diff options
| author | vvvv <[email protected]> | 2024-02-06 20:01:22 +0300 | 
|---|---|---|
| committer | vvvv <[email protected]> | 2024-02-06 20:22:16 +0300 | 
| commit | 0203b7a9a40828bb2bd4c32029b79ff0ea3d1f8f (patch) | |
| tree | e630d0d5bd0bd29fc8c2d2842ed2cfde781b993a /contrib/libs/llvm16/lib/Target/PowerPC/PPCReduceCRLogicals.cpp | |
| parent | ba27db76d99d12a4f1c06960b5449423218614c4 (diff) | |
llvm16 targets
Diffstat (limited to 'contrib/libs/llvm16/lib/Target/PowerPC/PPCReduceCRLogicals.cpp')
| -rw-r--r-- | contrib/libs/llvm16/lib/Target/PowerPC/PPCReduceCRLogicals.cpp | 739 | 
1 files changed, 739 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Target/PowerPC/PPCReduceCRLogicals.cpp b/contrib/libs/llvm16/lib/Target/PowerPC/PPCReduceCRLogicals.cpp new file mode 100644 index 00000000000..0504db239f6 --- /dev/null +++ b/contrib/libs/llvm16/lib/Target/PowerPC/PPCReduceCRLogicals.cpp @@ -0,0 +1,739 @@ +//===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===---------------------------------------------------------------------===// +// +// This pass aims to reduce the number of logical operations on bits in the CR +// register. These instructions have a fairly high latency and only a single +// pipeline at their disposal in modern PPC cores. Furthermore, they have a +// tendency to occur in fairly small blocks where there's little opportunity +// to hide the latency between the CR logical operation and its user. +// +//===---------------------------------------------------------------------===// + +#include "PPC.h" +#include "PPCInstrInfo.h" +#include "PPCTargetMachine.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/MachineBranchProbabilityInfo.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/InitializePasses.h" +#include "llvm/Support/Debug.h" + +using namespace llvm; + +#define DEBUG_TYPE "ppc-reduce-cr-ops" + +STATISTIC(NumContainedSingleUseBinOps, +          "Number of single-use binary CR logical ops contained in a block"); +STATISTIC(NumToSplitBlocks, +          "Number of binary CR logical ops that can be used to split blocks"); +STATISTIC(TotalCRLogicals, "Number of CR logical ops."); +STATISTIC(TotalNullaryCRLogicals, +          "Number of nullary CR logical ops (CRSET/CRUNSET)."); +STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops."); +STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops."); +STATISTIC(NumBlocksSplitOnBinaryCROp, +          "Number of blocks split on CR binary logical ops."); +STATISTIC(NumNotSplitIdenticalOperands, +          "Number of blocks not split due to operands being identical."); +STATISTIC(NumNotSplitChainCopies, +          "Number of blocks not split due to operands being chained copies."); +STATISTIC(NumNotSplitWrongOpcode, +          "Number of blocks not split due to the wrong opcode."); + +/// Given a basic block \p Successor that potentially contains PHIs, this +/// function will look for any incoming values in the PHIs that are supposed to +/// be coming from \p OrigMBB but whose definition is actually in \p NewMBB. +/// Any such PHIs will be updated to reflect reality. +static void updatePHIs(MachineBasicBlock *Successor, MachineBasicBlock *OrigMBB, +                       MachineBasicBlock *NewMBB, MachineRegisterInfo *MRI) { +  for (auto &MI : Successor->instrs()) { +    if (!MI.isPHI()) +      continue; +    // This is a really ugly-looking loop, but it was pillaged directly from +    // MachineBasicBlock::transferSuccessorsAndUpdatePHIs(). +    for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { +      MachineOperand &MO = MI.getOperand(i); +      if (MO.getMBB() == OrigMBB) { +        // Check if the instruction is actually defined in NewMBB. +        if (MI.getOperand(i - 1).isReg()) { +          MachineInstr *DefMI = MRI->getVRegDef(MI.getOperand(i - 1).getReg()); +          if (DefMI->getParent() == NewMBB || +              !OrigMBB->isSuccessor(Successor)) { +            MO.setMBB(NewMBB); +            break; +          } +        } +      } +    } +  } +} + +/// Given a basic block \p Successor that potentially contains PHIs, this +/// function will look for PHIs that have an incoming value from \p OrigMBB +/// and will add the same incoming value from \p NewMBB. +/// NOTE: This should only be used if \p NewMBB is an immediate dominator of +/// \p OrigMBB. +static void addIncomingValuesToPHIs(MachineBasicBlock *Successor, +                                    MachineBasicBlock *OrigMBB, +                                    MachineBasicBlock *NewMBB, +                                    MachineRegisterInfo *MRI) { +  assert(OrigMBB->isSuccessor(NewMBB) && +         "NewMBB must be a successor of OrigMBB"); +  for (auto &MI : Successor->instrs()) { +    if (!MI.isPHI()) +      continue; +    // This is a really ugly-looking loop, but it was pillaged directly from +    // MachineBasicBlock::transferSuccessorsAndUpdatePHIs(). +    for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { +      MachineOperand &MO = MI.getOperand(i); +      if (MO.getMBB() == OrigMBB) { +        MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI); +        MIB.addReg(MI.getOperand(i - 1).getReg()).addMBB(NewMBB); +        break; +      } +    } +  } +} + +struct BlockSplitInfo { +  MachineInstr *OrigBranch; +  MachineInstr *SplitBefore; +  MachineInstr *SplitCond; +  bool InvertNewBranch; +  bool InvertOrigBranch; +  bool BranchToFallThrough; +  const MachineBranchProbabilityInfo *MBPI; +  MachineInstr *MIToDelete; +  MachineInstr *NewCond; +  bool allInstrsInSameMBB() { +    if (!OrigBranch || !SplitBefore || !SplitCond) +      return false; +    MachineBasicBlock *MBB = OrigBranch->getParent(); +    if (SplitBefore->getParent() != MBB || SplitCond->getParent() != MBB) +      return false; +    if (MIToDelete && MIToDelete->getParent() != MBB) +      return false; +    if (NewCond && NewCond->getParent() != MBB) +      return false; +    return true; +  } +}; + +/// Splits a MachineBasicBlock to branch before \p SplitBefore. The original +/// branch is \p OrigBranch. The target of the new branch can either be the same +/// as the target of the original branch or the fallthrough successor of the +/// original block as determined by \p BranchToFallThrough. The branch +/// conditions will be inverted according to \p InvertNewBranch and +/// \p InvertOrigBranch. If an instruction that previously fed the branch is to +/// be deleted, it is provided in \p MIToDelete and \p NewCond will be used as +/// the branch condition. The branch probabilities will be set if the +/// MachineBranchProbabilityInfo isn't null. +static bool splitMBB(BlockSplitInfo &BSI) { +  assert(BSI.allInstrsInSameMBB() && +         "All instructions must be in the same block."); + +  MachineBasicBlock *ThisMBB = BSI.OrigBranch->getParent(); +  MachineFunction *MF = ThisMBB->getParent(); +  MachineRegisterInfo *MRI = &MF->getRegInfo(); +  assert(MRI->isSSA() && "Can only do this while the function is in SSA form."); +  if (ThisMBB->succ_size() != 2) { +    LLVM_DEBUG( +        dbgs() << "Don't know how to handle blocks that don't have exactly" +               << " two successors.\n"); +    return false; +  } + +  const PPCInstrInfo *TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); +  unsigned OrigBROpcode = BSI.OrigBranch->getOpcode(); +  unsigned InvertedOpcode = +      OrigBROpcode == PPC::BC +          ? PPC::BCn +          : OrigBROpcode == PPC::BCn +                ? PPC::BC +                : OrigBROpcode == PPC::BCLR ? PPC::BCLRn : PPC::BCLR; +  unsigned NewBROpcode = BSI.InvertNewBranch ? InvertedOpcode : OrigBROpcode; +  MachineBasicBlock *OrigTarget = BSI.OrigBranch->getOperand(1).getMBB(); +  MachineBasicBlock *OrigFallThrough = OrigTarget == *ThisMBB->succ_begin() +                                           ? *ThisMBB->succ_rbegin() +                                           : *ThisMBB->succ_begin(); +  MachineBasicBlock *NewBRTarget = +      BSI.BranchToFallThrough ? OrigFallThrough : OrigTarget; + +  // It's impossible to know the precise branch probability after the split. +  // But it still needs to be reasonable, the whole probability to original +  // targets should not be changed. +  // After split NewBRTarget will get two incoming edges. Assume P0 is the +  // original branch probability to NewBRTarget, P1 and P2 are new branch +  // probabilies to NewBRTarget after split. If the two edge frequencies are +  // same, then +  //      F * P1 = F * P0 / 2            ==>  P1 = P0 / 2 +  //      F * (1 - P1) * P2 = F * P1     ==>  P2 = P1 / (1 - P1) +  BranchProbability ProbToNewTarget, ProbFallThrough;     // Prob for new Br. +  BranchProbability ProbOrigTarget, ProbOrigFallThrough;  // Prob for orig Br. +  ProbToNewTarget = ProbFallThrough = BranchProbability::getUnknown(); +  ProbOrigTarget = ProbOrigFallThrough = BranchProbability::getUnknown(); +  if (BSI.MBPI) { +    if (BSI.BranchToFallThrough) { +      ProbToNewTarget = BSI.MBPI->getEdgeProbability(ThisMBB, OrigFallThrough) / 2; +      ProbFallThrough = ProbToNewTarget.getCompl(); +      ProbOrigFallThrough = ProbToNewTarget / ProbToNewTarget.getCompl(); +      ProbOrigTarget = ProbOrigFallThrough.getCompl(); +    } else { +      ProbToNewTarget = BSI.MBPI->getEdgeProbability(ThisMBB, OrigTarget) / 2; +      ProbFallThrough = ProbToNewTarget.getCompl(); +      ProbOrigTarget = ProbToNewTarget / ProbToNewTarget.getCompl(); +      ProbOrigFallThrough = ProbOrigTarget.getCompl(); +    } +  } + +  // Create a new basic block. +  MachineBasicBlock::iterator InsertPoint = BSI.SplitBefore; +  const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock(); +  MachineFunction::iterator It = ThisMBB->getIterator(); +  MachineBasicBlock *NewMBB = MF->CreateMachineBasicBlock(LLVM_BB); +  MF->insert(++It, NewMBB); + +  // Move everything after SplitBefore into the new block. +  NewMBB->splice(NewMBB->end(), ThisMBB, InsertPoint, ThisMBB->end()); +  NewMBB->transferSuccessors(ThisMBB); +  if (!ProbOrigTarget.isUnknown()) { +    auto MBBI = find(NewMBB->successors(), OrigTarget); +    NewMBB->setSuccProbability(MBBI, ProbOrigTarget); +    MBBI = find(NewMBB->successors(), OrigFallThrough); +    NewMBB->setSuccProbability(MBBI, ProbOrigFallThrough); +  } + +  // Add the two successors to ThisMBB. +  ThisMBB->addSuccessor(NewBRTarget, ProbToNewTarget); +  ThisMBB->addSuccessor(NewMBB, ProbFallThrough); + +  // Add the branches to ThisMBB. +  BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(), +          TII->get(NewBROpcode)) +      .addReg(BSI.SplitCond->getOperand(0).getReg()) +      .addMBB(NewBRTarget); +  BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(), +          TII->get(PPC::B)) +      .addMBB(NewMBB); +  if (BSI.MIToDelete) +    BSI.MIToDelete->eraseFromParent(); + +  // Change the condition on the original branch and invert it if requested. +  auto FirstTerminator = NewMBB->getFirstTerminator(); +  if (BSI.NewCond) { +    assert(FirstTerminator->getOperand(0).isReg() && +           "Can't update condition of unconditional branch."); +    FirstTerminator->getOperand(0).setReg(BSI.NewCond->getOperand(0).getReg()); +  } +  if (BSI.InvertOrigBranch) +    FirstTerminator->setDesc(TII->get(InvertedOpcode)); + +  // If any of the PHIs in the successors of NewMBB reference values that +  // now come from NewMBB, they need to be updated. +  for (auto *Succ : NewMBB->successors()) { +    updatePHIs(Succ, ThisMBB, NewMBB, MRI); +  } +  addIncomingValuesToPHIs(NewBRTarget, ThisMBB, NewMBB, MRI); + +  LLVM_DEBUG(dbgs() << "After splitting, ThisMBB:\n"; ThisMBB->dump()); +  LLVM_DEBUG(dbgs() << "NewMBB:\n"; NewMBB->dump()); +  LLVM_DEBUG(dbgs() << "New branch-to block:\n"; NewBRTarget->dump()); +  return true; +} + +static bool isBinary(MachineInstr &MI) { +  return MI.getNumOperands() == 3; +} + +static bool isNullary(MachineInstr &MI) { +  return MI.getNumOperands() == 1; +} + +/// Given a CR logical operation \p CROp, branch opcode \p BROp as well as +/// a flag to indicate if the first operand of \p CROp is used as the +/// SplitBefore operand, determines whether either of the branches are to be +/// inverted as well as whether the new target should be the original +/// fall-through block. +static void +computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1, +                                bool &InvertNewBranch, bool &InvertOrigBranch, +                                bool &TargetIsFallThrough) { +  // The conditions under which each of the output operands should be [un]set +  // can certainly be written much more concisely with just 3 if statements or +  // ternary expressions. However, this provides a much clearer overview to the +  // reader as to what is set for each <CROp, BROp, OpUsed> combination. +  if (BROp == PPC::BC || BROp == PPC::BCLR) { +    // Regular branches. +    switch (CROp) { +    default: +      llvm_unreachable("Don't know how to handle this CR logical."); +    case PPC::CROR: +      InvertNewBranch = false; +      InvertOrigBranch = false; +      TargetIsFallThrough = false; +      return; +    case PPC::CRAND: +      InvertNewBranch = true; +      InvertOrigBranch = false; +      TargetIsFallThrough = true; +      return; +    case PPC::CRNAND: +      InvertNewBranch = true; +      InvertOrigBranch = true; +      TargetIsFallThrough = false; +      return; +    case PPC::CRNOR: +      InvertNewBranch = false; +      InvertOrigBranch = true; +      TargetIsFallThrough = true; +      return; +    case PPC::CRORC: +      InvertNewBranch = UsingDef1; +      InvertOrigBranch = !UsingDef1; +      TargetIsFallThrough = false; +      return; +    case PPC::CRANDC: +      InvertNewBranch = !UsingDef1; +      InvertOrigBranch = !UsingDef1; +      TargetIsFallThrough = true; +      return; +    } +  } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) { +    // Negated branches. +    switch (CROp) { +    default: +      llvm_unreachable("Don't know how to handle this CR logical."); +    case PPC::CROR: +      InvertNewBranch = true; +      InvertOrigBranch = false; +      TargetIsFallThrough = true; +      return; +    case PPC::CRAND: +      InvertNewBranch = false; +      InvertOrigBranch = false; +      TargetIsFallThrough = false; +      return; +    case PPC::CRNAND: +      InvertNewBranch = false; +      InvertOrigBranch = true; +      TargetIsFallThrough = true; +      return; +    case PPC::CRNOR: +      InvertNewBranch = true; +      InvertOrigBranch = true; +      TargetIsFallThrough = false; +      return; +    case PPC::CRORC: +      InvertNewBranch = !UsingDef1; +      InvertOrigBranch = !UsingDef1; +      TargetIsFallThrough = true; +      return; +    case PPC::CRANDC: +      InvertNewBranch = UsingDef1; +      InvertOrigBranch = !UsingDef1; +      TargetIsFallThrough = false; +      return; +    } +  } else +    llvm_unreachable("Don't know how to handle this branch."); +} + +namespace { + +class PPCReduceCRLogicals : public MachineFunctionPass { + +public: +  static char ID; +  struct CRLogicalOpInfo { +    MachineInstr *MI; +    // FIXME: If chains of copies are to be handled, this should be a vector. +    std::pair<MachineInstr*, MachineInstr*> CopyDefs; +    std::pair<MachineInstr*, MachineInstr*> TrueDefs; +    unsigned IsBinary : 1; +    unsigned IsNullary : 1; +    unsigned ContainedInBlock : 1; +    unsigned FeedsISEL : 1; +    unsigned FeedsBR : 1; +    unsigned FeedsLogical : 1; +    unsigned SingleUse : 1; +    unsigned DefsSingleUse : 1; +    unsigned SubregDef1; +    unsigned SubregDef2; +    CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0), +                        ContainedInBlock(0), FeedsISEL(0), FeedsBR(0), +                        FeedsLogical(0), SingleUse(0), DefsSingleUse(1), +                        SubregDef1(0), SubregDef2(0) { } +    void dump(); +  }; + +private: +  const PPCInstrInfo *TII = nullptr; +  MachineFunction *MF = nullptr; +  MachineRegisterInfo *MRI = nullptr; +  const MachineBranchProbabilityInfo *MBPI = nullptr; + +  // A vector to contain all the CR logical operations +  SmallVector<CRLogicalOpInfo, 16> AllCRLogicalOps; +  void initialize(MachineFunction &MFParm); +  void collectCRLogicals(); +  bool handleCROp(unsigned Idx); +  bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI); +  static bool isCRLogical(MachineInstr &MI) { +    unsigned Opc = MI.getOpcode(); +    return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR || +           Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CRNOT || +           Opc == PPC::CREQV || Opc == PPC::CRANDC || Opc == PPC::CRORC || +           Opc == PPC::CRSET || Opc == PPC::CRUNSET || Opc == PPC::CR6SET || +           Opc == PPC::CR6UNSET; +  } +  bool simplifyCode() { +    bool Changed = false; +    // Not using a range-based for loop here as the vector may grow while being +    // operated on. +    for (unsigned i = 0; i < AllCRLogicalOps.size(); i++) +      Changed |= handleCROp(i); +    return Changed; +  } + +public: +  PPCReduceCRLogicals() : MachineFunctionPass(ID) { +    initializePPCReduceCRLogicalsPass(*PassRegistry::getPassRegistry()); +  } + +  MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg, +                                  MachineInstr *&CpDef); +  bool runOnMachineFunction(MachineFunction &MF) override { +    if (skipFunction(MF.getFunction())) +      return false; + +    // If the subtarget doesn't use CR bits, there's nothing to do. +    const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>(); +    if (!STI.useCRBits()) +      return false; + +    initialize(MF); +    collectCRLogicals(); +    return simplifyCode(); +  } +  CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI); +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.addRequired<MachineBranchProbabilityInfo>(); +    AU.addRequired<MachineDominatorTree>(); +    MachineFunctionPass::getAnalysisUsage(AU); +  } +}; + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void PPCReduceCRLogicals::CRLogicalOpInfo::dump() { +  dbgs() << "CRLogicalOpMI: "; +  MI->dump(); +  dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL; +  dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: "; +  dbgs() << FeedsLogical << ", SingleUse: " << SingleUse; +  dbgs() << ", DefsSingleUse: " << DefsSingleUse; +  dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: "; +  dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock; +  if (!IsNullary) { +    dbgs() << "\nDefs:\n"; +    TrueDefs.first->dump(); +  } +  if (IsBinary) +    TrueDefs.second->dump(); +  dbgs() << "\n"; +  if (CopyDefs.first) { +    dbgs() << "CopyDef1: "; +    CopyDefs.first->dump(); +  } +  if (CopyDefs.second) { +    dbgs() << "CopyDef2: "; +    CopyDefs.second->dump(); +  } +} +#endif + +PPCReduceCRLogicals::CRLogicalOpInfo +PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) { +  CRLogicalOpInfo Ret; +  Ret.MI = &MIParam; +  // Get the defs +  if (isNullary(MIParam)) { +    Ret.IsNullary = 1; +    Ret.TrueDefs = std::make_pair(nullptr, nullptr); +    Ret.CopyDefs = std::make_pair(nullptr, nullptr); +  } else { +    MachineInstr *Def1 = lookThroughCRCopy(MIParam.getOperand(1).getReg(), +                                           Ret.SubregDef1, Ret.CopyDefs.first); +    assert(Def1 && "Must be able to find a definition of operand 1."); +    Ret.DefsSingleUse &= +      MRI->hasOneNonDBGUse(Def1->getOperand(0).getReg()); +    Ret.DefsSingleUse &= +      MRI->hasOneNonDBGUse(Ret.CopyDefs.first->getOperand(0).getReg()); +    if (isBinary(MIParam)) { +      Ret.IsBinary = 1; +      MachineInstr *Def2 = lookThroughCRCopy(MIParam.getOperand(2).getReg(), +                                             Ret.SubregDef2, +                                             Ret.CopyDefs.second); +      assert(Def2 && "Must be able to find a definition of operand 2."); +      Ret.DefsSingleUse &= +        MRI->hasOneNonDBGUse(Def2->getOperand(0).getReg()); +      Ret.DefsSingleUse &= +        MRI->hasOneNonDBGUse(Ret.CopyDefs.second->getOperand(0).getReg()); +      Ret.TrueDefs = std::make_pair(Def1, Def2); +    } else { +      Ret.TrueDefs = std::make_pair(Def1, nullptr); +      Ret.CopyDefs.second = nullptr; +    } +  } + +  Ret.ContainedInBlock = 1; +  // Get the uses +  for (MachineInstr &UseMI : +       MRI->use_nodbg_instructions(MIParam.getOperand(0).getReg())) { +    unsigned Opc = UseMI.getOpcode(); +    if (Opc == PPC::ISEL || Opc == PPC::ISEL8) +      Ret.FeedsISEL = 1; +    if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR || +        Opc == PPC::BCLRn) +      Ret.FeedsBR = 1; +    Ret.FeedsLogical = isCRLogical(UseMI); +    if (UseMI.getParent() != MIParam.getParent()) +      Ret.ContainedInBlock = 0; +  } +  Ret.SingleUse = MRI->hasOneNonDBGUse(MIParam.getOperand(0).getReg()) ? 1 : 0; + +  // We now know whether all the uses of the CR logical are in the same block. +  if (!Ret.IsNullary) { +    Ret.ContainedInBlock &= +      (MIParam.getParent() == Ret.TrueDefs.first->getParent()); +    if (Ret.IsBinary) +      Ret.ContainedInBlock &= +        (MIParam.getParent() == Ret.TrueDefs.second->getParent()); +  } +  LLVM_DEBUG(Ret.dump()); +  if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) { +    NumContainedSingleUseBinOps++; +    if (Ret.FeedsBR && Ret.DefsSingleUse) +      NumToSplitBlocks++; +  } +  return Ret; +} + +/// Looks through a COPY instruction to the actual definition of the CR-bit +/// register and returns the instruction that defines it. +/// FIXME: This currently handles what is by-far the most common case: +/// an instruction that defines a CR field followed by a single copy of a bit +/// from that field into a virtual register. If chains of copies need to be +/// handled, this should have a loop until a non-copy instruction is found. +MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg, +                                                     unsigned &Subreg, +                                                     MachineInstr *&CpDef) { +  Subreg = -1; +  if (!Register::isVirtualRegister(Reg)) +    return nullptr; +  MachineInstr *Copy = MRI->getVRegDef(Reg); +  CpDef = Copy; +  if (!Copy->isCopy()) +    return Copy; +  Register CopySrc = Copy->getOperand(1).getReg(); +  Subreg = Copy->getOperand(1).getSubReg(); +  if (!CopySrc.isVirtual()) { +    const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); +    // Set the Subreg +    if (CopySrc == PPC::CR0EQ || CopySrc == PPC::CR6EQ) +      Subreg = PPC::sub_eq; +    if (CopySrc == PPC::CR0LT || CopySrc == PPC::CR6LT) +      Subreg = PPC::sub_lt; +    if (CopySrc == PPC::CR0GT || CopySrc == PPC::CR6GT) +      Subreg = PPC::sub_gt; +    if (CopySrc == PPC::CR0UN || CopySrc == PPC::CR6UN) +      Subreg = PPC::sub_un; +    // Loop backwards and return the first MI that modifies the physical CR Reg. +    MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin(); +    while (Me != B) +      if ((--Me)->modifiesRegister(CopySrc, TRI)) +        return &*Me; +    return nullptr; +  } +  return MRI->getVRegDef(CopySrc); +} + +void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) { +  MF = &MFParam; +  MRI = &MF->getRegInfo(); +  TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); +  MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); + +  AllCRLogicalOps.clear(); +} + +/// Contains all the implemented transformations on CR logical operations. +/// For example, a binary CR logical can be used to split a block on its inputs, +/// a unary CR logical might be used to change the condition code on a +/// comparison feeding it. A nullary CR logical might simply be removable +/// if the user of the bit it [un]sets can be transformed. +bool PPCReduceCRLogicals::handleCROp(unsigned Idx) { +  // We can definitely split a block on the inputs to a binary CR operation +  // whose defs and (single) use are within the same block. +  bool Changed = false; +  CRLogicalOpInfo CRI = AllCRLogicalOps[Idx]; +  if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR && +      CRI.DefsSingleUse) { +    Changed = splitBlockOnBinaryCROp(CRI); +    if (Changed) +      NumBlocksSplitOnBinaryCROp++; +  } +  return Changed; +} + +/// Splits a block that contains a CR-logical operation that feeds a branch +/// and whose operands are produced within the block. +/// Example: +///    %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2 +///    %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5 +///    %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3 +///    %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7 +///    %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8 +///    BC %vr9<kill>, <BB#2>; CRBITRC:%vr9 +/// Becomes: +///    %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2 +///    %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5 +///    BC %vr6<kill>, <BB#2>; CRBITRC:%vr6 +/// +///    %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3 +///    %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7 +///    BC %vr9<kill>, <BB#2>; CRBITRC:%vr9 +bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) { +  if (CRI.CopyDefs.first == CRI.CopyDefs.second) { +    LLVM_DEBUG(dbgs() << "Unable to split as the two operands are the same\n"); +    NumNotSplitIdenticalOperands++; +    return false; +  } +  if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() || +      CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) { +    LLVM_DEBUG( +        dbgs() << "Unable to split because one of the operands is a PHI or " +                  "chain of copies.\n"); +    NumNotSplitChainCopies++; +    return false; +  } +  // Note: keep in sync with computeBranchTargetAndInversion(). +  if (CRI.MI->getOpcode() != PPC::CROR && +      CRI.MI->getOpcode() != PPC::CRAND && +      CRI.MI->getOpcode() != PPC::CRNOR && +      CRI.MI->getOpcode() != PPC::CRNAND && +      CRI.MI->getOpcode() != PPC::CRORC && +      CRI.MI->getOpcode() != PPC::CRANDC) { +    LLVM_DEBUG(dbgs() << "Unable to split blocks on this opcode.\n"); +    NumNotSplitWrongOpcode++; +    return false; +  } +  LLVM_DEBUG(dbgs() << "Splitting the following CR op:\n"; CRI.dump()); +  MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first; +  MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second; + +  bool UsingDef1 = false; +  MachineInstr *SplitBefore = &*Def2It; +  for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) { +    if (Def1It == Def2It) { // Def2 comes before Def1. +      SplitBefore = &*Def1It; +      UsingDef1 = true; +      break; +    } +  } + +  LLVM_DEBUG(dbgs() << "We will split the following block:\n";); +  LLVM_DEBUG(CRI.MI->getParent()->dump()); +  LLVM_DEBUG(dbgs() << "Before instruction:\n"; SplitBefore->dump()); + +  // Get the branch instruction. +  MachineInstr *Branch = +    MRI->use_nodbg_begin(CRI.MI->getOperand(0).getReg())->getParent(); + +  // We want the new block to have no code in it other than the definition +  // of the input to the CR logical and the CR logical itself. So we move +  // those to the bottom of the block (just before the branch). Then we +  // will split before the CR logical. +  MachineBasicBlock *MBB = SplitBefore->getParent(); +  auto FirstTerminator = MBB->getFirstTerminator(); +  MachineBasicBlock::iterator FirstInstrToMove = +    UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second; +  MachineBasicBlock::iterator SecondInstrToMove = +    UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second; + +  // The instructions that need to be moved are not guaranteed to be +  // contiguous. Move them individually. +  // FIXME: If one of the operands is a chain of (single use) copies, they +  // can all be moved and we can still split. +  MBB->splice(FirstTerminator, MBB, FirstInstrToMove); +  if (FirstInstrToMove != SecondInstrToMove) +    MBB->splice(FirstTerminator, MBB, SecondInstrToMove); +  MBB->splice(FirstTerminator, MBB, CRI.MI); + +  unsigned Opc = CRI.MI->getOpcode(); +  bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough; +  computeBranchTargetAndInversion(Opc, Branch->getOpcode(), UsingDef1, +                                  InvertNewBranch, InvertOrigBranch, +                                  TargetIsFallThrough); +  MachineInstr *SplitCond = +    UsingDef1 ? CRI.CopyDefs.second : CRI.CopyDefs.first; +  LLVM_DEBUG(dbgs() << "We will " << (InvertNewBranch ? "invert" : "copy")); +  LLVM_DEBUG(dbgs() << " the original branch and the target is the " +                    << (TargetIsFallThrough ? "fallthrough block\n" +                                            : "orig. target block\n")); +  LLVM_DEBUG(dbgs() << "Original branch instruction: "; Branch->dump()); +  BlockSplitInfo BSI { Branch, SplitBefore, SplitCond, InvertNewBranch, +    InvertOrigBranch, TargetIsFallThrough, MBPI, CRI.MI, +    UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second }; +  bool Changed = splitMBB(BSI); +  // If we've split on a CR logical that is fed by a CR logical, +  // recompute the source CR logical as it may be usable for splitting. +  if (Changed) { +    bool Input1CRlogical = +      CRI.TrueDefs.first && isCRLogical(*CRI.TrueDefs.first); +    bool Input2CRlogical = +      CRI.TrueDefs.second && isCRLogical(*CRI.TrueDefs.second); +    if (Input1CRlogical) +      AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.first)); +    if (Input2CRlogical) +      AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.second)); +  } +  return Changed; +} + +void PPCReduceCRLogicals::collectCRLogicals() { +  for (MachineBasicBlock &MBB : *MF) { +    for (MachineInstr &MI : MBB) { +      if (isCRLogical(MI)) { +        AllCRLogicalOps.push_back(createCRLogicalOpInfo(MI)); +        TotalCRLogicals++; +        if (AllCRLogicalOps.back().IsNullary) +          TotalNullaryCRLogicals++; +        else if (AllCRLogicalOps.back().IsBinary) +          TotalBinaryCRLogicals++; +        else +          TotalUnaryCRLogicals++; +      } +    } +  } +} + +} // end anonymous namespace + +INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE, +                      "PowerPC Reduce CR logical Operation", false, false) +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) +INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE, +                    "PowerPC Reduce CR logical Operation", false, false) + +char PPCReduceCRLogicals::ID = 0; +FunctionPass* +llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); }  | 
