &Ops) const { + using namespace llvm::PatternMatch; + + if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions()) + return false; + + for (auto OpIdx : enumerate(I->operands())) { + if (!canSplatOperand(I, OpIdx.index())) + continue; + + Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get()); + // Make sure we are not already sinking this operand + if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; })) + continue; + + // We are looking for a splat that can be sunk. + if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), + m_Undef(), m_ZeroMask()))) + continue; + + // All uses of the shuffle should be sunk to avoid duplicating it across gpr + // and vector registers + for (Use &U : Op->uses()) { + Instruction *Insn = cast<Instruction>(U.getUser()); + if (!canSplatOperand(Insn, U.getOperandNo())) + return false; + } + + Ops.push_back(&Op->getOperandUse(0)); + Ops.push_back(&OpIdx.value()); + } + return true; +} + +bool RISCVTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { + unsigned Opc = VecOp.getOpcode(); + + // Assume target opcodes can't be scalarized. + // TODO - do we have any exceptions? + if (Opc >= ISD::BUILTIN_OP_END) + return false; + + // If the vector op is not supported, try to convert to scalar. + EVT VecVT = VecOp.getValueType(); + if (!isOperationLegalOrCustomOrPromote(Opc, VecVT)) + return true; + + // If the vector op is supported, but the scalar op is not, the transform may + // not be worthwhile. + EVT ScalarVT = VecVT.getScalarType(); + return isOperationLegalOrCustomOrPromote(Opc, ScalarVT); +} + +bool RISCVTargetLowering::isOffsetFoldingLegal( + const GlobalAddressSDNode *GA) const { + // In order to maximise the opportunity for common subexpression elimination, + // keep a separate ADD node for the global address offset instead of folding + // it in the global address node. Later peephole optimisations may choose to + // fold it back in when profitable. + return false; +} + +bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, + bool ForCodeSize) const { + if (VT == MVT::f16 && !Subtarget.hasStdExtZfhOrZfhmin()) + return false; + if (VT == MVT::f32 && !Subtarget.hasStdExtF()) + return false; + if (VT == MVT::f64 && !Subtarget.hasStdExtD()) + return false; + return Imm.isZero(); +} + +// TODO: This is very conservative. +bool RISCVTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, + unsigned Index) const { + if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) + return false; + + // Only support extracting a fixed from a fixed vector for now. + if (ResVT.isScalableVector() || SrcVT.isScalableVector()) + return false; + + unsigned ResElts = ResVT.getVectorNumElements(); + unsigned SrcElts = SrcVT.getVectorNumElements(); + + // Convervatively only handle extracting half of a vector. + // TODO: Relax this. + if ((ResElts * 2) != SrcElts) + return false; + + // The smallest type we can slide is i8. + // TODO: We can extract index 0 from a mask vector without a slide. + if (ResVT.getVectorElementType() == MVT::i1) + return false; + + // Slide can support arbitrary index, but we only treat vslidedown.vi as + // cheap. + if (Index >= 32) + return false; + + // TODO: We can do arbitrary slidedowns, but for now only support extracting + // the upper half of a vector until we have more test coverage. + return Index == 0 || Index == ResElts; +} + +bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { + return (VT == MVT::f16 && Subtarget.hasStdExtZfhOrZfhmin()) || + (VT == MVT::f32 && Subtarget.hasStdExtF()) || + (VT == MVT::f64 && Subtarget.hasStdExtD()); +} + +MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, + CallingConv::ID CC, + EVT VT) const { + // Use f32 to pass f16 if it is legal and Zfh/Zfhmin is not enabled. + // We might still end up using a GPR but that will be decided based on ABI. + if (VT == MVT::f16 && Subtarget.hasStdExtF() && + !Subtarget.hasStdExtZfhOrZfhmin()) + return MVT::f32; + + return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); +} + +unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, + CallingConv::ID CC, + EVT VT) const { + // Use f32 to pass f16 if it is legal and Zfh/Zfhmin is not enabled. + // We might still end up using a GPR but that will be decided based on ABI. + if (VT == MVT::f16 && Subtarget.hasStdExtF() && + !Subtarget.hasStdExtZfhOrZfhmin()) + return 1; + + return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); +} + +// Changes the condition code and swaps operands if necessary, so the SetCC +// operation matches one of the comparisons supported directly by branches +// in the RISC-V ISA. May adjust compares to favor compare with 0 over compare +// with 1/-1. +static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, + ISD::CondCode &CC, SelectionDAG &DAG) { + // If this is a single bit test that can't be handled by ANDI, shift the + // bit to be tested to the MSB and perform a signed compare with 0. + if (isIntEqualitySetCC(CC) && isNullConstant(RHS) && + LHS.getOpcode() == ISD::AND && LHS.hasOneUse() && + isa<ConstantSDNode>(LHS.getOperand(1))) { + uint64_t Mask = LHS.getConstantOperandVal(1); + if ((isPowerOf2_64(Mask) || isMask_64(Mask)) && !isInt<12>(Mask)) { + unsigned ShAmt = 0; + if (isPowerOf2_64(Mask)) { + CC = CC == ISD::SETEQ ? ISD::SETGE : ISD::SETLT; + ShAmt = LHS.getValueSizeInBits() - 1 - Log2_64(Mask); + } else { + ShAmt = LHS.getValueSizeInBits() - llvm::bit_width(Mask); + } + + LHS = LHS.getOperand(0); + if (ShAmt != 0) + LHS = DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS, + DAG.getConstant(ShAmt, DL, LHS.getValueType())); + return; + } + } + + if (auto *RHSC = dyn_cast<ConstantSDNode>(RHS)) { + int64_t C = RHSC->getSExtValue(); + switch (CC) { + default: break; + case ISD::SETGT: + // Convert X > -1 to X >= 0. + if (C == -1) { + RHS = DAG.getConstant(0, DL, RHS.getValueType()); + CC = ISD::SETGE; + return; + } + break; + case ISD::SETLT: + // Convert X < 1 to 0 <= X. + if (C == 1) { + RHS = LHS; + LHS = DAG.getConstant(0, DL, RHS.getValueType()); + CC = ISD::SETGE; + return; + } + break; + } + } + + switch (CC) { + default: + break; + case ISD::SETGT: + case ISD::SETLE: + case ISD::SETUGT: + case ISD::SETULE: + CC = ISD::getSetCCSwappedOperands(CC); + std::swap(LHS, RHS); + break; + } +} + +RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { + assert(VT.isScalableVector() && "Expecting a scalable vector type"); + unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); + if (VT.getVectorElementType() == MVT::i1) + KnownSize *= 8; + + switch (KnownSize) { + default: + llvm_unreachable("Invalid LMUL."); + case 8: + return RISCVII::VLMUL::LMUL_F8; + case 16: + return RISCVII::VLMUL::LMUL_F4; + case 32: + return RISCVII::VLMUL::LMUL_F2; + case 64: + return RISCVII::VLMUL::LMUL_1; + case 128: + return RISCVII::VLMUL::LMUL_2; + case 256: + return RISCVII::VLMUL::LMUL_4; + case 512: + return RISCVII::VLMUL::LMUL_8; + } +} + +unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { + switch (LMul) { + default: + llvm_unreachable("Invalid LMUL."); + case RISCVII::VLMUL::LMUL_F8: + case RISCVII::VLMUL::LMUL_F4: + case RISCVII::VLMUL::LMUL_F2: + case RISCVII::VLMUL::LMUL_1: + return RISCV::VRRegClassID; + case RISCVII::VLMUL::LMUL_2: + return RISCV::VRM2RegClassID; + case RISCVII::VLMUL::LMUL_4: + return RISCV::VRM4RegClassID; + case RISCVII::VLMUL::LMUL_8: + return RISCV::VRM8RegClassID; + } +} + +unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { + RISCVII::VLMUL LMUL = getLMUL(VT); + if (LMUL == RISCVII::VLMUL::LMUL_F8 || + LMUL == RISCVII::VLMUL::LMUL_F4 || + LMUL == RISCVII::VLMUL::LMUL_F2 || + LMUL == RISCVII::VLMUL::LMUL_1) { + static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, + "Unexpected subreg numbering"); + return RISCV::sub_vrm1_0 + Index; + } + if (LMUL == RISCVII::VLMUL::LMUL_2) { + static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, + "Unexpected subreg numbering"); + return RISCV::sub_vrm2_0 + Index; + } + if (LMUL == RISCVII::VLMUL::LMUL_4) { + static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, + "Unexpected subreg numbering"); + return RISCV::sub_vrm4_0 + Index; + } + llvm_unreachable("Invalid vector type."); +} + +unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { + if (VT.getVectorElementType() == MVT::i1) + return RISCV::VRRegClassID; + return getRegClassIDForLMUL(getLMUL(VT)); +} + +// Attempt to decompose a subvector insert/extract between VecVT and +// SubVecVT via subregister indices. Returns the subregister index that +// can perform the subvector insert/extract with the given element index, as +// well as the index corresponding to any leftover subvectors that must be +// further inserted/extracted within the register class for SubVecVT. +std::pair<unsigned, unsigned> +RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( + MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, + const RISCVRegisterInfo *TRI) { + static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && + RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && + RISCV::VRM2RegClassID > RISCV::VRRegClassID), + "Register classes not ordered"); + unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); + unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); + // Try to compose a subregister index that takes us from the incoming + // LMUL>1 register class down to the outgoing one. At each step we half + // the LMUL: + // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 + // Note that this is not guaranteed to find a subregister index, such as + // when we are extracting from one VR type to another. + unsigned SubRegIdx = RISCV::NoSubRegister; + for (const unsigned RCID : + {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) + if (VecRegClassID > RCID && SubRegClassID <= RCID) { + VecVT = VecVT.getHalfNumVectorElementsVT(); + bool IsHi = + InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); + SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, + getSubregIndexByMVT(VecVT, IsHi)); + if (IsHi) + InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); + } + return {SubRegIdx, InsertExtractIdx}; +} + +// Permit combining of mask vectors as BUILD_VECTOR never expands to scalar +// stores for those types. +bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const { + return !Subtarget.useRVVForFixedLengthVectors() || + (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1); +} + +bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const { + if (ScalarTy->isPointerTy()) + return true; + + if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) || + ScalarTy->isIntegerTy(32)) + return true; + + if (ScalarTy->isIntegerTy(64)) + return Subtarget.hasVInstructionsI64(); + + if (ScalarTy->isHalfTy()) + return Subtarget.hasVInstructionsF16(); + if (ScalarTy->isFloatTy()) + return Subtarget.hasVInstructionsF32(); + if (ScalarTy->isDoubleTy()) + return Subtarget.hasVInstructionsF64(); + + return false; +} + +unsigned RISCVTargetLowering::combineRepeatedFPDivisors() const { + return NumRepeatedDivisors; +} + +static SDValue getVLOperand(SDValue Op) { + assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && + "Unexpected opcode"); + bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; + unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); + const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = + RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); + if (!II) + return SDValue(); + return Op.getOperand(II->VLOperand + 1 + HasChain); +} + +static bool useRVVForFixedLengthVectorVT(MVT VT, + const RISCVSubtarget &Subtarget) { + assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); + if (!Subtarget.useRVVForFixedLengthVectors()) + return false; + + // We only support a set of vector types with a consistent maximum fixed size + // across all supported vector element types to avoid legalization issues. + // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest + // fixed-length vector type we support is 1024 bytes. + if (VT.getFixedSizeInBits() > 1024 * 8) + return false; + + unsigned MinVLen = Subtarget.getRealMinVLen(); + + MVT EltVT = VT.getVectorElementType(); + + // Don't use RVV for vectors we cannot scalarize if required. + switch (EltVT.SimpleTy) { + // i1 is supported but has different rules. + default: + return false; + case MVT::i1: + // Masks can only use a single register. + if (VT.getVectorNumElements() > MinVLen) + return false; + MinVLen /= 8; + break; + case MVT::i8: + case MVT::i16: + case MVT::i32: + break; + case MVT::i64: + if (!Subtarget.hasVInstructionsI64()) + return false; + break; + case MVT::f16: + if (!Subtarget.hasVInstructionsF16()) + return false; + break; + case MVT::f32: + if (!Subtarget.hasVInstructionsF32()) + return false; + break; + case MVT::f64: + if (!Subtarget.hasVInstructionsF64()) + return false; + break; + } + + // Reject elements larger than ELEN. + if (EltVT.getSizeInBits() > Subtarget.getELEN()) + return false; + + unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); + // Don't use RVV for types that don't fit. + if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) + return false; + + // TODO: Perhaps an artificial restriction, but worth having whilst getting + // the base fixed length RVV support in place. + if (!VT.isPow2VectorType()) + return false; + + return true; +} + +bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { + return ::useRVVForFixedLengthVectorVT(VT, Subtarget); +} + +// Return the largest legal scalable vector type that matches VT's element type. +static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, + const RISCVSubtarget &Subtarget) { + // This may be called before legal types are setup. + assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || + useRVVForFixedLengthVectorVT(VT, Subtarget)) && + "Expected legal fixed length vector!"); + + unsigned MinVLen = Subtarget.getRealMinVLen(); + unsigned MaxELen = Subtarget.getELEN(); + + MVT EltVT = VT.getVectorElementType(); + switch (EltVT.SimpleTy) { + default: + llvm_unreachable("unexpected element type for RVV container"); + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + case MVT::i64: + case MVT::f16: + case MVT::f32: + case MVT::f64: { + // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for + // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within + // each fractional LMUL we support SEW between 8 and LMUL*ELEN. + unsigned NumElts = + (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen; + NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen); + assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts"); + return MVT::getScalableVectorVT(EltVT, NumElts); + } + } +} + +static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, + const RISCVSubtarget &Subtarget) { + return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, + Subtarget); +} + +MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { + return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); +} + +// Grow V to consume an entire RVV register. +static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + assert(VT.isScalableVector() && + "Expected to convert into a scalable vector!"); + assert(V.getValueType().isFixedLengthVector() && + "Expected a fixed length vector operand!"); + SDLoc DL(V); + SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); + return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); +} + +// Shrink V so it's just big enough to maintain a VT's worth of data. +static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + assert(VT.isFixedLengthVector() && + "Expected to convert into a fixed length vector!"); + assert(V.getValueType().isScalableVector() && + "Expected a scalable vector operand!"); + SDLoc DL(V); + SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); +} + +/// Return the type of the mask type suitable for masking the provided +/// vector type. This is simply an i1 element type vector of the same +/// (possibly scalable) length. +static MVT getMaskTypeFor(MVT VecVT) { + assert(VecVT.isVector()); + ElementCount EC = VecVT.getVectorElementCount(); + return MVT::getVectorVT(MVT::i1, EC); +} + +/// Creates an all ones mask suitable for masking a vector of type VecTy with +/// vector length VL. . +static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL, + SelectionDAG &DAG) { + MVT MaskVT = getMaskTypeFor(VecVT); + return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); +} + +static SDValue getVLOp(uint64_t NumElts, SDLoc DL, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + return DAG.getConstant(NumElts, DL, Subtarget.getXLenVT()); +} + +static std::pair<SDValue, SDValue> +getDefaultVLOps(uint64_t NumElts, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); + SDValue VL = getVLOp(NumElts, DL, DAG, Subtarget); + SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); + return {Mask, VL}; +} + +// Gets the two common "VL" operands: an all-ones mask and the vector length. +// VecVT is a vector type, either fixed-length or scalable, and ContainerVT is +// the vector type that the fixed-length vector is contained in. Otherwise if +// VecVT is scalable, then ContainerVT should be the same as VecVT. +static std::pair<SDValue, SDValue> +getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + if (VecVT.isFixedLengthVector()) + return getDefaultVLOps(VecVT.getVectorNumElements(), ContainerVT, DL, DAG, + Subtarget); + assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); + MVT XLenVT = Subtarget.getXLenVT(); + SDValue VL = DAG.getRegister(RISCV::X0, XLenVT); + SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG); + return {Mask, VL}; +} + +// As above but assuming the given type is a scalable vector type. +static std::pair<SDValue, SDValue> +getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + assert(VecVT.isScalableVector() && "Expecting a scalable vector"); + return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); +} + +// The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few +// of either is (currently) supported. This can get us into an infinite loop +// where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR +// as a ..., etc. +// Until either (or both) of these can reliably lower any node, reporting that +// we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks +// the infinite loop. Note that this lowers BUILD_VECTOR through the stack, +// which is not desirable. +bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( + EVT VT, unsigned DefinedValues) const { + return false; +} + +static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + // RISCV FP-to-int conversions saturate to the destination register size, but + // don't produce 0 for nan. We can use a conversion instruction and fix the + // nan case with a compare and a select. + SDValue Src = Op.getOperand(0); + + MVT DstVT = Op.getSimpleValueType(); + EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); + + bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT; + + if (!DstVT.isVector()) { + // In absense of Zfh, promote f16 to f32, then saturate the result. + if (Src.getSimpleValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) { + Src = DAG.getNode(ISD::FP_EXTEND, SDLoc(Op), MVT::f32, Src); + } + + unsigned Opc; + if (SatVT == DstVT) + Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; + else if (DstVT == MVT::i64 && SatVT == MVT::i32) + Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; + else + return SDValue(); + // FIXME: Support other SatVTs by clamping before or after the conversion. + + SDLoc DL(Op); + SDValue FpToInt = DAG.getNode( + Opc, DL, DstVT, Src, + DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT())); + + if (Opc == RISCVISD::FCVT_WU_RV64) + FpToInt = DAG.getZeroExtendInReg(FpToInt, DL, MVT::i32); + + SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); + return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, + ISD::CondCode::SETUO); + } + + // Vectors. + + MVT DstEltVT = DstVT.getVectorElementType(); + MVT SrcVT = Src.getSimpleValueType(); + MVT SrcEltVT = SrcVT.getVectorElementType(); + unsigned SrcEltSize = SrcEltVT.getSizeInBits(); + unsigned DstEltSize = DstEltVT.getSizeInBits(); + + // Only handle saturating to the destination type. + if (SatVT != DstEltVT) + return SDValue(); + + // FIXME: Don't support narrowing by more than 1 steps for now. + if (SrcEltSize > (2 * DstEltSize)) + return SDValue(); + + MVT DstContainerVT = DstVT; + MVT SrcContainerVT = SrcVT; + if (DstVT.isFixedLengthVector()) { + DstContainerVT = getContainerForFixedLengthVector(DAG, DstVT, Subtarget); + SrcContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget); + assert(DstContainerVT.getVectorElementCount() == + SrcContainerVT.getVectorElementCount() && + "Expected same element count"); + Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); + } + + SDLoc DL(Op); + + auto [Mask, VL] = getDefaultVLOps(DstVT, DstContainerVT, DL, DAG, Subtarget); + + SDValue IsNan = DAG.getNode(RISCVISD::SETCC_VL, DL, Mask.getValueType(), + {Src, Src, DAG.getCondCode(ISD::SETNE), + DAG.getUNDEF(Mask.getValueType()), Mask, VL}); + + // Need to widen by more than 1 step, promote the FP type, then do a widening + // convert. + if (DstEltSize > (2 * SrcEltSize)) { + assert(SrcContainerVT.getVectorElementType() == MVT::f16 && "Unexpected VT!"); + MVT InterVT = SrcContainerVT.changeVectorElementType(MVT::f32); + Src = DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterVT, Src, Mask, VL); + } + + unsigned RVVOpc = + IsSigned ? RISCVISD::VFCVT_RTZ_X_F_VL : RISCVISD::VFCVT_RTZ_XU_F_VL; + SDValue Res = DAG.getNode(RVVOpc, DL, DstContainerVT, Src, Mask, VL); + + SDValue SplatZero = DAG.getNode( + RISCVISD::VMV_V_X_VL, DL, DstContainerVT, DAG.getUNDEF(DstContainerVT), + DAG.getConstant(0, DL, Subtarget.getXLenVT()), VL); + Res = DAG.getNode(RISCVISD::VSELECT_VL, DL, DstContainerVT, IsNan, SplatZero, + Res, VL); + + if (DstVT.isFixedLengthVector()) + Res = convertFromScalableVector(DstVT, Res, DAG, Subtarget); + + return Res; +} + +static RISCVFPRndMode::RoundingMode matchRoundingOp(unsigned Opc) { + switch (Opc) { + case ISD::FROUNDEVEN: + case ISD::VP_FROUNDEVEN: + return RISCVFPRndMode::RNE; + case ISD::FTRUNC: + case ISD::VP_FROUNDTOZERO: + return RISCVFPRndMode::RTZ; + case ISD::FFLOOR: + case ISD::VP_FFLOOR: + return RISCVFPRndMode::RDN; + case ISD::FCEIL: + case ISD::VP_FCEIL: + return RISCVFPRndMode::RUP; + case ISD::FROUND: + case ISD::VP_FROUND: + return RISCVFPRndMode::RMM; + case ISD::FRINT: + return RISCVFPRndMode::DYN; + } + + return RISCVFPRndMode::Invalid; +} + +// Expand vector FTRUNC, FCEIL, FFLOOR, FROUND, VP_FCEIL, VP_FFLOOR, VP_FROUND +// VP_FROUNDEVEN, VP_FROUNDTOZERO, VP_FRINT and VP_FNEARBYINT by converting to +// the integer domain and back. Taking care to avoid converting values that are +// nan or already correct. +static SDValue +lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(SDValue Op, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + MVT VT = Op.getSimpleValueType(); + assert(VT.isVector() && "Unexpected type"); + + SDLoc DL(Op); + + SDValue Src = Op.getOperand(0); + + MVT ContainerVT = VT; + if (VT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); + Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); + } + + SDValue Mask, VL; + if (Op->isVPOpcode()) { + Mask = Op.getOperand(1); + VL = Op.getOperand(2); + } else { + std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); + } + + // Freeze the source since we are increasing the number of uses. + Src = DAG.getFreeze(Src); + + // We do the conversion on the absolute value and fix the sign at the end. + SDValue Abs = DAG.getNode(RISCVISD::FABS_VL, DL, ContainerVT, Src, Mask, VL); + + // Determine the largest integer that can be represented exactly. This and + // values larger than it don't have any fractional bits so don't need to + // be converted. + const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(ContainerVT); + unsigned Precision = APFloat::semanticsPrecision(FltSem); + APFloat MaxVal = APFloat(FltSem); + MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), + /*IsSigned*/ false, APFloat::rmNearestTiesToEven); + SDValue MaxValNode = + DAG.getConstantFP(MaxVal, DL, ContainerVT.getVectorElementType()); + SDValue MaxValSplat = DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, ContainerVT, + DAG.getUNDEF(ContainerVT), MaxValNode, VL); + + // If abs(Src) was larger than MaxVal or nan, keep it. + MVT SetccVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); + Mask = + DAG.getNode(RISCVISD::SETCC_VL, DL, SetccVT, + {Abs, MaxValSplat, DAG.getCondCode(ISD::SETOLT), + Mask, Mask, VL}); + + // Truncate to integer and convert back to FP. + MVT IntVT = ContainerVT.changeVectorElementTypeToInteger(); + MVT XLenVT = Subtarget.getXLenVT(); + SDValue Truncated; + + switch (Op.getOpcode()) { + default: + llvm_unreachable("Unexpected opcode"); + case ISD::FCEIL: + case ISD::VP_FCEIL: + case ISD::FFLOOR: + case ISD::VP_FFLOOR: + case ISD::FROUND: + case ISD::FROUNDEVEN: + case ISD::VP_FROUND: + case ISD::VP_FROUNDEVEN: + case ISD::VP_FROUNDTOZERO: { + RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Op.getOpcode()); + assert(FRM != RISCVFPRndMode::Invalid); + Truncated = DAG.getNode(RISCVISD::VFCVT_RM_X_F_VL, DL, IntVT, Src, Mask, + DAG.getTargetConstant(FRM, DL, XLenVT), VL); + break; + } + case ISD::FTRUNC: + Truncated = DAG.getNode(RISCVISD::VFCVT_RTZ_X_F_VL, DL, IntVT, Src, + Mask, VL); + break; + case ISD::VP_FRINT: + Truncated = DAG.getNode(RISCVISD::VFCVT_X_F_VL, DL, IntVT, Src, Mask, VL); + break; + case ISD::VP_FNEARBYINT: + Truncated = DAG.getNode(RISCVISD::VFROUND_NOEXCEPT_VL, DL, ContainerVT, Src, + Mask, VL); + break; + } + + // VFROUND_NOEXCEPT_VL includes SINT_TO_FP_VL. + if (Op.getOpcode() != ISD::VP_FNEARBYINT) + Truncated = DAG.getNode(RISCVISD::SINT_TO_FP_VL, DL, ContainerVT, Truncated, + Mask, VL); + + // Restore the original sign so that -0.0 is preserved. + Truncated = DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Truncated, + Src, Src, Mask, VL); + + if (!VT.isFixedLengthVector()) + return Truncated; + + return convertFromScalableVector(VT, Truncated, DAG, Subtarget); +} + +static SDValue +lowerFTRUNC_FCEIL_FFLOOR_FROUND(SDValue Op, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + MVT VT = Op.getSimpleValueType(); + if (VT.isVector()) + return lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget); + + if (DAG.shouldOptForSize()) + return SDValue(); + + SDLoc DL(Op); + SDValue Src = Op.getOperand(0); + + // Create an integer the size of the mantissa with the MSB set. This and all + // values larger than it don't have any fractional bits so don't need to be + // converted. + const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); + unsigned Precision = APFloat::semanticsPrecision(FltSem); + APFloat MaxVal = APFloat(FltSem); + MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1), + /*IsSigned*/ false, APFloat::rmNearestTiesToEven); + SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT); + + RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Op.getOpcode()); + return DAG.getNode(RISCVISD::FROUND, DL, VT, Src, MaxValNode, + DAG.getTargetConstant(FRM, DL, Subtarget.getXLenVT())); +} + +struct VIDSequence { + int64_t StepNumerator; + unsigned StepDenominator; + int64_t Addend; +}; + +static std::optional<uint64_t> getExactInteger(const APFloat &APF, + uint32_t BitWidth) { + APSInt ValInt(BitWidth, !APF.isNegative()); + // We use an arbitrary rounding mode here. If a floating-point is an exact + // integer (e.g., 1.0), the rounding mode does not affect the output value. If + // the rounding mode changes the output value, then it is not an exact + // integer. + RoundingMode ArbitraryRM = RoundingMode::TowardZero; + bool IsExact; + // If it is out of signed integer range, it will return an invalid operation. + // If it is not an exact integer, IsExact is false. + if ((APF.convertToInteger(ValInt, ArbitraryRM, &IsExact) == + APFloatBase::opInvalidOp) || + !IsExact) + return std::nullopt; + return ValInt.extractBitsAsZExtValue(BitWidth, 0); +} + +// Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S] +// to the (non-zero) step S and start value X. This can be then lowered as the +// RVV sequence (VID * S) + X, for example. +// The step S is represented as an integer numerator divided by a positive +// denominator. Note that the implementation currently only identifies +// sequences in which either the numerator is +/- 1 or the denominator is 1. It +// cannot detect 2/3, for example. +// Note that this method will also match potentially unappealing index +// sequences, like <i32 0, i32 50939494>, however it is left to the caller to +// determine whether this is worth generating code for. +static std::optional<VIDSequence> isSimpleVIDSequence(SDValue Op) { + unsigned NumElts = Op.getNumOperands(); + assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR"); + bool IsInteger = Op.getValueType().isInteger(); + + std::optional<unsigned> SeqStepDenom; + std::optional<int64_t> SeqStepNum, SeqAddend; + std::optional<std::pair<uint64_t, unsigned>> PrevElt; + unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits(); + for (unsigned Idx = 0; Idx < NumElts; Idx++) { + // Assume undef elements match the sequence; we just have to be careful + // when interpolating across them. + if (Op.getOperand(Idx).isUndef()) + continue; + + uint64_t Val; + if (IsInteger) { + // The BUILD_VECTOR must be all constants. + if (!isa<ConstantSDNode>(Op.getOperand(Idx))) + return std::nullopt; + Val = Op.getConstantOperandVal(Idx) & + maskTrailingOnes<uint64_t>(EltSizeInBits); + } else { + // The BUILD_VECTOR must be all constants. + if (!isa<ConstantFPSDNode>(Op.getOperand(Idx))) + return std::nullopt; + if (auto ExactInteger = getExactInteger( + cast<ConstantFPSDNode>(Op.getOperand(Idx))->getValueAPF(), + EltSizeInBits)) + Val = *ExactInteger; + else + return std::nullopt; + } + + if (PrevElt) { + // Calculate the step since the last non-undef element, and ensure + // it's consistent across the entire sequence. + unsigned IdxDiff = Idx - PrevElt->second; + int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits); + + // A zero-value value difference means that we're somewhere in the middle + // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a + // step change before evaluating the sequence. + if (ValDiff == 0) + continue; + + int64_t Remainder = ValDiff % IdxDiff; + // Normalize the step if it's greater than 1. + if (Remainder != ValDiff) { + // The difference must cleanly divide the element span. + if (Remainder != 0) + return std::nullopt; + ValDiff /= IdxDiff; + IdxDiff = 1; + } + + if (!SeqStepNum) + SeqStepNum = ValDiff; + else if (ValDiff != SeqStepNum) + return std::nullopt; + + if (!SeqStepDenom) + SeqStepDenom = IdxDiff; + else if (IdxDiff != *SeqStepDenom) + return std::nullopt; + } + + // Record this non-undef element for later. + if (!PrevElt || PrevElt->first != Val) + PrevElt = std::make_pair(Val, Idx); + } + + // We need to have logged a step for this to count as a legal index sequence. + if (!SeqStepNum || !SeqStepDenom) + return std::nullopt; + + // Loop back through the sequence and validate elements we might have skipped + // while waiting for a valid step. While doing this, log any sequence addend. + for (unsigned Idx = 0; Idx < NumElts; Idx++) { + if (Op.getOperand(Idx).isUndef()) + continue; + uint64_t Val; + if (IsInteger) { + Val = Op.getConstantOperandVal(Idx) & + maskTrailingOnes<uint64_t>(EltSizeInBits); + } else { + Val = *getExactInteger( + cast<ConstantFPSDNode>(Op.getOperand(Idx))->getValueAPF(), + EltSizeInBits); + } + uint64_t ExpectedVal = + (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom; + int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits); + if (!SeqAddend) + SeqAddend = Addend; + else if (Addend != SeqAddend) + return std::nullopt; + } + + assert(SeqAddend && "Must have an addend if we have a step"); + + return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend}; +} + +// Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT +// and lower it as a VRGATHER_VX_VL from the source vector. +static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL, + SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT) + return SDValue(); + SDValue Vec = SplatVal.getOperand(0); + // Only perform this optimization on vectors of the same size for simplicity. + // Don't perform this optimization for i1 vectors. + // FIXME: Support i1 vectors, maybe by promoting to i8? + if (Vec.getValueType() != VT || VT.getVectorElementType() == MVT::i1) + return SDValue(); + SDValue Idx = SplatVal.getOperand(1); + // The index must be a legal type. + if (Idx.getValueType() != Subtarget.getXLenVT()) + return SDValue(); + + MVT ContainerVT = VT; + if (VT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); + Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); + } + + auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); + + SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec, + Idx, DAG.getUNDEF(ContainerVT), Mask, VL); + + if (!VT.isFixedLengthVector()) + return Gather; + + return convertFromScalableVector(VT, Gather, DAG, Subtarget); +} + +static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + MVT VT = Op.getSimpleValueType(); + assert(VT.isFixedLengthVector() && "Unexpected vector!"); + + MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); + + SDLoc DL(Op); + auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); + + MVT XLenVT = Subtarget.getXLenVT(); + unsigned NumElts = Op.getNumOperands(); + + if (VT.getVectorElementType() == MVT::i1) { + if (ISD::isBuildVectorAllZeros(Op.getNode())) { + SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); + return convertFromScalableVector(VT, VMClr, DAG, Subtarget); + } + + if (ISD::isBuildVectorAllOnes(Op.getNode())) { + SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); + return convertFromScalableVector(VT, VMSet, DAG, Subtarget); + } + + // Lower constant mask BUILD_VECTORs via an integer vector type, in + // scalar integer chunks whose bit-width depends on the number of mask + // bits and XLEN. + // First, determine the most appropriate scalar integer type to use. This + // is at most XLenVT, but may be shrunk to a smaller vector element type + // according to the size of the final vector - use i8 chunks rather than + // XLenVT if we're producing a v8i1. This results in more consistent + // codegen across RV32 and RV64. + unsigned NumViaIntegerBits = + std::min(std::max(NumElts, 8u), Subtarget.getXLen()); + NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN()); + if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { + // If we have to use more than one INSERT_VECTOR_ELT then this + // optimization is likely to increase code size; avoid peforming it in + // such a case. We can use a load from a constant pool in this case. + if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) + return SDValue(); + // Now we can create our integer vector type. Note that it may be larger + // than the resulting mask type: v4i1 would use v1i8 as its integer type. + MVT IntegerViaVecVT = + MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), + divideCeil(NumElts, NumViaIntegerBits)); + + uint64_t Bits = 0; + unsigned BitPos = 0, IntegerEltIdx = 0; + SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); + + for (unsigned I = 0; I < NumElts; I++, BitPos++) { + // Once we accumulate enough bits to fill our scalar type, insert into + // our vector and clear our accumulated data. + if (I != 0 && I % NumViaIntegerBits == 0) { + if (NumViaIntegerBits <= 32) + Bits = SignExtend64<32>(Bits); + SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); + Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, + Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); + Bits = 0; + BitPos = 0; + IntegerEltIdx++; + } + SDValue V = Op.getOperand(I); + bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); + Bits |= ((uint64_t)BitValue << BitPos); + } + + // Insert the (remaining) scalar value into position in our integer + // vector type. + if (NumViaIntegerBits <= 32) + Bits = SignExtend64<32>(Bits); + SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); + Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, + DAG.getConstant(IntegerEltIdx, DL, XLenVT)); + + if (NumElts < NumViaIntegerBits) { + // If we're producing a smaller vector than our minimum legal integer + // type, bitcast to the equivalent (known-legal) mask type, and extract + // our final mask. + assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); + Vec = DAG.getBitcast(MVT::v8i1, Vec); + Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, + DAG.getConstant(0, DL, XLenVT)); + } else { + // Else we must have produced an integer type with the same size as the + // mask type; bitcast for the final result. + assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); + Vec = DAG.getBitcast(VT, Vec); + } + + return Vec; + } + + // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask + // vector type, we have a legal equivalently-sized i8 type, so we can use + // that. + MVT WideVecVT = VT.changeVectorElementType(MVT::i8); + SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); + + SDValue WideVec; + if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { + // For a splat, perform a scalar truncate before creating the wider + // vector. + assert(Splat.getValueType() == XLenVT && + "Unexpected type for i1 splat value"); + Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, + DAG.getConstant(1, DL, XLenVT)); + WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); + } else { + SmallVector<SDValue, 8> Ops(Op->op_values()); + WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); + SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); + WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); + } + + return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); + } + + if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { + if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget)) + return Gather; + unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL + : RISCVISD::VMV_V_X_VL; + Splat = + DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL); + return convertFromScalableVector(VT, Splat, DAG, Subtarget); + } + + // Try and match index sequences, which we can lower to the vid instruction + // with optional modifications. An all-undef vector is matched by + // getSplatValue, above. + if (auto SimpleVID = isSimpleVIDSequence(Op)) { + int64_t StepNumerator = SimpleVID->StepNumerator; + unsigned StepDenominator = SimpleVID->StepDenominator; + int64_t Addend = SimpleVID->Addend; + + assert(StepNumerator != 0 && "Invalid step"); + bool Negate = false; + int64_t SplatStepVal = StepNumerator; + unsigned StepOpcode = ISD::MUL; + if (StepNumerator != 1) { + if (isPowerOf2_64(std::abs(StepNumerator))) { + Negate = StepNumerator < 0; + StepOpcode = ISD::SHL; + SplatStepVal = Log2_64(std::abs(StepNumerator)); + } + } + + // Only emit VIDs with suitably-small steps/addends. We use imm5 is a + // threshold since it's the immediate value many RVV instructions accept. + // There is no vmul.vi instruction so ensure multiply constant can fit in + // a single addi instruction. + if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) || + (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) && + isPowerOf2_32(StepDenominator) && + (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) { + MVT VIDVT = + VT.isFloatingPoint() ? VT.changeVectorElementTypeToInteger() : VT; + MVT VIDContainerVT = + getContainerForFixedLengthVector(DAG, VIDVT, Subtarget); + SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VIDContainerVT, Mask, VL); + // Convert right out of the scalable type so we can use standard ISD + // nodes for the rest of the computation. If we used scalable types with + // these, we'd lose the fixed-length vector info and generate worse + // vsetvli code. + VID = convertFromScalableVector(VIDVT, VID, DAG, Subtarget); + if ((StepOpcode == ISD::MUL && SplatStepVal != 1) || + (StepOpcode == ISD::SHL && SplatStepVal != 0)) { + SDValue SplatStep = DAG.getSplatBuildVector( + VIDVT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT)); + VID = DAG.getNode(StepOpcode, DL, VIDVT, VID, SplatStep); + } + if (StepDenominator != 1) { + SDValue SplatStep = DAG.getSplatBuildVector( + VIDVT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT)); + VID = DAG.getNode(ISD::SRL, DL, VIDVT, VID, SplatStep); + } + if (Addend != 0 || Negate) { + SDValue SplatAddend = DAG.getSplatBuildVector( + VIDVT, DL, DAG.getConstant(Addend, DL, XLenVT)); + VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VIDVT, SplatAddend, + VID); + } + if (VT.isFloatingPoint()) { + // TODO: Use vfwcvt to reduce register pressure. + VID = DAG.getNode(ISD::SINT_TO_FP, DL, VT, VID); + } + return VID; + } + } + + // Attempt to detect "hidden" splats, which only reveal themselves as splats + // when re-interpreted as a vector with a larger element type. For example, + // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 + // could be instead splat as + // v2i32 = build_vector i32 0x00010000, i32 0x00010000 + // TODO: This optimization could also work on non-constant splats, but it + // would require bit-manipulation instructions to construct the splat value. + SmallVector<SDValue> Sequence; + unsigned EltBitSize = VT.getScalarSizeInBits(); + const auto *BV = cast<BuildVectorSDNode>(Op); + if (VT.isInteger() && EltBitSize < 64 && + ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && + BV->getRepeatedSequence(Sequence) && + (Sequence.size() * EltBitSize) <= 64) { + unsigned SeqLen = Sequence.size(); + MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); + MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); + assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || + ViaIntVT == MVT::i64) && + "Unexpected sequence type"); + + unsigned EltIdx = 0; + uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); + uint64_t SplatValue = 0; + // Construct the amalgamated value which can be splatted as this larger + // vector type. + for (const auto &SeqV : Sequence) { + if (!SeqV.isUndef()) + SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) + << (EltIdx * EltBitSize)); + EltIdx++; + } + + // On RV64, sign-extend from 32 to 64 bits where possible in order to + // achieve better constant materializion. + if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) + SplatValue = SignExtend64<32>(SplatValue); + + // Since we can't introduce illegal i64 types at this stage, we can only + // perform an i64 splat on RV32 if it is its own sign-extended value. That + // way we can use RVV instructions to splat. + assert((ViaIntVT.bitsLE(XLenVT) || + (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && + "Unexpected bitcast sequence"); + if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { + SDValue ViaVL = + DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); + MVT ViaContainerVT = + getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); + SDValue Splat = + DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, + DAG.getUNDEF(ViaContainerVT), + DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); + Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); + return DAG.getBitcast(VT, Splat); + } + } + + // Try and optimize BUILD_VECTORs with "dominant values" - these are values + // which constitute a large proportion of the elements. In such cases we can + // splat a vector with the dominant element and make up the shortfall with + // INSERT_VECTOR_ELTs. + // Note that this includes vectors of 2 elements by association. The + // upper-most element is the "dominant" one, allowing us to use a splat to + // "insert" the upper element, and an insert of the lower element at position + // 0, which improves codegen. + SDValue DominantValue; + unsigned MostCommonCount = 0; + DenseMap<SDValue, unsigned> ValueCounts; + unsigned NumUndefElts = + count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); + + // Track the number of scalar loads we know we'd be inserting, estimated as + // any non-zero floating-point constant. Other kinds of element are either + // already in registers or are materialized on demand. The threshold at which + // a vector load is more desirable than several scalar materializion and + // vector-insertion instructions is not known. + unsigned NumScalarLoads = 0; + + for (SDValue V : Op->op_values()) { + if (V.isUndef()) + continue; + + ValueCounts.insert(std::make_pair(V, 0)); + unsigned &Count = ValueCounts[V]; + + if (auto *CFP = dyn_cast<ConstantFPSDNode>(V)) + NumScalarLoads += !CFP->isExactlyValue(+0.0); + + // Is this value dominant? In case of a tie, prefer the highest element as + // it's cheaper to insert near the beginning of a vector than it is at the + // end. + if (++Count >= MostCommonCount) { + DominantValue = V; + MostCommonCount = Count; + } + } + + assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); + unsigned NumDefElts = NumElts - NumUndefElts; + unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; + + // Don't perform this optimization when optimizing for size, since + // materializing elements and inserting them tends to cause code bloat. + if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts && + ((MostCommonCount > DominantValueCountThreshold) || + (ValueCounts.size() <= Log2_32(NumDefElts)))) { + // Start by splatting the most common element. + SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); + + DenseSet<SDValue> Processed{DominantValue}; + MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); + for (const auto &OpIdx : enumerate(Op->ops())) { + const SDValue &V = OpIdx.value(); + if (V.isUndef() || !Processed.insert(V).second) + continue; + if (ValueCounts[V] == 1) { + Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, + DAG.getConstant(OpIdx.index(), DL, XLenVT)); + } else { + // Blend in all instances of this value using a VSELECT, using a + // mask where each bit signals whether that element is the one + // we're after. + SmallVector<SDValue> Ops; + transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { + return DAG.getConstant(V == V1, DL, XLenVT); + }); + Vec = DAG.getNode(ISD::VSELECT, DL, VT, + DAG.getBuildVector(SelMaskTy, DL, Ops), + DAG.getSplatBuildVector(VT, DL, V), Vec); + } + } + + return Vec; + } + + return SDValue(); +} + +static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, + SDValue Lo, SDValue Hi, SDValue VL, + SelectionDAG &DAG) { + if (!Passthru) + Passthru = DAG.getUNDEF(VT); + if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { + int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); + int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); + // If Hi constant is all the same sign bit as Lo, lower this as a custom + // node in order to try and match RVV vector/scalar instructions. + if ((LoC >> 31) == HiC) + return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL); + + // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use + // vmv.v.x whose EEW = 32 to lower it. + auto *Const = dyn_cast<ConstantSDNode>(VL); + if (LoC == HiC && Const && Const->isAllOnesValue()) { + MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); + // TODO: if vl <= min(VLMAX), we can also do this. But we could not + // access the subtarget here now. + auto InterVec = DAG.getNode( + RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo, + DAG.getRegister(RISCV::X0, MVT::i32)); + return DAG.getNode(ISD::BITCAST, DL, VT, InterVec); + } + } + + // Fall back to a stack store and stride x0 vector load. + return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo, + Hi, VL); +} + +// Called by type legalization to handle splat of i64 on RV32. +// FIXME: We can optimize this when the type has sign or zero bits in one +// of the halves. +static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru, + SDValue Scalar, SDValue VL, + SelectionDAG &DAG) { + assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); + SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, + DAG.getConstant(0, DL, MVT::i32)); + SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, + DAG.getConstant(1, DL, MVT::i32)); + return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG); +} + +// This function lowers a splat of a scalar operand Splat with the vector +// length VL. It ensures the final sequence is type legal, which is useful when +// lowering a splat after type legalization. +static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL, + MVT VT, SDLoc DL, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + bool HasPassthru = Passthru && !Passthru.isUndef(); + if (!HasPassthru && !Passthru) + Passthru = DAG.getUNDEF(VT); + if (VT.isFloatingPoint()) { + // If VL is 1, we could use vfmv.s.f. + if (isOneConstant(VL)) + return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL); + return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL); + } + + MVT XLenVT = Subtarget.getXLenVT(); + + // Simplest case is that the operand needs to be promoted to XLenVT. + if (Scalar.getValueType().bitsLE(XLenVT)) { + // If the operand is a constant, sign extend to increase our chances + // of being able to use a .vi instruction. ANY_EXTEND would become a + // a zero extend and the simm5 check in isel would fail. + // FIXME: Should we ignore the upper bits in isel instead? + unsigned ExtOpc = + isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; + Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); + ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar); + // If VL is 1 and the scalar value won't benefit from immediate, we could + // use vmv.s.x. + if (isOneConstant(VL) && + (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue()))) + return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL); + return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); + } + + assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && + "Unexpected scalar for splat lowering!"); + + if (isOneConstant(VL) && isNullConstant(Scalar)) + return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, + DAG.getConstant(0, DL, XLenVT), VL); + + // Otherwise use the more complicated splatting algorithm. + return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG); +} + +static MVT getLMUL1VT(MVT VT) { + assert(VT.getVectorElementType().getSizeInBits() <= 64 && + "Unexpected vector MVT"); + return MVT::getScalableVectorVT( + VT.getVectorElementType(), + RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); +} + +// This function lowers an insert of a scalar operand Scalar into lane +// 0 of the vector regardless of the value of VL. The contents of the +// remaining lanes of the result vector are unspecified. VL is assumed +// to be non-zero. +static SDValue lowerScalarInsert(SDValue Scalar, SDValue VL, + MVT VT, SDLoc DL, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + const MVT XLenVT = Subtarget.getXLenVT(); + + SDValue Passthru = DAG.getUNDEF(VT); + if (VT.isFloatingPoint()) { + // TODO: Use vmv.v.i for appropriate constants + // Use M1 or smaller to avoid over constraining register allocation + const MVT M1VT = getLMUL1VT(VT); + auto InnerVT = VT.bitsLE(M1VT) ? VT : M1VT; + SDValue Result = DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, InnerVT, + DAG.getUNDEF(InnerVT), Scalar, VL); + if (VT != InnerVT) + Result = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, + DAG.getUNDEF(VT), + Result, DAG.getConstant(0, DL, XLenVT)); + return Result; + } + + + // Avoid the tricky legalization cases by falling back to using the + // splat code which already handles it gracefully. + if (!Scalar.getValueType().bitsLE(XLenVT)) + return lowerScalarSplat(DAG.getUNDEF(VT), Scalar, + DAG.getConstant(1, DL, XLenVT), + VT, DL, DAG, Subtarget); + + // If the operand is a constant, sign extend to increase our chances + // of being able to use a .vi instruction. ANY_EXTEND would become a + // a zero extend and the simm5 check in isel would fail. + // FIXME: Should we ignore the upper bits in isel instead? + unsigned ExtOpc = + isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; + Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); + // We use a vmv.v.i if possible. We limit this to LMUL1. LMUL2 or + // higher would involve overly constraining the register allocator for + // no purpose. + if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar)) { + if (!isNullConstant(Scalar) && isInt<5>(Const->getSExtValue()) && + VT.bitsLE(getLMUL1VT(VT))) + return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL); + } + // Use M1 or smaller to avoid over constraining register allocation + const MVT M1VT = getLMUL1VT(VT); + auto InnerVT = VT.bitsLE(M1VT) ? VT : M1VT; + SDValue Result = DAG.getNode(RISCVISD::VMV_S_X_VL, DL, InnerVT, + DAG.getUNDEF(InnerVT), Scalar, VL); + if (VT != InnerVT) + Result = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, + DAG.getUNDEF(VT), + Result, DAG.getConstant(0, DL, XLenVT)); + return Result; + +} + +static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources, + const RISCVSubtarget &Subtarget) { + // We need to be able to widen elements to the next larger integer type. + if (VT.getScalarSizeInBits() >= Subtarget.getELEN()) + return false; + + int Size = Mask.size(); + assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); + + int Srcs[] = {-1, -1}; + for (int i = 0; i != Size; ++i) { + // Ignore undef elements. + if (Mask[i] < 0) + continue; + + // Is this an even or odd element. + int Pol = i % 2; + + // Ensure we consistently use the same source for this element polarity. + int Src = Mask[i] / Size; + if (Srcs[Pol] < 0) + Srcs[Pol] = Src; + if (Srcs[Pol] != Src) + return false; + + // Make sure the element within the source is appropriate for this element + // in the destination. + int Elt = Mask[i] % Size; + if (Elt != i / 2) + return false; + } + + // We need to find a source for each polarity and they can't be the same. + if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1]) + return false; + + // Swap the sources if the second source was in the even polarity. + SwapSources = Srcs[0] > Srcs[1]; + + return true; +} + +/// Match shuffles that concatenate two vectors, rotate the concatenation, +/// and then extract the original number of elements from the rotated result. +/// This is equivalent to vector.splice or X86's PALIGNR instruction. The +/// returned rotation amount is for a rotate right, where elements move from +/// higher elements to lower elements. \p LoSrc indicates the first source +/// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector +/// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be +/// 0 or 1 if a rotation is found. +/// +/// NOTE: We talk about rotate to the right which matches how bit shift and +/// rotate instructions are described where LSBs are on the right, but LLVM IR +/// and the table below write vectors with the lowest elements on the left. +static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) { + int Size = Mask.size(); + + // We need to detect various ways of spelling a rotation: + // [11, 12, 13, 14, 15, 0, 1, 2] + // [-1, 12, 13, 14, -1, -1, 1, -1] + // [-1, -1, -1, -1, -1, -1, 1, 2] + // [ 3, 4, 5, 6, 7, 8, 9, 10] + // [-1, 4, 5, 6, -1, -1, 9, -1] + // [-1, 4, 5, 6, -1, -1, -1, -1] + int Rotation = 0; + LoSrc = -1; + HiSrc = -1; + for (int i = 0; i != Size; ++i) { + int M = Mask[i]; + if (M < 0) + continue; + + // Determine where a rotate vector would have started. + int StartIdx = i - (M % Size); + // The identity rotation isn't interesting, stop. + if (StartIdx == 0) + return -1; + + // If we found the tail of a vector the rotation must be the missing + // front. If we found the head of a vector, it must be how much of the + // head. + int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx; + + if (Rotation == 0) + Rotation = CandidateRotation; + else if (Rotation != CandidateRotation) + // The rotations don't match, so we can't match this mask. + return -1; + + // Compute which value this mask is pointing at. + int MaskSrc = M < Size ? 0 : 1; + + // Compute which of the two target values this index should be assigned to. + // This reflects whether the high elements are remaining or the low elemnts + // are remaining. + int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc; + + // Either set up this value if we've not encountered it before, or check + // that it remains consistent. + if (TargetSrc < 0) + TargetSrc = MaskSrc; + else if (TargetSrc != MaskSrc) + // This may be a rotation, but it pulls from the inputs in some + // unsupported interleaving. + return -1; + } + + // Check that we successfully analyzed the mask, and normalize the results. + assert(Rotation != 0 && "Failed to locate a viable rotation!"); + assert((LoSrc >= 0 || HiSrc >= 0) && + "Failed to find a rotated input vector!"); + + return Rotation; +} + +// Lower the following shuffles to vnsrl. +// t34: v8i8 = extract_subvector t11, Constant:i64<0> +// t33: v8i8 = extract_subvector t11, Constant:i64<8> +// a) t35: v8i8 = vector_shuffle<0,2,4,6,8,10,12,14> t34, t33 +// b) t35: v8i8 = vector_shuffle<1,3,5,7,9,11,13,15> t34, t33 +static SDValue lowerVECTOR_SHUFFLEAsVNSRL(const SDLoc &DL, MVT VT, + MVT ContainerVT, SDValue V1, + SDValue V2, SDValue TrueMask, + SDValue VL, ArrayRef<int> Mask, + const RISCVSubtarget &Subtarget, + SelectionDAG &DAG) { + // Need to be able to widen the vector. + if (VT.getScalarSizeInBits() >= Subtarget.getELEN()) + return SDValue(); + + // Both input must be extracts. + if (V1.getOpcode() != ISD::EXTRACT_SUBVECTOR || + V2.getOpcode() != ISD::EXTRACT_SUBVECTOR) + return SDValue(); + + // Extracting from the same source. + SDValue Src = V1.getOperand(0); + if (Src != V2.getOperand(0)) + return SDValue(); + + // Src needs to have twice the number of elements. + if (Src.getValueType().getVectorNumElements() != (Mask.size() * 2)) + return SDValue(); + + // The extracts must extract the two halves of the source. + if (V1.getConstantOperandVal(1) != 0 || + V2.getConstantOperandVal(1) != Mask.size()) + return SDValue(); + + // First index must be the first even or odd element from V1. + if (Mask[0] != 0 && Mask[0] != 1) + return SDValue(); + + // The others must increase by 2 each time. + // TODO: Support undef elements? + for (unsigned i = 1; i != Mask.size(); ++i) + if (Mask[i] != Mask[i - 1] + 2) + return SDValue(); + + // Convert the source using a container type with twice the elements. Since + // source VT is legal and twice this VT, we know VT isn't LMUL=8 so it is + // safe to double. + MVT DoubleContainerVT = + MVT::getVectorVT(ContainerVT.getVectorElementType(), + ContainerVT.getVectorElementCount() * 2); + Src = convertToScalableVector(DoubleContainerVT, Src, DAG, Subtarget); + + // Convert the vector to a wider integer type with the original element + // count. This also converts FP to int. + unsigned EltBits = ContainerVT.getScalarSizeInBits(); + MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); + MVT WideIntContainerVT = + MVT::getVectorVT(WideIntEltVT, ContainerVT.getVectorElementCount()); + Src = DAG.getBitcast(WideIntContainerVT, Src); + + // Convert to the integer version of the container type. + MVT IntEltVT = MVT::getIntegerVT(EltBits); + MVT IntContainerVT = + MVT::getVectorVT(IntEltVT, ContainerVT.getVectorElementCount()); + + // If we want even elements, then the shift amount is 0. Otherwise, shift by + // the original element size. + unsigned Shift = Mask[0] == 0 ? 0 : EltBits; + SDValue SplatShift = DAG.getNode( + RISCVISD::VMV_V_X_VL, DL, IntContainerVT, DAG.getUNDEF(ContainerVT), + DAG.getConstant(Shift, DL, Subtarget.getXLenVT()), VL); + SDValue Res = + DAG.getNode(RISCVISD::VNSRL_VL, DL, IntContainerVT, Src, SplatShift, + DAG.getUNDEF(IntContainerVT), TrueMask, VL); + // Cast back to FP if needed. + Res = DAG.getBitcast(ContainerVT, Res); + + return convertFromScalableVector(VT, Res, DAG, Subtarget); +} + +static SDValue +getVSlidedown(SelectionDAG &DAG, const RISCVSubtarget &Subtarget, SDLoc DL, + EVT VT, SDValue Merge, SDValue Op, SDValue Offset, SDValue Mask, + SDValue VL, + unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED) { + if (Merge.isUndef()) + Policy = RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC; + SDValue PolicyOp = DAG.getTargetConstant(Policy, DL, Subtarget.getXLenVT()); + SDValue Ops[] = {Merge, Op, Offset, Mask, VL, PolicyOp}; + return DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VT, Ops); +} + +static SDValue +getVSlideup(SelectionDAG &DAG, const RISCVSubtarget &Subtarget, SDLoc DL, + EVT VT, SDValue Merge, SDValue Op, SDValue Offset, SDValue Mask, + SDValue VL, + unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED) { + if (Merge.isUndef()) + Policy = RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC; + SDValue PolicyOp = DAG.getTargetConstant(Policy, DL, Subtarget.getXLenVT()); + SDValue Ops[] = {Merge, Op, Offset, Mask, VL, PolicyOp}; + return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VT, Ops); +} + +// Lower the following shuffle to vslidedown. +// a) +// t49: v8i8 = extract_subvector t13, Constant:i64<0> +// t109: v8i8 = extract_subvector t13, Constant:i64<8> +// t108: v8i8 = vector_shuffle<1,2,3,4,5,6,7,8> t49, t106 +// b) +// t69: v16i16 = extract_subvector t68, Constant:i64<0> +// t23: v8i16 = extract_subvector t69, Constant:i64<0> +// t29: v4i16 = extract_subvector t23, Constant:i64<4> +// t26: v8i16 = extract_subvector t69, Constant:i64<8> +// t30: v4i16 = extract_subvector t26, Constant:i64<0> +// t54: v4i16 = vector_shuffle<1,2,3,4> t29, t30 +static SDValue lowerVECTOR_SHUFFLEAsVSlidedown(const SDLoc &DL, MVT VT, + SDValue V1, SDValue V2, + ArrayRef<int> Mask, + const RISCVSubtarget &Subtarget, + SelectionDAG &DAG) { + auto findNonEXTRACT_SUBVECTORParent = + [](SDValue Parent) -> std::pair<SDValue, uint64_t> { + uint64_t Offset = 0; + while (Parent.getOpcode() == ISD::EXTRACT_SUBVECTOR && + // EXTRACT_SUBVECTOR can be used to extract a fixed-width vector from + // a scalable vector. But we don't want to match the case. + Parent.getOperand(0).getSimpleValueType().isFixedLengthVector()) { + Offset += Parent.getConstantOperandVal(1); + Parent = Parent.getOperand(0); + } + return std::make_pair(Parent, Offset); + }; + + auto [V1Src, V1IndexOffset] = findNonEXTRACT_SUBVECTORParent(V1); + auto [V2Src, V2IndexOffset] = findNonEXTRACT_SUBVECTORParent(V2); + + // Extracting from the same source. + SDValue Src = V1Src; + if (Src != V2Src) + return SDValue(); + + // Rebuild mask because Src may be from multiple EXTRACT_SUBVECTORs. + SmallVector<int, 16> NewMask(Mask); + for (size_t i = 0; i != NewMask.size(); ++i) { + if (NewMask[i] == -1) + continue; + + if (static_cast<size_t>(NewMask[i]) < NewMask.size()) { + NewMask[i] = NewMask[i] + V1IndexOffset; + } else { + // Minus NewMask.size() is needed. Otherwise, the b case would be + // <5,6,7,12> instead of <5,6,7,8>. + NewMask[i] = NewMask[i] - NewMask.size() + V2IndexOffset; + } + } + + // First index must be known and non-zero. It will be used as the slidedown + // amount. + if (NewMask[0] <= 0) + return SDValue(); + + // NewMask is also continuous. + for (unsigned i = 1; i != NewMask.size(); ++i) + if (NewMask[i - 1] + 1 != NewMask[i]) + return SDValue(); + + MVT XLenVT = Subtarget.getXLenVT(); + MVT SrcVT = Src.getSimpleValueType(); + MVT ContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget); + auto [TrueMask, VL] = getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); + SDValue Slidedown = + getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT), + convertToScalableVector(ContainerVT, Src, DAG, Subtarget), + DAG.getConstant(NewMask[0], DL, XLenVT), TrueMask, VL); + return DAG.getNode( + ISD::EXTRACT_SUBVECTOR, DL, VT, + convertFromScalableVector(SrcVT, Slidedown, DAG, Subtarget), + DAG.getConstant(0, DL, XLenVT)); +} + +static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + SDValue V1 = Op.getOperand(0); + SDValue V2 = Op.getOperand(1); + SDLoc DL(Op); + MVT XLenVT = Subtarget.getXLenVT(); + MVT VT = Op.getSimpleValueType(); + unsigned NumElts = VT.getVectorNumElements(); + ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); + + MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); + + auto [TrueMask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); + + if (SVN->isSplat()) { + const int Lane = SVN->getSplatIndex(); + if (Lane >= 0) { + MVT SVT = VT.getVectorElementType(); + + // Turn splatted vector load into a strided load with an X0 stride. + SDValue V = V1; + // Peek through CONCAT_VECTORS as VectorCombine can concat a vector + // with undef. + // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? + int Offset = Lane; + if (V.getOpcode() == ISD::CONCAT_VECTORS) { + int OpElements = + V.getOperand(0).getSimpleValueType().getVectorNumElements(); + V = V.getOperand(Offset / OpElements); + Offset %= OpElements; + } + + // We need to ensure the load isn't atomic or volatile. + if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { + auto *Ld = cast<LoadSDNode>(V); + Offset *= SVT.getStoreSize(); + SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), + TypeSize::Fixed(Offset), DL); + + // If this is SEW=64 on RV32, use a strided load with a stride of x0. + if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { + SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); + SDValue IntID = + DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); + SDValue Ops[] = {Ld->getChain(), + IntID, + DAG.getUNDEF(ContainerVT), + NewAddr, + DAG.getRegister(RISCV::X0, XLenVT), + VL}; + SDValue NewLoad = DAG.getMemIntrinsicNode( + ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, + DAG.getMachineFunction().getMachineMemOperand( + Ld->getMemOperand(), Offset, SVT.getStoreSize())); + DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); + return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); + } + + // Otherwise use a scalar load and splat. This will give the best + // opportunity to fold a splat into the operation. ISel can turn it into + // the x0 strided load if we aren't able to fold away the select. + if (SVT.isFloatingPoint()) + V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, + Ld->getPointerInfo().getWithOffset(Offset), + Ld->getOriginalAlign(), + Ld->getMemOperand()->getFlags()); + else + V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, + Ld->getPointerInfo().getWithOffset(Offset), SVT, + Ld->getOriginalAlign(), + Ld->getMemOperand()->getFlags()); + DAG.makeEquivalentMemoryOrdering(Ld, V); + + unsigned Opc = + VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; + SDValue Splat = + DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL); + return convertFromScalableVector(VT, Splat, DAG, Subtarget); + } + + V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); + assert(Lane < (int)NumElts && "Unexpected lane!"); + SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, + V1, DAG.getConstant(Lane, DL, XLenVT), + DAG.getUNDEF(ContainerVT), TrueMask, VL); + return convertFromScalableVector(VT, Gather, DAG, Subtarget); + } + } + + ArrayRef<int> Mask = SVN->getMask(); + + if (SDValue V = + lowerVECTOR_SHUFFLEAsVSlidedown(DL, VT, V1, V2, Mask, Subtarget, DAG)) + return V; + + // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may + // be undef which can be handled with a single SLIDEDOWN/UP. + int LoSrc, HiSrc; + int Rotation = isElementRotate(LoSrc, HiSrc, Mask); + if (Rotation > 0) { + SDValue LoV, HiV; + if (LoSrc >= 0) { + LoV = LoSrc == 0 ? V1 : V2; + LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget); + } + if (HiSrc >= 0) { + HiV = HiSrc == 0 ? V1 : V2; + HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget); + } + + // We found a rotation. We need to slide HiV down by Rotation. Then we need + // to slide LoV up by (NumElts - Rotation). + unsigned InvRotate = NumElts - Rotation; + + SDValue Res = DAG.getUNDEF(ContainerVT); + if (HiV) { + // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN. + // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it + // causes multiple vsetvlis in some test cases such as lowering + // reduce.mul + SDValue DownVL = VL; + if (LoV) + DownVL = DAG.getConstant(InvRotate, DL, XLenVT); + Res = getVSlidedown(DAG, Subtarget, DL, ContainerVT, Res, HiV, + DAG.getConstant(Rotation, DL, XLenVT), TrueMask, + DownVL); + } + if (LoV) + Res = getVSlideup(DAG, Subtarget, DL, ContainerVT, Res, LoV, + DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL, + RISCVII::TAIL_AGNOSTIC); + + return convertFromScalableVector(VT, Res, DAG, Subtarget); + } + + if (SDValue V = lowerVECTOR_SHUFFLEAsVNSRL( + DL, VT, ContainerVT, V1, V2, TrueMask, VL, Mask, Subtarget, DAG)) + return V; + + // Detect an interleave shuffle and lower to + // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1)) + bool SwapSources; + if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) { + // Swap sources if needed. + if (SwapSources) + std::swap(V1, V2); + + // Extract the lower half of the vectors. + MVT HalfVT = VT.getHalfNumVectorElementsVT(); + V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, + DAG.getConstant(0, DL, XLenVT)); + V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2, + DAG.getConstant(0, DL, XLenVT)); + + // Double the element width and halve the number of elements in an int type. + unsigned EltBits = VT.getScalarSizeInBits(); + MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2); + MVT WideIntVT = + MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2); + // Convert this to a scalable vector. We need to base this on the + // destination size to ensure there's always a type with a smaller LMUL. + MVT WideIntContainerVT = + getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget); + + // Convert sources to scalable vectors with the same element count as the + // larger type. + MVT HalfContainerVT = MVT::getVectorVT( + VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount()); + V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget); + V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget); + + // Cast sources to integer. + MVT IntEltVT = MVT::getIntegerVT(EltBits); + MVT IntHalfVT = + MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount()); + V1 = DAG.getBitcast(IntHalfVT, V1); + V2 = DAG.getBitcast(IntHalfVT, V2); + + // Freeze V2 since we use it twice and we need to be sure that the add and + // multiply see the same value. + V2 = DAG.getFreeze(V2); + + // Recreate TrueMask using the widened type's element count. + TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG); + + // Widen V1 and V2 with 0s and add one copy of V2 to V1. + SDValue Add = + DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1, V2, + DAG.getUNDEF(WideIntContainerVT), TrueMask, VL); + // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer. + SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT, + DAG.getUNDEF(IntHalfVT), + DAG.getAllOnesConstant(DL, XLenVT), VL); + SDValue WidenMul = + DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT, V2, Multiplier, + DAG.getUNDEF(WideIntContainerVT), TrueMask, VL); + // Add the new copies to our previous addition giving us 2^eltbits copies of + // V2. This is equivalent to shifting V2 left by eltbits. This should + // combine with the vwmulu.vv above to form vwmaccu.vv. + Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul, + DAG.getUNDEF(WideIntContainerVT), TrueMask, VL); + // Cast back to ContainerVT. We need to re-create a new ContainerVT in case + // WideIntContainerVT is a larger fractional LMUL than implied by the fixed + // vector VT. + ContainerVT = + MVT::getVectorVT(VT.getVectorElementType(), + WideIntContainerVT.getVectorElementCount() * 2); + Add = DAG.getBitcast(ContainerVT, Add); + return convertFromScalableVector(VT, Add, DAG, Subtarget); + } + + // Detect shuffles which can be re-expressed as vector selects; these are + // shuffles in which each element in the destination is taken from an element + // at the corresponding index in either source vectors. + bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) { + int MaskIndex = MaskIdx.value(); + return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; + }); + + assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); + + SmallVector<SDValue> MaskVals; + // As a backup, shuffles can be lowered via a vrgather instruction, possibly + // merged with a second vrgather. + SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; + + // By default we preserve the original operand order, and use a mask to + // select LHS as true and RHS as false. However, since RVV vector selects may + // feature splats but only on the LHS, we may choose to invert our mask and + // instead select between RHS and LHS. + bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); + bool InvertMask = IsSelect == SwapOps; + + // Keep a track of which non-undef indices are used by each LHS/RHS shuffle + // half. + DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts; + + // Now construct the mask that will be used by the vselect or blended + // vrgather operation. For vrgathers, construct the appropriate indices into + // each vector. + for (int MaskIndex : Mask) { + bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; + MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); + if (!IsSelect) { + bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts; + GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0 + ? DAG.getConstant(MaskIndex, DL, XLenVT) + : DAG.getUNDEF(XLenVT)); + GatherIndicesRHS.push_back( + IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT) + : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT)); + if (IsLHSOrUndefIndex && MaskIndex >= 0) + ++LHSIndexCounts[MaskIndex]; + if (!IsLHSOrUndefIndex) + ++RHSIndexCounts[MaskIndex - NumElts]; + } + } + + if (SwapOps) { + std::swap(V1, V2); + std::swap(GatherIndicesLHS, GatherIndicesRHS); + } + + assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); + MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); + SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); + + if (IsSelect) + return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); + + if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { + // On such a large vector we're unable to use i8 as the index type. + // FIXME: We could promote the index to i16 and use vrgatherei16, but that + // may involve vector splitting if we're already at LMUL=8, or our + // user-supplied maximum fixed-length LMUL. + return SDValue(); + } + + unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL; + unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL; + MVT IndexVT = VT.changeTypeToInteger(); + // Since we can't introduce illegal index types at this stage, use i16 and + // vrgatherei16 if the corresponding index type for plain vrgather is greater + // than XLenVT. + if (IndexVT.getScalarType().bitsGT(XLenVT)) { + GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL; + IndexVT = IndexVT.changeVectorElementType(MVT::i16); + } + + MVT IndexContainerVT = + ContainerVT.changeVectorElementType(IndexVT.getScalarType()); + + SDValue Gather; + // TODO: This doesn't trigger for i64 vectors on RV32, since there we + // encounter a bitcasted BUILD_VECTOR with low/high i32 values. + if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { + Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG, + Subtarget); + } else { + V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); + // If only one index is used, we can use a "splat" vrgather. + // TODO: We can splat the most-common index and fix-up any stragglers, if + // that's beneficial. + if (LHSIndexCounts.size() == 1) { + int SplatIndex = LHSIndexCounts.begin()->getFirst(); + Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V1, + DAG.getConstant(SplatIndex, DL, XLenVT), + DAG.getUNDEF(ContainerVT), TrueMask, VL); + } else { + SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); + LHSIndices = + convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); + + Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices, + DAG.getUNDEF(ContainerVT), TrueMask, VL); + } + } + + // If a second vector operand is used by this shuffle, blend it in with an + // additional vrgather. + if (!V2.isUndef()) { + V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); + + MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); + SelectMask = + convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); + + // If only one index is used, we can use a "splat" vrgather. + // TODO: We can splat the most-common index and fix-up any stragglers, if + // that's beneficial. + if (RHSIndexCounts.size() == 1) { + int SplatIndex = RHSIndexCounts.begin()->getFirst(); + Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2, + DAG.getConstant(SplatIndex, DL, XLenVT), Gather, + SelectMask, VL); + } else { + SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); + RHSIndices = + convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); + Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices, Gather, + SelectMask, VL); + } + } + + return convertFromScalableVector(VT, Gather, DAG, Subtarget); +} + +bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { + // Support splats for any type. These should type legalize well. + if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) + return true; + + // Only support legal VTs for other shuffles for now. + if (!isTypeLegal(VT)) + return false; + + MVT SVT = VT.getSimpleVT(); + + bool SwapSources; + int LoSrc, HiSrc; + return (isElementRotate(LoSrc, HiSrc, M) > 0) || + isInterleaveShuffle(M, SVT, SwapSources, Subtarget); +} + +// Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting +// the exponent. +SDValue +RISCVTargetLowering::lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, + SelectionDAG &DAG) const { + MVT VT = Op.getSimpleValueType(); + unsigned EltSize = VT.getScalarSizeInBits(); + SDValue Src = Op.getOperand(0); + SDLoc DL(Op); + + // We choose FP type that can represent the value if possible. Otherwise, we + // use rounding to zero conversion for correct exponent of the result. + // TODO: Use f16 for i8 when possible? + MVT FloatEltVT = (EltSize >= 32) ? MVT::f64 : MVT::f32; + if (!isTypeLegal(MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()))) + FloatEltVT = MVT::f32; + MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount()); + + // Legal types should have been checked in the RISCVTargetLowering + // constructor. + // TODO: Splitting may make sense in some cases. + assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) && + "Expected legal float type!"); + + // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X. + // The trailing zero count is equal to log2 of this single bit value. + if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { + SDValue Neg = DAG.getNegative(Src, DL, VT); + Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg); + } + + // We have a legal FP type, convert to it. + SDValue FloatVal; + if (FloatVT.bitsGT(VT)) { + FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src); + } else { + // Use RTZ to avoid rounding influencing exponent of FloatVal. + MVT ContainerVT = VT; + if (VT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VT); + Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); + } + + auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); + SDValue RTZRM = + DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()); + MVT ContainerFloatVT = + MVT::getVectorVT(FloatEltVT, ContainerVT.getVectorElementCount()); + FloatVal = DAG.getNode(RISCVISD::VFCVT_RM_F_XU_VL, DL, ContainerFloatVT, + Src, Mask, RTZRM, VL); + if (VT.isFixedLengthVector()) + FloatVal = convertFromScalableVector(FloatVT, FloatVal, DAG, Subtarget); + } + // Bitcast to integer and shift the exponent to the LSB. + EVT IntVT = FloatVT.changeVectorElementTypeToInteger(); + SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal); + unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23; + SDValue Exp = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast, + DAG.getConstant(ShiftAmt, DL, IntVT)); + // Restore back to original type. Truncation after SRL is to generate vnsrl. + if (IntVT.bitsLT(VT)) + Exp = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Exp); + else if (IntVT.bitsGT(VT)) + Exp = DAG.getNode(ISD::TRUNCATE, DL, VT, Exp); + // The exponent contains log2 of the value in biased form. + unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127; + + // For trailing zeros, we just need to subtract the bias. + if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) + return DAG.getNode(ISD::SUB, DL, VT, Exp, + DAG.getConstant(ExponentBias, DL, VT)); + + // For leading zeros, we need to remove the bias and convert from log2 to + // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)). + unsigned Adjust = ExponentBias + (EltSize - 1); + SDValue Res = + DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Exp); + // The above result with zero input equals to Adjust which is greater than + // EltSize. Hence, we can do min(Res, EltSize) for CTLZ. + if (Op.getOpcode() == ISD::CTLZ) + Res = DAG.getNode(ISD::UMIN, DL, VT, Res, DAG.getConstant(EltSize, DL, VT)); + return Res; +} + +// While RVV has alignment restrictions, we should always be able to load as a +// legal equivalently-sized byte-typed vector instead. This method is +// responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If +// the load is already correctly-aligned, it returns SDValue(). +SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op, + SelectionDAG &DAG) const { + auto *Load = cast<LoadSDNode>(Op); + assert(Load && Load->getMemoryVT().isVector() && "Expected vector load"); + + if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), + Load->getMemoryVT(), + *Load->getMemOperand())) + return SDValue(); + + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + unsigned EltSizeBits = VT.getScalarSizeInBits(); + assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && + "Unexpected unaligned RVV load type"); + MVT NewVT = + MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); + assert(NewVT.isValid() && + "Expecting equally-sized RVV vector types to be legal"); + SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(), + Load->getPointerInfo(), Load->getOriginalAlign(), + Load->getMemOperand()->getFlags()); + return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL); +} + +// While RVV has alignment restrictions, we should always be able to store as a +// legal equivalently-sized byte-typed vector instead. This method is +// responsible for re-expressing a ISD::STORE via a correctly-aligned type. It +// returns SDValue() if the store is already correctly aligned. +SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op, + SelectionDAG &DAG) const { + auto *Store = cast<StoreSDNode>(Op); + assert(Store && Store->getValue().getValueType().isVector() && + "Expected vector store"); + + if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), + Store->getMemoryVT(), + *Store->getMemOperand())) + return SDValue(); + + SDLoc DL(Op); + SDValue StoredVal = Store->getValue(); + MVT VT = StoredVal.getSimpleValueType(); + unsigned EltSizeBits = VT.getScalarSizeInBits(); + assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) && + "Unexpected unaligned RVV store type"); + MVT NewVT = + MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8)); + assert(NewVT.isValid() && + "Expecting equally-sized RVV vector types to be legal"); + StoredVal = DAG.getBitcast(NewVT, StoredVal); + return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(), + Store->getPointerInfo(), Store->getOriginalAlign(), + Store->getMemOperand()->getFlags()); +} + +static SDValue lowerConstant(SDValue Op, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + assert(Op.getValueType() == MVT::i64 && "Unexpected VT"); + + int64_t Imm = cast<ConstantSDNode>(Op)->getSExtValue(); + + // All simm32 constants should be handled by isel. + // NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making + // this check redundant, but small immediates are common so this check + // should have better compile time. + if (isInt<32>(Imm)) + return Op; + + // We only need to cost the immediate, if constant pool lowering is enabled. + if (!Subtarget.useConstantPoolForLargeInts()) + return Op; + + RISCVMatInt::InstSeq Seq = + RISCVMatInt::generateInstSeq(Imm, Subtarget.getFeatureBits()); + if (Seq.size() <= Subtarget.getMaxBuildIntsCost()) + return Op; + + // Expand to a constant pool using the default expansion code. + return SDValue(); +} + +static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) { + SDLoc dl(Op); + SyncScope::ID FenceSSID = + static_cast<SyncScope::ID>(Op.getConstantOperandVal(2)); + + // singlethread fences only synchronize with signal handlers on the same + // thread and thus only need to preserve instruction order, not actually + // enforce memory ordering. + if (FenceSSID == SyncScope::SingleThread) + // MEMBARRIER is a compiler barrier; it codegens to a no-op. + return DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); + + return Op; +} + +SDValue RISCVTargetLowering::LowerOperation(SDValue Op, + SelectionDAG &DAG) const { + switch (Op.getOpcode()) { + default: + report_fatal_error("unimplemented operand"); + case ISD::ATOMIC_FENCE: + return LowerATOMIC_FENCE(Op, DAG); + case ISD::GlobalAddress: + return lowerGlobalAddress(Op, DAG); + case ISD::BlockAddress: + return lowerBlockAddress(Op, DAG); + case ISD::ConstantPool: + return lowerConstantPool(Op, DAG); + case ISD::JumpTable: + return lowerJumpTable(Op, DAG); + case ISD::GlobalTLSAddress: + return lowerGlobalTLSAddress(Op, DAG); + case ISD::Constant: + return lowerConstant(Op, DAG, Subtarget); + case ISD::SELECT: + return lowerSELECT(Op, DAG); + case ISD::BRCOND: + return lowerBRCOND(Op, DAG); + case ISD::VASTART: + return lowerVASTART(Op, DAG); + case ISD::FRAMEADDR: + return lowerFRAMEADDR(Op, DAG); + case ISD::RETURNADDR: + return lowerRETURNADDR(Op, DAG); + case ISD::SHL_PARTS: + return lowerShiftLeftParts(Op, DAG); + case ISD::SRA_PARTS: + return lowerShiftRightParts(Op, DAG, true); + case ISD::SRL_PARTS: + return lowerShiftRightParts(Op, DAG, false); + case ISD::BITCAST: { + SDLoc DL(Op); + EVT VT = Op.getValueType(); + SDValue Op0 = Op.getOperand(0); + EVT Op0VT = Op0.getValueType(); + MVT XLenVT = Subtarget.getXLenVT(); + if (VT == MVT::f16 && Op0VT == MVT::i16 && + Subtarget.hasStdExtZfhOrZfhmin()) { + SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); + SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); + return FPConv; + } + if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && + Subtarget.hasStdExtF()) { + SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); + SDValue FPConv = + DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); + return FPConv; + } + + // Consider other scalar<->scalar casts as legal if the types are legal. + // Otherwise expand them. + if (!VT.isVector() && !Op0VT.isVector()) { + if (isTypeLegal(VT) && isTypeLegal(Op0VT)) + return Op; + return SDValue(); + } + + assert(!VT.isScalableVector() && !Op0VT.isScalableVector() && + "Unexpected types"); + + if (VT.isFixedLengthVector()) { + // We can handle fixed length vector bitcasts with a simple replacement + // in isel. + if (Op0VT.isFixedLengthVector()) + return Op; + // When bitcasting from scalar to fixed-length vector, insert the scalar + // into a one-element vector of the result type, and perform a vector + // bitcast. + if (!Op0VT.isVector()) { + EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); + if (!isTypeLegal(BVT)) + return SDValue(); + return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, + DAG.getUNDEF(BVT), Op0, + DAG.getConstant(0, DL, XLenVT))); + } + return SDValue(); + } + // Custom-legalize bitcasts from fixed-length vector types to scalar types + // thus: bitcast the vector to a one-element vector type whose element type + // is the same as the result type, and extract the first element. + if (!VT.isVector() && Op0VT.isFixedLengthVector()) { + EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); + if (!isTypeLegal(BVT)) + return SDValue(); + SDValue BVec = DAG.getBitcast(BVT, Op0); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, + DAG.getConstant(0, DL, XLenVT)); + } + return SDValue(); + } + case ISD::INTRINSIC_WO_CHAIN: + return LowerINTRINSIC_WO_CHAIN(Op, DAG); + case ISD::INTRINSIC_W_CHAIN: + return LowerINTRINSIC_W_CHAIN(Op, DAG); + case ISD::INTRINSIC_VOID: + return LowerINTRINSIC_VOID(Op, DAG); + case ISD::BITREVERSE: { + MVT VT = Op.getSimpleValueType(); + SDLoc DL(Op); + assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization"); + assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode"); + // Expand bitreverse to a bswap(rev8) followed by brev8. + SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0)); + return DAG.getNode(RISCVISD::BREV8, DL, VT, BSwap); + } + case ISD::TRUNCATE: + // Only custom-lower vector truncates + if (!Op.getSimpleValueType().isVector()) + return Op; + return lowerVectorTruncLike(Op, DAG); + case ISD::ANY_EXTEND: + case ISD::ZERO_EXTEND: + if (Op.getOperand(0).getValueType().isVector() && + Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) + return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); + return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); + case ISD::SIGN_EXTEND: + if (Op.getOperand(0).getValueType().isVector() && + Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) + return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); + return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); + case ISD::SPLAT_VECTOR_PARTS: + return lowerSPLAT_VECTOR_PARTS(Op, DAG); + case ISD::INSERT_VECTOR_ELT: + return lowerINSERT_VECTOR_ELT(Op, DAG); + case ISD::EXTRACT_VECTOR_ELT: + return lowerEXTRACT_VECTOR_ELT(Op, DAG); + case ISD::VSCALE: { + MVT VT = Op.getSimpleValueType(); + SDLoc DL(Op); + SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); + // We define our scalable vector types for lmul=1 to use a 64 bit known + // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate + // vscale as VLENB / 8. + static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!"); + if (Subtarget.getRealMinVLen() < RISCV::RVVBitsPerBlock) + report_fatal_error("Support for VLEN==32 is incomplete."); + // We assume VLENB is a multiple of 8. We manually choose the best shift + // here because SimplifyDemandedBits isn't always able to simplify it. + uint64_t Val = Op.getConstantOperandVal(0); + if (isPowerOf2_64(Val)) { + uint64_t Log2 = Log2_64(Val); + if (Log2 < 3) + return DAG.getNode(ISD::SRL, DL, VT, VLENB, + DAG.getConstant(3 - Log2, DL, VT)); + if (Log2 > 3) + return DAG.getNode(ISD::SHL, DL, VT, VLENB, + DAG.getConstant(Log2 - 3, DL, VT)); + return VLENB; + } + // If the multiplier is a multiple of 8, scale it down to avoid needing + // to shift the VLENB value. + if ((Val % 8) == 0) + return DAG.getNode(ISD::MUL, DL, VT, VLENB, + DAG.getConstant(Val / 8, DL, VT)); + + SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, + DAG.getConstant(3, DL, VT)); + return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); + } + case ISD::FPOWI: { + // Custom promote f16 powi with illegal i32 integer type on RV64. Once + // promoted this will be legalized into a libcall by LegalizeIntegerTypes. + if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() && + Op.getOperand(1).getValueType() == MVT::i32) { + SDLoc DL(Op); + SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); + SDValue Powi = + DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1)); + return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi, + DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)); + } + return SDValue(); + } + case ISD::FP_EXTEND: + case ISD::FP_ROUND: + if (!Op.getValueType().isVector()) + return Op; + return lowerVectorFPExtendOrRoundLike(Op, DAG); + case ISD::FP_TO_SINT: + case ISD::FP_TO_UINT: + case ISD::SINT_TO_FP: + case ISD::UINT_TO_FP: { + // RVV can only do fp<->int conversions to types half/double the size as + // the source. We custom-lower any conversions that do two hops into + // sequences. + MVT VT = Op.getSimpleValueType(); + if (!VT.isVector()) + return Op; + SDLoc DL(Op); + SDValue Src = Op.getOperand(0); + MVT EltVT = VT.getVectorElementType(); + MVT SrcVT = Src.getSimpleValueType(); + MVT SrcEltVT = SrcVT.getVectorElementType(); + unsigned EltSize = EltVT.getSizeInBits(); + unsigned SrcEltSize = SrcEltVT.getSizeInBits(); + assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && + "Unexpected vector element types"); + + bool IsInt2FP = SrcEltVT.isInteger(); + // Widening conversions + if (EltSize > (2 * SrcEltSize)) { + if (IsInt2FP) { + // Do a regular integer sign/zero extension then convert to float. + MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize / 2), + VT.getVectorElementCount()); + unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP + ? ISD::ZERO_EXTEND + : ISD::SIGN_EXTEND; + SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); + return DAG.getNode(Op.getOpcode(), DL, VT, Ext); + } + // FP2Int + assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); + // Do one doubling fp_extend then complete the operation by converting + // to int. + MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); + SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); + return DAG.getNode(Op.getOpcode(), DL, VT, FExt); + } + + // Narrowing conversions + if (SrcEltSize > (2 * EltSize)) { + if (IsInt2FP) { + // One narrowing int_to_fp, then an fp_round. + assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); + MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); + SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); + return DAG.getFPExtendOrRound(Int2FP, DL, VT); + } + // FP2Int + // One narrowing fp_to_int, then truncate the integer. If the float isn't + // representable by the integer, the result is poison. + MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), + VT.getVectorElementCount()); + SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); + return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); + } + + // Scalable vectors can exit here. Patterns will handle equally-sized + // conversions halving/doubling ones. + if (!VT.isFixedLengthVector()) + return Op; + + // For fixed-length vectors we lower to a custom "VL" node. + unsigned RVVOpc = 0; + switch (Op.getOpcode()) { + default: + llvm_unreachable("Impossible opcode"); + case ISD::FP_TO_SINT: + RVVOpc = RISCVISD::VFCVT_RTZ_X_F_VL; + break; + case ISD::FP_TO_UINT: + RVVOpc = RISCVISD::VFCVT_RTZ_XU_F_VL; + break; + case ISD::SINT_TO_FP: + RVVOpc = RISCVISD::SINT_TO_FP_VL; + break; + case ISD::UINT_TO_FP: + RVVOpc = RISCVISD::UINT_TO_FP_VL; + break; + } + + MVT ContainerVT = getContainerForFixedLengthVector(VT); + MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); + assert(ContainerVT.getVectorElementCount() == SrcContainerVT.getVectorElementCount() && + "Expected same element count"); + + auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); + + Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); + Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); + return convertFromScalableVector(VT, Src, DAG, Subtarget); + } + case ISD::FP_TO_SINT_SAT: + case ISD::FP_TO_UINT_SAT: + return lowerFP_TO_INT_SAT(Op, DAG, Subtarget); + case ISD::FTRUNC: + case ISD::FCEIL: + case ISD::FFLOOR: + case ISD::FRINT: + case ISD::FROUND: + case ISD::FROUNDEVEN: + return lowerFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget); + case ISD::VECREDUCE_ADD: + case ISD::VECREDUCE_UMAX: + case ISD::VECREDUCE_SMAX: + case ISD::VECREDUCE_UMIN: + case ISD::VECREDUCE_SMIN: + return lowerVECREDUCE(Op, DAG); + case ISD::VECREDUCE_AND: + case ISD::VECREDUCE_OR: + case ISD::VECREDUCE_XOR: + if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) + return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false); + return lowerVECREDUCE(Op, DAG); + case ISD::VECREDUCE_FADD: + case ISD::VECREDUCE_SEQ_FADD: + case ISD::VECREDUCE_FMIN: + case ISD::VECREDUCE_FMAX: + return lowerFPVECREDUCE(Op, DAG); + case ISD::VP_REDUCE_ADD: + case ISD::VP_REDUCE_UMAX: + case ISD::VP_REDUCE_SMAX: + case ISD::VP_REDUCE_UMIN: + case ISD::VP_REDUCE_SMIN: + case ISD::VP_REDUCE_FADD: + case ISD::VP_REDUCE_SEQ_FADD: + case ISD::VP_REDUCE_FMIN: + case ISD::VP_REDUCE_FMAX: + return lowerVPREDUCE(Op, DAG); + case ISD::VP_REDUCE_AND: + case ISD::VP_REDUCE_OR: + case ISD::VP_REDUCE_XOR: + if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1) + return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true); + return lowerVPREDUCE(Op, DAG); + case ISD::INSERT_SUBVECTOR: + return lowerINSERT_SUBVECTOR(Op, DAG); + case ISD::EXTRACT_SUBVECTOR: + return lowerEXTRACT_SUBVECTOR(Op, DAG); + case ISD::STEP_VECTOR: + return lowerSTEP_VECTOR(Op, DAG); + case ISD::VECTOR_REVERSE: + return lowerVECTOR_REVERSE(Op, DAG); + case ISD::VECTOR_SPLICE: + return lowerVECTOR_SPLICE(Op, DAG); + case ISD::BUILD_VECTOR: + return lowerBUILD_VECTOR(Op, DAG, Subtarget); + case ISD::SPLAT_VECTOR: + if (Op.getValueType().getVectorElementType() == MVT::i1) + return lowerVectorMaskSplat(Op, DAG); + return SDValue(); + case ISD::VECTOR_SHUFFLE: + return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); + case ISD::CONCAT_VECTORS: { + // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is + // better than going through the stack, as the default expansion does. + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + unsigned NumOpElts = + Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); + SDValue Vec = DAG.getUNDEF(VT); + for (const auto &OpIdx : enumerate(Op->ops())) { + SDValue SubVec = OpIdx.value(); + // Don't insert undef subvectors. + if (SubVec.isUndef()) + continue; + Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec, + DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); + } + return Vec; + } + case ISD::LOAD: + if (auto V = expandUnalignedRVVLoad(Op, DAG)) + return V; + if (Op.getValueType().isFixedLengthVector()) + return lowerFixedLengthVectorLoadToRVV(Op, DAG); + return Op; + case ISD::STORE: + if (auto V = expandUnalignedRVVStore(Op, DAG)) + return V; + if (Op.getOperand(1).getValueType().isFixedLengthVector()) + return lowerFixedLengthVectorStoreToRVV(Op, DAG); + return Op; + case ISD::MLOAD: + case ISD::VP_LOAD: + return lowerMaskedLoad(Op, DAG); + case ISD::MSTORE: + case ISD::VP_STORE: + return lowerMaskedStore(Op, DAG); + case ISD::SELECT_CC: { + // This occurs because we custom legalize SETGT and SETUGT for setcc. That + // causes LegalizeDAG to think we need to custom legalize select_cc. Expand + // into separate SETCC+SELECT_CC just like LegalizeDAG. + SDValue Tmp1 = Op.getOperand(0); + SDValue Tmp2 = Op.getOperand(1); + SDValue True = Op.getOperand(2); + SDValue False = Op.getOperand(3); + EVT VT = Op.getValueType(); + SDValue CC = Op.getOperand(4); + EVT CmpVT = Tmp1.getValueType(); + EVT CCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT); + SDLoc DL(Op); + SDValue Cond = + DAG.getNode(ISD::SETCC, DL, CCVT, Tmp1, Tmp2, CC, Op->getFlags()); + return DAG.getSelect(DL, VT, Cond, True, False); + } + case ISD::SETCC: { + MVT OpVT = Op.getOperand(0).getSimpleValueType(); + if (OpVT.isScalarInteger()) { + MVT VT = Op.getSimpleValueType(); + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + ISD::CondCode CCVal = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + assert((CCVal == ISD::SETGT || CCVal == ISD::SETUGT) && + "Unexpected CondCode"); + + SDLoc DL(Op); + + // If the RHS is a constant in the range [-2049, 0) or (0, 2046], we can + // convert this to the equivalent of (set(u)ge X, C+1) by using + // (xori (slti(u) X, C+1), 1). This avoids materializing a small constant + // in a register. + if (isa<ConstantSDNode>(RHS)) { + int64_t Imm = cast<ConstantSDNode>(RHS)->getSExtValue(); + if (Imm != 0 && isInt<12>((uint64_t)Imm + 1)) { + // X > -1 should have been replaced with false. + assert((CCVal != ISD::SETUGT || Imm != -1) && + "Missing canonicalization"); + // Using getSetCCSwappedOperands will convert SET(U)GT->SET(U)LT. + CCVal = ISD::getSetCCSwappedOperands(CCVal); + SDValue SetCC = DAG.getSetCC( + DL, VT, LHS, DAG.getConstant(Imm + 1, DL, OpVT), CCVal); + return DAG.getLogicalNOT(DL, SetCC, VT); + } + } + + // Not a constant we could handle, swap the operands and condition code to + // SETLT/SETULT. + CCVal = ISD::getSetCCSwappedOperands(CCVal); + return DAG.getSetCC(DL, VT, RHS, LHS, CCVal); + } + + return lowerFixedLengthVectorSetccToRVV(Op, DAG); + } + case ISD::ADD: + return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL, /*HasMergeOp*/ true); + case ISD::SUB: + return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL, /*HasMergeOp*/ true); + case ISD::MUL: + return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL, /*HasMergeOp*/ true); + case ISD::MULHS: + return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL, /*HasMergeOp*/ true); + case ISD::MULHU: + return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL, /*HasMergeOp*/ true); + case ISD::AND: + return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, + RISCVISD::AND_VL); + case ISD::OR: + return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, + RISCVISD::OR_VL); + case ISD::XOR: + return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, + RISCVISD::XOR_VL); + case ISD::SDIV: + return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL, /*HasMergeOp*/ true); + case ISD::SREM: + return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL, /*HasMergeOp*/ true); + case ISD::UDIV: + return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL, /*HasMergeOp*/ true); + case ISD::UREM: + return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL, /*HasMergeOp*/ true); + case ISD::SHL: + case ISD::SRA: + case ISD::SRL: + if (Op.getSimpleValueType().isFixedLengthVector()) + return lowerFixedLengthVectorShiftToRVV(Op, DAG); + // This can be called for an i32 shift amount that needs to be promoted. + assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() && + "Unexpected custom legalisation"); + return SDValue(); + case ISD::SADDSAT: + return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL, + /*HasMergeOp*/ true); + case ISD::UADDSAT: + return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL, + /*HasMergeOp*/ true); + case ISD::SSUBSAT: + return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL, + /*HasMergeOp*/ true); + case ISD::USUBSAT: + return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL, + /*HasMergeOp*/ true); + case ISD::FADD: + return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL, /*HasMergeOp*/ true); + case ISD::FSUB: + return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL, /*HasMergeOp*/ true); + case ISD::FMUL: + return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL, /*HasMergeOp*/ true); + case ISD::FDIV: + return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL, /*HasMergeOp*/ true); + case ISD::FNEG: + return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); + case ISD::FABS: + return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); + case ISD::FSQRT: + return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); + case ISD::FMA: + return lowerToScalableOp(Op, DAG, RISCVISD::VFMADD_VL); + case ISD::SMIN: + return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL, /*HasMergeOp*/ true); + case ISD::SMAX: + return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL, /*HasMergeOp*/ true); + case ISD::UMIN: + return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL, /*HasMergeOp*/ true); + case ISD::UMAX: + return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL, /*HasMergeOp*/ true); + case ISD::FMINNUM: + return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL, + /*HasMergeOp*/ true); + case ISD::FMAXNUM: + return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL, + /*HasMergeOp*/ true); + case ISD::ABS: + case ISD::VP_ABS: + return lowerABS(Op, DAG); + case ISD::CTLZ: + case ISD::CTLZ_ZERO_UNDEF: + case ISD::CTTZ_ZERO_UNDEF: + return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG); + case ISD::VSELECT: + return lowerFixedLengthVectorSelectToRVV(Op, DAG); + case ISD::FCOPYSIGN: + return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); + case ISD::MGATHER: + case ISD::VP_GATHER: + return lowerMaskedGather(Op, DAG); + case ISD::MSCATTER: + case ISD::VP_SCATTER: + return lowerMaskedScatter(Op, DAG); + case ISD::GET_ROUNDING: + return lowerGET_ROUNDING(Op, DAG); + case ISD::SET_ROUNDING: + return lowerSET_ROUNDING(Op, DAG); + case ISD::EH_DWARF_CFA: + return lowerEH_DWARF_CFA(Op, DAG); + case ISD::VP_SELECT: + return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL); + case ISD::VP_MERGE: + return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL); + case ISD::VP_ADD: + return lowerVPOp(Op, DAG, RISCVISD::ADD_VL, /*HasMergeOp*/ true); + case ISD::VP_SUB: + return lowerVPOp(Op, DAG, RISCVISD::SUB_VL, /*HasMergeOp*/ true); + case ISD::VP_MUL: + return lowerVPOp(Op, DAG, RISCVISD::MUL_VL, /*HasMergeOp*/ true); + case ISD::VP_SDIV: + return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL, /*HasMergeOp*/ true); + case ISD::VP_UDIV: + return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL, /*HasMergeOp*/ true); + case ISD::VP_SREM: + return lowerVPOp(Op, DAG, RISCVISD::SREM_VL, /*HasMergeOp*/ true); + case ISD::VP_UREM: + return lowerVPOp(Op, DAG, RISCVISD::UREM_VL, /*HasMergeOp*/ true); + case ISD::VP_AND: + return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL); + case ISD::VP_OR: + return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL); + case ISD::VP_XOR: + return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL); + case ISD::VP_ASHR: + return lowerVPOp(Op, DAG, RISCVISD::SRA_VL, /*HasMergeOp*/ true); + case ISD::VP_LSHR: + return lowerVPOp(Op, DAG, RISCVISD::SRL_VL, /*HasMergeOp*/ true); + case ISD::VP_SHL: + return lowerVPOp(Op, DAG, RISCVISD::SHL_VL, /*HasMergeOp*/ true); + case ISD::VP_FADD: + return lowerVPOp(Op, DAG, RISCVISD::FADD_VL, /*HasMergeOp*/ true); + case ISD::VP_FSUB: + return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL, /*HasMergeOp*/ true); + case ISD::VP_FMUL: + return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL, /*HasMergeOp*/ true); + case ISD::VP_FDIV: + return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL, /*HasMergeOp*/ true); + case ISD::VP_FNEG: + return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL); + case ISD::VP_FABS: + return lowerVPOp(Op, DAG, RISCVISD::FABS_VL); + case ISD::VP_SQRT: + return lowerVPOp(Op, DAG, RISCVISD::FSQRT_VL); + case ISD::VP_FMA: + return lowerVPOp(Op, DAG, RISCVISD::VFMADD_VL); + case ISD::VP_FMINNUM: + return lowerVPOp(Op, DAG, RISCVISD::FMINNUM_VL, /*HasMergeOp*/ true); + case ISD::VP_FMAXNUM: + return lowerVPOp(Op, DAG, RISCVISD::FMAXNUM_VL, /*HasMergeOp*/ true); + case ISD::VP_FCOPYSIGN: + return lowerVPOp(Op, DAG, RISCVISD::FCOPYSIGN_VL, /*HasMergeOp*/ true); + case ISD::VP_SIGN_EXTEND: + case ISD::VP_ZERO_EXTEND: + if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1) + return lowerVPExtMaskOp(Op, DAG); + return lowerVPOp(Op, DAG, + Op.getOpcode() == ISD::VP_SIGN_EXTEND + ? RISCVISD::VSEXT_VL + : RISCVISD::VZEXT_VL); + case ISD::VP_TRUNCATE: + return lowerVectorTruncLike(Op, DAG); + case ISD::VP_FP_EXTEND: + case ISD::VP_FP_ROUND: + return lowerVectorFPExtendOrRoundLike(Op, DAG); + case ISD::VP_FP_TO_SINT: + return lowerVPFPIntConvOp(Op, DAG, RISCVISD::VFCVT_RTZ_X_F_VL); + case ISD::VP_FP_TO_UINT: + return lowerVPFPIntConvOp(Op, DAG, RISCVISD::VFCVT_RTZ_XU_F_VL); + case ISD::VP_SINT_TO_FP: + return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL); + case ISD::VP_UINT_TO_FP: + return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL); + case ISD::VP_SETCC: + if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1) + return lowerVPSetCCMaskOp(Op, DAG); + return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL, /*HasMergeOp*/ true); + case ISD::VP_SMIN: + return lowerVPOp(Op, DAG, RISCVISD::SMIN_VL, /*HasMergeOp*/ true); + case ISD::VP_SMAX: + return lowerVPOp(Op, DAG, RISCVISD::SMAX_VL, /*HasMergeOp*/ true); + case ISD::VP_UMIN: + return lowerVPOp(Op, DAG, RISCVISD::UMIN_VL, /*HasMergeOp*/ true); + case ISD::VP_UMAX: + return lowerVPOp(Op, DAG, RISCVISD::UMAX_VL, /*HasMergeOp*/ true); + case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: + return lowerVPStridedLoad(Op, DAG); + case ISD::EXPERIMENTAL_VP_STRIDED_STORE: + return lowerVPStridedStore(Op, DAG); + case ISD::VP_FCEIL: + case ISD::VP_FFLOOR: + case ISD::VP_FRINT: + case ISD::VP_FNEARBYINT: + case ISD::VP_FROUND: + case ISD::VP_FROUNDEVEN: + case ISD::VP_FROUNDTOZERO: + return lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget); + } +} + +static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, + SelectionDAG &DAG, unsigned Flags) { + return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); +} + +static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, + SelectionDAG &DAG, unsigned Flags) { + return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), + Flags); +} + +static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, + SelectionDAG &DAG, unsigned Flags) { + return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), + N->getOffset(), Flags); +} + +static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, + SelectionDAG &DAG, unsigned Flags) { + return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); +} + +template <class NodeTy> +SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, + bool IsLocal) const { + SDLoc DL(N); + EVT Ty = getPointerTy(DAG.getDataLayout()); + + // When HWASAN is used and tagging of global variables is enabled + // they should be accessed via the GOT, since the tagged address of a global + // is incompatible with existing code models. This also applies to non-pic + // mode. + if (isPositionIndependent() || Subtarget.allowTaggedGlobals()) { + SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); + if (IsLocal && !Subtarget.allowTaggedGlobals()) + // Use PC-relative addressing to access the symbol. This generates the + // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) + // %pcrel_lo(auipc)). + return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr); + + // Use PC-relative addressing to access the GOT for this symbol, then load + // the address from the GOT. This generates the pattern (PseudoLA sym), + // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). + MachineFunction &MF = DAG.getMachineFunction(); + MachineMemOperand *MemOp = MF.getMachineMemOperand( + MachinePointerInfo::getGOT(MF), + MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | + MachineMemOperand::MOInvariant, + LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); + SDValue Load = + DAG.getMemIntrinsicNode(RISCVISD::LA, DL, DAG.getVTList(Ty, MVT::Other), + {DAG.getEntryNode(), Addr}, Ty, MemOp); + return Load; + } + + switch (getTargetMachine().getCodeModel()) { + default: + report_fatal_error("Unsupported code model for lowering"); + case CodeModel::Small: { + // Generate a sequence for accessing addresses within the first 2 GiB of + // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). + SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); + SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); + SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi); + return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNHi, AddrLo); + } + case CodeModel::Medium: { + // Generate a sequence for accessing addresses within any 2GiB range within + // the address space. This generates the pattern (PseudoLLA sym), which + // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). + SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); + return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr); + } + } +} + +SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, + SelectionDAG &DAG) const { + GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); + assert(N->getOffset() == 0 && "unexpected offset in global node"); + return getAddr(N, DAG, N->getGlobal()->isDSOLocal()); +} + +SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, + SelectionDAG &DAG) const { + BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); + + return getAddr(N, DAG); +} + +SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, + SelectionDAG &DAG) const { + ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); + + return getAddr(N, DAG); +} + +SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, + SelectionDAG &DAG) const { + JumpTableSDNode *N = cast<JumpTableSDNode>(Op); + + return getAddr(N, DAG); +} + +SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, + SelectionDAG &DAG, + bool UseGOT) const { + SDLoc DL(N); + EVT Ty = getPointerTy(DAG.getDataLayout()); + const GlobalValue *GV = N->getGlobal(); + MVT XLenVT = Subtarget.getXLenVT(); + + if (UseGOT) { + // Use PC-relative addressing to access the GOT for this TLS symbol, then + // load the address from the GOT and add the thread pointer. This generates + // the pattern (PseudoLA_TLS_IE sym), which expands to + // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). + SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); + MachineFunction &MF = DAG.getMachineFunction(); + MachineMemOperand *MemOp = MF.getMachineMemOperand( + MachinePointerInfo::getGOT(MF), + MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | + MachineMemOperand::MOInvariant, + LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8)); + SDValue Load = DAG.getMemIntrinsicNode( + RISCVISD::LA_TLS_IE, DL, DAG.getVTList(Ty, MVT::Other), + {DAG.getEntryNode(), Addr}, Ty, MemOp); + + // Add the thread pointer. + SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); + return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); + } + + // Generate a sequence for accessing the address relative to the thread + // pointer, with the appropriate adjustment for the thread pointer offset. + // This generates the pattern + // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) + SDValue AddrHi = + DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); + SDValue AddrAdd = + DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); + SDValue AddrLo = + DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); + + SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi); + SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); + SDValue MNAdd = + DAG.getNode(RISCVISD::ADD_TPREL, DL, Ty, MNHi, TPReg, AddrAdd); + return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNAdd, AddrLo); +} + +SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, + SelectionDAG &DAG) const { + SDLoc DL(N); + EVT Ty = getPointerTy(DAG.getDataLayout()); + IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); + const GlobalValue *GV = N->getGlobal(); + + // Use a PC-relative addressing mode to access the global dynamic GOT address. + // This generates the pattern (PseudoLA_TLS_GD sym), which expands to + // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). + SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); + SDValue Load = DAG.getNode(RISCVISD::LA_TLS_GD, DL, Ty, Addr); + + // Prepare argument list to generate call. + ArgListTy Args; + ArgListEntry Entry; + Entry.Node = Load; + Entry.Ty = CallTy; + Args.push_back(Entry); + + // Setup call to __tls_get_addr. + TargetLowering::CallLoweringInfo CLI(DAG); + CLI.setDebugLoc(DL) + .setChain(DAG.getEntryNode()) + .setLibCallee(CallingConv::C, CallTy, + DAG.getExternalSymbol("__tls_get_addr", Ty), + std::move(Args)); + + return LowerCallTo(CLI).first; +} + +SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, + SelectionDAG &DAG) const { + GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); + assert(N->getOffset() == 0 && "unexpected offset in global node"); + + TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); + + if (DAG.getMachineFunction().getFunction().getCallingConv() == + CallingConv::GHC) + report_fatal_error("In GHC calling convention TLS is not supported"); + + SDValue Addr; + switch (Model) { + case TLSModel::LocalExec: + Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); + break; + case TLSModel::InitialExec: + Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); + break; + case TLSModel::LocalDynamic: + case TLSModel::GeneralDynamic: + Addr = getDynamicTLSAddr(N, DAG); + break; + } + + return Addr; +} + +SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { + SDValue CondV = Op.getOperand(0); + SDValue TrueV = Op.getOperand(1); + SDValue FalseV = Op.getOperand(2); + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + MVT XLenVT = Subtarget.getXLenVT(); + + // Lower vector SELECTs to VSELECTs by splatting the condition. + if (VT.isVector()) { + MVT SplatCondVT = VT.changeVectorElementType(MVT::i1); + SDValue CondSplat = DAG.getSplat(SplatCondVT, DL, CondV); + return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV); + } + + if (!Subtarget.hasShortForwardBranchOpt()) { + // (select c, -1, y) -> -c | y + if (isAllOnesConstant(TrueV)) { + SDValue Neg = DAG.getNegative(CondV, DL, VT); + return DAG.getNode(ISD::OR, DL, VT, Neg, FalseV); + } + // (select c, y, -1) -> (c-1) | y + if (isAllOnesConstant(FalseV)) { + SDValue Neg = DAG.getNode(ISD::ADD, DL, VT, CondV, + DAG.getAllOnesConstant(DL, VT)); + return DAG.getNode(ISD::OR, DL, VT, Neg, TrueV); + } + + // (select c, 0, y) -> (c-1) & y + if (isNullConstant(TrueV)) { + SDValue Neg = DAG.getNode(ISD::ADD, DL, VT, CondV, + DAG.getAllOnesConstant(DL, VT)); + return DAG.getNode(ISD::AND, DL, VT, Neg, FalseV); + } + // (select c, y, 0) -> -c & y + if (isNullConstant(FalseV)) { + SDValue Neg = DAG.getNegative(CondV, DL, VT); + return DAG.getNode(ISD::AND, DL, VT, Neg, TrueV); + } + } + + // If the condition is not an integer SETCC which operates on XLenVT, we need + // to emit a RISCVISD::SELECT_CC comparing the condition to zero. i.e.: + // (select condv, truev, falsev) + // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) + if (CondV.getOpcode() != ISD::SETCC || + CondV.getOperand(0).getSimpleValueType() != XLenVT) { + SDValue Zero = DAG.getConstant(0, DL, XLenVT); + SDValue SetNE = DAG.getCondCode(ISD::SETNE); + + SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; + + return DAG.getNode(RISCVISD::SELECT_CC, DL, VT, Ops); + } + + // If the CondV is the output of a SETCC node which operates on XLenVT inputs, + // then merge the SETCC node into the lowered RISCVISD::SELECT_CC to take + // advantage of the integer compare+branch instructions. i.e.: + // (select (setcc lhs, rhs, cc), truev, falsev) + // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) + SDValue LHS = CondV.getOperand(0); + SDValue RHS = CondV.getOperand(1); + ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); + + // Special case for a select of 2 constants that have a diffence of 1. + // Normally this is done by DAGCombine, but if the select is introduced by + // type legalization or op legalization, we miss it. Restricting to SETLT + // case for now because that is what signed saturating add/sub need. + // FIXME: We don't need the condition to be SETLT or even a SETCC, + // but we would probably want to swap the true/false values if the condition + // is SETGE/SETLE to avoid an XORI. + if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && + CCVal == ISD::SETLT) { + const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); + const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); + if (TrueVal - 1 == FalseVal) + return DAG.getNode(ISD::ADD, DL, VT, CondV, FalseV); + if (TrueVal + 1 == FalseVal) + return DAG.getNode(ISD::SUB, DL, VT, FalseV, CondV); + } + + translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); + // 1 < x ? x : 1 -> 0 < x ? x : 1 + if (isOneConstant(LHS) && (CCVal == ISD::SETLT || CCVal == ISD::SETULT) && + RHS == TrueV && LHS == FalseV) { + LHS = DAG.getConstant(0, DL, VT); + // 0 <u x is the same as x != 0. + if (CCVal == ISD::SETULT) { + std::swap(LHS, RHS); + CCVal = ISD::SETNE; + } + } + + // x <s -1 ? x : -1 -> x <s 0 ? x : -1 + if (isAllOnesConstant(RHS) && CCVal == ISD::SETLT && LHS == TrueV && + RHS == FalseV) { + RHS = DAG.getConstant(0, DL, VT); + } + + SDValue TargetCC = DAG.getCondCode(CCVal); + + if (isa<ConstantSDNode>(TrueV) && !isa<ConstantSDNode>(FalseV)) { + // (select (setcc lhs, rhs, CC), constant, falsev) + // -> (select (setcc lhs, rhs, InverseCC), falsev, constant) + std::swap(TrueV, FalseV); + TargetCC = DAG.getCondCode(ISD::getSetCCInverse(CCVal, LHS.getValueType())); + } + + SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; + return DAG.getNode(RISCVISD::SELECT_CC, DL, VT, Ops); +} + +SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { + SDValue CondV = Op.getOperand(1); + SDLoc DL(Op); + MVT XLenVT = Subtarget.getXLenVT(); + + if (CondV.getOpcode() == ISD::SETCC && + CondV.getOperand(0).getValueType() == XLenVT) { + SDValue LHS = CondV.getOperand(0); + SDValue RHS = CondV.getOperand(1); + ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); + + translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); + + SDValue TargetCC = DAG.getCondCode(CCVal); + return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), + LHS, RHS, TargetCC, Op.getOperand(2)); + } + + return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), + CondV, DAG.getConstant(0, DL, XLenVT), + DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); +} + +SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); + + SDLoc DL(Op); + SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), + getPointerTy(MF.getDataLayout())); + + // vastart just stores the address of the VarArgsFrameIndex slot into the + // memory location argument. + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), + MachinePointerInfo(SV)); +} + +SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, + SelectionDAG &DAG) const { + const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + MFI.setFrameAddressIsTaken(true); + Register FrameReg = RI.getFrameRegister(MF); + int XLenInBytes = Subtarget.getXLen() / 8; + + EVT VT = Op.getValueType(); + SDLoc DL(Op); + SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); + unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + while (Depth--) { + int Offset = -(XLenInBytes * 2); + SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, + DAG.getIntPtrConstant(Offset, DL)); + FrameAddr = + DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); + } + return FrameAddr; +} + +SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, + SelectionDAG &DAG) const { + const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + MFI.setReturnAddressIsTaken(true); + MVT XLenVT = Subtarget.getXLenVT(); + int XLenInBytes = Subtarget.getXLen() / 8; + + if (verifyReturnAddressArgumentIsConstant(Op, DAG)) + return SDValue(); + + EVT VT = Op.getValueType(); + SDLoc DL(Op); + unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + if (Depth) { + int Off = -XLenInBytes; + SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); + SDValue Offset = DAG.getConstant(Off, DL, VT); + return DAG.getLoad(VT, DL, DAG.getEntryNode(), + DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), + MachinePointerInfo()); + } + + // Return the value of the return address register, marking it an implicit + // live-in. + Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); + return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); +} + +SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + SDValue Lo = Op.getOperand(0); + SDValue Hi = Op.getOperand(1); + SDValue Shamt = Op.getOperand(2); + EVT VT = Lo.getValueType(); + + // if Shamt-XLEN < 0: // Shamt < XLEN + // Lo = Lo << Shamt + // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt)) + // else: + // Lo = 0 + // Hi = Lo << (Shamt-XLEN) + + SDValue Zero = DAG.getConstant(0, DL, VT); + SDValue One = DAG.getConstant(1, DL, VT); + SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); + SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); + SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); + SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); + + SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); + SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); + SDValue ShiftRightLo = + DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); + SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); + SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); + SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); + + SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); + + Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); + Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); + + SDValue Parts[2] = {Lo, Hi}; + return DAG.getMergeValues(Parts, DL); +} + +SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, + bool IsSRA) const { + SDLoc DL(Op); + SDValue Lo = Op.getOperand(0); + SDValue Hi = Op.getOperand(1); + SDValue Shamt = Op.getOperand(2); + EVT VT = Lo.getValueType(); + + // SRA expansion: + // if Shamt-XLEN < 0: // Shamt < XLEN + // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) + // Hi = Hi >>s Shamt + // else: + // Lo = Hi >>s (Shamt-XLEN); + // Hi = Hi >>s (XLEN-1) + // + // SRL expansion: + // if Shamt-XLEN < 0: // Shamt < XLEN + // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1)) + // Hi = Hi >>u Shamt + // else: + // Lo = Hi >>u (Shamt-XLEN); + // Hi = 0; + + unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; + + SDValue Zero = DAG.getConstant(0, DL, VT); + SDValue One = DAG.getConstant(1, DL, VT); + SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); + SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); + SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); + SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); + + SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); + SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); + SDValue ShiftLeftHi = + DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); + SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); + SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); + SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); + SDValue HiFalse = + IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; + + SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); + + Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); + Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); + + SDValue Parts[2] = {Lo, Hi}; + return DAG.getMergeValues(Parts, DL); +} + +// Lower splats of i1 types to SETCC. For each mask vector type, we have a +// legal equivalently-sized i8 type, so we can use that as a go-between. +SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + SDValue SplatVal = Op.getOperand(0); + // All-zeros or all-ones splats are handled specially. + if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { + SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; + return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); + } + if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { + SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; + return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); + } + MVT XLenVT = Subtarget.getXLenVT(); + assert(SplatVal.getValueType() == XLenVT && + "Unexpected type for i1 splat value"); + MVT InterVT = VT.changeVectorElementType(MVT::i8); + SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, + DAG.getConstant(1, DL, XLenVT)); + SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); + SDValue Zero = DAG.getConstant(0, DL, InterVT); + return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); +} + +// Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is +// illegal (currently only vXi64 RV32). +// FIXME: We could also catch non-constant sign-extended i32 values and lower +// them to VMV_V_X_VL. +SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + MVT VecVT = Op.getSimpleValueType(); + assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && + "Unexpected SPLAT_VECTOR_PARTS lowering"); + + assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); + SDValue Lo = Op.getOperand(0); + SDValue Hi = Op.getOperand(1); + + if (VecVT.isFixedLengthVector()) { + MVT ContainerVT = getContainerForFixedLengthVector(VecVT); + SDLoc DL(Op); + auto VL = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).second; + + SDValue Res = + splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG); + return convertFromScalableVector(VecVT, Res, DAG, Subtarget); + } + + if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { + int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); + int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); + // If Hi constant is all the same sign bit as Lo, lower this as a custom + // node in order to try and match RVV vector/scalar instructions. + if ((LoC >> 31) == HiC) + return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), + Lo, DAG.getRegister(RISCV::X0, MVT::i32)); + } + + // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. + if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && + isa<ConstantSDNode>(Hi.getOperand(1)) && + Hi.getConstantOperandVal(1) == 31) + return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo, + DAG.getRegister(RISCV::X0, MVT::i32)); + + // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. + return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, + DAG.getUNDEF(VecVT), Lo, Hi, + DAG.getRegister(RISCV::X0, MVT::i32)); +} + +// Custom-lower extensions from mask vectors by using a vselect either with 1 +// for zero/any-extension or -1 for sign-extension: +// (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) +// Note that any-extension is lowered identically to zero-extension. +SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, + int64_t ExtTrueVal) const { + SDLoc DL(Op); + MVT VecVT = Op.getSimpleValueType(); + SDValue Src = Op.getOperand(0); + // Only custom-lower extensions from mask types + assert(Src.getValueType().isVector() && + Src.getValueType().getVectorElementType() == MVT::i1); + + if (VecVT.isScalableVector()) { + SDValue SplatZero = DAG.getConstant(0, DL, VecVT); + SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT); + return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); + } + + MVT ContainerVT = getContainerForFixedLengthVector(VecVT); + MVT I1ContainerVT = + MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); + + SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); + + SDValue VL = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).second; + + MVT XLenVT = Subtarget.getXLenVT(); + SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); + SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); + + SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, + DAG.getUNDEF(ContainerVT), SplatZero, VL); + SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, + DAG.getUNDEF(ContainerVT), SplatTrueVal, VL); + SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, + SplatTrueVal, SplatZero, VL); + + return convertFromScalableVector(VecVT, Select, DAG, Subtarget); +} + +SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( + SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { + MVT ExtVT = Op.getSimpleValueType(); + // Only custom-lower extensions from fixed-length vector types. + if (!ExtVT.isFixedLengthVector()) + return Op; + MVT VT = Op.getOperand(0).getSimpleValueType(); + // Grab the canonical container type for the extended type. Infer the smaller + // type from that to ensure the same number of vector elements, as we know + // the LMUL will be sufficient to hold the smaller type. + MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); + // Get the extended container type manually to ensure the same number of + // vector elements between source and dest. + MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), + ContainerExtVT.getVectorElementCount()); + + SDValue Op1 = + convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); + + SDLoc DL(Op); + auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); + + SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); + + return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); +} + +// Custom-lower truncations from vectors to mask vectors by using a mask and a +// setcc operation: +// (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) +SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op, + SelectionDAG &DAG) const { + bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE; + SDLoc DL(Op); + EVT MaskVT = Op.getValueType(); + // Only expect to custom-lower truncations to mask types + assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && + "Unexpected type for vector mask lowering"); + SDValue Src = Op.getOperand(0); + MVT VecVT = Src.getSimpleValueType(); + SDValue Mask, VL; + if (IsVPTrunc) { + Mask = Op.getOperand(1); + VL = Op.getOperand(2); + } + // If this is a fixed vector, we need to convert it to a scalable vector. + MVT ContainerVT = VecVT; + + if (VecVT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VecVT); + Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); + if (IsVPTrunc) { + MVT MaskContainerVT = + getContainerForFixedLengthVector(Mask.getSimpleValueType()); + Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget); + } + } + + if (!IsVPTrunc) { + std::tie(Mask, VL) = + getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); + } + + SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); + SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); + + SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, + DAG.getUNDEF(ContainerVT), SplatOne, VL); + SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, + DAG.getUNDEF(ContainerVT), SplatZero, VL); + + MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); + SDValue Trunc = DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, + DAG.getUNDEF(ContainerVT), Mask, VL); + Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, + {Trunc, SplatZero, DAG.getCondCode(ISD::SETNE), + DAG.getUNDEF(MaskContainerVT), Mask, VL}); + if (MaskVT.isFixedLengthVector()) + Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); + return Trunc; +} + +SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op, + SelectionDAG &DAG) const { + bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE; + SDLoc DL(Op); + + MVT VT = Op.getSimpleValueType(); + // Only custom-lower vector truncates + assert(VT.isVector() && "Unexpected type for vector truncate lowering"); + + // Truncates to mask types are handled differently + if (VT.getVectorElementType() == MVT::i1) + return lowerVectorMaskTruncLike(Op, DAG); + + // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary + // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which + // truncate by one power of two at a time. + MVT DstEltVT = VT.getVectorElementType(); + + SDValue Src = Op.getOperand(0); + MVT SrcVT = Src.getSimpleValueType(); + MVT SrcEltVT = SrcVT.getVectorElementType(); + + assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) && + isPowerOf2_64(SrcEltVT.getSizeInBits()) && + "Unexpected vector truncate lowering"); + + MVT ContainerVT = SrcVT; + SDValue Mask, VL; + if (IsVPTrunc) { + Mask = Op.getOperand(1); + VL = Op.getOperand(2); + } + if (SrcVT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(SrcVT); + Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); + if (IsVPTrunc) { + MVT MaskVT = getMaskTypeFor(ContainerVT); + Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); + } + } + + SDValue Result = Src; + if (!IsVPTrunc) { + std::tie(Mask, VL) = + getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); + } + + LLVMContext &Context = *DAG.getContext(); + const ElementCount Count = ContainerVT.getVectorElementCount(); + do { + SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); + EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); + Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, + Mask, VL); + } while (SrcEltVT != DstEltVT); + + if (SrcVT.isFixedLengthVector()) + Result = convertFromScalableVector(VT, Result, DAG, Subtarget); + + return Result; +} + +SDValue +RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op, + SelectionDAG &DAG) const { + bool IsVP = + Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND; + bool IsExtend = + Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND; + // RVV can only do truncate fp to types half the size as the source. We + // custom-lower f64->f16 rounds via RVV's round-to-odd float + // conversion instruction. + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + + assert(VT.isVector() && "Unexpected type for vector truncate lowering"); + + SDValue Src = Op.getOperand(0); + MVT SrcVT = Src.getSimpleValueType(); + + bool IsDirectExtend = IsExtend && (VT.getVectorElementType() != MVT::f64 || + SrcVT.getVectorElementType() != MVT::f16); + bool IsDirectTrunc = !IsExtend && (VT.getVectorElementType() != MVT::f16 || + SrcVT.getVectorElementType() != MVT::f64); + + bool IsDirectConv = IsDirectExtend || IsDirectTrunc; + + // Prepare any fixed-length vector operands. + MVT ContainerVT = VT; + SDValue Mask, VL; + if (IsVP) { + Mask = Op.getOperand(1); + VL = Op.getOperand(2); + } + if (VT.isFixedLengthVector()) { + MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); + ContainerVT = + SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); + Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); + if (IsVP) { + MVT MaskVT = getMaskTypeFor(ContainerVT); + Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); + } + } + + if (!IsVP) + std::tie(Mask, VL) = + getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); + + unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL; + + if (IsDirectConv) { + Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL); + if (VT.isFixedLengthVector()) + Src = convertFromScalableVector(VT, Src, DAG, Subtarget); + return Src; + } + + unsigned InterConvOpc = + IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL; + + MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); + SDValue IntermediateConv = + DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL); + SDValue Result = + DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL); + if (VT.isFixedLengthVector()) + return convertFromScalableVector(VT, Result, DAG, Subtarget); + return Result; +} + +// Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the +// first position of a vector, and that vector is slid up to the insert index. +// By limiting the active vector length to index+1 and merging with the +// original vector (with an undisturbed tail policy for elements >= VL), we +// achieve the desired result of leaving all elements untouched except the one +// at VL-1, which is replaced with the desired value. +SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + MVT VecVT = Op.getSimpleValueType(); + SDValue Vec = Op.getOperand(0); + SDValue Val = Op.getOperand(1); + SDValue Idx = Op.getOperand(2); + + if (VecVT.getVectorElementType() == MVT::i1) { + // FIXME: For now we just promote to an i8 vector and insert into that, + // but this is probably not optimal. + MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); + Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); + Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); + return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); + } + + MVT ContainerVT = VecVT; + // If the operand is a fixed-length vector, convert to a scalable one. + if (VecVT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VecVT); + Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); + } + + MVT XLenVT = Subtarget.getXLenVT(); + + SDValue Zero = DAG.getConstant(0, DL, XLenVT); + bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; + // Even i64-element vectors on RV32 can be lowered without scalar + // legalization if the most-significant 32 bits of the value are not affected + // by the sign-extension of the lower 32 bits. + // TODO: We could also catch sign extensions of a 32-bit value. + if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { + const auto *CVal = cast<ConstantSDNode>(Val); + if (isInt<32>(CVal->getSExtValue())) { + IsLegalInsert = true; + Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); + } + } + + auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); + + SDValue ValInVec; + + if (IsLegalInsert) { + unsigned Opc = + VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; + if (isNullConstant(Idx)) { + Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); + if (!VecVT.isFixedLengthVector()) + return Vec; + return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); + } + ValInVec = lowerScalarInsert(Val, VL, ContainerVT, DL, DAG, Subtarget); + } else { + // On RV32, i64-element vectors must be specially handled to place the + // value at element 0, by using two vslide1down instructions in sequence on + // the i32 split lo/hi value. Use an equivalently-sized i32 vector for + // this. + SDValue One = DAG.getConstant(1, DL, XLenVT); + SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); + SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); + MVT I32ContainerVT = + MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); + SDValue I32Mask = + getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; + // Limit the active VL to two. + SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); + // If the Idx is 0 we can insert directly into the vector. + if (isNullConstant(Idx)) { + // First slide in the lo value, then the hi in above it. We use slide1down + // to avoid the register group overlap constraint of vslide1up. + ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT, + Vec, Vec, ValLo, I32Mask, InsertI64VL); + // If the source vector is undef don't pass along the tail elements from + // the previous slide1down. + SDValue Tail = Vec.isUndef() ? Vec : ValInVec; + ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT, + Tail, ValInVec, ValHi, I32Mask, InsertI64VL); + // Bitcast back to the right container type. + ValInVec = DAG.getBitcast(ContainerVT, ValInVec); + + if (!VecVT.isFixedLengthVector()) + return ValInVec; + return convertFromScalableVector(VecVT, ValInVec, DAG, Subtarget); + } + + // First slide in the lo value, then the hi in above it. We use slide1down + // to avoid the register group overlap constraint of vslide1up. + ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT, + DAG.getUNDEF(I32ContainerVT), + DAG.getUNDEF(I32ContainerVT), ValLo, + I32Mask, InsertI64VL); + ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT, + DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi, + I32Mask, InsertI64VL); + // Bitcast back to the right container type. + ValInVec = DAG.getBitcast(ContainerVT, ValInVec); + } + + // Now that the value is in a vector, slide it into position. + SDValue InsertVL = + DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); + + // Use tail agnostic policy if Idx is the last index of Vec. + unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED; + if (VecVT.isFixedLengthVector() && isa<ConstantSDNode>(Idx) && + cast<ConstantSDNode>(Idx)->getZExtValue() + 1 == + VecVT.getVectorNumElements()) + Policy = RISCVII::TAIL_AGNOSTIC; + SDValue Slideup = getVSlideup(DAG, Subtarget, DL, ContainerVT, Vec, ValInVec, + Idx, Mask, InsertVL, Policy); + if (!VecVT.isFixedLengthVector()) + return Slideup; + return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); +} + +// Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then +// extract the first element: (extractelt (slidedown vec, idx), 0). For integer +// types this is done using VMV_X_S to allow us to glean information about the +// sign bits of the result. +SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + SDValue Idx = Op.getOperand(1); + SDValue Vec = Op.getOperand(0); + EVT EltVT = Op.getValueType(); + MVT VecVT = Vec.getSimpleValueType(); + MVT XLenVT = Subtarget.getXLenVT(); + + if (VecVT.getVectorElementType() == MVT::i1) { + // Use vfirst.m to extract the first bit. + if (isNullConstant(Idx)) { + MVT ContainerVT = VecVT; + if (VecVT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VecVT); + Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); + } + auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); + SDValue Vfirst = + DAG.getNode(RISCVISD::VFIRST_VL, DL, XLenVT, Vec, Mask, VL); + return DAG.getSetCC(DL, XLenVT, Vfirst, DAG.getConstant(0, DL, XLenVT), + ISD::SETEQ); + } + if (VecVT.isFixedLengthVector()) { + unsigned NumElts = VecVT.getVectorNumElements(); + if (NumElts >= 8) { + MVT WideEltVT; + unsigned WidenVecLen; + SDValue ExtractElementIdx; + SDValue ExtractBitIdx; + unsigned MaxEEW = Subtarget.getELEN(); + MVT LargestEltVT = MVT::getIntegerVT( + std::min(MaxEEW, unsigned(XLenVT.getSizeInBits()))); + if (NumElts <= LargestEltVT.getSizeInBits()) { + assert(isPowerOf2_32(NumElts) && + "the number of elements should be power of 2"); + WideEltVT = MVT::getIntegerVT(NumElts); + WidenVecLen = 1; + ExtractElementIdx = DAG.getConstant(0, DL, XLenVT); + ExtractBitIdx = Idx; + } else { + WideEltVT = LargestEltVT; + WidenVecLen = NumElts / WideEltVT.getSizeInBits(); + // extract element index = index / element width + ExtractElementIdx = DAG.getNode( + ISD::SRL, DL, XLenVT, Idx, + DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT)); + // mask bit index = index % element width + ExtractBitIdx = DAG.getNode( + ISD::AND, DL, XLenVT, Idx, + DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT)); + } + MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen); + Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec); + SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT, + Vec, ExtractElementIdx); + // Extract the bit from GPR. + SDValue ShiftRight = + DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx); + return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight, + DAG.getConstant(1, DL, XLenVT)); + } + } + // Otherwise, promote to an i8 vector and extract from that. + MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); + Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); + } + + // If this is a fixed vector, we need to convert it to a scalable vector. + MVT ContainerVT = VecVT; + if (VecVT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VecVT); + Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); + } + + // If the index is 0, the vector is already in the right position. + if (!isNullConstant(Idx)) { + // Use a VL of 1 to avoid processing more elements than we need. + auto [Mask, VL] = getDefaultVLOps(1, ContainerVT, DL, DAG, Subtarget); + Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT, + DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); + } + + if (!EltVT.isInteger()) { + // Floating-point extracts are handled in TableGen. + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, + DAG.getConstant(0, DL, XLenVT)); + } + + SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); + return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); +} + +// Some RVV intrinsics may claim that they want an integer operand to be +// promoted or expanded. +static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && + "Unexpected opcode"); + + if (!Subtarget.hasVInstructions()) + return SDValue(); + + bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; + unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); + SDLoc DL(Op); + + const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = + RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); + if (!II || !II->hasScalarOperand()) + return SDValue(); + + unsigned SplatOp = II->ScalarOperand + 1 + HasChain; + assert(SplatOp < Op.getNumOperands()); + + SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); + SDValue &ScalarOp = Operands[SplatOp]; + MVT OpVT = ScalarOp.getSimpleValueType(); + MVT XLenVT = Subtarget.getXLenVT(); + + // If this isn't a scalar, or its type is XLenVT we're done. + if (!OpVT.isScalarInteger() || OpVT == XLenVT) + return SDValue(); + + // Simplest case is that the operand needs to be promoted to XLenVT. + if (OpVT.bitsLT(XLenVT)) { + // If the operand is a constant, sign extend to increase our chances + // of being able to use a .vi instruction. ANY_EXTEND would become a + // a zero extend and the simm5 check in isel would fail. + // FIXME: Should we ignore the upper bits in isel instead? + unsigned ExtOpc = + isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; + ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); + return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); + } + + // Use the previous operand to get the vXi64 VT. The result might be a mask + // VT for compares. Using the previous operand assumes that the previous + // operand will never have a smaller element size than a scalar operand and + // that a widening operation never uses SEW=64. + // NOTE: If this fails the below assert, we can probably just find the + // element count from any operand or result and use it to construct the VT. + assert(II->ScalarOperand > 0 && "Unexpected splat operand!"); + MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); + + // The more complex case is when the scalar is larger than XLenVT. + assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && + VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); + + // If this is a sign-extended 32-bit value, we can truncate it and rely on the + // instruction to sign-extend since SEW>XLEN. + if (DAG.ComputeNumSignBits(ScalarOp) > 32) { + ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp); + return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); + } + + switch (IntNo) { + case Intrinsic::riscv_vslide1up: + case Intrinsic::riscv_vslide1down: + case Intrinsic::riscv_vslide1up_mask: + case Intrinsic::riscv_vslide1down_mask: { + // We need to special case these when the scalar is larger than XLen. + unsigned NumOps = Op.getNumOperands(); + bool IsMasked = NumOps == 7; + + // Convert the vector source to the equivalent nxvXi32 vector. + MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); + SDValue Vec = DAG.getBitcast(I32VT, Operands[2]); + + SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, + DAG.getConstant(0, DL, XLenVT)); + SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp, + DAG.getConstant(1, DL, XLenVT)); + + // Double the VL since we halved SEW. + SDValue AVL = getVLOperand(Op); + SDValue I32VL; + + // Optimize for constant AVL + if (isa<ConstantSDNode>(AVL)) { + unsigned EltSize = VT.getScalarSizeInBits(); + unsigned MinSize = VT.getSizeInBits().getKnownMinValue(); + + unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); + unsigned MaxVLMAX = + RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); + + unsigned VectorBitsMin = Subtarget.getRealMinVLen(); + unsigned MinVLMAX = + RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize); + + uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue(); + if (AVLInt <= MinVLMAX) { + I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT); + } else if (AVLInt >= 2 * MaxVLMAX) { + // Just set vl to VLMAX in this situation + RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT); + SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); + unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits()); + SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); + SDValue SETVLMAX = DAG.getTargetConstant( + Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32); + I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW, + LMUL); + } else { + // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl + // is related to the hardware implementation. + // So let the following code handle + } + } + if (!I32VL) { + RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT); + SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT); + unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits()); + SDValue SEW = DAG.getConstant(Sew, DL, XLenVT); + SDValue SETVL = + DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32); + // Using vsetvli instruction to get actually used length which related to + // the hardware implementation + SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL, + SEW, LMUL); + I32VL = + DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); + } + + SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG); + + // Shift the two scalar parts in using SEW=32 slide1up/slide1down + // instructions. + SDValue Passthru; + if (IsMasked) + Passthru = DAG.getUNDEF(I32VT); + else + Passthru = DAG.getBitcast(I32VT, Operands[1]); + + if (IntNo == Intrinsic::riscv_vslide1up || + IntNo == Intrinsic::riscv_vslide1up_mask) { + Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, + ScalarHi, I32Mask, I32VL); + Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec, + ScalarLo, I32Mask, I32VL); + } else { + Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, + ScalarLo, I32Mask, I32VL); + Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec, + ScalarHi, I32Mask, I32VL); + } + + // Convert back to nxvXi64. + Vec = DAG.getBitcast(VT, Vec); + + if (!IsMasked) + return Vec; + // Apply mask after the operation. + SDValue Mask = Operands[NumOps - 3]; + SDValue MaskedOff = Operands[1]; + // Assume Policy operand is the last operand. + uint64_t Policy = + cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue(); + // We don't need to select maskedoff if it's undef. + if (MaskedOff.isUndef()) + return Vec; + // TAMU + if (Policy == RISCVII::TAIL_AGNOSTIC) + return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, + AVL); + // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma. + // It's fine because vmerge does not care mask policy. + return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff, + AVL); + } + } + + // We need to convert the scalar to a splat vector. + SDValue VL = getVLOperand(Op); + assert(VL.getValueType() == XLenVT); + ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG); + return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); +} + +SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, + SelectionDAG &DAG) const { + unsigned IntNo = Op.getConstantOperandVal(0); + SDLoc DL(Op); + MVT XLenVT = Subtarget.getXLenVT(); + + switch (IntNo) { + default: + break; // Don't custom lower most intrinsics. + case Intrinsic::thread_pointer: { + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + return DAG.getRegister(RISCV::X4, PtrVT); + } + case Intrinsic::riscv_orc_b: + case Intrinsic::riscv_brev8: { + unsigned Opc = + IntNo == Intrinsic::riscv_brev8 ? RISCVISD::BREV8 : RISCVISD::ORC_B; + return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1)); + } + case Intrinsic::riscv_zip: + case Intrinsic::riscv_unzip: { + unsigned Opc = + IntNo == Intrinsic::riscv_zip ? RISCVISD::ZIP : RISCVISD::UNZIP; + return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1)); + } + case Intrinsic::riscv_vmv_x_s: + assert(Op.getValueType() == XLenVT && "Unexpected VT!"); + return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), + Op.getOperand(1)); + case Intrinsic::riscv_vfmv_f_s: + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(), + Op.getOperand(1), DAG.getConstant(0, DL, XLenVT)); + case Intrinsic::riscv_vmv_v_x: + return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), + Op.getOperand(3), Op.getSimpleValueType(), DL, DAG, + Subtarget); + case Intrinsic::riscv_vfmv_v_f: + return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), + Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); + case Intrinsic::riscv_vmv_s_x: { + SDValue Scalar = Op.getOperand(2); + + if (Scalar.getValueType().bitsLE(XLenVT)) { + Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); + return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), + Op.getOperand(1), Scalar, Op.getOperand(3)); + } + + assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); + + // This is an i64 value that lives in two scalar registers. We have to + // insert this in a convoluted way. First we build vXi64 splat containing + // the two values that we assemble using some bit math. Next we'll use + // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask + // to merge element 0 from our splat into the source vector. + // FIXME: This is probably not the best way to do this, but it is + // consistent with INSERT_VECTOR_ELT lowering so it is a good starting + // point. + // sw lo, (a0) + // sw hi, 4(a0) + // vlse vX, (a0) + // + // vid.v vVid + // vmseq.vx mMask, vVid, 0 + // vmerge.vvm vDest, vSrc, vVal, mMask + MVT VT = Op.getSimpleValueType(); + SDValue Vec = Op.getOperand(1); + SDValue VL = getVLOperand(Op); + + SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG); + if (Op.getOperand(1).isUndef()) + return SplattedVal; + SDValue SplattedIdx = + DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), + DAG.getConstant(0, DL, MVT::i32), VL); + + MVT MaskVT = getMaskTypeFor(VT); + SDValue Mask = getAllOnesMask(VT, VL, DL, DAG); + SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); + SDValue SelectCond = + DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, + {VID, SplattedIdx, DAG.getCondCode(ISD::SETEQ), + DAG.getUNDEF(MaskVT), Mask, VL}); + return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, + Vec, VL); + } + } + + return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); +} + +SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, + SelectionDAG &DAG) const { + unsigned IntNo = Op.getConstantOperandVal(1); + switch (IntNo) { + default: + break; + case Intrinsic::riscv_masked_strided_load: { + SDLoc DL(Op); + MVT XLenVT = Subtarget.getXLenVT(); + + // If the mask is known to be all ones, optimize to an unmasked intrinsic; + // the selection of the masked intrinsics doesn't do this for us. + SDValue Mask = Op.getOperand(5); + bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); + + MVT VT = Op->getSimpleValueType(0); + MVT ContainerVT = VT; + if (VT.isFixedLengthVector()) + ContainerVT = getContainerForFixedLengthVector(VT); + + SDValue PassThru = Op.getOperand(2); + if (!IsUnmasked) { + MVT MaskVT = getMaskTypeFor(ContainerVT); + if (VT.isFixedLengthVector()) { + Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); + PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); + } + } + + auto *Load = cast<MemIntrinsicSDNode>(Op); + SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; + SDValue Ptr = Op.getOperand(3); + SDValue Stride = Op.getOperand(4); + SDValue Result, Chain; + + // TODO: We restrict this to unmasked loads currently in consideration of + // the complexity of hanlding all falses masks. + if (IsUnmasked && isNullConstant(Stride)) { + MVT ScalarVT = ContainerVT.getVectorElementType(); + SDValue ScalarLoad = + DAG.getExtLoad(ISD::ZEXTLOAD, DL, XLenVT, Load->getChain(), Ptr, + ScalarVT, Load->getMemOperand()); + Chain = ScalarLoad.getValue(1); + Result = lowerScalarSplat(SDValue(), ScalarLoad, VL, ContainerVT, DL, DAG, + Subtarget); + } else { + SDValue IntID = DAG.getTargetConstant( + IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL, + XLenVT); + + SmallVector<SDValue, 8> Ops{Load->getChain(), IntID}; + if (IsUnmasked) + Ops.push_back(DAG.getUNDEF(ContainerVT)); + else + Ops.push_back(PassThru); + Ops.push_back(Ptr); + Ops.push_back(Stride); + if (!IsUnmasked) + Ops.push_back(Mask); + Ops.push_back(VL); + if (!IsUnmasked) { + SDValue Policy = + DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); + Ops.push_back(Policy); + } + + SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); + Result = + DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, + Load->getMemoryVT(), Load->getMemOperand()); + Chain = Result.getValue(1); + } + if (VT.isFixedLengthVector()) + Result = convertFromScalableVector(VT, Result, DAG, Subtarget); + return DAG.getMergeValues({Result, Chain}, DL); + } + case Intrinsic::riscv_seg2_load: + case Intrinsic::riscv_seg3_load: + case Intrinsic::riscv_seg4_load: + case Intrinsic::riscv_seg5_load: + case Intrinsic::riscv_seg6_load: + case Intrinsic::riscv_seg7_load: + case Intrinsic::riscv_seg8_load: { + SDLoc DL(Op); + static const Intrinsic::ID VlsegInts[7] = { + Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3, + Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5, + Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7, + Intrinsic::riscv_vlseg8}; + unsigned NF = Op->getNumValues() - 1; + assert(NF >= 2 && NF <= 8 && "Unexpected seg number"); + MVT XLenVT = Subtarget.getXLenVT(); + MVT VT = Op->getSimpleValueType(0); + MVT ContainerVT = getContainerForFixedLengthVector(VT); + + SDValue VL = getVLOp(VT.getVectorNumElements(), DL, DAG, Subtarget); + SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT); + auto *Load = cast<MemIntrinsicSDNode>(Op); + SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT); + ContainerVTs.push_back(MVT::Other); + SDVTList VTs = DAG.getVTList(ContainerVTs); + SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID}; + Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT)); + Ops.push_back(Op.getOperand(2)); + Ops.push_back(VL); + SDValue Result = + DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, + Load->getMemoryVT(), Load->getMemOperand()); + SmallVector<SDValue, 9> Results; + for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++) + Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx), + DAG, Subtarget)); + Results.push_back(Result.getValue(NF)); + return DAG.getMergeValues(Results, DL); + } + } + + return lowerVectorIntrinsicScalars(Op, DAG, Subtarget); +} + +SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op, + SelectionDAG &DAG) const { + unsigned IntNo = Op.getConstantOperandVal(1); + switch (IntNo) { + default: + break; + case Intrinsic::riscv_masked_strided_store: { + SDLoc DL(Op); + MVT XLenVT = Subtarget.getXLenVT(); + + // If the mask is known to be all ones, optimize to an unmasked intrinsic; + // the selection of the masked intrinsics doesn't do this for us. + SDValue Mask = Op.getOperand(5); + bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); + + SDValue Val = Op.getOperand(2); + MVT VT = Val.getSimpleValueType(); + MVT ContainerVT = VT; + if (VT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VT); + Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); + } + if (!IsUnmasked) { + MVT MaskVT = getMaskTypeFor(ContainerVT); + if (VT.isFixedLengthVector()) + Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); + } + + SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; + + SDValue IntID = DAG.getTargetConstant( + IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL, + XLenVT); + + auto *Store = cast<MemIntrinsicSDNode>(Op); + SmallVector<SDValue, 8> Ops{Store->getChain(), IntID}; + Ops.push_back(Val); + Ops.push_back(Op.getOperand(3)); // Ptr + Ops.push_back(Op.getOperand(4)); // Stride + if (!IsUnmasked) + Ops.push_back(Mask); + Ops.push_back(VL); + + return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(), + Ops, Store->getMemoryVT(), + Store->getMemOperand()); + } + } + + return SDValue(); +} + +static unsigned getRVVReductionOp(unsigned ISDOpcode) { + switch (ISDOpcode) { + default: + llvm_unreachable("Unhandled reduction"); + case ISD::VECREDUCE_ADD: + return RISCVISD::VECREDUCE_ADD_VL; + case ISD::VECREDUCE_UMAX: + return RISCVISD::VECREDUCE_UMAX_VL; + case ISD::VECREDUCE_SMAX: + return RISCVISD::VECREDUCE_SMAX_VL; + case ISD::VECREDUCE_UMIN: + return RISCVISD::VECREDUCE_UMIN_VL; + case ISD::VECREDUCE_SMIN: + return RISCVISD::VECREDUCE_SMIN_VL; + case ISD::VECREDUCE_AND: + return RISCVISD::VECREDUCE_AND_VL; + case ISD::VECREDUCE_OR: + return RISCVISD::VECREDUCE_OR_VL; + case ISD::VECREDUCE_XOR: + return RISCVISD::VECREDUCE_XOR_VL; + } +} + +SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op, + SelectionDAG &DAG, + bool IsVP) const { + SDLoc DL(Op); + SDValue Vec = Op.getOperand(IsVP ? 1 : 0); + MVT VecVT = Vec.getSimpleValueType(); + assert((Op.getOpcode() == ISD::VECREDUCE_AND || + Op.getOpcode() == ISD::VECREDUCE_OR || + Op.getOpcode() == ISD::VECREDUCE_XOR || + Op.getOpcode() == ISD::VP_REDUCE_AND || + Op.getOpcode() == ISD::VP_REDUCE_OR || + Op.getOpcode() == ISD::VP_REDUCE_XOR) && + "Unexpected reduction lowering"); + + MVT XLenVT = Subtarget.getXLenVT(); + assert(Op.getValueType() == XLenVT && + "Expected reduction output to be legalized to XLenVT"); + + MVT ContainerVT = VecVT; + if (VecVT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VecVT); + Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); + } + + SDValue Mask, VL; + if (IsVP) { + Mask = Op.getOperand(2); + VL = Op.getOperand(3); + } else { + std::tie(Mask, VL) = + getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); + } + + unsigned BaseOpc; + ISD::CondCode CC; + SDValue Zero = DAG.getConstant(0, DL, XLenVT); + + switch (Op.getOpcode()) { + default: + llvm_unreachable("Unhandled reduction"); + case ISD::VECREDUCE_AND: + case ISD::VP_REDUCE_AND: { + // vcpop ~x == 0 + SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); + Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL); + Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); + CC = ISD::SETEQ; + BaseOpc = ISD::AND; + break; + } + case ISD::VECREDUCE_OR: + case ISD::VP_REDUCE_OR: + // vcpop x != 0 + Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); + CC = ISD::SETNE; + BaseOpc = ISD::OR; + break; + case ISD::VECREDUCE_XOR: + case ISD::VP_REDUCE_XOR: { + // ((vcpop x) & 1) != 0 + SDValue One = DAG.getConstant(1, DL, XLenVT); + Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL); + Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); + CC = ISD::SETNE; + BaseOpc = ISD::XOR; + break; + } + } + + SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC); + + if (!IsVP) + return SetCC; + + // Now include the start value in the operation. + // Note that we must return the start value when no elements are operated + // upon. The vcpop instructions we've emitted in each case above will return + // 0 for an inactive vector, and so we've already received the neutral value: + // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we + // can simply include the start value. + return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0)); +} + +static bool hasNonZeroAVL(SDValue AVL) { + auto *RegisterAVL = dyn_cast<RegisterSDNode>(AVL); + auto *ImmAVL = dyn_cast<ConstantSDNode>(AVL); + return (RegisterAVL && RegisterAVL->getReg() == RISCV::X0) || + (ImmAVL && ImmAVL->getZExtValue() >= 1); +} + +/// Helper to lower a reduction sequence of the form: +/// scalar = reduce_op vec, scalar_start +static SDValue lowerReductionSeq(unsigned RVVOpcode, MVT ResVT, + SDValue StartValue, SDValue Vec, SDValue Mask, + SDValue VL, SDLoc DL, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + const MVT VecVT = Vec.getSimpleValueType(); + const MVT M1VT = getLMUL1VT(VecVT); + const MVT XLenVT = Subtarget.getXLenVT(); + const bool NonZeroAVL = hasNonZeroAVL(VL); + + // The reduction needs an LMUL1 input; do the splat at either LMUL1 + // or the original VT if fractional. + auto InnerVT = VecVT.bitsLE(M1VT) ? VecVT : M1VT; + // We reuse the VL of the reduction to reduce vsetvli toggles if we can + // prove it is non-zero. For the AVL=0 case, we need the scalar to + // be the result of the reduction operation. + auto InnerVL = NonZeroAVL ? VL : DAG.getConstant(1, DL, XLenVT); + SDValue InitialValue = lowerScalarInsert(StartValue, InnerVL, InnerVT, DL, + DAG, Subtarget); + if (M1VT != InnerVT) + InitialValue = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, M1VT, + DAG.getUNDEF(M1VT), + InitialValue, DAG.getConstant(0, DL, XLenVT)); + SDValue PassThru = NonZeroAVL ? DAG.getUNDEF(M1VT) : InitialValue; + SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, PassThru, Vec, + InitialValue, Mask, VL); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction, + DAG.getConstant(0, DL, XLenVT)); +} + +SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + SDValue Vec = Op.getOperand(0); + EVT VecEVT = Vec.getValueType(); + + unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); + + // Due to ordering in legalize types we may have a vector type that needs to + // be split. Do that manually so we can get down to a legal type. + while (getTypeAction(*DAG.getContext(), VecEVT) == + TargetLowering::TypeSplitVector) { + auto [Lo, Hi] = DAG.SplitVector(Vec, DL); + VecEVT = Lo.getValueType(); + Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); + } + + // TODO: The type may need to be widened rather than split. Or widened before + // it can be split. + if (!isTypeLegal(VecEVT)) + return SDValue(); + + MVT VecVT = VecEVT.getSimpleVT(); + MVT VecEltVT = VecVT.getVectorElementType(); + unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); + + MVT ContainerVT = VecVT; + if (VecVT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VecVT); + Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); + } + + auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); + + SDValue NeutralElem = + DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); + return lowerReductionSeq(RVVOpcode, Op.getSimpleValueType(), NeutralElem, Vec, + Mask, VL, DL, DAG, Subtarget); +} + +// Given a reduction op, this function returns the matching reduction opcode, +// the vector SDValue and the scalar SDValue required to lower this to a +// RISCVISD node. +static std::tuple<unsigned, SDValue, SDValue> +getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { + SDLoc DL(Op); + auto Flags = Op->getFlags(); + unsigned Opcode = Op.getOpcode(); + unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); + switch (Opcode) { + default: + llvm_unreachable("Unhandled reduction"); + case ISD::VECREDUCE_FADD: { + // Use positive zero if we can. It is cheaper to materialize. + SDValue Zero = + DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT); + return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero); + } + case ISD::VECREDUCE_SEQ_FADD: + return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), + Op.getOperand(0)); + case ISD::VECREDUCE_FMIN: + return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), + DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); + case ISD::VECREDUCE_FMAX: + return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), + DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); + } +} + +SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + MVT VecEltVT = Op.getSimpleValueType(); + + unsigned RVVOpcode; + SDValue VectorVal, ScalarVal; + std::tie(RVVOpcode, VectorVal, ScalarVal) = + getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); + MVT VecVT = VectorVal.getSimpleValueType(); + + MVT ContainerVT = VecVT; + if (VecVT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VecVT); + VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); + } + + auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); + return lowerReductionSeq(RVVOpcode, Op.getSimpleValueType(), ScalarVal, + VectorVal, Mask, VL, DL, DAG, Subtarget); +} + +static unsigned getRVVVPReductionOp(unsigned ISDOpcode) { + switch (ISDOpcode) { + default: + llvm_unreachable("Unhandled reduction"); + case ISD::VP_REDUCE_ADD: + return RISCVISD::VECREDUCE_ADD_VL; + case ISD::VP_REDUCE_UMAX: + return RISCVISD::VECREDUCE_UMAX_VL; + case ISD::VP_REDUCE_SMAX: + return RISCVISD::VECREDUCE_SMAX_VL; + case ISD::VP_REDUCE_UMIN: + return RISCVISD::VECREDUCE_UMIN_VL; + case ISD::VP_REDUCE_SMIN: + return RISCVISD::VECREDUCE_SMIN_VL; + case ISD::VP_REDUCE_AND: + return RISCVISD::VECREDUCE_AND_VL; + case ISD::VP_REDUCE_OR: + return RISCVISD::VECREDUCE_OR_VL; + case ISD::VP_REDUCE_XOR: + return RISCVISD::VECREDUCE_XOR_VL; + case ISD::VP_REDUCE_FADD: + return RISCVISD::VECREDUCE_FADD_VL; + case ISD::VP_REDUCE_SEQ_FADD: + return RISCVISD::VECREDUCE_SEQ_FADD_VL; + case ISD::VP_REDUCE_FMAX: + return RISCVISD::VECREDUCE_FMAX_VL; + case ISD::VP_REDUCE_FMIN: + return RISCVISD::VECREDUCE_FMIN_VL; + } +} + +SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + SDValue Vec = Op.getOperand(1); + EVT VecEVT = Vec.getValueType(); + + // TODO: The type may need to be widened rather than split. Or widened before + // it can be split. + if (!isTypeLegal(VecEVT)) + return SDValue(); + + MVT VecVT = VecEVT.getSimpleVT(); + unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode()); + + if (VecVT.isFixedLengthVector()) { + auto ContainerVT = getContainerForFixedLengthVector(VecVT); + Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); + } + + SDValue VL = Op.getOperand(3); + SDValue Mask = Op.getOperand(2); + return lowerReductionSeq(RVVOpcode, Op.getSimpleValueType(), Op.getOperand(0), + Vec, Mask, VL, DL, DAG, Subtarget); +} + +SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, + SelectionDAG &DAG) const { + SDValue Vec = Op.getOperand(0); + SDValue SubVec = Op.getOperand(1); + MVT VecVT = Vec.getSimpleValueType(); + MVT SubVecVT = SubVec.getSimpleValueType(); + + SDLoc DL(Op); + MVT XLenVT = Subtarget.getXLenVT(); + unsigned OrigIdx = Op.getConstantOperandVal(2); + const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); + + // We don't have the ability to slide mask vectors up indexed by their i1 + // elements; the smallest we can do is i8. Often we are able to bitcast to + // equivalent i8 vectors. Note that when inserting a fixed-length vector + // into a scalable one, we might not necessarily have enough scalable + // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. + if (SubVecVT.getVectorElementType() == MVT::i1 && + (OrigIdx != 0 || !Vec.isUndef())) { + if (VecVT.getVectorMinNumElements() >= 8 && + SubVecVT.getVectorMinNumElements() >= 8) { + assert(OrigIdx % 8 == 0 && "Invalid index"); + assert(VecVT.getVectorMinNumElements() % 8 == 0 && + SubVecVT.getVectorMinNumElements() % 8 == 0 && + "Unexpected mask vector lowering"); + OrigIdx /= 8; + SubVecVT = + MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, + SubVecVT.isScalableVector()); + VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, + VecVT.isScalableVector()); + Vec = DAG.getBitcast(VecVT, Vec); + SubVec = DAG.getBitcast(SubVecVT, SubVec); + } else { + // We can't slide this mask vector up indexed by its i1 elements. + // This poses a problem when we wish to insert a scalable vector which + // can't be re-expressed as a larger type. Just choose the slow path and + // extend to a larger type, then truncate back down. + MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); + MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); + Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); + SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); + Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, + Op.getOperand(2)); + SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); + return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); + } + } + + // If the subvector vector is a fixed-length type, we cannot use subregister + // manipulation to simplify the codegen; we don't know which register of a + // LMUL group contains the specific subvector as we only know the minimum + // register size. Therefore we must slide the vector group up the full + // amount. + if (SubVecVT.isFixedLengthVector()) { + if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector()) + return Op; + MVT ContainerVT = VecVT; + if (VecVT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VecVT); + Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); + } + SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, + DAG.getUNDEF(ContainerVT), SubVec, + DAG.getConstant(0, DL, XLenVT)); + if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) { + SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget); + return DAG.getBitcast(Op.getValueType(), SubVec); + } + SDValue Mask = + getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; + // Set the vector length to only the number of elements we care about. Note + // that for slideup this includes the offset. + SDValue VL = + getVLOp(OrigIdx + SubVecVT.getVectorNumElements(), DL, DAG, Subtarget); + SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); + + // Use tail agnostic policy if OrigIdx is the last index of Vec. + unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED; + if (VecVT.isFixedLengthVector() && + OrigIdx + 1 == VecVT.getVectorNumElements()) + Policy = RISCVII::TAIL_AGNOSTIC; + SDValue Slideup = getVSlideup(DAG, Subtarget, DL, ContainerVT, Vec, SubVec, + SlideupAmt, Mask, VL, Policy); + if (VecVT.isFixedLengthVector()) + Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); + return DAG.getBitcast(Op.getValueType(), Slideup); + } + + unsigned SubRegIdx, RemIdx; + std::tie(SubRegIdx, RemIdx) = + RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( + VecVT, SubVecVT, OrigIdx, TRI); + + RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); + bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || + SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || + SubVecLMUL == RISCVII::VLMUL::LMUL_F8; + + // 1. If the Idx has been completely eliminated and this subvector's size is + // a vector register or a multiple thereof, or the surrounding elements are + // undef, then this is a subvector insert which naturally aligns to a vector + // register. These can easily be handled using subregister manipulation. + // 2. If the subvector is smaller than a vector register, then the insertion + // must preserve the undisturbed elements of the register. We do this by + // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type + // (which resolves to a subregister copy), performing a VSLIDEUP to place the + // subvector within the vector register, and an INSERT_SUBVECTOR of that + // LMUL=1 type back into the larger vector (resolving to another subregister + // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type + // to avoid allocating a large register group to hold our subvector. + if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) + return Op; + + // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements + // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy + // (in our case undisturbed). This means we can set up a subvector insertion + // where OFFSET is the insertion offset, and the VL is the OFFSET plus the + // size of the subvector. + MVT InterSubVT = VecVT; + SDValue AlignedExtract = Vec; + unsigned AlignedIdx = OrigIdx - RemIdx; + if (VecVT.bitsGT(getLMUL1VT(VecVT))) { + InterSubVT = getLMUL1VT(VecVT); + // Extract a subvector equal to the nearest full vector register type. This + // should resolve to a EXTRACT_SUBREG instruction. + AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, + DAG.getConstant(AlignedIdx, DL, XLenVT)); + } + + SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); + // For scalable vectors this must be further multiplied by vscale. + SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); + + auto [Mask, VL] = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); + + // Construct the vector length corresponding to RemIdx + length(SubVecVT). + VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); + VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); + VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); + + SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, + DAG.getUNDEF(InterSubVT), SubVec, + DAG.getConstant(0, DL, XLenVT)); + + SDValue Slideup = getVSlideup(DAG, Subtarget, DL, InterSubVT, AlignedExtract, + SubVec, SlideupAmt, Mask, VL); + + // If required, insert this subvector back into the correct vector register. + // This should resolve to an INSERT_SUBREG instruction. + if (VecVT.bitsGT(InterSubVT)) + Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, + DAG.getConstant(AlignedIdx, DL, XLenVT)); + + // We might have bitcast from a mask type: cast back to the original type if + // required. + return DAG.getBitcast(Op.getSimpleValueType(), Slideup); +} + +SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, + SelectionDAG &DAG) const { + SDValue Vec = Op.getOperand(0); + MVT SubVecVT = Op.getSimpleValueType(); + MVT VecVT = Vec.getSimpleValueType(); + + SDLoc DL(Op); + MVT XLenVT = Subtarget.getXLenVT(); + unsigned OrigIdx = Op.getConstantOperandVal(1); + const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); + + // We don't have the ability to slide mask vectors down indexed by their i1 + // elements; the smallest we can do is i8. Often we are able to bitcast to + // equivalent i8 vectors. Note that when extracting a fixed-length vector + // from a scalable one, we might not necessarily have enough scalable + // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. + if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { + if (VecVT.getVectorMinNumElements() >= 8 && + SubVecVT.getVectorMinNumElements() >= 8) { + assert(OrigIdx % 8 == 0 && "Invalid index"); + assert(VecVT.getVectorMinNumElements() % 8 == 0 && + SubVecVT.getVectorMinNumElements() % 8 == 0 && + "Unexpected mask vector lowering"); + OrigIdx /= 8; + SubVecVT = + MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, + SubVecVT.isScalableVector()); + VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, + VecVT.isScalableVector()); + Vec = DAG.getBitcast(VecVT, Vec); + } else { + // We can't slide this mask vector down, indexed by its i1 elements. + // This poses a problem when we wish to extract a scalable vector which + // can't be re-expressed as a larger type. Just choose the slow path and + // extend to a larger type, then truncate back down. + // TODO: We could probably improve this when extracting certain fixed + // from fixed, where we can extract as i8 and shift the correct element + // right to reach the desired subvector? + MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); + MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); + Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); + Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, + Op.getOperand(1)); + SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); + return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); + } + } + + // If the subvector vector is a fixed-length type, we cannot use subregister + // manipulation to simplify the codegen; we don't know which register of a + // LMUL group contains the specific subvector as we only know the minimum + // register size. Therefore we must slide the vector group down the full + // amount. + if (SubVecVT.isFixedLengthVector()) { + // With an index of 0 this is a cast-like subvector, which can be performed + // with subregister operations. + if (OrigIdx == 0) + return Op; + MVT ContainerVT = VecVT; + if (VecVT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VecVT); + Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); + } + SDValue Mask = + getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; + // Set the vector length to only the number of elements we care about. This + // avoids sliding down elements we're going to discard straight away. + SDValue VL = getVLOp(SubVecVT.getVectorNumElements(), DL, DAG, Subtarget); + SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); + SDValue Slidedown = + getVSlidedown(DAG, Subtarget, DL, ContainerVT, + DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); + // Now we can use a cast-like subvector extract to get the result. + Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, + DAG.getConstant(0, DL, XLenVT)); + return DAG.getBitcast(Op.getValueType(), Slidedown); + } + + unsigned SubRegIdx, RemIdx; + std::tie(SubRegIdx, RemIdx) = + RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( + VecVT, SubVecVT, OrigIdx, TRI); + + // If the Idx has been completely eliminated then this is a subvector extract + // which naturally aligns to a vector register. These can easily be handled + // using subregister manipulation. + if (RemIdx == 0) + return Op; + + // Else we must shift our vector register directly to extract the subvector. + // Do this using VSLIDEDOWN. + + // If the vector type is an LMUL-group type, extract a subvector equal to the + // nearest full vector register type. This should resolve to a EXTRACT_SUBREG + // instruction. + MVT InterSubVT = VecVT; + if (VecVT.bitsGT(getLMUL1VT(VecVT))) { + InterSubVT = getLMUL1VT(VecVT); + Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, + DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); + } + + // Slide this vector register down by the desired number of elements in order + // to place the desired subvector starting at element 0. + SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); + // For scalable vectors this must be further multiplied by vscale. + SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); + + auto [Mask, VL] = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); + SDValue Slidedown = + getVSlidedown(DAG, Subtarget, DL, InterSubVT, DAG.getUNDEF(InterSubVT), + Vec, SlidedownAmt, Mask, VL); + + // Now the vector is in the right position, extract our final subvector. This + // should resolve to a COPY. + Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, + DAG.getConstant(0, DL, XLenVT)); + + // We might have bitcast from a mask type: cast back to the original type if + // required. + return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); +} + +// Lower step_vector to the vid instruction. Any non-identity step value must +// be accounted for my manual expansion. +SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + assert(VT.isScalableVector() && "Expected scalable vector"); + MVT XLenVT = Subtarget.getXLenVT(); + auto [Mask, VL] = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); + SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); + uint64_t StepValImm = Op.getConstantOperandVal(0); + if (StepValImm != 1) { + if (isPowerOf2_64(StepValImm)) { + SDValue StepVal = + DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), + DAG.getConstant(Log2_64(StepValImm), DL, XLenVT), VL); + StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); + } else { + SDValue StepVal = lowerScalarSplat( + SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), + VL, VT, DL, DAG, Subtarget); + StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); + } + } + return StepVec; +} + +// Implement vector_reverse using vrgather.vv with indices determined by +// subtracting the id of each element from (VLMAX-1). This will convert +// the indices like so: +// (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). +// TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. +SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + MVT VecVT = Op.getSimpleValueType(); + if (VecVT.getVectorElementType() == MVT::i1) { + MVT WidenVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); + SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, Op.getOperand(0)); + SDValue Op2 = DAG.getNode(ISD::VECTOR_REVERSE, DL, WidenVT, Op1); + return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Op2); + } + unsigned EltSize = VecVT.getScalarSizeInBits(); + unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); + unsigned VectorBitsMax = Subtarget.getRealMaxVLen(); + unsigned MaxVLMAX = + RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize); + + unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; + MVT IntVT = VecVT.changeVectorElementTypeToInteger(); + + // If this is SEW=8 and VLMAX is potentially more than 256, we need + // to use vrgatherei16.vv. + // TODO: It's also possible to use vrgatherei16.vv for other types to + // decrease register width for the index calculation. + if (MaxVLMAX > 256 && EltSize == 8) { + // If this is LMUL=8, we have to split before can use vrgatherei16.vv. + // Reverse each half, then reassemble them in reverse order. + // NOTE: It's also possible that after splitting that VLMAX no longer + // requires vrgatherei16.vv. + if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { + auto [Lo, Hi] = DAG.SplitVectorOperand(Op.getNode(), 0); + auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VecVT); + Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); + Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); + // Reassemble the low and high pieces reversed. + // FIXME: This is a CONCAT_VECTORS. + SDValue Res = + DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, + DAG.getIntPtrConstant(0, DL)); + return DAG.getNode( + ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, + DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); + } + + // Just promote the int type to i16 which will double the LMUL. + IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); + GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; + } + + MVT XLenVT = Subtarget.getXLenVT(); + auto [Mask, VL] = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); + + // Calculate VLMAX-1 for the desired SEW. + unsigned MinElts = VecVT.getVectorMinNumElements(); + SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, + getVLOp(MinElts, DL, DAG, Subtarget)); + SDValue VLMinus1 = + DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); + + // Splat VLMAX-1 taking care to handle SEW==64 on RV32. + bool IsRV32E64 = + !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; + SDValue SplatVL; + if (!IsRV32E64) + SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); + else + SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT), + VLMinus1, DAG.getRegister(RISCV::X0, XLenVT)); + + SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); + SDValue Indices = DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, + DAG.getUNDEF(IntVT), Mask, VL); + + return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, + DAG.getUNDEF(VecVT), Mask, VL); +} + +SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + SDValue V1 = Op.getOperand(0); + SDValue V2 = Op.getOperand(1); + MVT XLenVT = Subtarget.getXLenVT(); + MVT VecVT = Op.getSimpleValueType(); + + unsigned MinElts = VecVT.getVectorMinNumElements(); + SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, + getVLOp(MinElts, DL, DAG, Subtarget)); + + int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue(); + SDValue DownOffset, UpOffset; + if (ImmValue >= 0) { + // The operand is a TargetConstant, we need to rebuild it as a regular + // constant. + DownOffset = DAG.getConstant(ImmValue, DL, XLenVT); + UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset); + } else { + // The operand is a TargetConstant, we need to rebuild it as a regular + // constant rather than negating the original operand. + UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT); + DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset); + } + + SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG); + + SDValue SlideDown = + getVSlidedown(DAG, Subtarget, DL, VecVT, DAG.getUNDEF(VecVT), V1, + DownOffset, TrueMask, UpOffset); + return getVSlideup(DAG, Subtarget, DL, VecVT, SlideDown, V2, UpOffset, + TrueMask, DAG.getRegister(RISCV::X0, XLenVT), + RISCVII::TAIL_AGNOSTIC); +} + +SDValue +RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + auto *Load = cast<LoadSDNode>(Op); + + assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), + Load->getMemoryVT(), + *Load->getMemOperand()) && + "Expecting a correctly-aligned load"); + + MVT VT = Op.getSimpleValueType(); + MVT XLenVT = Subtarget.getXLenVT(); + MVT ContainerVT = getContainerForFixedLengthVector(VT); + + SDValue VL = getVLOp(VT.getVectorNumElements(), DL, DAG, Subtarget); + + bool IsMaskOp = VT.getVectorElementType() == MVT::i1; + SDValue IntID = DAG.getTargetConstant( + IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT); + SmallVector<SDValue, 4> Ops{Load->getChain(), IntID}; + if (!IsMaskOp) + Ops.push_back(DAG.getUNDEF(ContainerVT)); + Ops.push_back(Load->getBasePtr()); + Ops.push_back(VL); + SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); + SDValue NewLoad = + DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, + Load->getMemoryVT(), Load->getMemOperand()); + + SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); + return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL); +} + +SDValue +RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + auto *Store = cast<StoreSDNode>(Op); + + assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), + Store->getMemoryVT(), + *Store->getMemOperand()) && + "Expecting a correctly-aligned store"); + + SDValue StoreVal = Store->getValue(); + MVT VT = StoreVal.getSimpleValueType(); + MVT XLenVT = Subtarget.getXLenVT(); + + // If the size less than a byte, we need to pad with zeros to make a byte. + if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { + VT = MVT::v8i1; + StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, + DAG.getConstant(0, DL, VT), StoreVal, + DAG.getIntPtrConstant(0, DL)); + } + + MVT ContainerVT = getContainerForFixedLengthVector(VT); + + SDValue VL = getVLOp(VT.getVectorNumElements(), DL, DAG, Subtarget); + + SDValue NewValue = + convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); + + bool IsMaskOp = VT.getVectorElementType() == MVT::i1; + SDValue IntID = DAG.getTargetConstant( + IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT); + return DAG.getMemIntrinsicNode( + ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), + {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL}, + Store->getMemoryVT(), Store->getMemOperand()); +} + +SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + + const auto *MemSD = cast<MemSDNode>(Op); + EVT MemVT = MemSD->getMemoryVT(); + MachineMemOperand *MMO = MemSD->getMemOperand(); + SDValue Chain = MemSD->getChain(); + SDValue BasePtr = MemSD->getBasePtr(); + + SDValue Mask, PassThru, VL; + if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) { + Mask = VPLoad->getMask(); + PassThru = DAG.getUNDEF(VT); + VL = VPLoad->getVectorLength(); + } else { + const auto *MLoad = cast<MaskedLoadSDNode>(Op); + Mask = MLoad->getMask(); + PassThru = MLoad->getPassThru(); + } + + bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); + + MVT XLenVT = Subtarget.getXLenVT(); + + MVT ContainerVT = VT; + if (VT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VT); + PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); + if (!IsUnmasked) { + MVT MaskVT = getMaskTypeFor(ContainerVT); + Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); + } + } + + if (!VL) + VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; + + unsigned IntID = + IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask; + SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; + if (IsUnmasked) + Ops.push_back(DAG.getUNDEF(ContainerVT)); + else + Ops.push_back(PassThru); + Ops.push_back(BasePtr); + if (!IsUnmasked) + Ops.push_back(Mask); + Ops.push_back(VL); + if (!IsUnmasked) + Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); + + SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); + + SDValue Result = + DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); + Chain = Result.getValue(1); + + if (VT.isFixedLengthVector()) + Result = convertFromScalableVector(VT, Result, DAG, Subtarget); + + return DAG.getMergeValues({Result, Chain}, DL); +} + +SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + + const auto *MemSD = cast<MemSDNode>(Op); + EVT MemVT = MemSD->getMemoryVT(); + MachineMemOperand *MMO = MemSD->getMemOperand(); + SDValue Chain = MemSD->getChain(); + SDValue BasePtr = MemSD->getBasePtr(); + SDValue Val, Mask, VL; + + if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) { + Val = VPStore->getValue(); + Mask = VPStore->getMask(); + VL = VPStore->getVectorLength(); + } else { + const auto *MStore = cast<MaskedStoreSDNode>(Op); + Val = MStore->getValue(); + Mask = MStore->getMask(); + } + + bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); + + MVT VT = Val.getSimpleValueType(); + MVT XLenVT = Subtarget.getXLenVT(); + + MVT ContainerVT = VT; + if (VT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VT); + + Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); + if (!IsUnmasked) { + MVT MaskVT = getMaskTypeFor(ContainerVT); + Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); + } + } + + if (!VL) + VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; + + unsigned IntID = + IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask; + SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; + Ops.push_back(Val); + Ops.push_back(BasePtr); + if (!IsUnmasked) + Ops.push_back(Mask); + Ops.push_back(VL); + + return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, + DAG.getVTList(MVT::Other), Ops, MemVT, MMO); +} + +SDValue +RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, + SelectionDAG &DAG) const { + MVT InVT = Op.getOperand(0).getSimpleValueType(); + MVT ContainerVT = getContainerForFixedLengthVector(InVT); + + MVT VT = Op.getSimpleValueType(); + + SDValue Op1 = + convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); + SDValue Op2 = + convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); + + SDLoc DL(Op); + auto [Mask, VL] = getDefaultVLOps(VT.getVectorNumElements(), ContainerVT, DL, + DAG, Subtarget); + MVT MaskVT = getMaskTypeFor(ContainerVT); + + SDValue Cmp = + DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, + {Op1, Op2, Op.getOperand(2), DAG.getUNDEF(MaskVT), Mask, VL}); + + return convertFromScalableVector(VT, Cmp, DAG, Subtarget); +} + +SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( + SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { + MVT VT = Op.getSimpleValueType(); + + if (VT.getVectorElementType() == MVT::i1) + return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMergeOp*/ false, + /*HasMask*/ false); + + return lowerToScalableOp(Op, DAG, VecOpc, /*HasMergeOp*/ true); +} + +SDValue +RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op, + SelectionDAG &DAG) const { + unsigned Opc; + switch (Op.getOpcode()) { + default: llvm_unreachable("Unexpected opcode!"); + case ISD::SHL: Opc = RISCVISD::SHL_VL; break; + case ISD::SRA: Opc = RISCVISD::SRA_VL; break; + case ISD::SRL: Opc = RISCVISD::SRL_VL; break; + } + + return lowerToScalableOp(Op, DAG, Opc, /*HasMergeOp*/ true); +} + +// Lower vector ABS to smax(X, sub(0, X)). +SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + SDValue X = Op.getOperand(0); + + assert((Op.getOpcode() == ISD::VP_ABS || VT.isFixedLengthVector()) && + "Unexpected type for ISD::ABS"); + + MVT ContainerVT = VT; + if (VT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VT); + X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); + } + + SDValue Mask, VL; + if (Op->getOpcode() == ISD::VP_ABS) { + Mask = Op->getOperand(1); + VL = Op->getOperand(2); + } else + std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); + + SDValue SplatZero = DAG.getNode( + RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT), + DAG.getConstant(0, DL, Subtarget.getXLenVT()), VL); + SDValue NegX = DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, + DAG.getUNDEF(ContainerVT), Mask, VL); + SDValue Max = DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, + DAG.getUNDEF(ContainerVT), Mask, VL); + + if (VT.isFixedLengthVector()) + Max = convertFromScalableVector(VT, Max, DAG, Subtarget); + return Max; +} + +SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( + SDValue Op, SelectionDAG &DAG) const { + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + SDValue Mag = Op.getOperand(0); + SDValue Sign = Op.getOperand(1); + assert(Mag.getValueType() == Sign.getValueType() && + "Can only handle COPYSIGN with matching types."); + + MVT ContainerVT = getContainerForFixedLengthVector(VT); + Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); + Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); + + auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); + + SDValue CopySign = DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, + Sign, DAG.getUNDEF(ContainerVT), Mask, VL); + + return convertFromScalableVector(VT, CopySign, DAG, Subtarget); +} + +SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( + SDValue Op, SelectionDAG &DAG) const { + MVT VT = Op.getSimpleValueType(); + MVT ContainerVT = getContainerForFixedLengthVector(VT); + + MVT I1ContainerVT = + MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); + + SDValue CC = + convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); + SDValue Op1 = + convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); + SDValue Op2 = + convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); + + SDLoc DL(Op); + SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; + + SDValue Select = + DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); + + return convertFromScalableVector(VT, Select, DAG, Subtarget); +} + +SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, + unsigned NewOpc, bool HasMergeOp, + bool HasMask) const { + MVT VT = Op.getSimpleValueType(); + MVT ContainerVT = getContainerForFixedLengthVector(VT); + + // Create list of operands by converting existing ones to scalable types. + SmallVector<SDValue, 6> Ops; + for (const SDValue &V : Op->op_values()) { + assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); + + // Pass through non-vector operands. + if (!V.getValueType().isVector()) { + Ops.push_back(V); + continue; + } + + // "cast" fixed length vector to a scalable vector. + assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && + "Only fixed length vectors are supported!"); + Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); + } + + SDLoc DL(Op); + auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); + if (HasMergeOp) + Ops.push_back(DAG.getUNDEF(ContainerVT)); + if (HasMask) + Ops.push_back(Mask); + Ops.push_back(VL); + + SDValue ScalableRes = + DAG.getNode(NewOpc, DL, ContainerVT, Ops, Op->getFlags()); + return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); +} + +// Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: +// * Operands of each node are assumed to be in the same order. +// * The EVL operand is promoted from i32 to i64 on RV64. +// * Fixed-length vectors are converted to their scalable-vector container +// types. +SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, + unsigned RISCVISDOpc, + bool HasMergeOp) const { + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + SmallVector<SDValue, 4> Ops; + + MVT ContainerVT = VT; + if (VT.isFixedLengthVector()) + ContainerVT = getContainerForFixedLengthVector(VT); + + for (const auto &OpIdx : enumerate(Op->ops())) { + SDValue V = OpIdx.value(); + assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); + // Add dummy merge value before the mask. + if (HasMergeOp && *ISD::getVPMaskIdx(Op.getOpcode()) == OpIdx.index()) + Ops.push_back(DAG.getUNDEF(ContainerVT)); + // Pass through operands which aren't fixed-length vectors. + if (!V.getValueType().isFixedLengthVector()) { + Ops.push_back(V); + continue; + } + // "cast" fixed length vector to a scalable vector. + MVT OpVT = V.getSimpleValueType(); + MVT ContainerVT = getContainerForFixedLengthVector(OpVT); + assert(useRVVForFixedLengthVectorVT(OpVT) && + "Only fixed length vectors are supported!"); + Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); + } + + if (!VT.isFixedLengthVector()) + return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags()); + + SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags()); + + return convertFromScalableVector(VT, VPOp, DAG, Subtarget); +} + +SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + + SDValue Src = Op.getOperand(0); + // NOTE: Mask is dropped. + SDValue VL = Op.getOperand(2); + + MVT ContainerVT = VT; + if (VT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VT); + MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); + Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); + } + + MVT XLenVT = Subtarget.getXLenVT(); + SDValue Zero = DAG.getConstant(0, DL, XLenVT); + SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, + DAG.getUNDEF(ContainerVT), Zero, VL); + + SDValue SplatValue = DAG.getConstant( + Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT); + SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, + DAG.getUNDEF(ContainerVT), SplatValue, VL); + + SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src, + Splat, ZeroSplat, VL); + if (!VT.isFixedLengthVector()) + return Result; + return convertFromScalableVector(VT, Result, DAG, Subtarget); +} + +SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + + SDValue Op1 = Op.getOperand(0); + SDValue Op2 = Op.getOperand(1); + ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + // NOTE: Mask is dropped. + SDValue VL = Op.getOperand(4); + + MVT ContainerVT = VT; + if (VT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VT); + Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); + Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); + } + + SDValue Result; + SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); + + switch (Condition) { + default: + break; + // X != Y --> (X^Y) + case ISD::SETNE: + Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL); + break; + // X == Y --> ~(X^Y) + case ISD::SETEQ: { + SDValue Temp = + DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL); + Result = + DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL); + break; + } + // X >s Y --> X == 0 & Y == 1 --> ~X & Y + // X <u Y --> X == 0 & Y == 1 --> ~X & Y + case ISD::SETGT: + case ISD::SETULT: { + SDValue Temp = + DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL); + Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL); + break; + } + // X <s Y --> X == 1 & Y == 0 --> ~Y & X + // X >u Y --> X == 1 & Y == 0 --> ~Y & X + case ISD::SETLT: + case ISD::SETUGT: { + SDValue Temp = + DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL); + Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL); + break; + } + // X >=s Y --> X == 0 | Y == 1 --> ~X | Y + // X <=u Y --> X == 0 | Y == 1 --> ~X | Y + case ISD::SETGE: + case ISD::SETULE: { + SDValue Temp = + DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL); + Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL); + break; + } + // X <=s Y --> X == 1 | Y == 0 --> ~Y | X + // X >=u Y --> X == 1 | Y == 0 --> ~Y | X + case ISD::SETLE: + case ISD::SETUGE: { + SDValue Temp = + DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL); + Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL); + break; + } + } + + if (!VT.isFixedLengthVector()) + return Result; + return convertFromScalableVector(VT, Result, DAG, Subtarget); +} + +// Lower Floating-Point/Integer Type-Convert VP SDNodes +SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG, + unsigned RISCVISDOpc) const { + SDLoc DL(Op); + + SDValue Src = Op.getOperand(0); + SDValue Mask = Op.getOperand(1); + SDValue VL = Op.getOperand(2); + + MVT DstVT = Op.getSimpleValueType(); + MVT SrcVT = Src.getSimpleValueType(); + if (DstVT.isFixedLengthVector()) { + DstVT = getContainerForFixedLengthVector(DstVT); + SrcVT = getContainerForFixedLengthVector(SrcVT); + Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget); + MVT MaskVT = getMaskTypeFor(DstVT); + Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); + } + + unsigned DstEltSize = DstVT.getScalarSizeInBits(); + unsigned SrcEltSize = SrcVT.getScalarSizeInBits(); + + SDValue Result; + if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion. + if (SrcVT.isInteger()) { + assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); + + unsigned RISCVISDExtOpc = RISCVISDOpc == RISCVISD::SINT_TO_FP_VL + ? RISCVISD::VSEXT_VL + : RISCVISD::VZEXT_VL; + + // Do we need to do any pre-widening before converting? + if (SrcEltSize == 1) { + MVT IntVT = DstVT.changeVectorElementTypeToInteger(); + MVT XLenVT = Subtarget.getXLenVT(); + SDValue Zero = DAG.getConstant(0, DL, XLenVT); + SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, + DAG.getUNDEF(IntVT), Zero, VL); + SDValue One = DAG.getConstant( + RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT); + SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, + DAG.getUNDEF(IntVT), One, VL); + Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat, + ZeroSplat, VL); + } else if (DstEltSize > (2 * SrcEltSize)) { + // Widen before converting. + MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2), + DstVT.getVectorElementCount()); + Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL); + } + + Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); + } else { + assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && + "Wrong input/output vector types"); + + // Convert f16 to f32 then convert f32 to i64. + if (DstEltSize > (2 * SrcEltSize)) { + assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); + MVT InterimFVT = + MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); + Src = + DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL); + } + + Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL); + } + } else { // Narrowing + Conversion + if (SrcVT.isInteger()) { + assert(DstVT.isFloatingPoint() && "Wrong input/output vector types"); + // First do a narrowing convert to an FP type half the size, then round + // the FP type to a small FP type if needed. + + MVT InterimFVT = DstVT; + if (SrcEltSize > (2 * DstEltSize)) { + assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!"); + assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!"); + InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount()); + } + + Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL); + + if (InterimFVT != DstVT) { + Src = Result; + Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL); + } + } else { + assert(SrcVT.isFloatingPoint() && DstVT.isInteger() && + "Wrong input/output vector types"); + // First do a narrowing conversion to an integer half the size, then + // truncate if needed. + + if (DstEltSize == 1) { + // First convert to the same size integer, then convert to mask using + // setcc. + assert(SrcEltSize >= 16 && "Unexpected FP type!"); + MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize), + DstVT.getVectorElementCount()); + Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); + + // Compare the integer result to 0. The integer should be 0 or 1/-1, + // otherwise the conversion was undefined. + MVT XLenVT = Subtarget.getXLenVT(); + SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); + SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT, + DAG.getUNDEF(InterimIVT), SplatZero, VL); + Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, + {Result, SplatZero, DAG.getCondCode(ISD::SETNE), + DAG.getUNDEF(DstVT), Mask, VL}); + } else { + MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), + DstVT.getVectorElementCount()); + + Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL); + + while (InterimIVT != DstVT) { + SrcEltSize /= 2; + Src = Result; + InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2), + DstVT.getVectorElementCount()); + Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT, + Src, Mask, VL); + } + } + } + } + + MVT VT = Op.getSimpleValueType(); + if (!VT.isFixedLengthVector()) + return Result; + return convertFromScalableVector(VT, Result, DAG, Subtarget); +} + +SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG, + unsigned MaskOpc, + unsigned VecOpc) const { + MVT VT = Op.getSimpleValueType(); + if (VT.getVectorElementType() != MVT::i1) + return lowerVPOp(Op, DAG, VecOpc, true); + + // It is safe to drop mask parameter as masked-off elements are undef. + SDValue Op1 = Op->getOperand(0); + SDValue Op2 = Op->getOperand(1); + SDValue VL = Op->getOperand(3); + + MVT ContainerVT = VT; + const bool IsFixed = VT.isFixedLengthVector(); + if (IsFixed) { + ContainerVT = getContainerForFixedLengthVector(VT); + Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget); + Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget); + } + + SDLoc DL(Op); + SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL); + if (!IsFixed) + return Val; + return convertFromScalableVector(VT, Val, DAG, Subtarget); +} + +SDValue RISCVTargetLowering::lowerVPStridedLoad(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + MVT XLenVT = Subtarget.getXLenVT(); + MVT VT = Op.getSimpleValueType(); + MVT ContainerVT = VT; + if (VT.isFixedLengthVector()) + ContainerVT = getContainerForFixedLengthVector(VT); + + SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); + + auto *VPNode = cast<VPStridedLoadSDNode>(Op); + // Check if the mask is known to be all ones + SDValue Mask = VPNode->getMask(); + bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); + + SDValue IntID = DAG.getTargetConstant(IsUnmasked ? Intrinsic::riscv_vlse + : Intrinsic::riscv_vlse_mask, + DL, XLenVT); + SmallVector<SDValue, 8> Ops{VPNode->getChain(), IntID, + DAG.getUNDEF(ContainerVT), VPNode->getBasePtr(), + VPNode->getStride()}; + if (!IsUnmasked) { + if (VT.isFixedLengthVector()) { + MVT MaskVT = ContainerVT.changeVectorElementType(MVT::i1); + Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); + } + Ops.push_back(Mask); + } + Ops.push_back(VPNode->getVectorLength()); + if (!IsUnmasked) { + SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT); + Ops.push_back(Policy); + } + + SDValue Result = + DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, + VPNode->getMemoryVT(), VPNode->getMemOperand()); + SDValue Chain = Result.getValue(1); + + if (VT.isFixedLengthVector()) + Result = convertFromScalableVector(VT, Result, DAG, Subtarget); + + return DAG.getMergeValues({Result, Chain}, DL); +} + +SDValue RISCVTargetLowering::lowerVPStridedStore(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + MVT XLenVT = Subtarget.getXLenVT(); + + auto *VPNode = cast<VPStridedStoreSDNode>(Op); + SDValue StoreVal = VPNode->getValue(); + MVT VT = StoreVal.getSimpleValueType(); + MVT ContainerVT = VT; + if (VT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VT); + StoreVal = convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); + } + + // Check if the mask is known to be all ones + SDValue Mask = VPNode->getMask(); + bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); + + SDValue IntID = DAG.getTargetConstant(IsUnmasked ? Intrinsic::riscv_vsse + : Intrinsic::riscv_vsse_mask, + DL, XLenVT); + SmallVector<SDValue, 8> Ops{VPNode->getChain(), IntID, StoreVal, + VPNode->getBasePtr(), VPNode->getStride()}; + if (!IsUnmasked) { + if (VT.isFixedLengthVector()) { + MVT MaskVT = ContainerVT.changeVectorElementType(MVT::i1); + Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); + } + Ops.push_back(Mask); + } + Ops.push_back(VPNode->getVectorLength()); + + return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, VPNode->getVTList(), + Ops, VPNode->getMemoryVT(), + VPNode->getMemOperand()); +} + +// Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be +// matched to a RVV indexed load. The RVV indexed load instructions only +// support the "unsigned unscaled" addressing mode; indices are implicitly +// zero-extended or truncated to XLEN and are treated as byte offsets. Any +// signed or scaled indexing is extended to the XLEN value type and scaled +// accordingly. +SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + + const auto *MemSD = cast<MemSDNode>(Op.getNode()); + EVT MemVT = MemSD->getMemoryVT(); + MachineMemOperand *MMO = MemSD->getMemOperand(); + SDValue Chain = MemSD->getChain(); + SDValue BasePtr = MemSD->getBasePtr(); + + ISD::LoadExtType LoadExtType; + SDValue Index, Mask, PassThru, VL; + + if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) { + Index = VPGN->getIndex(); + Mask = VPGN->getMask(); + PassThru = DAG.getUNDEF(VT); + VL = VPGN->getVectorLength(); + // VP doesn't support extending loads. + LoadExtType = ISD::NON_EXTLOAD; + } else { + // Else it must be a MGATHER. + auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); + Index = MGN->getIndex(); + Mask = MGN->getMask(); + PassThru = MGN->getPassThru(); + LoadExtType = MGN->getExtensionType(); + } + + MVT IndexVT = Index.getSimpleValueType(); + MVT XLenVT = Subtarget.getXLenVT(); + + assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && + "Unexpected VTs!"); + assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); + // Targets have to explicitly opt-in for extending vector loads. + assert(LoadExtType == ISD::NON_EXTLOAD && + "Unexpected extending MGATHER/VP_GATHER"); + (void)LoadExtType; + + // If the mask is known to be all ones, optimize to an unmasked intrinsic; + // the selection of the masked intrinsics doesn't do this for us. + bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); + + MVT ContainerVT = VT; + if (VT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VT); + IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), + ContainerVT.getVectorElementCount()); + + Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); + + if (!IsUnmasked) { + MVT MaskVT = getMaskTypeFor(ContainerVT); + Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); + PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); + } + } + + if (!VL) + VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; + + if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { + IndexVT = IndexVT.changeVectorElementType(XLenVT); + SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), + VL); + Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, + TrueMask, VL); + } + + unsigned IntID = + IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask; + SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; + if (IsUnmasked) + Ops.push_back(DAG.getUNDEF(ContainerVT)); + else + Ops.push_back(PassThru); + Ops.push_back(BasePtr); + Ops.push_back(Index); + if (!IsUnmasked) + Ops.push_back(Mask); + Ops.push_back(VL); + if (!IsUnmasked) + Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT)); + + SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); + SDValue Result = + DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO); + Chain = Result.getValue(1); + + if (VT.isFixedLengthVector()) + Result = convertFromScalableVector(VT, Result, DAG, Subtarget); + + return DAG.getMergeValues({Result, Chain}, DL); +} + +// Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be +// matched to a RVV indexed store. The RVV indexed store instructions only +// support the "unsigned unscaled" addressing mode; indices are implicitly +// zero-extended or truncated to XLEN and are treated as byte offsets. Any +// signed or scaled indexing is extended to the XLEN value type and scaled +// accordingly. +SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + const auto *MemSD = cast<MemSDNode>(Op.getNode()); + EVT MemVT = MemSD->getMemoryVT(); + MachineMemOperand *MMO = MemSD->getMemOperand(); + SDValue Chain = MemSD->getChain(); + SDValue BasePtr = MemSD->getBasePtr(); + + bool IsTruncatingStore = false; + SDValue Index, Mask, Val, VL; + + if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) { + Index = VPSN->getIndex(); + Mask = VPSN->getMask(); + Val = VPSN->getValue(); + VL = VPSN->getVectorLength(); + // VP doesn't support truncating stores. + IsTruncatingStore = false; + } else { + // Else it must be a MSCATTER. + auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); + Index = MSN->getIndex(); + Mask = MSN->getMask(); + Val = MSN->getValue(); + IsTruncatingStore = MSN->isTruncatingStore(); + } + + MVT VT = Val.getSimpleValueType(); + MVT IndexVT = Index.getSimpleValueType(); + MVT XLenVT = Subtarget.getXLenVT(); + + assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && + "Unexpected VTs!"); + assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type"); + // Targets have to explicitly opt-in for extending vector loads and + // truncating vector stores. + assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER"); + (void)IsTruncatingStore; + + // If the mask is known to be all ones, optimize to an unmasked intrinsic; + // the selection of the masked intrinsics doesn't do this for us. + bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); + + MVT ContainerVT = VT; + if (VT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VT); + IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), + ContainerVT.getVectorElementCount()); + + Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); + Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); + + if (!IsUnmasked) { + MVT MaskVT = getMaskTypeFor(ContainerVT); + Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); + } + } + + if (!VL) + VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second; + + if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) { + IndexVT = IndexVT.changeVectorElementType(XLenVT); + SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(), + VL); + Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index, + TrueMask, VL); + } + + unsigned IntID = + IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; + SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)}; + Ops.push_back(Val); + Ops.push_back(BasePtr); + Ops.push_back(Index); + if (!IsUnmasked) + Ops.push_back(Mask); + Ops.push_back(VL); + + return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, + DAG.getVTList(MVT::Other), Ops, MemVT, MMO); +} + +SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, + SelectionDAG &DAG) const { + const MVT XLenVT = Subtarget.getXLenVT(); + SDLoc DL(Op); + SDValue Chain = Op->getOperand(0); + SDValue SysRegNo = DAG.getTargetConstant( + RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); + SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); + SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); + + // Encoding used for rounding mode in RISCV differs from that used in + // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a + // table, which consists of a sequence of 4-bit fields, each representing + // corresponding FLT_ROUNDS mode. + static const int Table = + (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | + (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | + (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | + (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | + (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); + + SDValue Shift = + DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); + SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, + DAG.getConstant(Table, DL, XLenVT), Shift); + SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, + DAG.getConstant(7, DL, XLenVT)); + + return DAG.getMergeValues({Masked, Chain}, DL); +} + +SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, + SelectionDAG &DAG) const { + const MVT XLenVT = Subtarget.getXLenVT(); + SDLoc DL(Op); + SDValue Chain = Op->getOperand(0); + SDValue RMValue = Op->getOperand(1); + SDValue SysRegNo = DAG.getTargetConstant( + RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); + + // Encoding used for rounding mode in RISCV differs from that used in + // FLT_ROUNDS. To convert it the C rounding mode is used as an index in + // a table, which consists of a sequence of 4-bit fields, each representing + // corresponding RISCV mode. + static const unsigned Table = + (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | + (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | + (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | + (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | + (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); + + SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, + DAG.getConstant(2, DL, XLenVT)); + SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, + DAG.getConstant(Table, DL, XLenVT), Shift); + RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, + DAG.getConstant(0x7, DL, XLenVT)); + return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, + RMValue); +} + +SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op, + SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + + bool isRISCV64 = Subtarget.is64Bit(); + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + + int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false); + return DAG.getFrameIndex(FI, PtrVT); +} + +// Returns the opcode of the target-specific SDNode that implements the 32-bit +// form of the given Opcode. +static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { + switch (Opcode) { + default: + llvm_unreachable("Unexpected opcode"); + case ISD::SHL: + return RISCVISD::SLLW; + case ISD::SRA: + return RISCVISD::SRAW; + case ISD::SRL: + return RISCVISD::SRLW; + case ISD::SDIV: + return RISCVISD::DIVW; + case ISD::UDIV: + return RISCVISD::DIVUW; + case ISD::UREM: + return RISCVISD::REMUW; + case ISD::ROTL: + return RISCVISD::ROLW; + case ISD::ROTR: + return RISCVISD::RORW; + } +} + +// Converts the given i8/i16/i32 operation to a target-specific SelectionDAG +// node. Because i8/i16/i32 isn't a legal type for RV64, these operations would +// otherwise be promoted to i64, making it difficult to select the +// SLLW/DIVUW/.../*W later one because the fact the operation was originally of +// type i8/i16/i32 is lost. +static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, + unsigned ExtOpc = ISD::ANY_EXTEND) { + SDLoc DL(N); + RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); + SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); + SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); + SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); + // ReplaceNodeResults requires we maintain the same type for the return value. + return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); +} + +// Converts the given 32-bit operation to a i64 operation with signed extension +// semantic to reduce the signed extension instructions. +static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { + SDLoc DL(N); + SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); + SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); + SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); + SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, + DAG.getValueType(MVT::i32)); + return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); +} + +void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, + SmallVectorImpl<SDValue> &Results, + SelectionDAG &DAG) const { + SDLoc DL(N); + switch (N->getOpcode()) { + default: + llvm_unreachable("Don't know how to custom type legalize this operation!"); + case ISD::STRICT_FP_TO_SINT: + case ISD::STRICT_FP_TO_UINT: + case ISD::FP_TO_SINT: + case ISD::FP_TO_UINT: { + assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && + "Unexpected custom legalisation"); + bool IsStrict = N->isStrictFPOpcode(); + bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || + N->getOpcode() == ISD::STRICT_FP_TO_SINT; + SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); + if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != + TargetLowering::TypeSoftenFloat) { + if (!isTypeLegal(Op0.getValueType())) + return; + if (IsStrict) { + SDValue Chain = N->getOperand(0); + // In absense of Zfh, promote f16 to f32, then convert. + if (Op0.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) { + Op0 = DAG.getNode(ISD::STRICT_FP_EXTEND, DL, {MVT::f32, MVT::Other}, + {Chain, Op0}); + Chain = Op0.getValue(1); + } + unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64 + : RISCVISD::STRICT_FCVT_WU_RV64; + SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); + SDValue Res = DAG.getNode( + Opc, DL, VTs, Chain, Op0, + DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); + Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); + Results.push_back(Res.getValue(1)); + return; + } + // In absense of Zfh, promote f16 to f32, then convert. + if (Op0.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) + Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op0); + + unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; + SDValue Res = + DAG.getNode(Opc, DL, MVT::i64, Op0, + DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64)); + Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); + return; + } + // If the FP type needs to be softened, emit a library call using the 'si' + // version. If we left it to default legalization we'd end up with 'di'. If + // the FP type doesn't need to be softened just let generic type + // legalization promote the result type. + RTLIB::Libcall LC; + if (IsSigned) + LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); + else + LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); + MakeLibCallOptions CallOptions; + EVT OpVT = Op0.getValueType(); + CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); + SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); + SDValue Result; + std::tie(Result, Chain) = + makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); + Results.push_back(Result); + if (IsStrict) + Results.push_back(Chain); + break; + } + case ISD::READCYCLECOUNTER: { + assert(!Subtarget.is64Bit() && + "READCYCLECOUNTER only has custom type legalization on riscv32"); + + SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); + SDValue RCW = + DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); + + Results.push_back( + DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); + Results.push_back(RCW.getValue(2)); + break; + } + case ISD::LOAD: { + if (!ISD::isNON_EXTLoad(N)) + return; + + // Use a SEXTLOAD instead of the default EXTLOAD. Similar to the + // sext_inreg we emit for ADD/SUB/MUL/SLLI. + LoadSDNode *Ld = cast<LoadSDNode>(N); + + SDLoc dl(N); + SDValue Res = DAG.getExtLoad(ISD::SEXTLOAD, dl, MVT::i64, Ld->getChain(), + Ld->getBasePtr(), Ld->getMemoryVT(), + Ld->getMemOperand()); + Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Res)); + Results.push_back(Res.getValue(1)); + return; + } + case ISD::MUL: { + unsigned Size = N->getSimpleValueType(0).getSizeInBits(); + unsigned XLen = Subtarget.getXLen(); + // This multiply needs to be expanded, try to use MULHSU+MUL if possible. + if (Size > XLen) { + assert(Size == (XLen * 2) && "Unexpected custom legalisation"); + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + APInt HighMask = APInt::getHighBitsSet(Size, XLen); + + bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); + bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); + // We need exactly one side to be unsigned. + if (LHSIsU == RHSIsU) + return; + + auto MakeMULPair = [&](SDValue S, SDValue U) { + MVT XLenVT = Subtarget.getXLenVT(); + S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); + U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); + SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); + SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); + return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); + }; + + bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; + bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; + + // The other operand should be signed, but still prefer MULH when + // possible. + if (RHSIsU && LHSIsS && !RHSIsS) + Results.push_back(MakeMULPair(LHS, RHS)); + else if (LHSIsU && RHSIsS && !LHSIsS) + Results.push_back(MakeMULPair(RHS, LHS)); + + return; + } + [[fallthrough]]; + } + case ISD::ADD: + case ISD::SUB: + assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && + "Unexpected custom legalisation"); + Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); + break; + case ISD::SHL: + case ISD::SRA: + case ISD::SRL: + assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && + "Unexpected custom legalisation"); + if (N->getOperand(1).getOpcode() != ISD::Constant) { + // If we can use a BSET instruction, allow default promotion to apply. + if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() && + isOneConstant(N->getOperand(0))) + break; + Results.push_back(customLegalizeToWOp(N, DAG)); + break; + } + + // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is + // similar to customLegalizeToWOpWithSExt, but we must zero_extend the + // shift amount. + if (N->getOpcode() == ISD::SHL) { + SDLoc DL(N); + SDValue NewOp0 = + DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); + SDValue NewOp1 = + DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1)); + SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1); + SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, + DAG.getValueType(MVT::i32)); + Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); + } + + break; + case ISD::ROTL: + case ISD::ROTR: + assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && + "Unexpected custom legalisation"); + Results.push_back(customLegalizeToWOp(N, DAG)); + break; + case ISD::CTTZ: + case ISD::CTTZ_ZERO_UNDEF: + case ISD::CTLZ: + case ISD::CTLZ_ZERO_UNDEF: { + assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && + "Unexpected custom legalisation"); + + SDValue NewOp0 = + DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); + bool IsCTZ = + N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; + unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; + SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); + Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); + return; + } + case ISD::SDIV: + case ISD::UDIV: + case ISD::UREM: { + MVT VT = N->getSimpleValueType(0); + assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && + Subtarget.is64Bit() && Subtarget.hasStdExtM() && + "Unexpected custom legalisation"); + // Don't promote division/remainder by constant since we should expand those + // to multiply by magic constant. + AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); + if (N->getOperand(1).getOpcode() == ISD::Constant && + !isIntDivCheap(N->getValueType(0), Attr)) + return; + + // If the input is i32, use ANY_EXTEND since the W instructions don't read + // the upper 32 bits. For other types we need to sign or zero extend + // based on the opcode. + unsigned ExtOpc = ISD::ANY_EXTEND; + if (VT != MVT::i32) + ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND + : ISD::ZERO_EXTEND; + + Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); + break; + } + case ISD::UADDO: + case ISD::USUBO: { + assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && + "Unexpected custom legalisation"); + bool IsAdd = N->getOpcode() == ISD::UADDO; + // Create an ADDW or SUBW. + SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); + SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); + SDValue Res = + DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); + Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, + DAG.getValueType(MVT::i32)); + + SDValue Overflow; + if (IsAdd && isOneConstant(RHS)) { + // Special case uaddo X, 1 overflowed if the addition result is 0. + // The general case (X + C) < C is not necessarily beneficial. Although we + // reduce the live range of X, we may introduce the materialization of + // constant C, especially when the setcc result is used by branch. We have + // no compare with constant and branch instructions. + Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, + DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ); + } else { + // Sign extend the LHS and perform an unsigned compare with the ADDW + // result. Since the inputs are sign extended from i32, this is equivalent + // to comparing the lower 32 bits. + LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); + Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, + IsAdd ? ISD::SETULT : ISD::SETUGT); + } + + Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); + Results.push_back(Overflow); + return; + } + case ISD::UADDSAT: + case ISD::USUBSAT: { + assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && + "Unexpected custom legalisation"); + if (Subtarget.hasStdExtZbb()) { + // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using + // sign extend allows overflow of the lower 32 bits to be detected on + // the promoted size. + SDValue LHS = + DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); + SDValue RHS = + DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); + SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); + Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); + return; + } + + // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom + // promotion for UADDO/USUBO. + Results.push_back(expandAddSubSat(N, DAG)); + return; + } + case ISD::ABS: { + assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && + "Unexpected custom legalisation"); + + if (Subtarget.hasStdExtZbb()) { + // Emit a special ABSW node that will be expanded to NEGW+MAX at isel. + // This allows us to remember that the result is sign extended. Expanding + // to NEGW+MAX here requires a Freeze which breaks ComputeNumSignBits. + SDValue Src = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, + N->getOperand(0)); + SDValue Abs = DAG.getNode(RISCVISD::ABSW, DL, MVT::i64, Src); + Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Abs)); + return; + } + + // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y) + SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); + + // Freeze the source so we can increase it's use count. + Src = DAG.getFreeze(Src); + + // Copy sign bit to all bits using the sraiw pattern. + SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src, + DAG.getValueType(MVT::i32)); + SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill, + DAG.getConstant(31, DL, MVT::i64)); + + SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill); + NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill); + + // NOTE: The result is only required to be anyextended, but sext is + // consistent with type legalization of sub. + NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes, + DAG.getValueType(MVT::i32)); + Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); + return; + } + case ISD::BITCAST: { + EVT VT = N->getValueType(0); + assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); + SDValue Op0 = N->getOperand(0); + EVT Op0VT = Op0.getValueType(); + MVT XLenVT = Subtarget.getXLenVT(); + if (VT == MVT::i16 && Op0VT == MVT::f16 && + Subtarget.hasStdExtZfhOrZfhmin()) { + SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); + Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); + } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && + Subtarget.hasStdExtF()) { + SDValue FPConv = + DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); + Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); + } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && + isTypeLegal(Op0VT)) { + // Custom-legalize bitcasts from fixed-length vector types to illegal + // scalar types in order to improve codegen. Bitcast the vector to a + // one-element vector type whose element type is the same as the result + // type, and extract the first element. + EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1); + if (isTypeLegal(BVT)) { + SDValue BVec = DAG.getBitcast(BVT, Op0); + Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, + DAG.getConstant(0, DL, XLenVT))); + } + } + break; + } + case RISCVISD::BREV8: { + MVT VT = N->getSimpleValueType(0); + MVT XLenVT = Subtarget.getXLenVT(); + assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) && + "Unexpected custom legalisation"); + assert(Subtarget.hasStdExtZbkb() && "Unexpected extension"); + SDValue NewOp = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0)); + SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp); + // ReplaceNodeResults requires we maintain the same type for the return + // value. + Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes)); + break; + } + case ISD::EXTRACT_VECTOR_ELT: { + // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element + // type is illegal (currently only vXi64 RV32). + // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are + // transferred to the destination register. We issue two of these from the + // upper- and lower- halves of the SEW-bit vector element, slid down to the + // first element. + SDValue Vec = N->getOperand(0); + SDValue Idx = N->getOperand(1); + + // The vector type hasn't been legalized yet so we can't issue target + // specific nodes if it needs legalization. + // FIXME: We would manually legalize if it's important. + if (!isTypeLegal(Vec.getValueType())) + return; + + MVT VecVT = Vec.getSimpleValueType(); + + assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && + VecVT.getVectorElementType() == MVT::i64 && + "Unexpected EXTRACT_VECTOR_ELT legalization"); + + // If this is a fixed vector, we need to convert it to a scalable vector. + MVT ContainerVT = VecVT; + if (VecVT.isFixedLengthVector()) { + ContainerVT = getContainerForFixedLengthVector(VecVT); + Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); + } + + MVT XLenVT = Subtarget.getXLenVT(); + + // Use a VL of 1 to avoid processing more elements than we need. + auto [Mask, VL] = getDefaultVLOps(1, ContainerVT, DL, DAG, Subtarget); + + // Unless the index is known to be 0, we must slide the vector down to get + // the desired element into index 0. + if (!isNullConstant(Idx)) { + Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT, + DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); + } + + // Extract the lower XLEN bits of the correct vector element. + SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); + + // To extract the upper XLEN bits of the vector element, shift the first + // element right by 32 bits and re-extract the lower XLEN bits. + SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, + DAG.getUNDEF(ContainerVT), + DAG.getConstant(32, DL, XLenVT), VL); + SDValue LShr32 = + DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, ThirtyTwoV, + DAG.getUNDEF(ContainerVT), Mask, VL); + + SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); + + Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); + break; + } + case ISD::INTRINSIC_WO_CHAIN: { + unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); + switch (IntNo) { + default: + llvm_unreachable( + "Don't know how to custom type legalize this intrinsic!"); + case Intrinsic::riscv_orc_b: { + SDValue NewOp = + DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); + SDValue Res = DAG.getNode(RISCVISD::ORC_B, DL, MVT::i64, NewOp); + Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); + return; + } + case Intrinsic::riscv_vmv_x_s: { + EVT VT = N->getValueType(0); + MVT XLenVT = Subtarget.getXLenVT(); + if (VT.bitsLT(XLenVT)) { + // Simple case just extract using vmv.x.s and truncate. + SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, + Subtarget.getXLenVT(), N->getOperand(1)); + Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); + return; + } + + assert(VT == MVT::i64 && !Subtarget.is64Bit() && + "Unexpected custom legalization"); + + // We need to do the move in two steps. + SDValue Vec = N->getOperand(1); + MVT VecVT = Vec.getSimpleValueType(); + + // First extract the lower XLEN bits of the element. + SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); + + // To extract the upper XLEN bits of the vector element, shift the first + // element right by 32 bits and re-extract the lower XLEN bits. + auto [Mask, VL] = getDefaultVLOps(1, VecVT, DL, DAG, Subtarget); + + SDValue ThirtyTwoV = + DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), + DAG.getConstant(32, DL, XLenVT), VL); + SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, + DAG.getUNDEF(VecVT), Mask, VL); + SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); + + Results.push_back( + DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); + break; + } + } + break; + } + case ISD::VECREDUCE_ADD: + case ISD::VECREDUCE_AND: + case ISD::VECREDUCE_OR: + case ISD::VECREDUCE_XOR: + case ISD::VECREDUCE_SMAX: + case ISD::VECREDUCE_UMAX: + case ISD::VECREDUCE_SMIN: + case ISD::VECREDUCE_UMIN: + if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) + Results.push_back(V); + break; + case ISD::VP_REDUCE_ADD: + case ISD::VP_REDUCE_AND: + case ISD::VP_REDUCE_OR: + case ISD::VP_REDUCE_XOR: + case ISD::VP_REDUCE_SMAX: + case ISD::VP_REDUCE_UMAX: + case ISD::VP_REDUCE_SMIN: + case ISD::VP_REDUCE_UMIN: + if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG)) + Results.push_back(V); + break; + case ISD::GET_ROUNDING: { + SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); + SDValue Res = DAG.getNode(ISD::GET_ROUNDING, DL, VTs, N->getOperand(0)); + Results.push_back(Res.getValue(0)); + Results.push_back(Res.getValue(1)); + break; + } + } +} + +// Try to fold (<bop> x, (reduction.<bop> vec, start)) +static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + auto BinOpToRVVReduce = [](unsigned Opc) { + switch (Opc) { + default: + llvm_unreachable("Unhandled binary to transfrom reduction"); + case ISD::ADD: + return RISCVISD::VECREDUCE_ADD_VL; + case ISD::UMAX: + return RISCVISD::VECREDUCE_UMAX_VL; + case ISD::SMAX: + return RISCVISD::VECREDUCE_SMAX_VL; + case ISD::UMIN: + return RISCVISD::VECREDUCE_UMIN_VL; + case ISD::SMIN: + return RISCVISD::VECREDUCE_SMIN_VL; + case ISD::AND: + return RISCVISD::VECREDUCE_AND_VL; + case ISD::OR: + return RISCVISD::VECREDUCE_OR_VL; + case ISD::XOR: + return RISCVISD::VECREDUCE_XOR_VL; + case ISD::FADD: + return RISCVISD::VECREDUCE_FADD_VL; + case ISD::FMAXNUM: + return RISCVISD::VECREDUCE_FMAX_VL; + case ISD::FMINNUM: + return RISCVISD::VECREDUCE_FMIN_VL; + } + }; + + auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) { + return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT && + isNullConstant(V.getOperand(1)) && + V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc); + }; + + unsigned Opc = N->getOpcode(); + unsigned ReduceIdx; + if (IsReduction(N->getOperand(0), Opc)) + ReduceIdx = 0; + else if (IsReduction(N->getOperand(1), Opc)) + ReduceIdx = 1; + else + return SDValue(); + + // Skip if FADD disallows reassociation but the combiner needs. + if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation()) + return SDValue(); + + SDValue Extract = N->getOperand(ReduceIdx); + SDValue Reduce = Extract.getOperand(0); + if (!Reduce.hasOneUse()) + return SDValue(); + + SDValue ScalarV = Reduce.getOperand(2); + EVT ScalarVT = ScalarV.getValueType(); + if (ScalarV.getOpcode() == ISD::INSERT_SUBVECTOR && + ScalarV.getOperand(0)->isUndef()) + ScalarV = ScalarV.getOperand(1); + + // Make sure that ScalarV is a splat with VL=1. + if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL && + ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL && + ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL) + return SDValue(); + + if (!hasNonZeroAVL(ScalarV.getOperand(2))) + return SDValue(); + + // Check the scalar of ScalarV is neutral element + // TODO: Deal with value other than neutral element. + if (!isNeutralConstant(N->getOpcode(), N->getFlags(), ScalarV.getOperand(1), + 0)) + return SDValue(); + + if (!ScalarV.hasOneUse()) + return SDValue(); + + SDValue NewStart = N->getOperand(1 - ReduceIdx); + + SDLoc DL(N); + SDValue NewScalarV = + lowerScalarInsert(NewStart, ScalarV.getOperand(2), + ScalarV.getSimpleValueType(), DL, DAG, Subtarget); + + // If we looked through an INSERT_SUBVECTOR we need to restore it. + if (ScalarVT != ScalarV.getValueType()) + NewScalarV = + DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ScalarVT, DAG.getUNDEF(ScalarVT), + NewScalarV, DAG.getConstant(0, DL, Subtarget.getXLenVT())); + + SDValue NewReduce = + DAG.getNode(Reduce.getOpcode(), DL, Reduce.getValueType(), + Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV, + Reduce.getOperand(3), Reduce.getOperand(4)); + return DAG.getNode(Extract.getOpcode(), DL, Extract.getValueType(), NewReduce, + Extract.getOperand(1)); +} + +// Optimize (add (shl x, c0), (shl y, c1)) -> +// (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3]. +static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + // Perform this optimization only in the zba extension. + if (!Subtarget.hasStdExtZba()) + return SDValue(); + + // Skip for vector types and larger types. + EVT VT = N->getValueType(0); + if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) + return SDValue(); + + // The two operand nodes must be SHL and have no other use. + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL || + !N0->hasOneUse() || !N1->hasOneUse()) + return SDValue(); + + // Check c0 and c1. + auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); + auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1)); + if (!N0C || !N1C) + return SDValue(); + int64_t C0 = N0C->getSExtValue(); + int64_t C1 = N1C->getSExtValue(); + if (C0 <= 0 || C1 <= 0) + return SDValue(); + + // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable. + int64_t Bits = std::min(C0, C1); + int64_t Diff = std::abs(C0 - C1); + if (Diff != 1 && Diff != 2 && Diff != 3) + return SDValue(); + + // Build nodes. + SDLoc DL(N); + SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0); + SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0); + SDValue NA0 = + DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT)); + SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS); + return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT)); +} + +// Combine a constant select operand into its use: +// +// (and (select cond, -1, c), x) +// -> (select cond, x, (and x, c)) [AllOnes=1] +// (or (select cond, 0, c), x) +// -> (select cond, x, (or x, c)) [AllOnes=0] +// (xor (select cond, 0, c), x) +// -> (select cond, x, (xor x, c)) [AllOnes=0] +// (add (select cond, 0, c), x) +// -> (select cond, x, (add x, c)) [AllOnes=0] +// (sub x, (select cond, 0, c)) +// -> (select cond, x, (sub x, c)) [AllOnes=0] +static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, + SelectionDAG &DAG, bool AllOnes, + const RISCVSubtarget &Subtarget) { + EVT VT = N->getValueType(0); + + // Skip vectors. + if (VT.isVector()) + return SDValue(); + + if (!Subtarget.hasShortForwardBranchOpt() || + (Slct.getOpcode() != ISD::SELECT && + Slct.getOpcode() != RISCVISD::SELECT_CC) || + !Slct.hasOneUse()) + return SDValue(); + + auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { + return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); + }; + + bool SwapSelectOps; + unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0; + SDValue TrueVal = Slct.getOperand(1 + OpOffset); + SDValue FalseVal = Slct.getOperand(2 + OpOffset); + SDValue NonConstantVal; + if (isZeroOrAllOnes(TrueVal, AllOnes)) { + SwapSelectOps = false; + NonConstantVal = FalseVal; + } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { + SwapSelectOps = true; + NonConstantVal = TrueVal; + } else + return SDValue(); + + // Slct is now know to be the desired identity constant when CC is true. + TrueVal = OtherOp; + FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); + // Unless SwapSelectOps says the condition should be false. + if (SwapSelectOps) + std::swap(TrueVal, FalseVal); + + if (Slct.getOpcode() == RISCVISD::SELECT_CC) + return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, + {Slct.getOperand(0), Slct.getOperand(1), + Slct.getOperand(2), TrueVal, FalseVal}); + + return DAG.getNode(ISD::SELECT, SDLoc(N), VT, + {Slct.getOperand(0), TrueVal, FalseVal}); +} + +// Attempt combineSelectAndUse on each operand of a commutative operator N. +static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG, + bool AllOnes, + const RISCVSubtarget &Subtarget) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes, Subtarget)) + return Result; + if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes, Subtarget)) + return Result; + return SDValue(); +} + +// Transform (add (mul x, c0), c1) -> +// (add (mul (add x, c1/c0), c0), c1%c0). +// if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case +// that should be excluded is when c0*(c1/c0) is simm12, which will lead +// to an infinite loop in DAGCombine if transformed. +// Or transform (add (mul x, c0), c1) -> +// (add (mul (add x, c1/c0+1), c0), c1%c0-c0), +// if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner +// case that should be excluded is when c0*(c1/c0+1) is simm12, which will +// lead to an infinite loop in DAGCombine if transformed. +// Or transform (add (mul x, c0), c1) -> +// (add (mul (add x, c1/c0-1), c0), c1%c0+c0), +// if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner +// case that should be excluded is when c0*(c1/c0-1) is simm12, which will +// lead to an infinite loop in DAGCombine if transformed. +// Or transform (add (mul x, c0), c1) -> +// (mul (add x, c1/c0), c0). +// if c1%c0 is zero, and c1/c0 is simm12 while c1 is not. +static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + // Skip for vector types and larger types. + EVT VT = N->getValueType(0); + if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen()) + return SDValue(); + // The first operand node must be a MUL and has no other use. + SDValue N0 = N->getOperand(0); + if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL) + return SDValue(); + // Check if c0 and c1 match above conditions. + auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1)); + auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)); + if (!N0C || !N1C) + return SDValue(); + // If N0C has multiple uses it's possible one of the cases in + // DAGCombiner::isMulAddWithConstProfitable will be true, which would result + // in an infinite loop. + if (!N0C->hasOneUse()) + return SDValue(); + int64_t C0 = N0C->getSExtValue(); + int64_t C1 = N1C->getSExtValue(); + int64_t CA, CB; + if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1)) + return SDValue(); + // Search for proper CA (non-zero) and CB that both are simm12. + if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) && + !isInt<12>(C0 * (C1 / C0))) { + CA = C1 / C0; + CB = C1 % C0; + } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) && + isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) { + CA = C1 / C0 + 1; + CB = C1 % C0 - C0; + } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) && + isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) { + CA = C1 / C0 - 1; + CB = C1 % C0 + C0; + } else + return SDValue(); + // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0). + SDLoc DL(N); + SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0), + DAG.getConstant(CA, DL, VT)); + SDValue New1 = + DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT)); + return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT)); +} + +static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget)) + return V; + if (SDValue V = transformAddShlImm(N, DAG, Subtarget)) + return V; + if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget)) + return V; + // fold (add (select lhs, rhs, cc, 0, y), x) -> + // (select lhs, rhs, cc, x, (add x, y)) + return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget); +} + +// Try to turn a sub boolean RHS and constant LHS into an addi. +static SDValue combineSubOfBoolean(SDNode *N, SelectionDAG &DAG) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getValueType(0); + SDLoc DL(N); + + // Require a constant LHS. + auto *N0C = dyn_cast<ConstantSDNode>(N0); + if (!N0C) + return SDValue(); + + // All our optimizations involve subtracting 1 from the immediate and forming + // an ADDI. Make sure the new immediate is valid for an ADDI. + APInt ImmValMinus1 = N0C->getAPIntValue() - 1; + if (!ImmValMinus1.isSignedIntN(12)) + return SDValue(); + + SDValue NewLHS; + if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse()) { + // (sub constant, (setcc x, y, eq/neq)) -> + // (add (setcc x, y, neq/eq), constant - 1) + ISD::CondCode CCVal = cast<CondCodeSDNode>(N1.getOperand(2))->get(); + EVT SetCCOpVT = N1.getOperand(0).getValueType(); + if (!isIntEqualitySetCC(CCVal) || !SetCCOpVT.isInteger()) + return SDValue(); + CCVal = ISD::getSetCCInverse(CCVal, SetCCOpVT); + NewLHS = + DAG.getSetCC(SDLoc(N1), VT, N1.getOperand(0), N1.getOperand(1), CCVal); + } else if (N1.getOpcode() == ISD::XOR && isOneConstant(N1.getOperand(1)) && + N1.getOperand(0).getOpcode() == ISD::SETCC) { + // (sub C, (xor (setcc), 1)) -> (add (setcc), C-1). + // Since setcc returns a bool the xor is equivalent to 1-setcc. + NewLHS = N1.getOperand(0); + } else + return SDValue(); + + SDValue NewRHS = DAG.getConstant(ImmValMinus1, DL, VT); + return DAG.getNode(ISD::ADD, DL, VT, NewLHS, NewRHS); +} + +static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + if (SDValue V = combineSubOfBoolean(N, DAG)) + return V; + + // fold (sub x, (select lhs, rhs, cc, 0, y)) -> + // (select lhs, rhs, cc, x, (sub x, y)) + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false, Subtarget); +} + +// Apply DeMorgan's law to (and/or (xor X, 1), (xor Y, 1)) if X and Y are 0/1. +// Legalizing setcc can introduce xors like this. Doing this transform reduces +// the number of xors and may allow the xor to fold into a branch condition. +static SDValue combineDeMorganOfBoolean(SDNode *N, SelectionDAG &DAG) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + bool IsAnd = N->getOpcode() == ISD::AND; + + if (N0.getOpcode() != ISD::XOR || N1.getOpcode() != ISD::XOR) + return SDValue(); + + if (!N0.hasOneUse() || !N1.hasOneUse()) + return SDValue(); + + SDValue N01 = N0.getOperand(1); + SDValue N11 = N1.getOperand(1); + + // For AND, SimplifyDemandedBits may have turned one of the (xor X, 1) into + // (xor X, -1) based on the upper bits of the other operand being 0. If the + // operation is And, allow one of the Xors to use -1. + if (isOneConstant(N01)) { + if (!isOneConstant(N11) && !(IsAnd && isAllOnesConstant(N11))) + return SDValue(); + } else if (isOneConstant(N11)) { + // N01 and N11 being 1 was already handled. Handle N11==1 and N01==-1. + if (!(IsAnd && isAllOnesConstant(N01))) + return SDValue(); + } else + return SDValue(); + + EVT VT = N->getValueType(0); + + SDValue N00 = N0.getOperand(0); + SDValue N10 = N1.getOperand(0); + + // The LHS of the xors needs to be 0/1. + APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), 1); + if (!DAG.MaskedValueIsZero(N00, Mask) || !DAG.MaskedValueIsZero(N10, Mask)) + return SDValue(); + + // Invert the opcode and insert a new xor. + SDLoc DL(N); + unsigned Opc = IsAnd ? ISD::OR : ISD::AND; + SDValue Logic = DAG.getNode(Opc, DL, VT, N00, N10); + return DAG.getNode(ISD::XOR, DL, VT, Logic, DAG.getConstant(1, DL, VT)); +} + +static SDValue performTRUNCATECombine(SDNode *N, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // Pre-promote (i1 (truncate (srl X, Y))) on RV64 with Zbs without zero + // extending X. This is safe since we only need the LSB after the shift and + // shift amounts larger than 31 would produce poison. If we wait until + // type legalization, we'll create RISCVISD::SRLW and we can't recover it + // to use a BEXT instruction. + if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() && VT == MVT::i1 && + N0.getValueType() == MVT::i32 && N0.getOpcode() == ISD::SRL && + !isa<ConstantSDNode>(N0.getOperand(1)) && N0.hasOneUse()) { + SDLoc DL(N0); + SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0)); + SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1)); + SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1); + return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Srl); + } + + return SDValue(); +} + +namespace { +// Helper class contains information about comparison operation. +// The first two operands of this operation are compared values and the +// last one is the operation. +// Compared values are stored in Ops. +// Comparison operation is stored in CCode. +class CmpOpInfo { + static unsigned constexpr Size = 2u; + + // Type for storing operands of compare operation. + using OpsArray = std::array<SDValue, Size>; + OpsArray Ops; + + using const_iterator = OpsArray::const_iterator; + const_iterator begin() const { return Ops.begin(); } + const_iterator end() const { return Ops.end(); } + + ISD::CondCode CCode; + + unsigned CommonPos{Size}; + unsigned DifferPos{Size}; + + // Sets CommonPos and DifferPos based on incoming position + // of common operand CPos. + void setPositions(const_iterator CPos) { + assert(CPos != Ops.end() && "Common operand has to be in OpsArray.\n"); + CommonPos = CPos == Ops.begin() ? 0 : 1; + DifferPos = 1 - CommonPos; + assert((DifferPos == 0 || DifferPos == 1) && + "Positions can be only 0 or 1."); + } + + // Private constructor of comparison info based on comparison operator. + // It is private because CmpOpInfo only reasonable relative to other + // comparison operator. Therefore, infos about comparison operation + // have to be collected simultaneously via CmpOpInfo::getInfoAbout(). + CmpOpInfo(const SDValue &CmpOp) + : Ops{CmpOp.getOperand(0), CmpOp.getOperand(1)}, + CCode{cast<CondCodeSDNode>(CmpOp.getOperand(2))->get()} {} + + // Finds common operand of Op1 and Op2 and finishes filling CmpOpInfos. + // Returns true if common operand is found. Otherwise - false. + static bool establishCorrespondence(CmpOpInfo &Op1, CmpOpInfo &Op2) { + const auto CommonOpIt1 = + std::find_first_of(Op1.begin(), Op1.end(), Op2.begin(), Op2.end()); + if (CommonOpIt1 == Op1.end()) + return false; + + const auto CommonOpIt2 = std::find(Op2.begin(), Op2.end(), *CommonOpIt1); + assert(CommonOpIt2 != Op2.end() && + "Cannot find common operand in the second comparison operation."); + + Op1.setPositions(CommonOpIt1); + Op2.setPositions(CommonOpIt2); + + return true; + } + +public: + CmpOpInfo(const CmpOpInfo &) = default; + CmpOpInfo(CmpOpInfo &&) = default; + + SDValue const &operator[](unsigned Pos) const { + assert(Pos < Size && "Out of range\n"); + return Ops[Pos]; + } + + // Creates infos about comparison operations CmpOp0 and CmpOp1. + // If there is no common operand returns None. Otherwise, returns + // correspondence info about comparison operations. + static std::optional<std::pair<CmpOpInfo, CmpOpInfo>> + getInfoAbout(SDValue const &CmpOp0, SDValue const &CmpOp1) { + CmpOpInfo Op0{CmpOp0}; + CmpOpInfo Op1{CmpOp1}; + if (!establishCorrespondence(Op0, Op1)) + return std::nullopt; + return std::make_pair(Op0, Op1); + } + + // Returns position of common operand. + unsigned getCPos() const { return CommonPos; } + + // Returns position of differ operand. + unsigned getDPos() const { return DifferPos; } + + // Returns common operand. + SDValue const &getCOp() const { return operator[](CommonPos); } + + // Returns differ operand. + SDValue const &getDOp() const { return operator[](DifferPos); } + + // Returns consition code of comparison operation. + ISD::CondCode getCondCode() const { return CCode; } +}; +} // namespace + +// Verifies conditions to apply an optimization. +// Returns Reference comparison code and three operands A, B, C. +// Conditions for optimization: +// One operand of the compasions has to be common. +// This operand is written to C. +// Two others operands are differend. They are written to A and B. +// Comparisons has to be similar with respect to common operand C. +// e.g. A < C; C > B are similar +// but A < C; B > C are not. +// Reference comparison code is the comparison code if +// common operand is right placed. +// e.g. C > A will be swapped to A < C. +static std::optional<std::tuple<ISD::CondCode, SDValue, SDValue, SDValue>> +verifyCompareConds(SDNode *N, SelectionDAG &DAG) { + LLVM_DEBUG( + dbgs() << "Checking conditions for comparison operation combining.\n";); + + SDValue V0 = N->getOperand(0); + SDValue V1 = N->getOperand(1); + assert(V0.getValueType() == V1.getValueType() && + "Operations must have the same value type."); + + // Condition 1. Operations have to be used only in logic operation. + if (!V0.hasOneUse() || !V1.hasOneUse()) + return std::nullopt; + + // Condition 2. Operands have to be comparison operations. + if (V0.getOpcode() != ISD::SETCC || V1.getOpcode() != ISD::SETCC) + return std::nullopt; + + // Condition 3.1. Operations only with integers. + if (!V0.getOperand(0).getValueType().isInteger()) + return std::nullopt; + + const auto ComparisonInfo = CmpOpInfo::getInfoAbout(V0, V1); + // Condition 3.2. Common operand has to be in comparison. + if (!ComparisonInfo) + return std::nullopt; + + const auto [Op0, Op1] = ComparisonInfo.value(); + + LLVM_DEBUG(dbgs() << "Shared operands are on positions: " << Op0.getCPos() + << " and " << Op1.getCPos() << '\n';); + // If common operand at the first position then swap operation to convert to + // strict pattern. Common operand has to be right hand side. + ISD::CondCode RefCond = Op0.getCondCode(); + ISD::CondCode AssistCode = Op1.getCondCode(); + if (!Op0.getCPos()) + RefCond = ISD::getSetCCSwappedOperands(RefCond); + if (!Op1.getCPos()) + AssistCode = ISD::getSetCCSwappedOperands(AssistCode); + LLVM_DEBUG(dbgs() << "Reference condition is: " << RefCond << '\n';); + // If there are different comparison operations then do not perform an + // optimization. a < c; c < b -> will be changed to b > c. + if (RefCond != AssistCode) + return std::nullopt; + + // Conditions can be only similar to Less or Greater. (>, >=, <, <=) + // Applying this mask to the operation will determine Less and Greater + // operations. + const unsigned CmpMask = 0b110; + const unsigned MaskedOpcode = CmpMask & RefCond; + // If masking gave 0b110, then this is an operation NE, O or TRUE. + if (MaskedOpcode == CmpMask) + return std::nullopt; + // If masking gave 00000, then this is an operation E, O or FALSE. + if (MaskedOpcode == 0) + return std::nullopt; + // Everything else is similar to Less or Greater. + + SDValue A = Op0.getDOp(); + SDValue B = Op1.getDOp(); + SDValue C = Op0.getCOp(); + + LLVM_DEBUG( + dbgs() << "The conditions for combining comparisons are satisfied.\n";); + return std::make_tuple(RefCond, A, B, C); +} + +static ISD::NodeType getSelectionCode(bool IsUnsigned, bool IsAnd, + bool IsGreaterOp) { + // Codes of selection operation. The first index selects signed or unsigned, + // the second index selects MIN/MAX. + static constexpr ISD::NodeType SelectionCodes[2][2] = { + {ISD::SMIN, ISD::SMAX}, {ISD::UMIN, ISD::UMAX}}; + const bool ChooseSelCode = IsAnd ^ IsGreaterOp; + return SelectionCodes[IsUnsigned][ChooseSelCode]; +} + +// Combines two comparison operation and logic operation to one selection +// operation(min, max) and logic operation. Returns new constructed Node if +// conditions for optimization are satisfied. +static SDValue combineCmpOp(SDNode *N, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + if (!Subtarget.hasStdExtZbb()) + return SDValue(); + + const unsigned BitOpcode = N->getOpcode(); + assert((BitOpcode == ISD::AND || BitOpcode == ISD::OR) && + "This optimization can be used only with AND/OR operations"); + + const auto Props = verifyCompareConds(N, DAG); + // If conditions are invalidated then do not perform an optimization. + if (!Props) + return SDValue(); + + const auto [RefOpcode, A, B, C] = Props.value(); + const EVT CmpOpVT = A.getValueType(); + + const bool IsGreaterOp = RefOpcode & 0b10; + const bool IsUnsigned = ISD::isUnsignedIntSetCC(RefOpcode); + assert((IsUnsigned || ISD::isSignedIntSetCC(RefOpcode)) && + "Operation neither with signed or unsigned integers."); + + const bool IsAnd = BitOpcode == ISD::AND; + const ISD::NodeType PickCode = + getSelectionCode(IsUnsigned, IsAnd, IsGreaterOp); + + SDLoc DL(N); + SDValue Pick = DAG.getNode(PickCode, DL, CmpOpVT, A, B); + SDValue Cmp = + DAG.getSetCC(DL, N->getOperand(0).getValueType(), Pick, C, RefOpcode); + + return Cmp; +} + +static SDValue performANDCombine(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI, + const RISCVSubtarget &Subtarget) { + SelectionDAG &DAG = DCI.DAG; + + SDValue N0 = N->getOperand(0); + // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero + // extending X. This is safe since we only need the LSB after the shift and + // shift amounts larger than 31 would produce poison. If we wait until + // type legalization, we'll create RISCVISD::SRLW and we can't recover it + // to use a BEXT instruction. + if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() && + N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) && + N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) && + N0.hasOneUse()) { + SDLoc DL(N); + SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0)); + SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1)); + SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1); + SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl, + DAG.getConstant(1, DL, MVT::i64)); + return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And); + } + + if (SDValue V = combineCmpOp(N, DAG, Subtarget)) + return V; + + if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget)) + return V; + + if (DCI.isAfterLegalizeDAG()) + if (SDValue V = combineDeMorganOfBoolean(N, DAG)) + return V; + + // fold (and (select lhs, rhs, cc, -1, y), x) -> + // (select lhs, rhs, cc, x, (and x, y)) + return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true, Subtarget); +} + +static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, + const RISCVSubtarget &Subtarget) { + SelectionDAG &DAG = DCI.DAG; + + if (SDValue V = combineCmpOp(N, DAG, Subtarget)) + return V; + + if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget)) + return V; + + if (DCI.isAfterLegalizeDAG()) + if (SDValue V = combineDeMorganOfBoolean(N, DAG)) + return V; + + // fold (or (select cond, 0, y), x) -> + // (select cond, x, (or x, y)) + return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget); +} + +static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + // fold (xor (sllw 1, x), -1) -> (rolw ~1, x) + // NOTE: Assumes ROL being legal means ROLW is legal. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (N0.getOpcode() == RISCVISD::SLLW && + isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) && + TLI.isOperationLegal(ISD::ROTL, MVT::i64)) { + SDLoc DL(N); + return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64, + DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1)); + } + + if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget)) + return V; + // fold (xor (select cond, 0, y), x) -> + // (select cond, x, (xor x, y)) + return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget); +} + +// Replace (seteq (i64 (and X, 0xffffffff)), C1) with +// (seteq (i64 (sext_inreg (X, i32)), C1')) where C1' is C1 sign extended from +// bit 31. Same for setne. C1' may be cheaper to materialize and the sext_inreg +// can become a sext.w instead of a shift pair. +static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getValueType(0); + EVT OpVT = N0.getValueType(); + + if (OpVT != MVT::i64 || !Subtarget.is64Bit()) + return SDValue(); + + // RHS needs to be a constant. + auto *N1C = dyn_cast<ConstantSDNode>(N1); + if (!N1C) + return SDValue(); + + // LHS needs to be (and X, 0xffffffff). + if (N0.getOpcode() != ISD::AND || !N0.hasOneUse() || + !isa<ConstantSDNode>(N0.getOperand(1)) || + N0.getConstantOperandVal(1) != UINT64_C(0xffffffff)) + return SDValue(); + + // Looking for an equality compare. + ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get(); + if (!isIntEqualitySetCC(Cond)) + return SDValue(); + + // Don't do this if the sign bit is provably zero, it will be turned back into + // an AND. + APInt SignMask = APInt::getOneBitSet(64, 31); + if (DAG.MaskedValueIsZero(N0.getOperand(0), SignMask)) + return SDValue(); + + const APInt &C1 = N1C->getAPIntValue(); + + SDLoc dl(N); + // If the constant is larger than 2^32 - 1 it is impossible for both sides + // to be equal. + if (C1.getActiveBits() > 32) + return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); + + SDValue SExtOp = DAG.getNode(ISD::SIGN_EXTEND_INREG, N, OpVT, + N0.getOperand(0), DAG.getValueType(MVT::i32)); + return DAG.getSetCC(dl, VT, SExtOp, DAG.getConstant(C1.trunc(32).sext(64), + dl, OpVT), Cond); +} + +static SDValue +performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + SDValue Src = N->getOperand(0); + EVT VT = N->getValueType(0); + + // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X) + if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH && + cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16)) + return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT, + Src.getOperand(0)); + + return SDValue(); +} + +namespace { +// Forward declaration of the structure holding the necessary information to +// apply a combine. +struct CombineResult; + +/// Helper class for folding sign/zero extensions. +/// In particular, this class is used for the following combines: +/// add_vl -> vwadd(u) | vwadd(u)_w +/// sub_vl -> vwsub(u) | vwsub(u)_w +/// mul_vl -> vwmul(u) | vwmul_su +/// +/// An object of this class represents an operand of the operation we want to +/// combine. +/// E.g., when trying to combine `mul_vl a, b`, we will have one instance of +/// NodeExtensionHelper for `a` and one for `b`. +/// +/// This class abstracts away how the extension is materialized and +/// how its Mask, VL, number of users affect the combines. +/// +/// In particular: +/// - VWADD_W is conceptually == add(op0, sext(op1)) +/// - VWADDU_W == add(op0, zext(op1)) +/// - VWSUB_W == sub(op0, sext(op1)) +/// - VWSUBU_W == sub(op0, zext(op1)) +/// +/// And VMV_V_X_VL, depending on the value, is conceptually equivalent to +/// zext|sext(smaller_value). +struct NodeExtensionHelper { + /// Records if this operand is like being zero extended. + bool SupportsZExt; + /// Records if this operand is like being sign extended. + /// Note: SupportsZExt and SupportsSExt are not mutually exclusive. For + /// instance, a splat constant (e.g., 3), would support being both sign and + /// zero extended. + bool SupportsSExt; + /// This boolean captures whether we care if this operand would still be + /// around after the folding happens. + bool EnforceOneUse; + /// Records if this operand's mask needs to match the mask of the operation + /// that it will fold into. + bool CheckMask; + /// Value of the Mask for this operand. + /// It may be SDValue(). + SDValue Mask; + /// Value of the vector length operand. + /// It may be SDValue(). + SDValue VL; + /// Original value that this NodeExtensionHelper represents. + SDValue OrigOperand; + + /// Get the value feeding the extension or the value itself. + /// E.g., for zext(a), this would return a. + SDValue getSource() const { + switch (OrigOperand.getOpcode()) { + case RISCVISD::VSEXT_VL: + case RISCVISD::VZEXT_VL: + return OrigOperand.getOperand(0); + default: + return OrigOperand; + } + } + + /// Check if this instance represents a splat. + bool isSplat() const { + return OrigOperand.getOpcode() == RISCVISD::VMV_V_X_VL; + } + + /// Get or create a value that can feed \p Root with the given extension \p + /// SExt. If \p SExt is None, this returns the source of this operand. + /// \see ::getSource(). + SDValue getOrCreateExtendedOp(const SDNode *Root, SelectionDAG &DAG, + std::optional<bool> SExt) const { + if (!SExt.has_value()) + return OrigOperand; + + MVT NarrowVT = getNarrowType(Root); + + SDValue Source = getSource(); + if (Source.getValueType() == NarrowVT) + return Source; + + unsigned ExtOpc = *SExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL; + + // If we need an extension, we should be changing the type. + SDLoc DL(Root); + auto [Mask, VL] = getMaskAndVL(Root); + switch (OrigOperand.getOpcode()) { + case RISCVISD::VSEXT_VL: + case RISCVISD::VZEXT_VL: + return DAG.getNode(ExtOpc, DL, NarrowVT, Source, Mask, VL); + case RISCVISD::VMV_V_X_VL: + return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT, + DAG.getUNDEF(NarrowVT), Source.getOperand(1), VL); + default: + // Other opcodes can only come from the original LHS of VW(ADD|SUB)_W_VL + // and that operand should already have the right NarrowVT so no + // extension should be required at this point. + llvm_unreachable("Unsupported opcode"); + } + } + + /// Helper function to get the narrow type for \p Root. + /// The narrow type is the type of \p Root where we divided the size of each + /// element by 2. E.g., if Root's type <2xi16> -> narrow type <2xi8>. + /// \pre The size of the type of the elements of Root must be a multiple of 2 + /// and be greater than 16. + static MVT getNarrowType(const SDNode *Root) { + MVT VT = Root->getSimpleValueType(0); + + // Determine the narrow size. + unsigned NarrowSize = VT.getScalarSizeInBits() / 2; + assert(NarrowSize >= 8 && "Trying to extend something we can't represent"); + MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize), + VT.getVectorElementCount()); + return NarrowVT; + } + + /// Return the opcode required to materialize the folding of the sign + /// extensions (\p IsSExt == true) or zero extensions (IsSExt == false) for + /// both operands for \p Opcode. + /// Put differently, get the opcode to materialize: + /// - ISExt == true: \p Opcode(sext(a), sext(b)) -> newOpcode(a, b) + /// - ISExt == false: \p Opcode(zext(a), zext(b)) -> newOpcode(a, b) + /// \pre \p Opcode represents a supported root (\see ::isSupportedRoot()). + static unsigned getSameExtensionOpcode(unsigned Opcode, bool IsSExt) { + switch (Opcode) { + case RISCVISD::ADD_VL: + case RISCVISD::VWADD_W_VL: + case RISCVISD::VWADDU_W_VL: + return IsSExt ? RISCVISD::VWADD_VL : RISCVISD::VWADDU_VL; + case RISCVISD::MUL_VL: + return IsSExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL; + case RISCVISD::SUB_VL: + case RISCVISD::VWSUB_W_VL: + case RISCVISD::VWSUBU_W_VL: + return IsSExt ? RISCVISD::VWSUB_VL : RISCVISD::VWSUBU_VL; + default: + llvm_unreachable("Unexpected opcode"); + } + } + + /// Get the opcode to materialize \p Opcode(sext(a), zext(b)) -> + /// newOpcode(a, b). + static unsigned getSUOpcode(unsigned Opcode) { + assert(Opcode == RISCVISD::MUL_VL && "SU is only supported for MUL"); + return RISCVISD::VWMULSU_VL; + } + + /// Get the opcode to materialize \p Opcode(a, s|zext(b)) -> + /// newOpcode(a, b). + static unsigned getWOpcode(unsigned Opcode, bool IsSExt) { + switch (Opcode) { + case RISCVISD::ADD_VL: + return IsSExt ? RISCVISD::VWADD_W_VL : RISCVISD::VWADDU_W_VL; + case RISCVISD::SUB_VL: + return IsSExt ? RISCVISD::VWSUB_W_VL : RISCVISD::VWSUBU_W_VL; + default: + llvm_unreachable("Unexpected opcode"); + } + } + + using CombineToTry = std::function<std::optional<CombineResult>( + SDNode * /*Root*/, const NodeExtensionHelper & /*LHS*/, + const NodeExtensionHelper & /*RHS*/)>; + + /// Check if this node needs to be fully folded or extended for all users. + bool needToPromoteOtherUsers() const { return EnforceOneUse; } + + /// Helper method to set the various fields of this struct based on the + /// type of \p Root. + void fillUpExtensionSupport(SDNode *Root, SelectionDAG &DAG) { + SupportsZExt = false; + SupportsSExt = false; + EnforceOneUse = true; + CheckMask = true; + switch (OrigOperand.getOpcode()) { + case RISCVISD::VZEXT_VL: + SupportsZExt = true; + Mask = OrigOperand.getOperand(1); + VL = OrigOperand.getOperand(2); + break; + case RISCVISD::VSEXT_VL: + SupportsSExt = true; + Mask = OrigOperand.getOperand(1); + VL = OrigOperand.getOperand(2); + break; + case RISCVISD::VMV_V_X_VL: { + // Historically, we didn't care about splat values not disappearing during + // combines. + EnforceOneUse = false; + CheckMask = false; + VL = OrigOperand.getOperand(2); + + // The operand is a splat of a scalar. + + // The pasthru must be undef for tail agnostic. + if (!OrigOperand.getOperand(0).isUndef()) + break; + + // Get the scalar value. + SDValue Op = OrigOperand.getOperand(1); + + // See if we have enough sign bits or zero bits in the scalar to use a + // widening opcode by splatting to smaller element size. + MVT VT = Root->getSimpleValueType(0); + unsigned EltBits = VT.getScalarSizeInBits(); + unsigned ScalarBits = Op.getValueSizeInBits(); + // Make sure we're getting all element bits from the scalar register. + // FIXME: Support implicit sign extension of vmv.v.x? + if (ScalarBits < EltBits) + break; + + unsigned NarrowSize = VT.getScalarSizeInBits() / 2; + // If the narrow type cannot be expressed with a legal VMV, + // this is not a valid candidate. + if (NarrowSize < 8) + break; + + if (DAG.ComputeMaxSignificantBits(Op) <= NarrowSize) + SupportsSExt = true; + if (DAG.MaskedValueIsZero(Op, + APInt::getBitsSetFrom(ScalarBits, NarrowSize))) + SupportsZExt = true; + break; + } + default: + break; + } + } + + /// Check if \p Root supports any extension folding combines. + static bool isSupportedRoot(const SDNode *Root) { + switch (Root->getOpcode()) { + case RISCVISD::ADD_VL: + case RISCVISD::MUL_VL: + case RISCVISD::VWADD_W_VL: + case RISCVISD::VWADDU_W_VL: + case RISCVISD::SUB_VL: + case RISCVISD::VWSUB_W_VL: + case RISCVISD::VWSUBU_W_VL: + return true; + default: + return false; + } + } + + /// Build a NodeExtensionHelper for \p Root.getOperand(\p OperandIdx). + NodeExtensionHelper(SDNode *Root, unsigned OperandIdx, SelectionDAG &DAG) { + assert(isSupportedRoot(Root) && "Trying to build an helper with an " + "unsupported root"); + assert(OperandIdx < 2 && "Requesting something else than LHS or RHS"); + OrigOperand = Root->getOperand(OperandIdx); + + unsigned Opc = Root->getOpcode(); + switch (Opc) { + // We consider VW<ADD|SUB>(U)_W(LHS, RHS) as if they were + // <ADD|SUB>(LHS, S|ZEXT(RHS)) + case RISCVISD::VWADD_W_VL: + case RISCVISD::VWADDU_W_VL: + case RISCVISD::VWSUB_W_VL: + case RISCVISD::VWSUBU_W_VL: + if (OperandIdx == 1) { + SupportsZExt = + Opc == RISCVISD::VWADDU_W_VL || Opc == RISCVISD::VWSUBU_W_VL; + SupportsSExt = !SupportsZExt; + std::tie(Mask, VL) = getMaskAndVL(Root); + CheckMask = true; + // There's no existing extension here, so we don't have to worry about + // making sure it gets removed. + EnforceOneUse = false; + break; + } + [[fallthrough]]; + default: + fillUpExtensionSupport(Root, DAG); + break; + } + } + + /// Check if this operand is compatible with the given vector length \p VL. + bool isVLCompatible(SDValue VL) const { + return this->VL != SDValue() && this->VL == VL; + } + + /// Check if this operand is compatible with the given \p Mask. + bool isMaskCompatible(SDValue Mask) const { + return !CheckMask || (this->Mask != SDValue() && this->Mask == Mask); + } + + /// Helper function to get the Mask and VL from \p Root. + static std::pair<SDValue, SDValue> getMaskAndVL(const SDNode *Root) { + assert(isSupportedRoot(Root) && "Unexpected root"); + return std::make_pair(Root->getOperand(3), Root->getOperand(4)); + } + + /// Check if the Mask and VL of this operand are compatible with \p Root. + bool areVLAndMaskCompatible(const SDNode *Root) const { + auto [Mask, VL] = getMaskAndVL(Root); + return isMaskCompatible(Mask) && isVLCompatible(VL); + } + + /// Helper function to check if \p N is commutative with respect to the + /// foldings that are supported by this class. + static bool isCommutative(const SDNode *N) { + switch (N->getOpcode()) { + case RISCVISD::ADD_VL: + case RISCVISD::MUL_VL: + case RISCVISD::VWADD_W_VL: + case RISCVISD::VWADDU_W_VL: + return true; + case RISCVISD::SUB_VL: + case RISCVISD::VWSUB_W_VL: + case RISCVISD::VWSUBU_W_VL: + return false; + default: + llvm_unreachable("Unexpected opcode"); + } + } + + /// Get a list of combine to try for folding extensions in \p Root. + /// Note that each returned CombineToTry function doesn't actually modify + /// anything. Instead they produce an optional CombineResult that if not None, + /// need to be materialized for the combine to be applied. + /// \see CombineResult::materialize. + /// If the related CombineToTry function returns std::nullopt, that means the + /// combine didn't match. + static SmallVector<CombineToTry> getSupportedFoldings(const SDNode *Root); +}; + +/// Helper structure that holds all the necessary information to materialize a +/// combine that does some extension folding. +struct CombineResult { + /// Opcode to be generated when materializing the combine. + unsigned TargetOpcode; + // No value means no extension is needed. If extension is needed, the value + // indicates if it needs to be sign extended. + std::optional<bool> SExtLHS; + std::optional<bool> SExtRHS; + /// Root of the combine. + SDNode *Root; + /// LHS of the TargetOpcode. + NodeExtensionHelper LHS; + /// RHS of the TargetOpcode. + NodeExtensionHelper RHS; + + CombineResult(unsigned TargetOpcode, SDNode *Root, + const NodeExtensionHelper &LHS, std::optional<bool> SExtLHS, + const NodeExtensionHelper &RHS, std::optional<bool> SExtRHS) + : TargetOpcode(TargetOpcode), SExtLHS(SExtLHS), SExtRHS(SExtRHS), + Root(Root), LHS(LHS), RHS(RHS) {} + + /// Return a value that uses TargetOpcode and that can be used to replace + /// Root. + /// The actual replacement is *not* done in that method. + SDValue materialize(SelectionDAG &DAG) const { + SDValue Mask, VL, Merge; + std::tie(Mask, VL) = NodeExtensionHelper::getMaskAndVL(Root); + Merge = Root->getOperand(2); + return DAG.getNode(TargetOpcode, SDLoc(Root), Root->getValueType(0), + LHS.getOrCreateExtendedOp(Root, DAG, SExtLHS), + RHS.getOrCreateExtendedOp(Root, DAG, SExtRHS), Merge, + Mask, VL); + } +}; + +/// Check if \p Root follows a pattern Root(ext(LHS), ext(RHS)) +/// where `ext` is the same for both LHS and RHS (i.e., both are sext or both +/// are zext) and LHS and RHS can be folded into Root. +/// AllowSExt and AllozZExt define which form `ext` can take in this pattern. +/// +/// \note If the pattern can match with both zext and sext, the returned +/// CombineResult will feature the zext result. +/// +/// \returns std::nullopt if the pattern doesn't match or a CombineResult that +/// can be used to apply the pattern. +static std::optional<CombineResult> +canFoldToVWWithSameExtensionImpl(SDNode *Root, const NodeExtensionHelper &LHS, + const NodeExtensionHelper &RHS, bool AllowSExt, + bool AllowZExt) { + assert((AllowSExt || AllowZExt) && "Forgot to set what you want?"); + if (!LHS.areVLAndMaskCompatible(Root) || !RHS.areVLAndMaskCompatible(Root)) + return std::nullopt; + if (AllowZExt && LHS.SupportsZExt && RHS.SupportsZExt) + return CombineResult(NodeExtensionHelper::getSameExtensionOpcode( + Root->getOpcode(), /*IsSExt=*/false), + Root, LHS, /*SExtLHS=*/false, RHS, + /*SExtRHS=*/false); + if (AllowSExt && LHS.SupportsSExt && RHS.SupportsSExt) + return CombineResult(NodeExtensionHelper::getSameExtensionOpcode( + Root->getOpcode(), /*IsSExt=*/true), + Root, LHS, /*SExtLHS=*/true, RHS, + /*SExtRHS=*/true); + return std::nullopt; +} + +/// Check if \p Root follows a pattern Root(ext(LHS), ext(RHS)) +/// where `ext` is the same for both LHS and RHS (i.e., both are sext or both +/// are zext) and LHS and RHS can be folded into Root. +/// +/// \returns std::nullopt if the pattern doesn't match or a CombineResult that +/// can be used to apply the pattern. +static std::optional<CombineResult> +canFoldToVWWithSameExtension(SDNode *Root, const NodeExtensionHelper &LHS, + const NodeExtensionHelper &RHS) { + return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, /*AllowSExt=*/true, + /*AllowZExt=*/true); +} + +/// Check if \p Root follows a pattern Root(LHS, ext(RHS)) +/// +/// \returns std::nullopt if the pattern doesn't match or a CombineResult that +/// can be used to apply the pattern. +static std::optional<CombineResult> +canFoldToVW_W(SDNode *Root, const NodeExtensionHelper &LHS, + const NodeExtensionHelper &RHS) { + if (!RHS.areVLAndMaskCompatible(Root)) + return std::nullopt; + + // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar + // sext/zext? + // Control this behavior behind an option (AllowSplatInVW_W) for testing + // purposes. + if (RHS.SupportsZExt && (!RHS.isSplat() || AllowSplatInVW_W)) + return CombineResult( + NodeExtensionHelper::getWOpcode(Root->getOpcode(), /*IsSExt=*/false), + Root, LHS, /*SExtLHS=*/std::nullopt, RHS, /*SExtRHS=*/false); + if (RHS.SupportsSExt && (!RHS.isSplat() || AllowSplatInVW_W)) + return CombineResult( + NodeExtensionHelper::getWOpcode(Root->getOpcode(), /*IsSExt=*/true), + Root, LHS, /*SExtLHS=*/std::nullopt, RHS, /*SExtRHS=*/true); + return std::nullopt; +} + +/// Check if \p Root follows a pattern Root(sext(LHS), sext(RHS)) +/// +/// \returns std::nullopt if the pattern doesn't match or a CombineResult that +/// can be used to apply the pattern. +static std::optional<CombineResult> +canFoldToVWWithSEXT(SDNode *Root, const NodeExtensionHelper &LHS, + const NodeExtensionHelper &RHS) { + return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, /*AllowSExt=*/true, + /*AllowZExt=*/false); +} + +/// Check if \p Root follows a pattern Root(zext(LHS), zext(RHS)) +/// +/// \returns std::nullopt if the pattern doesn't match or a CombineResult that +/// can be used to apply the pattern. +static std::optional<CombineResult> +canFoldToVWWithZEXT(SDNode *Root, const NodeExtensionHelper &LHS, + const NodeExtensionHelper &RHS) { + return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, /*AllowSExt=*/false, + /*AllowZExt=*/true); +} + +/// Check if \p Root follows a pattern Root(sext(LHS), zext(RHS)) +/// +/// \returns std::nullopt if the pattern doesn't match or a CombineResult that +/// can be used to apply the pattern. +static std::optional<CombineResult> +canFoldToVW_SU(SDNode *Root, const NodeExtensionHelper &LHS, + const NodeExtensionHelper &RHS) { + if (!LHS.SupportsSExt || !RHS.SupportsZExt) + return std::nullopt; + if (!LHS.areVLAndMaskCompatible(Root) || !RHS.areVLAndMaskCompatible(Root)) + return std::nullopt; + return CombineResult(NodeExtensionHelper::getSUOpcode(Root->getOpcode()), + Root, LHS, /*SExtLHS=*/true, RHS, /*SExtRHS=*/false); +} + +SmallVector<NodeExtensionHelper::CombineToTry> +NodeExtensionHelper::getSupportedFoldings(const SDNode *Root) { + SmallVector<CombineToTry> Strategies; + switch (Root->getOpcode()) { + case RISCVISD::ADD_VL: + case RISCVISD::SUB_VL: + // add|sub -> vwadd(u)|vwsub(u) + Strategies.push_back(canFoldToVWWithSameExtension); + // add|sub -> vwadd(u)_w|vwsub(u)_w + Strategies.push_back(canFoldToVW_W); + break; + case RISCVISD::MUL_VL: + // mul -> vwmul(u) + Strategies.push_back(canFoldToVWWithSameExtension); + // mul -> vwmulsu + Strategies.push_back(canFoldToVW_SU); + break; + case RISCVISD::VWADD_W_VL: + case RISCVISD::VWSUB_W_VL: + // vwadd_w|vwsub_w -> vwadd|vwsub + Strategies.push_back(canFoldToVWWithSEXT); + break; + case RISCVISD::VWADDU_W_VL: + case RISCVISD::VWSUBU_W_VL: + // vwaddu_w|vwsubu_w -> vwaddu|vwsubu + Strategies.push_back(canFoldToVWWithZEXT); + break; + default: + llvm_unreachable("Unexpected opcode"); + } + return Strategies; +} +} // End anonymous namespace. + +/// Combine a binary operation to its equivalent VW or VW_W form. +/// The supported combines are: +/// add_vl -> vwadd(u) | vwadd(u)_w +/// sub_vl -> vwsub(u) | vwsub(u)_w +/// mul_vl -> vwmul(u) | vwmul_su +/// vwadd_w(u) -> vwadd(u) +/// vwub_w(u) -> vwadd(u) +static SDValue +combineBinOp_VLToVWBinOp_VL(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { + SelectionDAG &DAG = DCI.DAG; + + assert(NodeExtensionHelper::isSupportedRoot(N) && + "Shouldn't have called this method"); + SmallVector<SDNode *> Worklist; + SmallSet<SDNode *, 8> Inserted; + Worklist.push_back(N); + Inserted.insert(N); + SmallVector<CombineResult> CombinesToApply; + + while (!Worklist.empty()) { + SDNode *Root = Worklist.pop_back_val(); + if (!NodeExtensionHelper::isSupportedRoot(Root)) + return SDValue(); + + NodeExtensionHelper LHS(N, 0, DAG); + NodeExtensionHelper RHS(N, 1, DAG); + auto AppendUsersIfNeeded = [&Worklist, + &Inserted](const NodeExtensionHelper &Op) { + if (Op.needToPromoteOtherUsers()) { + for (SDNode *TheUse : Op.OrigOperand->uses()) { + if (Inserted.insert(TheUse).second) + Worklist.push_back(TheUse); + } + } + }; + + // Control the compile time by limiting the number of node we look at in + // total. + if (Inserted.size() > ExtensionMaxWebSize) + return SDValue(); + + SmallVector<NodeExtensionHelper::CombineToTry> FoldingStrategies = + NodeExtensionHelper::getSupportedFoldings(N); + + assert(!FoldingStrategies.empty() && "Nothing to be folded"); + bool Matched = false; + for (int Attempt = 0; + (Attempt != 1 + NodeExtensionHelper::isCommutative(N)) && !Matched; + ++Attempt) { + + for (NodeExtensionHelper::CombineToTry FoldingStrategy : + FoldingStrategies) { + std::optional<CombineResult> Res = FoldingStrategy(N, LHS, RHS); + if (Res) { + Matched = true; + CombinesToApply.push_back(*Res); + // All the inputs that are extended need to be folded, otherwise + // we would be leaving the old input (since it is may still be used), + // and the new one. + if (Res->SExtLHS.has_value()) + AppendUsersIfNeeded(LHS); + if (Res->SExtRHS.has_value()) + AppendUsersIfNeeded(RHS); + break; + } + } + std::swap(LHS, RHS); + } + // Right now we do an all or nothing approach. + if (!Matched) + return SDValue(); + } + // Store the value for the replacement of the input node separately. + SDValue InputRootReplacement; + // We do the RAUW after we materialize all the combines, because some replaced + // nodes may be feeding some of the yet-to-be-replaced nodes. Put differently, + // some of these nodes may appear in the NodeExtensionHelpers of some of the + // yet-to-be-visited CombinesToApply roots. + SmallVector<std::pair<SDValue, SDValue>> ValuesToReplace; + ValuesToReplace.reserve(CombinesToApply.size()); + for (CombineResult Res : CombinesToApply) { + SDValue NewValue = Res.materialize(DAG); + if (!InputRootReplacement) { + assert(Res.Root == N && + "First element is expected to be the current node"); + InputRootReplacement = NewValue; + } else { + ValuesToReplace.emplace_back(SDValue(Res.Root, 0), NewValue); + } + } + for (std::pair<SDValue, SDValue> OldNewValues : ValuesToReplace) { + DAG.ReplaceAllUsesOfValueWith(OldNewValues.first, OldNewValues.second); + DCI.AddToWorklist(OldNewValues.second.getNode()); + } + return InputRootReplacement; +} + +// Fold +// (fp_to_int (froundeven X)) -> fcvt X, rne +// (fp_to_int (ftrunc X)) -> fcvt X, rtz +// (fp_to_int (ffloor X)) -> fcvt X, rdn +// (fp_to_int (fceil X)) -> fcvt X, rup +// (fp_to_int (fround X)) -> fcvt X, rmm +static SDValue performFP_TO_INTCombine(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI, + const RISCVSubtarget &Subtarget) { + SelectionDAG &DAG = DCI.DAG; + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + MVT XLenVT = Subtarget.getXLenVT(); + + SDValue Src = N->getOperand(0); + + // Ensure the FP type is legal. + if (!TLI.isTypeLegal(Src.getValueType())) + return SDValue(); + + // Don't do this for f16 with Zfhmin and not Zfh. + if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) + return SDValue(); + + RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src.getOpcode()); + if (FRM == RISCVFPRndMode::Invalid) + return SDValue(); + + SDLoc DL(N); + bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; + EVT VT = N->getValueType(0); + + if (VT.isVector() && TLI.isTypeLegal(VT)) { + MVT SrcVT = Src.getSimpleValueType(); + MVT SrcContainerVT = SrcVT; + MVT ContainerVT = VT.getSimpleVT(); + SDValue XVal = Src.getOperand(0); + + // For widening and narrowing conversions we just combine it into a + // VFCVT_..._VL node, as there are no specific VFWCVT/VFNCVT VL nodes. They + // end up getting lowered to their appropriate pseudo instructions based on + // their operand types + if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits() * 2 || + VT.getScalarSizeInBits() * 2 < SrcVT.getScalarSizeInBits()) + return SDValue(); + + // Make fixed-length vectors scalable first + if (SrcVT.isFixedLengthVector()) { + SrcContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget); + XVal = convertToScalableVector(SrcContainerVT, XVal, DAG, Subtarget); + ContainerVT = + getContainerForFixedLengthVector(DAG, ContainerVT, Subtarget); + } + + auto [Mask, VL] = + getDefaultVLOps(SrcVT, SrcContainerVT, DL, DAG, Subtarget); + + SDValue FpToInt; + if (FRM == RISCVFPRndMode::RTZ) { + // Use the dedicated trunc static rounding mode if we're truncating so we + // don't need to generate calls to fsrmi/fsrm + unsigned Opc = + IsSigned ? RISCVISD::VFCVT_RTZ_X_F_VL : RISCVISD::VFCVT_RTZ_XU_F_VL; + FpToInt = DAG.getNode(Opc, DL, ContainerVT, XVal, Mask, VL); + } else { + unsigned Opc = + IsSigned ? RISCVISD::VFCVT_RM_X_F_VL : RISCVISD::VFCVT_RM_XU_F_VL; + FpToInt = DAG.getNode(Opc, DL, ContainerVT, XVal, Mask, + DAG.getTargetConstant(FRM, DL, XLenVT), VL); + } + + // If converted from fixed-length to scalable, convert back + if (VT.isFixedLengthVector()) + FpToInt = convertFromScalableVector(VT, FpToInt, DAG, Subtarget); + + return FpToInt; + } + + // Only handle XLen or i32 types. Other types narrower than XLen will + // eventually be legalized to XLenVT. + if (VT != MVT::i32 && VT != XLenVT) + return SDValue(); + + unsigned Opc; + if (VT == XLenVT) + Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; + else + Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; + + SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0), + DAG.getTargetConstant(FRM, DL, XLenVT)); + return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt); +} + +// Fold +// (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne)) +// (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz)) +// (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn)) +// (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup)) +// (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm)) +static SDValue performFP_TO_INT_SATCombine(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI, + const RISCVSubtarget &Subtarget) { + SelectionDAG &DAG = DCI.DAG; + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + MVT XLenVT = Subtarget.getXLenVT(); + + // Only handle XLen types. Other types narrower than XLen will eventually be + // legalized to XLenVT. + EVT DstVT = N->getValueType(0); + if (DstVT != XLenVT) + return SDValue(); + + SDValue Src = N->getOperand(0); + + // Ensure the FP type is also legal. + if (!TLI.isTypeLegal(Src.getValueType())) + return SDValue(); + + // Don't do this for f16 with Zfhmin and not Zfh. + if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh()) + return SDValue(); + + EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); + + RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src.getOpcode()); + if (FRM == RISCVFPRndMode::Invalid) + return SDValue(); + + bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT; + + unsigned Opc; + if (SatVT == DstVT) + Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU; + else if (DstVT == MVT::i64 && SatVT == MVT::i32) + Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64; + else + return SDValue(); + // FIXME: Support other SatVTs by clamping before or after the conversion. + + Src = Src.getOperand(0); + + SDLoc DL(N); + SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src, + DAG.getTargetConstant(FRM, DL, XLenVT)); + + // fcvt.wu.* sign extends bit 31 on RV64. FP_TO_UINT_SAT expects to zero + // extend. + if (Opc == RISCVISD::FCVT_WU_RV64) + FpToInt = DAG.getZeroExtendInReg(FpToInt, DL, MVT::i32); + + // RISCV FP-to-int conversions saturate to the destination register size, but + // don't produce 0 for nan. + SDValue ZeroInt = DAG.getConstant(0, DL, DstVT); + return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO); +} + +// Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is +// smaller than XLenVT. +static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + assert(Subtarget.hasStdExtZbkb() && "Unexpected extension"); + + SDValue Src = N->getOperand(0); + if (Src.getOpcode() != ISD::BSWAP) + return SDValue(); + + EVT VT = N->getValueType(0); + if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() || + !isPowerOf2_32(VT.getSizeInBits())) + return SDValue(); + + SDLoc DL(N); + return DAG.getNode(RISCVISD::BREV8, DL, VT, Src.getOperand(0)); +} + +// Convert from one FMA opcode to another based on whether we are negating the +// multiply result and/or the accumulator. +// NOTE: Only supports RVV operations with VL. +static unsigned negateFMAOpcode(unsigned Opcode, bool NegMul, bool NegAcc) { + assert((NegMul || NegAcc) && "Not negating anything?"); + + // Negating the multiply result changes ADD<->SUB and toggles 'N'. + if (NegMul) { + // clang-format off + switch (Opcode) { + default: llvm_unreachable("Unexpected opcode"); + case RISCVISD::VFMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break; + case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFMADD_VL; break; + case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFMSUB_VL; break; + case RISCVISD::VFMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break; + } + // clang-format on + } + + // Negating the accumulator changes ADD<->SUB. + if (NegAcc) { + // clang-format off + switch (Opcode) { + default: llvm_unreachable("Unexpected opcode"); + case RISCVISD::VFMADD_VL: Opcode = RISCVISD::VFMSUB_VL; break; + case RISCVISD::VFMSUB_VL: Opcode = RISCVISD::VFMADD_VL; break; + case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break; + case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break; + } + // clang-format on + } + + return Opcode; +} + +static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + assert(N->getOpcode() == ISD::SRA && "Unexpected opcode"); + + if (N->getValueType(0) != MVT::i64 || !Subtarget.is64Bit()) + return SDValue(); + + if (!isa<ConstantSDNode>(N->getOperand(1))) + return SDValue(); + uint64_t ShAmt = N->getConstantOperandVal(1); + if (ShAmt > 32) + return SDValue(); + + SDValue N0 = N->getOperand(0); + + // Combine (sra (sext_inreg (shl X, C1), i32), C2) -> + // (sra (shl X, C1+32), C2+32) so it gets selected as SLLI+SRAI instead of + // SLLIW+SRAIW. SLLI+SRAI have compressed forms. + if (ShAmt < 32 && + N0.getOpcode() == ISD::SIGN_EXTEND_INREG && N0.hasOneUse() && + cast<VTSDNode>(N0.getOperand(1))->getVT() == MVT::i32 && + N0.getOperand(0).getOpcode() == ISD::SHL && N0.getOperand(0).hasOneUse() && + isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) { + uint64_t LShAmt = N0.getOperand(0).getConstantOperandVal(1); + if (LShAmt < 32) { + SDLoc ShlDL(N0.getOperand(0)); + SDValue Shl = DAG.getNode(ISD::SHL, ShlDL, MVT::i64, + N0.getOperand(0).getOperand(0), + DAG.getConstant(LShAmt + 32, ShlDL, MVT::i64)); + SDLoc DL(N); + return DAG.getNode(ISD::SRA, DL, MVT::i64, Shl, + DAG.getConstant(ShAmt + 32, DL, MVT::i64)); + } + } + + // Combine (sra (shl X, 32), 32 - C) -> (shl (sext_inreg X, i32), C) + // FIXME: Should this be a generic combine? There's a similar combine on X86. + // + // Also try these folds where an add or sub is in the middle. + // (sra (add (shl X, 32), C1), 32 - C) -> (shl (sext_inreg (add X, C1), C) + // (sra (sub C1, (shl X, 32)), 32 - C) -> (shl (sext_inreg (sub C1, X), C) + SDValue Shl; + ConstantSDNode *AddC = nullptr; + + // We might have an ADD or SUB between the SRA and SHL. + bool IsAdd = N0.getOpcode() == ISD::ADD; + if ((IsAdd || N0.getOpcode() == ISD::SUB)) { + // Other operand needs to be a constant we can modify. + AddC = dyn_cast<ConstantSDNode>(N0.getOperand(IsAdd ? 1 : 0)); + if (!AddC) + return SDValue(); + + // AddC needs to have at least 32 trailing zeros. + if (AddC->getAPIntValue().countTrailingZeros() < 32) + return SDValue(); + + // All users should be a shift by constant less than or equal to 32. This + // ensures we'll do this optimization for each of them to produce an + // add/sub+sext_inreg they can all share. + for (SDNode *U : N0->uses()) { + if (U->getOpcode() != ISD::SRA || + !isa<ConstantSDNode>(U->getOperand(1)) || + cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() > 32) + return SDValue(); + } + + Shl = N0.getOperand(IsAdd ? 0 : 1); + } else { + // Not an ADD or SUB. + Shl = N0; + } + + // Look for a shift left by 32. + if (Shl.getOpcode() != ISD::SHL || !isa<ConstantSDNode>(Shl.getOperand(1)) || + Shl.getConstantOperandVal(1) != 32) + return SDValue(); + + // We if we didn't look through an add/sub, then the shl should have one use. + // If we did look through an add/sub, the sext_inreg we create is free so + // we're only creating 2 new instructions. It's enough to only remove the + // original sra+add/sub. + if (!AddC && !Shl.hasOneUse()) + return SDValue(); + + SDLoc DL(N); + SDValue In = Shl.getOperand(0); + + // If we looked through an ADD or SUB, we need to rebuild it with the shifted + // constant. + if (AddC) { + SDValue ShiftedAddC = + DAG.getConstant(AddC->getAPIntValue().lshr(32), DL, MVT::i64); + if (IsAdd) + In = DAG.getNode(ISD::ADD, DL, MVT::i64, In, ShiftedAddC); + else + In = DAG.getNode(ISD::SUB, DL, MVT::i64, ShiftedAddC, In); + } + + SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, In, + DAG.getValueType(MVT::i32)); + if (ShAmt == 32) + return SExt; + + return DAG.getNode( + ISD::SHL, DL, MVT::i64, SExt, + DAG.getConstant(32 - ShAmt, DL, MVT::i64)); +} + +// Invert (and/or (set cc X, Y), (xor Z, 1)) to (or/and (set !cc X, Y)), Z) if +// the result is used as the conditon of a br_cc or select_cc we can invert, +// inverting the setcc is free, and Z is 0/1. Caller will invert the +// br_cc/select_cc. +static SDValue tryDemorganOfBooleanCondition(SDValue Cond, SelectionDAG &DAG) { + bool IsAnd = Cond.getOpcode() == ISD::AND; + if (!IsAnd && Cond.getOpcode() != ISD::OR) + return SDValue(); + + if (!Cond.hasOneUse()) + return SDValue(); + + SDValue Setcc = Cond.getOperand(0); + SDValue Xor = Cond.getOperand(1); + // Canonicalize setcc to LHS. + if (Setcc.getOpcode() != ISD::SETCC) + std::swap(Setcc, Xor); + // LHS should be a setcc and RHS should be an xor. + if (Setcc.getOpcode() != ISD::SETCC || !Setcc.hasOneUse() || + Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) + return SDValue(); + + // If the condition is an And, SimplifyDemandedBits may have changed + // (xor Z, 1) to (not Z). + SDValue Xor1 = Xor.getOperand(1); + if (!isOneConstant(Xor1) && !(IsAnd && isAllOnesConstant(Xor1))) + return SDValue(); + + EVT VT = Cond.getValueType(); + SDValue Xor0 = Xor.getOperand(0); + + // The LHS of the xor needs to be 0/1. + APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), 1); + if (!DAG.MaskedValueIsZero(Xor0, Mask)) + return SDValue(); + + // We can only invert integer setccs. + EVT SetCCOpVT = Setcc.getOperand(0).getValueType(); + if (!SetCCOpVT.isScalarInteger()) + return SDValue(); + + ISD::CondCode CCVal = cast<CondCodeSDNode>(Setcc.getOperand(2))->get(); + if (ISD::isIntEqualitySetCC(CCVal)) { + CCVal = ISD::getSetCCInverse(CCVal, SetCCOpVT); + Setcc = DAG.getSetCC(SDLoc(Setcc), VT, Setcc.getOperand(0), + Setcc.getOperand(1), CCVal); + } else if (CCVal == ISD::SETLT && isNullConstant(Setcc.getOperand(0))) { + // Invert (setlt 0, X) by converting to (setlt X, 1). + Setcc = DAG.getSetCC(SDLoc(Setcc), VT, Setcc.getOperand(1), + DAG.getConstant(1, SDLoc(Setcc), VT), CCVal); + } else if (CCVal == ISD::SETLT && isOneConstant(Setcc.getOperand(1))) { + // (setlt X, 1) by converting to (setlt 0, X). + Setcc = DAG.getSetCC(SDLoc(Setcc), VT, + DAG.getConstant(0, SDLoc(Setcc), VT), + Setcc.getOperand(0), CCVal); + } else + return SDValue(); + + unsigned Opc = IsAnd ? ISD::OR : ISD::AND; + return DAG.getNode(Opc, SDLoc(Cond), VT, Setcc, Xor.getOperand(0)); +} + +// Perform common combines for BR_CC and SELECT_CC condtions. +static bool combine_CC(SDValue &LHS, SDValue &RHS, SDValue &CC, const SDLoc &DL, + SelectionDAG &DAG, const RISCVSubtarget &Subtarget) { + ISD::CondCode CCVal = cast<CondCodeSDNode>(CC)->get(); + + // As far as arithmetic right shift always saves the sign, + // shift can be omitted. + // Fold setlt (sra X, N), 0 -> setlt X, 0 and + // setge (sra X, N), 0 -> setge X, 0 + if (auto *RHSConst = dyn_cast<ConstantSDNode>(RHS.getNode())) { + if ((CCVal == ISD::SETGE || CCVal == ISD::SETLT) && + LHS.getOpcode() == ISD::SRA && RHSConst->isZero()) { + LHS = LHS.getOperand(0); + return true; + } + } + + if (!ISD::isIntEqualitySetCC(CCVal)) + return false; + + // Fold ((setlt X, Y), 0, ne) -> (X, Y, lt) + // Sometimes the setcc is introduced after br_cc/select_cc has been formed. + if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && + LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { + // If we're looking for eq 0 instead of ne 0, we need to invert the + // condition. + bool Invert = CCVal == ISD::SETEQ; + CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); + if (Invert) + CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); + + RHS = LHS.getOperand(1); + LHS = LHS.getOperand(0); + translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); + + CC = DAG.getCondCode(CCVal); + return true; + } + + // Fold ((xor X, Y), 0, eq/ne) -> (X, Y, eq/ne) + if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) { + RHS = LHS.getOperand(1); + LHS = LHS.getOperand(0); + return true; + } + + // Fold ((srl (and X, 1<<C), C), 0, eq/ne) -> ((shl X, XLen-1-C), 0, ge/lt) + if (isNullConstant(RHS) && LHS.getOpcode() == ISD::SRL && LHS.hasOneUse() && + LHS.getOperand(1).getOpcode() == ISD::Constant) { + SDValue LHS0 = LHS.getOperand(0); + if (LHS0.getOpcode() == ISD::AND && + LHS0.getOperand(1).getOpcode() == ISD::Constant) { + uint64_t Mask = LHS0.getConstantOperandVal(1); + uint64_t ShAmt = LHS.getConstantOperandVal(1); + if (isPowerOf2_64(Mask) && Log2_64(Mask) == ShAmt) { + CCVal = CCVal == ISD::SETEQ ? ISD::SETGE : ISD::SETLT; + CC = DAG.getCondCode(CCVal); + + ShAmt = LHS.getValueSizeInBits() - 1 - ShAmt; + LHS = LHS0.getOperand(0); + if (ShAmt != 0) + LHS = + DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS0.getOperand(0), + DAG.getConstant(ShAmt, DL, LHS.getValueType())); + return true; + } + } + } + + // (X, 1, setne) -> // (X, 0, seteq) if we can prove X is 0/1. + // This can occur when legalizing some floating point comparisons. + APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); + if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { + CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); + CC = DAG.getCondCode(CCVal); + RHS = DAG.getConstant(0, DL, LHS.getValueType()); + return true; + } + + if (isNullConstant(RHS)) { + if (SDValue NewCond = tryDemorganOfBooleanCondition(LHS, DAG)) { + CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); + CC = DAG.getCondCode(CCVal); + LHS = NewCond; + return true; + } + } + + return false; +} + +// Fold +// (select C, (add Y, X), Y) -> (add Y, (select C, X, 0)). +// (select C, (sub Y, X), Y) -> (sub Y, (select C, X, 0)). +// (select C, (or Y, X), Y) -> (or Y, (select C, X, 0)). +// (select C, (xor Y, X), Y) -> (xor Y, (select C, X, 0)). +static SDValue tryFoldSelectIntoOp(SDNode *N, SelectionDAG &DAG, + SDValue TrueVal, SDValue FalseVal, + bool Swapped) { + bool Commutative = true; + switch (TrueVal.getOpcode()) { + default: + return SDValue(); + case ISD::SUB: + Commutative = false; + break; + case ISD::ADD: + case ISD::OR: + case ISD::XOR: + break; + } + + if (!TrueVal.hasOneUse() || isa<ConstantSDNode>(FalseVal)) + return SDValue(); + + unsigned OpToFold; + if (FalseVal == TrueVal.getOperand(0)) + OpToFold = 0; + else if (Commutative && FalseVal == TrueVal.getOperand(1)) + OpToFold = 1; + else + return SDValue(); + + EVT VT = N->getValueType(0); + SDLoc DL(N); + SDValue Zero = DAG.getConstant(0, DL, VT); + SDValue OtherOp = TrueVal.getOperand(1 - OpToFold); + + if (Swapped) + std::swap(OtherOp, Zero); + SDValue NewSel = DAG.getSelect(DL, VT, N->getOperand(0), OtherOp, Zero); + return DAG.getNode(TrueVal.getOpcode(), DL, VT, FalseVal, NewSel); +} + +static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG, + const RISCVSubtarget &Subtarget) { + if (Subtarget.hasShortForwardBranchOpt()) + return SDValue(); + + // Only support XLenVT. + if (N->getValueType(0) != Subtarget.getXLenVT()) + return SDValue(); + + SDValue TrueVal = N->getOperand(1); + SDValue FalseVal = N->getOperand(2); + if (SDValue V = tryFoldSelectIntoOp(N, DAG, TrueVal, FalseVal, /*Swapped*/false)) + return V; + return tryFoldSelectIntoOp(N, DAG, FalseVal, TrueVal, /*Swapped*/true); +} + +SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + + // Helper to call SimplifyDemandedBits on an operand of N where only some low + // bits are demanded. N will be added to the Worklist if it was not deleted. + // Caller should return SDValue(N, 0) if this returns true. + auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) { + SDValue Op = N->getOperand(OpNo); + APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits); + if (!SimplifyDemandedBits(Op, Mask, DCI)) + return false; + + if (N->getOpcode() != ISD::DELETED_NODE) + DCI.AddToWorklist(N); + return true; + }; + + switch (N->getOpcode()) { + default: + break; + case RISCVISD::SplitF64: { + SDValue Op0 = N->getOperand(0); + // If the input to SplitF64 is just BuildPairF64 then the operation is + // redundant. Instead, use BuildPairF64's operands directly. + if (Op0->getOpcode() == RISCVISD::BuildPairF64) + return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); + + if (Op0->isUndef()) { + SDValue Lo = DAG.getUNDEF(MVT::i32); + SDValue Hi = DAG.getUNDEF(MVT::i32); + return DCI.CombineTo(N, Lo, Hi); + } + + SDLoc DL(N); + + // It's cheaper to materialise two 32-bit integers than to load a double + // from the constant pool and transfer it to integer registers through the + // stack. + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { + APInt V = C->getValueAPF().bitcastToAPInt(); + SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); + SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); + return DCI.CombineTo(N, Lo, Hi); + } + + // This is a target-specific version of a DAGCombine performed in + // DAGCombiner::visitBITCAST. It performs the equivalent of: + // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) + // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) + if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || + !Op0.getNode()->hasOneUse()) + break; + SDValue NewSplitF64 = + DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), + Op0.getOperand(0)); + SDValue Lo = NewSplitF64.getValue(0); + SDValue Hi = NewSplitF64.getValue(1); + APInt SignBit = APInt::getSignMask(32); + if (Op0.getOpcode() == ISD::FNEG) { + SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, + DAG.getConstant(SignBit, DL, MVT::i32)); + return DCI.CombineTo(N, Lo, NewHi); + } + assert(Op0.getOpcode() == ISD::FABS); + SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, + DAG.getConstant(~SignBit, DL, MVT::i32)); + return DCI.CombineTo(N, Lo, NewHi); + } + case RISCVISD::SLLW: + case RISCVISD::SRAW: + case RISCVISD::SRLW: + case RISCVISD::RORW: + case RISCVISD::ROLW: { + // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. + if (SimplifyDemandedLowBitsHelper(0, 32) || + SimplifyDemandedLowBitsHelper(1, 5)) + return SDValue(N, 0); + + break; + } + case RISCVISD::CLZW: + case RISCVISD::CTZW: { + // Only the lower 32 bits of the first operand are read + if (SimplifyDemandedLowBitsHelper(0, 32)) + return SDValue(N, 0); + break; + } + case RISCVISD::FMV_X_ANYEXTH: + case RISCVISD::FMV_X_ANYEXTW_RV64: { + SDLoc DL(N); + SDValue Op0 = N->getOperand(0); + MVT VT = N->getSimpleValueType(0); + // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the + // conversion is unnecessary and can be replaced with the FMV_W_X_RV64 + // operand. Similar for FMV_X_ANYEXTH and FMV_H_X. + if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 && + Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) || + (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH && + Op0->getOpcode() == RISCVISD::FMV_H_X)) { + assert(Op0.getOperand(0).getValueType() == VT && + "Unexpected value type!"); + return Op0.getOperand(0); + } + + // This is a target-specific version of a DAGCombine performed in + // DAGCombiner::visitBITCAST. It performs the equivalent of: + // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) + // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) + if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || + !Op0.getNode()->hasOneUse()) + break; + SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0)); + unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16; + APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits()); + if (Op0.getOpcode() == ISD::FNEG) + return DAG.getNode(ISD::XOR, DL, VT, NewFMV, + DAG.getConstant(SignBit, DL, VT)); + + assert(Op0.getOpcode() == ISD::FABS); + return DAG.getNode(ISD::AND, DL, VT, NewFMV, + DAG.getConstant(~SignBit, DL, VT)); + } + case ISD::ADD: + return performADDCombine(N, DAG, Subtarget); + case ISD::SUB: + return performSUBCombine(N, DAG, Subtarget); + case ISD::AND: + return performANDCombine(N, DCI, Subtarget); + case ISD::OR: + return performORCombine(N, DCI, Subtarget); + case ISD::XOR: + return performXORCombine(N, DAG, Subtarget); + case ISD::FADD: + case ISD::UMAX: + case ISD::UMIN: + case ISD::SMAX: + case ISD::SMIN: + case ISD::FMAXNUM: + case ISD::FMINNUM: + return combineBinOpToReduce(N, DAG, Subtarget); + case ISD::SETCC: + return performSETCCCombine(N, DAG, Subtarget); + case ISD::SIGN_EXTEND_INREG: + return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); + case ISD::ZERO_EXTEND: + // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during + // type legalization. This is safe because fp_to_uint produces poison if + // it overflows. + if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) { + SDValue Src = N->getOperand(0); + if (Src.getOpcode() == ISD::FP_TO_UINT && + isTypeLegal(Src.getOperand(0).getValueType())) + return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64, + Src.getOperand(0)); + if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() && + isTypeLegal(Src.getOperand(1).getValueType())) { + SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); + SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs, + Src.getOperand(0), Src.getOperand(1)); + DCI.CombineTo(N, Res); + DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1)); + DCI.recursivelyDeleteUnusedNodes(Src.getNode()); + return SDValue(N, 0); // Return N so it doesn't get rechecked. + } + } + return SDValue(); + case ISD::TRUNCATE: + return performTRUNCATECombine(N, DAG, Subtarget); + case ISD::SELECT: + return performSELECTCombine(N, DAG, Subtarget); + case RISCVISD::SELECT_CC: { + // Transform + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + SDValue CC = N->getOperand(2); + ISD::CondCode CCVal = cast<CondCodeSDNode>(CC)->get(); + SDValue TrueV = N->getOperand(3); + SDValue FalseV = N->getOperand(4); + SDLoc DL(N); + EVT VT = N->getValueType(0); + + // If the True and False values are the same, we don't need a select_cc. + if (TrueV == FalseV) + return TrueV; + + // (select (x < 0), y, z) -> x >> (XLEN - 1) & (y - z) + z + // (select (x >= 0), y, z) -> x >> (XLEN - 1) & (z - y) + y + if (!Subtarget.hasShortForwardBranchOpt() && isa<ConstantSDNode>(TrueV) && + isa<ConstantSDNode>(FalseV) && isNullConstant(RHS) && + (CCVal == ISD::CondCode::SETLT || CCVal == ISD::CondCode::SETGE)) { + if (CCVal == ISD::CondCode::SETGE) + std::swap(TrueV, FalseV); + + int64_t TrueSImm = cast<ConstantSDNode>(TrueV)->getSExtValue(); + int64_t FalseSImm = cast<ConstantSDNode>(FalseV)->getSExtValue(); + // Only handle simm12, if it is not in this range, it can be considered as + // register. + if (isInt<12>(TrueSImm) && isInt<12>(FalseSImm) && + isInt<12>(TrueSImm - FalseSImm)) { + SDValue SRA = + DAG.getNode(ISD::SRA, DL, VT, LHS, + DAG.getConstant(Subtarget.getXLen() - 1, DL, VT)); + SDValue AND = + DAG.getNode(ISD::AND, DL, VT, SRA, + DAG.getConstant(TrueSImm - FalseSImm, DL, VT)); + return DAG.getNode(ISD::ADD, DL, VT, AND, FalseV); + } + + if (CCVal == ISD::CondCode::SETGE) + std::swap(TrueV, FalseV); + } + + if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget)) + return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0), + {LHS, RHS, CC, TrueV, FalseV}); + + if (!Subtarget.hasShortForwardBranchOpt()) { + // (select c, -1, y) -> -c | y + if (isAllOnesConstant(TrueV)) { + SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, CCVal); + SDValue Neg = DAG.getNegative(C, DL, VT); + return DAG.getNode(ISD::OR, DL, VT, Neg, FalseV); + } + // (select c, y, -1) -> -!c | y + if (isAllOnesConstant(FalseV)) { + SDValue C = + DAG.getSetCC(DL, VT, LHS, RHS, ISD::getSetCCInverse(CCVal, VT)); + SDValue Neg = DAG.getNegative(C, DL, VT); + return DAG.getNode(ISD::OR, DL, VT, Neg, TrueV); + } + + // (select c, 0, y) -> -!c & y + if (isNullConstant(TrueV)) { + SDValue C = + DAG.getSetCC(DL, VT, LHS, RHS, ISD::getSetCCInverse(CCVal, VT)); + SDValue Neg = DAG.getNegative(C, DL, VT); + return DAG.getNode(ISD::AND, DL, VT, Neg, FalseV); + } + // (select c, y, 0) -> -c & y + if (isNullConstant(FalseV)) { + SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, CCVal); + SDValue Neg = DAG.getNegative(C, DL, VT); + return DAG.getNode(ISD::AND, DL, VT, Neg, TrueV); + } + } + + return SDValue(); + } + case RISCVISD::BR_CC: { + SDValue LHS = N->getOperand(1); + SDValue RHS = N->getOperand(2); + SDValue CC = N->getOperand(3); + SDLoc DL(N); + + if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget)) + return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), + N->getOperand(0), LHS, RHS, CC, N->getOperand(4)); + + return SDValue(); + } + case ISD::BITREVERSE: + return performBITREVERSECombine(N, DAG, Subtarget); + case ISD::FP_TO_SINT: + case ISD::FP_TO_UINT: + return performFP_TO_INTCombine(N, DCI, Subtarget); + case ISD::FP_TO_SINT_SAT: + case ISD::FP_TO_UINT_SAT: + return performFP_TO_INT_SATCombine(N, DCI, Subtarget); + case ISD::FCOPYSIGN: { + EVT VT = N->getValueType(0); + if (!VT.isVector()) + break; + // There is a form of VFSGNJ which injects the negated sign of its second + // operand. Try and bubble any FNEG up after the extend/round to produce + // this optimized pattern. Avoid modifying cases where FP_ROUND and + // TRUNC=1. + SDValue In2 = N->getOperand(1); + // Avoid cases where the extend/round has multiple uses, as duplicating + // those is typically more expensive than removing a fneg. + if (!In2.hasOneUse()) + break; + if (In2.getOpcode() != ISD::FP_EXTEND && + (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) + break; + In2 = In2.getOperand(0); + if (In2.getOpcode() != ISD::FNEG) + break; + SDLoc DL(N); + SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); + return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), + DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); + } + case ISD::MGATHER: + case ISD::MSCATTER: + case ISD::VP_GATHER: + case ISD::VP_SCATTER: { + if (!DCI.isBeforeLegalize()) + break; + SDValue Index, ScaleOp; + bool IsIndexSigned = false; + if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) { + Index = VPGSN->getIndex(); + ScaleOp = VPGSN->getScale(); + IsIndexSigned = VPGSN->isIndexSigned(); + assert(!VPGSN->isIndexScaled() && + "Scaled gather/scatter should not be formed"); + } else { + const auto *MGSN = cast<MaskedGatherScatterSDNode>(N); + Index = MGSN->getIndex(); + ScaleOp = MGSN->getScale(); + IsIndexSigned = MGSN->isIndexSigned(); + assert(!MGSN->isIndexScaled() && + "Scaled gather/scatter should not be formed"); + + } + EVT IndexVT = Index.getValueType(); + MVT XLenVT = Subtarget.getXLenVT(); + // RISCV indexed loads only support the "unsigned unscaled" addressing + // mode, so anything else must be manually legalized. + bool NeedsIdxLegalization = + (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT)); + if (!NeedsIdxLegalization) + break; + + SDLoc DL(N); + + // Any index legalization should first promote to XLenVT, so we don't lose + // bits when scaling. This may create an illegal index type so we let + // LLVM's legalization take care of the splitting. + // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet. + if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { + IndexVT = IndexVT.changeVectorElementType(XLenVT); + Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, + DL, IndexVT, Index); + } + + ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_SCALED; + if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N)) + return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL, + {VPGN->getChain(), VPGN->getBasePtr(), Index, + ScaleOp, VPGN->getMask(), + VPGN->getVectorLength()}, + VPGN->getMemOperand(), NewIndexTy); + if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N)) + return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL, + {VPSN->getChain(), VPSN->getValue(), + VPSN->getBasePtr(), Index, ScaleOp, + VPSN->getMask(), VPSN->getVectorLength()}, + VPSN->getMemOperand(), NewIndexTy); + if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) + return DAG.getMaskedGather( + N->getVTList(), MGN->getMemoryVT(), DL, + {MGN->getChain(), MGN->getPassThru(), MGN->getMask(), + MGN->getBasePtr(), Index, ScaleOp}, + MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); + const auto *MSN = cast<MaskedScatterSDNode>(N); + return DAG.getMaskedScatter( + N->getVTList(), MSN->getMemoryVT(), DL, + {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(), + Index, ScaleOp}, + MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); + } + case RISCVISD::SRA_VL: + case RISCVISD::SRL_VL: + case RISCVISD::SHL_VL: { + SDValue ShAmt = N->getOperand(1); + if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { + // We don't need the upper 32 bits of a 64-bit element for a shift amount. + SDLoc DL(N); + SDValue VL = N->getOperand(3); + EVT VT = N->getValueType(0); + ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), + ShAmt.getOperand(1), VL); + return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt, + N->getOperand(2), N->getOperand(3), N->getOperand(4)); + } + break; + } + case ISD::SRA: + if (SDValue V = performSRACombine(N, DAG, Subtarget)) + return V; + [[fallthrough]]; + case ISD::SRL: + case ISD::SHL: { + SDValue ShAmt = N->getOperand(1); + if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) { + // We don't need the upper 32 bits of a 64-bit element for a shift amount. + SDLoc DL(N); + EVT VT = N->getValueType(0); + ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT), + ShAmt.getOperand(1), + DAG.getRegister(RISCV::X0, Subtarget.getXLenVT())); + return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt); + } + break; + } + case RISCVISD::ADD_VL: + case RISCVISD::SUB_VL: + case RISCVISD::VWADD_W_VL: + case RISCVISD::VWADDU_W_VL: + case RISCVISD::VWSUB_W_VL: + case RISCVISD::VWSUBU_W_VL: + case RISCVISD::MUL_VL: + return combineBinOp_VLToVWBinOp_VL(N, DCI); + case RISCVISD::VFMADD_VL: + case RISCVISD::VFNMADD_VL: + case RISCVISD::VFMSUB_VL: + case RISCVISD::VFNMSUB_VL: { + // Fold FNEG_VL into FMA opcodes. + SDValue A = N->getOperand(0); + SDValue B = N->getOperand(1); + SDValue C = N->getOperand(2); + SDValue Mask = N->getOperand(3); + SDValue VL = N->getOperand(4); + + auto invertIfNegative = [&Mask, &VL](SDValue &V) { + if (V.getOpcode() == RISCVISD::FNEG_VL && V.getOperand(1) == Mask && + V.getOperand(2) == VL) { + // Return the negated input. + V = V.getOperand(0); + return true; + } + + return false; + }; + + bool NegA = invertIfNegative(A); + bool NegB = invertIfNegative(B); + bool NegC = invertIfNegative(C); + + // If no operands are negated, we're done. + if (!NegA && !NegB && !NegC) + return SDValue(); + + unsigned NewOpcode = negateFMAOpcode(N->getOpcode(), NegA != NegB, NegC); + return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), A, B, C, Mask, + VL); + } + case ISD::STORE: { + auto *Store = cast<StoreSDNode>(N); + SDValue Val = Store->getValue(); + // Combine store of vmv.x.s/vfmv.f.s to vse with VL of 1. + // vfmv.f.s is represented as extract element from 0. Match it late to avoid + // any illegal types. + if (Val.getOpcode() == RISCVISD::VMV_X_S || + (DCI.isAfterLegalizeDAG() && + Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT && + isNullConstant(Val.getOperand(1)))) { + SDValue Src = Val.getOperand(0); + MVT VecVT = Src.getSimpleValueType(); + EVT MemVT = Store->getMemoryVT(); + // VecVT should be scalable and memory VT should match the element type. + if (VecVT.isScalableVector() && + MemVT == VecVT.getVectorElementType()) { + SDLoc DL(N); + MVT MaskVT = getMaskTypeFor(VecVT); + return DAG.getStoreVP( + Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(), + DAG.getConstant(1, DL, MaskVT), + DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT, + Store->getMemOperand(), Store->getAddressingMode(), + Store->isTruncatingStore(), /*IsCompress*/ false); + } + } + + break; + } + case ISD::SPLAT_VECTOR: { + EVT VT = N->getValueType(0); + // Only perform this combine on legal MVT types. + if (!isTypeLegal(VT)) + break; + if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N, + DAG, Subtarget)) + return Gather; + break; + } + case RISCVISD::VMV_V_X_VL: { + // Tail agnostic VMV.V.X only demands the vector element bitwidth from the + // scalar input. + unsigned ScalarSize = N->getOperand(1).getValueSizeInBits(); + unsigned EltWidth = N->getValueType(0).getScalarSizeInBits(); + if (ScalarSize > EltWidth && N->getOperand(0).isUndef()) + if (SimplifyDemandedLowBitsHelper(1, EltWidth)) + return SDValue(N, 0); + + break; + } + case RISCVISD::VFMV_S_F_VL: { + SDValue Src = N->getOperand(1); + // Try to remove vector->scalar->vector if the scalar->vector is inserting + // into an undef vector. + // TODO: Could use a vslide or vmv.v.v for non-undef. + if (N->getOperand(0).isUndef() && + Src.getOpcode() == ISD::EXTRACT_VECTOR_ELT && + isNullConstant(Src.getOperand(1)) && + Src.getOperand(0).getValueType().isScalableVector()) { + EVT VT = N->getValueType(0); + EVT SrcVT = Src.getOperand(0).getValueType(); + assert(SrcVT.getVectorElementType() == VT.getVectorElementType()); + // Widths match, just return the original vector. + if (SrcVT == VT) + return Src.getOperand(0); + // TODO: Use insert_subvector/extract_subvector to change widen/narrow? + } + break; + } + case ISD::INTRINSIC_WO_CHAIN: { + unsigned IntNo = N->getConstantOperandVal(0); + switch (IntNo) { + // By default we do not combine any intrinsic. + default: + return SDValue(); + case Intrinsic::riscv_vcpop: + case Intrinsic::riscv_vcpop_mask: + case Intrinsic::riscv_vfirst: + case Intrinsic::riscv_vfirst_mask: { + SDValue VL = N->getOperand(2); + if (IntNo == Intrinsic::riscv_vcpop_mask || + IntNo == Intrinsic::riscv_vfirst_mask) + VL = N->getOperand(3); + if (!isNullConstant(VL)) + return SDValue(); + // If VL is 0, vcpop -> li 0, vfirst -> li -1. + SDLoc DL(N); + EVT VT = N->getValueType(0); + if (IntNo == Intrinsic::riscv_vfirst || + IntNo == Intrinsic::riscv_vfirst_mask) + return DAG.getConstant(-1, DL, VT); + return DAG.getConstant(0, DL, VT); + } + } + } + case ISD::BITCAST: { + assert(Subtarget.useRVVForFixedLengthVectors()); + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + EVT SrcVT = N0.getValueType(); + // If this is a bitcast between a MVT::v4i1/v2i1/v1i1 and an illegal integer + // type, widen both sides to avoid a trip through memory. + if ((SrcVT == MVT::v1i1 || SrcVT == MVT::v2i1 || SrcVT == MVT::v4i1) && + VT.isScalarInteger()) { + unsigned NumConcats = 8 / SrcVT.getVectorNumElements(); + SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT)); + Ops[0] = N0; + SDLoc DL(N); + N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i1, Ops); + N0 = DAG.getBitcast(MVT::i8, N0); + return DAG.getNode(ISD::TRUNCATE, DL, VT, N0); + } + + return SDValue(); + } + } + + return SDValue(); +} + +bool RISCVTargetLowering::isDesirableToCommuteWithShift( + const SDNode *N, CombineLevel Level) const { + assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA || + N->getOpcode() == ISD::SRL) && + "Expected shift op"); + + // The following folds are only desirable if `(OP _, c1 << c2)` can be + // materialised in fewer instructions than `(OP _, c1)`: + // + // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) + // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) + SDValue N0 = N->getOperand(0); + EVT Ty = N0.getValueType(); + if (Ty.isScalarInteger() && + (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { + auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); + auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); + if (C1 && C2) { + const APInt &C1Int = C1->getAPIntValue(); + APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); + + // We can materialise `c1 << c2` into an add immediate, so it's "free", + // and the combine should happen, to potentially allow further combines + // later. + if (ShiftedC1Int.getMinSignedBits() <= 64 && + isLegalAddImmediate(ShiftedC1Int.getSExtValue())) + return true; + + // We can materialise `c1` in an add immediate, so it's "free", and the + // combine should be prevented. + if (C1Int.getMinSignedBits() <= 64 && + isLegalAddImmediate(C1Int.getSExtValue())) + return false; + + // Neither constant will fit into an immediate, so find materialisation + // costs. + int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), + Subtarget.getFeatureBits(), + /*CompressionCost*/true); + int ShiftedC1Cost = RISCVMatInt::getIntMatCost( + ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(), + /*CompressionCost*/true); + + // Materialising `c1` is cheaper than materialising `c1 << c2`, so the + // combine should be prevented. + if (C1Cost < ShiftedC1Cost) + return false; + } + } + return true; +} + +bool RISCVTargetLowering::targetShrinkDemandedConstant( + SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, + TargetLoweringOpt &TLO) const { + // Delay this optimization as late as possible. + if (!TLO.LegalOps) + return false; + + EVT VT = Op.getValueType(); + if (VT.isVector()) + return false; + + unsigned Opcode = Op.getOpcode(); + if (Opcode != ISD::AND && Opcode != ISD::OR && Opcode != ISD::XOR) + return false; + + ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); + if (!C) + return false; + + const APInt &Mask = C->getAPIntValue(); + + // Clear all non-demanded bits initially. + APInt ShrunkMask = Mask & DemandedBits; + + // Try to make a smaller immediate by setting undemanded bits. + + APInt ExpandedMask = Mask | ~DemandedBits; + + auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { + return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); + }; + auto UseMask = [Mask, Op, &TLO](const APInt &NewMask) -> bool { + if (NewMask == Mask) + return true; + SDLoc DL(Op); + SDValue NewC = TLO.DAG.getConstant(NewMask, DL, Op.getValueType()); + SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), DL, Op.getValueType(), + Op.getOperand(0), NewC); + return TLO.CombineTo(Op, NewOp); + }; + + // If the shrunk mask fits in sign extended 12 bits, let the target + // independent code apply it. + if (ShrunkMask.isSignedIntN(12)) + return false; + + // And has a few special cases for zext. + if (Opcode == ISD::AND) { + // Preserve (and X, 0xffff), if zext.h exists use zext.h, + // otherwise use SLLI + SRLI. + APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); + if (IsLegalMask(NewMask)) + return UseMask(NewMask); + + // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. + if (VT == MVT::i64) { + APInt NewMask = APInt(64, 0xffffffff); + if (IsLegalMask(NewMask)) + return UseMask(NewMask); + } + } + + // For the remaining optimizations, we need to be able to make a negative + // number through a combination of mask and undemanded bits. + if (!ExpandedMask.isNegative()) + return false; + + // What is the fewest number of bits we need to represent the negative number. + unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); + + // Try to make a 12 bit negative immediate. If that fails try to make a 32 + // bit negative immediate unless the shrunk immediate already fits in 32 bits. + // If we can't create a simm12, we shouldn't change opaque constants. + APInt NewMask = ShrunkMask; + if (MinSignedBits <= 12) + NewMask.setBitsFrom(11); + else if (!C->isOpaque() && MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) + NewMask.setBitsFrom(31); + else + return false; + + // Check that our new mask is a subset of the demanded mask. + assert(IsLegalMask(NewMask)); + return UseMask(NewMask); +} + +static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) { + static const uint64_t GREVMasks[] = { + 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, + 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; + + for (unsigned Stage = 0; Stage != 6; ++Stage) { + unsigned Shift = 1 << Stage; + if (ShAmt & Shift) { + uint64_t Mask = GREVMasks[Stage]; + uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask); + if (IsGORC) + Res |= x; + x = Res; + } + } + + return x; +} + +void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, + KnownBits &Known, + const APInt &DemandedElts, + const SelectionDAG &DAG, + unsigned Depth) const { + unsigned BitWidth = Known.getBitWidth(); + unsigned Opc = Op.getOpcode(); + assert((Opc >= ISD::BUILTIN_OP_END || + Opc == ISD::INTRINSIC_WO_CHAIN || + Opc == ISD::INTRINSIC_W_CHAIN || + Opc == ISD::INTRINSIC_VOID) && + "Should use MaskedValueIsZero if you don't know whether Op" + " is a target node!"); + + Known.resetAll(); + switch (Opc) { + default: break; + case RISCVISD::SELECT_CC: { + Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); + // If we don't know any bits, early out. + if (Known.isUnknown()) + break; + KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); + + // Only known if known in both the LHS and RHS. + Known = KnownBits::commonBits(Known, Known2); + break; + } + case RISCVISD::REMUW: { + KnownBits Known2; + Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); + // We only care about the lower 32 bits. + Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); + // Restore the original width by sign extending. + Known = Known.sext(BitWidth); + break; + } + case RISCVISD::DIVUW: { + KnownBits Known2; + Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); + Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); + // We only care about the lower 32 bits. + Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); + // Restore the original width by sign extending. + Known = Known.sext(BitWidth); + break; + } + case RISCVISD::CTZW: { + KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); + unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); + unsigned LowBits = llvm::bit_width(PossibleTZ); + Known.Zero.setBitsFrom(LowBits); + break; + } + case RISCVISD::CLZW: { + KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); + unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); + unsigned LowBits = llvm::bit_width(PossibleLZ); + Known.Zero.setBitsFrom(LowBits); + break; + } + case RISCVISD::BREV8: + case RISCVISD::ORC_B: { + // FIXME: This is based on the non-ratified Zbp GREV and GORC where a + // control value of 7 is equivalent to brev8 and orc.b. + Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); + bool IsGORC = Op.getOpcode() == RISCVISD::ORC_B; + // To compute zeros, we need to invert the value and invert it back after. + Known.Zero = + ~computeGREVOrGORC(~Known.Zero.getZExtValue(), 7, IsGORC); + Known.One = computeGREVOrGORC(Known.One.getZExtValue(), 7, IsGORC); + break; + } + case RISCVISD::READ_VLENB: { + // We can use the minimum and maximum VLEN values to bound VLENB. We + // know VLEN must be a power of two. + const unsigned MinVLenB = Subtarget.getRealMinVLen() / 8; + const unsigned MaxVLenB = Subtarget.getRealMaxVLen() / 8; + assert(MinVLenB > 0 && "READ_VLENB without vector extension enabled?"); + Known.Zero.setLowBits(Log2_32(MinVLenB)); + Known.Zero.setBitsFrom(Log2_32(MaxVLenB)+1); + if (MaxVLenB == MinVLenB) + Known.One.setBit(Log2_32(MinVLenB)); + break; + } + case ISD::INTRINSIC_W_CHAIN: + case ISD::INTRINSIC_WO_CHAIN: { + unsigned IntNo = + Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1); + switch (IntNo) { + default: + // We can't do anything for most intrinsics. + break; + case Intrinsic::riscv_vsetvli: + case Intrinsic::riscv_vsetvlimax: + case Intrinsic::riscv_vsetvli_opt: + case Intrinsic::riscv_vsetvlimax_opt: + // Assume that VL output is positive and would fit in an int32_t. + // TODO: VLEN might be capped at 16 bits in a future V spec update. + if (BitWidth >= 32) + Known.Zero.setBitsFrom(31); + break; + } + break; + } + } +} + +unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( + SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, + unsigned Depth) const { + switch (Op.getOpcode()) { + default: + break; + case RISCVISD::SELECT_CC: { + unsigned Tmp = + DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1); + if (Tmp == 1) return 1; // Early out. + unsigned Tmp2 = + DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1); + return std::min(Tmp, Tmp2); + } + case RISCVISD::ABSW: { + // We expand this at isel to negw+max. The result will have 33 sign bits + // if the input has at least 33 sign bits. + unsigned Tmp = + DAG.ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); + if (Tmp < 33) return 1; + return 33; + } + case RISCVISD::SLLW: + case RISCVISD::SRAW: + case RISCVISD::SRLW: + case RISCVISD::DIVW: + case RISCVISD::DIVUW: + case RISCVISD::REMUW: + case RISCVISD::ROLW: + case RISCVISD::RORW: + case RISCVISD::FCVT_W_RV64: + case RISCVISD::FCVT_WU_RV64: + case RISCVISD::STRICT_FCVT_W_RV64: + case RISCVISD::STRICT_FCVT_WU_RV64: + // TODO: As the result is sign-extended, this is conservatively correct. A + // more precise answer could be calculated for SRAW depending on known + // bits in the shift amount. + return 33; + case RISCVISD::VMV_X_S: { + // The number of sign bits of the scalar result is computed by obtaining the + // element type of the input vector operand, subtracting its width from the + // XLEN, and then adding one (sign bit within the element type). If the + // element type is wider than XLen, the least-significant XLEN bits are + // taken. + unsigned XLen = Subtarget.getXLen(); + unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits(); + if (EltBits <= XLen) + return XLen - EltBits + 1; + break; + } + case ISD::INTRINSIC_W_CHAIN: { + unsigned IntNo = Op.getConstantOperandVal(1); + switch (IntNo) { + default: + break; + case Intrinsic::riscv_masked_atomicrmw_xchg_i64: + case Intrinsic::riscv_masked_atomicrmw_add_i64: + case Intrinsic::riscv_masked_atomicrmw_sub_i64: + case Intrinsic::riscv_masked_atomicrmw_nand_i64: + case Intrinsic::riscv_masked_atomicrmw_max_i64: + case Intrinsic::riscv_masked_atomicrmw_min_i64: + case Intrinsic::riscv_masked_atomicrmw_umax_i64: + case Intrinsic::riscv_masked_atomicrmw_umin_i64: + case Intrinsic::riscv_masked_cmpxchg_i64: + // riscv_masked_{atomicrmw_*,cmpxchg} intrinsics represent an emulated + // narrow atomic operation. These are implemented using atomic + // operations at the minimum supported atomicrmw/cmpxchg width whose + // result is then sign extended to XLEN. With +A, the minimum width is + // 32 for both 64 and 32. + assert(Subtarget.getXLen() == 64); + assert(getMinCmpXchgSizeInBits() == 32); + assert(Subtarget.hasStdExtA()); + return 33; + } + } + } + + return 1; +} + +const Constant * +RISCVTargetLowering::getTargetConstantFromLoad(LoadSDNode *Ld) const { + assert(Ld && "Unexpected null LoadSDNode"); + if (!ISD::isNormalLoad(Ld)) + return nullptr; + + SDValue Ptr = Ld->getBasePtr(); + + // Only constant pools with no offset are supported. + auto GetSupportedConstantPool = [](SDValue Ptr) -> ConstantPoolSDNode * { + auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr); + if (!CNode || CNode->isMachineConstantPoolEntry() || + CNode->getOffset() != 0) + return nullptr; + + return CNode; + }; + + // Simple case, LLA. + if (Ptr.getOpcode() == RISCVISD::LLA) { + auto *CNode = GetSupportedConstantPool(Ptr); + if (!CNode || CNode->getTargetFlags() != 0) + return nullptr; + + return CNode->getConstVal(); + } + + // Look for a HI and ADD_LO pair. + if (Ptr.getOpcode() != RISCVISD::ADD_LO || + Ptr.getOperand(0).getOpcode() != RISCVISD::HI) + return nullptr; + + auto *CNodeLo = GetSupportedConstantPool(Ptr.getOperand(1)); + auto *CNodeHi = GetSupportedConstantPool(Ptr.getOperand(0).getOperand(0)); + + if (!CNodeLo || CNodeLo->getTargetFlags() != RISCVII::MO_LO || + !CNodeHi || CNodeHi->getTargetFlags() != RISCVII::MO_HI) + return nullptr; + + if (CNodeLo->getConstVal() != CNodeHi->getConstVal()) + return nullptr; + + return CNodeLo->getConstVal(); +} + +static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, + MachineBasicBlock *BB) { + assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); + + // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. + // Should the count have wrapped while it was being read, we need to try + // again. + // ... + // read: + // rdcycleh x3 # load high word of cycle + // rdcycle x2 # load low word of cycle + // rdcycleh x4 # load high word of cycle + // bne x3, x4, read # check if high word reads match, otherwise try again + // ... + + MachineFunction &MF = *BB->getParent(); + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineFunction::iterator It = ++BB->getIterator(); + + MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); + MF.insert(It, LoopMBB); + + MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); + MF.insert(It, DoneMBB); + + // Transfer the remainder of BB and its successor edges to DoneMBB. + DoneMBB->splice(DoneMBB->begin(), BB, + std::next(MachineBasicBlock::iterator(MI)), BB->end()); + DoneMBB->transferSuccessorsAndUpdatePHIs(BB); + + BB->addSuccessor(LoopMBB); + + MachineRegisterInfo &RegInfo = MF.getRegInfo(); + Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); + Register LoReg = MI.getOperand(0).getReg(); + Register HiReg = MI.getOperand(1).getReg(); + DebugLoc DL = MI.getDebugLoc(); + + const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); + BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) + .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) + .addReg(RISCV::X0); + BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) + .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) + .addReg(RISCV::X0); + BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) + .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) + .addReg(RISCV::X0); + + BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) + .addReg(HiReg) + .addReg(ReadAgainReg) + .addMBB(LoopMBB); + + LoopMBB->addSuccessor(LoopMBB); + LoopMBB->addSuccessor(DoneMBB); + + MI.eraseFromParent(); + + return DoneMBB; +} + +static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, + MachineBasicBlock *BB) { + assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); + + MachineFunction &MF = *BB->getParent(); + DebugLoc DL = MI.getDebugLoc(); + const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); + const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); + Register LoReg = MI.getOperand(0).getReg(); + Register HiReg = MI.getOperand(1).getReg(); + Register SrcReg = MI.getOperand(2).getReg(); + const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; + int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); + + TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, + RI, Register()); + MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); + MachineMemOperand *MMOLo = + MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); + MachineMemOperand *MMOHi = MF.getMachineMemOperand( + MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); + BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) + .addFrameIndex(FI) + .addImm(0) + .addMemOperand(MMOLo); + BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) + .addFrameIndex(FI) + .addImm(4) + .addMemOperand(MMOHi); + MI.eraseFromParent(); // The pseudo instruction is gone now. + return BB; +} + +static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, + MachineBasicBlock *BB) { + assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && + "Unexpected instruction"); + + MachineFunction &MF = *BB->getParent(); + DebugLoc DL = MI.getDebugLoc(); + const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); + const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); + Register DstReg = MI.getOperand(0).getReg(); + Register LoReg = MI.getOperand(1).getReg(); + Register HiReg = MI.getOperand(2).getReg(); + const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; + int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); + + MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); + MachineMemOperand *MMOLo = + MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); + MachineMemOperand *MMOHi = MF.getMachineMemOperand( + MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); + BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) + .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) + .addFrameIndex(FI) + .addImm(0) + .addMemOperand(MMOLo); + BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) + .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) + .addFrameIndex(FI) + .addImm(4) + .addMemOperand(MMOHi); + TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI, Register()); + MI.eraseFromParent(); // The pseudo instruction is gone now. + return BB; +} + +static bool isSelectPseudo(MachineInstr &MI) { + switch (MI.getOpcode()) { + default: + return false; + case RISCV::Select_GPR_Using_CC_GPR: + case RISCV::Select_FPR16_Using_CC_GPR: + case RISCV::Select_FPR32_Using_CC_GPR: + case RISCV::Select_FPR64_Using_CC_GPR: + return true; + } +} + +static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB, + unsigned RelOpcode, unsigned EqOpcode, + const RISCVSubtarget &Subtarget) { + DebugLoc DL = MI.getDebugLoc(); + Register DstReg = MI.getOperand(0).getReg(); + Register Src1Reg = MI.getOperand(1).getReg(); + Register Src2Reg = MI.getOperand(2).getReg(); + MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); + Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass); + const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); + + // Save the current FFLAGS. + BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags); + + auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg) + .addReg(Src1Reg) + .addReg(Src2Reg); + if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) + MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); + + // Restore the FFLAGS. + BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) + .addReg(SavedFFlags, RegState::Kill); + + // Issue a dummy FEQ opcode to raise exception for signaling NaNs. + auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0) + .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill())) + .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill())); + if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) + MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept); + + // Erase the pseudoinstruction. + MI.eraseFromParent(); + return BB; +} + +static MachineBasicBlock * +EmitLoweredCascadedSelect(MachineInstr &First, MachineInstr &Second, + MachineBasicBlock *ThisMBB, + const RISCVSubtarget &Subtarget) { + // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5) + // Without this, custom-inserter would have generated: + // + // A + // | \ + // | B + // | / + // C + // | \ + // | D + // | / + // E + // + // A: X = ...; Y = ... + // B: empty + // C: Z = PHI [X, A], [Y, B] + // D: empty + // E: PHI [X, C], [Z, D] + // + // If we lower both Select_FPRX_ in a single step, we can instead generate: + // + // A + // | \ + // | C + // | /| + // |/ | + // | | + // | D + // | / + // E + // + // A: X = ...; Y = ... + // D: empty + // E: PHI [X, A], [X, C], [Y, D] + + const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); + const DebugLoc &DL = First.getDebugLoc(); + const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock(); + MachineFunction *F = ThisMBB->getParent(); + MachineBasicBlock *FirstMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *SecondMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineFunction::iterator It = ++ThisMBB->getIterator(); + F->insert(It, FirstMBB); + F->insert(It, SecondMBB); + F->insert(It, SinkMBB); + + // Transfer the remainder of ThisMBB and its successor edges to SinkMBB. + SinkMBB->splice(SinkMBB->begin(), ThisMBB, + std::next(MachineBasicBlock::iterator(First)), + ThisMBB->end()); + SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB); + + // Fallthrough block for ThisMBB. + ThisMBB->addSuccessor(FirstMBB); + // Fallthrough block for FirstMBB. + FirstMBB->addSuccessor(SecondMBB); + ThisMBB->addSuccessor(SinkMBB); + FirstMBB->addSuccessor(SinkMBB); + // This is fallthrough. + SecondMBB->addSuccessor(SinkMBB); + + auto FirstCC = static_cast<RISCVCC::CondCode>(First.getOperand(3).getImm()); + Register FLHS = First.getOperand(1).getReg(); + Register FRHS = First.getOperand(2).getReg(); + // Insert appropriate branch. + BuildMI(FirstMBB, DL, TII.getBrCond(FirstCC)) + .addReg(FLHS) + .addReg(FRHS) + .addMBB(SinkMBB); + + Register SLHS = Second.getOperand(1).getReg(); + Register SRHS = Second.getOperand(2).getReg(); + Register Op1Reg4 = First.getOperand(4).getReg(); + Register Op1Reg5 = First.getOperand(5).getReg(); + + auto SecondCC = static_cast<RISCVCC::CondCode>(Second.getOperand(3).getImm()); + // Insert appropriate branch. + BuildMI(ThisMBB, DL, TII.getBrCond(SecondCC)) + .addReg(SLHS) + .addReg(SRHS) + .addMBB(SinkMBB); + + Register DestReg = Second.getOperand(0).getReg(); + Register Op2Reg4 = Second.getOperand(4).getReg(); + BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII.get(RISCV::PHI), DestReg) + .addReg(Op2Reg4) + .addMBB(ThisMBB) + .addReg(Op1Reg4) + .addMBB(FirstMBB) + .addReg(Op1Reg5) + .addMBB(SecondMBB); + + // Now remove the Select_FPRX_s. + First.eraseFromParent(); + Second.eraseFromParent(); + return SinkMBB; +} + +static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, + MachineBasicBlock *BB, + const RISCVSubtarget &Subtarget) { + // To "insert" Select_* instructions, we actually have to insert the triangle + // control-flow pattern. The incoming instructions know the destination vreg + // to set, the condition code register to branch on, the true/false values to + // select between, and the condcode to use to select the appropriate branch. + // + // We produce the following control flow: + // HeadMBB + // | \ + // | IfFalseMBB + // | / + // TailMBB + // + // When we find a sequence of selects we attempt to optimize their emission + // by sharing the control flow. Currently we only handle cases where we have + // multiple selects with the exact same condition (same LHS, RHS and CC). + // The selects may be interleaved with other instructions if the other + // instructions meet some requirements we deem safe: + // - They are not pseudo instructions. + // - They are debug instructions. Otherwise, + // - They do not have side-effects, do not access memory and their inputs do + // not depend on the results of the select pseudo-instructions. + // The TrueV/FalseV operands of the selects cannot depend on the result of + // previous selects in the sequence. + // These conditions could be further relaxed. See the X86 target for a + // related approach and more information. + // + // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5)) + // is checked here and handled by a separate function - + // EmitLoweredCascadedSelect. + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm()); + + SmallVector<MachineInstr *, 4> SelectDebugValues; + SmallSet<Register, 4> SelectDests; + SelectDests.insert(MI.getOperand(0).getReg()); + + MachineInstr *LastSelectPseudo = &MI; + auto Next = next_nodbg(MI.getIterator(), BB->instr_end()); + if (MI.getOpcode() != RISCV::Select_GPR_Using_CC_GPR && Next != BB->end() && + Next->getOpcode() == MI.getOpcode() && + Next->getOperand(5).getReg() == MI.getOperand(0).getReg() && + Next->getOperand(5).isKill()) { + return EmitLoweredCascadedSelect(MI, *Next, BB, Subtarget); + } + + for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); + SequenceMBBI != E; ++SequenceMBBI) { + if (SequenceMBBI->isDebugInstr()) + continue; + if (isSelectPseudo(*SequenceMBBI)) { + if (SequenceMBBI->getOperand(1).getReg() != LHS || + SequenceMBBI->getOperand(2).getReg() != RHS || + SequenceMBBI->getOperand(3).getImm() != CC || + SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || + SelectDests.count(SequenceMBBI->getOperand(5).getReg())) + break; + LastSelectPseudo = &*SequenceMBBI; + SequenceMBBI->collectDebugValues(SelectDebugValues); + SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); + continue; + } + if (SequenceMBBI->hasUnmodeledSideEffects() || + SequenceMBBI->mayLoadOrStore() || + SequenceMBBI->usesCustomInsertionHook()) + break; + if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { + return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); + })) + break; + } + + const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + DebugLoc DL = MI.getDebugLoc(); + MachineFunction::iterator I = ++BB->getIterator(); + + MachineBasicBlock *HeadMBB = BB; + MachineFunction *F = BB->getParent(); + MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); + + F->insert(I, IfFalseMBB); + F->insert(I, TailMBB); + + // Transfer debug instructions associated with the selects to TailMBB. + for (MachineInstr *DebugInstr : SelectDebugValues) { + TailMBB->push_back(DebugInstr->removeFromParent()); + } + + // Move all instructions after the sequence to TailMBB. + TailMBB->splice(TailMBB->end(), HeadMBB, + std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); + // Update machine-CFG edges by transferring all successors of the current + // block to the new block which will contain the Phi nodes for the selects. + TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); + // Set the successors for HeadMBB. + HeadMBB->addSuccessor(IfFalseMBB); + HeadMBB->addSuccessor(TailMBB); + + // Insert appropriate branch. + BuildMI(HeadMBB, DL, TII.getBrCond(CC)) + .addReg(LHS) + .addReg(RHS) + .addMBB(TailMBB); + + // IfFalseMBB just falls through to TailMBB. + IfFalseMBB->addSuccessor(TailMBB); + + // Create PHIs for all of the select pseudo-instructions. + auto SelectMBBI = MI.getIterator(); + auto SelectEnd = std::next(LastSelectPseudo->getIterator()); + auto InsertionPoint = TailMBB->begin(); + while (SelectMBBI != SelectEnd) { + auto Next = std::next(SelectMBBI); + if (isSelectPseudo(*SelectMBBI)) { + // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] + BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), + TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) + .addReg(SelectMBBI->getOperand(4).getReg()) + .addMBB(HeadMBB) + .addReg(SelectMBBI->getOperand(5).getReg()) + .addMBB(IfFalseMBB); + SelectMBBI->eraseFromParent(); + } + SelectMBBI = Next; + } + + F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); + return TailMBB; +} + +static MachineBasicBlock * +emitVFCVT_RM_MASK(MachineInstr &MI, MachineBasicBlock *BB, unsigned Opcode) { + DebugLoc DL = MI.getDebugLoc(); + + const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); + + MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); + Register SavedFRM = MRI.createVirtualRegister(&RISCV::GPRRegClass); + + // Update FRM and save the old value. + BuildMI(*BB, MI, DL, TII.get(RISCV::SwapFRMImm), SavedFRM) + .addImm(MI.getOperand(4).getImm()); + + // Emit an VFCVT without the FRM operand. + assert(MI.getNumOperands() == 8); + auto MIB = BuildMI(*BB, MI, DL, TII.get(Opcode)) + .add(MI.getOperand(0)) + .add(MI.getOperand(1)) + .add(MI.getOperand(2)) + .add(MI.getOperand(3)) + .add(MI.getOperand(5)) + .add(MI.getOperand(6)) + .add(MI.getOperand(7)); + if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) + MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); + + // Restore FRM. + BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFRM)) + .addReg(SavedFRM, RegState::Kill); + + // Erase the pseudoinstruction. + MI.eraseFromParent(); + return BB; +} + +static MachineBasicBlock *emitVFROUND_NOEXCEPT_MASK(MachineInstr &MI, + MachineBasicBlock *BB, + unsigned CVTXOpc, + unsigned CVTFOpc) { + DebugLoc DL = MI.getDebugLoc(); + + const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); + + MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); + Register SavedFFLAGS = MRI.createVirtualRegister(&RISCV::GPRRegClass); + + // Save the old value of FFLAGS. + BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFLAGS); + + assert(MI.getNumOperands() == 7); + + // Emit a VFCVT_X_F + const TargetRegisterInfo *TRI = + BB->getParent()->getSubtarget().getRegisterInfo(); + const TargetRegisterClass *RC = MI.getRegClassConstraint(0, &TII, TRI); + Register Tmp = MRI.createVirtualRegister(RC); + BuildMI(*BB, MI, DL, TII.get(CVTXOpc), Tmp) + .add(MI.getOperand(1)) + .add(MI.getOperand(2)) + .add(MI.getOperand(3)) + .add(MI.getOperand(4)) + .add(MI.getOperand(5)) + .add(MI.getOperand(6)); + + // Emit a VFCVT_F_X + BuildMI(*BB, MI, DL, TII.get(CVTFOpc)) + .add(MI.getOperand(0)) + .add(MI.getOperand(1)) + .addReg(Tmp) + .add(MI.getOperand(3)) + .add(MI.getOperand(4)) + .add(MI.getOperand(5)) + .add(MI.getOperand(6)); + + // Restore FFLAGS. + BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS)) + .addReg(SavedFFLAGS, RegState::Kill); + + // Erase the pseudoinstruction. + MI.eraseFromParent(); + return BB; +} + +static MachineBasicBlock *emitFROUND(MachineInstr &MI, MachineBasicBlock *MBB, + const RISCVSubtarget &Subtarget) { + unsigned CmpOpc, F2IOpc, I2FOpc, FSGNJOpc, FSGNJXOpc; + const TargetRegisterClass *RC; + switch (MI.getOpcode()) { + default: + llvm_unreachable("Unexpected opcode"); + case RISCV::PseudoFROUND_H: + CmpOpc = RISCV::FLT_H; + F2IOpc = RISCV::FCVT_W_H; + I2FOpc = RISCV::FCVT_H_W; + FSGNJOpc = RISCV::FSGNJ_H; + FSGNJXOpc = RISCV::FSGNJX_H; + RC = &RISCV::FPR16RegClass; + break; + case RISCV::PseudoFROUND_S: + CmpOpc = RISCV::FLT_S; + F2IOpc = RISCV::FCVT_W_S; + I2FOpc = RISCV::FCVT_S_W; + FSGNJOpc = RISCV::FSGNJ_S; + FSGNJXOpc = RISCV::FSGNJX_S; + RC = &RISCV::FPR32RegClass; + break; + case RISCV::PseudoFROUND_D: + assert(Subtarget.is64Bit() && "Expected 64-bit GPR."); + CmpOpc = RISCV::FLT_D; + F2IOpc = RISCV::FCVT_L_D; + I2FOpc = RISCV::FCVT_D_L; + FSGNJOpc = RISCV::FSGNJ_D; + FSGNJXOpc = RISCV::FSGNJX_D; + RC = &RISCV::FPR64RegClass; + break; + } + + const BasicBlock *BB = MBB->getBasicBlock(); + DebugLoc DL = MI.getDebugLoc(); + MachineFunction::iterator I = ++MBB->getIterator(); + + MachineFunction *F = MBB->getParent(); + MachineBasicBlock *CvtMBB = F->CreateMachineBasicBlock(BB); + MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(BB); + + F->insert(I, CvtMBB); + F->insert(I, DoneMBB); + // Move all instructions after the sequence to DoneMBB. + DoneMBB->splice(DoneMBB->end(), MBB, MachineBasicBlock::iterator(MI), + MBB->end()); + // Update machine-CFG edges by transferring all successors of the current + // block to the new block which will contain the Phi nodes for the selects. + DoneMBB->transferSuccessorsAndUpdatePHIs(MBB); + // Set the successors for MBB. + MBB->addSuccessor(CvtMBB); + MBB->addSuccessor(DoneMBB); + + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + Register MaxReg = MI.getOperand(2).getReg(); + int64_t FRM = MI.getOperand(3).getImm(); + + const RISCVInstrInfo &TII = *Subtarget.getInstrInfo(); + MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); + + Register FabsReg = MRI.createVirtualRegister(RC); + BuildMI(MBB, DL, TII.get(FSGNJXOpc), FabsReg).addReg(SrcReg).addReg(SrcReg); + + // Compare the FP value to the max value. + Register CmpReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); + auto MIB = + BuildMI(MBB, DL, TII.get(CmpOpc), CmpReg).addReg(FabsReg).addReg(MaxReg); + if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) + MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); + + // Insert branch. + BuildMI(MBB, DL, TII.get(RISCV::BEQ)) + .addReg(CmpReg) + .addReg(RISCV::X0) + .addMBB(DoneMBB); + + CvtMBB->addSuccessor(DoneMBB); + + // Convert to integer. + Register F2IReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); + MIB = BuildMI(CvtMBB, DL, TII.get(F2IOpc), F2IReg).addReg(SrcReg).addImm(FRM); + if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) + MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); + + // Convert back to FP. + Register I2FReg = MRI.createVirtualRegister(RC); + MIB = BuildMI(CvtMBB, DL, TII.get(I2FOpc), I2FReg).addReg(F2IReg).addImm(FRM); + if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) + MIB->setFlag(MachineInstr::MIFlag::NoFPExcept); + + // Restore the sign bit. + Register CvtReg = MRI.createVirtualRegister(RC); + BuildMI(CvtMBB, DL, TII.get(FSGNJOpc), CvtReg).addReg(I2FReg).addReg(SrcReg); + + // Merge the results. + BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(RISCV::PHI), DstReg) + .addReg(SrcReg) + .addMBB(MBB) + .addReg(CvtReg) + .addMBB(CvtMBB); + + MI.eraseFromParent(); + return DoneMBB; +} + +MachineBasicBlock * +RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, + MachineBasicBlock *BB) const { + switch (MI.getOpcode()) { + default: + llvm_unreachable("Unexpected instr type to insert"); + case RISCV::ReadCycleWide: + assert(!Subtarget.is64Bit() && + "ReadCycleWrite is only to be used on riscv32"); + return emitReadCycleWidePseudo(MI, BB); + case RISCV::Select_GPR_Using_CC_GPR: + case RISCV::Select_FPR16_Using_CC_GPR: + case RISCV::Select_FPR32_Using_CC_GPR: + case RISCV::Select_FPR64_Using_CC_GPR: + return emitSelectPseudo(MI, BB, Subtarget); + case RISCV::BuildPairF64Pseudo: + return emitBuildPairF64Pseudo(MI, BB); + case RISCV::SplitF64Pseudo: + return emitSplitF64Pseudo(MI, BB); + case RISCV::PseudoQuietFLE_H: + return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget); + case RISCV::PseudoQuietFLT_H: + return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget); + case RISCV::PseudoQuietFLE_S: + return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget); + case RISCV::PseudoQuietFLT_S: + return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget); + case RISCV::PseudoQuietFLE_D: + return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget); + case RISCV::PseudoQuietFLT_D: + return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget); + + // ========================================================================= + // VFCVT + // ========================================================================= + + case RISCV::PseudoVFCVT_RM_X_F_V_M1_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M1_MASK); + case RISCV::PseudoVFCVT_RM_X_F_V_M2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M2_MASK); + case RISCV::PseudoVFCVT_RM_X_F_V_M4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M4_MASK); + case RISCV::PseudoVFCVT_RM_X_F_V_M8_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M8_MASK); + case RISCV::PseudoVFCVT_RM_X_F_V_MF2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF2_MASK); + case RISCV::PseudoVFCVT_RM_X_F_V_MF4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF4_MASK); + + case RISCV::PseudoVFCVT_RM_XU_F_V_M1_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_XU_F_V_M1_MASK); + case RISCV::PseudoVFCVT_RM_XU_F_V_M2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_XU_F_V_M2_MASK); + case RISCV::PseudoVFCVT_RM_XU_F_V_M4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_XU_F_V_M4_MASK); + case RISCV::PseudoVFCVT_RM_XU_F_V_M8_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_XU_F_V_M8_MASK); + case RISCV::PseudoVFCVT_RM_XU_F_V_MF2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_XU_F_V_MF2_MASK); + case RISCV::PseudoVFCVT_RM_XU_F_V_MF4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_XU_F_V_MF4_MASK); + + case RISCV::PseudoVFCVT_RM_F_XU_V_M1_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_XU_V_M1_MASK); + case RISCV::PseudoVFCVT_RM_F_XU_V_M2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_XU_V_M2_MASK); + case RISCV::PseudoVFCVT_RM_F_XU_V_M4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_XU_V_M4_MASK); + case RISCV::PseudoVFCVT_RM_F_XU_V_M8_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_XU_V_M8_MASK); + case RISCV::PseudoVFCVT_RM_F_XU_V_MF2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_XU_V_MF2_MASK); + case RISCV::PseudoVFCVT_RM_F_XU_V_MF4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_XU_V_MF4_MASK); + + case RISCV::PseudoVFCVT_RM_F_X_V_M1_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_X_V_M1_MASK); + case RISCV::PseudoVFCVT_RM_F_X_V_M2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_X_V_M2_MASK); + case RISCV::PseudoVFCVT_RM_F_X_V_M4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_X_V_M4_MASK); + case RISCV::PseudoVFCVT_RM_F_X_V_M8_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_X_V_M8_MASK); + case RISCV::PseudoVFCVT_RM_F_X_V_MF2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_X_V_MF2_MASK); + case RISCV::PseudoVFCVT_RM_F_X_V_MF4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFCVT_F_X_V_MF4_MASK); + + // ========================================================================= + // VFWCVT + // ========================================================================= + + case RISCV::PseudoVFWCVT_RM_XU_F_V_M1_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_M1_MASK); + case RISCV::PseudoVFWCVT_RM_XU_F_V_M2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_M2_MASK); + case RISCV::PseudoVFWCVT_RM_XU_F_V_M4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_M4_MASK); + case RISCV::PseudoVFWCVT_RM_XU_F_V_MF2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_MF2_MASK); + case RISCV::PseudoVFWCVT_RM_XU_F_V_MF4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_MF4_MASK); + + case RISCV::PseudoVFWCVT_RM_X_F_V_M1_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_M1_MASK); + case RISCV::PseudoVFWCVT_RM_X_F_V_M2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_M2_MASK); + case RISCV::PseudoVFWCVT_RM_X_F_V_M4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_M4_MASK); + case RISCV::PseudoVFWCVT_RM_X_F_V_MF2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_MF2_MASK); + case RISCV::PseudoVFWCVT_RM_X_F_V_MF4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_X_F_V_MF4_MASK); + + case RISCV::PseudoVFWCVT_RM_F_XU_V_M1_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_M1_MASK); + case RISCV::PseudoVFWCVT_RM_F_XU_V_M2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_M2_MASK); + case RISCV::PseudoVFWCVT_RM_F_XU_V_M4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_M4_MASK); + case RISCV::PseudoVFWCVT_RM_F_XU_V_MF2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_MF2_MASK); + case RISCV::PseudoVFWCVT_RM_F_XU_V_MF4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_MF4_MASK); + case RISCV::PseudoVFWCVT_RM_F_XU_V_MF8_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_MF8_MASK); + + case RISCV::PseudoVFWCVT_RM_F_X_V_M1_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_M1_MASK); + case RISCV::PseudoVFWCVT_RM_F_X_V_M2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_M2_MASK); + case RISCV::PseudoVFWCVT_RM_F_X_V_M4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_M4_MASK); + case RISCV::PseudoVFWCVT_RM_F_X_V_MF2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_MF2_MASK); + case RISCV::PseudoVFWCVT_RM_F_X_V_MF4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_MF4_MASK); + case RISCV::PseudoVFWCVT_RM_F_X_V_MF8_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFWCVT_F_XU_V_MF8_MASK); + + // ========================================================================= + // VFNCVT + // ========================================================================= + + case RISCV::PseudoVFNCVT_RM_XU_F_W_M1_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_M1_MASK); + case RISCV::PseudoVFNCVT_RM_XU_F_W_M2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_M2_MASK); + case RISCV::PseudoVFNCVT_RM_XU_F_W_M4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_M4_MASK); + case RISCV::PseudoVFNCVT_RM_XU_F_W_MF2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_MF2_MASK); + case RISCV::PseudoVFNCVT_RM_XU_F_W_MF4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_MF4_MASK); + case RISCV::PseudoVFNCVT_RM_XU_F_W_MF8_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_XU_F_W_MF8_MASK); + + case RISCV::PseudoVFNCVT_RM_X_F_W_M1_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_M1_MASK); + case RISCV::PseudoVFNCVT_RM_X_F_W_M2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_M2_MASK); + case RISCV::PseudoVFNCVT_RM_X_F_W_M4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_M4_MASK); + case RISCV::PseudoVFNCVT_RM_X_F_W_MF2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_MF2_MASK); + case RISCV::PseudoVFNCVT_RM_X_F_W_MF4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_MF4_MASK); + case RISCV::PseudoVFNCVT_RM_X_F_W_MF8_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_X_F_W_MF8_MASK); + + case RISCV::PseudoVFNCVT_RM_F_XU_W_M1_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_M1_MASK); + case RISCV::PseudoVFNCVT_RM_F_XU_W_M2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_M2_MASK); + case RISCV::PseudoVFNCVT_RM_F_XU_W_M4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_M4_MASK); + case RISCV::PseudoVFNCVT_RM_F_XU_W_MF2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_MF2_MASK); + case RISCV::PseudoVFNCVT_RM_F_XU_W_MF4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_MF4_MASK); + + case RISCV::PseudoVFNCVT_RM_F_X_W_M1_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_M1_MASK); + case RISCV::PseudoVFNCVT_RM_F_X_W_M2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_M2_MASK); + case RISCV::PseudoVFNCVT_RM_F_X_W_M4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_M4_MASK); + case RISCV::PseudoVFNCVT_RM_F_X_W_MF2_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_MF2_MASK); + case RISCV::PseudoVFNCVT_RM_F_X_W_MF4_MASK: + return emitVFCVT_RM_MASK(MI, BB, RISCV::PseudoVFNCVT_F_XU_W_MF4_MASK); + + case RISCV::PseudoVFROUND_NOEXCEPT_V_M1_MASK: + return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M1_MASK, + RISCV::PseudoVFCVT_F_X_V_M1_MASK); + case RISCV::PseudoVFROUND_NOEXCEPT_V_M2_MASK: + return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M2_MASK, + RISCV::PseudoVFCVT_F_X_V_M2_MASK); + case RISCV::PseudoVFROUND_NOEXCEPT_V_M4_MASK: + return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M4_MASK, + RISCV::PseudoVFCVT_F_X_V_M4_MASK); + case RISCV::PseudoVFROUND_NOEXCEPT_V_M8_MASK: + return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M8_MASK, + RISCV::PseudoVFCVT_F_X_V_M8_MASK); + case RISCV::PseudoVFROUND_NOEXCEPT_V_MF2_MASK: + return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF2_MASK, + RISCV::PseudoVFCVT_F_X_V_MF2_MASK); + case RISCV::PseudoVFROUND_NOEXCEPT_V_MF4_MASK: + return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF4_MASK, + RISCV::PseudoVFCVT_F_X_V_MF4_MASK); + case RISCV::PseudoFROUND_H: + case RISCV::PseudoFROUND_S: + case RISCV::PseudoFROUND_D: + return emitFROUND(MI, BB, Subtarget); + } +} + +void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, + SDNode *Node) const { + // Add FRM dependency to any instructions with dynamic rounding mode. + unsigned Opc = MI.getOpcode(); + auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm); + if (Idx < 0) + return; + if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN) + return; + // If the instruction already reads FRM, don't add another read. + if (MI.readsRegister(RISCV::FRM)) + return; + MI.addOperand( + MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true)); +} + +// Calling Convention Implementation. +// The expectations for frontend ABI lowering vary from target to target. +// Ideally, an LLVM frontend would be able to avoid worrying about many ABI +// details, but this is a longer term goal. For now, we simply try to keep the +// role of the frontend as simple and well-defined as possible. The rules can +// be summarised as: +// * Never split up large scalar arguments. We handle them here. +// * If a hardfloat calling convention is being used, and the struct may be +// passed in a pair of registers (fp+fp, int+fp), and both registers are +// available, then pass as two separate arguments. If either the GPRs or FPRs +// are exhausted, then pass according to the rule below. +// * If a struct could never be passed in registers or directly in a stack +// slot (as it is larger than 2*XLEN and the floating point rules don't +// apply), then pass it using a pointer with the byval attribute. +// * If a struct is less than 2*XLEN, then coerce to either a two-element +// word-sized array or a 2*XLEN scalar (depending on alignment). +// * The frontend can determine whether a struct is returned by reference or +// not based on its size and fields. If it will be returned by reference, the +// frontend must modify the prototype so a pointer with the sret annotation is +// passed as the first argument. This is not necessary for large scalar +// returns. +// * Struct return values and varargs should be coerced to structs containing +// register-size fields in the same situations they would be for fixed +// arguments. + +static const MCPhysReg ArgGPRs[] = { + RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, + RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 +}; +static const MCPhysReg ArgFPR16s[] = { + RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, + RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H +}; +static const MCPhysReg ArgFPR32s[] = { + RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, + RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F +}; +static const MCPhysReg ArgFPR64s[] = { + RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, + RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D +}; +// This is an interim calling convention and it may be changed in the future. +static const MCPhysReg ArgVRs[] = { + RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, + RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, + RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; +static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, + RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, + RISCV::V20M2, RISCV::V22M2}; +static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, + RISCV::V20M4}; +static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; + +// Pass a 2*XLEN argument that has been split into two XLEN values through +// registers or the stack as necessary. +static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, + ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, + MVT ValVT2, MVT LocVT2, + ISD::ArgFlagsTy ArgFlags2) { + unsigned XLenInBytes = XLen / 8; + if (Register Reg = State.AllocateReg(ArgGPRs)) { + // At least one half can be passed via register. + State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, + VA1.getLocVT(), CCValAssign::Full)); + } else { + // Both halves must be passed on the stack, with proper alignment. + Align StackAlign = + std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); + State.addLoc( + CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), + State.AllocateStack(XLenInBytes, StackAlign), + VA1.getLocVT(), CCValAssign::Full)); + State.addLoc(CCValAssign::getMem( + ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), + LocVT2, CCValAssign::Full)); + return false; + } + + if (Register Reg = State.AllocateReg(ArgGPRs)) { + // The second half can also be passed via register. + State.addLoc( + CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); + } else { + // The second half is passed via the stack, without additional alignment. + State.addLoc(CCValAssign::getMem( + ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), + LocVT2, CCValAssign::Full)); + } + + return false; +} + +static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo, + std::optional<unsigned> FirstMaskArgument, + CCState &State, const RISCVTargetLowering &TLI) { + const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); + if (RC == &RISCV::VRRegClass) { + // Assign the first mask argument to V0. + // This is an interim calling convention and it may be changed in the + // future. + if (FirstMaskArgument && ValNo == *FirstMaskArgument) + return State.AllocateReg(RISCV::V0); + return State.AllocateReg(ArgVRs); + } + if (RC == &RISCV::VRM2RegClass) + return State.AllocateReg(ArgVRM2s); + if (RC == &RISCV::VRM4RegClass) + return State.AllocateReg(ArgVRM4s); + if (RC == &RISCV::VRM8RegClass) + return State.AllocateReg(ArgVRM8s); + llvm_unreachable("Unhandled register class for ValueType"); +} + +// Implements the RISC-V calling convention. Returns true upon failure. +static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, + MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, + bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, + std::optional<unsigned> FirstMaskArgument) { + unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); + assert(XLen == 32 || XLen == 64); + MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; + + // Static chain parameter must not be passed in normal argument registers, + // so we assign t2 for it as done in GCC's __builtin_call_with_static_chain + if (ArgFlags.isNest()) { + if (unsigned Reg = State.AllocateReg(RISCV::X7)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + } + + // Any return value split in to more than two values can't be returned + // directly. Vectors are returned via the available vector registers. + if (!LocVT.isVector() && IsRet && ValNo > 1) + return true; + + // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a + // variadic argument, or if no F16/F32 argument registers are available. + bool UseGPRForF16_F32 = true; + // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a + // variadic argument, or if no F64 argument registers are available. + bool UseGPRForF64 = true; + + switch (ABI) { + default: + llvm_unreachable("Unexpected ABI"); + case RISCVABI::ABI_ILP32: + case RISCVABI::ABI_LP64: + break; + case RISCVABI::ABI_ILP32F: + case RISCVABI::ABI_LP64F: + UseGPRForF16_F32 = !IsFixed; + break; + case RISCVABI::ABI_ILP32D: + case RISCVABI::ABI_LP64D: + UseGPRForF16_F32 = !IsFixed; + UseGPRForF64 = !IsFixed; + break; + } + + // FPR16, FPR32, and FPR64 alias each other. + if (State.getFirstUnallocated(ArgFPR32s) == std::size(ArgFPR32s)) { + UseGPRForF16_F32 = true; + UseGPRForF64 = true; + } + + // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and + // similar local variables rather than directly checking against the target + // ABI. + + if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { + LocVT = XLenVT; + LocInfo = CCValAssign::BCvt; + } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { + LocVT = MVT::i64; + LocInfo = CCValAssign::BCvt; + } + + // If this is a variadic argument, the RISC-V calling convention requires + // that it is assigned an 'even' or 'aligned' register if it has 8-byte + // alignment (RV32) or 16-byte alignment (RV64). An aligned register should + // be used regardless of whether the original argument was split during + // legalisation or not. The argument will not be passed by registers if the + // original type is larger than 2*XLEN, so the register alignment rule does + // not apply. + unsigned TwoXLenInBytes = (2 * XLen) / 8; + if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && + DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { + unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); + // Skip 'odd' register if necessary. + if (RegIdx != std::size(ArgGPRs) && RegIdx % 2 == 1) + State.AllocateReg(ArgGPRs); + } + + SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); + SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = + State.getPendingArgFlags(); + + assert(PendingLocs.size() == PendingArgFlags.size() && + "PendingLocs and PendingArgFlags out of sync"); + + // Handle passing f64 on RV32D with a soft float ABI or when floating point + // registers are exhausted. + if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { + assert(!ArgFlags.isSplit() && PendingLocs.empty() && + "Can't lower f64 if it is split"); + // Depending on available argument GPRS, f64 may be passed in a pair of + // GPRs, split between a GPR and the stack, or passed completely on the + // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these + // cases. + Register Reg = State.AllocateReg(ArgGPRs); + LocVT = MVT::i32; + if (!Reg) { + unsigned StackOffset = State.AllocateStack(8, Align(8)); + State.addLoc( + CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); + return false; + } + if (!State.AllocateReg(ArgGPRs)) + State.AllocateStack(4, Align(4)); + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + + // Fixed-length vectors are located in the corresponding scalable-vector + // container types. + if (ValVT.isFixedLengthVector()) + LocVT = TLI.getContainerForFixedLengthVector(LocVT); + + // Split arguments might be passed indirectly, so keep track of the pending + // values. Split vectors are passed via a mix of registers and indirectly, so + // treat them as we would any other argument. + if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { + LocVT = XLenVT; + LocInfo = CCValAssign::Indirect; + PendingLocs.push_back( + CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); + PendingArgFlags.push_back(ArgFlags); + if (!ArgFlags.isSplitEnd()) { + return false; + } + } + + // If the split argument only had two elements, it should be passed directly + // in registers or on the stack. + if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && + PendingLocs.size() <= 2) { + assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); + // Apply the normal calling convention rules to the first half of the + // split argument. + CCValAssign VA = PendingLocs[0]; + ISD::ArgFlagsTy AF = PendingArgFlags[0]; + PendingLocs.clear(); + PendingArgFlags.clear(); + return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, + ArgFlags); + } + + // Allocate to a register if possible, or else a stack slot. + Register Reg; + unsigned StoreSizeBytes = XLen / 8; + Align StackAlign = Align(XLen / 8); + + if (ValVT == MVT::f16 && !UseGPRForF16_F32) + Reg = State.AllocateReg(ArgFPR16s); + else if (ValVT == MVT::f32 && !UseGPRForF16_F32) + Reg = State.AllocateReg(ArgFPR32s); + else if (ValVT == MVT::f64 && !UseGPRForF64) + Reg = State.AllocateReg(ArgFPR64s); + else if (ValVT.isVector()) { + Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI); + if (!Reg) { + // For return values, the vector must be passed fully via registers or + // via the stack. + // FIXME: The proposed vector ABI only mandates v8-v15 for return values, + // but we're using all of them. + if (IsRet) + return true; + // Try using a GPR to pass the address + if ((Reg = State.AllocateReg(ArgGPRs))) { + LocVT = XLenVT; + LocInfo = CCValAssign::Indirect; + } else if (ValVT.isScalableVector()) { + LocVT = XLenVT; + LocInfo = CCValAssign::Indirect; + } else { + // Pass fixed-length vectors on the stack. + LocVT = ValVT; + StoreSizeBytes = ValVT.getStoreSize(); + // Align vectors to their element sizes, being careful for vXi1 + // vectors. + StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); + } + } + } else { + Reg = State.AllocateReg(ArgGPRs); + } + + unsigned StackOffset = + Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign); + + // If we reach this point and PendingLocs is non-empty, we must be at the + // end of a split argument that must be passed indirectly. + if (!PendingLocs.empty()) { + assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); + assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); + + for (auto &It : PendingLocs) { + if (Reg) + It.convertToReg(Reg); + else + It.convertToMem(StackOffset); + State.addLoc(It); + } + PendingLocs.clear(); + PendingArgFlags.clear(); + return false; + } + + assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || + (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) && + "Expected an XLenVT or vector types at this stage"); + + if (Reg) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + + // When a floating-point value is passed on the stack, no bit-conversion is + // needed. + if (ValVT.isFloatingPoint()) { + LocVT = ValVT; + LocInfo = CCValAssign::Full; + } + State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); + return false; +} + +template <typename ArgTy> +static std::optional<unsigned> preAssignMask(const ArgTy &Args) { + for (const auto &ArgIdx : enumerate(Args)) { + MVT ArgVT = ArgIdx.value().VT; + if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) + return ArgIdx.index(); + } + return std::nullopt; +} + +void RISCVTargetLowering::analyzeInputArgs( + MachineFunction &MF, CCState &CCInfo, + const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, + RISCVCCAssignFn Fn) const { + unsigned NumArgs = Ins.size(); + FunctionType *FType = MF.getFunction().getFunctionType(); + + std::optional<unsigned> FirstMaskArgument; + if (Subtarget.hasVInstructions()) + FirstMaskArgument = preAssignMask(Ins); + + for (unsigned i = 0; i != NumArgs; ++i) { + MVT ArgVT = Ins[i].VT; + ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; + + Type *ArgTy = nullptr; + if (IsRet) + ArgTy = FType->getReturnType(); + else if (Ins[i].isOrigArg()) + ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); + + RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); + if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, + ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, + FirstMaskArgument)) { + LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " + << EVT(ArgVT).getEVTString() << '\n'); + llvm_unreachable(nullptr); + } + } +} + +void RISCVTargetLowering::analyzeOutputArgs( + MachineFunction &MF, CCState &CCInfo, + const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, + CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const { + unsigned NumArgs = Outs.size(); + + std::optional<unsigned> FirstMaskArgument; + if (Subtarget.hasVInstructions()) + FirstMaskArgument = preAssignMask(Outs); + + for (unsigned i = 0; i != NumArgs; i++) { + MVT ArgVT = Outs[i].VT; + ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; + Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; + + RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); + if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, + ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, + FirstMaskArgument)) { + LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " + << EVT(ArgVT).getEVTString() << "\n"); + llvm_unreachable(nullptr); + } + } +} + +// Convert Val to a ValVT. Should not be called for CCValAssign::Indirect +// values. +static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, + const CCValAssign &VA, const SDLoc &DL, + const RISCVSubtarget &Subtarget) { + switch (VA.getLocInfo()) { + default: + llvm_unreachable("Unexpected CCValAssign::LocInfo"); + case CCValAssign::Full: + if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) + Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); + break; + case CCValAssign::BCvt: + if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) + Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); + else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) + Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); + else + Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); + break; + } + return Val; +} + +// The caller is responsible for loading the full value if the argument is +// passed with CCValAssign::Indirect. +static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, + const CCValAssign &VA, const SDLoc &DL, + const ISD::InputArg &In, + const RISCVTargetLowering &TLI) { + MachineFunction &MF = DAG.getMachineFunction(); + MachineRegisterInfo &RegInfo = MF.getRegInfo(); + EVT LocVT = VA.getLocVT(); + SDValue Val; + const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); + Register VReg = RegInfo.createVirtualRegister(RC); + RegInfo.addLiveIn(VA.getLocReg(), VReg); + Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); + + // If input is sign extended from 32 bits, note it for the SExtWRemoval pass. + if (In.isOrigArg()) { + Argument *OrigArg = MF.getFunction().getArg(In.getOrigArgIndex()); + if (OrigArg->getType()->isIntegerTy()) { + unsigned BitWidth = OrigArg->getType()->getIntegerBitWidth(); + // An input zero extended from i31 can also be considered sign extended. + if ((BitWidth <= 32 && In.Flags.isSExt()) || + (BitWidth < 32 && In.Flags.isZExt())) { + RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); + RVFI->addSExt32Register(VReg); + } + } + } + + if (VA.getLocInfo() == CCValAssign::Indirect) + return Val; + + return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); +} + +static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, + const CCValAssign &VA, const SDLoc &DL, + const RISCVSubtarget &Subtarget) { + EVT LocVT = VA.getLocVT(); + + switch (VA.getLocInfo()) { + default: + llvm_unreachable("Unexpected CCValAssign::LocInfo"); + case CCValAssign::Full: + if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) + Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); + break; + case CCValAssign::BCvt: + if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) + Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); + else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) + Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); + else + Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); + break; + } + return Val; +} + +// The caller is responsible for loading the full value if the argument is +// passed with CCValAssign::Indirect. +static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, + const CCValAssign &VA, const SDLoc &DL) { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + EVT LocVT = VA.getLocVT(); + EVT ValVT = VA.getValVT(); + EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); + if (ValVT.isScalableVector()) { + // When the value is a scalable vector, we save the pointer which points to + // the scalable vector value in the stack. The ValVT will be the pointer + // type, instead of the scalable vector type. + ValVT = LocVT; + } + int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(), + /*IsImmutable=*/true); + SDValue FIN = DAG.getFrameIndex(FI, PtrVT); + SDValue Val; + + ISD::LoadExtType ExtType; + switch (VA.getLocInfo()) { + default: + llvm_unreachable("Unexpected CCValAssign::LocInfo"); + case CCValAssign::Full: + case CCValAssign::Indirect: + case CCValAssign::BCvt: + ExtType = ISD::NON_EXTLOAD; + break; + } + Val = DAG.getExtLoad( + ExtType, DL, LocVT, Chain, FIN, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); + return Val; +} + +static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, + const CCValAssign &VA, const SDLoc &DL) { + assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && + "Unexpected VA"); + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + MachineRegisterInfo &RegInfo = MF.getRegInfo(); + + if (VA.isMemLoc()) { + // f64 is passed on the stack. + int FI = + MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true); + SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); + return DAG.getLoad(MVT::f64, DL, Chain, FIN, + MachinePointerInfo::getFixedStack(MF, FI)); + } + + assert(VA.isRegLoc() && "Expected register VA assignment"); + + Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); + RegInfo.addLiveIn(VA.getLocReg(), LoVReg); + SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); + SDValue Hi; + if (VA.getLocReg() == RISCV::X17) { + // Second half of f64 is passed on the stack. + int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true); + SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); + Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, + MachinePointerInfo::getFixedStack(MF, FI)); + } else { + // Second half of f64 is passed in another GPR. + Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); + RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); + Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); + } + return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); +} + +// FastCC has less than 1% performance improvement for some particular +// benchmark. But theoretically, it may has benenfit for some cases. +static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI, + unsigned ValNo, MVT ValVT, MVT LocVT, + CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State, + bool IsFixed, bool IsRet, Type *OrigTy, + const RISCVTargetLowering &TLI, + std::optional<unsigned> FirstMaskArgument) { + + // X5 and X6 might be used for save-restore libcall. + static const MCPhysReg GPRList[] = { + RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, + RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, + RISCV::X29, RISCV::X30, RISCV::X31}; + + if (LocVT == MVT::i32 || LocVT == MVT::i64) { + if (unsigned Reg = State.AllocateReg(GPRList)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + } + + if (LocVT == MVT::f16) { + static const MCPhysReg FPR16List[] = { + RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, + RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, + RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, + RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; + if (unsigned Reg = State.AllocateReg(FPR16List)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + } + + if (LocVT == MVT::f32) { + static const MCPhysReg FPR32List[] = { + RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, + RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, + RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, + RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; + if (unsigned Reg = State.AllocateReg(FPR32List)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + } + + if (LocVT == MVT::f64) { + static const MCPhysReg FPR64List[] = { + RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, + RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, + RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, + RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; + if (unsigned Reg = State.AllocateReg(FPR64List)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + } + + if (LocVT == MVT::i32 || LocVT == MVT::f32) { + unsigned Offset4 = State.AllocateStack(4, Align(4)); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); + return false; + } + + if (LocVT == MVT::i64 || LocVT == MVT::f64) { + unsigned Offset5 = State.AllocateStack(8, Align(8)); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); + return false; + } + + if (LocVT.isVector()) { + if (unsigned Reg = + allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) { + // Fixed-length vectors are located in the corresponding scalable-vector + // container types. + if (ValVT.isFixedLengthVector()) + LocVT = TLI.getContainerForFixedLengthVector(LocVT); + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + } else { + // Try and pass the address via a "fast" GPR. + if (unsigned GPRReg = State.AllocateReg(GPRList)) { + LocInfo = CCValAssign::Indirect; + LocVT = TLI.getSubtarget().getXLenVT(); + State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo)); + } else if (ValVT.isFixedLengthVector()) { + auto StackAlign = + MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne(); + unsigned StackOffset = + State.AllocateStack(ValVT.getStoreSize(), StackAlign); + State.addLoc( + CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); + } else { + // Can't pass scalable vectors on the stack. + return true; + } + } + + return false; + } + + return true; // CC didn't match. +} + +static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, + CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State) { + + if (ArgFlags.isNest()) { + report_fatal_error( + "Attribute 'nest' is not supported in GHC calling convention"); + } + + if (LocVT == MVT::i32 || LocVT == MVT::i64) { + // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim + // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 + static const MCPhysReg GPRList[] = { + RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, + RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; + if (unsigned Reg = State.AllocateReg(GPRList)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + } + + if (LocVT == MVT::f32) { + // Pass in STG registers: F1, ..., F6 + // fs0 ... fs5 + static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, + RISCV::F18_F, RISCV::F19_F, + RISCV::F20_F, RISCV::F21_F}; + if (unsigned Reg = State.AllocateReg(FPR32List)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + } + + if (LocVT == MVT::f64) { + // Pass in STG registers: D1, ..., D6 + // fs6 ... fs11 + static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, + RISCV::F24_D, RISCV::F25_D, + RISCV::F26_D, RISCV::F27_D}; + if (unsigned Reg = State.AllocateReg(FPR64List)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + } + + report_fatal_error("No registers left in GHC calling convention"); + return true; +} + +// Transform physical registers into virtual registers. +SDValue RISCVTargetLowering::LowerFormalArguments( + SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, + SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { + + MachineFunction &MF = DAG.getMachineFunction(); + + switch (CallConv) { + default: + report_fatal_error("Unsupported calling convention"); + case CallingConv::C: + case CallingConv::Fast: + break; + case CallingConv::GHC: + if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || + !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) + report_fatal_error( + "GHC calling convention requires the F and D instruction set extensions"); + } + + const Function &Func = MF.getFunction(); + if (Func.hasFnAttribute("interrupt")) { + if (!Func.arg_empty()) + report_fatal_error( + "Functions with the interrupt attribute cannot have arguments!"); + + StringRef Kind = + MF.getFunction().getFnAttribute("interrupt").getValueAsString(); + + if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) + report_fatal_error( + "Function interrupt attribute argument not supported!"); + } + + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + MVT XLenVT = Subtarget.getXLenVT(); + unsigned XLenInBytes = Subtarget.getXLen() / 8; + // Used with vargs to acumulate store chains. + std::vector<SDValue> OutChains; + + // Assign locations to all of the incoming arguments. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); + + if (CallConv == CallingConv::GHC) + CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); + else + analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, + CallConv == CallingConv::Fast ? CC_RISCV_FastCC + : CC_RISCV); + + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + SDValue ArgValue; + // Passing f64 on RV32D with a soft float ABI must be handled as a special + // case. + if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) + ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); + else if (VA.isRegLoc()) + ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, Ins[i], *this); + else + ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); + + if (VA.getLocInfo() == CCValAssign::Indirect) { + // If the original argument was split and passed by reference (e.g. i128 + // on RV32), we need to load all parts of it here (using the same + // address). Vectors may be partly split to registers and partly to the + // stack, in which case the base address is partly offset and subsequent + // stores are relative to that. + InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, + MachinePointerInfo())); + unsigned ArgIndex = Ins[i].OrigArgIndex; + unsigned ArgPartOffset = Ins[i].PartOffset; + assert(VA.getValVT().isVector() || ArgPartOffset == 0); + while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { + CCValAssign &PartVA = ArgLocs[i + 1]; + unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; + SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); + if (PartVA.getValVT().isScalableVector()) + Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); + SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset); + InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, + MachinePointerInfo())); + ++i; + } + continue; + } + InVals.push_back(ArgValue); + } + + if (any_of(ArgLocs, + [](CCValAssign &VA) { return VA.getLocVT().isScalableVector(); })) + MF.getInfo<RISCVMachineFunctionInfo>()->setIsVectorCall(); + + if (IsVarArg) { + ArrayRef<MCPhysReg> ArgRegs = ArrayRef(ArgGPRs); + unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); + const TargetRegisterClass *RC = &RISCV::GPRRegClass; + MachineFrameInfo &MFI = MF.getFrameInfo(); + MachineRegisterInfo &RegInfo = MF.getRegInfo(); + RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); + + // Offset of the first variable argument from stack pointer, and size of + // the vararg save area. For now, the varargs save area is either zero or + // large enough to hold a0-a7. + int VaArgOffset, VarArgsSaveSize; + + // If all registers are allocated, then all varargs must be passed on the + // stack and we don't need to save any argregs. + if (ArgRegs.size() == Idx) { + VaArgOffset = CCInfo.getNextStackOffset(); + VarArgsSaveSize = 0; + } else { + VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); + VaArgOffset = -VarArgsSaveSize; + } + + // Record the frame index of the first variable argument + // which is a value necessary to VASTART. + int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); + RVFI->setVarArgsFrameIndex(FI); + + // If saving an odd number of registers then create an extra stack slot to + // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures + // offsets to even-numbered registered remain 2*XLEN-aligned. + if (Idx % 2) { + MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); + VarArgsSaveSize += XLenInBytes; + } + + // Copy the integer registers that may have been used for passing varargs + // to the vararg save area. + for (unsigned I = Idx; I < ArgRegs.size(); + ++I, VaArgOffset += XLenInBytes) { + const Register Reg = RegInfo.createVirtualRegister(RC); + RegInfo.addLiveIn(ArgRegs[I], Reg); + SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); + FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); + SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); + SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, + MachinePointerInfo::getFixedStack(MF, FI)); + cast<StoreSDNode>(Store.getNode()) + ->getMemOperand() + ->setValue((Value *)nullptr); + OutChains.push_back(Store); + } + RVFI->setVarArgsSaveSize(VarArgsSaveSize); + } + + // All stores are grouped in one node to allow the matching between + // the size of Ins and InVals. This only happens for vararg functions. + if (!OutChains.empty()) { + OutChains.push_back(Chain); + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); + } + + return Chain; +} + +/// isEligibleForTailCallOptimization - Check whether the call is eligible +/// for tail call optimization. +/// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. +bool RISCVTargetLowering::isEligibleForTailCallOptimization( + CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, + const SmallVector<CCValAssign, 16> &ArgLocs) const { + + auto &Callee = CLI.Callee; + auto CalleeCC = CLI.CallConv; + auto &Outs = CLI.Outs; + auto &Caller = MF.getFunction(); + auto CallerCC = Caller.getCallingConv(); + + // Exception-handling functions need a special set of instructions to + // indicate a return to the hardware. Tail-calling another function would + // probably break this. + // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This + // should be expanded as new function attributes are introduced. + if (Caller.hasFnAttribute("interrupt")) + return false; + + // Do not tail call opt if the stack is used to pass parameters. + if (CCInfo.getNextStackOffset() != 0) + return false; + + // Do not tail call opt if any parameters need to be passed indirectly. + // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are + // passed indirectly. So the address of the value will be passed in a + // register, or if not available, then the address is put on the stack. In + // order to pass indirectly, space on the stack often needs to be allocated + // in order to store the value. In this case the CCInfo.getNextStackOffset() + // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs + // are passed CCValAssign::Indirect. + for (auto &VA : ArgLocs) + if (VA.getLocInfo() == CCValAssign::Indirect) + return false; + + // Do not tail call opt if either caller or callee uses struct return + // semantics. + auto IsCallerStructRet = Caller.hasStructRetAttr(); + auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); + if (IsCallerStructRet || IsCalleeStructRet) + return false; + + // Externally-defined functions with weak linkage should not be + // tail-called. The behaviour of branch instructions in this situation (as + // used for tail calls) is implementation-defined, so we cannot rely on the + // linker replacing the tail call with a return. + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { + const GlobalValue *GV = G->getGlobal(); + if (GV->hasExternalWeakLinkage()) + return false; + } + + // The callee has to preserve all registers the caller needs to preserve. + const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); + const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); + if (CalleeCC != CallerCC) { + const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); + if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) + return false; + } + + // Byval parameters hand the function a pointer directly into the stack area + // we want to reuse during a tail call. Working around this *is* possible + // but less efficient and uglier in LowerCall. + for (auto &Arg : Outs) + if (Arg.Flags.isByVal()) + return false; + + return true; +} + +static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { + return DAG.getDataLayout().getPrefTypeAlign( + VT.getTypeForEVT(*DAG.getContext())); +} + +// Lower a call to a callseq_start + CALL + callseq_end chain, and add input +// and output parameter nodes. +SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + SelectionDAG &DAG = CLI.DAG; + SDLoc &DL = CLI.DL; + SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; + SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; + SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; + SDValue Chain = CLI.Chain; + SDValue Callee = CLI.Callee; + bool &IsTailCall = CLI.IsTailCall; + CallingConv::ID CallConv = CLI.CallConv; + bool IsVarArg = CLI.IsVarArg; + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + MVT XLenVT = Subtarget.getXLenVT(); + + MachineFunction &MF = DAG.getMachineFunction(); + + // Analyze the operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); + + if (CallConv == CallingConv::GHC) + ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); + else + analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, + CallConv == CallingConv::Fast ? CC_RISCV_FastCC + : CC_RISCV); + + // Check if it's really possible to do a tail call. + if (IsTailCall) + IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); + + if (IsTailCall) + ++NumTailCalls; + else if (CLI.CB && CLI.CB->isMustTailCall()) + report_fatal_error("failed to perform tail call elimination on a call " + "site marked musttail"); + + // Get a count of how many bytes are to be pushed on the stack. + unsigned NumBytes = ArgCCInfo.getNextStackOffset(); + + // Create local copies for byval args + SmallVector<SDValue, 8> ByValArgs; + for (unsigned i = 0, e = Outs.size(); i != e; ++i) { + ISD::ArgFlagsTy Flags = Outs[i].Flags; + if (!Flags.isByVal()) + continue; + + SDValue Arg = OutVals[i]; + unsigned Size = Flags.getByValSize(); + Align Alignment = Flags.getNonZeroByValAlign(); + + int FI = + MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); + SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); + SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); + + Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, + /*IsVolatile=*/false, + /*AlwaysInline=*/false, IsTailCall, + MachinePointerInfo(), MachinePointerInfo()); + ByValArgs.push_back(FIPtr); + } + + if (!IsTailCall) + Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); + + // Copy argument values to their designated locations. + SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; + SmallVector<SDValue, 8> MemOpChains; + SDValue StackPtr; + for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + SDValue ArgValue = OutVals[i]; + ISD::ArgFlagsTy Flags = Outs[i].Flags; + + // Handle passing f64 on RV32D with a soft float ABI as a special case. + bool IsF64OnRV32DSoftABI = + VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; + if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { + SDValue SplitF64 = DAG.getNode( + RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); + SDValue Lo = SplitF64.getValue(0); + SDValue Hi = SplitF64.getValue(1); + + Register RegLo = VA.getLocReg(); + RegsToPass.push_back(std::make_pair(RegLo, Lo)); + + if (RegLo == RISCV::X17) { + // Second half of f64 is passed on the stack. + // Work out the address of the stack slot. + if (!StackPtr.getNode()) + StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); + // Emit the store. + MemOpChains.push_back( + DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); + } else { + // Second half of f64 is passed in another GPR. + assert(RegLo < RISCV::X31 && "Invalid register pair"); + Register RegHigh = RegLo + 1; + RegsToPass.push_back(std::make_pair(RegHigh, Hi)); + } + continue; + } + + // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way + // as any other MemLoc. + + // Promote the value if needed. + // For now, only handle fully promoted and indirect arguments. + if (VA.getLocInfo() == CCValAssign::Indirect) { + // Store the argument in a stack slot and pass its address. + Align StackAlign = + std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), + getPrefTypeAlign(ArgValue.getValueType(), DAG)); + TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); + // If the original argument was split (e.g. i128), we need + // to store the required parts of it here (and pass just one address). + // Vectors may be partly split to registers and partly to the stack, in + // which case the base address is partly offset and subsequent stores are + // relative to that. + unsigned ArgIndex = Outs[i].OrigArgIndex; + unsigned ArgPartOffset = Outs[i].PartOffset; + assert(VA.getValVT().isVector() || ArgPartOffset == 0); + // Calculate the total size to store. We don't have access to what we're + // actually storing other than performing the loop and collecting the + // info. + SmallVector<std::pair<SDValue, SDValue>> Parts; + while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { + SDValue PartValue = OutVals[i + 1]; + unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; + SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL); + EVT PartVT = PartValue.getValueType(); + if (PartVT.isScalableVector()) + Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset); + StoredSize += PartVT.getStoreSize(); + StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); + Parts.push_back(std::make_pair(PartValue, Offset)); + ++i; + } + SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); + int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); + MemOpChains.push_back( + DAG.getStore(Chain, DL, ArgValue, SpillSlot, + MachinePointerInfo::getFixedStack(MF, FI))); + for (const auto &Part : Parts) { + SDValue PartValue = Part.first; + SDValue PartOffset = Part.second; + SDValue Address = + DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset); + MemOpChains.push_back( + DAG.getStore(Chain, DL, PartValue, Address, + MachinePointerInfo::getFixedStack(MF, FI))); + } + ArgValue = SpillSlot; + } else { + ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); + } + + // Use local copy if it is a byval arg. + if (Flags.isByVal()) + ArgValue = ByValArgs[j++]; + + if (VA.isRegLoc()) { + // Queue up the argument copies and emit them at the end. + RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); + } else { + assert(VA.isMemLoc() && "Argument not register or memory"); + assert(!IsTailCall && "Tail call not allowed if stack is used " + "for passing parameters"); + + // Work out the address of the stack slot. + if (!StackPtr.getNode()) + StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); + SDValue Address = + DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, + DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); + + // Emit the store. + MemOpChains.push_back( + DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); + } + } + + // Join the stores, which are independent of one another. + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); + + SDValue Glue; + + // Build a sequence of copy-to-reg nodes, chained and glued together. + for (auto &Reg : RegsToPass) { + Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); + Glue = Chain.getValue(1); + } + + // Validate that none of the argument registers have been marked as + // reserved, if so report an error. Do the same for the return address if this + // is not a tailcall. + validateCCReservedRegs(RegsToPass, MF); + if (!IsTailCall && + MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) + MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ + MF.getFunction(), + "Return address register required, but has been reserved."}); + + // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a + // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't + // split it and then direct call can be matched by PseudoCALL. + if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { + const GlobalValue *GV = S->getGlobal(); + + unsigned OpFlags = RISCVII::MO_CALL; + if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) + OpFlags = RISCVII::MO_PLT; + + Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); + } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { + unsigned OpFlags = RISCVII::MO_CALL; + + if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), + nullptr)) + OpFlags = RISCVII::MO_PLT; + + Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); + } + + // The first call operand is the chain and the second is the target address. + SmallVector<SDValue, 8> Ops; + Ops.push_back(Chain); + Ops.push_back(Callee); + + // Add argument registers to the end of the list so that they are + // known live into the call. + for (auto &Reg : RegsToPass) + Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); + + if (!IsTailCall) { + // Add a register mask operand representing the call-preserved registers. + const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); + const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); + assert(Mask && "Missing call preserved mask for calling convention"); + Ops.push_back(DAG.getRegisterMask(Mask)); + } + + // Glue the call to the argument copies, if any. + if (Glue.getNode()) + Ops.push_back(Glue); + + // Emit the call. + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + + if (IsTailCall) { + MF.getFrameInfo().setHasTailCall(); + return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); + } + + Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); + DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); + Glue = Chain.getValue(1); + + // Mark the end of the call, which is glued to the call itself. + Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL); + Glue = Chain.getValue(1); + + // Assign locations to each value returned by this call. + SmallVector<CCValAssign, 16> RVLocs; + CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); + analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV); + + // Copy all of the result registers out of their specified physreg. + for (auto &VA : RVLocs) { + // Copy the value out + SDValue RetValue = + DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); + // Glue the RetValue to the end of the call sequence + Chain = RetValue.getValue(1); + Glue = RetValue.getValue(2); + + if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { + assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); + SDValue RetValue2 = + DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); + Chain = RetValue2.getValue(1); + Glue = RetValue2.getValue(2); + RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, + RetValue2); + } + + RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); + + InVals.push_back(RetValue); + } + + return Chain; +} + +bool RISCVTargetLowering::CanLowerReturn( + CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); + + std::optional<unsigned> FirstMaskArgument; + if (Subtarget.hasVInstructions()) + FirstMaskArgument = preAssignMask(Outs); + + for (unsigned i = 0, e = Outs.size(); i != e; ++i) { + MVT VT = Outs[i].VT; + ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; + RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); + if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, + ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, + *this, FirstMaskArgument)) + return false; + } + return true; +} + +SDValue +RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, + bool IsVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SDLoc &DL, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); + + // Stores the assignment of the return value to a location. + SmallVector<CCValAssign, 16> RVLocs; + + // Info about the registers and stack slot. + CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + + analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, + nullptr, CC_RISCV); + + if (CallConv == CallingConv::GHC && !RVLocs.empty()) + report_fatal_error("GHC functions return void only"); + + SDValue Glue; + SmallVector<SDValue, 4> RetOps(1, Chain); + + // Copy the result values into the output registers. + for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { + SDValue Val = OutVals[i]; + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + + if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { + // Handle returning f64 on RV32D with a soft float ABI. + assert(VA.isRegLoc() && "Expected return via registers"); + SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, + DAG.getVTList(MVT::i32, MVT::i32), Val); + SDValue Lo = SplitF64.getValue(0); + SDValue Hi = SplitF64.getValue(1); + Register RegLo = VA.getLocReg(); + assert(RegLo < RISCV::X31 && "Invalid register pair"); + Register RegHi = RegLo + 1; + + if (STI.isRegisterReservedByUser(RegLo) || + STI.isRegisterReservedByUser(RegHi)) + MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ + MF.getFunction(), + "Return value register required, but has been reserved."}); + + Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); + Glue = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); + Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); + Glue = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); + } else { + // Handle a 'normal' return. + Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); + Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); + + if (STI.isRegisterReservedByUser(VA.getLocReg())) + MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ + MF.getFunction(), + "Return value register required, but has been reserved."}); + + // Guarantee that all emitted copies are stuck together. + Glue = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); + } + } + + RetOps[0] = Chain; // Update chain. + + // Add the glue node if we have it. + if (Glue.getNode()) { + RetOps.push_back(Glue); + } + + if (any_of(RVLocs, + [](CCValAssign &VA) { return VA.getLocVT().isScalableVector(); })) + MF.getInfo<RISCVMachineFunctionInfo>()->setIsVectorCall(); + + unsigned RetOpc = RISCVISD::RET_FLAG; + // Interrupt service routines use different return instructions. + const Function &Func = DAG.getMachineFunction().getFunction(); + if (Func.hasFnAttribute("interrupt")) { + if (!Func.getReturnType()->isVoidTy()) + report_fatal_error( + "Functions with the interrupt attribute must have void return type!"); + + MachineFunction &MF = DAG.getMachineFunction(); + StringRef Kind = + MF.getFunction().getFnAttribute("interrupt").getValueAsString(); + + if (Kind == "user") + RetOpc = RISCVISD::URET_FLAG; + else if (Kind == "supervisor") + RetOpc = RISCVISD::SRET_FLAG; + else + RetOpc = RISCVISD::MRET_FLAG; + } + + return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); +} + +void RISCVTargetLowering::validateCCReservedRegs( + const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, + MachineFunction &MF) const { + const Function &F = MF.getFunction(); + const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); + + if (llvm::any_of(Regs, [&STI](auto Reg) { + return STI.isRegisterReservedByUser(Reg.first); + })) + F.getContext().diagnose(DiagnosticInfoUnsupported{ + F, "Argument register required, but has been reserved."}); +} + +// Check if the result of the node is only used as a return value, as +// otherwise we can't perform a tail-call. +bool RISCVTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { + if (N->getNumValues() != 1) + return false; + if (!N->hasNUsesOfValue(1, 0)) + return false; + + SDNode *Copy = *N->use_begin(); + // TODO: Handle additional opcodes in order to support tail-calling libcalls + // with soft float ABIs. + if (Copy->getOpcode() != ISD::CopyToReg) { + return false; + } + + // If the ISD::CopyToReg has a glue operand, we conservatively assume it + // isn't safe to perform a tail call. + if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == MVT::Glue) + return false; + + // The copy must be used by a RISCVISD::RET_FLAG, and nothing else. + bool HasRet = false; + for (SDNode *Node : Copy->uses()) { + if (Node->getOpcode() != RISCVISD::RET_FLAG) + return false; + HasRet = true; + } + if (!HasRet) + return false; + + Chain = Copy->getOperand(0); + return true; +} + +bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { + return CI->isTailCall(); +} + +const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { +#define NODE_NAME_CASE(NODE) \ + case RISCVISD::NODE: \ + return "RISCVISD::" #NODE; + // clang-format off + switch ((RISCVISD::NodeType)Opcode) { + case RISCVISD::FIRST_NUMBER: + break; + NODE_NAME_CASE(RET_FLAG) + NODE_NAME_CASE(URET_FLAG) + NODE_NAME_CASE(SRET_FLAG) + NODE_NAME_CASE(MRET_FLAG) + NODE_NAME_CASE(CALL) + NODE_NAME_CASE(SELECT_CC) + NODE_NAME_CASE(BR_CC) + NODE_NAME_CASE(BuildPairF64) + NODE_NAME_CASE(SplitF64) + NODE_NAME_CASE(TAIL) + NODE_NAME_CASE(ADD_LO) + NODE_NAME_CASE(HI) + NODE_NAME_CASE(LLA) + NODE_NAME_CASE(ADD_TPREL) + NODE_NAME_CASE(LA) + NODE_NAME_CASE(LA_TLS_IE) + NODE_NAME_CASE(LA_TLS_GD) + NODE_NAME_CASE(MULHSU) + NODE_NAME_CASE(SLLW) + NODE_NAME_CASE(SRAW) + NODE_NAME_CASE(SRLW) + NODE_NAME_CASE(DIVW) + NODE_NAME_CASE(DIVUW) + NODE_NAME_CASE(REMUW) + NODE_NAME_CASE(ROLW) + NODE_NAME_CASE(RORW) + NODE_NAME_CASE(CLZW) + NODE_NAME_CASE(CTZW) + NODE_NAME_CASE(ABSW) + NODE_NAME_CASE(FMV_H_X) + NODE_NAME_CASE(FMV_X_ANYEXTH) + NODE_NAME_CASE(FMV_X_SIGNEXTH) + NODE_NAME_CASE(FMV_W_X_RV64) + NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) + NODE_NAME_CASE(FCVT_X) + NODE_NAME_CASE(FCVT_XU) + NODE_NAME_CASE(FCVT_W_RV64) + NODE_NAME_CASE(FCVT_WU_RV64) + NODE_NAME_CASE(STRICT_FCVT_W_RV64) + NODE_NAME_CASE(STRICT_FCVT_WU_RV64) + NODE_NAME_CASE(FROUND) + NODE_NAME_CASE(READ_CYCLE_WIDE) + NODE_NAME_CASE(BREV8) + NODE_NAME_CASE(ORC_B) + NODE_NAME_CASE(ZIP) + NODE_NAME_CASE(UNZIP) + NODE_NAME_CASE(VMV_V_X_VL) + NODE_NAME_CASE(VFMV_V_F_VL) + NODE_NAME_CASE(VMV_X_S) + NODE_NAME_CASE(VMV_S_X_VL) + NODE_NAME_CASE(VFMV_S_F_VL) + NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL) + NODE_NAME_CASE(READ_VLENB) + NODE_NAME_CASE(TRUNCATE_VECTOR_VL) + NODE_NAME_CASE(VSLIDEUP_VL) + NODE_NAME_CASE(VSLIDE1UP_VL) + NODE_NAME_CASE(VSLIDEDOWN_VL) + NODE_NAME_CASE(VSLIDE1DOWN_VL) + NODE_NAME_CASE(VID_VL) + NODE_NAME_CASE(VFNCVT_ROD_VL) + NODE_NAME_CASE(VECREDUCE_ADD_VL) + NODE_NAME_CASE(VECREDUCE_UMAX_VL) + NODE_NAME_CASE(VECREDUCE_SMAX_VL) + NODE_NAME_CASE(VECREDUCE_UMIN_VL) + NODE_NAME_CASE(VECREDUCE_SMIN_VL) + NODE_NAME_CASE(VECREDUCE_AND_VL) + NODE_NAME_CASE(VECREDUCE_OR_VL) + NODE_NAME_CASE(VECREDUCE_XOR_VL) + NODE_NAME_CASE(VECREDUCE_FADD_VL) + NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) + NODE_NAME_CASE(VECREDUCE_FMIN_VL) + NODE_NAME_CASE(VECREDUCE_FMAX_VL) + NODE_NAME_CASE(ADD_VL) + NODE_NAME_CASE(AND_VL) + NODE_NAME_CASE(MUL_VL) + NODE_NAME_CASE(OR_VL) + NODE_NAME_CASE(SDIV_VL) + NODE_NAME_CASE(SHL_VL) + NODE_NAME_CASE(SREM_VL) + NODE_NAME_CASE(SRA_VL) + NODE_NAME_CASE(SRL_VL) + NODE_NAME_CASE(SUB_VL) + NODE_NAME_CASE(UDIV_VL) + NODE_NAME_CASE(UREM_VL) + NODE_NAME_CASE(XOR_VL) + NODE_NAME_CASE(SADDSAT_VL) + NODE_NAME_CASE(UADDSAT_VL) + NODE_NAME_CASE(SSUBSAT_VL) + NODE_NAME_CASE(USUBSAT_VL) + NODE_NAME_CASE(FADD_VL) + NODE_NAME_CASE(FSUB_VL) + NODE_NAME_CASE(FMUL_VL) + NODE_NAME_CASE(FDIV_VL) + NODE_NAME_CASE(FNEG_VL) + NODE_NAME_CASE(FABS_VL) + NODE_NAME_CASE(FSQRT_VL) + NODE_NAME_CASE(VFMADD_VL) + NODE_NAME_CASE(VFNMADD_VL) + NODE_NAME_CASE(VFMSUB_VL) + NODE_NAME_CASE(VFNMSUB_VL) + NODE_NAME_CASE(FCOPYSIGN_VL) + NODE_NAME_CASE(SMIN_VL) + NODE_NAME_CASE(SMAX_VL) + NODE_NAME_CASE(UMIN_VL) + NODE_NAME_CASE(UMAX_VL) + NODE_NAME_CASE(FMINNUM_VL) + NODE_NAME_CASE(FMAXNUM_VL) + NODE_NAME_CASE(MULHS_VL) + NODE_NAME_CASE(MULHU_VL) + NODE_NAME_CASE(VFCVT_RTZ_X_F_VL) + NODE_NAME_CASE(VFCVT_RTZ_XU_F_VL) + NODE_NAME_CASE(VFCVT_RM_X_F_VL) + NODE_NAME_CASE(VFCVT_RM_XU_F_VL) + NODE_NAME_CASE(VFCVT_X_F_VL) + NODE_NAME_CASE(VFCVT_XU_F_VL) + NODE_NAME_CASE(VFROUND_NOEXCEPT_VL) + NODE_NAME_CASE(SINT_TO_FP_VL) + NODE_NAME_CASE(UINT_TO_FP_VL) + NODE_NAME_CASE(VFCVT_RM_F_XU_VL) + NODE_NAME_CASE(VFCVT_RM_F_X_VL) + NODE_NAME_CASE(FP_EXTEND_VL) + NODE_NAME_CASE(FP_ROUND_VL) + NODE_NAME_CASE(VWMUL_VL) + NODE_NAME_CASE(VWMULU_VL) + NODE_NAME_CASE(VWMULSU_VL) + NODE_NAME_CASE(VWADD_VL) + NODE_NAME_CASE(VWADDU_VL) + NODE_NAME_CASE(VWSUB_VL) + NODE_NAME_CASE(VWSUBU_VL) + NODE_NAME_CASE(VWADD_W_VL) + NODE_NAME_CASE(VWADDU_W_VL) + NODE_NAME_CASE(VWSUB_W_VL) + NODE_NAME_CASE(VWSUBU_W_VL) + NODE_NAME_CASE(VNSRL_VL) + NODE_NAME_CASE(SETCC_VL) + NODE_NAME_CASE(VSELECT_VL) + NODE_NAME_CASE(VP_MERGE_VL) + NODE_NAME_CASE(VMAND_VL) + NODE_NAME_CASE(VMOR_VL) + NODE_NAME_CASE(VMXOR_VL) + NODE_NAME_CASE(VMCLR_VL) + NODE_NAME_CASE(VMSET_VL) + NODE_NAME_CASE(VRGATHER_VX_VL) + NODE_NAME_CASE(VRGATHER_VV_VL) + NODE_NAME_CASE(VRGATHEREI16_VV_VL) + NODE_NAME_CASE(VSEXT_VL) + NODE_NAME_CASE(VZEXT_VL) + NODE_NAME_CASE(VCPOP_VL) + NODE_NAME_CASE(VFIRST_VL) + NODE_NAME_CASE(READ_CSR) + NODE_NAME_CASE(WRITE_CSR) + NODE_NAME_CASE(SWAP_CSR) + } + // clang-format on + return nullptr; +#undef NODE_NAME_CASE +} + +/// getConstraintType - Given a constraint letter, return the type of +/// constraint it is for this target. +RISCVTargetLowering::ConstraintType +RISCVTargetLowering::getConstraintType(StringRef Constraint) const { + if (Constraint.size() == 1) { + switch (Constraint[0]) { + default: + break; + case 'f': + return C_RegisterClass; + case 'I': + case 'J': + case 'K': + return C_Immediate; + case 'A': + return C_Memory; + case 'S': // A symbolic address + return C_Other; + } + } else { + if (Constraint == "vr" || Constraint == "vm") + return C_RegisterClass; + } + return TargetLowering::getConstraintType(Constraint); +} + +std::pair<unsigned, const TargetRegisterClass *> +RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, + StringRef Constraint, + MVT VT) const { + // First, see if this is a constraint that directly corresponds to a + // RISCV register class. + if (Constraint.size() == 1) { + switch (Constraint[0]) { + case 'r': + // TODO: Support fixed vectors up to XLen for P extension? + if (VT.isVector()) + break; + return std::make_pair(0U, &RISCV::GPRRegClass); + case 'f': + if (Subtarget.hasStdExtZfhOrZfhmin() && VT == MVT::f16) + return std::make_pair(0U, &RISCV::FPR16RegClass); + if (Subtarget.hasStdExtF() && VT == MVT::f32) + return std::make_pair(0U, &RISCV::FPR32RegClass); + if (Subtarget.hasStdExtD() && VT == MVT::f64) + return std::make_pair(0U, &RISCV::FPR64RegClass); + break; + default: + break; + } + } else if (Constraint == "vr") { + for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass, + &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { + if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) + return std::make_pair(0U, RC); + } + } else if (Constraint == "vm") { + if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy)) + return std::make_pair(0U, &RISCV::VMV0RegClass); + } + + // Clang will correctly decode the usage of register name aliases into their + // official names. However, other frontends like `rustc` do not. This allows + // users of these frontends to use the ABI names for registers in LLVM-style + // register constraints. + unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) + .Case("{zero}", RISCV::X0) + .Case("{ra}", RISCV::X1) + .Case("{sp}", RISCV::X2) + .Case("{gp}", RISCV::X3) + .Case("{tp}", RISCV::X4) + .Case("{t0}", RISCV::X5) + .Case("{t1}", RISCV::X6) + .Case("{t2}", RISCV::X7) + .Cases("{s0}", "{fp}", RISCV::X8) + .Case("{s1}", RISCV::X9) + .Case("{a0}", RISCV::X10) + .Case("{a1}", RISCV::X11) + .Case("{a2}", RISCV::X12) + .Case("{a3}", RISCV::X13) + .Case("{a4}", RISCV::X14) + .Case("{a5}", RISCV::X15) + .Case("{a6}", RISCV::X16) + .Case("{a7}", RISCV::X17) + .Case("{s2}", RISCV::X18) + .Case("{s3}", RISCV::X19) + .Case("{s4}", RISCV::X20) + .Case("{s5}", RISCV::X21) + .Case("{s6}", RISCV::X22) + .Case("{s7}", RISCV::X23) + .Case("{s8}", RISCV::X24) + .Case("{s9}", RISCV::X25) + .Case("{s10}", RISCV::X26) + .Case("{s11}", RISCV::X27) + .Case("{t3}", RISCV::X28) + .Case("{t4}", RISCV::X29) + .Case("{t5}", RISCV::X30) + .Case("{t6}", RISCV::X31) + .Default(RISCV::NoRegister); + if (XRegFromAlias != RISCV::NoRegister) + return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); + + // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the + // TableGen record rather than the AsmName to choose registers for InlineAsm + // constraints, plus we want to match those names to the widest floating point + // register type available, manually select floating point registers here. + // + // The second case is the ABI name of the register, so that frontends can also + // use the ABI names in register constraint lists. + if (Subtarget.hasStdExtF()) { + unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) + .Cases("{f0}", "{ft0}", RISCV::F0_F) + .Cases("{f1}", "{ft1}", RISCV::F1_F) + .Cases("{f2}", "{ft2}", RISCV::F2_F) + .Cases("{f3}", "{ft3}", RISCV::F3_F) + .Cases("{f4}", "{ft4}", RISCV::F4_F) + .Cases("{f5}", "{ft5}", RISCV::F5_F) + .Cases("{f6}", "{ft6}", RISCV::F6_F) + .Cases("{f7}", "{ft7}", RISCV::F7_F) + .Cases("{f8}", "{fs0}", RISCV::F8_F) + .Cases("{f9}", "{fs1}", RISCV::F9_F) + .Cases("{f10}", "{fa0}", RISCV::F10_F) + .Cases("{f11}", "{fa1}", RISCV::F11_F) + .Cases("{f12}", "{fa2}", RISCV::F12_F) + .Cases("{f13}", "{fa3}", RISCV::F13_F) + .Cases("{f14}", "{fa4}", RISCV::F14_F) + .Cases("{f15}", "{fa5}", RISCV::F15_F) + .Cases("{f16}", "{fa6}", RISCV::F16_F) + .Cases("{f17}", "{fa7}", RISCV::F17_F) + .Cases("{f18}", "{fs2}", RISCV::F18_F) + .Cases("{f19}", "{fs3}", RISCV::F19_F) + .Cases("{f20}", "{fs4}", RISCV::F20_F) + .Cases("{f21}", "{fs5}", RISCV::F21_F) + .Cases("{f22}", "{fs6}", RISCV::F22_F) + .Cases("{f23}", "{fs7}", RISCV::F23_F) + .Cases("{f24}", "{fs8}", RISCV::F24_F) + .Cases("{f25}", "{fs9}", RISCV::F25_F) + .Cases("{f26}", "{fs10}", RISCV::F26_F) + .Cases("{f27}", "{fs11}", RISCV::F27_F) + .Cases("{f28}", "{ft8}", RISCV::F28_F) + .Cases("{f29}", "{ft9}", RISCV::F29_F) + .Cases("{f30}", "{ft10}", RISCV::F30_F) + .Cases("{f31}", "{ft11}", RISCV::F31_F) + .Default(RISCV::NoRegister); + if (FReg != RISCV::NoRegister) { + assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); + if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) { + unsigned RegNo = FReg - RISCV::F0_F; + unsigned DReg = RISCV::F0_D + RegNo; + return std::make_pair(DReg, &RISCV::FPR64RegClass); + } + if (VT == MVT::f32 || VT == MVT::Other) + return std::make_pair(FReg, &RISCV::FPR32RegClass); + if (Subtarget.hasStdExtZfhOrZfhmin() && VT == MVT::f16) { + unsigned RegNo = FReg - RISCV::F0_F; + unsigned HReg = RISCV::F0_H + RegNo; + return std::make_pair(HReg, &RISCV::FPR16RegClass); + } + } + } + + if (Subtarget.hasVInstructions()) { + Register VReg = StringSwitch<Register>(Constraint.lower()) + .Case("{v0}", RISCV::V0) + .Case("{v1}", RISCV::V1) + .Case("{v2}", RISCV::V2) + .Case("{v3}", RISCV::V3) + .Case("{v4}", RISCV::V4) + .Case("{v5}", RISCV::V5) + .Case("{v6}", RISCV::V6) + .Case("{v7}", RISCV::V7) + .Case("{v8}", RISCV::V8) + .Case("{v9}", RISCV::V9) + .Case("{v10}", RISCV::V10) + .Case("{v11}", RISCV::V11) + .Case("{v12}", RISCV::V12) + .Case("{v13}", RISCV::V13) + .Case("{v14}", RISCV::V14) + .Case("{v15}", RISCV::V15) + .Case("{v16}", RISCV::V16) + .Case("{v17}", RISCV::V17) + .Case("{v18}", RISCV::V18) + .Case("{v19}", RISCV::V19) + .Case("{v20}", RISCV::V20) + .Case("{v21}", RISCV::V21) + .Case("{v22}", RISCV::V22) + .Case("{v23}", RISCV::V23) + .Case("{v24}", RISCV::V24) + .Case("{v25}", RISCV::V25) + .Case("{v26}", RISCV::V26) + .Case("{v27}", RISCV::V27) + .Case("{v28}", RISCV::V28) + .Case("{v29}", RISCV::V29) + .Case("{v30}", RISCV::V30) + .Case("{v31}", RISCV::V31) + .Default(RISCV::NoRegister); + if (VReg != RISCV::NoRegister) { + if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) + return std::make_pair(VReg, &RISCV::VMRegClass); + if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) + return std::make_pair(VReg, &RISCV::VRRegClass); + for (const auto *RC : + {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { + if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { + VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); + return std::make_pair(VReg, RC); + } + } + } + } + + std::pair<Register, const TargetRegisterClass *> Res = + TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); + + // If we picked one of the Zfinx register classes, remap it to the GPR class. + // FIXME: When Zfinx is supported in CodeGen this will need to take the + // Subtarget into account. + if (Res.second == &RISCV::GPRF16RegClass || + Res.second == &RISCV::GPRF32RegClass || + Res.second == &RISCV::GPRF64RegClass) + return std::make_pair(Res.first, &RISCV::GPRRegClass); + + return Res; +} + +unsigned +RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { + // Currently only support length 1 constraints. + if (ConstraintCode.size() == 1) { + switch (ConstraintCode[0]) { + case 'A': + return InlineAsm::Constraint_A; + default: + break; + } + } + + return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); +} + +void RISCVTargetLowering::LowerAsmOperandForConstraint( + SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, + SelectionDAG &DAG) const { + // Currently only support length 1 constraints. + if (Constraint.length() == 1) { + switch (Constraint[0]) { + case 'I': + // Validate & create a 12-bit signed immediate operand. + if (auto *C = dyn_cast<ConstantSDNode>(Op)) { + uint64_t CVal = C->getSExtValue(); + if (isInt<12>(CVal)) + Ops.push_back( + DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); + } + return; + case 'J': + // Validate & create an integer zero operand. + if (auto *C = dyn_cast<ConstantSDNode>(Op)) + if (C->getZExtValue() == 0) + Ops.push_back( + DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); + return; + case 'K': + // Validate & create a 5-bit unsigned immediate operand. + if (auto *C = dyn_cast<ConstantSDNode>(Op)) { + uint64_t CVal = C->getZExtValue(); + if (isUInt<5>(CVal)) + Ops.push_back( + DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); + } + return; + case 'S': + if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { + Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), + GA->getValueType(0))); + } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { + Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(), + BA->getValueType(0))); + } + return; + default: + break; + } + } + TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); +} + +Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder, + Instruction *Inst, + AtomicOrdering Ord) const { + if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) + return Builder.CreateFence(Ord); + if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) + return Builder.CreateFence(AtomicOrdering::Release); + return nullptr; +} + +Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder, + Instruction *Inst, + AtomicOrdering Ord) const { + if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) + return Builder.CreateFence(AtomicOrdering::Acquire); + return nullptr; +} + +TargetLowering::AtomicExpansionKind +RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { + // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating + // point operations can't be used in an lr/sc sequence without breaking the + // forward-progress guarantee. + if (AI->isFloatingPointOperation() || + AI->getOperation() == AtomicRMWInst::UIncWrap || + AI->getOperation() == AtomicRMWInst::UDecWrap) + return AtomicExpansionKind::CmpXChg; + + // Don't expand forced atomics, we want to have __sync libcalls instead. + if (Subtarget.hasForcedAtomics()) + return AtomicExpansionKind::None; + + unsigned Size = AI->getType()->getPrimitiveSizeInBits(); + if (Size == 8 || Size == 16) + return AtomicExpansionKind::MaskedIntrinsic; + return AtomicExpansionKind::None; +} + +static Intrinsic::ID +getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { + if (XLen == 32) { + switch (BinOp) { + default: + llvm_unreachable("Unexpected AtomicRMW BinOp"); + case AtomicRMWInst::Xchg: + return Intrinsic::riscv_masked_atomicrmw_xchg_i32; + case AtomicRMWInst::Add: + return Intrinsic::riscv_masked_atomicrmw_add_i32; + case AtomicRMWInst::Sub: + return Intrinsic::riscv_masked_atomicrmw_sub_i32; + case AtomicRMWInst::Nand: + return Intrinsic::riscv_masked_atomicrmw_nand_i32; + case AtomicRMWInst::Max: + return Intrinsic::riscv_masked_atomicrmw_max_i32; + case AtomicRMWInst::Min: + return Intrinsic::riscv_masked_atomicrmw_min_i32; + case AtomicRMWInst::UMax: + return Intrinsic::riscv_masked_atomicrmw_umax_i32; + case AtomicRMWInst::UMin: + return Intrinsic::riscv_masked_atomicrmw_umin_i32; + } + } + + if (XLen == 64) { + switch (BinOp) { + default: + llvm_unreachable("Unexpected AtomicRMW BinOp"); + case AtomicRMWInst::Xchg: + return Intrinsic::riscv_masked_atomicrmw_xchg_i64; + case AtomicRMWInst::Add: + return Intrinsic::riscv_masked_atomicrmw_add_i64; + case AtomicRMWInst::Sub: + return Intrinsic::riscv_masked_atomicrmw_sub_i64; + case AtomicRMWInst::Nand: + return Intrinsic::riscv_masked_atomicrmw_nand_i64; + case AtomicRMWInst::Max: + return Intrinsic::riscv_masked_atomicrmw_max_i64; + case AtomicRMWInst::Min: + return Intrinsic::riscv_masked_atomicrmw_min_i64; + case AtomicRMWInst::UMax: + return Intrinsic::riscv_masked_atomicrmw_umax_i64; + case AtomicRMWInst::UMin: + return Intrinsic::riscv_masked_atomicrmw_umin_i64; + } + } + + llvm_unreachable("Unexpected XLen\n"); +} + +Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( + IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, + Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { + unsigned XLen = Subtarget.getXLen(); + Value *Ordering = + Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); + Type *Tys[] = {AlignedAddr->getType()}; + Function *LrwOpScwLoop = Intrinsic::getDeclaration( + AI->getModule(), + getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); + + if (XLen == 64) { + Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); + Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); + ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); + } + + Value *Result; + + // Must pass the shift amount needed to sign extend the loaded value prior + // to performing a signed comparison for min/max. ShiftAmt is the number of + // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which + // is the number of bits to left+right shift the value in order to + // sign-extend. + if (AI->getOperation() == AtomicRMWInst::Min || + AI->getOperation() == AtomicRMWInst::Max) { + const DataLayout &DL = AI->getModule()->getDataLayout(); + unsigned ValWidth = + DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); + Value *SextShamt = + Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); + Result = Builder.CreateCall(LrwOpScwLoop, + {AlignedAddr, Incr, Mask, SextShamt, Ordering}); + } else { + Result = + Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); + } + + if (XLen == 64) + Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); + return Result; +} + +TargetLowering::AtomicExpansionKind +RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( + AtomicCmpXchgInst *CI) const { + // Don't expand forced atomics, we want to have __sync libcalls instead. + if (Subtarget.hasForcedAtomics()) + return AtomicExpansionKind::None; + + unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); + if (Size == 8 || Size == 16) + return AtomicExpansionKind::MaskedIntrinsic; + return AtomicExpansionKind::None; +} + +Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( + IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, + Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { + unsigned XLen = Subtarget.getXLen(); + Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); + Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; + if (XLen == 64) { + CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); + NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); + Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); + CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; + } + Type *Tys[] = {AlignedAddr->getType()}; + Function *MaskedCmpXchg = + Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); + Value *Result = Builder.CreateCall( + MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); + if (XLen == 64) + Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); + return Result; +} + +bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT IndexVT, + EVT DataVT) const { + return false; +} + +bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, + EVT VT) const { + if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple()) + return false; + + switch (FPVT.getSimpleVT().SimpleTy) { + case MVT::f16: + return Subtarget.hasStdExtZfhOrZfhmin(); + case MVT::f32: + return Subtarget.hasStdExtF(); + case MVT::f64: + return Subtarget.hasStdExtD(); + default: + return false; + } +} + +unsigned RISCVTargetLowering::getJumpTableEncoding() const { + // If we are using the small code model, we can reduce size of jump table + // entry to 4 bytes. + if (Subtarget.is64Bit() && !isPositionIndependent() && + getTargetMachine().getCodeModel() == CodeModel::Small) { + return MachineJumpTableInfo::EK_Custom32; + } + return TargetLowering::getJumpTableEncoding(); +} + +const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry( + const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, + unsigned uid, MCContext &Ctx) const { + assert(Subtarget.is64Bit() && !isPositionIndependent() && + getTargetMachine().getCodeModel() == CodeModel::Small); + return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx); +} + +bool RISCVTargetLowering::isVScaleKnownToBeAPowerOfTwo() const { + // We define vscale to be VLEN/RVVBitsPerBlock. VLEN is always a power + // of two >= 64, and RVVBitsPerBlock is 64. Thus, vscale must be + // a power of two as well. + // FIXME: This doesn't work for zve32, but that's already broken + // elsewhere for the same reason. + assert(Subtarget.getRealMinVLen() >= 64 && "zve32* unsupported"); + static_assert(RISCV::RVVBitsPerBlock == 64, + "RVVBitsPerBlock changed, audit needed"); + return true; +} + +bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, + EVT VT) const { + EVT SVT = VT.getScalarType(); + + if (!SVT.isSimple()) + return false; + + switch (SVT.getSimpleVT().SimpleTy) { + case MVT::f16: + return VT.isVector() ? Subtarget.hasVInstructionsF16() + : Subtarget.hasStdExtZfh(); + case MVT::f32: + return Subtarget.hasStdExtF(); + case MVT::f64: + return Subtarget.hasStdExtD(); + default: + break; + } + + return false; +} + +Register RISCVTargetLowering::getExceptionPointerRegister( + const Constant *PersonalityFn) const { + return RISCV::X10; +} + +Register RISCVTargetLowering::getExceptionSelectorRegister( + const Constant *PersonalityFn) const { + return RISCV::X11; +} + +bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { + // Return false to suppress the unnecessary extensions if the LibCall + // arguments or return value is f32 type for LP64 ABI. + RISCVABI::ABI ABI = Subtarget.getTargetABI(); + if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) + return false; + + return true; +} + +bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { + if (Subtarget.is64Bit() && Type == MVT::i32) + return true; + + return IsSigned; +} + +bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, + SDValue C) const { + // Check integral scalar types. + const bool HasExtMOrZmmul = + Subtarget.hasStdExtM() || Subtarget.hasStdExtZmmul(); + if (VT.isScalarInteger()) { + // Omit the optimization if the sub target has the M extension and the data + // size exceeds XLen. + if (HasExtMOrZmmul && VT.getSizeInBits() > Subtarget.getXLen()) + return false; + if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { + // Break the MUL to a SLLI and an ADD/SUB. + const APInt &Imm = ConstNode->getAPIntValue(); + if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || + (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) + return true; + // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12. + if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) && + ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || + (Imm - 8).isPowerOf2())) + return true; + // Omit the following optimization if the sub target has the M extension + // and the data size >= XLen. + if (HasExtMOrZmmul && VT.getSizeInBits() >= Subtarget.getXLen()) + return false; + // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs + // a pair of LUI/ADDI. + if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { + APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); + if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || + (1 - ImmS).isPowerOf2()) + return true; + } + } + } + + return false; +} + +bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode, + SDValue ConstNode) const { + // Let the DAGCombiner decide for vectors. + EVT VT = AddNode.getValueType(); + if (VT.isVector()) + return true; + + // Let the DAGCombiner decide for larger types. + if (VT.getScalarSizeInBits() > Subtarget.getXLen()) + return true; + + // It is worse if c1 is simm12 while c1*c2 is not. + ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); + ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); + const APInt &C1 = C1Node->getAPIntValue(); + const APInt &C2 = C2Node->getAPIntValue(); + if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12)) + return false; + + // Default to true and let the DAGCombiner decide. + return true; +} + +bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( + EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, + unsigned *Fast) const { + if (!VT.isVector()) { + if (Fast) + *Fast = 0; + return Subtarget.enableUnalignedScalarMem(); + } + + // All vector implementations must support element alignment + EVT ElemVT = VT.getVectorElementType(); + if (Alignment >= ElemVT.getStoreSize()) { + if (Fast) + *Fast = 1; + return true; + } + + return false; +} + +bool RISCVTargetLowering::splitValueIntoRegisterParts( + SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, + unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const { + bool IsABIRegCopy = CC.has_value(); + EVT ValueVT = Val.getValueType(); + if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { + // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, + // and cast to f32. + Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); + Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); + Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, + DAG.getConstant(0xFFFF0000, DL, MVT::i32)); + Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); + Parts[0] = Val; + return true; + } + + if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { + LLVMContext &Context = *DAG.getContext(); + EVT ValueEltVT = ValueVT.getVectorElementType(); + EVT PartEltVT = PartVT.getVectorElementType(); + unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinValue(); + unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinValue(); + if (PartVTBitSize % ValueVTBitSize == 0) { + assert(PartVTBitSize >= ValueVTBitSize); + // If the element types are different, bitcast to the same element type of + // PartVT first. + // Give an example here, we want copy a <vscale x 1 x i8> value to + // <vscale x 4 x i16>. + // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert + // subvector, then we can bitcast to <vscale x 4 x i16>. + if (ValueEltVT != PartEltVT) { + if (PartVTBitSize > ValueVTBitSize) { + unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); + assert(Count != 0 && "The number of element should not be zero."); + EVT SameEltTypeVT = + EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); + Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT, + DAG.getUNDEF(SameEltTypeVT), Val, + DAG.getVectorIdxConstant(0, DL)); + } + Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); + } else { + Val = + DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), + Val, DAG.getVectorIdxConstant(0, DL)); + } + Parts[0] = Val; + return true; + } + } + return false; +} + +SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( + SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, + MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const { + bool IsABIRegCopy = CC.has_value(); + if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { + SDValue Val = Parts[0]; + + // Cast the f32 to i32, truncate to i16, and cast back to f16. + Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); + Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); + Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); + return Val; + } + + if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { + LLVMContext &Context = *DAG.getContext(); + SDValue Val = Parts[0]; + EVT ValueEltVT = ValueVT.getVectorElementType(); + EVT PartEltVT = PartVT.getVectorElementType(); + unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinValue(); + unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinValue(); + if (PartVTBitSize % ValueVTBitSize == 0) { + assert(PartVTBitSize >= ValueVTBitSize); + EVT SameEltTypeVT = ValueVT; + // If the element types are different, convert it to the same element type + // of PartVT. + // Give an example here, we want copy a <vscale x 1 x i8> value from + // <vscale x 4 x i16>. + // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first, + // then we can extract <vscale x 1 x i8>. + if (ValueEltVT != PartEltVT) { + unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits(); + assert(Count != 0 && "The number of element should not be zero."); + SameEltTypeVT = + EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true); + Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); + } + Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, + DAG.getVectorIdxConstant(0, DL)); + return Val; + } + } + return SDValue(); +} + +bool RISCVTargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const { + // When aggressively optimizing for code size, we prefer to use a div + // instruction, as it is usually smaller than the alternative sequence. + // TODO: Add vector division? + bool OptSize = Attr.hasFnAttr(Attribute::MinSize); + return OptSize && !VT.isVector(); +} + +bool RISCVTargetLowering::preferScalarizeSplat(unsigned Opc) const { + // Scalarize zero_ext and sign_ext might stop match to widening instruction in + // some situation. + if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND) + return false; + return true; +} + +static Value *useTpOffset(IRBuilderBase &IRB, unsigned Offset) { + Module *M = IRB.GetInsertBlock()->getParent()->getParent(); + Function *ThreadPointerFunc = + Intrinsic::getDeclaration(M, Intrinsic::thread_pointer); + return IRB.CreatePointerCast( + IRB.CreateConstGEP1_32(IRB.getInt8Ty(), + IRB.CreateCall(ThreadPointerFunc), Offset), + IRB.getInt8PtrTy()->getPointerTo(0)); +} + +Value *RISCVTargetLowering::getIRStackGuard(IRBuilderBase &IRB) const { + // Fuchsia provides a fixed TLS slot for the stack cookie. + // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value. + if (Subtarget.isTargetFuchsia()) + return useTpOffset(IRB, -0x10); + + return TargetLowering::getIRStackGuard(IRB); +} + +#define GET_REGISTER_MATCHER +#include "RISCVGenAsmMatcher.inc" + +Register +RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, + const MachineFunction &MF) const { + Register Reg = MatchRegisterAltName(RegName); + if (Reg == RISCV::NoRegister) + Reg = MatchRegisterName(RegName); + if (Reg == RISCV::NoRegister) + report_fatal_error( + Twine("Invalid register name \"" + StringRef(RegName) + "\".")); + BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); + if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) + report_fatal_error(Twine("Trying to obtain non-reserved register \"" + + StringRef(RegName) + "\".")); + return Reg; +} + +namespace llvm::RISCVVIntrinsicsTable { + +#define GET_RISCVVIntrinsicsTable_IMPL +#include "RISCVGenSearchableTables.inc" + +} // namespace llvm::RISCVVIntrinsicsTable |