diff options
| author | vvvv <[email protected]> | 2024-02-06 20:01:22 +0300 |
|---|---|---|
| committer | vvvv <[email protected]> | 2024-02-06 20:22:16 +0300 |
| commit | 0203b7a9a40828bb2bd4c32029b79ff0ea3d1f8f (patch) | |
| tree | e630d0d5bd0bd29fc8c2d2842ed2cfde781b993a /contrib/libs/llvm16/lib/Target/PowerPC/PPCInstrInfo.cpp | |
| parent | ba27db76d99d12a4f1c06960b5449423218614c4 (diff) | |
llvm16 targets
Diffstat (limited to 'contrib/libs/llvm16/lib/Target/PowerPC/PPCInstrInfo.cpp')
| -rw-r--r-- | contrib/libs/llvm16/lib/Target/PowerPC/PPCInstrInfo.cpp | 5692 |
1 files changed, 5692 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Target/PowerPC/PPCInstrInfo.cpp b/contrib/libs/llvm16/lib/Target/PowerPC/PPCInstrInfo.cpp new file mode 100644 index 00000000000..fb7316e0745 --- /dev/null +++ b/contrib/libs/llvm16/lib/Target/PowerPC/PPCInstrInfo.cpp @@ -0,0 +1,5692 @@ +//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains the PowerPC implementation of the TargetInstrInfo class. +// +//===----------------------------------------------------------------------===// + +#include "PPCInstrInfo.h" +#include "MCTargetDesc/PPCPredicates.h" +#include "PPC.h" +#include "PPCHazardRecognizers.h" +#include "PPCInstrBuilder.h" +#include "PPCMachineFunctionInfo.h" +#include "PPCTargetMachine.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/CodeGen/LiveIntervals.h" +#include "llvm/CodeGen/MachineCombinerPattern.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/CodeGen/RegisterClassInfo.h" +#include "llvm/CodeGen/RegisterPressure.h" +#include "llvm/CodeGen/ScheduleDAG.h" +#include "llvm/CodeGen/SlotIndexes.h" +#include "llvm/CodeGen/StackMaps.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCInst.h" +#include "llvm/MC/TargetRegistry.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; + +#define DEBUG_TYPE "ppc-instr-info" + +#define GET_INSTRMAP_INFO +#define GET_INSTRINFO_CTOR_DTOR +#include "PPCGenInstrInfo.inc" + +STATISTIC(NumStoreSPILLVSRRCAsVec, + "Number of spillvsrrc spilled to stack as vec"); +STATISTIC(NumStoreSPILLVSRRCAsGpr, + "Number of spillvsrrc spilled to stack as gpr"); +STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc"); +STATISTIC(CmpIselsConverted, + "Number of ISELs that depend on comparison of constants converted"); +STATISTIC(MissedConvertibleImmediateInstrs, + "Number of compare-immediate instructions fed by constants"); +STATISTIC(NumRcRotatesConvertedToRcAnd, + "Number of record-form rotates converted to record-form andi"); + +static cl:: +opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, + cl::desc("Disable analysis for CTR loops")); + +static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", +cl::desc("Disable compare instruction optimization"), cl::Hidden); + +static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", +cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), +cl::Hidden); + +static cl::opt<bool> +UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden, + cl::desc("Use the old (incorrect) instruction latency calculation")); + +static cl::opt<float> + FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5), + cl::desc("register pressure factor for the transformations.")); + +static cl::opt<bool> EnableFMARegPressureReduction( + "ppc-fma-rp-reduction", cl::Hidden, cl::init(true), + cl::desc("enable register pressure reduce in machine combiner pass.")); + +// Pin the vtable to this file. +void PPCInstrInfo::anchor() {} + +PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) + : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, + /* CatchRetOpcode */ -1, + STI.isPPC64() ? PPC::BLR8 : PPC::BLR), + Subtarget(STI), RI(STI.getTargetMachine()) {} + +/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for +/// this target when scheduling the DAG. +ScheduleHazardRecognizer * +PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, + const ScheduleDAG *DAG) const { + unsigned Directive = + static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); + if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || + Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { + const InstrItineraryData *II = + static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); + return new ScoreboardHazardRecognizer(II, DAG); + } + + return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); +} + +/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer +/// to use for this target when scheduling the DAG. +ScheduleHazardRecognizer * +PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, + const ScheduleDAG *DAG) const { + unsigned Directive = + DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); + + // FIXME: Leaving this as-is until we have POWER9 scheduling info + if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) + return new PPCDispatchGroupSBHazardRecognizer(II, DAG); + + // Most subtargets use a PPC970 recognizer. + if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && + Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { + assert(DAG->TII && "No InstrInfo?"); + + return new PPCHazardRecognizer970(*DAG); + } + + return new ScoreboardHazardRecognizer(II, DAG); +} + +unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, + const MachineInstr &MI, + unsigned *PredCost) const { + if (!ItinData || UseOldLatencyCalc) + return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); + + // The default implementation of getInstrLatency calls getStageLatency, but + // getStageLatency does not do the right thing for us. While we have + // itinerary, most cores are fully pipelined, and so the itineraries only + // express the first part of the pipeline, not every stage. Instead, we need + // to use the listed output operand cycle number (using operand 0 here, which + // is an output). + + unsigned Latency = 1; + unsigned DefClass = MI.getDesc().getSchedClass(); + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) + continue; + + int Cycle = ItinData->getOperandCycle(DefClass, i); + if (Cycle < 0) + continue; + + Latency = std::max(Latency, (unsigned) Cycle); + } + + return Latency; +} + +int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, + const MachineInstr &DefMI, unsigned DefIdx, + const MachineInstr &UseMI, + unsigned UseIdx) const { + int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, + UseMI, UseIdx); + + if (!DefMI.getParent()) + return Latency; + + const MachineOperand &DefMO = DefMI.getOperand(DefIdx); + Register Reg = DefMO.getReg(); + + bool IsRegCR; + if (Reg.isVirtual()) { + const MachineRegisterInfo *MRI = + &DefMI.getParent()->getParent()->getRegInfo(); + IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || + MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); + } else { + IsRegCR = PPC::CRRCRegClass.contains(Reg) || + PPC::CRBITRCRegClass.contains(Reg); + } + + if (UseMI.isBranch() && IsRegCR) { + if (Latency < 0) + Latency = getInstrLatency(ItinData, DefMI); + + // On some cores, there is an additional delay between writing to a condition + // register, and using it from a branch. + unsigned Directive = Subtarget.getCPUDirective(); + switch (Directive) { + default: break; + case PPC::DIR_7400: + case PPC::DIR_750: + case PPC::DIR_970: + case PPC::DIR_E5500: + case PPC::DIR_PWR4: + case PPC::DIR_PWR5: + case PPC::DIR_PWR5X: + case PPC::DIR_PWR6: + case PPC::DIR_PWR6X: + case PPC::DIR_PWR7: + case PPC::DIR_PWR8: + // FIXME: Is this needed for POWER9? + Latency += 2; + break; + } + } + + return Latency; +} + +/// This is an architecture-specific helper function of reassociateOps. +/// Set special operand attributes for new instructions after reassociation. +void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, + MachineInstr &OldMI2, + MachineInstr &NewMI1, + MachineInstr &NewMI2) const { + // Propagate FP flags from the original instructions. + // But clear poison-generating flags because those may not be valid now. + uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); + NewMI1.setFlags(IntersectedFlags); + NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); + NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); + NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); + + NewMI2.setFlags(IntersectedFlags); + NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); + NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); + NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); +} + +void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, + uint16_t Flags) const { + MI.setFlags(Flags); + MI.clearFlag(MachineInstr::MIFlag::NoSWrap); + MI.clearFlag(MachineInstr::MIFlag::NoUWrap); + MI.clearFlag(MachineInstr::MIFlag::IsExact); +} + +// This function does not list all associative and commutative operations, but +// only those worth feeding through the machine combiner in an attempt to +// reduce the critical path. Mostly, this means floating-point operations, +// because they have high latencies(>=5) (compared to other operations, such as +// and/or, which are also associative and commutative, but have low latencies). +bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst, + bool Invert) const { + if (Invert) + return false; + switch (Inst.getOpcode()) { + // Floating point: + // FP Add: + case PPC::FADD: + case PPC::FADDS: + // FP Multiply: + case PPC::FMUL: + case PPC::FMULS: + // Altivec Add: + case PPC::VADDFP: + // VSX Add: + case PPC::XSADDDP: + case PPC::XVADDDP: + case PPC::XVADDSP: + case PPC::XSADDSP: + // VSX Multiply: + case PPC::XSMULDP: + case PPC::XVMULDP: + case PPC::XVMULSP: + case PPC::XSMULSP: + return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && + Inst.getFlag(MachineInstr::MIFlag::FmNsz); + // Fixed point: + // Multiply: + case PPC::MULHD: + case PPC::MULLD: + case PPC::MULHW: + case PPC::MULLW: + return true; + default: + return false; + } +} + +#define InfoArrayIdxFMAInst 0 +#define InfoArrayIdxFAddInst 1 +#define InfoArrayIdxFMULInst 2 +#define InfoArrayIdxAddOpIdx 3 +#define InfoArrayIdxMULOpIdx 4 +#define InfoArrayIdxFSubInst 5 +// Array keeps info for FMA instructions: +// Index 0(InfoArrayIdxFMAInst): FMA instruction; +// Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA; +// Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA; +// Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; +// Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; +// second MUL operand index is plus 1; +// Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA. +static const uint16_t FMAOpIdxInfo[][6] = { + // FIXME: Add more FMA instructions like XSNMADDADP and so on. + {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP}, + {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP}, + {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP}, + {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP}, + {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB}, + {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}}; + +// Check if an opcode is a FMA instruction. If it is, return the index in array +// FMAOpIdxInfo. Otherwise, return -1. +int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { + for (unsigned I = 0; I < std::size(FMAOpIdxInfo); I++) + if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) + return I; + return -1; +} + +// On PowerPC target, we have two kinds of patterns related to FMA: +// 1: Improve ILP. +// Try to reassociate FMA chains like below: +// +// Pattern 1: +// A = FADD X, Y (Leaf) +// B = FMA A, M21, M22 (Prev) +// C = FMA B, M31, M32 (Root) +// --> +// A = FMA X, M21, M22 +// B = FMA Y, M31, M32 +// C = FADD A, B +// +// Pattern 2: +// A = FMA X, M11, M12 (Leaf) +// B = FMA A, M21, M22 (Prev) +// C = FMA B, M31, M32 (Root) +// --> +// A = FMUL M11, M12 +// B = FMA X, M21, M22 +// D = FMA A, M31, M32 +// C = FADD B, D +// +// breaking the dependency between A and B, allowing FMA to be executed in +// parallel (or back-to-back in a pipeline) instead of depending on each other. +// +// 2: Reduce register pressure. +// Try to reassociate FMA with FSUB and a constant like below: +// C is a floating point const. +// +// Pattern 1: +// A = FSUB X, Y (Leaf) +// D = FMA B, C, A (Root) +// --> +// A = FMA B, Y, -C +// D = FMA A, X, C +// +// Pattern 2: +// A = FSUB X, Y (Leaf) +// D = FMA B, A, C (Root) +// --> +// A = FMA B, Y, -C +// D = FMA A, X, C +// +// Before the transformation, A must be assigned with different hardware +// register with D. After the transformation, A and D must be assigned with +// same hardware register due to TIE attribute of FMA instructions. +// +bool PPCInstrInfo::getFMAPatterns( + MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, + bool DoRegPressureReduce) const { + MachineBasicBlock *MBB = Root.getParent(); + const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo(); + const TargetRegisterInfo *TRI = &getRegisterInfo(); + + auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { + for (const auto &MO : Instr.explicit_operands()) + if (!(MO.isReg() && MO.getReg().isVirtual())) + return false; + return true; + }; + + auto IsReassociableAddOrSub = [&](const MachineInstr &Instr, + unsigned OpType) { + if (Instr.getOpcode() != + FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType]) + return false; + + // Instruction can be reassociated. + // fast math flags may prohibit reassociation. + if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && + Instr.getFlag(MachineInstr::MIFlag::FmNsz))) + return false; + + // Instruction operands are virtual registers for reassociation. + if (!IsAllOpsVirtualReg(Instr)) + return false; + + // For register pressure reassociation, the FSub must have only one use as + // we want to delete the sub to save its def. + if (OpType == InfoArrayIdxFSubInst && + !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg())) + return false; + + return true; + }; + + auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx, + int16_t &MulOpIdx, bool IsLeaf) { + int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode()); + if (Idx < 0) + return false; + + // Instruction can be reassociated. + // fast math flags may prohibit reassociation. + if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) && + Instr.getFlag(MachineInstr::MIFlag::FmNsz))) + return false; + + // Instruction operands are virtual registers for reassociation. + if (!IsAllOpsVirtualReg(Instr)) + return false; + + MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; + if (IsLeaf) + return true; + + AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; + + const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx); + MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg()); + // If 'add' operand's def is not in current block, don't do ILP related opt. + if (!MIAdd || MIAdd->getParent() != MBB) + return false; + + // If this is not Leaf FMA Instr, its 'add' operand should only have one use + // as this fma will be changed later. + return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg()); + }; + + int16_t AddOpIdx = -1; + int16_t MulOpIdx = -1; + + bool IsUsedOnceL = false; + bool IsUsedOnceR = false; + MachineInstr *MULInstrL = nullptr; + MachineInstr *MULInstrR = nullptr; + + auto IsRPReductionCandidate = [&]() { + // Currently, we only support float and double. + // FIXME: add support for other types. + unsigned Opcode = Root.getOpcode(); + if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP) + return false; + + // Root must be a valid FMA like instruction. + // Treat it as leaf as we don't care its add operand. + if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) { + assert((MulOpIdx >= 0) && "mul operand index not right!"); + Register MULRegL = TRI->lookThruSingleUseCopyChain( + Root.getOperand(MulOpIdx).getReg(), MRI); + Register MULRegR = TRI->lookThruSingleUseCopyChain( + Root.getOperand(MulOpIdx + 1).getReg(), MRI); + if (!MULRegL && !MULRegR) + return false; + + if (MULRegL && !MULRegR) { + MULRegR = + TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI); + IsUsedOnceL = true; + } else if (!MULRegL && MULRegR) { + MULRegL = + TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI); + IsUsedOnceR = true; + } else { + IsUsedOnceL = true; + IsUsedOnceR = true; + } + + if (!MULRegL.isVirtual() || !MULRegR.isVirtual()) + return false; + + MULInstrL = MRI->getVRegDef(MULRegL); + MULInstrR = MRI->getVRegDef(MULRegR); + return true; + } + return false; + }; + + // Register pressure fma reassociation patterns. + if (DoRegPressureReduce && IsRPReductionCandidate()) { + assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!"); + // Register pressure pattern 1 + if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR && + IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) { + LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n"); + Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA); + return true; + } + + // Register pressure pattern 2 + if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL && + IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) { + LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n"); + Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC); + return true; + } + } + + // ILP fma reassociation patterns. + // Root must be a valid FMA like instruction. + AddOpIdx = -1; + if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false)) + return false; + + assert((AddOpIdx >= 0) && "add operand index not right!"); + + Register RegB = Root.getOperand(AddOpIdx).getReg(); + MachineInstr *Prev = MRI->getUniqueVRegDef(RegB); + + // Prev must be a valid FMA like instruction. + AddOpIdx = -1; + if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false)) + return false; + + assert((AddOpIdx >= 0) && "add operand index not right!"); + + Register RegA = Prev->getOperand(AddOpIdx).getReg(); + MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA); + AddOpIdx = -1; + if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) { + Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM); + LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n"); + return true; + } + if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) { + Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM); + LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n"); + return true; + } + return false; +} + +void PPCInstrInfo::finalizeInsInstrs( + MachineInstr &Root, MachineCombinerPattern &P, + SmallVectorImpl<MachineInstr *> &InsInstrs) const { + assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!"); + + MachineFunction *MF = Root.getMF(); + MachineRegisterInfo *MRI = &MF->getRegInfo(); + const TargetRegisterInfo *TRI = &getRegisterInfo(); + MachineConstantPool *MCP = MF->getConstantPool(); + + int16_t Idx = getFMAOpIdxInfo(Root.getOpcode()); + if (Idx < 0) + return; + + uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; + + // For now we only need to fix up placeholder for register pressure reduce + // patterns. + Register ConstReg = 0; + switch (P) { + case MachineCombinerPattern::REASSOC_XY_BCA: + ConstReg = + TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI); + break; + case MachineCombinerPattern::REASSOC_XY_BAC: + ConstReg = + TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI); + break; + default: + // Not register pressure reduce patterns. + return; + } + + MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg); + // Get const value from const pool. + const Constant *C = getConstantFromConstantPool(ConstDefInstr); + assert(isa<llvm::ConstantFP>(C) && "not a valid constant!"); + + // Get negative fp const. + APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF()); + F1.changeSign(); + Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1); + Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType()); + + // Put negative fp const into constant pool. + unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment); + + MachineOperand *Placeholder = nullptr; + // Record the placeholder PPC::ZERO8 we add in reassociateFMA. + for (auto *Inst : InsInstrs) { + for (MachineOperand &Operand : Inst->explicit_operands()) { + assert(Operand.isReg() && "Invalid instruction in InsInstrs!"); + if (Operand.getReg() == PPC::ZERO8) { + Placeholder = &Operand; + break; + } + } + } + + assert(Placeholder && "Placeholder does not exist!"); + + // Generate instructions to load the const fp from constant pool. + // We only support PPC64 and medium code model. + Register LoadNewConst = + generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs); + + // Fill the placeholder with the new load from constant pool. + Placeholder->setReg(LoadNewConst); +} + +bool PPCInstrInfo::shouldReduceRegisterPressure( + const MachineBasicBlock *MBB, const RegisterClassInfo *RegClassInfo) const { + + if (!EnableFMARegPressureReduction) + return false; + + // Currently, we only enable register pressure reducing in machine combiner + // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector + // support. + // + // So we need following instructions to access a TOC entry: + // + // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0 + // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0, + // killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool) + // + // FIXME: add more supported targets, like Small and Large code model, PPC32, + // AIX. + if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() && + Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium)) + return false; + + const TargetRegisterInfo *TRI = &getRegisterInfo(); + const MachineFunction *MF = MBB->getParent(); + const MachineRegisterInfo *MRI = &MF->getRegInfo(); + + auto GetMBBPressure = + [&](const MachineBasicBlock *MBB) -> std::vector<unsigned> { + RegionPressure Pressure; + RegPressureTracker RPTracker(Pressure); + + // Initialize the register pressure tracker. + RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(), + /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); + + for (const auto &MI : reverse(*MBB)) { + if (MI.isDebugValue() || MI.isDebugLabel()) + continue; + RegisterOperands RegOpers; + RegOpers.collect(MI, *TRI, *MRI, false, false); + RPTracker.recedeSkipDebugValues(); + assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); + RPTracker.recede(RegOpers); + } + + // Close the RPTracker to finalize live ins. + RPTracker.closeRegion(); + + return RPTracker.getPressure().MaxSetPressure; + }; + + // For now we only care about float and double type fma. + unsigned VSSRCLimit = TRI->getRegPressureSetLimit( + *MBB->getParent(), PPC::RegisterPressureSets::VSSRC); + + // Only reduce register pressure when pressure is high. + return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] > + (float)VSSRCLimit * FMARPFactor; +} + +bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const { + // I has only one memory operand which is load from constant pool. + if (!I->hasOneMemOperand()) + return false; + + MachineMemOperand *Op = I->memoperands()[0]; + return Op->isLoad() && Op->getPseudoValue() && + Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool; +} + +Register PPCInstrInfo::generateLoadForNewConst( + unsigned Idx, MachineInstr *MI, Type *Ty, + SmallVectorImpl<MachineInstr *> &InsInstrs) const { + // Now we only support PPC64, Medium code model and P9 with vector. + // We have immutable pattern to access const pool. See function + // shouldReduceRegisterPressure. + assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() && + Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) && + "Target not supported!\n"); + + MachineFunction *MF = MI->getMF(); + MachineRegisterInfo *MRI = &MF->getRegInfo(); + + // Generate ADDIStocHA8 + Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); + MachineInstrBuilder TOCOffset = + BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1) + .addReg(PPC::X2) + .addConstantPoolIndex(Idx); + + assert((Ty->isFloatTy() || Ty->isDoubleTy()) && + "Only float and double are supported!"); + + unsigned LoadOpcode; + // Should be float type or double type. + if (Ty->isFloatTy()) + LoadOpcode = PPC::DFLOADf32; + else + LoadOpcode = PPC::DFLOADf64; + + const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg()); + Register VReg2 = MRI->createVirtualRegister(RC); + MachineMemOperand *MMO = MF->getMachineMemOperand( + MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad, + Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty)); + + // Generate Load from constant pool. + MachineInstrBuilder Load = + BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2) + .addConstantPoolIndex(Idx) + .addReg(VReg1, getKillRegState(true)) + .addMemOperand(MMO); + + Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO); + + // Insert the toc load instructions into InsInstrs. + InsInstrs.insert(InsInstrs.begin(), Load); + InsInstrs.insert(InsInstrs.begin(), TOCOffset); + return VReg2; +} + +// This function returns the const value in constant pool if the \p I is a load +// from constant pool. +const Constant * +PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const { + MachineFunction *MF = I->getMF(); + MachineRegisterInfo *MRI = &MF->getRegInfo(); + MachineConstantPool *MCP = MF->getConstantPool(); + assert(I->mayLoad() && "Should be a load instruction.\n"); + for (auto MO : I->uses()) { + if (!MO.isReg()) + continue; + Register Reg = MO.getReg(); + if (Reg == 0 || !Reg.isVirtual()) + continue; + // Find the toc address. + MachineInstr *DefMI = MRI->getVRegDef(Reg); + for (auto MO2 : DefMI->uses()) + if (MO2.isCPI()) + return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal; + } + return nullptr; +} + +bool PPCInstrInfo::getMachineCombinerPatterns( + MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, + bool DoRegPressureReduce) const { + // Using the machine combiner in this way is potentially expensive, so + // restrict to when aggressive optimizations are desired. + if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive) + return false; + + if (getFMAPatterns(Root, Patterns, DoRegPressureReduce)) + return true; + + return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, + DoRegPressureReduce); +} + +void PPCInstrInfo::genAlternativeCodeSequence( + MachineInstr &Root, MachineCombinerPattern Pattern, + SmallVectorImpl<MachineInstr *> &InsInstrs, + SmallVectorImpl<MachineInstr *> &DelInstrs, + DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { + switch (Pattern) { + case MachineCombinerPattern::REASSOC_XY_AMM_BMM: + case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: + case MachineCombinerPattern::REASSOC_XY_BCA: + case MachineCombinerPattern::REASSOC_XY_BAC: + reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); + break; + default: + // Reassociate default patterns. + TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, + DelInstrs, InstrIdxForVirtReg); + break; + } +} + +void PPCInstrInfo::reassociateFMA( + MachineInstr &Root, MachineCombinerPattern Pattern, + SmallVectorImpl<MachineInstr *> &InsInstrs, + SmallVectorImpl<MachineInstr *> &DelInstrs, + DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { + MachineFunction *MF = Root.getMF(); + MachineRegisterInfo &MRI = MF->getRegInfo(); + const TargetRegisterInfo *TRI = &getRegisterInfo(); + MachineOperand &OpC = Root.getOperand(0); + Register RegC = OpC.getReg(); + const TargetRegisterClass *RC = MRI.getRegClass(RegC); + MRI.constrainRegClass(RegC, RC); + + unsigned FmaOp = Root.getOpcode(); + int16_t Idx = getFMAOpIdxInfo(FmaOp); + assert(Idx >= 0 && "Root must be a FMA instruction"); + + bool IsILPReassociate = + (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) || + (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM); + + uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; + uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; + + MachineInstr *Prev = nullptr; + MachineInstr *Leaf = nullptr; + switch (Pattern) { + default: + llvm_unreachable("not recognized pattern!"); + case MachineCombinerPattern::REASSOC_XY_AMM_BMM: + case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: + Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg()); + Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg()); + break; + case MachineCombinerPattern::REASSOC_XY_BAC: { + Register MULReg = + TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI); + Leaf = MRI.getVRegDef(MULReg); + break; + } + case MachineCombinerPattern::REASSOC_XY_BCA: { + Register MULReg = TRI->lookThruCopyLike( + Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI); + Leaf = MRI.getVRegDef(MULReg); + break; + } + } + + uint16_t IntersectedFlags = 0; + if (IsILPReassociate) + IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); + else + IntersectedFlags = Root.getFlags() & Leaf->getFlags(); + + auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, + bool &KillFlag) { + Reg = Operand.getReg(); + MRI.constrainRegClass(Reg, RC); + KillFlag = Operand.isKill(); + }; + + auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, + Register &MulOp2, Register &AddOp, + bool &MulOp1KillFlag, bool &MulOp2KillFlag, + bool &AddOpKillFlag) { + GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag); + GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); + GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag); + }; + + Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11, + RegA21, RegB; + bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, + KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false, + KillA11 = false, KillA21 = false, KillB = false; + + GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB); + + if (IsILPReassociate) + GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21); + + if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { + GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11); + GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX); + } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) { + GetOperandInfo(Leaf->getOperand(1), RegX, KillX); + GetOperandInfo(Leaf->getOperand(2), RegY, KillY); + } else { + // Get FSUB instruction info. + GetOperandInfo(Leaf->getOperand(1), RegX, KillX); + GetOperandInfo(Leaf->getOperand(2), RegY, KillY); + } + + // Create new virtual registers for the new results instead of + // recycling legacy ones because the MachineCombiner's computation of the + // critical path requires a new register definition rather than an existing + // one. + // For register pressure reassociation, we only need create one virtual + // register for the new fma. + Register NewVRA = MRI.createVirtualRegister(RC); + InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0)); + + Register NewVRB = 0; + if (IsILPReassociate) { + NewVRB = MRI.createVirtualRegister(RC); + InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1)); + } + + Register NewVRD = 0; + if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) { + NewVRD = MRI.createVirtualRegister(RC); + InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2)); + } + + auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, + Register RegMul1, bool KillRegMul1, + Register RegMul2, bool KillRegMul2) { + MI->getOperand(AddOpIdx).setReg(RegAdd); + MI->getOperand(AddOpIdx).setIsKill(KillAdd); + MI->getOperand(FirstMulOpIdx).setReg(RegMul1); + MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1); + MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2); + MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2); + }; + + MachineInstrBuilder NewARegPressure, NewCRegPressure; + switch (Pattern) { + default: + llvm_unreachable("not recognized pattern!"); + case MachineCombinerPattern::REASSOC_XY_AMM_BMM: { + // Create new instructions for insertion. + MachineInstrBuilder MINewB = + BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) + .addReg(RegX, getKillRegState(KillX)) + .addReg(RegM21, getKillRegState(KillM21)) + .addReg(RegM22, getKillRegState(KillM22)); + MachineInstrBuilder MINewA = + BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) + .addReg(RegY, getKillRegState(KillY)) + .addReg(RegM31, getKillRegState(KillM31)) + .addReg(RegM32, getKillRegState(KillM32)); + // If AddOpIdx is not 1, adjust the order. + if (AddOpIdx != 1) { + AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); + AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); + } + + MachineInstrBuilder MINewC = + BuildMI(*MF, Root.getDebugLoc(), + get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) + .addReg(NewVRB, getKillRegState(true)) + .addReg(NewVRA, getKillRegState(true)); + + // Update flags for newly created instructions. + setSpecialOperandAttr(*MINewA, IntersectedFlags); + setSpecialOperandAttr(*MINewB, IntersectedFlags); + setSpecialOperandAttr(*MINewC, IntersectedFlags); + + // Record new instructions for insertion. + InsInstrs.push_back(MINewA); + InsInstrs.push_back(MINewB); + InsInstrs.push_back(MINewC); + break; + } + case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: { + assert(NewVRD && "new FMA register not created!"); + // Create new instructions for insertion. + MachineInstrBuilder MINewA = + BuildMI(*MF, Leaf->getDebugLoc(), + get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA) + .addReg(RegM11, getKillRegState(KillM11)) + .addReg(RegM12, getKillRegState(KillM12)); + MachineInstrBuilder MINewB = + BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB) + .addReg(RegX, getKillRegState(KillX)) + .addReg(RegM21, getKillRegState(KillM21)) + .addReg(RegM22, getKillRegState(KillM22)); + MachineInstrBuilder MINewD = + BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD) + .addReg(NewVRA, getKillRegState(true)) + .addReg(RegM31, getKillRegState(KillM31)) + .addReg(RegM32, getKillRegState(KillM32)); + // If AddOpIdx is not 1, adjust the order. + if (AddOpIdx != 1) { + AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); + AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, + KillM32); + } + + MachineInstrBuilder MINewC = + BuildMI(*MF, Root.getDebugLoc(), + get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC) + .addReg(NewVRB, getKillRegState(true)) + .addReg(NewVRD, getKillRegState(true)); + + // Update flags for newly created instructions. + setSpecialOperandAttr(*MINewA, IntersectedFlags); + setSpecialOperandAttr(*MINewB, IntersectedFlags); + setSpecialOperandAttr(*MINewD, IntersectedFlags); + setSpecialOperandAttr(*MINewC, IntersectedFlags); + + // Record new instructions for insertion. + InsInstrs.push_back(MINewA); + InsInstrs.push_back(MINewB); + InsInstrs.push_back(MINewD); + InsInstrs.push_back(MINewC); + break; + } + case MachineCombinerPattern::REASSOC_XY_BAC: + case MachineCombinerPattern::REASSOC_XY_BCA: { + Register VarReg; + bool KillVarReg = false; + if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) { + VarReg = RegM31; + KillVarReg = KillM31; + } else { + VarReg = RegM32; + KillVarReg = KillM32; + } + // We don't want to get negative const from memory pool too early, as the + // created entry will not be deleted even if it has no users. Since all + // operand of Leaf and Root are virtual register, we use zero register + // here as a placeholder. When the InsInstrs is selected in + // MachineCombiner, we call finalizeInsInstrs to replace the zero register + // with a virtual register which is a load from constant pool. + NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA) + .addReg(RegB, getKillRegState(RegB)) + .addReg(RegY, getKillRegState(KillY)) + .addReg(PPC::ZERO8); + NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC) + .addReg(NewVRA, getKillRegState(true)) + .addReg(RegX, getKillRegState(KillX)) + .addReg(VarReg, getKillRegState(KillVarReg)); + // For now, we only support xsmaddadp/xsmaddasp, their add operand are + // both at index 1, no need to adjust. + // FIXME: when add more fma instructions support, like fma/fmas, adjust + // the operand index here. + break; + } + } + + if (!IsILPReassociate) { + setSpecialOperandAttr(*NewARegPressure, IntersectedFlags); + setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags); + + InsInstrs.push_back(NewARegPressure); + InsInstrs.push_back(NewCRegPressure); + } + + assert(!InsInstrs.empty() && + "Insertion instructions set should not be empty!"); + + // Record old instructions for deletion. + DelInstrs.push_back(Leaf); + if (IsILPReassociate) + DelInstrs.push_back(Prev); + DelInstrs.push_back(&Root); +} + +// Detect 32 -> 64-bit extensions where we may reuse the low sub-register. +bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, + Register &SrcReg, Register &DstReg, + unsigned &SubIdx) const { + switch (MI.getOpcode()) { + default: return false; + case PPC::EXTSW: + case PPC::EXTSW_32: + case PPC::EXTSW_32_64: + SrcReg = MI.getOperand(1).getReg(); + DstReg = MI.getOperand(0).getReg(); + SubIdx = PPC::sub_32; + return true; + } +} + +unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, + int &FrameIndex) const { + if (llvm::is_contained(getLoadOpcodesForSpillArray(), MI.getOpcode())) { + // Check for the operands added by addFrameReference (the immediate is the + // offset which defaults to 0). + if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && + MI.getOperand(2).isFI()) { + FrameIndex = MI.getOperand(2).getIndex(); + return MI.getOperand(0).getReg(); + } + } + return 0; +} + +// For opcodes with the ReMaterializable flag set, this function is called to +// verify the instruction is really rematable. +bool PPCInstrInfo::isReallyTriviallyReMaterializable( + const MachineInstr &MI) const { + switch (MI.getOpcode()) { + default: + // This function should only be called for opcodes with the ReMaterializable + // flag set. + llvm_unreachable("Unknown rematerializable operation!"); + break; + case PPC::LI: + case PPC::LI8: + case PPC::PLI: + case PPC::PLI8: + case PPC::LIS: + case PPC::LIS8: + case PPC::ADDIStocHA: + case PPC::ADDIStocHA8: + case PPC::ADDItocL: + case PPC::LOAD_STACK_GUARD: + case PPC::XXLXORz: + case PPC::XXLXORspz: + case PPC::XXLXORdpz: + case PPC::XXLEQVOnes: + case PPC::XXSPLTI32DX: + case PPC::XXSPLTIW: + case PPC::XXSPLTIDP: + case PPC::V_SET0B: + case PPC::V_SET0H: + case PPC::V_SET0: + case PPC::V_SETALLONESB: + case PPC::V_SETALLONESH: + case PPC::V_SETALLONES: + case PPC::CRSET: + case PPC::CRUNSET: + case PPC::XXSETACCZ: + case PPC::XXSETACCZW: + return true; + } + return false; +} + +unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, + int &FrameIndex) const { + if (llvm::is_contained(getStoreOpcodesForSpillArray(), MI.getOpcode())) { + if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() && + MI.getOperand(2).isFI()) { + FrameIndex = MI.getOperand(2).getIndex(); + return MI.getOperand(0).getReg(); + } + } + return 0; +} + +MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, + unsigned OpIdx1, + unsigned OpIdx2) const { + MachineFunction &MF = *MI.getParent()->getParent(); + + // Normal instructions can be commuted the obvious way. + if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) + return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); + // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a + // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because + // changing the relative order of the mask operands might change what happens + // to the high-bits of the mask (and, thus, the result). + + // Cannot commute if it has a non-zero rotate count. + if (MI.getOperand(3).getImm() != 0) + return nullptr; + + // If we have a zero rotate count, we have: + // M = mask(MB,ME) + // Op0 = (Op1 & ~M) | (Op2 & M) + // Change this to: + // M = mask((ME+1)&31, (MB-1)&31) + // Op0 = (Op2 & ~M) | (Op1 & M) + + // Swap op1/op2 + assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && + "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec."); + Register Reg0 = MI.getOperand(0).getReg(); + Register Reg1 = MI.getOperand(1).getReg(); + Register Reg2 = MI.getOperand(2).getReg(); + unsigned SubReg1 = MI.getOperand(1).getSubReg(); + unsigned SubReg2 = MI.getOperand(2).getSubReg(); + bool Reg1IsKill = MI.getOperand(1).isKill(); + bool Reg2IsKill = MI.getOperand(2).isKill(); + bool ChangeReg0 = false; + // If machine instrs are no longer in two-address forms, update + // destination register as well. + if (Reg0 == Reg1) { + // Must be two address instruction! + assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) && + "Expecting a two-address instruction!"); + assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); + Reg2IsKill = false; + ChangeReg0 = true; + } + + // Masks. + unsigned MB = MI.getOperand(4).getImm(); + unsigned ME = MI.getOperand(5).getImm(); + + // We can't commute a trivial mask (there is no way to represent an all-zero + // mask). + if (MB == 0 && ME == 31) + return nullptr; + + if (NewMI) { + // Create a new instruction. + Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg(); + bool Reg0IsDead = MI.getOperand(0).isDead(); + return BuildMI(MF, MI.getDebugLoc(), MI.getDesc()) + .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) + .addReg(Reg2, getKillRegState(Reg2IsKill)) + .addReg(Reg1, getKillRegState(Reg1IsKill)) + .addImm((ME + 1) & 31) + .addImm((MB - 1) & 31); + } + + if (ChangeReg0) { + MI.getOperand(0).setReg(Reg2); + MI.getOperand(0).setSubReg(SubReg2); + } + MI.getOperand(2).setReg(Reg1); + MI.getOperand(1).setReg(Reg2); + MI.getOperand(2).setSubReg(SubReg1); + MI.getOperand(1).setSubReg(SubReg2); + MI.getOperand(2).setIsKill(Reg1IsKill); + MI.getOperand(1).setIsKill(Reg2IsKill); + + // Swap the mask around. + MI.getOperand(4).setImm((ME + 1) & 31); + MI.getOperand(5).setImm((MB - 1) & 31); + return &MI; +} + +bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, + unsigned &SrcOpIdx1, + unsigned &SrcOpIdx2) const { + // For VSX A-Type FMA instructions, it is the first two operands that can be + // commuted, however, because the non-encoded tied input operand is listed + // first, the operands to swap are actually the second and third. + + int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode()); + if (AltOpc == -1) + return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); + + // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 + // and SrcOpIdx2. + return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3); +} + +void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI) const { + // This function is used for scheduling, and the nop wanted here is the type + // that terminates dispatch groups on the POWER cores. + unsigned Directive = Subtarget.getCPUDirective(); + unsigned Opcode; + switch (Directive) { + default: Opcode = PPC::NOP; break; + case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; + case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; + case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ + // FIXME: Update when POWER9 scheduling model is ready. + case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; + } + + DebugLoc DL; + BuildMI(MBB, MI, DL, get(Opcode)); +} + +/// Return the noop instruction to use for a noop. +MCInst PPCInstrInfo::getNop() const { + MCInst Nop; + Nop.setOpcode(PPC::NOP); + return Nop; +} + +// Branch analysis. +// Note: If the condition register is set to CTR or CTR8 then this is a +// BDNZ (imm == 1) or BDZ (imm == 0) branch. +bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, + MachineBasicBlock *&TBB, + MachineBasicBlock *&FBB, + SmallVectorImpl<MachineOperand> &Cond, + bool AllowModify) const { + bool isPPC64 = Subtarget.isPPC64(); + + // If the block has no terminators, it just falls into the block after it. + MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); + if (I == MBB.end()) + return false; + + if (!isUnpredicatedTerminator(*I)) + return false; + + if (AllowModify) { + // If the BB ends with an unconditional branch to the fallthrough BB, + // we eliminate the branch instruction. + if (I->getOpcode() == PPC::B && + MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { + I->eraseFromParent(); + + // We update iterator after deleting the last branch. + I = MBB.getLastNonDebugInstr(); + if (I == MBB.end() || !isUnpredicatedTerminator(*I)) + return false; + } + } + + // Get the last instruction in the block. + MachineInstr &LastInst = *I; + + // If there is only one terminator instruction, process it. + if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) { + if (LastInst.getOpcode() == PPC::B) { + if (!LastInst.getOperand(0).isMBB()) + return true; + TBB = LastInst.getOperand(0).getMBB(); + return false; + } else if (LastInst.getOpcode() == PPC::BCC) { + if (!LastInst.getOperand(2).isMBB()) + return true; + // Block ends with fall-through condbranch. + TBB = LastInst.getOperand(2).getMBB(); + Cond.push_back(LastInst.getOperand(0)); + Cond.push_back(LastInst.getOperand(1)); + return false; + } else if (LastInst.getOpcode() == PPC::BC) { + if (!LastInst.getOperand(1).isMBB()) + return true; + // Block ends with fall-through condbranch. + TBB = LastInst.getOperand(1).getMBB(); + Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); + Cond.push_back(LastInst.getOperand(0)); + return false; + } else if (LastInst.getOpcode() == PPC::BCn) { + if (!LastInst.getOperand(1).isMBB()) + return true; + // Block ends with fall-through condbranch. + TBB = LastInst.getOperand(1).getMBB(); + Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); + Cond.push_back(LastInst.getOperand(0)); + return false; + } else if (LastInst.getOpcode() == PPC::BDNZ8 || + LastInst.getOpcode() == PPC::BDNZ) { + if (!LastInst.getOperand(0).isMBB()) + return true; + if (DisableCTRLoopAnal) + return true; + TBB = LastInst.getOperand(0).getMBB(); + Cond.push_back(MachineOperand::CreateImm(1)); + Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, + true)); + return false; + } else if (LastInst.getOpcode() == PPC::BDZ8 || + LastInst.getOpcode() == PPC::BDZ) { + if (!LastInst.getOperand(0).isMBB()) + return true; + if (DisableCTRLoopAnal) + return true; + TBB = LastInst.getOperand(0).getMBB(); + Cond.push_back(MachineOperand::CreateImm(0)); + Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, + true)); + return false; + } + + // Otherwise, don't know what this is. + return true; + } + + // Get the instruction before it if it's a terminator. + MachineInstr &SecondLastInst = *I; + + // If there are three terminators, we don't know what sort of block this is. + if (I != MBB.begin() && isUnpredicatedTerminator(*--I)) + return true; + + // If the block ends with PPC::B and PPC:BCC, handle it. + if (SecondLastInst.getOpcode() == PPC::BCC && + LastInst.getOpcode() == PPC::B) { + if (!SecondLastInst.getOperand(2).isMBB() || + !LastInst.getOperand(0).isMBB()) + return true; + TBB = SecondLastInst.getOperand(2).getMBB(); + Cond.push_back(SecondLastInst.getOperand(0)); + Cond.push_back(SecondLastInst.getOperand(1)); + FBB = LastInst.getOperand(0).getMBB(); + return false; + } else if (SecondLastInst.getOpcode() == PPC::BC && + LastInst.getOpcode() == PPC::B) { + if (!SecondLastInst.getOperand(1).isMBB() || + !LastInst.getOperand(0).isMBB()) + return true; + TBB = SecondLastInst.getOperand(1).getMBB(); + Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); + Cond.push_back(SecondLastInst.getOperand(0)); + FBB = LastInst.getOperand(0).getMBB(); + return false; + } else if (SecondLastInst.getOpcode() == PPC::BCn && + LastInst.getOpcode() == PPC::B) { + if (!SecondLastInst.getOperand(1).isMBB() || + !LastInst.getOperand(0).isMBB()) + return true; + TBB = SecondLastInst.getOperand(1).getMBB(); + Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); + Cond.push_back(SecondLastInst.getOperand(0)); + FBB = LastInst.getOperand(0).getMBB(); + return false; + } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || + SecondLastInst.getOpcode() == PPC::BDNZ) && + LastInst.getOpcode() == PPC::B) { + if (!SecondLastInst.getOperand(0).isMBB() || + !LastInst.getOperand(0).isMBB()) + return true; + if (DisableCTRLoopAnal) + return true; + TBB = SecondLastInst.getOperand(0).getMBB(); + Cond.push_back(MachineOperand::CreateImm(1)); + Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, + true)); + FBB = LastInst.getOperand(0).getMBB(); + return false; + } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || + SecondLastInst.getOpcode() == PPC::BDZ) && + LastInst.getOpcode() == PPC::B) { + if (!SecondLastInst.getOperand(0).isMBB() || + !LastInst.getOperand(0).isMBB()) + return true; + if (DisableCTRLoopAnal) + return true; + TBB = SecondLastInst.getOperand(0).getMBB(); + Cond.push_back(MachineOperand::CreateImm(0)); + Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, + true)); + FBB = LastInst.getOperand(0).getMBB(); + return false; + } + + // If the block ends with two PPC:Bs, handle it. The second one is not + // executed, so remove it. + if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { + if (!SecondLastInst.getOperand(0).isMBB()) + return true; + TBB = SecondLastInst.getOperand(0).getMBB(); + I = LastInst; + if (AllowModify) + I->eraseFromParent(); + return false; + } + + // Otherwise, can't handle this. + return true; +} + +unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, + int *BytesRemoved) const { + assert(!BytesRemoved && "code size not handled"); + + MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); + if (I == MBB.end()) + return 0; + + if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && + I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && + I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && + I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) + return 0; + + // Remove the branch. + I->eraseFromParent(); + + I = MBB.end(); + + if (I == MBB.begin()) return 1; + --I; + if (I->getOpcode() != PPC::BCC && + I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && + I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && + I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) + return 1; + + // Remove the branch. + I->eraseFromParent(); + return 2; +} + +unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, + MachineBasicBlock *TBB, + MachineBasicBlock *FBB, + ArrayRef<MachineOperand> Cond, + const DebugLoc &DL, + int *BytesAdded) const { + // Shouldn't be a fall through. + assert(TBB && "insertBranch must not be told to insert a fallthrough"); + assert((Cond.size() == 2 || Cond.size() == 0) && + "PPC branch conditions have two components!"); + assert(!BytesAdded && "code size not handled"); + + bool isPPC64 = Subtarget.isPPC64(); + + // One-way branch. + if (!FBB) { + if (Cond.empty()) // Unconditional branch + BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); + else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) + BuildMI(&MBB, DL, get(Cond[0].getImm() ? + (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : + (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); + else if (Cond[0].getImm() == PPC::PRED_BIT_SET) + BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); + else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) + BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); + else // Conditional branch + BuildMI(&MBB, DL, get(PPC::BCC)) + .addImm(Cond[0].getImm()) + .add(Cond[1]) + .addMBB(TBB); + return 1; + } + + // Two-way Conditional Branch. + if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) + BuildMI(&MBB, DL, get(Cond[0].getImm() ? + (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : + (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); + else if (Cond[0].getImm() == PPC::PRED_BIT_SET) + BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB); + else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) + BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB); + else + BuildMI(&MBB, DL, get(PPC::BCC)) + .addImm(Cond[0].getImm()) + .add(Cond[1]) + .addMBB(TBB); + BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); + return 2; +} + +// Select analysis. +bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, + ArrayRef<MachineOperand> Cond, + Register DstReg, Register TrueReg, + Register FalseReg, int &CondCycles, + int &TrueCycles, int &FalseCycles) const { + if (Cond.size() != 2) + return false; + + // If this is really a bdnz-like condition, then it cannot be turned into a + // select. + if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) + return false; + + // If the conditional branch uses a physical register, then it cannot be + // turned into a select. + if (Cond[1].getReg().isPhysical()) + return false; + + // Check register classes. + const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); + const TargetRegisterClass *RC = + RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); + if (!RC) + return false; + + // isel is for regular integer GPRs only. + if (!PPC::GPRCRegClass.hasSubClassEq(RC) && + !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && + !PPC::G8RCRegClass.hasSubClassEq(RC) && + !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) + return false; + + // FIXME: These numbers are for the A2, how well they work for other cores is + // an open question. On the A2, the isel instruction has a 2-cycle latency + // but single-cycle throughput. These numbers are used in combination with + // the MispredictPenalty setting from the active SchedMachineModel. + CondCycles = 1; + TrueCycles = 1; + FalseCycles = 1; + + return true; +} + +void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + const DebugLoc &dl, Register DestReg, + ArrayRef<MachineOperand> Cond, Register TrueReg, + Register FalseReg) const { + assert(Cond.size() == 2 && + "PPC branch conditions have two components!"); + + // Get the register classes. + MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); + const TargetRegisterClass *RC = + RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); + assert(RC && "TrueReg and FalseReg must have overlapping register classes"); + + bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || + PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); + assert((Is64Bit || + PPC::GPRCRegClass.hasSubClassEq(RC) || + PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && + "isel is for regular integer GPRs only"); + + unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; + auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); + + unsigned SubIdx = 0; + bool SwapOps = false; + switch (SelectPred) { + case PPC::PRED_EQ: + case PPC::PRED_EQ_MINUS: + case PPC::PRED_EQ_PLUS: + SubIdx = PPC::sub_eq; SwapOps = false; break; + case PPC::PRED_NE: + case PPC::PRED_NE_MINUS: + case PPC::PRED_NE_PLUS: + SubIdx = PPC::sub_eq; SwapOps = true; break; + case PPC::PRED_LT: + case PPC::PRED_LT_MINUS: + case PPC::PRED_LT_PLUS: + SubIdx = PPC::sub_lt; SwapOps = false; break; + case PPC::PRED_GE: + case PPC::PRED_GE_MINUS: + case PPC::PRED_GE_PLUS: + SubIdx = PPC::sub_lt; SwapOps = true; break; + case PPC::PRED_GT: + case PPC::PRED_GT_MINUS: + case PPC::PRED_GT_PLUS: + SubIdx = PPC::sub_gt; SwapOps = false; break; + case PPC::PRED_LE: + case PPC::PRED_LE_MINUS: + case PPC::PRED_LE_PLUS: + SubIdx = PPC::sub_gt; SwapOps = true; break; + case PPC::PRED_UN: + case PPC::PRED_UN_MINUS: + case PPC::PRED_UN_PLUS: + SubIdx = PPC::sub_un; SwapOps = false; break; + case PPC::PRED_NU: + case PPC::PRED_NU_MINUS: + case PPC::PRED_NU_PLUS: + SubIdx = PPC::sub_un; SwapOps = true; break; + case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; + case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; + } + + Register FirstReg = SwapOps ? FalseReg : TrueReg, + SecondReg = SwapOps ? TrueReg : FalseReg; + + // The first input register of isel cannot be r0. If it is a member + // of a register class that can be r0, then copy it first (the + // register allocator should eliminate the copy). + if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || + MRI.getRegClass(FirstReg)->contains(PPC::X0)) { + const TargetRegisterClass *FirstRC = + MRI.getRegClass(FirstReg)->contains(PPC::X0) ? + &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; + Register OldFirstReg = FirstReg; + FirstReg = MRI.createVirtualRegister(FirstRC); + BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) + .addReg(OldFirstReg); + } + + BuildMI(MBB, MI, dl, get(OpCode), DestReg) + .addReg(FirstReg).addReg(SecondReg) + .addReg(Cond[1].getReg(), 0, SubIdx); +} + +static unsigned getCRBitValue(unsigned CRBit) { + unsigned Ret = 4; + if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || + CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || + CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || + CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) + Ret = 3; + if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || + CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || + CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || + CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) + Ret = 2; + if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || + CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || + CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || + CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) + Ret = 1; + if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || + CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || + CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || + CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) + Ret = 0; + + assert(Ret != 4 && "Invalid CR bit register"); + return Ret; +} + +void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I, + const DebugLoc &DL, MCRegister DestReg, + MCRegister SrcReg, bool KillSrc) const { + // We can end up with self copies and similar things as a result of VSX copy + // legalization. Promote them here. + const TargetRegisterInfo *TRI = &getRegisterInfo(); + if (PPC::F8RCRegClass.contains(DestReg) && + PPC::VSRCRegClass.contains(SrcReg)) { + MCRegister SuperReg = + TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); + + if (VSXSelfCopyCrash && SrcReg == SuperReg) + llvm_unreachable("nop VSX copy"); + + DestReg = SuperReg; + } else if (PPC::F8RCRegClass.contains(SrcReg) && + PPC::VSRCRegClass.contains(DestReg)) { + MCRegister SuperReg = + TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); + + if (VSXSelfCopyCrash && DestReg == SuperReg) + llvm_unreachable("nop VSX copy"); + + SrcReg = SuperReg; + } + + // Different class register copy + if (PPC::CRBITRCRegClass.contains(SrcReg) && + PPC::GPRCRegClass.contains(DestReg)) { + MCRegister CRReg = getCRFromCRBit(SrcReg); + BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg); + getKillRegState(KillSrc); + // Rotate the CR bit in the CR fields to be the least significant bit and + // then mask with 0x1 (MB = ME = 31). + BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg) + .addReg(DestReg, RegState::Kill) + .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg))) + .addImm(31) + .addImm(31); + return; + } else if (PPC::CRRCRegClass.contains(SrcReg) && + (PPC::G8RCRegClass.contains(DestReg) || + PPC::GPRCRegClass.contains(DestReg))) { + bool Is64Bit = PPC::G8RCRegClass.contains(DestReg); + unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF; + unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM; + unsigned CRNum = TRI->getEncodingValue(SrcReg); + BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg); + getKillRegState(KillSrc); + if (CRNum == 7) + return; + // Shift the CR bits to make the CR field in the lowest 4 bits of GRC. + BuildMI(MBB, I, DL, get(ShCode), DestReg) + .addReg(DestReg, RegState::Kill) + .addImm(CRNum * 4 + 4) + .addImm(28) + .addImm(31); + return; + } else if (PPC::G8RCRegClass.contains(SrcReg) && + PPC::VSFRCRegClass.contains(DestReg)) { + assert(Subtarget.hasDirectMove() && + "Subtarget doesn't support directmove, don't know how to copy."); + BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg); + NumGPRtoVSRSpill++; + getKillRegState(KillSrc); + return; + } else if (PPC::VSFRCRegClass.contains(SrcReg) && + PPC::G8RCRegClass.contains(DestReg)) { + assert(Subtarget.hasDirectMove() && + "Subtarget doesn't support directmove, don't know how to copy."); + BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg); + getKillRegState(KillSrc); + return; + } else if (PPC::SPERCRegClass.contains(SrcReg) && + PPC::GPRCRegClass.contains(DestReg)) { + BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg); + getKillRegState(KillSrc); + return; + } else if (PPC::GPRCRegClass.contains(SrcReg) && + PPC::SPERCRegClass.contains(DestReg)) { + BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg); + getKillRegState(KillSrc); + return; + } + + unsigned Opc; + if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) + Opc = PPC::OR; + else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) + Opc = PPC::OR8; + else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) + Opc = PPC::FMR; + else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) + Opc = PPC::MCRF; + else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) + Opc = PPC::VOR; + else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) + // There are two different ways this can be done: + // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only + // issue in VSU pipeline 0. + // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but + // can go to either pipeline. + // We'll always use xxlor here, because in practically all cases where + // copies are generated, they are close enough to some use that the + // lower-latency form is preferable. + Opc = PPC::XXLOR; + else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) || + PPC::VSSRCRegClass.contains(DestReg, SrcReg)) + Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; + else if (Subtarget.pairedVectorMemops() && + PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) { + if (SrcReg > PPC::VSRp15) + SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2; + else + SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; + if (DestReg > PPC::VSRp15) + DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2; + else + DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2; + BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg). + addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); + BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1). + addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc)); + return; + } + else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) + Opc = PPC::CROR; + else if (PPC::SPERCRegClass.contains(DestReg, SrcReg)) + Opc = PPC::EVOR; + else if ((PPC::ACCRCRegClass.contains(DestReg) || + PPC::UACCRCRegClass.contains(DestReg)) && + (PPC::ACCRCRegClass.contains(SrcReg) || + PPC::UACCRCRegClass.contains(SrcReg))) { + // If primed, de-prime the source register, copy the individual registers + // and prime the destination if needed. The vector subregisters are + // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the + // source is primed, we need to re-prime it after the copy as well. + PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg); + bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg); + bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg); + MCRegister VSLSrcReg = + PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; + MCRegister VSLDestReg = + PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; + if (SrcPrimed) + BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg); + for (unsigned Idx = 0; Idx < 4; Idx++) + BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx) + .addReg(VSLSrcReg + Idx) + .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc)); + if (DestPrimed) + BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg); + if (SrcPrimed && !KillSrc) + BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg); + return; + } else if (PPC::G8pRCRegClass.contains(DestReg) && + PPC::G8pRCRegClass.contains(SrcReg)) { + // TODO: Handle G8RC to G8pRC (and vice versa) copy. + unsigned DestRegIdx = DestReg - PPC::G8p0; + MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx; + MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1; + unsigned SrcRegIdx = SrcReg - PPC::G8p0; + MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx; + MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1; + BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0) + .addReg(SrcRegSub0) + .addReg(SrcRegSub0, getKillRegState(KillSrc)); + BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1) + .addReg(SrcRegSub1) + .addReg(SrcRegSub1, getKillRegState(KillSrc)); + return; + } else + llvm_unreachable("Impossible reg-to-reg copy"); + + const MCInstrDesc &MCID = get(Opc); + if (MCID.getNumOperands() == 3) + BuildMI(MBB, I, DL, MCID, DestReg) + .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); + else + BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); +} + +unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const { + int OpcodeIndex = 0; + + if (PPC::GPRCRegClass.hasSubClassEq(RC) || + PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_Int4Spill; + } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || + PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_Int8Spill; + } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_Float8Spill; + } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_Float4Spill; + } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_SPESpill; + } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_CRSpill; + } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_CRBitSpill; + } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_VRVectorSpill; + } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_VSXVectorSpill; + } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_VectorFloat8Spill; + } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_VectorFloat4Spill; + } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_SpillToVSR; + } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) { + assert(Subtarget.pairedVectorMemops() && + "Register unexpected when paired memops are disabled."); + OpcodeIndex = SOK_AccumulatorSpill; + } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) { + assert(Subtarget.pairedVectorMemops() && + "Register unexpected when paired memops are disabled."); + OpcodeIndex = SOK_UAccumulatorSpill; + } else if (PPC::WACCRCRegClass.hasSubClassEq(RC)) { + assert(Subtarget.pairedVectorMemops() && + "Register unexpected when paired memops are disabled."); + OpcodeIndex = SOK_WAccumulatorSpill; + } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) { + assert(Subtarget.pairedVectorMemops() && + "Register unexpected when paired memops are disabled."); + OpcodeIndex = SOK_PairedVecSpill; + } else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) { + OpcodeIndex = SOK_PairedG8Spill; + } else { + llvm_unreachable("Unknown regclass!"); + } + return OpcodeIndex; +} + +unsigned +PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { + ArrayRef<unsigned> OpcodesForSpill = getStoreOpcodesForSpillArray(); + return OpcodesForSpill[getSpillIndex(RC)]; +} + +unsigned +PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { + ArrayRef<unsigned> OpcodesForSpill = getLoadOpcodesForSpillArray(); + return OpcodesForSpill[getSpillIndex(RC)]; +} + +void PPCInstrInfo::StoreRegToStackSlot( + MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, + const TargetRegisterClass *RC, + SmallVectorImpl<MachineInstr *> &NewMIs) const { + unsigned Opcode = getStoreOpcodeForSpill(RC); + DebugLoc DL; + + PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); + FuncInfo->setHasSpills(); + + NewMIs.push_back(addFrameReference( + BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)), + FrameIdx)); + + if (PPC::CRRCRegClass.hasSubClassEq(RC) || + PPC::CRBITRCRegClass.hasSubClassEq(RC)) + FuncInfo->setSpillsCR(); + + if (isXFormMemOp(Opcode)) + FuncInfo->setHasNonRISpills(); +} + +void PPCInstrInfo::storeRegToStackSlotNoUpd( + MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, + bool isKill, int FrameIdx, const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI) const { + MachineFunction &MF = *MBB.getParent(); + SmallVector<MachineInstr *, 4> NewMIs; + + StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); + + for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) + MBB.insert(MI, NewMIs[i]); + + const MachineFrameInfo &MFI = MF.getFrameInfo(); + MachineMemOperand *MMO = MF.getMachineMemOperand( + MachinePointerInfo::getFixedStack(MF, FrameIdx), + MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), + MFI.getObjectAlign(FrameIdx)); + NewMIs.back()->addMemOperand(MF, MMO); +} + +void PPCInstrInfo::storeRegToStackSlot( + MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, + bool isKill, int FrameIdx, const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI, Register VReg) const { + // We need to avoid a situation in which the value from a VRRC register is + // spilled using an Altivec instruction and reloaded into a VSRC register + // using a VSX instruction. The issue with this is that the VSX + // load/store instructions swap the doublewords in the vector and the Altivec + // ones don't. The register classes on the spill/reload may be different if + // the register is defined using an Altivec instruction and is then used by a + // VSX instruction. + RC = updatedRC(RC); + storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); +} + +void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, + unsigned DestReg, int FrameIdx, + const TargetRegisterClass *RC, + SmallVectorImpl<MachineInstr *> &NewMIs) + const { + unsigned Opcode = getLoadOpcodeForSpill(RC); + NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg), + FrameIdx)); + PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); + + if (PPC::CRRCRegClass.hasSubClassEq(RC) || + PPC::CRBITRCRegClass.hasSubClassEq(RC)) + FuncInfo->setSpillsCR(); + + if (isXFormMemOp(Opcode)) + FuncInfo->setHasNonRISpills(); +} + +void PPCInstrInfo::loadRegFromStackSlotNoUpd( + MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, + int FrameIdx, const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI) const { + MachineFunction &MF = *MBB.getParent(); + SmallVector<MachineInstr*, 4> NewMIs; + DebugLoc DL; + if (MI != MBB.end()) DL = MI->getDebugLoc(); + + PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); + FuncInfo->setHasSpills(); + + LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); + + for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) + MBB.insert(MI, NewMIs[i]); + + const MachineFrameInfo &MFI = MF.getFrameInfo(); + MachineMemOperand *MMO = MF.getMachineMemOperand( + MachinePointerInfo::getFixedStack(MF, FrameIdx), + MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), + MFI.getObjectAlign(FrameIdx)); + NewMIs.back()->addMemOperand(MF, MMO); +} + +void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + Register DestReg, int FrameIdx, + const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI, + Register VReg) const { + // We need to avoid a situation in which the value from a VRRC register is + // spilled using an Altivec instruction and reloaded into a VSRC register + // using a VSX instruction. The issue with this is that the VSX + // load/store instructions swap the doublewords in the vector and the Altivec + // ones don't. The register classes on the spill/reload may be different if + // the register is defined using an Altivec instruction and is then used by a + // VSX instruction. + RC = updatedRC(RC); + + loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); +} + +bool PPCInstrInfo:: +reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { + assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); + if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) + Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); + else + // Leave the CR# the same, but invert the condition. + Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); + return false; +} + +// For some instructions, it is legal to fold ZERO into the RA register field. +// This function performs that fold by replacing the operand with PPC::ZERO, +// it does not consider whether the load immediate zero is no longer in use. +bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, + Register Reg) const { + // A zero immediate should always be loaded with a single li. + unsigned DefOpc = DefMI.getOpcode(); + if (DefOpc != PPC::LI && DefOpc != PPC::LI8) + return false; + if (!DefMI.getOperand(1).isImm()) + return false; + if (DefMI.getOperand(1).getImm() != 0) + return false; + + // Note that we cannot here invert the arguments of an isel in order to fold + // a ZERO into what is presented as the second argument. All we have here + // is the condition bit, and that might come from a CR-logical bit operation. + + const MCInstrDesc &UseMCID = UseMI.getDesc(); + + // Only fold into real machine instructions. + if (UseMCID.isPseudo()) + return false; + + // We need to find which of the User's operands is to be folded, that will be + // the operand that matches the given register ID. + unsigned UseIdx; + for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) + if (UseMI.getOperand(UseIdx).isReg() && + UseMI.getOperand(UseIdx).getReg() == Reg) + break; + + assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI"); + assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); + + const MCOperandInfo *UseInfo = &UseMCID.operands()[UseIdx]; + + // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 + // register (which might also be specified as a pointer class kind). + if (UseInfo->isLookupPtrRegClass()) { + if (UseInfo->RegClass /* Kind */ != 1) + return false; + } else { + if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && + UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) + return false; + } + + // Make sure this is not tied to an output register (or otherwise + // constrained). This is true for ST?UX registers, for example, which + // are tied to their output registers. + if (UseInfo->Constraints != 0) + return false; + + MCRegister ZeroReg; + if (UseInfo->isLookupPtrRegClass()) { + bool isPPC64 = Subtarget.isPPC64(); + ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; + } else { + ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? + PPC::ZERO8 : PPC::ZERO; + } + + LLVM_DEBUG(dbgs() << "Folded immediate zero for: "); + LLVM_DEBUG(UseMI.dump()); + UseMI.getOperand(UseIdx).setReg(ZeroReg); + LLVM_DEBUG(dbgs() << "Into: "); + LLVM_DEBUG(UseMI.dump()); + return true; +} + +// Folds zero into instructions which have a load immediate zero as an operand +// but also recognize zero as immediate zero. If the definition of the load +// has no more users it is deleted. +bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, + Register Reg, MachineRegisterInfo *MRI) const { + bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); + if (MRI->use_nodbg_empty(Reg)) + DefMI.eraseFromParent(); + return Changed; +} + +static bool MBBDefinesCTR(MachineBasicBlock &MBB) { + for (MachineInstr &MI : MBB) + if (MI.definesRegister(PPC::CTR) || MI.definesRegister(PPC::CTR8)) + return true; + return false; +} + +// We should make sure that, if we're going to predicate both sides of a +// condition (a diamond), that both sides don't define the counter register. We +// can predicate counter-decrement-based branches, but while that predicates +// the branching, it does not predicate the counter decrement. If we tried to +// merge the triangle into one predicated block, we'd decrement the counter +// twice. +bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, + unsigned NumT, unsigned ExtraT, + MachineBasicBlock &FMBB, + unsigned NumF, unsigned ExtraF, + BranchProbability Probability) const { + return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); +} + + +bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { + // The predicated branches are identified by their type, not really by the + // explicit presence of a predicate. Furthermore, some of them can be + // predicated more than once. Because if conversion won't try to predicate + // any instruction which already claims to be predicated (by returning true + // here), always return false. In doing so, we let isPredicable() be the + // final word on whether not the instruction can be (further) predicated. + + return false; +} + +bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, + const MachineBasicBlock *MBB, + const MachineFunction &MF) const { + // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion + // across them, since some FP operations may change content of FPSCR. + // TODO: Model FPSCR in PPC instruction definitions and remove the workaround + if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF) + return true; + return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); +} + +bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, + ArrayRef<MachineOperand> Pred) const { + unsigned OpC = MI.getOpcode(); + if (OpC == PPC::BLR || OpC == PPC::BLR8) { + if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { + bool isPPC64 = Subtarget.isPPC64(); + MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) + : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); + // Need add Def and Use for CTR implicit operand. + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .addReg(Pred[1].getReg(), RegState::Implicit) + .addReg(Pred[1].getReg(), RegState::ImplicitDefine); + } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { + MI.setDesc(get(PPC::BCLR)); + MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); + } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { + MI.setDesc(get(PPC::BCLRn)); + MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); + } else { + MI.setDesc(get(PPC::BCCLR)); + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .addImm(Pred[0].getImm()) + .add(Pred[1]); + } + + return true; + } else if (OpC == PPC::B) { + if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { + bool isPPC64 = Subtarget.isPPC64(); + MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) + : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); + // Need add Def and Use for CTR implicit operand. + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .addReg(Pred[1].getReg(), RegState::Implicit) + .addReg(Pred[1].getReg(), RegState::ImplicitDefine); + } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { + MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); + MI.removeOperand(0); + + MI.setDesc(get(PPC::BC)); + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .add(Pred[1]) + .addMBB(MBB); + } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { + MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); + MI.removeOperand(0); + + MI.setDesc(get(PPC::BCn)); + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .add(Pred[1]) + .addMBB(MBB); + } else { + MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); + MI.removeOperand(0); + + MI.setDesc(get(PPC::BCC)); + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .addImm(Pred[0].getImm()) + .add(Pred[1]) + .addMBB(MBB); + } + + return true; + } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || + OpC == PPC::BCTRL8 || OpC == PPC::BCTRL_RM || + OpC == PPC::BCTRL8_RM) { + if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) + llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); + + bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8 || + OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM; + bool isPPC64 = Subtarget.isPPC64(); + + if (Pred[0].getImm() == PPC::PRED_BIT_SET) { + MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) + : (setLR ? PPC::BCCTRL : PPC::BCCTR))); + MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); + } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { + MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) + : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); + MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]); + } else { + MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) + : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .addImm(Pred[0].getImm()) + .add(Pred[1]); + } + + // Need add Def and Use for LR implicit operand. + if (setLR) + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit) + .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine); + if (OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM) + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .addReg(PPC::RM, RegState::ImplicitDefine); + + return true; + } + + return false; +} + +bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, + ArrayRef<MachineOperand> Pred2) const { + assert(Pred1.size() == 2 && "Invalid PPC first predicate"); + assert(Pred2.size() == 2 && "Invalid PPC second predicate"); + + if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) + return false; + if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) + return false; + + // P1 can only subsume P2 if they test the same condition register. + if (Pred1[1].getReg() != Pred2[1].getReg()) + return false; + + PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); + PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); + + if (P1 == P2) + return true; + + // Does P1 subsume P2, e.g. GE subsumes GT. + if (P1 == PPC::PRED_LE && + (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) + return true; + if (P1 == PPC::PRED_GE && + (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) + return true; + + return false; +} + +bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI, + std::vector<MachineOperand> &Pred, + bool SkipDead) const { + // Note: At the present time, the contents of Pred from this function is + // unused by IfConversion. This implementation follows ARM by pushing the + // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of + // predicate, instructions defining CTR or CTR8 are also included as + // predicate-defining instructions. + + const TargetRegisterClass *RCs[] = + { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, + &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; + + bool Found = false; + for (const MachineOperand &MO : MI.operands()) { + for (unsigned c = 0; c < std::size(RCs) && !Found; ++c) { + const TargetRegisterClass *RC = RCs[c]; + if (MO.isReg()) { + if (MO.isDef() && RC->contains(MO.getReg())) { + Pred.push_back(MO); + Found = true; + } + } else if (MO.isRegMask()) { + for (MCPhysReg R : *RC) + if (MO.clobbersPhysReg(R)) { + Pred.push_back(MO); + Found = true; + } + } + } + } + + return Found; +} + +bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, + Register &SrcReg2, int64_t &Mask, + int64_t &Value) const { + unsigned Opc = MI.getOpcode(); + + switch (Opc) { + default: return false; + case PPC::CMPWI: + case PPC::CMPLWI: + case PPC::CMPDI: + case PPC::CMPLDI: + SrcReg = MI.getOperand(1).getReg(); + SrcReg2 = 0; + Value = MI.getOperand(2).getImm(); + Mask = 0xFFFF; + return true; + case PPC::CMPW: + case PPC::CMPLW: + case PPC::CMPD: + case PPC::CMPLD: + case PPC::FCMPUS: + case PPC::FCMPUD: + SrcReg = MI.getOperand(1).getReg(); + SrcReg2 = MI.getOperand(2).getReg(); + Value = 0; + Mask = 0; + return true; + } +} + +bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, + Register SrcReg2, int64_t Mask, + int64_t Value, + const MachineRegisterInfo *MRI) const { + if (DisableCmpOpt) + return false; + + int OpC = CmpInstr.getOpcode(); + Register CRReg = CmpInstr.getOperand(0).getReg(); + + // FP record forms set CR1 based on the exception status bits, not a + // comparison with zero. + if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) + return false; + + const TargetRegisterInfo *TRI = &getRegisterInfo(); + // The record forms set the condition register based on a signed comparison + // with zero (so says the ISA manual). This is not as straightforward as it + // seems, however, because this is always a 64-bit comparison on PPC64, even + // for instructions that are 32-bit in nature (like slw for example). + // So, on PPC32, for unsigned comparisons, we can use the record forms only + // for equality checks (as those don't depend on the sign). On PPC64, + // we are restricted to equality for unsigned 64-bit comparisons and for + // signed 32-bit comparisons the applicability is more restricted. + bool isPPC64 = Subtarget.isPPC64(); + bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; + bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; + bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; + + // Look through copies unless that gets us to a physical register. + Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); + if (ActualSrc.isVirtual()) + SrcReg = ActualSrc; + + // Get the unique definition of SrcReg. + MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); + if (!MI) return false; + + bool equalityOnly = false; + bool noSub = false; + if (isPPC64) { + if (is32BitSignedCompare) { + // We can perform this optimization only if SrcReg is sign-extending. + if (isSignExtended(SrcReg, MRI)) + noSub = true; + else + return false; + } else if (is32BitUnsignedCompare) { + // We can perform this optimization, equality only, if SrcReg is + // zero-extending. + if (isZeroExtended(SrcReg, MRI)) { + noSub = true; + equalityOnly = true; + } else + return false; + } else + equalityOnly = is64BitUnsignedCompare; + } else + equalityOnly = is32BitUnsignedCompare; + + if (equalityOnly) { + // We need to check the uses of the condition register in order to reject + // non-equality comparisons. + for (MachineRegisterInfo::use_instr_iterator + I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); + I != IE; ++I) { + MachineInstr *UseMI = &*I; + if (UseMI->getOpcode() == PPC::BCC) { + PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); + unsigned PredCond = PPC::getPredicateCondition(Pred); + // We ignore hint bits when checking for non-equality comparisons. + if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) + return false; + } else if (UseMI->getOpcode() == PPC::ISEL || + UseMI->getOpcode() == PPC::ISEL8) { + unsigned SubIdx = UseMI->getOperand(3).getSubReg(); + if (SubIdx != PPC::sub_eq) + return false; + } else + return false; + } + } + + MachineBasicBlock::iterator I = CmpInstr; + + // Scan forward to find the first use of the compare. + for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; + ++I) { + bool FoundUse = false; + for (MachineRegisterInfo::use_instr_iterator + J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end(); + J != JE; ++J) + if (&*J == &*I) { + FoundUse = true; + break; + } + + if (FoundUse) + break; + } + + SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; + SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; + + // There are two possible candidates which can be changed to set CR[01]. + // One is MI, the other is a SUB instruction. + // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). + MachineInstr *Sub = nullptr; + if (SrcReg2 != 0) + // MI is not a candidate for CMPrr. + MI = nullptr; + // FIXME: Conservatively refuse to convert an instruction which isn't in the + // same BB as the comparison. This is to allow the check below to avoid calls + // (and other explicit clobbers); instead we should really check for these + // more explicitly (in at least a few predecessors). + else if (MI->getParent() != CmpInstr.getParent()) + return false; + else if (Value != 0) { + // The record-form instructions set CR bit based on signed comparison + // against 0. We try to convert a compare against 1 or -1 into a compare + // against 0 to exploit record-form instructions. For example, we change + // the condition "greater than -1" into "greater than or equal to 0" + // and "less than 1" into "less than or equal to 0". + + // Since we optimize comparison based on a specific branch condition, + // we don't optimize if condition code is used by more than once. + if (equalityOnly || !MRI->hasOneUse(CRReg)) + return false; + + MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg); + if (UseMI->getOpcode() != PPC::BCC) + return false; + + PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm(); + unsigned PredCond = PPC::getPredicateCondition(Pred); + unsigned PredHint = PPC::getPredicateHint(Pred); + int16_t Immed = (int16_t)Value; + + // When modifying the condition in the predicate, we propagate hint bits + // from the original predicate to the new one. + if (Immed == -1 && PredCond == PPC::PRED_GT) + // We convert "greater than -1" into "greater than or equal to 0", + // since we are assuming signed comparison by !equalityOnly + Pred = PPC::getPredicate(PPC::PRED_GE, PredHint); + else if (Immed == -1 && PredCond == PPC::PRED_LE) + // We convert "less than or equal to -1" into "less than 0". + Pred = PPC::getPredicate(PPC::PRED_LT, PredHint); + else if (Immed == 1 && PredCond == PPC::PRED_LT) + // We convert "less than 1" into "less than or equal to 0". + Pred = PPC::getPredicate(PPC::PRED_LE, PredHint); + else if (Immed == 1 && PredCond == PPC::PRED_GE) + // We convert "greater than or equal to 1" into "greater than 0". + Pred = PPC::getPredicate(PPC::PRED_GT, PredHint); + else + return false; + + // Convert the comparison and its user to a compare against zero with the + // appropriate predicate on the branch. Zero comparison might provide + // optimization opportunities post-RA (see optimization in + // PPCPreEmitPeephole.cpp). + UseMI->getOperand(0).setImm(Pred); + CmpInstr.getOperand(2).setImm(0); + } + + // Search for Sub. + --I; + + // Get ready to iterate backward from CmpInstr. + MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); + + for (; I != E && !noSub; --I) { + const MachineInstr &Instr = *I; + unsigned IOpC = Instr.getOpcode(); + + if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) || + Instr.readsRegister(PPC::CR0, TRI))) + // This instruction modifies or uses the record condition register after + // the one we want to change. While we could do this transformation, it + // would likely not be profitable. This transformation removes one + // instruction, and so even forcing RA to generate one move probably + // makes it unprofitable. + return false; + + // Check whether CmpInstr can be made redundant by the current instruction. + if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || + OpC == PPC::CMPD || OpC == PPC::CMPLD) && + (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && + ((Instr.getOperand(1).getReg() == SrcReg && + Instr.getOperand(2).getReg() == SrcReg2) || + (Instr.getOperand(1).getReg() == SrcReg2 && + Instr.getOperand(2).getReg() == SrcReg))) { + Sub = &*I; + break; + } + + if (I == B) + // The 'and' is below the comparison instruction. + return false; + } + + // Return false if no candidates exist. + if (!MI && !Sub) + return false; + + // The single candidate is called MI. + if (!MI) MI = Sub; + + int NewOpC = -1; + int MIOpC = MI->getOpcode(); + if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || + MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) + NewOpC = MIOpC; + else { + NewOpC = PPC::getRecordFormOpcode(MIOpC); + if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) + NewOpC = MIOpC; + } + + // FIXME: On the non-embedded POWER architectures, only some of the record + // forms are fast, and we should use only the fast ones. + + // The defining instruction has a record form (or is already a record + // form). It is possible, however, that we'll need to reverse the condition + // code of the users. + if (NewOpC == -1) + return false; + + // This transformation should not be performed if `nsw` is missing and is not + // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in + // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in + // CRReg can reflect if compared values are equal, this optz is still valid. + if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) && + Sub && !Sub->getFlag(MachineInstr::NoSWrap)) + return false; + + // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP + // needs to be updated to be based on SUB. Push the condition code + // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the + // condition code of these operands will be modified. + // Here, Value == 0 means we haven't converted comparison against 1 or -1 to + // comparison against 0, which may modify predicate. + bool ShouldSwap = false; + if (Sub && Value == 0) { + ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && + Sub->getOperand(2).getReg() == SrcReg; + + // The operands to subf are the opposite of sub, so only in the fixed-point + // case, invert the order. + ShouldSwap = !ShouldSwap; + } + + if (ShouldSwap) + for (MachineRegisterInfo::use_instr_iterator + I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); + I != IE; ++I) { + MachineInstr *UseMI = &*I; + if (UseMI->getOpcode() == PPC::BCC) { + PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); + unsigned PredCond = PPC::getPredicateCondition(Pred); + assert((!equalityOnly || + PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && + "Invalid predicate for equality-only optimization"); + (void)PredCond; // To suppress warning in release build. + PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), + PPC::getSwappedPredicate(Pred))); + } else if (UseMI->getOpcode() == PPC::ISEL || + UseMI->getOpcode() == PPC::ISEL8) { + unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); + assert((!equalityOnly || NewSubReg == PPC::sub_eq) && + "Invalid CR bit for equality-only optimization"); + + if (NewSubReg == PPC::sub_lt) + NewSubReg = PPC::sub_gt; + else if (NewSubReg == PPC::sub_gt) + NewSubReg = PPC::sub_lt; + + SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), + NewSubReg)); + } else // We need to abort on a user we don't understand. + return false; + } + assert(!(Value != 0 && ShouldSwap) && + "Non-zero immediate support and ShouldSwap" + "may conflict in updating predicate"); + + // Create a new virtual register to hold the value of the CR set by the + // record-form instruction. If the instruction was not previously in + // record form, then set the kill flag on the CR. + CmpInstr.eraseFromParent(); + + MachineBasicBlock::iterator MII = MI; + BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), + get(TargetOpcode::COPY), CRReg) + .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); + + // Even if CR0 register were dead before, it is alive now since the + // instruction we just built uses it. + MI->clearRegisterDeads(PPC::CR0); + + if (MIOpC != NewOpC) { + // We need to be careful here: we're replacing one instruction with + // another, and we need to make sure that we get all of the right + // implicit uses and defs. On the other hand, the caller may be holding + // an iterator to this instruction, and so we can't delete it (this is + // specifically the case if this is the instruction directly after the + // compare). + + // Rotates are expensive instructions. If we're emitting a record-form + // rotate that can just be an andi/andis, we should just emit that. + if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { + Register GPRRes = MI->getOperand(0).getReg(); + int64_t SH = MI->getOperand(2).getImm(); + int64_t MB = MI->getOperand(3).getImm(); + int64_t ME = MI->getOperand(4).getImm(); + // We can only do this if both the start and end of the mask are in the + // same halfword. + bool MBInLoHWord = MB >= 16; + bool MEInLoHWord = ME >= 16; + uint64_t Mask = ~0LLU; + + if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { + Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); + // The mask value needs to shift right 16 if we're emitting andis. + Mask >>= MBInLoHWord ? 0 : 16; + NewOpC = MIOpC == PPC::RLWINM + ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) + : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); + } else if (MRI->use_empty(GPRRes) && (ME == 31) && + (ME - MB + 1 == SH) && (MB >= 16)) { + // If we are rotating by the exact number of bits as are in the mask + // and the mask is in the least significant bits of the register, + // that's just an andis. (as long as the GPR result has no uses). + Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); + Mask >>= 16; + NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; + } + // If we've set the mask, we can transform. + if (Mask != ~0LLU) { + MI->removeOperand(4); + MI->removeOperand(3); + MI->getOperand(2).setImm(Mask); + NumRcRotatesConvertedToRcAnd++; + } + } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) { + int64_t MB = MI->getOperand(3).getImm(); + if (MB >= 48) { + uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; + NewOpC = PPC::ANDI8_rec; + MI->removeOperand(3); + MI->getOperand(2).setImm(Mask); + NumRcRotatesConvertedToRcAnd++; + } + } + + const MCInstrDesc &NewDesc = get(NewOpC); + MI->setDesc(NewDesc); + + for (MCPhysReg ImpDef : NewDesc.implicit_defs()) { + if (!MI->definesRegister(ImpDef)) { + MI->addOperand(*MI->getParent()->getParent(), + MachineOperand::CreateReg(ImpDef, true, true)); + } + } + for (MCPhysReg ImpUse : NewDesc.implicit_uses()) { + if (!MI->readsRegister(ImpUse)) { + MI->addOperand(*MI->getParent()->getParent(), + MachineOperand::CreateReg(ImpUse, false, true)); + } + } + } + assert(MI->definesRegister(PPC::CR0) && + "Record-form instruction does not define cr0?"); + + // Modify the condition code of operands in OperandsToUpdate. + // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to + // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. + for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) + PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); + + for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) + SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); + + return true; +} + +bool PPCInstrInfo::optimizeCmpPostRA(MachineInstr &CmpMI) const { + MachineRegisterInfo *MRI = &CmpMI.getParent()->getParent()->getRegInfo(); + if (MRI->isSSA()) + return false; + + Register SrcReg, SrcReg2; + int64_t CmpMask, CmpValue; + if (!analyzeCompare(CmpMI, SrcReg, SrcReg2, CmpMask, CmpValue)) + return false; + + // Try to optimize the comparison against 0. + if (CmpValue || !CmpMask || SrcReg2) + return false; + + // The record forms set the condition register based on a signed comparison + // with zero (see comments in optimizeCompareInstr). Since we can't do the + // equality checks in post-RA, we are more restricted on a unsigned + // comparison. + unsigned Opc = CmpMI.getOpcode(); + if (Opc == PPC::CMPLWI || Opc == PPC::CMPLDI) + return false; + + // The record forms are always based on a 64-bit comparison on PPC64 + // (similary, a 32-bit comparison on PPC32), while the CMPWI is a 32-bit + // comparison. Since we can't do the equality checks in post-RA, we bail out + // the case. + if (Subtarget.isPPC64() && Opc == PPC::CMPWI) + return false; + + // CmpMI can't be deleted if it has implicit def. + if (CmpMI.hasImplicitDef()) + return false; + + bool SrcRegHasOtherUse = false; + MachineInstr *SrcMI = getDefMIPostRA(SrcReg, CmpMI, SrcRegHasOtherUse); + if (!SrcMI || !SrcMI->definesRegister(SrcReg)) + return false; + + MachineOperand RegMO = CmpMI.getOperand(0); + Register CRReg = RegMO.getReg(); + if (CRReg != PPC::CR0) + return false; + + // Make sure there is no def/use of CRReg between SrcMI and CmpMI. + bool SeenUseOfCRReg = false; + bool IsCRRegKilled = false; + if (!isRegElgibleForForwarding(RegMO, *SrcMI, CmpMI, false, IsCRRegKilled, + SeenUseOfCRReg) || + SrcMI->definesRegister(CRReg) || SeenUseOfCRReg) + return false; + + int SrcMIOpc = SrcMI->getOpcode(); + int NewOpC = PPC::getRecordFormOpcode(SrcMIOpc); + if (NewOpC == -1) + return false; + + LLVM_DEBUG(dbgs() << "Replace Instr: "); + LLVM_DEBUG(SrcMI->dump()); + + const MCInstrDesc &NewDesc = get(NewOpC); + SrcMI->setDesc(NewDesc); + MachineInstrBuilder(*SrcMI->getParent()->getParent(), SrcMI) + .addReg(CRReg, RegState::ImplicitDefine); + SrcMI->clearRegisterDeads(CRReg); + + // Fix up killed/dead flag for SrcReg after transformation. + if (SrcRegHasOtherUse || CmpMI.getOperand(1).isKill()) + fixupIsDeadOrKill(SrcMI, &CmpMI, SrcReg); + + assert(SrcMI->definesRegister(PPC::CR0) && + "Record-form instruction does not define cr0?"); + + LLVM_DEBUG(dbgs() << "with: "); + LLVM_DEBUG(SrcMI->dump()); + LLVM_DEBUG(dbgs() << "Delete dead instruction: "); + LLVM_DEBUG(CmpMI.dump()); + return true; +} + +bool PPCInstrInfo::getMemOperandsWithOffsetWidth( + const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, + int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, + const TargetRegisterInfo *TRI) const { + const MachineOperand *BaseOp; + OffsetIsScalable = false; + if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI)) + return false; + BaseOps.push_back(BaseOp); + return true; +} + +static bool isLdStSafeToCluster(const MachineInstr &LdSt, + const TargetRegisterInfo *TRI) { + // If this is a volatile load/store, don't mess with it. + if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3) + return false; + + if (LdSt.getOperand(2).isFI()) + return true; + + assert(LdSt.getOperand(2).isReg() && "Expected a reg operand."); + // Can't cluster if the instruction modifies the base register + // or it is update form. e.g. ld r2,3(r2) + if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI)) + return false; + + return true; +} + +// Only cluster instruction pair that have the same opcode, and they are +// clusterable according to PowerPC specification. +static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc, + const PPCSubtarget &Subtarget) { + switch (FirstOpc) { + default: + return false; + case PPC::STD: + case PPC::STFD: + case PPC::STXSD: + case PPC::DFSTOREf64: + return FirstOpc == SecondOpc; + // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with + // 32bit and 64bit instruction selection. They are clusterable pair though + // they are different opcode. + case PPC::STW: + case PPC::STW8: + return SecondOpc == PPC::STW || SecondOpc == PPC::STW8; + } +} + +bool PPCInstrInfo::shouldClusterMemOps( + ArrayRef<const MachineOperand *> BaseOps1, + ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads, + unsigned NumBytes) const { + + assert(BaseOps1.size() == 1 && BaseOps2.size() == 1); + const MachineOperand &BaseOp1 = *BaseOps1.front(); + const MachineOperand &BaseOp2 = *BaseOps2.front(); + assert((BaseOp1.isReg() || BaseOp1.isFI()) && + "Only base registers and frame indices are supported."); + + // The NumLoads means the number of loads that has been clustered. + // Don't cluster memory op if there are already two ops clustered at least. + if (NumLoads > 2) + return false; + + // Cluster the load/store only when they have the same base + // register or FI. + if ((BaseOp1.isReg() != BaseOp2.isReg()) || + (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) || + (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex())) + return false; + + // Check if the load/store are clusterable according to the PowerPC + // specification. + const MachineInstr &FirstLdSt = *BaseOp1.getParent(); + const MachineInstr &SecondLdSt = *BaseOp2.getParent(); + unsigned FirstOpc = FirstLdSt.getOpcode(); + unsigned SecondOpc = SecondLdSt.getOpcode(); + const TargetRegisterInfo *TRI = &getRegisterInfo(); + // Cluster the load/store only when they have the same opcode, and they are + // clusterable opcode according to PowerPC specification. + if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget)) + return false; + + // Can't cluster load/store that have ordered or volatile memory reference. + if (!isLdStSafeToCluster(FirstLdSt, TRI) || + !isLdStSafeToCluster(SecondLdSt, TRI)) + return false; + + int64_t Offset1 = 0, Offset2 = 0; + unsigned Width1 = 0, Width2 = 0; + const MachineOperand *Base1 = nullptr, *Base2 = nullptr; + if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) || + !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) || + Width1 != Width2) + return false; + + assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 && + "getMemOperandWithOffsetWidth return incorrect base op"); + // The caller should already have ordered FirstMemOp/SecondMemOp by offset. + assert(Offset1 <= Offset2 && "Caller should have ordered offsets."); + return Offset1 + Width1 == Offset2; +} + +/// GetInstSize - Return the number of bytes of code the specified +/// instruction may be. This returns the maximum number of bytes. +/// +unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { + unsigned Opcode = MI.getOpcode(); + + if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { + const MachineFunction *MF = MI.getParent()->getParent(); + const char *AsmStr = MI.getOperand(0).getSymbolName(); + return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); + } else if (Opcode == TargetOpcode::STACKMAP) { + StackMapOpers Opers(&MI); + return Opers.getNumPatchBytes(); + } else if (Opcode == TargetOpcode::PATCHPOINT) { + PatchPointOpers Opers(&MI); + return Opers.getNumPatchBytes(); + } else { + return get(Opcode).getSize(); + } +} + +std::pair<unsigned, unsigned> +PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { + const unsigned Mask = PPCII::MO_ACCESS_MASK; + return std::make_pair(TF & Mask, TF & ~Mask); +} + +ArrayRef<std::pair<unsigned, const char *>> +PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { + using namespace PPCII; + static const std::pair<unsigned, const char *> TargetFlags[] = { + {MO_LO, "ppc-lo"}, + {MO_HA, "ppc-ha"}, + {MO_TPREL_LO, "ppc-tprel-lo"}, + {MO_TPREL_HA, "ppc-tprel-ha"}, + {MO_DTPREL_LO, "ppc-dtprel-lo"}, + {MO_TLSLD_LO, "ppc-tlsld-lo"}, + {MO_TOC_LO, "ppc-toc-lo"}, + {MO_TLS, "ppc-tls"}}; + return ArrayRef(TargetFlags); +} + +ArrayRef<std::pair<unsigned, const char *>> +PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { + using namespace PPCII; + static const std::pair<unsigned, const char *> TargetFlags[] = { + {MO_PLT, "ppc-plt"}, + {MO_PIC_FLAG, "ppc-pic"}, + {MO_PCREL_FLAG, "ppc-pcrel"}, + {MO_GOT_FLAG, "ppc-got"}, + {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"}, + {MO_TLSGD_FLAG, "ppc-tlsgd"}, + {MO_TLSLD_FLAG, "ppc-tlsld"}, + {MO_TPREL_FLAG, "ppc-tprel"}, + {MO_TLSGDM_FLAG, "ppc-tlsgdm"}, + {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"}, + {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"}, + {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}}; + return ArrayRef(TargetFlags); +} + +// Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. +// The VSX versions have the advantage of a full 64-register target whereas +// the FP ones have the advantage of lower latency and higher throughput. So +// what we are after is using the faster instructions in low register pressure +// situations and using the larger register file in high register pressure +// situations. +bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { + unsigned UpperOpcode, LowerOpcode; + switch (MI.getOpcode()) { + case PPC::DFLOADf32: + UpperOpcode = PPC::LXSSP; + LowerOpcode = PPC::LFS; + break; + case PPC::DFLOADf64: + UpperOpcode = PPC::LXSD; + LowerOpcode = PPC::LFD; + break; + case PPC::DFSTOREf32: + UpperOpcode = PPC::STXSSP; + LowerOpcode = PPC::STFS; + break; + case PPC::DFSTOREf64: + UpperOpcode = PPC::STXSD; + LowerOpcode = PPC::STFD; + break; + case PPC::XFLOADf32: + UpperOpcode = PPC::LXSSPX; + LowerOpcode = PPC::LFSX; + break; + case PPC::XFLOADf64: + UpperOpcode = PPC::LXSDX; + LowerOpcode = PPC::LFDX; + break; + case PPC::XFSTOREf32: + UpperOpcode = PPC::STXSSPX; + LowerOpcode = PPC::STFSX; + break; + case PPC::XFSTOREf64: + UpperOpcode = PPC::STXSDX; + LowerOpcode = PPC::STFDX; + break; + case PPC::LIWAX: + UpperOpcode = PPC::LXSIWAX; + LowerOpcode = PPC::LFIWAX; + break; + case PPC::LIWZX: + UpperOpcode = PPC::LXSIWZX; + LowerOpcode = PPC::LFIWZX; + break; + case PPC::STIWX: + UpperOpcode = PPC::STXSIWX; + LowerOpcode = PPC::STFIWX; + break; + default: + llvm_unreachable("Unknown Operation!"); + } + + Register TargetReg = MI.getOperand(0).getReg(); + unsigned Opcode; + if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || + (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) + Opcode = LowerOpcode; + else + Opcode = UpperOpcode; + MI.setDesc(get(Opcode)); + return true; +} + +static bool isAnImmediateOperand(const MachineOperand &MO) { + return MO.isCPI() || MO.isGlobal() || MO.isImm(); +} + +bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { + auto &MBB = *MI.getParent(); + auto DL = MI.getDebugLoc(); + + switch (MI.getOpcode()) { + case PPC::BUILD_UACC: { + MCRegister ACC = MI.getOperand(0).getReg(); + MCRegister UACC = MI.getOperand(1).getReg(); + if (ACC - PPC::ACC0 != UACC - PPC::UACC0) { + MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4; + MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4; + // FIXME: This can easily be improved to look up to the top of the MBB + // to see if the inputs are XXLOR's. If they are and SrcReg is killed, + // we can just re-target any such XXLOR's to DstVSR + offset. + for (int VecNo = 0; VecNo < 4; VecNo++) + BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo) + .addReg(SrcVSR + VecNo) + .addReg(SrcVSR + VecNo); + } + // BUILD_UACC is expanded to 4 copies of the underlying vsx registers. + // So after building the 4 copies, we can replace the BUILD_UACC instruction + // with a NOP. + [[fallthrough]]; + } + case PPC::KILL_PAIR: { + MI.setDesc(get(PPC::UNENCODED_NOP)); + MI.removeOperand(1); + MI.removeOperand(0); + return true; + } + case TargetOpcode::LOAD_STACK_GUARD: { + assert(Subtarget.isTargetLinux() && + "Only Linux target is expected to contain LOAD_STACK_GUARD"); + const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; + const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; + MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .addImm(Offset) + .addReg(Reg); + return true; + } + case PPC::DFLOADf32: + case PPC::DFLOADf64: + case PPC::DFSTOREf32: + case PPC::DFSTOREf64: { + assert(Subtarget.hasP9Vector() && + "Invalid D-Form Pseudo-ops on Pre-P9 target."); + assert(MI.getOperand(2).isReg() && + isAnImmediateOperand(MI.getOperand(1)) && + "D-form op must have register and immediate operands"); + return expandVSXMemPseudo(MI); + } + case PPC::XFLOADf32: + case PPC::XFSTOREf32: + case PPC::LIWAX: + case PPC::LIWZX: + case PPC::STIWX: { + assert(Subtarget.hasP8Vector() && + "Invalid X-Form Pseudo-ops on Pre-P8 target."); + assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && + "X-form op must have register and register operands"); + return expandVSXMemPseudo(MI); + } + case PPC::XFLOADf64: + case PPC::XFSTOREf64: { + assert(Subtarget.hasVSX() && + "Invalid X-Form Pseudo-ops on target that has no VSX."); + assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && + "X-form op must have register and register operands"); + return expandVSXMemPseudo(MI); + } + case PPC::SPILLTOVSR_LD: { + Register TargetReg = MI.getOperand(0).getReg(); + if (PPC::VSFRCRegClass.contains(TargetReg)) { + MI.setDesc(get(PPC::DFLOADf64)); + return expandPostRAPseudo(MI); + } + else + MI.setDesc(get(PPC::LD)); + return true; + } + case PPC::SPILLTOVSR_ST: { + Register SrcReg = MI.getOperand(0).getReg(); + if (PPC::VSFRCRegClass.contains(SrcReg)) { + NumStoreSPILLVSRRCAsVec++; + MI.setDesc(get(PPC::DFSTOREf64)); + return expandPostRAPseudo(MI); + } else { + NumStoreSPILLVSRRCAsGpr++; + MI.setDesc(get(PPC::STD)); + } + return true; + } + case PPC::SPILLTOVSR_LDX: { + Register TargetReg = MI.getOperand(0).getReg(); + if (PPC::VSFRCRegClass.contains(TargetReg)) + MI.setDesc(get(PPC::LXSDX)); + else + MI.setDesc(get(PPC::LDX)); + return true; + } + case PPC::SPILLTOVSR_STX: { + Register SrcReg = MI.getOperand(0).getReg(); + if (PPC::VSFRCRegClass.contains(SrcReg)) { + NumStoreSPILLVSRRCAsVec++; + MI.setDesc(get(PPC::STXSDX)); + } else { + NumStoreSPILLVSRRCAsGpr++; + MI.setDesc(get(PPC::STDX)); + } + return true; + } + + // FIXME: Maybe we can expand it in 'PowerPC Expand Atomic' pass. + case PPC::CFENCE8: { + auto Val = MI.getOperand(0).getReg(); + BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val); + BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP)) + .addImm(PPC::PRED_NE_MINUS) + .addReg(PPC::CR7) + .addImm(1); + MI.setDesc(get(PPC::ISYNC)); + MI.removeOperand(0); + return true; + } + } + return false; +} + +// Essentially a compile-time implementation of a compare->isel sequence. +// It takes two constants to compare, along with the true/false registers +// and the comparison type (as a subreg to a CR field) and returns one +// of the true/false registers, depending on the comparison results. +static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, + unsigned TrueReg, unsigned FalseReg, + unsigned CRSubReg) { + // Signed comparisons. The immediates are assumed to be sign-extended. + if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { + switch (CRSubReg) { + default: llvm_unreachable("Unknown integer comparison type."); + case PPC::sub_lt: + return Imm1 < Imm2 ? TrueReg : FalseReg; + case PPC::sub_gt: + return Imm1 > Imm2 ? TrueReg : FalseReg; + case PPC::sub_eq: + return Imm1 == Imm2 ? TrueReg : FalseReg; + } + } + // Unsigned comparisons. + else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { + switch (CRSubReg) { + default: llvm_unreachable("Unknown integer comparison type."); + case PPC::sub_lt: + return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; + case PPC::sub_gt: + return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; + case PPC::sub_eq: + return Imm1 == Imm2 ? TrueReg : FalseReg; + } + } + return PPC::NoRegister; +} + +void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, + unsigned OpNo, + int64_t Imm) const { + assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG"); + // Replace the REG with the Immediate. + Register InUseReg = MI.getOperand(OpNo).getReg(); + MI.getOperand(OpNo).ChangeToImmediate(Imm); + + // We need to make sure that the MI didn't have any implicit use + // of this REG any more. We don't call MI.implicit_operands().empty() to + // return early, since MI's MCID might be changed in calling context, as a + // result its number of explicit operands may be changed, thus the begin of + // implicit operand is changed. + const TargetRegisterInfo *TRI = &getRegisterInfo(); + int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI); + if (UseOpIdx >= 0) { + MachineOperand &MO = MI.getOperand(UseOpIdx); + if (MO.isImplicit()) + // The operands must always be in the following order: + // - explicit reg defs, + // - other explicit operands (reg uses, immediates, etc.), + // - implicit reg defs + // - implicit reg uses + // Therefore, removing the implicit operand won't change the explicit + // operands layout. + MI.removeOperand(UseOpIdx); + } +} + +// Replace an instruction with one that materializes a constant (and sets +// CR0 if the original instruction was a record-form instruction). +void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, + const LoadImmediateInfo &LII) const { + // Remove existing operands. + int OperandToKeep = LII.SetCR ? 1 : 0; + for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) + MI.removeOperand(i); + + // Replace the instruction. + if (LII.SetCR) { + MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); + // Set the immediate. + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine); + return; + } + else + MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI)); + + // Set the immediate. + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .addImm(LII.Imm); +} + +MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, + bool &SeenIntermediateUse) const { + assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && + "Should be called after register allocation."); + const TargetRegisterInfo *TRI = &getRegisterInfo(); + MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; + It++; + SeenIntermediateUse = false; + for (; It != E; ++It) { + if (It->modifiesRegister(Reg, TRI)) + return &*It; + if (It->readsRegister(Reg, TRI)) + SeenIntermediateUse = true; + } + return nullptr; +} + +void PPCInstrInfo::materializeImmPostRA(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MBBI, + const DebugLoc &DL, Register Reg, + int64_t Imm) const { + assert(!MBB.getParent()->getRegInfo().isSSA() && + "Register should be in non-SSA form after RA"); + bool isPPC64 = Subtarget.isPPC64(); + // FIXME: Materialization here is not optimal. + // For some special bit patterns we can use less instructions. + // See `selectI64ImmDirect` in PPCISelDAGToDAG.cpp. + if (isInt<16>(Imm)) { + BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LI8 : PPC::LI), Reg).addImm(Imm); + } else if (isInt<32>(Imm)) { + BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LIS8 : PPC::LIS), Reg) + .addImm(Imm >> 16); + if (Imm & 0xFFFF) + BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::ORI8 : PPC::ORI), Reg) + .addReg(Reg, RegState::Kill) + .addImm(Imm & 0xFFFF); + } else { + assert(isPPC64 && "Materializing 64-bit immediate to single register is " + "only supported in PPC64"); + BuildMI(MBB, MBBI, DL, get(PPC::LIS8), Reg).addImm(Imm >> 48); + if ((Imm >> 32) & 0xFFFF) + BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg) + .addReg(Reg, RegState::Kill) + .addImm((Imm >> 32) & 0xFFFF); + BuildMI(MBB, MBBI, DL, get(PPC::RLDICR), Reg) + .addReg(Reg, RegState::Kill) + .addImm(32) + .addImm(31); + BuildMI(MBB, MBBI, DL, get(PPC::ORIS8), Reg) + .addReg(Reg, RegState::Kill) + .addImm((Imm >> 16) & 0xFFFF); + if (Imm & 0xFFFF) + BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg) + .addReg(Reg, RegState::Kill) + .addImm(Imm & 0xFFFF); + } +} + +MachineInstr *PPCInstrInfo::getForwardingDefMI( + MachineInstr &MI, + unsigned &OpNoForForwarding, + bool &SeenIntermediateUse) const { + OpNoForForwarding = ~0U; + MachineInstr *DefMI = nullptr; + MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); + const TargetRegisterInfo *TRI = &getRegisterInfo(); + // If we're in SSA, get the defs through the MRI. Otherwise, only look + // within the basic block to see if the register is defined using an + // LI/LI8/ADDI/ADDI8. + if (MRI->isSSA()) { + for (int i = 1, e = MI.getNumOperands(); i < e; i++) { + if (!MI.getOperand(i).isReg()) + continue; + Register Reg = MI.getOperand(i).getReg(); + if (!Reg.isVirtual()) + continue; + Register TrueReg = TRI->lookThruCopyLike(Reg, MRI); + if (TrueReg.isVirtual()) { + MachineInstr *DefMIForTrueReg = MRI->getVRegDef(TrueReg); + if (DefMIForTrueReg->getOpcode() == PPC::LI || + DefMIForTrueReg->getOpcode() == PPC::LI8 || + DefMIForTrueReg->getOpcode() == PPC::ADDI || + DefMIForTrueReg->getOpcode() == PPC::ADDI8) { + OpNoForForwarding = i; + DefMI = DefMIForTrueReg; + // The ADDI and LI operand maybe exist in one instruction at same + // time. we prefer to fold LI operand as LI only has one Imm operand + // and is more possible to be converted. So if current DefMI is + // ADDI/ADDI8, we continue to find possible LI/LI8. + if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) + break; + } + } + } + } else { + // Looking back through the definition for each operand could be expensive, + // so exit early if this isn't an instruction that either has an immediate + // form or is already an immediate form that we can handle. + ImmInstrInfo III; + unsigned Opc = MI.getOpcode(); + bool ConvertibleImmForm = + Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || + Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || + Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || + Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || + Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || + Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || + Opc == PPC::RLWINM8_rec; + bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg()) + ? isVFRegister(MI.getOperand(0).getReg()) + : false; + if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true)) + return nullptr; + + // Don't convert or %X, %Y, %Y since that's just a register move. + if ((Opc == PPC::OR || Opc == PPC::OR8) && + MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) + return nullptr; + for (int i = 1, e = MI.getNumOperands(); i < e; i++) { + MachineOperand &MO = MI.getOperand(i); + SeenIntermediateUse = false; + if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { + Register Reg = MI.getOperand(i).getReg(); + // If we see another use of this reg between the def and the MI, + // we want to flag it so the def isn't deleted. + MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); + if (DefMI) { + // Is this register defined by some form of add-immediate (including + // load-immediate) within this basic block? + switch (DefMI->getOpcode()) { + default: + break; + case PPC::LI: + case PPC::LI8: + case PPC::ADDItocL: + case PPC::ADDI: + case PPC::ADDI8: + OpNoForForwarding = i; + return DefMI; + } + } + } + } + } + return OpNoForForwarding == ~0U ? nullptr : DefMI; +} + +unsigned PPCInstrInfo::getSpillTarget() const { + // With P10, we may need to spill paired vector registers or accumulator + // registers. MMA implies paired vectors, so we can just check that. + bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops(); + return Subtarget.isISAFuture() ? 3 : IsP10Variant ? + 2 : Subtarget.hasP9Vector() ? + 1 : 0; +} + +ArrayRef<unsigned> PPCInstrInfo::getStoreOpcodesForSpillArray() const { + return {StoreSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill}; +} + +ArrayRef<unsigned> PPCInstrInfo::getLoadOpcodesForSpillArray() const { + return {LoadSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill}; +} + +void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI, + unsigned RegNo) const { + // Conservatively clear kill flag for the register if the instructions are in + // different basic blocks and in SSA form, because the kill flag may no longer + // be right. There is no need to bother with dead flags since defs with no + // uses will be handled by DCE. + MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo(); + if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) { + MRI.clearKillFlags(RegNo); + return; + } + + // Instructions between [StartMI, EndMI] should be in same basic block. + assert((StartMI->getParent() == EndMI->getParent()) && + "Instructions are not in same basic block"); + + // If before RA, StartMI may be def through COPY, we need to adjust it to the + // real def. See function getForwardingDefMI. + if (MRI.isSSA()) { + bool Reads, Writes; + std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo); + if (!Reads && !Writes) { + assert(Register::isVirtualRegister(RegNo) && + "Must be a virtual register"); + // Get real def and ignore copies. + StartMI = MRI.getVRegDef(RegNo); + } + } + + bool IsKillSet = false; + + auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) { + MachineOperand &MO = MI.getOperand(Index); + if (MO.isReg() && MO.isUse() && MO.isKill() && + getRegisterInfo().regsOverlap(MO.getReg(), RegNo)) + MO.setIsKill(false); + }; + + // Set killed flag for EndMI. + // No need to do anything if EndMI defines RegNo. + int UseIndex = + EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo()); + if (UseIndex != -1) { + EndMI->getOperand(UseIndex).setIsKill(true); + IsKillSet = true; + // Clear killed flag for other EndMI operands related to RegNo. In some + // upexpected cases, killed may be set multiple times for same register + // operand in same MI. + for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i) + if (i != UseIndex) + clearOperandKillInfo(*EndMI, i); + } + + // Walking the inst in reverse order (EndMI -> StartMI]. + MachineBasicBlock::reverse_iterator It = *EndMI; + MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend(); + // EndMI has been handled above, skip it here. + It++; + MachineOperand *MO = nullptr; + for (; It != E; ++It) { + // Skip insturctions which could not be a def/use of RegNo. + if (It->isDebugInstr() || It->isPosition()) + continue; + + // Clear killed flag for all It operands related to RegNo. In some + // upexpected cases, killed may be set multiple times for same register + // operand in same MI. + for (int i = 0, e = It->getNumOperands(); i != e; ++i) + clearOperandKillInfo(*It, i); + + // If killed is not set, set killed for its last use or set dead for its def + // if no use found. + if (!IsKillSet) { + if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) { + // Use found, set it killed. + IsKillSet = true; + MO->setIsKill(true); + continue; + } else if ((MO = It->findRegisterDefOperand(RegNo, false, true, + &getRegisterInfo()))) { + // No use found, set dead for its def. + assert(&*It == StartMI && "No new def between StartMI and EndMI."); + MO->setIsDead(true); + break; + } + } + + if ((&*It) == StartMI) + break; + } + // Ensure RegMo liveness is killed after EndMI. + assert((IsKillSet || (MO && MO->isDead())) && + "RegNo should be killed or dead"); +} + +// This opt tries to convert the following imm form to an index form to save an +// add for stack variables. +// Return false if no such pattern found. +// +// ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi +// ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg +// Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) +// +// can be converted to: +// +// new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) +// Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) +// +// In order to eliminate ADD instr, make sure that: +// 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in +// new ADDI instr and ADDI can only take int16 Imm. +// 2: ToBeChangedReg must be killed in ADD instr and there is no other use +// between ADDI and ADD instr since its original def in ADDI will be changed +// in new ADDI instr. And also there should be no new def for it between +// ADD and Imm instr as ToBeChangedReg will be used in Index instr. +// 3: ToBeDeletedReg must be killed in Imm instr and there is no other use +// between ADD and Imm instr since ADD instr will be eliminated. +// 4: ScaleReg must not be redefined between ADD and Imm instr since it will be +// moved to Index instr. +bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { + MachineFunction *MF = MI.getParent()->getParent(); + MachineRegisterInfo *MRI = &MF->getRegInfo(); + bool PostRA = !MRI->isSSA(); + // Do this opt after PEI which is after RA. The reason is stack slot expansion + // in PEI may expose such opportunities since in PEI, stack slot offsets to + // frame base(OffsetAddi) are determined. + if (!PostRA) + return false; + unsigned ToBeDeletedReg = 0; + int64_t OffsetImm = 0; + unsigned XFormOpcode = 0; + ImmInstrInfo III; + + // Check if Imm instr meets requirement. + if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm, + III)) + return false; + + bool OtherIntermediateUse = false; + MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse); + + // Exit if there is other use between ADD and Imm instr or no def found. + if (OtherIntermediateUse || !ADDMI) + return false; + + // Check if ADD instr meets requirement. + if (!isADDInstrEligibleForFolding(*ADDMI)) + return false; + + unsigned ScaleRegIdx = 0; + int64_t OffsetAddi = 0; + MachineInstr *ADDIMI = nullptr; + + // Check if there is a valid ToBeChangedReg in ADDMI. + // 1: It must be killed. + // 2: Its definition must be a valid ADDIMI. + // 3: It must satify int16 offset requirement. + if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm)) + ScaleRegIdx = 2; + else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm)) + ScaleRegIdx = 1; + else + return false; + + assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg."); + Register ToBeChangedReg = ADDIMI->getOperand(0).getReg(); + Register ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg(); + auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, + MachineBasicBlock::iterator End) { + for (auto It = ++Start; It != End; It++) + if (It->modifiesRegister(Reg, &getRegisterInfo())) + return true; + return false; + }; + + // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is + // treated as special zero when ScaleReg is R0/X0 register. + if (III.ZeroIsSpecialOrig == III.ImmOpNo && + (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) + return false; + + // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr + // and Imm Instr. + if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) + return false; + + // Now start to do the transformation. + LLVM_DEBUG(dbgs() << "Replace instruction: " + << "\n"); + LLVM_DEBUG(ADDIMI->dump()); + LLVM_DEBUG(ADDMI->dump()); + LLVM_DEBUG(MI.dump()); + LLVM_DEBUG(dbgs() << "with: " + << "\n"); + + // Update ADDI instr. + ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm); + + // Update Imm instr. + MI.setDesc(get(XFormOpcode)); + MI.getOperand(III.ImmOpNo) + .ChangeToRegister(ScaleReg, false, false, + ADDMI->getOperand(ScaleRegIdx).isKill()); + + MI.getOperand(III.OpNoForForwarding) + .ChangeToRegister(ToBeChangedReg, false, false, true); + + // Eliminate ADD instr. + ADDMI->eraseFromParent(); + + LLVM_DEBUG(ADDIMI->dump()); + LLVM_DEBUG(MI.dump()); + + return true; +} + +bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, + int64_t &Imm) const { + unsigned Opc = ADDIMI.getOpcode(); + + // Exit if the instruction is not ADDI. + if (Opc != PPC::ADDI && Opc != PPC::ADDI8) + return false; + + // The operand may not necessarily be an immediate - it could be a relocation. + if (!ADDIMI.getOperand(2).isImm()) + return false; + + Imm = ADDIMI.getOperand(2).getImm(); + + return true; +} + +bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { + unsigned Opc = ADDMI.getOpcode(); + + // Exit if the instruction is not ADD. + return Opc == PPC::ADD4 || Opc == PPC::ADD8; +} + +bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, + unsigned &ToBeDeletedReg, + unsigned &XFormOpcode, + int64_t &OffsetImm, + ImmInstrInfo &III) const { + // Only handle load/store. + if (!MI.mayLoadOrStore()) + return false; + + unsigned Opc = MI.getOpcode(); + + XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc); + + // Exit if instruction has no index form. + if (XFormOpcode == PPC::INSTRUCTION_LIST_END) + return false; + + // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. + if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()), + III, true)) + return false; + + if (!III.IsSummingOperands) + return false; + + MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo); + MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding); + // Only support imm operands, not relocation slots or others. + if (!ImmOperand.isImm()) + return false; + + assert(RegOperand.isReg() && "Instruction format is not right"); + + // There are other use for ToBeDeletedReg after Imm instr, can not delete it. + if (!RegOperand.isKill()) + return false; + + ToBeDeletedReg = RegOperand.getReg(); + OffsetImm = ImmOperand.getImm(); + + return true; +} + +bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, + MachineInstr *&ADDIMI, + int64_t &OffsetAddi, + int64_t OffsetImm) const { + assert((Index == 1 || Index == 2) && "Invalid operand index for add."); + MachineOperand &MO = ADDMI->getOperand(Index); + + if (!MO.isKill()) + return false; + + bool OtherIntermediateUse = false; + + ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse); + // Currently handle only one "add + Imminstr" pair case, exit if other + // intermediate use for ToBeChangedReg found. + // TODO: handle the cases where there are other "add + Imminstr" pairs + // with same offset in Imminstr which is like: + // + // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi + // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 + // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) + // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 + // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) + // + // can be converted to: + // + // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, + // (OffsetAddi + OffsetImm) + // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg + // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) + + if (OtherIntermediateUse || !ADDIMI) + return false; + // Check if ADDI instr meets requirement. + if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi)) + return false; + + if (isInt<16>(OffsetAddi + OffsetImm)) + return true; + return false; +} + +// If this instruction has an immediate form and one of its operands is a +// result of a load-immediate or an add-immediate, convert it to +// the immediate form if the constant is in range. +bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, + MachineInstr **KilledDef) const { + MachineFunction *MF = MI.getParent()->getParent(); + MachineRegisterInfo *MRI = &MF->getRegInfo(); + bool PostRA = !MRI->isSSA(); + bool SeenIntermediateUse = true; + unsigned ForwardingOperand = ~0U; + MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand, + SeenIntermediateUse); + if (!DefMI) + return false; + assert(ForwardingOperand < MI.getNumOperands() && + "The forwarding operand needs to be valid at this point"); + bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill(); + bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; + if (KilledDef && KillFwdDefMI) + *KilledDef = DefMI; + + // If this is a imm instruction and its register operands is produced by ADDI, + // put the imm into imm inst directly. + if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) != + PPC::INSTRUCTION_LIST_END && + transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand)) + return true; + + ImmInstrInfo III; + bool IsVFReg = MI.getOperand(0).isReg() + ? isVFRegister(MI.getOperand(0).getReg()) + : false; + bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA); + // If this is a reg+reg instruction that has a reg+imm form, + // and one of the operands is produced by an add-immediate, + // try to convert it. + if (HasImmForm && + transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI, + KillFwdDefMI)) + return true; + + // If this is a reg+reg instruction that has a reg+imm form, + // and one of the operands is produced by LI, convert it now. + if (HasImmForm && + transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI)) + return true; + + // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI + // can be simpified to LI. + if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef)) + return true; + + return false; +} + +bool PPCInstrInfo::combineRLWINM(MachineInstr &MI, + MachineInstr **ToErase) const { + MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); + Register FoldingReg = MI.getOperand(1).getReg(); + if (!FoldingReg.isVirtual()) + return false; + MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg); + if (SrcMI->getOpcode() != PPC::RLWINM && + SrcMI->getOpcode() != PPC::RLWINM_rec && + SrcMI->getOpcode() != PPC::RLWINM8 && + SrcMI->getOpcode() != PPC::RLWINM8_rec) + return false; + assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() && + MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() && + SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) && + "Invalid PPC::RLWINM Instruction!"); + uint64_t SHSrc = SrcMI->getOperand(2).getImm(); + uint64_t SHMI = MI.getOperand(2).getImm(); + uint64_t MBSrc = SrcMI->getOperand(3).getImm(); + uint64_t MBMI = MI.getOperand(3).getImm(); + uint64_t MESrc = SrcMI->getOperand(4).getImm(); + uint64_t MEMI = MI.getOperand(4).getImm(); + + assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) && + "Invalid PPC::RLWINM Instruction!"); + // If MBMI is bigger than MEMI, we always can not get run of ones. + // RotatedSrcMask non-wrap: + // 0........31|32........63 + // RotatedSrcMask: B---E B---E + // MaskMI: -----------|--E B------ + // Result: ----- --- (Bad candidate) + // + // RotatedSrcMask wrap: + // 0........31|32........63 + // RotatedSrcMask: --E B----|--E B---- + // MaskMI: -----------|--E B------ + // Result: --- -----|--- ----- (Bad candidate) + // + // One special case is RotatedSrcMask is a full set mask. + // RotatedSrcMask full: + // 0........31|32........63 + // RotatedSrcMask: ------EB---|-------EB--- + // MaskMI: -----------|--E B------ + // Result: -----------|--- ------- (Good candidate) + + // Mark special case. + bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31); + + // For other MBMI > MEMI cases, just return. + if ((MBMI > MEMI) && !SrcMaskFull) + return false; + + // Handle MBMI <= MEMI cases. + APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI); + // In MI, we only need low 32 bits of SrcMI, just consider about low 32 + // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0, + // while in PowerPC ISA, lowerest bit is at index 63. + APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc); + + APInt RotatedSrcMask = MaskSrc.rotl(SHMI); + APInt FinalMask = RotatedSrcMask & MaskMI; + uint32_t NewMB, NewME; + bool Simplified = false; + + // If final mask is 0, MI result should be 0 too. + if (FinalMask.isZero()) { + bool Is64Bit = + (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec); + Simplified = true; + LLVM_DEBUG(dbgs() << "Replace Instr: "); + LLVM_DEBUG(MI.dump()); + + if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) { + // Replace MI with "LI 0" + MI.removeOperand(4); + MI.removeOperand(3); + MI.removeOperand(2); + MI.getOperand(1).ChangeToImmediate(0); + MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI)); + } else { + // Replace MI with "ANDI_rec reg, 0" + MI.removeOperand(4); + MI.removeOperand(3); + MI.getOperand(2).setImm(0); + MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); + MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); + if (SrcMI->getOperand(1).isKill()) { + MI.getOperand(1).setIsKill(true); + SrcMI->getOperand(1).setIsKill(false); + } else + // About to replace MI.getOperand(1), clear its kill flag. + MI.getOperand(1).setIsKill(false); + } + + LLVM_DEBUG(dbgs() << "With: "); + LLVM_DEBUG(MI.dump()); + + } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) && + NewMB <= NewME) || + SrcMaskFull) { + // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger + // than NewME. Otherwise we get a 64 bit value after folding, but MI + // return a 32 bit value. + Simplified = true; + LLVM_DEBUG(dbgs() << "Converting Instr: "); + LLVM_DEBUG(MI.dump()); + + uint16_t NewSH = (SHSrc + SHMI) % 32; + MI.getOperand(2).setImm(NewSH); + // If SrcMI mask is full, no need to update MBMI and MEMI. + if (!SrcMaskFull) { + MI.getOperand(3).setImm(NewMB); + MI.getOperand(4).setImm(NewME); + } + MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); + if (SrcMI->getOperand(1).isKill()) { + MI.getOperand(1).setIsKill(true); + SrcMI->getOperand(1).setIsKill(false); + } else + // About to replace MI.getOperand(1), clear its kill flag. + MI.getOperand(1).setIsKill(false); + + LLVM_DEBUG(dbgs() << "To: "); + LLVM_DEBUG(MI.dump()); + } + if (Simplified & MRI->use_nodbg_empty(FoldingReg) && + !SrcMI->hasImplicitDef()) { + // If FoldingReg has no non-debug use and it has no implicit def (it + // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI. + // Otherwise keep it. + *ToErase = SrcMI; + LLVM_DEBUG(dbgs() << "Delete dead instruction: "); + LLVM_DEBUG(SrcMI->dump()); + } + return Simplified; +} + +bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, + ImmInstrInfo &III, bool PostRA) const { + // The vast majority of the instructions would need their operand 2 replaced + // with an immediate when switching to the reg+imm form. A marked exception + // are the update form loads/stores for which a constant operand 2 would need + // to turn into a displacement and move operand 1 to the operand 2 position. + III.ImmOpNo = 2; + III.OpNoForForwarding = 2; + III.ImmWidth = 16; + III.ImmMustBeMultipleOf = 1; + III.TruncateImmTo = 0; + III.IsSummingOperands = false; + switch (Opc) { + default: return false; + case PPC::ADD4: + case PPC::ADD8: + III.SignedImm = true; + III.ZeroIsSpecialOrig = 0; + III.ZeroIsSpecialNew = 1; + III.IsCommutative = true; + III.IsSummingOperands = true; + III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; + break; + case PPC::ADDC: + case PPC::ADDC8: + III.SignedImm = true; + III.ZeroIsSpecialOrig = 0; + III.ZeroIsSpecialNew = 0; + III.IsCommutative = true; + III.IsSummingOperands = true; + III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; + break; + case PPC::ADDC_rec: + III.SignedImm = true; + III.ZeroIsSpecialOrig = 0; + III.ZeroIsSpecialNew = 0; + III.IsCommutative = true; + III.IsSummingOperands = true; + III.ImmOpcode = PPC::ADDIC_rec; + break; + case PPC::SUBFC: + case PPC::SUBFC8: + III.SignedImm = true; + III.ZeroIsSpecialOrig = 0; + III.ZeroIsSpecialNew = 0; + III.IsCommutative = false; + III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; + break; + case PPC::CMPW: + case PPC::CMPD: + III.SignedImm = true; + III.ZeroIsSpecialOrig = 0; + III.ZeroIsSpecialNew = 0; + III.IsCommutative = false; + III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; + break; + case PPC::CMPLW: + case PPC::CMPLD: + III.SignedImm = false; + III.ZeroIsSpecialOrig = 0; + III.ZeroIsSpecialNew = 0; + III.IsCommutative = false; + III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; + break; + case PPC::AND_rec: + case PPC::AND8_rec: + case PPC::OR: + case PPC::OR8: + case PPC::XOR: + case PPC::XOR8: + III.SignedImm = false; + III.ZeroIsSpecialOrig = 0; + III.ZeroIsSpecialNew = 0; + III.IsCommutative = true; + switch(Opc) { + default: llvm_unreachable("Unknown opcode"); + case PPC::AND_rec: + III.ImmOpcode = PPC::ANDI_rec; + break; + case PPC::AND8_rec: + III.ImmOpcode = PPC::ANDI8_rec; + break; + case PPC::OR: III.ImmOpcode = PPC::ORI; break; + case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; + case PPC::XOR: III.ImmOpcode = PPC::XORI; break; + case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; + } + break; + case PPC::RLWNM: + case PPC::RLWNM8: + case PPC::RLWNM_rec: + case PPC::RLWNM8_rec: + case PPC::SLW: + case PPC::SLW8: + case PPC::SLW_rec: + case PPC::SLW8_rec: + case PPC::SRW: + case PPC::SRW8: + case PPC::SRW_rec: + case PPC::SRW8_rec: + case PPC::SRAW: + case PPC::SRAW_rec: + III.SignedImm = false; + III.ZeroIsSpecialOrig = 0; + III.ZeroIsSpecialNew = 0; + III.IsCommutative = false; + // This isn't actually true, but the instructions ignore any of the + // upper bits, so any immediate loaded with an LI is acceptable. + // This does not apply to shift right algebraic because a value + // out of range will produce a -1/0. + III.ImmWidth = 16; + if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || + Opc == PPC::RLWNM8_rec) + III.TruncateImmTo = 5; + else + III.TruncateImmTo = 6; + switch(Opc) { + default: llvm_unreachable("Unknown opcode"); + case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; + case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; + case PPC::RLWNM_rec: + III.ImmOpcode = PPC::RLWINM_rec; + break; + case PPC::RLWNM8_rec: + III.ImmOpcode = PPC::RLWINM8_rec; + break; + case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; + case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; + case PPC::SLW_rec: + III.ImmOpcode = PPC::RLWINM_rec; + break; + case PPC::SLW8_rec: + III.ImmOpcode = PPC::RLWINM8_rec; + break; + case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; + case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; + case PPC::SRW_rec: + III.ImmOpcode = PPC::RLWINM_rec; + break; + case PPC::SRW8_rec: + III.ImmOpcode = PPC::RLWINM8_rec; + break; + case PPC::SRAW: + III.ImmWidth = 5; + III.TruncateImmTo = 0; + III.ImmOpcode = PPC::SRAWI; + break; + case PPC::SRAW_rec: + III.ImmWidth = 5; + III.TruncateImmTo = 0; + III.ImmOpcode = PPC::SRAWI_rec; + break; + } + break; + case PPC::RLDCL: + case PPC::RLDCL_rec: + case PPC::RLDCR: + case PPC::RLDCR_rec: + case PPC::SLD: + case PPC::SLD_rec: + case PPC::SRD: + case PPC::SRD_rec: + case PPC::SRAD: + case PPC::SRAD_rec: + III.SignedImm = false; + III.ZeroIsSpecialOrig = 0; + III.ZeroIsSpecialNew = 0; + III.IsCommutative = false; + // This isn't actually true, but the instructions ignore any of the + // upper bits, so any immediate loaded with an LI is acceptable. + // This does not apply to shift right algebraic because a value + // out of range will produce a -1/0. + III.ImmWidth = 16; + if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || + Opc == PPC::RLDCR_rec) + III.TruncateImmTo = 6; + else + III.TruncateImmTo = 7; + switch(Opc) { + default: llvm_unreachable("Unknown opcode"); + case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; + case PPC::RLDCL_rec: + III.ImmOpcode = PPC::RLDICL_rec; + break; + case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; + case PPC::RLDCR_rec: + III.ImmOpcode = PPC::RLDICR_rec; + break; + case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; + case PPC::SLD_rec: + III.ImmOpcode = PPC::RLDICR_rec; + break; + case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; + case PPC::SRD_rec: + III.ImmOpcode = PPC::RLDICL_rec; + break; + case PPC::SRAD: + III.ImmWidth = 6; + III.TruncateImmTo = 0; + III.ImmOpcode = PPC::SRADI; + break; + case PPC::SRAD_rec: + III.ImmWidth = 6; + III.TruncateImmTo = 0; + III.ImmOpcode = PPC::SRADI_rec; + break; + } + break; + // Loads and stores: + case PPC::LBZX: + case PPC::LBZX8: + case PPC::LHZX: + case PPC::LHZX8: + case PPC::LHAX: + case PPC::LHAX8: + case PPC::LWZX: + case PPC::LWZX8: + case PPC::LWAX: + case PPC::LDX: + case PPC::LFSX: + case PPC::LFDX: + case PPC::STBX: + case PPC::STBX8: + case PPC::STHX: + case PPC::STHX8: + case PPC::STWX: + case PPC::STWX8: + case PPC::STDX: + case PPC::STFSX: + case PPC::STFDX: + III.SignedImm = true; + III.ZeroIsSpecialOrig = 1; + III.ZeroIsSpecialNew = 2; + III.IsCommutative = true; + III.IsSummingOperands = true; + III.ImmOpNo = 1; + III.OpNoForForwarding = 2; + switch(Opc) { + default: llvm_unreachable("Unknown opcode"); + case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; + case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; + case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; + case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; + case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; + case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; + case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; + case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; + case PPC::LWAX: + III.ImmOpcode = PPC::LWA; + III.ImmMustBeMultipleOf = 4; + break; + case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; + case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; + case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; + case PPC::STBX: III.ImmOpcode = PPC::STB; break; + case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; + case PPC::STHX: III.ImmOpcode = PPC::STH; break; + case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; + case PPC::STWX: III.ImmOpcode = PPC::STW; break; + case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; + case PPC::STDX: + III.ImmOpcode = PPC::STD; + III.ImmMustBeMultipleOf = 4; + break; + case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; + case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; + } + break; + case PPC::LBZUX: + case PPC::LBZUX8: + case PPC::LHZUX: + case PPC::LHZUX8: + case PPC::LHAUX: + case PPC::LHAUX8: + case PPC::LWZUX: + case PPC::LWZUX8: + case PPC::LDUX: + case PPC::LFSUX: + case PPC::LFDUX: + case PPC::STBUX: + case PPC::STBUX8: + case PPC::STHUX: + case PPC::STHUX8: + case PPC::STWUX: + case PPC::STWUX8: + case PPC::STDUX: + case PPC::STFSUX: + case PPC::STFDUX: + III.SignedImm = true; + III.ZeroIsSpecialOrig = 2; + III.ZeroIsSpecialNew = 3; + III.IsCommutative = false; + III.IsSummingOperands = true; + III.ImmOpNo = 2; + III.OpNoForForwarding = 3; + switch(Opc) { + default: llvm_unreachable("Unknown opcode"); + case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; + case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; + case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; + case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; + case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; + case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; + case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; + case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; + case PPC::LDUX: + III.ImmOpcode = PPC::LDU; + III.ImmMustBeMultipleOf = 4; + break; + case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; + case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; + case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; + case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; + case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; + case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; + case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; + case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; + case PPC::STDUX: + III.ImmOpcode = PPC::STDU; + III.ImmMustBeMultipleOf = 4; + break; + case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; + case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; + } + break; + // Power9 and up only. For some of these, the X-Form version has access to all + // 64 VSR's whereas the D-Form only has access to the VR's. We replace those + // with pseudo-ops pre-ra and for post-ra, we check that the register loaded + // into or stored from is one of the VR registers. + case PPC::LXVX: + case PPC::LXSSPX: + case PPC::LXSDX: + case PPC::STXVX: + case PPC::STXSSPX: + case PPC::STXSDX: + case PPC::XFLOADf32: + case PPC::XFLOADf64: + case PPC::XFSTOREf32: + case PPC::XFSTOREf64: + if (!Subtarget.hasP9Vector()) + return false; + III.SignedImm = true; + III.ZeroIsSpecialOrig = 1; + III.ZeroIsSpecialNew = 2; + III.IsCommutative = true; + III.IsSummingOperands = true; + III.ImmOpNo = 1; + III.OpNoForForwarding = 2; + III.ImmMustBeMultipleOf = 4; + switch(Opc) { + default: llvm_unreachable("Unknown opcode"); + case PPC::LXVX: + III.ImmOpcode = PPC::LXV; + III.ImmMustBeMultipleOf = 16; + break; + case PPC::LXSSPX: + if (PostRA) { + if (IsVFReg) + III.ImmOpcode = PPC::LXSSP; + else { + III.ImmOpcode = PPC::LFS; + III.ImmMustBeMultipleOf = 1; + } + break; + } + [[fallthrough]]; + case PPC::XFLOADf32: + III.ImmOpcode = PPC::DFLOADf32; + break; + case PPC::LXSDX: + if (PostRA) { + if (IsVFReg) + III.ImmOpcode = PPC::LXSD; + else { + III.ImmOpcode = PPC::LFD; + III.ImmMustBeMultipleOf = 1; + } + break; + } + [[fallthrough]]; + case PPC::XFLOADf64: + III.ImmOpcode = PPC::DFLOADf64; + break; + case PPC::STXVX: + III.ImmOpcode = PPC::STXV; + III.ImmMustBeMultipleOf = 16; + break; + case PPC::STXSSPX: + if (PostRA) { + if (IsVFReg) + III.ImmOpcode = PPC::STXSSP; + else { + III.ImmOpcode = PPC::STFS; + III.ImmMustBeMultipleOf = 1; + } + break; + } + [[fallthrough]]; + case PPC::XFSTOREf32: + III.ImmOpcode = PPC::DFSTOREf32; + break; + case PPC::STXSDX: + if (PostRA) { + if (IsVFReg) + III.ImmOpcode = PPC::STXSD; + else { + III.ImmOpcode = PPC::STFD; + III.ImmMustBeMultipleOf = 1; + } + break; + } + [[fallthrough]]; + case PPC::XFSTOREf64: + III.ImmOpcode = PPC::DFSTOREf64; + break; + } + break; + } + return true; +} + +// Utility function for swaping two arbitrary operands of an instruction. +static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { + assert(Op1 != Op2 && "Cannot swap operand with itself."); + + unsigned MaxOp = std::max(Op1, Op2); + unsigned MinOp = std::min(Op1, Op2); + MachineOperand MOp1 = MI.getOperand(MinOp); + MachineOperand MOp2 = MI.getOperand(MaxOp); + MI.removeOperand(std::max(Op1, Op2)); + MI.removeOperand(std::min(Op1, Op2)); + + // If the operands we are swapping are the two at the end (the common case) + // we can just remove both and add them in the opposite order. + if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { + MI.addOperand(MOp2); + MI.addOperand(MOp1); + } else { + // Store all operands in a temporary vector, remove them and re-add in the + // right order. + SmallVector<MachineOperand, 2> MOps; + unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. + for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { + MOps.push_back(MI.getOperand(i)); + MI.removeOperand(i); + } + // MOp2 needs to be added next. + MI.addOperand(MOp2); + // Now add the rest. + for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { + if (i == MaxOp) + MI.addOperand(MOp1); + else { + MI.addOperand(MOps.back()); + MOps.pop_back(); + } + } + } +} + +// Check if the 'MI' that has the index OpNoForForwarding +// meets the requirement described in the ImmInstrInfo. +bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, + const ImmInstrInfo &III, + unsigned OpNoForForwarding + ) const { + // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 + // would not work pre-RA, we can only do the check post RA. + MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); + if (MRI.isSSA()) + return false; + + // Cannot do the transform if MI isn't summing the operands. + if (!III.IsSummingOperands) + return false; + + // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. + if (!III.ZeroIsSpecialOrig) + return false; + + // We cannot do the transform if the operand we are trying to replace + // isn't the same as the operand the instruction allows. + if (OpNoForForwarding != III.OpNoForForwarding) + return false; + + // Check if the instruction we are trying to transform really has + // the special zero register as its operand. + if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && + MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) + return false; + + // This machine instruction is convertible if it is, + // 1. summing the operands. + // 2. one of the operands is special zero register. + // 3. the operand we are trying to replace is allowed by the MI. + return true; +} + +// Check if the DefMI is the add inst and set the ImmMO and RegMO +// accordingly. +bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, + const ImmInstrInfo &III, + MachineOperand *&ImmMO, + MachineOperand *&RegMO) const { + unsigned Opc = DefMI.getOpcode(); + if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8) + return false; + + assert(DefMI.getNumOperands() >= 3 && + "Add inst must have at least three operands"); + RegMO = &DefMI.getOperand(1); + ImmMO = &DefMI.getOperand(2); + + // Before RA, ADDI first operand could be a frame index. + if (!RegMO->isReg()) + return false; + + // This DefMI is elgible for forwarding if it is: + // 1. add inst + // 2. one of the operands is Imm/CPI/Global. + return isAnImmediateOperand(*ImmMO); +} + +bool PPCInstrInfo::isRegElgibleForForwarding( + const MachineOperand &RegMO, const MachineInstr &DefMI, + const MachineInstr &MI, bool KillDefMI, + bool &IsFwdFeederRegKilled, bool &SeenIntermediateUse) const { + // x = addi y, imm + // ... + // z = lfdx 0, x -> z = lfd imm(y) + // The Reg "y" can be forwarded to the MI(z) only when there is no DEF + // of "y" between the DEF of "x" and "z". + // The query is only valid post RA. + const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); + if (MRI.isSSA()) + return false; + + Register Reg = RegMO.getReg(); + + // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. + MachineBasicBlock::const_reverse_iterator It = MI; + MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); + It++; + for (; It != E; ++It) { + if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) + return false; + else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) + IsFwdFeederRegKilled = true; + if (It->readsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI) + SeenIntermediateUse = true; + // Made it to DefMI without encountering a clobber. + if ((&*It) == &DefMI) + break; + } + assert((&*It) == &DefMI && "DefMI is missing"); + + // If DefMI also defines the register to be forwarded, we can only forward it + // if DefMI is being erased. + if (DefMI.modifiesRegister(Reg, &getRegisterInfo())) + return KillDefMI; + + return true; +} + +bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, + const MachineInstr &DefMI, + const ImmInstrInfo &III, + int64_t &Imm, + int64_t BaseImm) const { + assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate"); + if (DefMI.getOpcode() == PPC::ADDItocL) { + // The operand for ADDItocL is CPI, which isn't imm at compiling time, + // However, we know that, it is 16-bit width, and has the alignment of 4. + // Check if the instruction met the requirement. + if (III.ImmMustBeMultipleOf > 4 || + III.TruncateImmTo || III.ImmWidth != 16) + return false; + + // Going from XForm to DForm loads means that the displacement needs to be + // not just an immediate but also a multiple of 4, or 16 depending on the + // load. A DForm load cannot be represented if it is a multiple of say 2. + // XForm loads do not have this restriction. + if (ImmMO.isGlobal()) { + const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout(); + if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf) + return false; + } + + return true; + } + + if (ImmMO.isImm()) { + // It is Imm, we need to check if the Imm fit the range. + // Sign-extend to 64-bits. + // DefMI may be folded with another imm form instruction, the result Imm is + // the sum of Imm of DefMI and BaseImm which is from imm form instruction. + APInt ActualValue(64, ImmMO.getImm() + BaseImm, true); + if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth)) + return false; + if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth)) + return false; + Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm); + + if (Imm % III.ImmMustBeMultipleOf) + return false; + if (III.TruncateImmTo) + Imm &= ((1 << III.TruncateImmTo) - 1); + } + else + return false; + + // This ImmMO is forwarded if it meets the requriement describle + // in ImmInstrInfo + return true; +} + +bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, + unsigned OpNoForForwarding, + MachineInstr **KilledDef) const { + if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || + !DefMI.getOperand(1).isImm()) + return false; + + MachineFunction *MF = MI.getParent()->getParent(); + MachineRegisterInfo *MRI = &MF->getRegInfo(); + bool PostRA = !MRI->isSSA(); + + int64_t Immediate = DefMI.getOperand(1).getImm(); + // Sign-extend to 64-bits. + int64_t SExtImm = SignExtend64<16>(Immediate); + + bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill(); + Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg(); + + bool ReplaceWithLI = false; + bool Is64BitLI = false; + int64_t NewImm = 0; + bool SetCR = false; + unsigned Opc = MI.getOpcode(); + switch (Opc) { + default: + return false; + + // FIXME: Any branches conditional on such a comparison can be made + // unconditional. At this time, this happens too infrequently to be worth + // the implementation effort, but if that ever changes, we could convert + // such a pattern here. + case PPC::CMPWI: + case PPC::CMPLWI: + case PPC::CMPDI: + case PPC::CMPLDI: { + // Doing this post-RA would require dataflow analysis to reliably find uses + // of the CR register set by the compare. + // No need to fixup killed/dead flag since this transformation is only valid + // before RA. + if (PostRA) + return false; + // If a compare-immediate is fed by an immediate and is itself an input of + // an ISEL (the most common case) into a COPY of the correct register. + bool Changed = false; + Register DefReg = MI.getOperand(0).getReg(); + int64_t Comparand = MI.getOperand(2).getImm(); + int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 + ? (Comparand | 0xFFFFFFFFFFFF0000) + : Comparand; + + for (auto &CompareUseMI : MRI->use_instructions(DefReg)) { + unsigned UseOpc = CompareUseMI.getOpcode(); + if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) + continue; + unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg(); + Register TrueReg = CompareUseMI.getOperand(1).getReg(); + Register FalseReg = CompareUseMI.getOperand(2).getReg(); + unsigned RegToCopy = + selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg); + if (RegToCopy == PPC::NoRegister) + continue; + // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. + if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { + CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); + replaceInstrOperandWithImm(CompareUseMI, 1, 0); + CompareUseMI.removeOperand(3); + CompareUseMI.removeOperand(2); + continue; + } + LLVM_DEBUG( + dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n"); + LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump()); + LLVM_DEBUG(dbgs() << "Is converted to:\n"); + // Convert to copy and remove unneeded operands. + CompareUseMI.setDesc(get(PPC::COPY)); + CompareUseMI.removeOperand(3); + CompareUseMI.removeOperand(RegToCopy == TrueReg ? 2 : 1); + CmpIselsConverted++; + Changed = true; + LLVM_DEBUG(CompareUseMI.dump()); + } + if (Changed) + return true; + // This may end up incremented multiple times since this function is called + // during a fixed-point transformation, but it is only meant to indicate the + // presence of this opportunity. + MissedConvertibleImmediateInstrs++; + return false; + } + + // Immediate forms - may simply be convertable to an LI. + case PPC::ADDI: + case PPC::ADDI8: { + // Does the sum fit in a 16-bit signed field? + int64_t Addend = MI.getOperand(2).getImm(); + if (isInt<16>(Addend + SExtImm)) { + ReplaceWithLI = true; + Is64BitLI = Opc == PPC::ADDI8; + NewImm = Addend + SExtImm; + break; + } + return false; + } + case PPC::SUBFIC: + case PPC::SUBFIC8: { + // Only transform this if the CARRY implicit operand is dead. + if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead()) + return false; + int64_t Minuend = MI.getOperand(2).getImm(); + if (isInt<16>(Minuend - SExtImm)) { + ReplaceWithLI = true; + Is64BitLI = Opc == PPC::SUBFIC8; + NewImm = Minuend - SExtImm; + break; + } + return false; + } + case PPC::RLDICL: + case PPC::RLDICL_rec: + case PPC::RLDICL_32: + case PPC::RLDICL_32_64: { + // Use APInt's rotate function. + int64_t SH = MI.getOperand(2).getImm(); + int64_t MB = MI.getOperand(3).getImm(); + APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, + SExtImm, true); + InVal = InVal.rotl(SH); + uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; + InVal &= Mask; + // Can't replace negative values with an LI as that will sign-extend + // and not clear the left bits. If we're setting the CR bit, we will use + // ANDI_rec which won't sign extend, so that's safe. + if (isUInt<15>(InVal.getSExtValue()) || + (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) { + ReplaceWithLI = true; + Is64BitLI = Opc != PPC::RLDICL_32; + NewImm = InVal.getSExtValue(); + SetCR = Opc == PPC::RLDICL_rec; + break; + } + return false; + } + case PPC::RLWINM: + case PPC::RLWINM8: + case PPC::RLWINM_rec: + case PPC::RLWINM8_rec: { + int64_t SH = MI.getOperand(2).getImm(); + int64_t MB = MI.getOperand(3).getImm(); + int64_t ME = MI.getOperand(4).getImm(); + APInt InVal(32, SExtImm, true); + InVal = InVal.rotl(SH); + APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB); + InVal &= Mask; + // Can't replace negative values with an LI as that will sign-extend + // and not clear the left bits. If we're setting the CR bit, we will use + // ANDI_rec which won't sign extend, so that's safe. + bool ValueFits = isUInt<15>(InVal.getSExtValue()); + ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && + isUInt<16>(InVal.getSExtValue())); + if (ValueFits) { + ReplaceWithLI = true; + Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; + NewImm = InVal.getSExtValue(); + SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; + break; + } + return false; + } + case PPC::ORI: + case PPC::ORI8: + case PPC::XORI: + case PPC::XORI8: { + int64_t LogicalImm = MI.getOperand(2).getImm(); + int64_t Result = 0; + if (Opc == PPC::ORI || Opc == PPC::ORI8) + Result = LogicalImm | SExtImm; + else + Result = LogicalImm ^ SExtImm; + if (isInt<16>(Result)) { + ReplaceWithLI = true; + Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; + NewImm = Result; + break; + } + return false; + } + } + + if (ReplaceWithLI) { + // We need to be careful with CR-setting instructions we're replacing. + if (SetCR) { + // We don't know anything about uses when we're out of SSA, so only + // replace if the new immediate will be reproduced. + bool ImmChanged = (SExtImm & NewImm) != NewImm; + if (PostRA && ImmChanged) + return false; + + if (!PostRA) { + // If the defining load-immediate has no other uses, we can just replace + // the immediate with the new immediate. + if (MRI->hasOneUse(DefMI.getOperand(0).getReg())) + DefMI.getOperand(1).setImm(NewImm); + + // If we're not using the GPR result of the CR-setting instruction, we + // just need to and with zero/non-zero depending on the new immediate. + else if (MRI->use_empty(MI.getOperand(0).getReg())) { + if (NewImm) { + assert(Immediate && "Transformation converted zero to non-zero?"); + NewImm = Immediate; + } + } else if (ImmChanged) + return false; + } + } + + LLVM_DEBUG(dbgs() << "Replacing constant instruction:\n"); + LLVM_DEBUG(MI.dump()); + LLVM_DEBUG(dbgs() << "Fed by:\n"); + LLVM_DEBUG(DefMI.dump()); + LoadImmediateInfo LII; + LII.Imm = NewImm; + LII.Is64Bit = Is64BitLI; + LII.SetCR = SetCR; + // If we're setting the CR, the original load-immediate must be kept (as an + // operand to ANDI_rec/ANDI8_rec). + if (KilledDef && SetCR) + *KilledDef = nullptr; + replaceInstrWithLI(MI, LII); + + // Fixup killed/dead flag after transformation. + // Pattern: + // ForwardingOperandReg = LI imm1 + // y = op2 imm2, ForwardingOperandReg(killed) + if (IsForwardingOperandKilled) + fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg); + + LLVM_DEBUG(dbgs() << "With:\n"); + LLVM_DEBUG(MI.dump()); + return true; + } + return false; +} + +bool PPCInstrInfo::transformToNewImmFormFedByAdd( + MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const { + MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); + bool PostRA = !MRI->isSSA(); + // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI + // for post-ra. + if (PostRA) + return false; + + // Only handle load/store. + if (!MI.mayLoadOrStore()) + return false; + + unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode()); + + assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) && + "MI must have x-form opcode"); + + // get Imm Form info. + ImmInstrInfo III; + bool IsVFReg = MI.getOperand(0).isReg() + ? isVFRegister(MI.getOperand(0).getReg()) + : false; + + if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA)) + return false; + + if (!III.IsSummingOperands) + return false; + + if (OpNoForForwarding != III.OpNoForForwarding) + return false; + + MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo); + if (!ImmOperandMI.isImm()) + return false; + + // Check DefMI. + MachineOperand *ImmMO = nullptr; + MachineOperand *RegMO = nullptr; + if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) + return false; + assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); + + // Check Imm. + // Set ImmBase from imm instruction as base and get new Imm inside + // isImmElgibleForForwarding. + int64_t ImmBase = ImmOperandMI.getImm(); + int64_t Imm = 0; + if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase)) + return false; + + // Get killed info in case fixup needed after transformation. + unsigned ForwardKilledOperandReg = ~0U; + if (MI.getOperand(III.OpNoForForwarding).isKill()) + ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg(); + + // Do the transform + LLVM_DEBUG(dbgs() << "Replacing existing reg+imm instruction:\n"); + LLVM_DEBUG(MI.dump()); + LLVM_DEBUG(dbgs() << "Fed by:\n"); + LLVM_DEBUG(DefMI.dump()); + + MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg()); + if (RegMO->isKill()) { + MI.getOperand(III.OpNoForForwarding).setIsKill(true); + // Clear the killed flag in RegMO. Doing this here can handle some cases + // that DefMI and MI are not in same basic block. + RegMO->setIsKill(false); + } + MI.getOperand(III.ImmOpNo).setImm(Imm); + + // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block. + if (DefMI.getParent() == MI.getParent()) { + // Check if reg is killed between MI and DefMI. + auto IsKilledFor = [&](unsigned Reg) { + MachineBasicBlock::const_reverse_iterator It = MI; + MachineBasicBlock::const_reverse_iterator E = DefMI; + It++; + for (; It != E; ++It) { + if (It->killsRegister(Reg)) + return true; + } + return false; + }; + + // Update kill flag + if (RegMO->isKill() || IsKilledFor(RegMO->getReg())) + fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); + if (ForwardKilledOperandReg != ~0U) + fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); + } + + LLVM_DEBUG(dbgs() << "With:\n"); + LLVM_DEBUG(MI.dump()); + return true; +} + +// If an X-Form instruction is fed by an add-immediate and one of its operands +// is the literal zero, attempt to forward the source of the add-immediate to +// the corresponding D-Form instruction with the displacement coming from +// the immediate being added. +bool PPCInstrInfo::transformToImmFormFedByAdd( + MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, + MachineInstr &DefMI, bool KillDefMI) const { + // RegMO ImmMO + // | | + // x = addi reg, imm <----- DefMI + // y = op 0 , x <----- MI + // | + // OpNoForForwarding + // Check if the MI meet the requirement described in the III. + if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) + return false; + + // Check if the DefMI meet the requirement + // described in the III. If yes, set the ImmMO and RegMO accordingly. + MachineOperand *ImmMO = nullptr; + MachineOperand *RegMO = nullptr; + if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) + return false; + assert(ImmMO && RegMO && "Imm and Reg operand must have been set"); + + // As we get the Imm operand now, we need to check if the ImmMO meet + // the requirement described in the III. If yes set the Imm. + int64_t Imm = 0; + if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm)) + return false; + + bool IsFwdFeederRegKilled = false; + bool SeenIntermediateUse = false; + // Check if the RegMO can be forwarded to MI. + if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI, + IsFwdFeederRegKilled, SeenIntermediateUse)) + return false; + + // Get killed info in case fixup needed after transformation. + unsigned ForwardKilledOperandReg = ~0U; + MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); + bool PostRA = !MRI.isSSA(); + if (PostRA && MI.getOperand(OpNoForForwarding).isKill()) + ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg(); + + // We know that, the MI and DefMI both meet the pattern, and + // the Imm also meet the requirement with the new Imm-form. + // It is safe to do the transformation now. + LLVM_DEBUG(dbgs() << "Replacing indexed instruction:\n"); + LLVM_DEBUG(MI.dump()); + LLVM_DEBUG(dbgs() << "Fed by:\n"); + LLVM_DEBUG(DefMI.dump()); + + // Update the base reg first. + MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(), + false, false, + RegMO->isKill()); + + // Then, update the imm. + if (ImmMO->isImm()) { + // If the ImmMO is Imm, change the operand that has ZERO to that Imm + // directly. + replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm); + } + else { + // Otherwise, it is Constant Pool Index(CPI) or Global, + // which is relocation in fact. We need to replace the special zero + // register with ImmMO. + // Before that, we need to fixup the target flags for imm. + // For some reason, we miss to set the flag for the ImmMO if it is CPI. + if (DefMI.getOpcode() == PPC::ADDItocL) + ImmMO->setTargetFlags(PPCII::MO_TOC_LO); + + // MI didn't have the interface such as MI.setOperand(i) though + // it has MI.getOperand(i). To repalce the ZERO MachineOperand with + // ImmMO, we need to remove ZERO operand and all the operands behind it, + // and, add the ImmMO, then, move back all the operands behind ZERO. + SmallVector<MachineOperand, 2> MOps; + for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { + MOps.push_back(MI.getOperand(i)); + MI.removeOperand(i); + } + + // Remove the last MO in the list, which is ZERO operand in fact. + MOps.pop_back(); + // Add the imm operand. + MI.addOperand(*ImmMO); + // Now add the rest back. + for (auto &MO : MOps) + MI.addOperand(MO); + } + + // Update the opcode. + MI.setDesc(get(III.ImmOpcode)); + + // Fix up killed/dead flag after transformation. + // Pattern 1: + // x = ADD KilledFwdFeederReg, imm + // n = opn KilledFwdFeederReg(killed), regn + // y = XOP 0, x + // Pattern 2: + // x = ADD reg(killed), imm + // y = XOP 0, x + if (IsFwdFeederRegKilled || RegMO->isKill()) + fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg()); + // Pattern 3: + // ForwardKilledOperandReg = ADD reg, imm + // y = XOP 0, ForwardKilledOperandReg(killed) + if (ForwardKilledOperandReg != ~0U) + fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); + + LLVM_DEBUG(dbgs() << "With:\n"); + LLVM_DEBUG(MI.dump()); + + return true; +} + +bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, + const ImmInstrInfo &III, + unsigned ConstantOpNo, + MachineInstr &DefMI) const { + // DefMI must be LI or LI8. + if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || + !DefMI.getOperand(1).isImm()) + return false; + + // Get Imm operand and Sign-extend to 64-bits. + int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm()); + + MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); + bool PostRA = !MRI.isSSA(); + // Exit early if we can't convert this. + if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) + return false; + if (Imm % III.ImmMustBeMultipleOf) + return false; + if (III.TruncateImmTo) + Imm &= ((1 << III.TruncateImmTo) - 1); + if (III.SignedImm) { + APInt ActualValue(64, Imm, true); + if (!ActualValue.isSignedIntN(III.ImmWidth)) + return false; + } else { + uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; + if ((uint64_t)Imm > UnsignedMax) + return false; + } + + // If we're post-RA, the instructions don't agree on whether register zero is + // special, we can transform this as long as the register operand that will + // end up in the location where zero is special isn't R0. + if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { + unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : + III.ZeroIsSpecialNew + 1; + Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg(); + Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg(); + // If R0 is in the operand where zero is special for the new instruction, + // it is unsafe to transform if the constant operand isn't that operand. + if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && + ConstantOpNo != III.ZeroIsSpecialNew) + return false; + if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && + ConstantOpNo != PosForOrigZero) + return false; + } + + // Get killed info in case fixup needed after transformation. + unsigned ForwardKilledOperandReg = ~0U; + if (PostRA && MI.getOperand(ConstantOpNo).isKill()) + ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg(); + + unsigned Opc = MI.getOpcode(); + bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || + Opc == PPC::SRW || Opc == PPC::SRW_rec || + Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || + Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; + bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || + Opc == PPC::SRD || Opc == PPC::SRD_rec; + bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || + Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; + bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || + Opc == PPC::SRD_rec; + + LLVM_DEBUG(dbgs() << "Replacing reg+reg instruction: "); + LLVM_DEBUG(MI.dump()); + LLVM_DEBUG(dbgs() << "Fed by load-immediate: "); + LLVM_DEBUG(DefMI.dump()); + MI.setDesc(get(III.ImmOpcode)); + if (ConstantOpNo == III.OpNoForForwarding) { + // Converting shifts to immediate form is a bit tricky since they may do + // one of three things: + // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero + // 2. If the shift amount is zero, the result is unchanged (save for maybe + // setting CR0) + // 3. If the shift amount is in [1, OpSize), it's just a shift + if (SpecialShift32 || SpecialShift64) { + LoadImmediateInfo LII; + LII.Imm = 0; + LII.SetCR = SetCR; + LII.Is64Bit = SpecialShift64; + uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); + if (Imm & (SpecialShift32 ? 0x20 : 0x40)) + replaceInstrWithLI(MI, LII); + // Shifts by zero don't change the value. If we don't need to set CR0, + // just convert this to a COPY. Can't do this post-RA since we've already + // cleaned up the copies. + else if (!SetCR && ShAmt == 0 && !PostRA) { + MI.removeOperand(2); + MI.setDesc(get(PPC::COPY)); + } else { + // The 32 bit and 64 bit instructions are quite different. + if (SpecialShift32) { + // Left shifts use (N, 0, 31-N). + // Right shifts use (32-N, N, 31) if 0 < N < 32. + // use (0, 0, 31) if N == 0. + uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; + uint64_t MB = RightShift ? ShAmt : 0; + uint64_t ME = RightShift ? 31 : 31 - ShAmt; + replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); + MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB) + .addImm(ME); + } else { + // Left shifts use (N, 63-N). + // Right shifts use (64-N, N) if 0 < N < 64. + // use (0, 0) if N == 0. + uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; + uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; + replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH); + MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME); + } + } + } else + replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); + } + // Convert commutative instructions (switch the operands and convert the + // desired one to an immediate. + else if (III.IsCommutative) { + replaceInstrOperandWithImm(MI, ConstantOpNo, Imm); + swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding); + } else + llvm_unreachable("Should have exited early!"); + + // For instructions for which the constant register replaces a different + // operand than where the immediate goes, we need to swap them. + if (III.OpNoForForwarding != III.ImmOpNo) + swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo); + + // If the special R0/X0 register index are different for original instruction + // and new instruction, we need to fix up the register class in new + // instruction. + if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { + if (III.ZeroIsSpecialNew) { + // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no + // need to fix up register class. + Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg(); + if (RegToModify.isVirtual()) { + const TargetRegisterClass *NewRC = + MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ? + &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; + MRI.setRegClass(RegToModify, NewRC); + } + } + } + + // Fix up killed/dead flag after transformation. + // Pattern: + // ForwardKilledOperandReg = LI imm + // y = XOP reg, ForwardKilledOperandReg(killed) + if (ForwardKilledOperandReg != ~0U) + fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg); + + LLVM_DEBUG(dbgs() << "With: "); + LLVM_DEBUG(MI.dump()); + LLVM_DEBUG(dbgs() << "\n"); + return true; +} + +const TargetRegisterClass * +PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { + if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) + return &PPC::VSRCRegClass; + return RC; +} + +int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { + return PPC::getRecordFormOpcode(Opcode); +} + +static bool isOpZeroOfSubwordPreincLoad(int Opcode) { + return (Opcode == PPC::LBZU || Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || + Opcode == PPC::LBZUX8 || Opcode == PPC::LHZU || + Opcode == PPC::LHZUX || Opcode == PPC::LHZU8 || + Opcode == PPC::LHZUX8); +} + +// This function checks for sign extension from 32 bits to 64 bits. +static bool definedBySignExtendingOp(const unsigned Reg, + const MachineRegisterInfo *MRI) { + if (!Register::isVirtualRegister(Reg)) + return false; + + MachineInstr *MI = MRI->getVRegDef(Reg); + if (!MI) + return false; + + int Opcode = MI->getOpcode(); + const PPCInstrInfo *TII = + MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo(); + if (TII->isSExt32To64(Opcode)) + return true; + + // The first def of LBZU/LHZU is sign extended. + if (isOpZeroOfSubwordPreincLoad(Opcode) && MI->getOperand(0).getReg() == Reg) + return true; + + // RLDICL generates sign-extended output if it clears at least + // 33 bits from the left (MSB). + if (Opcode == PPC::RLDICL && MI->getOperand(3).getImm() >= 33) + return true; + + // If at least one bit from left in a lower word is masked out, + // all of 0 to 32-th bits of the output are cleared. + // Hence the output is already sign extended. + if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || + Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && + MI->getOperand(3).getImm() > 0 && + MI->getOperand(3).getImm() <= MI->getOperand(4).getImm()) + return true; + + // If the most significant bit of immediate in ANDIS is zero, + // all of 0 to 32-th bits are cleared. + if (Opcode == PPC::ANDIS_rec || Opcode == PPC::ANDIS8_rec) { + uint16_t Imm = MI->getOperand(2).getImm(); + if ((Imm & 0x8000) == 0) + return true; + } + + return false; +} + +// This function checks the machine instruction that defines the input register +// Reg. If that machine instruction always outputs a value that has only zeros +// in the higher 32 bits then this function will return true. +static bool definedByZeroExtendingOp(const unsigned Reg, + const MachineRegisterInfo *MRI) { + if (!Register::isVirtualRegister(Reg)) + return false; + + MachineInstr *MI = MRI->getVRegDef(Reg); + if (!MI) + return false; + + int Opcode = MI->getOpcode(); + const PPCInstrInfo *TII = + MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo(); + if (TII->isZExt32To64(Opcode)) + return true; + + // The first def of LBZU/LHZU/LWZU are zero extended. + if ((isOpZeroOfSubwordPreincLoad(Opcode) || Opcode == PPC::LWZU || + Opcode == PPC::LWZUX || Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8) && + MI->getOperand(0).getReg() == Reg) + return true; + + // The 16-bit immediate is sign-extended in li/lis. + // If the most significant bit is zero, all higher bits are zero. + if (Opcode == PPC::LI || Opcode == PPC::LI8 || + Opcode == PPC::LIS || Opcode == PPC::LIS8) { + int64_t Imm = MI->getOperand(1).getImm(); + if (((uint64_t)Imm & ~0x7FFFuLL) == 0) + return true; + } + + // We have some variations of rotate-and-mask instructions + // that clear higher 32-bits. + if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || + Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || + Opcode == PPC::RLDICL_32_64) && + MI->getOperand(3).getImm() >= 32) + return true; + + if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && + MI->getOperand(3).getImm() >= 32 && + MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm()) + return true; + + if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || + Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || + Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && + MI->getOperand(3).getImm() <= MI->getOperand(4).getImm()) + return true; + + return false; +} + +// This function returns true if the input MachineInstr is a TOC save +// instruction. +bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { + if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg()) + return false; + unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); + unsigned StackOffset = MI.getOperand(1).getImm(); + Register StackReg = MI.getOperand(2).getReg(); + Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; + if (StackReg == SPReg && StackOffset == TOCSaveOffset) + return true; + + return false; +} + +// We limit the max depth to track incoming values of PHIs or binary ops +// (e.g. AND) to avoid excessive cost. +const unsigned MAX_BINOP_DEPTH = 1; +// The isSignOrZeroExtended function is recursive. The parameter BinOpDepth +// does not count all of the recursions. The parameter BinOpDepth is incremented +// only when isSignOrZeroExtended calls itself more than once. This is done to +// prevent expontential recursion. There is no parameter to track linear +// recursion. +std::pair<bool, bool> +PPCInstrInfo::isSignOrZeroExtended(const unsigned Reg, + const unsigned BinOpDepth, + const MachineRegisterInfo *MRI) const { + if (!Register::isVirtualRegister(Reg)) + return std::pair<bool, bool>(false, false); + + MachineInstr *MI = MRI->getVRegDef(Reg); + if (!MI) + return std::pair<bool, bool>(false, false); + + bool IsSExt = definedBySignExtendingOp(Reg, MRI); + bool IsZExt = definedByZeroExtendingOp(Reg, MRI); + + // If we know the instruction always returns sign- and zero-extended result, + // return here. + if (IsSExt && IsZExt) + return std::pair<bool, bool>(IsSExt, IsZExt); + + switch (MI->getOpcode()) { + case PPC::COPY: { + Register SrcReg = MI->getOperand(1).getReg(); + + // In both ELFv1 and v2 ABI, method parameters and the return value + // are sign- or zero-extended. + const MachineFunction *MF = MI->getMF(); + + if (!MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { + // If this is a copy from another register, we recursively check source. + auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); + return std::pair<bool, bool>(SrcExt.first || IsSExt, + SrcExt.second || IsZExt); + } + + // From here on everything is SVR4ABI + const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); + // We check the ZExt/SExt flags for a method parameter. + if (MI->getParent()->getBasicBlock() == + &MF->getFunction().getEntryBlock()) { + Register VReg = MI->getOperand(0).getReg(); + if (MF->getRegInfo().isLiveIn(VReg)) { + IsSExt |= FuncInfo->isLiveInSExt(VReg); + IsZExt |= FuncInfo->isLiveInZExt(VReg); + return std::pair<bool, bool>(IsSExt, IsZExt); + } + } + + if (SrcReg != PPC::X3) { + // If this is a copy from another register, we recursively check source. + auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); + return std::pair<bool, bool>(SrcExt.first || IsSExt, + SrcExt.second || IsZExt); + } + + // For a method return value, we check the ZExt/SExt flags in attribute. + // We assume the following code sequence for method call. + // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 + // BL8_NOP @func,... + // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 + // %5 = COPY %x3; G8RC:%5 + const MachineBasicBlock *MBB = MI->getParent(); + std::pair<bool, bool> IsExtendPair = std::pair<bool, bool>(IsSExt, IsZExt); + MachineBasicBlock::const_instr_iterator II = + MachineBasicBlock::const_instr_iterator(MI); + if (II == MBB->instr_begin() || (--II)->getOpcode() != PPC::ADJCALLSTACKUP) + return IsExtendPair; + + const MachineInstr &CallMI = *(--II); + if (!CallMI.isCall() || !CallMI.getOperand(0).isGlobal()) + return IsExtendPair; + + const Function *CalleeFn = + dyn_cast_if_present<Function>(CallMI.getOperand(0).getGlobal()); + if (!CalleeFn) + return IsExtendPair; + const IntegerType *IntTy = dyn_cast<IntegerType>(CalleeFn->getReturnType()); + if (IntTy && IntTy->getBitWidth() <= 32) { + const AttributeSet &Attrs = CalleeFn->getAttributes().getRetAttrs(); + IsSExt |= Attrs.hasAttribute(Attribute::SExt); + IsZExt |= Attrs.hasAttribute(Attribute::ZExt); + return std::pair<bool, bool>(IsSExt, IsZExt); + } + + return IsExtendPair; + } + + // OR, XOR with 16-bit immediate does not change the upper 48 bits. + // So, we track the operand register as we do for register copy. + case PPC::ORI: + case PPC::XORI: + case PPC::ORI8: + case PPC::XORI8: { + Register SrcReg = MI->getOperand(1).getReg(); + auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); + return std::pair<bool, bool>(SrcExt.first || IsSExt, + SrcExt.second || IsZExt); + } + + // OR, XOR with shifted 16-bit immediate does not change the upper + // 32 bits. So, we track the operand register for zero extension. + // For sign extension when the MSB of the immediate is zero, we also + // track the operand register since the upper 33 bits are unchanged. + case PPC::ORIS: + case PPC::XORIS: + case PPC::ORIS8: + case PPC::XORIS8: { + Register SrcReg = MI->getOperand(1).getReg(); + auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI); + uint16_t Imm = MI->getOperand(2).getImm(); + if (Imm & 0x8000) + return std::pair<bool, bool>(false, SrcExt.second || IsZExt); + else + return std::pair<bool, bool>(SrcExt.first || IsSExt, + SrcExt.second || IsZExt); + } + + // If all incoming values are sign-/zero-extended, + // the output of OR, ISEL or PHI is also sign-/zero-extended. + case PPC::OR: + case PPC::OR8: + case PPC::ISEL: + case PPC::PHI: { + if (BinOpDepth >= MAX_BINOP_DEPTH) + return std::pair<bool, bool>(false, false); + + // The input registers for PHI are operand 1, 3, ... + // The input registers for others are operand 1 and 2. + unsigned OperandEnd = 3, OperandStride = 1; + if (MI->getOpcode() == PPC::PHI) { + OperandEnd = MI->getNumOperands(); + OperandStride = 2; + } + + IsSExt = true; + IsZExt = true; + for (unsigned I = 1; I != OperandEnd; I += OperandStride) { + if (!MI->getOperand(I).isReg()) + return std::pair<bool, bool>(false, false); + + Register SrcReg = MI->getOperand(I).getReg(); + auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth + 1, MRI); + IsSExt &= SrcExt.first; + IsZExt &= SrcExt.second; + } + return std::pair<bool, bool>(IsSExt, IsZExt); + } + + // If at least one of the incoming values of an AND is zero extended + // then the output is also zero-extended. If both of the incoming values + // are sign-extended then the output is also sign extended. + case PPC::AND: + case PPC::AND8: { + if (BinOpDepth >= MAX_BINOP_DEPTH) + return std::pair<bool, bool>(false, false); + + Register SrcReg1 = MI->getOperand(1).getReg(); + Register SrcReg2 = MI->getOperand(2).getReg(); + auto Src1Ext = isSignOrZeroExtended(SrcReg1, BinOpDepth + 1, MRI); + auto Src2Ext = isSignOrZeroExtended(SrcReg2, BinOpDepth + 1, MRI); + return std::pair<bool, bool>(Src1Ext.first && Src2Ext.first, + Src1Ext.second || Src2Ext.second); + } + + default: + break; + } + return std::pair<bool, bool>(IsSExt, IsZExt); +} + +bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { + return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); +} + +namespace { +class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { + MachineInstr *Loop, *EndLoop, *LoopCount; + MachineFunction *MF; + const TargetInstrInfo *TII; + int64_t TripCount; + +public: + PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, + MachineInstr *LoopCount) + : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), + MF(Loop->getParent()->getParent()), + TII(MF->getSubtarget().getInstrInfo()) { + // Inspect the Loop instruction up-front, as it may be deleted when we call + // createTripCountGreaterCondition. + if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) + TripCount = LoopCount->getOperand(1).getImm(); + else + TripCount = -1; + } + + bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { + // Only ignore the terminator. + return MI == EndLoop; + } + + std::optional<bool> createTripCountGreaterCondition( + int TC, MachineBasicBlock &MBB, + SmallVectorImpl<MachineOperand> &Cond) override { + if (TripCount == -1) { + // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, + // so we don't need to generate any thing here. + Cond.push_back(MachineOperand::CreateImm(0)); + Cond.push_back(MachineOperand::CreateReg( + MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, + true)); + return {}; + } + + return TripCount > TC; + } + + void setPreheader(MachineBasicBlock *NewPreheader) override { + // Do nothing. We want the LOOP setup instruction to stay in the *old* + // preheader, so we can use BDZ in the prologs to adapt the loop trip count. + } + + void adjustTripCount(int TripCountAdjust) override { + // If the loop trip count is a compile-time value, then just change the + // value. + if (LoopCount->getOpcode() == PPC::LI8 || + LoopCount->getOpcode() == PPC::LI) { + int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust; + LoopCount->getOperand(1).setImm(TripCount); + return; + } + + // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, + // so we don't need to generate any thing here. + } + + void disposed() override { + Loop->eraseFromParent(); + // Ensure the loop setup instruction is deleted too. + LoopCount->eraseFromParent(); + } +}; +} // namespace + +std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> +PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { + // We really "analyze" only hardware loops right now. + MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); + MachineBasicBlock *Preheader = *LoopBB->pred_begin(); + if (Preheader == LoopBB) + Preheader = *std::next(LoopBB->pred_begin()); + MachineFunction *MF = Preheader->getParent(); + + if (I != LoopBB->end() && isBDNZ(I->getOpcode())) { + SmallPtrSet<MachineBasicBlock *, 8> Visited; + if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) { + Register LoopCountReg = LoopInst->getOperand(0).getReg(); + MachineRegisterInfo &MRI = MF->getRegInfo(); + MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg); + return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount); + } + } + return nullptr; +} + +MachineInstr *PPCInstrInfo::findLoopInstr( + MachineBasicBlock &PreHeader, + SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { + + unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); + + // The loop set-up instruction should be in preheader + for (auto &I : PreHeader.instrs()) + if (I.getOpcode() == LOOPi) + return &I; + return nullptr; +} + +// Return true if get the base operand, byte offset of an instruction and the +// memory width. Width is the size of memory that is being loaded/stored. +bool PPCInstrInfo::getMemOperandWithOffsetWidth( + const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, + unsigned &Width, const TargetRegisterInfo *TRI) const { + if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3) + return false; + + // Handle only loads/stores with base register followed by immediate offset. + if (!LdSt.getOperand(1).isImm() || + (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) + return false; + if (!LdSt.getOperand(1).isImm() || + (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI())) + return false; + + if (!LdSt.hasOneMemOperand()) + return false; + + Width = (*LdSt.memoperands_begin())->getSize(); + Offset = LdSt.getOperand(1).getImm(); + BaseReg = &LdSt.getOperand(2); + return true; +} + +bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( + const MachineInstr &MIa, const MachineInstr &MIb) const { + assert(MIa.mayLoadOrStore() && "MIa must be a load or store."); + assert(MIb.mayLoadOrStore() && "MIb must be a load or store."); + + if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || + MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) + return false; + + // Retrieve the base register, offset from the base register and width. Width + // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If + // base registers are identical, and the offset of a lower memory access + + // the width doesn't overlap the offset of a higher memory access, + // then the memory accesses are different. + const TargetRegisterInfo *TRI = &getRegisterInfo(); + const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; + int64_t OffsetA = 0, OffsetB = 0; + unsigned int WidthA = 0, WidthB = 0; + if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) && + getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) { + if (BaseOpA->isIdenticalTo(*BaseOpB)) { + int LowOffset = std::min(OffsetA, OffsetB); + int HighOffset = std::max(OffsetA, OffsetB); + int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; + if (LowOffset + LowWidth <= HighOffset) + return true; + } + } + return false; +} |
