aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/CodeGen/RegisterBankInfo.cpp
diff options
context:
space:
mode:
authorvvvv <vvvv@ydb.tech>2024-02-06 20:01:22 +0300
committerAlexander Smirnov <alex@ydb.tech>2024-02-09 19:18:27 +0300
commitee2b7fbda052aa09b6fdb83b8c6f0305fef3e193 (patch)
tree102765416c3866bde98a82facc7752d329ee0226 /contrib/libs/llvm16/lib/CodeGen/RegisterBankInfo.cpp
parent7494ca32d3a5aca00b7ac527b5f127989335102c (diff)
downloadydb-ee2b7fbda052aa09b6fdb83b8c6f0305fef3e193.tar.gz
llvm16 targets
Diffstat (limited to 'contrib/libs/llvm16/lib/CodeGen/RegisterBankInfo.cpp')
-rw-r--r--contrib/libs/llvm16/lib/CodeGen/RegisterBankInfo.cpp809
1 files changed, 809 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/CodeGen/RegisterBankInfo.cpp b/contrib/libs/llvm16/lib/CodeGen/RegisterBankInfo.cpp
new file mode 100644
index 00000000000..27ed17b9f4f
--- /dev/null
+++ b/contrib/libs/llvm16/lib/CodeGen/RegisterBankInfo.cpp
@@ -0,0 +1,809 @@
+//===- llvm/CodeGen/GlobalISel/RegisterBankInfo.cpp --------------*- C++ -*-==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements the RegisterBankInfo class.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/RegisterBankInfo.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterBank.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+#include <algorithm> // For std::max.
+
+#define DEBUG_TYPE "registerbankinfo"
+
+using namespace llvm;
+
+STATISTIC(NumPartialMappingsCreated,
+ "Number of partial mappings dynamically created");
+STATISTIC(NumPartialMappingsAccessed,
+ "Number of partial mappings dynamically accessed");
+STATISTIC(NumValueMappingsCreated,
+ "Number of value mappings dynamically created");
+STATISTIC(NumValueMappingsAccessed,
+ "Number of value mappings dynamically accessed");
+STATISTIC(NumOperandsMappingsCreated,
+ "Number of operands mappings dynamically created");
+STATISTIC(NumOperandsMappingsAccessed,
+ "Number of operands mappings dynamically accessed");
+STATISTIC(NumInstructionMappingsCreated,
+ "Number of instruction mappings dynamically created");
+STATISTIC(NumInstructionMappingsAccessed,
+ "Number of instruction mappings dynamically accessed");
+
+const unsigned RegisterBankInfo::DefaultMappingID = UINT_MAX;
+const unsigned RegisterBankInfo::InvalidMappingID = UINT_MAX - 1;
+
+//------------------------------------------------------------------------------
+// RegisterBankInfo implementation.
+//------------------------------------------------------------------------------
+RegisterBankInfo::RegisterBankInfo(RegisterBank **RegBanks,
+ unsigned NumRegBanks)
+ : RegBanks(RegBanks), NumRegBanks(NumRegBanks) {
+#ifndef NDEBUG
+ for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
+ assert(RegBanks[Idx] != nullptr && "Invalid RegisterBank");
+ assert(RegBanks[Idx]->isValid() && "RegisterBank should be valid");
+ }
+#endif // NDEBUG
+}
+
+bool RegisterBankInfo::verify(const TargetRegisterInfo &TRI) const {
+#ifndef NDEBUG
+ for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
+ const RegisterBank &RegBank = getRegBank(Idx);
+ assert(Idx == RegBank.getID() &&
+ "ID does not match the index in the array");
+ LLVM_DEBUG(dbgs() << "Verify " << RegBank << '\n');
+ assert(RegBank.verify(TRI) && "RegBank is invalid");
+ }
+#endif // NDEBUG
+ return true;
+}
+
+const RegisterBank *
+RegisterBankInfo::getRegBank(Register Reg, const MachineRegisterInfo &MRI,
+ const TargetRegisterInfo &TRI) const {
+ if (Reg.isPhysical()) {
+ // FIXME: This was probably a copy to a virtual register that does have a
+ // type we could use.
+ return &getRegBankFromRegClass(getMinimalPhysRegClass(Reg, TRI), LLT());
+ }
+
+ assert(Reg && "NoRegister does not have a register bank");
+ const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
+ if (auto *RB = RegClassOrBank.dyn_cast<const RegisterBank *>())
+ return RB;
+ if (auto *RC = RegClassOrBank.dyn_cast<const TargetRegisterClass *>())
+ return &getRegBankFromRegClass(*RC, MRI.getType(Reg));
+ return nullptr;
+}
+
+const TargetRegisterClass &
+RegisterBankInfo::getMinimalPhysRegClass(Register Reg,
+ const TargetRegisterInfo &TRI) const {
+ assert(Reg.isPhysical() && "Reg must be a physreg");
+ const auto &RegRCIt = PhysRegMinimalRCs.find(Reg);
+ if (RegRCIt != PhysRegMinimalRCs.end())
+ return *RegRCIt->second;
+ const TargetRegisterClass *PhysRC = TRI.getMinimalPhysRegClass(Reg);
+ PhysRegMinimalRCs[Reg] = PhysRC;
+ return *PhysRC;
+}
+
+const RegisterBank *RegisterBankInfo::getRegBankFromConstraints(
+ const MachineInstr &MI, unsigned OpIdx, const TargetInstrInfo &TII,
+ const MachineRegisterInfo &MRI) const {
+ const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
+
+ // The mapping of the registers may be available via the
+ // register class constraints.
+ const TargetRegisterClass *RC = MI.getRegClassConstraint(OpIdx, &TII, TRI);
+
+ if (!RC)
+ return nullptr;
+
+ Register Reg = MI.getOperand(OpIdx).getReg();
+ const RegisterBank &RegBank = getRegBankFromRegClass(*RC, MRI.getType(Reg));
+ // Check that the target properly implemented getRegBankFromRegClass.
+ assert(RegBank.covers(*RC) &&
+ "The mapping of the register bank does not make sense");
+ return &RegBank;
+}
+
+const TargetRegisterClass *RegisterBankInfo::constrainGenericRegister(
+ Register Reg, const TargetRegisterClass &RC, MachineRegisterInfo &MRI) {
+
+ // If the register already has a class, fallback to MRI::constrainRegClass.
+ auto &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
+ if (RegClassOrBank.is<const TargetRegisterClass *>())
+ return MRI.constrainRegClass(Reg, &RC);
+
+ const RegisterBank *RB = RegClassOrBank.get<const RegisterBank *>();
+ // Otherwise, all we can do is ensure the bank covers the class, and set it.
+ if (RB && !RB->covers(RC))
+ return nullptr;
+
+ // If nothing was set or the class is simply compatible, set it.
+ MRI.setRegClass(Reg, &RC);
+ return &RC;
+}
+
+/// Check whether or not \p MI should be treated like a copy
+/// for the mappings.
+/// Copy like instruction are special for mapping because
+/// they don't have actual register constraints. Moreover,
+/// they sometimes have register classes assigned and we can
+/// just use that instead of failing to provide a generic mapping.
+static bool isCopyLike(const MachineInstr &MI) {
+ return MI.isCopy() || MI.isPHI() ||
+ MI.getOpcode() == TargetOpcode::REG_SEQUENCE;
+}
+
+const RegisterBankInfo::InstructionMapping &
+RegisterBankInfo::getInstrMappingImpl(const MachineInstr &MI) const {
+ // For copies we want to walk over the operands and try to find one
+ // that has a register bank since the instruction itself will not get
+ // us any constraint.
+ bool IsCopyLike = isCopyLike(MI);
+ // For copy like instruction, only the mapping of the definition
+ // is important. The rest is not constrained.
+ unsigned NumOperandsForMapping = IsCopyLike ? 1 : MI.getNumOperands();
+
+ const MachineFunction &MF = *MI.getMF();
+ const TargetSubtargetInfo &STI = MF.getSubtarget();
+ const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ // We may need to query the instruction encoding to guess the mapping.
+ const TargetInstrInfo &TII = *STI.getInstrInfo();
+
+ // Before doing anything complicated check if the mapping is not
+ // directly available.
+ bool CompleteMapping = true;
+
+ SmallVector<const ValueMapping *, 8> OperandsMapping(NumOperandsForMapping);
+ for (unsigned OpIdx = 0, EndIdx = MI.getNumOperands(); OpIdx != EndIdx;
+ ++OpIdx) {
+ const MachineOperand &MO = MI.getOperand(OpIdx);
+ if (!MO.isReg())
+ continue;
+ Register Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ // The register bank of Reg is just a side effect of the current
+ // excution and in particular, there is no reason to believe this
+ // is the best default mapping for the current instruction. Keep
+ // it as an alternative register bank if we cannot figure out
+ // something.
+ const RegisterBank *AltRegBank = getRegBank(Reg, MRI, TRI);
+ // For copy-like instruction, we want to reuse the register bank
+ // that is already set on Reg, if any, since those instructions do
+ // not have any constraints.
+ const RegisterBank *CurRegBank = IsCopyLike ? AltRegBank : nullptr;
+ if (!CurRegBank) {
+ // If this is a target specific instruction, we can deduce
+ // the register bank from the encoding constraints.
+ CurRegBank = getRegBankFromConstraints(MI, OpIdx, TII, MRI);
+ if (!CurRegBank) {
+ // All our attempts failed, give up.
+ CompleteMapping = false;
+
+ if (!IsCopyLike)
+ // MI does not carry enough information to guess the mapping.
+ return getInvalidInstructionMapping();
+ continue;
+ }
+ }
+
+ unsigned Size = getSizeInBits(Reg, MRI, TRI);
+ const ValueMapping *ValMapping = &getValueMapping(0, Size, *CurRegBank);
+ if (IsCopyLike) {
+ if (!OperandsMapping[0]) {
+ if (MI.isRegSequence()) {
+ // For reg_sequence, the result size does not match the input.
+ unsigned ResultSize = getSizeInBits(MI.getOperand(0).getReg(),
+ MRI, TRI);
+ OperandsMapping[0] = &getValueMapping(0, ResultSize, *CurRegBank);
+ } else {
+ OperandsMapping[0] = ValMapping;
+ }
+ }
+
+ // The default handling assumes any register bank can be copied to any
+ // other. If this isn't the case, the target should specially deal with
+ // reg_sequence/phi. There may also be unsatisfiable copies.
+ for (; OpIdx != EndIdx; ++OpIdx) {
+ const MachineOperand &MO = MI.getOperand(OpIdx);
+ if (!MO.isReg())
+ continue;
+ Register Reg = MO.getReg();
+ if (!Reg)
+ continue;
+
+ const RegisterBank *AltRegBank = getRegBank(Reg, MRI, TRI);
+ if (AltRegBank &&
+ cannotCopy(*CurRegBank, *AltRegBank, getSizeInBits(Reg, MRI, TRI)))
+ return getInvalidInstructionMapping();
+ }
+
+ CompleteMapping = true;
+ break;
+ }
+
+ OperandsMapping[OpIdx] = ValMapping;
+ }
+
+ if (IsCopyLike && !CompleteMapping) {
+ // No way to deduce the type from what we have.
+ return getInvalidInstructionMapping();
+ }
+
+ assert(CompleteMapping && "Setting an uncomplete mapping");
+ return getInstructionMapping(
+ DefaultMappingID, /*Cost*/ 1,
+ /*OperandsMapping*/ getOperandsMapping(OperandsMapping),
+ NumOperandsForMapping);
+}
+
+/// Hashing function for PartialMapping.
+static hash_code hashPartialMapping(unsigned StartIdx, unsigned Length,
+ const RegisterBank *RegBank) {
+ return hash_combine(StartIdx, Length, RegBank ? RegBank->getID() : 0);
+}
+
+/// Overloaded version of hash_value for a PartialMapping.
+hash_code
+llvm::hash_value(const RegisterBankInfo::PartialMapping &PartMapping) {
+ return hashPartialMapping(PartMapping.StartIdx, PartMapping.Length,
+ PartMapping.RegBank);
+}
+
+const RegisterBankInfo::PartialMapping &
+RegisterBankInfo::getPartialMapping(unsigned StartIdx, unsigned Length,
+ const RegisterBank &RegBank) const {
+ ++NumPartialMappingsAccessed;
+
+ hash_code Hash = hashPartialMapping(StartIdx, Length, &RegBank);
+ const auto &It = MapOfPartialMappings.find(Hash);
+ if (It != MapOfPartialMappings.end())
+ return *It->second;
+
+ ++NumPartialMappingsCreated;
+
+ auto &PartMapping = MapOfPartialMappings[Hash];
+ PartMapping = std::make_unique<PartialMapping>(StartIdx, Length, RegBank);
+ return *PartMapping;
+}
+
+const RegisterBankInfo::ValueMapping &
+RegisterBankInfo::getValueMapping(unsigned StartIdx, unsigned Length,
+ const RegisterBank &RegBank) const {
+ return getValueMapping(&getPartialMapping(StartIdx, Length, RegBank), 1);
+}
+
+static hash_code
+hashValueMapping(const RegisterBankInfo::PartialMapping *BreakDown,
+ unsigned NumBreakDowns) {
+ if (LLVM_LIKELY(NumBreakDowns == 1))
+ return hash_value(*BreakDown);
+ SmallVector<size_t, 8> Hashes(NumBreakDowns);
+ for (unsigned Idx = 0; Idx != NumBreakDowns; ++Idx)
+ Hashes.push_back(hash_value(BreakDown[Idx]));
+ return hash_combine_range(Hashes.begin(), Hashes.end());
+}
+
+const RegisterBankInfo::ValueMapping &
+RegisterBankInfo::getValueMapping(const PartialMapping *BreakDown,
+ unsigned NumBreakDowns) const {
+ ++NumValueMappingsAccessed;
+
+ hash_code Hash = hashValueMapping(BreakDown, NumBreakDowns);
+ const auto &It = MapOfValueMappings.find(Hash);
+ if (It != MapOfValueMappings.end())
+ return *It->second;
+
+ ++NumValueMappingsCreated;
+
+ auto &ValMapping = MapOfValueMappings[Hash];
+ ValMapping = std::make_unique<ValueMapping>(BreakDown, NumBreakDowns);
+ return *ValMapping;
+}
+
+template <typename Iterator>
+const RegisterBankInfo::ValueMapping *
+RegisterBankInfo::getOperandsMapping(Iterator Begin, Iterator End) const {
+
+ ++NumOperandsMappingsAccessed;
+
+ // The addresses of the value mapping are unique.
+ // Therefore, we can use them directly to hash the operand mapping.
+ hash_code Hash = hash_combine_range(Begin, End);
+ auto &Res = MapOfOperandsMappings[Hash];
+ if (Res)
+ return Res.get();
+
+ ++NumOperandsMappingsCreated;
+
+ // Create the array of ValueMapping.
+ // Note: this array will not hash to this instance of operands
+ // mapping, because we use the pointer of the ValueMapping
+ // to hash and we expect them to uniquely identify an instance
+ // of value mapping.
+ Res = std::make_unique<ValueMapping[]>(std::distance(Begin, End));
+ unsigned Idx = 0;
+ for (Iterator It = Begin; It != End; ++It, ++Idx) {
+ const ValueMapping *ValMap = *It;
+ if (!ValMap)
+ continue;
+ Res[Idx] = *ValMap;
+ }
+ return Res.get();
+}
+
+const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
+ const SmallVectorImpl<const RegisterBankInfo::ValueMapping *> &OpdsMapping)
+ const {
+ return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
+}
+
+const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
+ std::initializer_list<const RegisterBankInfo::ValueMapping *> OpdsMapping)
+ const {
+ return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
+}
+
+static hash_code
+hashInstructionMapping(unsigned ID, unsigned Cost,
+ const RegisterBankInfo::ValueMapping *OperandsMapping,
+ unsigned NumOperands) {
+ return hash_combine(ID, Cost, OperandsMapping, NumOperands);
+}
+
+const RegisterBankInfo::InstructionMapping &
+RegisterBankInfo::getInstructionMappingImpl(
+ bool IsInvalid, unsigned ID, unsigned Cost,
+ const RegisterBankInfo::ValueMapping *OperandsMapping,
+ unsigned NumOperands) const {
+ assert(((IsInvalid && ID == InvalidMappingID && Cost == 0 &&
+ OperandsMapping == nullptr && NumOperands == 0) ||
+ !IsInvalid) &&
+ "Mismatch argument for invalid input");
+ ++NumInstructionMappingsAccessed;
+
+ hash_code Hash =
+ hashInstructionMapping(ID, Cost, OperandsMapping, NumOperands);
+ const auto &It = MapOfInstructionMappings.find(Hash);
+ if (It != MapOfInstructionMappings.end())
+ return *It->second;
+
+ ++NumInstructionMappingsCreated;
+
+ auto &InstrMapping = MapOfInstructionMappings[Hash];
+ InstrMapping = std::make_unique<InstructionMapping>(
+ ID, Cost, OperandsMapping, NumOperands);
+ return *InstrMapping;
+}
+
+const RegisterBankInfo::InstructionMapping &
+RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
+ const RegisterBankInfo::InstructionMapping &Mapping = getInstrMappingImpl(MI);
+ if (Mapping.isValid())
+ return Mapping;
+ llvm_unreachable("The target must implement this");
+}
+
+RegisterBankInfo::InstructionMappings
+RegisterBankInfo::getInstrPossibleMappings(const MachineInstr &MI) const {
+ InstructionMappings PossibleMappings;
+ const auto &Mapping = getInstrMapping(MI);
+ if (Mapping.isValid()) {
+ // Put the default mapping first.
+ PossibleMappings.push_back(&Mapping);
+ }
+
+ // Then the alternative mapping, if any.
+ InstructionMappings AltMappings = getInstrAlternativeMappings(MI);
+ append_range(PossibleMappings, AltMappings);
+#ifndef NDEBUG
+ for (const InstructionMapping *Mapping : PossibleMappings)
+ assert(Mapping->verify(MI) && "Mapping is invalid");
+#endif
+ return PossibleMappings;
+}
+
+RegisterBankInfo::InstructionMappings
+RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr &MI) const {
+ // No alternative for MI.
+ return InstructionMappings();
+}
+
+void RegisterBankInfo::applyDefaultMapping(const OperandsMapper &OpdMapper) {
+ MachineInstr &MI = OpdMapper.getMI();
+ MachineRegisterInfo &MRI = OpdMapper.getMRI();
+ LLVM_DEBUG(dbgs() << "Applying default-like mapping\n");
+ for (unsigned OpIdx = 0,
+ EndIdx = OpdMapper.getInstrMapping().getNumOperands();
+ OpIdx != EndIdx; ++OpIdx) {
+ LLVM_DEBUG(dbgs() << "OpIdx " << OpIdx);
+ MachineOperand &MO = MI.getOperand(OpIdx);
+ if (!MO.isReg()) {
+ LLVM_DEBUG(dbgs() << " is not a register, nothing to be done\n");
+ continue;
+ }
+ if (!MO.getReg()) {
+ LLVM_DEBUG(dbgs() << " is $noreg, nothing to be done\n");
+ continue;
+ }
+ LLT Ty = MRI.getType(MO.getReg());
+ if (!Ty.isValid())
+ continue;
+ assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns !=
+ 0 &&
+ "Invalid mapping");
+ assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns ==
+ 1 &&
+ "This mapping is too complex for this function");
+ iterator_range<SmallVectorImpl<Register>::const_iterator> NewRegs =
+ OpdMapper.getVRegs(OpIdx);
+ if (NewRegs.empty()) {
+ LLVM_DEBUG(dbgs() << " has not been repaired, nothing to be done\n");
+ continue;
+ }
+ Register OrigReg = MO.getReg();
+ Register NewReg = *NewRegs.begin();
+ LLVM_DEBUG(dbgs() << " changed, replace " << printReg(OrigReg, nullptr));
+ MO.setReg(NewReg);
+ LLVM_DEBUG(dbgs() << " with " << printReg(NewReg, nullptr));
+
+ // The OperandsMapper creates plain scalar, we may have to fix that.
+ // Check if the types match and if not, fix that.
+ LLT OrigTy = MRI.getType(OrigReg);
+ LLT NewTy = MRI.getType(NewReg);
+ if (OrigTy != NewTy) {
+ // The default mapping is not supposed to change the size of
+ // the storage. However, right now we don't necessarily bump all
+ // the types to storage size. For instance, we can consider
+ // s16 G_AND legal whereas the storage size is going to be 32.
+ assert(OrigTy.getSizeInBits() <= NewTy.getSizeInBits() &&
+ "Types with difference size cannot be handled by the default "
+ "mapping");
+ LLVM_DEBUG(dbgs() << "\nChange type of new opd from " << NewTy << " to "
+ << OrigTy);
+ MRI.setType(NewReg, OrigTy);
+ }
+ LLVM_DEBUG(dbgs() << '\n');
+ }
+}
+
+unsigned RegisterBankInfo::getSizeInBits(Register Reg,
+ const MachineRegisterInfo &MRI,
+ const TargetRegisterInfo &TRI) const {
+ if (Reg.isPhysical()) {
+ // The size is not directly available for physical registers.
+ // Instead, we need to access a register class that contains Reg and
+ // get the size of that register class.
+ // Because this is expensive, we'll cache the register class by calling
+ auto *RC = &getMinimalPhysRegClass(Reg, TRI);
+ assert(RC && "Expecting Register class");
+ return TRI.getRegSizeInBits(*RC);
+ }
+ return TRI.getRegSizeInBits(Reg, MRI);
+}
+
+//------------------------------------------------------------------------------
+// Helper classes implementation.
+//------------------------------------------------------------------------------
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void RegisterBankInfo::PartialMapping::dump() const {
+ print(dbgs());
+ dbgs() << '\n';
+}
+#endif
+
+bool RegisterBankInfo::PartialMapping::verify() const {
+ assert(RegBank && "Register bank not set");
+ assert(Length && "Empty mapping");
+ assert((StartIdx <= getHighBitIdx()) && "Overflow, switch to APInt?");
+ // Check if the minimum width fits into RegBank.
+ assert(RegBank->getSize() >= Length && "Register bank too small for Mask");
+ return true;
+}
+
+void RegisterBankInfo::PartialMapping::print(raw_ostream &OS) const {
+ OS << "[" << StartIdx << ", " << getHighBitIdx() << "], RegBank = ";
+ if (RegBank)
+ OS << *RegBank;
+ else
+ OS << "nullptr";
+}
+
+bool RegisterBankInfo::ValueMapping::partsAllUniform() const {
+ if (NumBreakDowns < 2)
+ return true;
+
+ const PartialMapping *First = begin();
+ for (const PartialMapping *Part = First + 1; Part != end(); ++Part) {
+ if (Part->Length != First->Length || Part->RegBank != First->RegBank)
+ return false;
+ }
+
+ return true;
+}
+
+bool RegisterBankInfo::ValueMapping::verify(unsigned MeaningfulBitWidth) const {
+ assert(NumBreakDowns && "Value mapped nowhere?!");
+ unsigned OrigValueBitWidth = 0;
+ for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
+ // Check that each register bank is big enough to hold the partial value:
+ // this check is done by PartialMapping::verify
+ assert(PartMap.verify() && "Partial mapping is invalid");
+ // The original value should completely be mapped.
+ // Thus the maximum accessed index + 1 is the size of the original value.
+ OrigValueBitWidth =
+ std::max(OrigValueBitWidth, PartMap.getHighBitIdx() + 1);
+ }
+ assert(OrigValueBitWidth >= MeaningfulBitWidth &&
+ "Meaningful bits not covered by the mapping");
+ APInt ValueMask(OrigValueBitWidth, 0);
+ for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
+ // Check that the union of the partial mappings covers the whole value,
+ // without overlaps.
+ // The high bit is exclusive in the APInt API, thus getHighBitIdx + 1.
+ APInt PartMapMask = APInt::getBitsSet(OrigValueBitWidth, PartMap.StartIdx,
+ PartMap.getHighBitIdx() + 1);
+ ValueMask ^= PartMapMask;
+ assert((ValueMask & PartMapMask) == PartMapMask &&
+ "Some partial mappings overlap");
+ }
+ assert(ValueMask.isAllOnes() && "Value is not fully mapped");
+ return true;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void RegisterBankInfo::ValueMapping::dump() const {
+ print(dbgs());
+ dbgs() << '\n';
+}
+#endif
+
+void RegisterBankInfo::ValueMapping::print(raw_ostream &OS) const {
+ OS << "#BreakDown: " << NumBreakDowns << " ";
+ bool IsFirst = true;
+ for (const PartialMapping &PartMap : *this) {
+ if (!IsFirst)
+ OS << ", ";
+ OS << '[' << PartMap << ']';
+ IsFirst = false;
+ }
+}
+
+bool RegisterBankInfo::InstructionMapping::verify(
+ const MachineInstr &MI) const {
+ // Check that all the register operands are properly mapped.
+ // Check the constructor invariant.
+ // For PHI, we only care about mapping the definition.
+ assert(NumOperands == (isCopyLike(MI) ? 1 : MI.getNumOperands()) &&
+ "NumOperands must match, see constructor");
+ assert(MI.getParent() && MI.getMF() &&
+ "MI must be connected to a MachineFunction");
+ const MachineFunction &MF = *MI.getMF();
+ const RegisterBankInfo *RBI = MF.getSubtarget().getRegBankInfo();
+ (void)RBI;
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
+ const MachineOperand &MO = MI.getOperand(Idx);
+ if (!MO.isReg()) {
+ assert(!getOperandMapping(Idx).isValid() &&
+ "We should not care about non-reg mapping");
+ continue;
+ }
+ Register Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ LLT Ty = MRI.getType(Reg);
+ if (!Ty.isValid())
+ continue;
+ assert(getOperandMapping(Idx).isValid() &&
+ "We must have a mapping for reg operands");
+ const RegisterBankInfo::ValueMapping &MOMapping = getOperandMapping(Idx);
+ (void)MOMapping;
+ // Register size in bits.
+ // This size must match what the mapping expects.
+ assert(MOMapping.verify(RBI->getSizeInBits(
+ Reg, MF.getRegInfo(), *MF.getSubtarget().getRegisterInfo())) &&
+ "Value mapping is invalid");
+ }
+ return true;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void RegisterBankInfo::InstructionMapping::dump() const {
+ print(dbgs());
+ dbgs() << '\n';
+}
+#endif
+
+void RegisterBankInfo::InstructionMapping::print(raw_ostream &OS) const {
+ OS << "ID: " << getID() << " Cost: " << getCost() << " Mapping: ";
+
+ for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
+ const ValueMapping &ValMapping = getOperandMapping(OpIdx);
+ if (OpIdx)
+ OS << ", ";
+ OS << "{ Idx: " << OpIdx << " Map: " << ValMapping << '}';
+ }
+}
+
+const int RegisterBankInfo::OperandsMapper::DontKnowIdx = -1;
+
+RegisterBankInfo::OperandsMapper::OperandsMapper(
+ MachineInstr &MI, const InstructionMapping &InstrMapping,
+ MachineRegisterInfo &MRI)
+ : MRI(MRI), MI(MI), InstrMapping(InstrMapping) {
+ unsigned NumOpds = InstrMapping.getNumOperands();
+ OpToNewVRegIdx.resize(NumOpds, OperandsMapper::DontKnowIdx);
+ assert(InstrMapping.verify(MI) && "Invalid mapping for MI");
+}
+
+iterator_range<SmallVectorImpl<Register>::iterator>
+RegisterBankInfo::OperandsMapper::getVRegsMem(unsigned OpIdx) {
+ assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
+ unsigned NumPartialVal =
+ getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
+ int StartIdx = OpToNewVRegIdx[OpIdx];
+
+ if (StartIdx == OperandsMapper::DontKnowIdx) {
+ // This is the first time we try to access OpIdx.
+ // Create the cells that will hold all the partial values at the
+ // end of the list of NewVReg.
+ StartIdx = NewVRegs.size();
+ OpToNewVRegIdx[OpIdx] = StartIdx;
+ for (unsigned i = 0; i < NumPartialVal; ++i)
+ NewVRegs.push_back(0);
+ }
+ SmallVectorImpl<Register>::iterator End =
+ getNewVRegsEnd(StartIdx, NumPartialVal);
+
+ return make_range(&NewVRegs[StartIdx], End);
+}
+
+SmallVectorImpl<Register>::const_iterator
+RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
+ unsigned NumVal) const {
+ return const_cast<OperandsMapper *>(this)->getNewVRegsEnd(StartIdx, NumVal);
+}
+SmallVectorImpl<Register>::iterator
+RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
+ unsigned NumVal) {
+ assert((NewVRegs.size() == StartIdx + NumVal ||
+ NewVRegs.size() > StartIdx + NumVal) &&
+ "NewVRegs too small to contain all the partial mapping");
+ return NewVRegs.size() <= StartIdx + NumVal ? NewVRegs.end()
+ : &NewVRegs[StartIdx + NumVal];
+}
+
+void RegisterBankInfo::OperandsMapper::createVRegs(unsigned OpIdx) {
+ assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
+ iterator_range<SmallVectorImpl<Register>::iterator> NewVRegsForOpIdx =
+ getVRegsMem(OpIdx);
+ const ValueMapping &ValMapping = getInstrMapping().getOperandMapping(OpIdx);
+ const PartialMapping *PartMap = ValMapping.begin();
+ for (Register &NewVReg : NewVRegsForOpIdx) {
+ assert(PartMap != ValMapping.end() && "Out-of-bound access");
+ assert(NewVReg == 0 && "Register has already been created");
+ // The new registers are always bound to scalar with the right size.
+ // The actual type has to be set when the target does the mapping
+ // of the instruction.
+ // The rationale is that this generic code cannot guess how the
+ // target plans to split the input type.
+ NewVReg = MRI.createGenericVirtualRegister(LLT::scalar(PartMap->Length));
+ MRI.setRegBank(NewVReg, *PartMap->RegBank);
+ ++PartMap;
+ }
+}
+
+void RegisterBankInfo::OperandsMapper::setVRegs(unsigned OpIdx,
+ unsigned PartialMapIdx,
+ Register NewVReg) {
+ assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
+ assert(getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns >
+ PartialMapIdx &&
+ "Out-of-bound access for partial mapping");
+ // Make sure the memory is initialized for that operand.
+ (void)getVRegsMem(OpIdx);
+ assert(NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] == 0 &&
+ "This value is already set");
+ NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] = NewVReg;
+}
+
+iterator_range<SmallVectorImpl<Register>::const_iterator>
+RegisterBankInfo::OperandsMapper::getVRegs(unsigned OpIdx,
+ bool ForDebug) const {
+ (void)ForDebug;
+ assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
+ int StartIdx = OpToNewVRegIdx[OpIdx];
+
+ if (StartIdx == OperandsMapper::DontKnowIdx)
+ return make_range(NewVRegs.end(), NewVRegs.end());
+
+ unsigned PartMapSize =
+ getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
+ SmallVectorImpl<Register>::const_iterator End =
+ getNewVRegsEnd(StartIdx, PartMapSize);
+ iterator_range<SmallVectorImpl<Register>::const_iterator> Res =
+ make_range(&NewVRegs[StartIdx], End);
+#ifndef NDEBUG
+ for (Register VReg : Res)
+ assert((VReg || ForDebug) && "Some registers are uninitialized");
+#endif
+ return Res;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void RegisterBankInfo::OperandsMapper::dump() const {
+ print(dbgs(), true);
+ dbgs() << '\n';
+}
+#endif
+
+void RegisterBankInfo::OperandsMapper::print(raw_ostream &OS,
+ bool ForDebug) const {
+ unsigned NumOpds = getInstrMapping().getNumOperands();
+ if (ForDebug) {
+ OS << "Mapping for " << getMI() << "\nwith " << getInstrMapping() << '\n';
+ // Print out the internal state of the index table.
+ OS << "Populated indices (CellNumber, IndexInNewVRegs): ";
+ bool IsFirst = true;
+ for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
+ if (OpToNewVRegIdx[Idx] != DontKnowIdx) {
+ if (!IsFirst)
+ OS << ", ";
+ OS << '(' << Idx << ", " << OpToNewVRegIdx[Idx] << ')';
+ IsFirst = false;
+ }
+ }
+ OS << '\n';
+ } else
+ OS << "Mapping ID: " << getInstrMapping().getID() << ' ';
+
+ OS << "Operand Mapping: ";
+ // If we have a function, we can pretty print the name of the registers.
+ // Otherwise we will print the raw numbers.
+ const TargetRegisterInfo *TRI =
+ getMI().getParent() && getMI().getMF()
+ ? getMI().getMF()->getSubtarget().getRegisterInfo()
+ : nullptr;
+ bool IsFirst = true;
+ for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
+ if (OpToNewVRegIdx[Idx] == DontKnowIdx)
+ continue;
+ if (!IsFirst)
+ OS << ", ";
+ IsFirst = false;
+ OS << '(' << printReg(getMI().getOperand(Idx).getReg(), TRI) << ", [";
+ bool IsFirstNewVReg = true;
+ for (Register VReg : getVRegs(Idx)) {
+ if (!IsFirstNewVReg)
+ OS << ", ";
+ IsFirstNewVReg = false;
+ OS << printReg(VReg, TRI);
+ }
+ OS << "])";
+ }
+}