diff options
| author | vvvv <[email protected]> | 2024-02-06 20:01:22 +0300 | 
|---|---|---|
| committer | vvvv <[email protected]> | 2024-02-06 20:22:16 +0300 | 
| commit | 0203b7a9a40828bb2bd4c32029b79ff0ea3d1f8f (patch) | |
| tree | e630d0d5bd0bd29fc8c2d2842ed2cfde781b993a /contrib/libs/llvm16/lib/CodeGen/GlobalISel/CombinerHelper.cpp | |
| parent | ba27db76d99d12a4f1c06960b5449423218614c4 (diff) | |
llvm16 targets
Diffstat (limited to 'contrib/libs/llvm16/lib/CodeGen/GlobalISel/CombinerHelper.cpp')
| -rw-r--r-- | contrib/libs/llvm16/lib/CodeGen/GlobalISel/CombinerHelper.cpp | 6196 | 
1 files changed, 6196 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/CodeGen/GlobalISel/CombinerHelper.cpp b/contrib/libs/llvm16/lib/CodeGen/GlobalISel/CombinerHelper.cpp new file mode 100644 index 00000000000..af4bb163474 --- /dev/null +++ b/contrib/libs/llvm16/lib/CodeGen/GlobalISel/CombinerHelper.cpp @@ -0,0 +1,6196 @@ +//===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +#include "llvm/CodeGen/GlobalISel/CombinerHelper.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallBitVector.h" +#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" +#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" +#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" +#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" +#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" +#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" +#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" +#include "llvm/CodeGen/GlobalISel/Utils.h" +#include "llvm/CodeGen/LowLevelType.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/RegisterBankInfo.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/DivisionByConstantInfo.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetMachine.h" +#include <cmath> +#include <optional> +#include <tuple> + +#define DEBUG_TYPE "gi-combiner" + +using namespace llvm; +using namespace MIPatternMatch; + +// Option to allow testing of the combiner while no targets know about indexed +// addressing. +static cl::opt<bool> +    ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), +                       cl::desc("Force all indexed operations to be " +                                "legal for the GlobalISel combiner")); + +CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, +                               MachineIRBuilder &B, bool IsPreLegalize, +                               GISelKnownBits *KB, MachineDominatorTree *MDT, +                               const LegalizerInfo *LI) +    : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), +      MDT(MDT), IsPreLegalize(IsPreLegalize), LI(LI), +      RBI(Builder.getMF().getSubtarget().getRegBankInfo()), +      TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { +  (void)this->KB; +} + +const TargetLowering &CombinerHelper::getTargetLowering() const { +  return *Builder.getMF().getSubtarget().getTargetLowering(); +} + +/// \returns The little endian in-memory byte position of byte \p I in a +/// \p ByteWidth bytes wide type. +/// +/// E.g. Given a 4-byte type x, x[0] -> byte 0 +static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { +  assert(I < ByteWidth && "I must be in [0, ByteWidth)"); +  return I; +} + +/// Determines the LogBase2 value for a non-null input value using the +/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). +static Register buildLogBase2(Register V, MachineIRBuilder &MIB) { +  auto &MRI = *MIB.getMRI(); +  LLT Ty = MRI.getType(V); +  auto Ctlz = MIB.buildCTLZ(Ty, V); +  auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1); +  return MIB.buildSub(Ty, Base, Ctlz).getReg(0); +} + +/// \returns The big endian in-memory byte position of byte \p I in a +/// \p ByteWidth bytes wide type. +/// +/// E.g. Given a 4-byte type x, x[0] -> byte 3 +static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { +  assert(I < ByteWidth && "I must be in [0, ByteWidth)"); +  return ByteWidth - I - 1; +} + +/// Given a map from byte offsets in memory to indices in a load/store, +/// determine if that map corresponds to a little or big endian byte pattern. +/// +/// \param MemOffset2Idx maps memory offsets to address offsets. +/// \param LowestIdx is the lowest index in \p MemOffset2Idx. +/// +/// \returns true if the map corresponds to a big endian byte pattern, false if +/// it corresponds to a little endian byte pattern, and std::nullopt otherwise. +/// +/// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns +/// are as follows: +/// +/// AddrOffset   Little endian    Big endian +/// 0            0                3 +/// 1            1                2 +/// 2            2                1 +/// 3            3                0 +static std::optional<bool> +isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, +            int64_t LowestIdx) { +  // Need at least two byte positions to decide on endianness. +  unsigned Width = MemOffset2Idx.size(); +  if (Width < 2) +    return std::nullopt; +  bool BigEndian = true, LittleEndian = true; +  for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { +    auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); +    if (MemOffsetAndIdx == MemOffset2Idx.end()) +      return std::nullopt; +    const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; +    assert(Idx >= 0 && "Expected non-negative byte offset?"); +    LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); +    BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); +    if (!BigEndian && !LittleEndian) +      return std::nullopt; +  } + +  assert((BigEndian != LittleEndian) && +         "Pattern cannot be both big and little endian!"); +  return BigEndian; +} + +bool CombinerHelper::isPreLegalize() const { return IsPreLegalize; } + +bool CombinerHelper::isLegal(const LegalityQuery &Query) const { +  assert(LI && "Must have LegalizerInfo to query isLegal!"); +  return LI->getAction(Query).Action == LegalizeActions::Legal; +} + +bool CombinerHelper::isLegalOrBeforeLegalizer( +    const LegalityQuery &Query) const { +  return isPreLegalize() || isLegal(Query); +} + +bool CombinerHelper::isConstantLegalOrBeforeLegalizer(const LLT Ty) const { +  if (!Ty.isVector()) +    return isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {Ty}}); +  // Vector constants are represented as a G_BUILD_VECTOR of scalar G_CONSTANTs. +  if (isPreLegalize()) +    return true; +  LLT EltTy = Ty.getElementType(); +  return isLegal({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}) && +         isLegal({TargetOpcode::G_CONSTANT, {EltTy}}); +} + +void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, +                                    Register ToReg) const { +  Observer.changingAllUsesOfReg(MRI, FromReg); + +  if (MRI.constrainRegAttrs(ToReg, FromReg)) +    MRI.replaceRegWith(FromReg, ToReg); +  else +    Builder.buildCopy(ToReg, FromReg); + +  Observer.finishedChangingAllUsesOfReg(); +} + +void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, +                                      MachineOperand &FromRegOp, +                                      Register ToReg) const { +  assert(FromRegOp.getParent() && "Expected an operand in an MI"); +  Observer.changingInstr(*FromRegOp.getParent()); + +  FromRegOp.setReg(ToReg); + +  Observer.changedInstr(*FromRegOp.getParent()); +} + +void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI, +                                       unsigned ToOpcode) const { +  Observer.changingInstr(FromMI); + +  FromMI.setDesc(Builder.getTII().get(ToOpcode)); + +  Observer.changedInstr(FromMI); +} + +const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { +  return RBI->getRegBank(Reg, MRI, *TRI); +} + +void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { +  if (RegBank) +    MRI.setRegBank(Reg, *RegBank); +} + +bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { +  if (matchCombineCopy(MI)) { +    applyCombineCopy(MI); +    return true; +  } +  return false; +} +bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { +  if (MI.getOpcode() != TargetOpcode::COPY) +    return false; +  Register DstReg = MI.getOperand(0).getReg(); +  Register SrcReg = MI.getOperand(1).getReg(); +  return canReplaceReg(DstReg, SrcReg, MRI); +} +void CombinerHelper::applyCombineCopy(MachineInstr &MI) { +  Register DstReg = MI.getOperand(0).getReg(); +  Register SrcReg = MI.getOperand(1).getReg(); +  MI.eraseFromParent(); +  replaceRegWith(MRI, DstReg, SrcReg); +} + +bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { +  bool IsUndef = false; +  SmallVector<Register, 4> Ops; +  if (matchCombineConcatVectors(MI, IsUndef, Ops)) { +    applyCombineConcatVectors(MI, IsUndef, Ops); +    return true; +  } +  return false; +} + +bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, +                                               SmallVectorImpl<Register> &Ops) { +  assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && +         "Invalid instruction"); +  IsUndef = true; +  MachineInstr *Undef = nullptr; + +  // Walk over all the operands of concat vectors and check if they are +  // build_vector themselves or undef. +  // Then collect their operands in Ops. +  for (const MachineOperand &MO : MI.uses()) { +    Register Reg = MO.getReg(); +    MachineInstr *Def = MRI.getVRegDef(Reg); +    assert(Def && "Operand not defined"); +    switch (Def->getOpcode()) { +    case TargetOpcode::G_BUILD_VECTOR: +      IsUndef = false; +      // Remember the operands of the build_vector to fold +      // them into the yet-to-build flattened concat vectors. +      for (const MachineOperand &BuildVecMO : Def->uses()) +        Ops.push_back(BuildVecMO.getReg()); +      break; +    case TargetOpcode::G_IMPLICIT_DEF: { +      LLT OpType = MRI.getType(Reg); +      // Keep one undef value for all the undef operands. +      if (!Undef) { +        Builder.setInsertPt(*MI.getParent(), MI); +        Undef = Builder.buildUndef(OpType.getScalarType()); +      } +      assert(MRI.getType(Undef->getOperand(0).getReg()) == +                 OpType.getScalarType() && +             "All undefs should have the same type"); +      // Break the undef vector in as many scalar elements as needed +      // for the flattening. +      for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); +           EltIdx != EltEnd; ++EltIdx) +        Ops.push_back(Undef->getOperand(0).getReg()); +      break; +    } +    default: +      return false; +    } +  } +  return true; +} +void CombinerHelper::applyCombineConcatVectors( +    MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { +  // We determined that the concat_vectors can be flatten. +  // Generate the flattened build_vector. +  Register DstReg = MI.getOperand(0).getReg(); +  Builder.setInsertPt(*MI.getParent(), MI); +  Register NewDstReg = MRI.cloneVirtualRegister(DstReg); + +  // Note: IsUndef is sort of redundant. We could have determine it by +  // checking that at all Ops are undef.  Alternatively, we could have +  // generate a build_vector of undefs and rely on another combine to +  // clean that up.  For now, given we already gather this information +  // in tryCombineConcatVectors, just save compile time and issue the +  // right thing. +  if (IsUndef) +    Builder.buildUndef(NewDstReg); +  else +    Builder.buildBuildVector(NewDstReg, Ops); +  MI.eraseFromParent(); +  replaceRegWith(MRI, DstReg, NewDstReg); +} + +bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { +  SmallVector<Register, 4> Ops; +  if (matchCombineShuffleVector(MI, Ops)) { +    applyCombineShuffleVector(MI, Ops); +    return true; +  } +  return false; +} + +bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, +                                               SmallVectorImpl<Register> &Ops) { +  assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && +         "Invalid instruction kind"); +  LLT DstType = MRI.getType(MI.getOperand(0).getReg()); +  Register Src1 = MI.getOperand(1).getReg(); +  LLT SrcType = MRI.getType(Src1); +  // As bizarre as it may look, shuffle vector can actually produce +  // scalar! This is because at the IR level a <1 x ty> shuffle +  // vector is perfectly valid. +  unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; +  unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; + +  // If the resulting vector is smaller than the size of the source +  // vectors being concatenated, we won't be able to replace the +  // shuffle vector into a concat_vectors. +  // +  // Note: We may still be able to produce a concat_vectors fed by +  //       extract_vector_elt and so on. It is less clear that would +  //       be better though, so don't bother for now. +  // +  // If the destination is a scalar, the size of the sources doesn't +  // matter. we will lower the shuffle to a plain copy. This will +  // work only if the source and destination have the same size. But +  // that's covered by the next condition. +  // +  // TODO: If the size between the source and destination don't match +  //       we could still emit an extract vector element in that case. +  if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) +    return false; + +  // Check that the shuffle mask can be broken evenly between the +  // different sources. +  if (DstNumElts % SrcNumElts != 0) +    return false; + +  // Mask length is a multiple of the source vector length. +  // Check if the shuffle is some kind of concatenation of the input +  // vectors. +  unsigned NumConcat = DstNumElts / SrcNumElts; +  SmallVector<int, 8> ConcatSrcs(NumConcat, -1); +  ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); +  for (unsigned i = 0; i != DstNumElts; ++i) { +    int Idx = Mask[i]; +    // Undef value. +    if (Idx < 0) +      continue; +    // Ensure the indices in each SrcType sized piece are sequential and that +    // the same source is used for the whole piece. +    if ((Idx % SrcNumElts != (i % SrcNumElts)) || +        (ConcatSrcs[i / SrcNumElts] >= 0 && +         ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) +      return false; +    // Remember which source this index came from. +    ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; +  } + +  // The shuffle is concatenating multiple vectors together. +  // Collect the different operands for that. +  Register UndefReg; +  Register Src2 = MI.getOperand(2).getReg(); +  for (auto Src : ConcatSrcs) { +    if (Src < 0) { +      if (!UndefReg) { +        Builder.setInsertPt(*MI.getParent(), MI); +        UndefReg = Builder.buildUndef(SrcType).getReg(0); +      } +      Ops.push_back(UndefReg); +    } else if (Src == 0) +      Ops.push_back(Src1); +    else +      Ops.push_back(Src2); +  } +  return true; +} + +void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, +                                               const ArrayRef<Register> Ops) { +  Register DstReg = MI.getOperand(0).getReg(); +  Builder.setInsertPt(*MI.getParent(), MI); +  Register NewDstReg = MRI.cloneVirtualRegister(DstReg); + +  if (Ops.size() == 1) +    Builder.buildCopy(NewDstReg, Ops[0]); +  else +    Builder.buildMergeLikeInstr(NewDstReg, Ops); + +  MI.eraseFromParent(); +  replaceRegWith(MRI, DstReg, NewDstReg); +} + +namespace { + +/// Select a preference between two uses. CurrentUse is the current preference +/// while *ForCandidate is attributes of the candidate under consideration. +PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, +                                  const LLT TyForCandidate, +                                  unsigned OpcodeForCandidate, +                                  MachineInstr *MIForCandidate) { +  if (!CurrentUse.Ty.isValid()) { +    if (CurrentUse.ExtendOpcode == OpcodeForCandidate || +        CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) +      return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; +    return CurrentUse; +  } + +  // We permit the extend to hoist through basic blocks but this is only +  // sensible if the target has extending loads. If you end up lowering back +  // into a load and extend during the legalizer then the end result is +  // hoisting the extend up to the load. + +  // Prefer defined extensions to undefined extensions as these are more +  // likely to reduce the number of instructions. +  if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && +      CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) +    return CurrentUse; +  else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && +           OpcodeForCandidate != TargetOpcode::G_ANYEXT) +    return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; + +  // Prefer sign extensions to zero extensions as sign-extensions tend to be +  // more expensive. +  if (CurrentUse.Ty == TyForCandidate) { +    if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && +        OpcodeForCandidate == TargetOpcode::G_ZEXT) +      return CurrentUse; +    else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && +             OpcodeForCandidate == TargetOpcode::G_SEXT) +      return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; +  } + +  // This is potentially target specific. We've chosen the largest type +  // because G_TRUNC is usually free. One potential catch with this is that +  // some targets have a reduced number of larger registers than smaller +  // registers and this choice potentially increases the live-range for the +  // larger value. +  if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { +    return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; +  } +  return CurrentUse; +} + +/// Find a suitable place to insert some instructions and insert them. This +/// function accounts for special cases like inserting before a PHI node. +/// The current strategy for inserting before PHI's is to duplicate the +/// instructions for each predecessor. However, while that's ok for G_TRUNC +/// on most targets since it generally requires no code, other targets/cases may +/// want to try harder to find a dominating block. +static void InsertInsnsWithoutSideEffectsBeforeUse( +    MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, +    std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, +                       MachineOperand &UseMO)> +        Inserter) { +  MachineInstr &UseMI = *UseMO.getParent(); + +  MachineBasicBlock *InsertBB = UseMI.getParent(); + +  // If the use is a PHI then we want the predecessor block instead. +  if (UseMI.isPHI()) { +    MachineOperand *PredBB = std::next(&UseMO); +    InsertBB = PredBB->getMBB(); +  } + +  // If the block is the same block as the def then we want to insert just after +  // the def instead of at the start of the block. +  if (InsertBB == DefMI.getParent()) { +    MachineBasicBlock::iterator InsertPt = &DefMI; +    Inserter(InsertBB, std::next(InsertPt), UseMO); +    return; +  } + +  // Otherwise we want the start of the BB +  Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); +} +} // end anonymous namespace + +bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { +  PreferredTuple Preferred; +  if (matchCombineExtendingLoads(MI, Preferred)) { +    applyCombineExtendingLoads(MI, Preferred); +    return true; +  } +  return false; +} + +static unsigned getExtLoadOpcForExtend(unsigned ExtOpc) { +  unsigned CandidateLoadOpc; +  switch (ExtOpc) { +  case TargetOpcode::G_ANYEXT: +    CandidateLoadOpc = TargetOpcode::G_LOAD; +    break; +  case TargetOpcode::G_SEXT: +    CandidateLoadOpc = TargetOpcode::G_SEXTLOAD; +    break; +  case TargetOpcode::G_ZEXT: +    CandidateLoadOpc = TargetOpcode::G_ZEXTLOAD; +    break; +  default: +    llvm_unreachable("Unexpected extend opc"); +  } +  return CandidateLoadOpc; +} + +bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, +                                                PreferredTuple &Preferred) { +  // We match the loads and follow the uses to the extend instead of matching +  // the extends and following the def to the load. This is because the load +  // must remain in the same position for correctness (unless we also add code +  // to find a safe place to sink it) whereas the extend is freely movable. +  // It also prevents us from duplicating the load for the volatile case or just +  // for performance. +  GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); +  if (!LoadMI) +    return false; + +  Register LoadReg = LoadMI->getDstReg(); + +  LLT LoadValueTy = MRI.getType(LoadReg); +  if (!LoadValueTy.isScalar()) +    return false; + +  // Most architectures are going to legalize <s8 loads into at least a 1 byte +  // load, and the MMOs can only describe memory accesses in multiples of bytes. +  // If we try to perform extload combining on those, we can end up with +  // %a(s8) = extload %ptr (load 1 byte from %ptr) +  // ... which is an illegal extload instruction. +  if (LoadValueTy.getSizeInBits() < 8) +    return false; + +  // For non power-of-2 types, they will very likely be legalized into multiple +  // loads. Don't bother trying to match them into extending loads. +  if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) +    return false; + +  // Find the preferred type aside from the any-extends (unless it's the only +  // one) and non-extending ops. We'll emit an extending load to that type and +  // and emit a variant of (extend (trunc X)) for the others according to the +  // relative type sizes. At the same time, pick an extend to use based on the +  // extend involved in the chosen type. +  unsigned PreferredOpcode = +      isa<GLoad>(&MI) +          ? TargetOpcode::G_ANYEXT +          : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; +  Preferred = {LLT(), PreferredOpcode, nullptr}; +  for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { +    if (UseMI.getOpcode() == TargetOpcode::G_SEXT || +        UseMI.getOpcode() == TargetOpcode::G_ZEXT || +        (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { +      const auto &MMO = LoadMI->getMMO(); +      // For atomics, only form anyextending loads. +      if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) +        continue; +      // Check for legality. +      if (!isPreLegalize()) { +        LegalityQuery::MemDesc MMDesc(MMO); +        unsigned CandidateLoadOpc = getExtLoadOpcForExtend(UseMI.getOpcode()); +        LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); +        LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); +        if (LI->getAction({CandidateLoadOpc, {UseTy, SrcTy}, {MMDesc}}) +                .Action != LegalizeActions::Legal) +          continue; +      } +      Preferred = ChoosePreferredUse(Preferred, +                                     MRI.getType(UseMI.getOperand(0).getReg()), +                                     UseMI.getOpcode(), &UseMI); +    } +  } + +  // There were no extends +  if (!Preferred.MI) +    return false; +  // It should be impossible to chose an extend without selecting a different +  // type since by definition the result of an extend is larger. +  assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); + +  LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); +  return true; +} + +void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, +                                                PreferredTuple &Preferred) { +  // Rewrite the load to the chosen extending load. +  Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); + +  // Inserter to insert a truncate back to the original type at a given point +  // with some basic CSE to limit truncate duplication to one per BB. +  DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; +  auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, +                           MachineBasicBlock::iterator InsertBefore, +                           MachineOperand &UseMO) { +    MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); +    if (PreviouslyEmitted) { +      Observer.changingInstr(*UseMO.getParent()); +      UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); +      Observer.changedInstr(*UseMO.getParent()); +      return; +    } + +    Builder.setInsertPt(*InsertIntoBB, InsertBefore); +    Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); +    MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); +    EmittedInsns[InsertIntoBB] = NewMI; +    replaceRegOpWith(MRI, UseMO, NewDstReg); +  }; + +  Observer.changingInstr(MI); +  unsigned LoadOpc = getExtLoadOpcForExtend(Preferred.ExtendOpcode); +  MI.setDesc(Builder.getTII().get(LoadOpc)); + +  // Rewrite all the uses to fix up the types. +  auto &LoadValue = MI.getOperand(0); +  SmallVector<MachineOperand *, 4> Uses; +  for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) +    Uses.push_back(&UseMO); + +  for (auto *UseMO : Uses) { +    MachineInstr *UseMI = UseMO->getParent(); + +    // If the extend is compatible with the preferred extend then we should fix +    // up the type and extend so that it uses the preferred use. +    if (UseMI->getOpcode() == Preferred.ExtendOpcode || +        UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { +      Register UseDstReg = UseMI->getOperand(0).getReg(); +      MachineOperand &UseSrcMO = UseMI->getOperand(1); +      const LLT UseDstTy = MRI.getType(UseDstReg); +      if (UseDstReg != ChosenDstReg) { +        if (Preferred.Ty == UseDstTy) { +          // If the use has the same type as the preferred use, then merge +          // the vregs and erase the extend. For example: +          //    %1:_(s8) = G_LOAD ... +          //    %2:_(s32) = G_SEXT %1(s8) +          //    %3:_(s32) = G_ANYEXT %1(s8) +          //    ... = ... %3(s32) +          // rewrites to: +          //    %2:_(s32) = G_SEXTLOAD ... +          //    ... = ... %2(s32) +          replaceRegWith(MRI, UseDstReg, ChosenDstReg); +          Observer.erasingInstr(*UseMO->getParent()); +          UseMO->getParent()->eraseFromParent(); +        } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { +          // If the preferred size is smaller, then keep the extend but extend +          // from the result of the extending load. For example: +          //    %1:_(s8) = G_LOAD ... +          //    %2:_(s32) = G_SEXT %1(s8) +          //    %3:_(s64) = G_ANYEXT %1(s8) +          //    ... = ... %3(s64) +          /// rewrites to: +          //    %2:_(s32) = G_SEXTLOAD ... +          //    %3:_(s64) = G_ANYEXT %2:_(s32) +          //    ... = ... %3(s64) +          replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); +        } else { +          // If the preferred size is large, then insert a truncate. For +          // example: +          //    %1:_(s8) = G_LOAD ... +          //    %2:_(s64) = G_SEXT %1(s8) +          //    %3:_(s32) = G_ZEXT %1(s8) +          //    ... = ... %3(s32) +          /// rewrites to: +          //    %2:_(s64) = G_SEXTLOAD ... +          //    %4:_(s8) = G_TRUNC %2:_(s32) +          //    %3:_(s64) = G_ZEXT %2:_(s8) +          //    ... = ... %3(s64) +          InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, +                                                 InsertTruncAt); +        } +        continue; +      } +      // The use is (one of) the uses of the preferred use we chose earlier. +      // We're going to update the load to def this value later so just erase +      // the old extend. +      Observer.erasingInstr(*UseMO->getParent()); +      UseMO->getParent()->eraseFromParent(); +      continue; +    } + +    // The use isn't an extend. Truncate back to the type we originally loaded. +    // This is free on many targets. +    InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); +  } + +  MI.getOperand(0).setReg(ChosenDstReg); +  Observer.changedInstr(MI); +} + +bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI, +                                                 BuildFnTy &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_AND); + +  // If we have the following code: +  //  %mask = G_CONSTANT 255 +  //  %ld   = G_LOAD %ptr, (load s16) +  //  %and  = G_AND %ld, %mask +  // +  // Try to fold it into +  //   %ld = G_ZEXTLOAD %ptr, (load s8) + +  Register Dst = MI.getOperand(0).getReg(); +  if (MRI.getType(Dst).isVector()) +    return false; + +  auto MaybeMask = +      getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); +  if (!MaybeMask) +    return false; + +  APInt MaskVal = MaybeMask->Value; + +  if (!MaskVal.isMask()) +    return false; + +  Register SrcReg = MI.getOperand(1).getReg(); +  // Don't use getOpcodeDef() here since intermediate instructions may have +  // multiple users. +  GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(MRI.getVRegDef(SrcReg)); +  if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg())) +    return false; + +  Register LoadReg = LoadMI->getDstReg(); +  LLT RegTy = MRI.getType(LoadReg); +  Register PtrReg = LoadMI->getPointerReg(); +  unsigned RegSize = RegTy.getSizeInBits(); +  uint64_t LoadSizeBits = LoadMI->getMemSizeInBits(); +  unsigned MaskSizeBits = MaskVal.countTrailingOnes(); + +  // The mask may not be larger than the in-memory type, as it might cover sign +  // extended bits +  if (MaskSizeBits > LoadSizeBits) +    return false; + +  // If the mask covers the whole destination register, there's nothing to +  // extend +  if (MaskSizeBits >= RegSize) +    return false; + +  // Most targets cannot deal with loads of size < 8 and need to re-legalize to +  // at least byte loads. Avoid creating such loads here +  if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits)) +    return false; + +  const MachineMemOperand &MMO = LoadMI->getMMO(); +  LegalityQuery::MemDesc MemDesc(MMO); + +  // Don't modify the memory access size if this is atomic/volatile, but we can +  // still adjust the opcode to indicate the high bit behavior. +  if (LoadMI->isSimple()) +    MemDesc.MemoryTy = LLT::scalar(MaskSizeBits); +  else if (LoadSizeBits > MaskSizeBits || LoadSizeBits == RegSize) +    return false; + +  // TODO: Could check if it's legal with the reduced or original memory size. +  if (!isLegalOrBeforeLegalizer( +          {TargetOpcode::G_ZEXTLOAD, {RegTy, MRI.getType(PtrReg)}, {MemDesc}})) +    return false; + +  MatchInfo = [=](MachineIRBuilder &B) { +    B.setInstrAndDebugLoc(*LoadMI); +    auto &MF = B.getMF(); +    auto PtrInfo = MMO.getPointerInfo(); +    auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MemDesc.MemoryTy); +    B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO); +    LoadMI->eraseFromParent(); +  }; +  return true; +} + +bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, +                                   const MachineInstr &UseMI) { +  assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && +         "shouldn't consider debug uses"); +  assert(DefMI.getParent() == UseMI.getParent()); +  if (&DefMI == &UseMI) +    return true; +  const MachineBasicBlock &MBB = *DefMI.getParent(); +  auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { +    return &MI == &DefMI || &MI == &UseMI; +  }); +  if (DefOrUse == MBB.end()) +    llvm_unreachable("Block must contain both DefMI and UseMI!"); +  return &*DefOrUse == &DefMI; +} + +bool CombinerHelper::dominates(const MachineInstr &DefMI, +                               const MachineInstr &UseMI) { +  assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && +         "shouldn't consider debug uses"); +  if (MDT) +    return MDT->dominates(&DefMI, &UseMI); +  else if (DefMI.getParent() != UseMI.getParent()) +    return false; + +  return isPredecessor(DefMI, UseMI); +} + +bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { +  assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); +  Register SrcReg = MI.getOperand(1).getReg(); +  Register LoadUser = SrcReg; + +  if (MRI.getType(SrcReg).isVector()) +    return false; + +  Register TruncSrc; +  if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) +    LoadUser = TruncSrc; + +  uint64_t SizeInBits = MI.getOperand(2).getImm(); +  // If the source is a G_SEXTLOAD from the same bit width, then we don't +  // need any extend at all, just a truncate. +  if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { +    // If truncating more than the original extended value, abort. +    auto LoadSizeBits = LoadMI->getMemSizeInBits(); +    if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) +      return false; +    if (LoadSizeBits == SizeInBits) +      return true; +  } +  return false; +} + +void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { +  assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); +  Builder.setInstrAndDebugLoc(MI); +  Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); +  MI.eraseFromParent(); +} + +bool CombinerHelper::matchSextInRegOfLoad( +    MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); + +  Register DstReg = MI.getOperand(0).getReg(); +  LLT RegTy = MRI.getType(DstReg); + +  // Only supports scalars for now. +  if (RegTy.isVector()) +    return false; + +  Register SrcReg = MI.getOperand(1).getReg(); +  auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); +  if (!LoadDef || !MRI.hasOneNonDBGUse(DstReg)) +    return false; + +  uint64_t MemBits = LoadDef->getMemSizeInBits(); + +  // If the sign extend extends from a narrower width than the load's width, +  // then we can narrow the load width when we combine to a G_SEXTLOAD. +  // Avoid widening the load at all. +  unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), MemBits); + +  // Don't generate G_SEXTLOADs with a < 1 byte width. +  if (NewSizeBits < 8) +    return false; +  // Don't bother creating a non-power-2 sextload, it will likely be broken up +  // anyway for most targets. +  if (!isPowerOf2_32(NewSizeBits)) +    return false; + +  const MachineMemOperand &MMO = LoadDef->getMMO(); +  LegalityQuery::MemDesc MMDesc(MMO); + +  // Don't modify the memory access size if this is atomic/volatile, but we can +  // still adjust the opcode to indicate the high bit behavior. +  if (LoadDef->isSimple()) +    MMDesc.MemoryTy = LLT::scalar(NewSizeBits); +  else if (MemBits > NewSizeBits || MemBits == RegTy.getSizeInBits()) +    return false; + +  // TODO: Could check if it's legal with the reduced or original memory size. +  if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, +                                 {MRI.getType(LoadDef->getDstReg()), +                                  MRI.getType(LoadDef->getPointerReg())}, +                                 {MMDesc}})) +    return false; + +  MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); +  return true; +} + +void CombinerHelper::applySextInRegOfLoad( +    MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); +  Register LoadReg; +  unsigned ScalarSizeBits; +  std::tie(LoadReg, ScalarSizeBits) = MatchInfo; +  GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); + +  // If we have the following: +  // %ld = G_LOAD %ptr, (load 2) +  // %ext = G_SEXT_INREG %ld, 8 +  //    ==> +  // %ld = G_SEXTLOAD %ptr (load 1) + +  auto &MMO = LoadDef->getMMO(); +  Builder.setInstrAndDebugLoc(*LoadDef); +  auto &MF = Builder.getMF(); +  auto PtrInfo = MMO.getPointerInfo(); +  auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); +  Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), +                         LoadDef->getPointerReg(), *NewMMO); +  MI.eraseFromParent(); +} + +bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, +                                            Register &Base, Register &Offset) { +  auto &MF = *MI.getParent()->getParent(); +  const auto &TLI = *MF.getSubtarget().getTargetLowering(); + +#ifndef NDEBUG +  unsigned Opcode = MI.getOpcode(); +  assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || +         Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); +#endif + +  Base = MI.getOperand(1).getReg(); +  MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); +  if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) +    return false; + +  LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); +  // FIXME: The following use traversal needs a bail out for patholigical cases. +  for (auto &Use : MRI.use_nodbg_instructions(Base)) { +    if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) +      continue; + +    Offset = Use.getOperand(2).getReg(); +    if (!ForceLegalIndexing && +        !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { +      LLVM_DEBUG(dbgs() << "    Ignoring candidate with illegal addrmode: " +                        << Use); +      continue; +    } + +    // Make sure the offset calculation is before the potentially indexed op. +    // FIXME: we really care about dependency here. The offset calculation might +    // be movable. +    MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); +    if (!OffsetDef || !dominates(*OffsetDef, MI)) { +      LLVM_DEBUG(dbgs() << "    Ignoring candidate with offset after mem-op: " +                        << Use); +      continue; +    } + +    // FIXME: check whether all uses of Base are load/store with foldable +    // addressing modes. If so, using the normal addr-modes is better than +    // forming an indexed one. + +    bool MemOpDominatesAddrUses = true; +    for (auto &PtrAddUse : +         MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { +      if (!dominates(MI, PtrAddUse)) { +        MemOpDominatesAddrUses = false; +        break; +      } +    } + +    if (!MemOpDominatesAddrUses) { +      LLVM_DEBUG( +          dbgs() << "    Ignoring candidate as memop does not dominate uses: " +                 << Use); +      continue; +    } + +    LLVM_DEBUG(dbgs() << "    Found match: " << Use); +    Addr = Use.getOperand(0).getReg(); +    return true; +  } + +  return false; +} + +bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, +                                           Register &Base, Register &Offset) { +  auto &MF = *MI.getParent()->getParent(); +  const auto &TLI = *MF.getSubtarget().getTargetLowering(); + +#ifndef NDEBUG +  unsigned Opcode = MI.getOpcode(); +  assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || +         Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); +#endif + +  Addr = MI.getOperand(1).getReg(); +  MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); +  if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) +    return false; + +  Base = AddrDef->getOperand(1).getReg(); +  Offset = AddrDef->getOperand(2).getReg(); + +  LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); + +  if (!ForceLegalIndexing && +      !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { +    LLVM_DEBUG(dbgs() << "    Skipping, not legal for target"); +    return false; +  } + +  MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); +  if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { +    LLVM_DEBUG(dbgs() << "    Skipping, frame index would need copy anyway."); +    return false; +  } + +  if (MI.getOpcode() == TargetOpcode::G_STORE) { +    // Would require a copy. +    if (Base == MI.getOperand(0).getReg()) { +      LLVM_DEBUG(dbgs() << "    Skipping, storing base so need copy anyway."); +      return false; +    } + +    // We're expecting one use of Addr in MI, but it could also be the +    // value stored, which isn't actually dominated by the instruction. +    if (MI.getOperand(0).getReg() == Addr) { +      LLVM_DEBUG(dbgs() << "    Skipping, does not dominate all addr uses"); +      return false; +    } +  } + +  // FIXME: check whether all uses of the base pointer are constant PtrAdds. +  // That might allow us to end base's liveness here by adjusting the constant. + +  for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { +    if (!dominates(MI, UseMI)) { +      LLVM_DEBUG(dbgs() << "    Skipping, does not dominate all addr uses."); +      return false; +    } +  } + +  return true; +} + +bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { +  IndexedLoadStoreMatchInfo MatchInfo; +  if (matchCombineIndexedLoadStore(MI, MatchInfo)) { +    applyCombineIndexedLoadStore(MI, MatchInfo); +    return true; +  } +  return false; +} + +bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { +  unsigned Opcode = MI.getOpcode(); +  if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && +      Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) +    return false; + +  // For now, no targets actually support these opcodes so don't waste time +  // running these unless we're forced to for testing. +  if (!ForceLegalIndexing) +    return false; + +  MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, +                                          MatchInfo.Offset); +  if (!MatchInfo.IsPre && +      !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, +                              MatchInfo.Offset)) +    return false; + +  return true; +} + +void CombinerHelper::applyCombineIndexedLoadStore( +    MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { +  MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); +  MachineIRBuilder MIRBuilder(MI); +  unsigned Opcode = MI.getOpcode(); +  bool IsStore = Opcode == TargetOpcode::G_STORE; +  unsigned NewOpcode; +  switch (Opcode) { +  case TargetOpcode::G_LOAD: +    NewOpcode = TargetOpcode::G_INDEXED_LOAD; +    break; +  case TargetOpcode::G_SEXTLOAD: +    NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; +    break; +  case TargetOpcode::G_ZEXTLOAD: +    NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; +    break; +  case TargetOpcode::G_STORE: +    NewOpcode = TargetOpcode::G_INDEXED_STORE; +    break; +  default: +    llvm_unreachable("Unknown load/store opcode"); +  } + +  auto MIB = MIRBuilder.buildInstr(NewOpcode); +  if (IsStore) { +    MIB.addDef(MatchInfo.Addr); +    MIB.addUse(MI.getOperand(0).getReg()); +  } else { +    MIB.addDef(MI.getOperand(0).getReg()); +    MIB.addDef(MatchInfo.Addr); +  } + +  MIB.addUse(MatchInfo.Base); +  MIB.addUse(MatchInfo.Offset); +  MIB.addImm(MatchInfo.IsPre); +  MI.eraseFromParent(); +  AddrDef.eraseFromParent(); + +  LLVM_DEBUG(dbgs() << "    Combinined to indexed operation"); +} + +bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, +                                        MachineInstr *&OtherMI) { +  unsigned Opcode = MI.getOpcode(); +  bool IsDiv, IsSigned; + +  switch (Opcode) { +  default: +    llvm_unreachable("Unexpected opcode!"); +  case TargetOpcode::G_SDIV: +  case TargetOpcode::G_UDIV: { +    IsDiv = true; +    IsSigned = Opcode == TargetOpcode::G_SDIV; +    break; +  } +  case TargetOpcode::G_SREM: +  case TargetOpcode::G_UREM: { +    IsDiv = false; +    IsSigned = Opcode == TargetOpcode::G_SREM; +    break; +  } +  } + +  Register Src1 = MI.getOperand(1).getReg(); +  unsigned DivOpcode, RemOpcode, DivremOpcode; +  if (IsSigned) { +    DivOpcode = TargetOpcode::G_SDIV; +    RemOpcode = TargetOpcode::G_SREM; +    DivremOpcode = TargetOpcode::G_SDIVREM; +  } else { +    DivOpcode = TargetOpcode::G_UDIV; +    RemOpcode = TargetOpcode::G_UREM; +    DivremOpcode = TargetOpcode::G_UDIVREM; +  } + +  if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) +    return false; + +  // Combine: +  //   %div:_ = G_[SU]DIV %src1:_, %src2:_ +  //   %rem:_ = G_[SU]REM %src1:_, %src2:_ +  // into: +  //  %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ + +  // Combine: +  //   %rem:_ = G_[SU]REM %src1:_, %src2:_ +  //   %div:_ = G_[SU]DIV %src1:_, %src2:_ +  // into: +  //  %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ + +  for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { +    if (MI.getParent() == UseMI.getParent() && +        ((IsDiv && UseMI.getOpcode() == RemOpcode) || +         (!IsDiv && UseMI.getOpcode() == DivOpcode)) && +        matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2)) && +        matchEqualDefs(MI.getOperand(1), UseMI.getOperand(1))) { +      OtherMI = &UseMI; +      return true; +    } +  } + +  return false; +} + +void CombinerHelper::applyCombineDivRem(MachineInstr &MI, +                                        MachineInstr *&OtherMI) { +  unsigned Opcode = MI.getOpcode(); +  assert(OtherMI && "OtherMI shouldn't be empty."); + +  Register DestDivReg, DestRemReg; +  if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { +    DestDivReg = MI.getOperand(0).getReg(); +    DestRemReg = OtherMI->getOperand(0).getReg(); +  } else { +    DestDivReg = OtherMI->getOperand(0).getReg(); +    DestRemReg = MI.getOperand(0).getReg(); +  } + +  bool IsSigned = +      Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; + +  // Check which instruction is first in the block so we don't break def-use +  // deps by "moving" the instruction incorrectly. +  if (dominates(MI, *OtherMI)) +    Builder.setInstrAndDebugLoc(MI); +  else +    Builder.setInstrAndDebugLoc(*OtherMI); + +  Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM +                              : TargetOpcode::G_UDIVREM, +                     {DestDivReg, DestRemReg}, +                     {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); +  MI.eraseFromParent(); +  OtherMI->eraseFromParent(); +} + +bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, +                                                   MachineInstr *&BrCond) { +  assert(MI.getOpcode() == TargetOpcode::G_BR); + +  // Try to match the following: +  // bb1: +  //   G_BRCOND %c1, %bb2 +  //   G_BR %bb3 +  // bb2: +  // ... +  // bb3: + +  // The above pattern does not have a fall through to the successor bb2, always +  // resulting in a branch no matter which path is taken. Here we try to find +  // and replace that pattern with conditional branch to bb3 and otherwise +  // fallthrough to bb2. This is generally better for branch predictors. + +  MachineBasicBlock *MBB = MI.getParent(); +  MachineBasicBlock::iterator BrIt(MI); +  if (BrIt == MBB->begin()) +    return false; +  assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); + +  BrCond = &*std::prev(BrIt); +  if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) +    return false; + +  // Check that the next block is the conditional branch target. Also make sure +  // that it isn't the same as the G_BR's target (otherwise, this will loop.) +  MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); +  return BrCondTarget != MI.getOperand(0).getMBB() && +         MBB->isLayoutSuccessor(BrCondTarget); +} + +void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, +                                                   MachineInstr *&BrCond) { +  MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); +  Builder.setInstrAndDebugLoc(*BrCond); +  LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); +  // FIXME: Does int/fp matter for this? If so, we might need to restrict +  // this to i1 only since we might not know for sure what kind of +  // compare generated the condition value. +  auto True = Builder.buildConstant( +      Ty, getICmpTrueVal(getTargetLowering(), false, false)); +  auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); + +  auto *FallthroughBB = BrCond->getOperand(1).getMBB(); +  Observer.changingInstr(MI); +  MI.getOperand(0).setMBB(FallthroughBB); +  Observer.changedInstr(MI); + +  // Change the conditional branch to use the inverted condition and +  // new target block. +  Observer.changingInstr(*BrCond); +  BrCond->getOperand(0).setReg(Xor.getReg(0)); +  BrCond->getOperand(1).setMBB(BrTarget); +  Observer.changedInstr(*BrCond); +} + +static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { +  if (Ty.isVector()) +    return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), +                                Ty.getNumElements()); +  return IntegerType::get(C, Ty.getSizeInBits()); +} + +bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { +  MachineIRBuilder HelperBuilder(MI); +  GISelObserverWrapper DummyObserver; +  LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); +  return Helper.lowerMemcpyInline(MI) == +         LegalizerHelper::LegalizeResult::Legalized; +} + +bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { +  MachineIRBuilder HelperBuilder(MI); +  GISelObserverWrapper DummyObserver; +  LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); +  return Helper.lowerMemCpyFamily(MI, MaxLen) == +         LegalizerHelper::LegalizeResult::Legalized; +} + +static std::optional<APFloat> +constantFoldFpUnary(unsigned Opcode, LLT DstTy, const Register Op, +                    const MachineRegisterInfo &MRI) { +  const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); +  if (!MaybeCst) +    return std::nullopt; + +  APFloat V = MaybeCst->getValueAPF(); +  switch (Opcode) { +  default: +    llvm_unreachable("Unexpected opcode!"); +  case TargetOpcode::G_FNEG: { +    V.changeSign(); +    return V; +  } +  case TargetOpcode::G_FABS: { +    V.clearSign(); +    return V; +  } +  case TargetOpcode::G_FPTRUNC: +    break; +  case TargetOpcode::G_FSQRT: { +    bool Unused; +    V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); +    V = APFloat(sqrt(V.convertToDouble())); +    break; +  } +  case TargetOpcode::G_FLOG2: { +    bool Unused; +    V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); +    V = APFloat(log2(V.convertToDouble())); +    break; +  } +  } +  // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, +  // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, +  // and `G_FLOG2` reach here. +  bool Unused; +  V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); +  return V; +} + +bool CombinerHelper::matchCombineConstantFoldFpUnary( +    MachineInstr &MI, std::optional<APFloat> &Cst) { +  Register DstReg = MI.getOperand(0).getReg(); +  Register SrcReg = MI.getOperand(1).getReg(); +  LLT DstTy = MRI.getType(DstReg); +  Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); +  return Cst.has_value(); +} + +void CombinerHelper::applyCombineConstantFoldFpUnary( +    MachineInstr &MI, std::optional<APFloat> &Cst) { +  assert(Cst && "Optional is unexpectedly empty!"); +  Builder.setInstrAndDebugLoc(MI); +  MachineFunction &MF = Builder.getMF(); +  auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); +  Register DstReg = MI.getOperand(0).getReg(); +  Builder.buildFConstant(DstReg, *FPVal); +  MI.eraseFromParent(); +} + +bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, +                                           PtrAddChain &MatchInfo) { +  // We're trying to match the following pattern: +  //   %t1 = G_PTR_ADD %base, G_CONSTANT imm1 +  //   %root = G_PTR_ADD %t1, G_CONSTANT imm2 +  // --> +  //   %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) + +  if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) +    return false; + +  Register Add2 = MI.getOperand(1).getReg(); +  Register Imm1 = MI.getOperand(2).getReg(); +  auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); +  if (!MaybeImmVal) +    return false; + +  MachineInstr *Add2Def = MRI.getVRegDef(Add2); +  if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) +    return false; + +  Register Base = Add2Def->getOperand(1).getReg(); +  Register Imm2 = Add2Def->getOperand(2).getReg(); +  auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); +  if (!MaybeImm2Val) +    return false; + +  // Check if the new combined immediate forms an illegal addressing mode. +  // Do not combine if it was legal before but would get illegal. +  // To do so, we need to find a load/store user of the pointer to get +  // the access type. +  Type *AccessTy = nullptr; +  auto &MF = *MI.getMF(); +  for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { +    if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { +      AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), +                               MF.getFunction().getContext()); +      break; +    } +  } +  TargetLoweringBase::AddrMode AMNew; +  APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; +  AMNew.BaseOffs = CombinedImm.getSExtValue(); +  if (AccessTy) { +    AMNew.HasBaseReg = true; +    TargetLoweringBase::AddrMode AMOld; +    AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue(); +    AMOld.HasBaseReg = true; +    unsigned AS = MRI.getType(Add2).getAddressSpace(); +    const auto &TLI = *MF.getSubtarget().getTargetLowering(); +    if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && +        !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) +      return false; +  } + +  // Pass the combined immediate to the apply function. +  MatchInfo.Imm = AMNew.BaseOffs; +  MatchInfo.Base = Base; +  MatchInfo.Bank = getRegBank(Imm2); +  return true; +} + +void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, +                                           PtrAddChain &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); +  MachineIRBuilder MIB(MI); +  LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); +  auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); +  setRegBank(NewOffset.getReg(0), MatchInfo.Bank); +  Observer.changingInstr(MI); +  MI.getOperand(1).setReg(MatchInfo.Base); +  MI.getOperand(2).setReg(NewOffset.getReg(0)); +  Observer.changedInstr(MI); +} + +bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, +                                          RegisterImmPair &MatchInfo) { +  // We're trying to match the following pattern with any of +  // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: +  //   %t1 = SHIFT %base, G_CONSTANT imm1 +  //   %root = SHIFT %t1, G_CONSTANT imm2 +  // --> +  //   %root = SHIFT %base, G_CONSTANT (imm1 + imm2) + +  unsigned Opcode = MI.getOpcode(); +  assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || +          Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || +          Opcode == TargetOpcode::G_USHLSAT) && +         "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); + +  Register Shl2 = MI.getOperand(1).getReg(); +  Register Imm1 = MI.getOperand(2).getReg(); +  auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); +  if (!MaybeImmVal) +    return false; + +  MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); +  if (Shl2Def->getOpcode() != Opcode) +    return false; + +  Register Base = Shl2Def->getOperand(1).getReg(); +  Register Imm2 = Shl2Def->getOperand(2).getReg(); +  auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); +  if (!MaybeImm2Val) +    return false; + +  // Pass the combined immediate to the apply function. +  MatchInfo.Imm = +      (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); +  MatchInfo.Reg = Base; + +  // There is no simple replacement for a saturating unsigned left shift that +  // exceeds the scalar size. +  if (Opcode == TargetOpcode::G_USHLSAT && +      MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) +    return false; + +  return true; +} + +void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, +                                          RegisterImmPair &MatchInfo) { +  unsigned Opcode = MI.getOpcode(); +  assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || +          Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || +          Opcode == TargetOpcode::G_USHLSAT) && +         "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); + +  Builder.setInstrAndDebugLoc(MI); +  LLT Ty = MRI.getType(MI.getOperand(1).getReg()); +  unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); +  auto Imm = MatchInfo.Imm; + +  if (Imm >= ScalarSizeInBits) { +    // Any logical shift that exceeds scalar size will produce zero. +    if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { +      Builder.buildConstant(MI.getOperand(0), 0); +      MI.eraseFromParent(); +      return; +    } +    // Arithmetic shift and saturating signed left shift have no effect beyond +    // scalar size. +    Imm = ScalarSizeInBits - 1; +  } + +  LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); +  Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); +  Observer.changingInstr(MI); +  MI.getOperand(1).setReg(MatchInfo.Reg); +  MI.getOperand(2).setReg(NewImm); +  Observer.changedInstr(MI); +} + +bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, +                                              ShiftOfShiftedLogic &MatchInfo) { +  // We're trying to match the following pattern with any of +  // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination +  // with any of G_AND/G_OR/G_XOR logic instructions. +  //   %t1 = SHIFT %X, G_CONSTANT C0 +  //   %t2 = LOGIC %t1, %Y +  //   %root = SHIFT %t2, G_CONSTANT C1 +  // --> +  //   %t3 = SHIFT %X, G_CONSTANT (C0+C1) +  //   %t4 = SHIFT %Y, G_CONSTANT C1 +  //   %root = LOGIC %t3, %t4 +  unsigned ShiftOpcode = MI.getOpcode(); +  assert((ShiftOpcode == TargetOpcode::G_SHL || +          ShiftOpcode == TargetOpcode::G_ASHR || +          ShiftOpcode == TargetOpcode::G_LSHR || +          ShiftOpcode == TargetOpcode::G_USHLSAT || +          ShiftOpcode == TargetOpcode::G_SSHLSAT) && +         "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); + +  // Match a one-use bitwise logic op. +  Register LogicDest = MI.getOperand(1).getReg(); +  if (!MRI.hasOneNonDBGUse(LogicDest)) +    return false; + +  MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); +  unsigned LogicOpcode = LogicMI->getOpcode(); +  if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && +      LogicOpcode != TargetOpcode::G_XOR) +    return false; + +  // Find a matching one-use shift by constant. +  const Register C1 = MI.getOperand(2).getReg(); +  auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI); +  if (!MaybeImmVal) +    return false; + +  const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); + +  auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { +    // Shift should match previous one and should be a one-use. +    if (MI->getOpcode() != ShiftOpcode || +        !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) +      return false; + +    // Must be a constant. +    auto MaybeImmVal = +        getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); +    if (!MaybeImmVal) +      return false; + +    ShiftVal = MaybeImmVal->Value.getSExtValue(); +    return true; +  }; + +  // Logic ops are commutative, so check each operand for a match. +  Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); +  MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); +  Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); +  MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); +  uint64_t C0Val; + +  if (matchFirstShift(LogicMIOp1, C0Val)) { +    MatchInfo.LogicNonShiftReg = LogicMIReg2; +    MatchInfo.Shift2 = LogicMIOp1; +  } else if (matchFirstShift(LogicMIOp2, C0Val)) { +    MatchInfo.LogicNonShiftReg = LogicMIReg1; +    MatchInfo.Shift2 = LogicMIOp2; +  } else +    return false; + +  MatchInfo.ValSum = C0Val + C1Val; + +  // The fold is not valid if the sum of the shift values exceeds bitwidth. +  if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) +    return false; + +  MatchInfo.Logic = LogicMI; +  return true; +} + +void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, +                                              ShiftOfShiftedLogic &MatchInfo) { +  unsigned Opcode = MI.getOpcode(); +  assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || +          Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || +          Opcode == TargetOpcode::G_SSHLSAT) && +         "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); + +  LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); +  LLT DestType = MRI.getType(MI.getOperand(0).getReg()); +  Builder.setInstrAndDebugLoc(MI); + +  Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); + +  Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); +  Register Shift1 = +      Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); + +  // If LogicNonShiftReg is the same to Shift1Base, and shift1 const is the same +  // to MatchInfo.Shift2 const, CSEMIRBuilder will reuse the old shift1 when +  // build shift2. So, if we erase MatchInfo.Shift2 at the end, actually we +  // remove old shift1. And it will cause crash later. So erase it earlier to +  // avoid the crash. +  MatchInfo.Shift2->eraseFromParent(); + +  Register Shift2Const = MI.getOperand(2).getReg(); +  Register Shift2 = Builder +                        .buildInstr(Opcode, {DestType}, +                                    {MatchInfo.LogicNonShiftReg, Shift2Const}) +                        .getReg(0); + +  Register Dest = MI.getOperand(0).getReg(); +  Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); + +  // This was one use so it's safe to remove it. +  MatchInfo.Logic->eraseFromParent(); + +  MI.eraseFromParent(); +} + +bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, +                                          unsigned &ShiftVal) { +  assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); +  auto MaybeImmVal = +      getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); +  if (!MaybeImmVal) +    return false; + +  ShiftVal = MaybeImmVal->Value.exactLogBase2(); +  return (static_cast<int32_t>(ShiftVal) != -1); +} + +void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, +                                          unsigned &ShiftVal) { +  assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); +  MachineIRBuilder MIB(MI); +  LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); +  auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); +  Observer.changingInstr(MI); +  MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); +  MI.getOperand(2).setReg(ShiftCst.getReg(0)); +  Observer.changedInstr(MI); +} + +// shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source +bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, +                                             RegisterImmPair &MatchData) { +  assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); + +  Register LHS = MI.getOperand(1).getReg(); + +  Register ExtSrc; +  if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && +      !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && +      !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) +    return false; + +  // TODO: Should handle vector splat. +  Register RHS = MI.getOperand(2).getReg(); +  auto MaybeShiftAmtVal = getIConstantVRegValWithLookThrough(RHS, MRI); +  if (!MaybeShiftAmtVal) +    return false; + +  if (LI) { +    LLT SrcTy = MRI.getType(ExtSrc); + +    // We only really care about the legality with the shifted value. We can +    // pick any type the constant shift amount, so ask the target what to +    // use. Otherwise we would have to guess and hope it is reported as legal. +    LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); +    if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) +      return false; +  } + +  int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); +  MatchData.Reg = ExtSrc; +  MatchData.Imm = ShiftAmt; + +  unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); +  return MinLeadingZeros >= ShiftAmt; +} + +void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, +                                             const RegisterImmPair &MatchData) { +  Register ExtSrcReg = MatchData.Reg; +  int64_t ShiftAmtVal = MatchData.Imm; + +  LLT ExtSrcTy = MRI.getType(ExtSrcReg); +  Builder.setInstrAndDebugLoc(MI); +  auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); +  auto NarrowShift = +      Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); +  Builder.buildZExt(MI.getOperand(0), NarrowShift); +  MI.eraseFromParent(); +} + +bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, +                                              Register &MatchInfo) { +  GMerge &Merge = cast<GMerge>(MI); +  SmallVector<Register, 16> MergedValues; +  for (unsigned I = 0; I < Merge.getNumSources(); ++I) +    MergedValues.emplace_back(Merge.getSourceReg(I)); + +  auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); +  if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) +    return false; + +  for (unsigned I = 0; I < MergedValues.size(); ++I) +    if (MergedValues[I] != Unmerge->getReg(I)) +      return false; + +  MatchInfo = Unmerge->getSourceReg(); +  return true; +} + +static Register peekThroughBitcast(Register Reg, +                                   const MachineRegisterInfo &MRI) { +  while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) +    ; + +  return Reg; +} + +bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( +    MachineInstr &MI, SmallVectorImpl<Register> &Operands) { +  assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && +         "Expected an unmerge"); +  auto &Unmerge = cast<GUnmerge>(MI); +  Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); + +  auto *SrcInstr = getOpcodeDef<GMergeLikeInstr>(SrcReg, MRI); +  if (!SrcInstr) +    return false; + +  // Check the source type of the merge. +  LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); +  LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); +  bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); +  if (SrcMergeTy != Dst0Ty && !SameSize) +    return false; +  // They are the same now (modulo a bitcast). +  // We can collect all the src registers. +  for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) +    Operands.push_back(SrcInstr->getSourceReg(Idx)); +  return true; +} + +void CombinerHelper::applyCombineUnmergeMergeToPlainValues( +    MachineInstr &MI, SmallVectorImpl<Register> &Operands) { +  assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && +         "Expected an unmerge"); +  assert((MI.getNumOperands() - 1 == Operands.size()) && +         "Not enough operands to replace all defs"); +  unsigned NumElems = MI.getNumOperands() - 1; + +  LLT SrcTy = MRI.getType(Operands[0]); +  LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); +  bool CanReuseInputDirectly = DstTy == SrcTy; +  Builder.setInstrAndDebugLoc(MI); +  for (unsigned Idx = 0; Idx < NumElems; ++Idx) { +    Register DstReg = MI.getOperand(Idx).getReg(); +    Register SrcReg = Operands[Idx]; +    if (CanReuseInputDirectly) +      replaceRegWith(MRI, DstReg, SrcReg); +    else +      Builder.buildCast(DstReg, SrcReg); +  } +  MI.eraseFromParent(); +} + +bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, +                                                 SmallVectorImpl<APInt> &Csts) { +  unsigned SrcIdx = MI.getNumOperands() - 1; +  Register SrcReg = MI.getOperand(SrcIdx).getReg(); +  MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); +  if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && +      SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) +    return false; +  // Break down the big constant in smaller ones. +  const MachineOperand &CstVal = SrcInstr->getOperand(1); +  APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT +                  ? CstVal.getCImm()->getValue() +                  : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); + +  LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); +  unsigned ShiftAmt = Dst0Ty.getSizeInBits(); +  // Unmerge a constant. +  for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { +    Csts.emplace_back(Val.trunc(ShiftAmt)); +    Val = Val.lshr(ShiftAmt); +  } + +  return true; +} + +void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, +                                                 SmallVectorImpl<APInt> &Csts) { +  assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && +         "Expected an unmerge"); +  assert((MI.getNumOperands() - 1 == Csts.size()) && +         "Not enough operands to replace all defs"); +  unsigned NumElems = MI.getNumOperands() - 1; +  Builder.setInstrAndDebugLoc(MI); +  for (unsigned Idx = 0; Idx < NumElems; ++Idx) { +    Register DstReg = MI.getOperand(Idx).getReg(); +    Builder.buildConstant(DstReg, Csts[Idx]); +  } + +  MI.eraseFromParent(); +} + +bool CombinerHelper::matchCombineUnmergeUndef( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  unsigned SrcIdx = MI.getNumOperands() - 1; +  Register SrcReg = MI.getOperand(SrcIdx).getReg(); +  MatchInfo = [&MI](MachineIRBuilder &B) { +    unsigned NumElems = MI.getNumOperands() - 1; +    for (unsigned Idx = 0; Idx < NumElems; ++Idx) { +      Register DstReg = MI.getOperand(Idx).getReg(); +      B.buildUndef(DstReg); +    } +  }; +  return isa<GImplicitDef>(MRI.getVRegDef(SrcReg)); +} + +bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { +  assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && +         "Expected an unmerge"); +  // Check that all the lanes are dead except the first one. +  for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { +    if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) +      return false; +  } +  return true; +} + +void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { +  Builder.setInstrAndDebugLoc(MI); +  Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); +  // Truncating a vector is going to truncate every single lane, +  // whereas we want the full lowbits. +  // Do the operation on a scalar instead. +  LLT SrcTy = MRI.getType(SrcReg); +  if (SrcTy.isVector()) +    SrcReg = +        Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); + +  Register Dst0Reg = MI.getOperand(0).getReg(); +  LLT Dst0Ty = MRI.getType(Dst0Reg); +  if (Dst0Ty.isVector()) { +    auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); +    Builder.buildCast(Dst0Reg, MIB); +  } else +    Builder.buildTrunc(Dst0Reg, SrcReg); +  MI.eraseFromParent(); +} + +bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { +  assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && +         "Expected an unmerge"); +  Register Dst0Reg = MI.getOperand(0).getReg(); +  LLT Dst0Ty = MRI.getType(Dst0Reg); +  // G_ZEXT on vector applies to each lane, so it will +  // affect all destinations. Therefore we won't be able +  // to simplify the unmerge to just the first definition. +  if (Dst0Ty.isVector()) +    return false; +  Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); +  LLT SrcTy = MRI.getType(SrcReg); +  if (SrcTy.isVector()) +    return false; + +  Register ZExtSrcReg; +  if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) +    return false; + +  // Finally we can replace the first definition with +  // a zext of the source if the definition is big enough to hold +  // all of ZExtSrc bits. +  LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); +  return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); +} + +void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { +  assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && +         "Expected an unmerge"); + +  Register Dst0Reg = MI.getOperand(0).getReg(); + +  MachineInstr *ZExtInstr = +      MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); +  assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && +         "Expecting a G_ZEXT"); + +  Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); +  LLT Dst0Ty = MRI.getType(Dst0Reg); +  LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); + +  Builder.setInstrAndDebugLoc(MI); + +  if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { +    Builder.buildZExt(Dst0Reg, ZExtSrcReg); +  } else { +    assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && +           "ZExt src doesn't fit in destination"); +    replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); +  } + +  Register ZeroReg; +  for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { +    if (!ZeroReg) +      ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); +    replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); +  } +  MI.eraseFromParent(); +} + +bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, +                                                unsigned TargetShiftSize, +                                                unsigned &ShiftVal) { +  assert((MI.getOpcode() == TargetOpcode::G_SHL || +          MI.getOpcode() == TargetOpcode::G_LSHR || +          MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); + +  LLT Ty = MRI.getType(MI.getOperand(0).getReg()); +  if (Ty.isVector()) // TODO: +    return false; + +  // Don't narrow further than the requested size. +  unsigned Size = Ty.getSizeInBits(); +  if (Size <= TargetShiftSize) +    return false; + +  auto MaybeImmVal = +      getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); +  if (!MaybeImmVal) +    return false; + +  ShiftVal = MaybeImmVal->Value.getSExtValue(); +  return ShiftVal >= Size / 2 && ShiftVal < Size; +} + +void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, +                                                const unsigned &ShiftVal) { +  Register DstReg = MI.getOperand(0).getReg(); +  Register SrcReg = MI.getOperand(1).getReg(); +  LLT Ty = MRI.getType(SrcReg); +  unsigned Size = Ty.getSizeInBits(); +  unsigned HalfSize = Size / 2; +  assert(ShiftVal >= HalfSize); + +  LLT HalfTy = LLT::scalar(HalfSize); + +  Builder.setInstr(MI); +  auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); +  unsigned NarrowShiftAmt = ShiftVal - HalfSize; + +  if (MI.getOpcode() == TargetOpcode::G_LSHR) { +    Register Narrowed = Unmerge.getReg(1); + +    //  dst = G_LSHR s64:x, C for C >= 32 +    // => +    //   lo, hi = G_UNMERGE_VALUES x +    //   dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 + +    if (NarrowShiftAmt != 0) { +      Narrowed = Builder.buildLShr(HalfTy, Narrowed, +        Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); +    } + +    auto Zero = Builder.buildConstant(HalfTy, 0); +    Builder.buildMergeLikeInstr(DstReg, {Narrowed, Zero}); +  } else if (MI.getOpcode() == TargetOpcode::G_SHL) { +    Register Narrowed = Unmerge.getReg(0); +    //  dst = G_SHL s64:x, C for C >= 32 +    // => +    //   lo, hi = G_UNMERGE_VALUES x +    //   dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) +    if (NarrowShiftAmt != 0) { +      Narrowed = Builder.buildShl(HalfTy, Narrowed, +        Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); +    } + +    auto Zero = Builder.buildConstant(HalfTy, 0); +    Builder.buildMergeLikeInstr(DstReg, {Zero, Narrowed}); +  } else { +    assert(MI.getOpcode() == TargetOpcode::G_ASHR); +    auto Hi = Builder.buildAShr( +      HalfTy, Unmerge.getReg(1), +      Builder.buildConstant(HalfTy, HalfSize - 1)); + +    if (ShiftVal == HalfSize) { +      // (G_ASHR i64:x, 32) -> +      //   G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) +      Builder.buildMergeLikeInstr(DstReg, {Unmerge.getReg(1), Hi}); +    } else if (ShiftVal == Size - 1) { +      // Don't need a second shift. +      // (G_ASHR i64:x, 63) -> +      //   %narrowed = (G_ASHR hi_32(x), 31) +      //   G_MERGE_VALUES %narrowed, %narrowed +      Builder.buildMergeLikeInstr(DstReg, {Hi, Hi}); +    } else { +      auto Lo = Builder.buildAShr( +        HalfTy, Unmerge.getReg(1), +        Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); + +      // (G_ASHR i64:x, C) ->, for C >= 32 +      //   G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) +      Builder.buildMergeLikeInstr(DstReg, {Lo, Hi}); +    } +  } + +  MI.eraseFromParent(); +} + +bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, +                                              unsigned TargetShiftAmount) { +  unsigned ShiftAmt; +  if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { +    applyCombineShiftToUnmerge(MI, ShiftAmt); +    return true; +  } + +  return false; +} + +bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { +  assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); +  Register DstReg = MI.getOperand(0).getReg(); +  LLT DstTy = MRI.getType(DstReg); +  Register SrcReg = MI.getOperand(1).getReg(); +  return mi_match(SrcReg, MRI, +                  m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); +} + +void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { +  assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); +  Register DstReg = MI.getOperand(0).getReg(); +  Builder.setInstr(MI); +  Builder.buildCopy(DstReg, Reg); +  MI.eraseFromParent(); +} + +void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { +  assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); +  Register DstReg = MI.getOperand(0).getReg(); +  Builder.setInstr(MI); +  Builder.buildZExtOrTrunc(DstReg, Reg); +  MI.eraseFromParent(); +} + +bool CombinerHelper::matchCombineAddP2IToPtrAdd( +    MachineInstr &MI, std::pair<Register, bool> &PtrReg) { +  assert(MI.getOpcode() == TargetOpcode::G_ADD); +  Register LHS = MI.getOperand(1).getReg(); +  Register RHS = MI.getOperand(2).getReg(); +  LLT IntTy = MRI.getType(LHS); + +  // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the +  // instruction. +  PtrReg.second = false; +  for (Register SrcReg : {LHS, RHS}) { +    if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { +      // Don't handle cases where the integer is implicitly converted to the +      // pointer width. +      LLT PtrTy = MRI.getType(PtrReg.first); +      if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) +        return true; +    } + +    PtrReg.second = true; +  } + +  return false; +} + +void CombinerHelper::applyCombineAddP2IToPtrAdd( +    MachineInstr &MI, std::pair<Register, bool> &PtrReg) { +  Register Dst = MI.getOperand(0).getReg(); +  Register LHS = MI.getOperand(1).getReg(); +  Register RHS = MI.getOperand(2).getReg(); + +  const bool DoCommute = PtrReg.second; +  if (DoCommute) +    std::swap(LHS, RHS); +  LHS = PtrReg.first; + +  LLT PtrTy = MRI.getType(LHS); + +  Builder.setInstrAndDebugLoc(MI); +  auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); +  Builder.buildPtrToInt(Dst, PtrAdd); +  MI.eraseFromParent(); +} + +bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, +                                                  APInt &NewCst) { +  auto &PtrAdd = cast<GPtrAdd>(MI); +  Register LHS = PtrAdd.getBaseReg(); +  Register RHS = PtrAdd.getOffsetReg(); +  MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); + +  if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) { +    APInt Cst; +    if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { +      auto DstTy = MRI.getType(PtrAdd.getReg(0)); +      // G_INTTOPTR uses zero-extension +      NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits()); +      NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits()); +      return true; +    } +  } + +  return false; +} + +void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, +                                                  APInt &NewCst) { +  auto &PtrAdd = cast<GPtrAdd>(MI); +  Register Dst = PtrAdd.getReg(0); + +  Builder.setInstrAndDebugLoc(MI); +  Builder.buildConstant(Dst, NewCst); +  PtrAdd.eraseFromParent(); +} + +bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { +  assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); +  Register DstReg = MI.getOperand(0).getReg(); +  Register SrcReg = MI.getOperand(1).getReg(); +  LLT DstTy = MRI.getType(DstReg); +  return mi_match(SrcReg, MRI, +                  m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); +} + +bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { +  assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); +  Register DstReg = MI.getOperand(0).getReg(); +  Register SrcReg = MI.getOperand(1).getReg(); +  LLT DstTy = MRI.getType(DstReg); +  if (mi_match(SrcReg, MRI, +               m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { +    unsigned DstSize = DstTy.getScalarSizeInBits(); +    unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); +    return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; +  } +  return false; +} + +bool CombinerHelper::matchCombineExtOfExt( +    MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { +  assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || +          MI.getOpcode() == TargetOpcode::G_SEXT || +          MI.getOpcode() == TargetOpcode::G_ZEXT) && +         "Expected a G_[ASZ]EXT"); +  Register SrcReg = MI.getOperand(1).getReg(); +  MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); +  // Match exts with the same opcode, anyext([sz]ext) and sext(zext). +  unsigned Opc = MI.getOpcode(); +  unsigned SrcOpc = SrcMI->getOpcode(); +  if (Opc == SrcOpc || +      (Opc == TargetOpcode::G_ANYEXT && +       (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || +      (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { +    MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); +    return true; +  } +  return false; +} + +void CombinerHelper::applyCombineExtOfExt( +    MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { +  assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || +          MI.getOpcode() == TargetOpcode::G_SEXT || +          MI.getOpcode() == TargetOpcode::G_ZEXT) && +         "Expected a G_[ASZ]EXT"); + +  Register Reg = std::get<0>(MatchInfo); +  unsigned SrcExtOp = std::get<1>(MatchInfo); + +  // Combine exts with the same opcode. +  if (MI.getOpcode() == SrcExtOp) { +    Observer.changingInstr(MI); +    MI.getOperand(1).setReg(Reg); +    Observer.changedInstr(MI); +    return; +  } + +  // Combine: +  // - anyext([sz]ext x) to [sz]ext x +  // - sext(zext x) to zext x +  if (MI.getOpcode() == TargetOpcode::G_ANYEXT || +      (MI.getOpcode() == TargetOpcode::G_SEXT && +       SrcExtOp == TargetOpcode::G_ZEXT)) { +    Register DstReg = MI.getOperand(0).getReg(); +    Builder.setInstrAndDebugLoc(MI); +    Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); +    MI.eraseFromParent(); +  } +} + +void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { +  assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); +  Register DstReg = MI.getOperand(0).getReg(); +  Register SrcReg = MI.getOperand(1).getReg(); +  LLT DstTy = MRI.getType(DstReg); + +  Builder.setInstrAndDebugLoc(MI); +  Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, +                   MI.getFlags()); +  MI.eraseFromParent(); +} + +bool CombinerHelper::matchCombineFAbsOfFNeg(MachineInstr &MI, +                                            BuildFnTy &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); +  Register Src = MI.getOperand(1).getReg(); +  Register NegSrc; + +  if (!mi_match(Src, MRI, m_GFNeg(m_Reg(NegSrc)))) +    return false; + +  MatchInfo = [=, &MI](MachineIRBuilder &B) { +    Observer.changingInstr(MI); +    MI.getOperand(1).setReg(NegSrc); +    Observer.changedInstr(MI); +  }; +  return true; +} + +bool CombinerHelper::matchCombineTruncOfExt( +    MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); +  Register SrcReg = MI.getOperand(1).getReg(); +  MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); +  unsigned SrcOpc = SrcMI->getOpcode(); +  if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || +      SrcOpc == TargetOpcode::G_ZEXT) { +    MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); +    return true; +  } +  return false; +} + +void CombinerHelper::applyCombineTruncOfExt( +    MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); +  Register SrcReg = MatchInfo.first; +  unsigned SrcExtOp = MatchInfo.second; +  Register DstReg = MI.getOperand(0).getReg(); +  LLT SrcTy = MRI.getType(SrcReg); +  LLT DstTy = MRI.getType(DstReg); +  if (SrcTy == DstTy) { +    MI.eraseFromParent(); +    replaceRegWith(MRI, DstReg, SrcReg); +    return; +  } +  Builder.setInstrAndDebugLoc(MI); +  if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) +    Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); +  else +    Builder.buildTrunc(DstReg, SrcReg); +  MI.eraseFromParent(); +} + +static LLT getMidVTForTruncRightShiftCombine(LLT ShiftTy, LLT TruncTy) { +  const unsigned ShiftSize = ShiftTy.getScalarSizeInBits(); +  const unsigned TruncSize = TruncTy.getScalarSizeInBits(); + +  // ShiftTy > 32 > TruncTy -> 32 +  if (ShiftSize > 32 && TruncSize < 32) +    return ShiftTy.changeElementSize(32); + +  // TODO: We could also reduce to 16 bits, but that's more target-dependent. +  //  Some targets like it, some don't, some only like it under certain +  //  conditions/processor versions, etc. +  //  A TL hook might be needed for this. + +  // Don't combine +  return ShiftTy; +} + +bool CombinerHelper::matchCombineTruncOfShift( +    MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); +  Register DstReg = MI.getOperand(0).getReg(); +  Register SrcReg = MI.getOperand(1).getReg(); + +  if (!MRI.hasOneNonDBGUse(SrcReg)) +    return false; + +  LLT SrcTy = MRI.getType(SrcReg); +  LLT DstTy = MRI.getType(DstReg); + +  MachineInstr *SrcMI = getDefIgnoringCopies(SrcReg, MRI); +  const auto &TL = getTargetLowering(); + +  LLT NewShiftTy; +  switch (SrcMI->getOpcode()) { +  default: +    return false; +  case TargetOpcode::G_SHL: { +    NewShiftTy = DstTy; + +    // Make sure new shift amount is legal. +    KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg()); +    if (Known.getMaxValue().uge(NewShiftTy.getScalarSizeInBits())) +      return false; +    break; +  } +  case TargetOpcode::G_LSHR: +  case TargetOpcode::G_ASHR: { +    // For right shifts, we conservatively do not do the transform if the TRUNC +    // has any STORE users. The reason is that if we change the type of the +    // shift, we may break the truncstore combine. +    // +    // TODO: Fix truncstore combine to handle (trunc(lshr (trunc x), k)). +    for (auto &User : MRI.use_instructions(DstReg)) +      if (User.getOpcode() == TargetOpcode::G_STORE) +        return false; + +    NewShiftTy = getMidVTForTruncRightShiftCombine(SrcTy, DstTy); +    if (NewShiftTy == SrcTy) +      return false; + +    // Make sure we won't lose information by truncating the high bits. +    KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg()); +    if (Known.getMaxValue().ugt(NewShiftTy.getScalarSizeInBits() - +                                DstTy.getScalarSizeInBits())) +      return false; +    break; +  } +  } + +  if (!isLegalOrBeforeLegalizer( +          {SrcMI->getOpcode(), +           {NewShiftTy, TL.getPreferredShiftAmountTy(NewShiftTy)}})) +    return false; + +  MatchInfo = std::make_pair(SrcMI, NewShiftTy); +  return true; +} + +void CombinerHelper::applyCombineTruncOfShift( +    MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) { +  Builder.setInstrAndDebugLoc(MI); + +  MachineInstr *ShiftMI = MatchInfo.first; +  LLT NewShiftTy = MatchInfo.second; + +  Register Dst = MI.getOperand(0).getReg(); +  LLT DstTy = MRI.getType(Dst); + +  Register ShiftAmt = ShiftMI->getOperand(2).getReg(); +  Register ShiftSrc = ShiftMI->getOperand(1).getReg(); +  ShiftSrc = Builder.buildTrunc(NewShiftTy, ShiftSrc).getReg(0); + +  Register NewShift = +      Builder +          .buildInstr(ShiftMI->getOpcode(), {NewShiftTy}, {ShiftSrc, ShiftAmt}) +          .getReg(0); + +  if (NewShiftTy == DstTy) +    replaceRegWith(MRI, Dst, NewShift); +  else +    Builder.buildTrunc(Dst, NewShift); + +  eraseInst(MI); +} + +bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { +  return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { +    return MO.isReg() && +           getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); +  }); +} + +bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { +  return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { +    return !MO.isReg() || +           getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); +  }); +} + +bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { +  assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); +  ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); +  return all_of(Mask, [](int Elt) { return Elt < 0; }); +} + +bool CombinerHelper::matchUndefStore(MachineInstr &MI) { +  assert(MI.getOpcode() == TargetOpcode::G_STORE); +  return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), +                      MRI); +} + +bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { +  assert(MI.getOpcode() == TargetOpcode::G_SELECT); +  return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), +                      MRI); +} + +bool CombinerHelper::matchInsertExtractVecEltOutOfBounds(MachineInstr &MI) { +  assert((MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT || +          MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) && +         "Expected an insert/extract element op"); +  LLT VecTy = MRI.getType(MI.getOperand(1).getReg()); +  unsigned IdxIdx = +      MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; +  auto Idx = getIConstantVRegVal(MI.getOperand(IdxIdx).getReg(), MRI); +  if (!Idx) +    return false; +  return Idx->getZExtValue() >= VecTy.getNumElements(); +} + +bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { +  GSelect &SelMI = cast<GSelect>(MI); +  auto Cst = +      isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI); +  if (!Cst) +    return false; +  OpIdx = Cst->isZero() ? 3 : 2; +  return true; +} + +bool CombinerHelper::eraseInst(MachineInstr &MI) { +  MI.eraseFromParent(); +  return true; +} + +bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, +                                    const MachineOperand &MOP2) { +  if (!MOP1.isReg() || !MOP2.isReg()) +    return false; +  auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); +  if (!InstAndDef1) +    return false; +  auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); +  if (!InstAndDef2) +    return false; +  MachineInstr *I1 = InstAndDef1->MI; +  MachineInstr *I2 = InstAndDef2->MI; + +  // Handle a case like this: +  // +  // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) +  // +  // Even though %0 and %1 are produced by the same instruction they are not +  // the same values. +  if (I1 == I2) +    return MOP1.getReg() == MOP2.getReg(); + +  // If we have an instruction which loads or stores, we can't guarantee that +  // it is identical. +  // +  // For example, we may have +  // +  // %x1 = G_LOAD %addr (load N from @somewhere) +  // ... +  // call @foo +  // ... +  // %x2 = G_LOAD %addr (load N from @somewhere) +  // ... +  // %or = G_OR %x1, %x2 +  // +  // It's possible that @foo will modify whatever lives at the address we're +  // loading from. To be safe, let's just assume that all loads and stores +  // are different (unless we have something which is guaranteed to not +  // change.) +  if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad()) +    return false; + +  // If both instructions are loads or stores, they are equal only if both +  // are dereferenceable invariant loads with the same number of bits. +  if (I1->mayLoadOrStore() && I2->mayLoadOrStore()) { +    GLoadStore *LS1 = dyn_cast<GLoadStore>(I1); +    GLoadStore *LS2 = dyn_cast<GLoadStore>(I2); +    if (!LS1 || !LS2) +      return false; + +    if (!I2->isDereferenceableInvariantLoad() || +        (LS1->getMemSizeInBits() != LS2->getMemSizeInBits())) +      return false; +  } + +  // Check for physical registers on the instructions first to avoid cases +  // like this: +  // +  // %a = COPY $physreg +  // ... +  // SOMETHING implicit-def $physreg +  // ... +  // %b = COPY $physreg +  // +  // These copies are not equivalent. +  if (any_of(I1->uses(), [](const MachineOperand &MO) { +        return MO.isReg() && MO.getReg().isPhysical(); +      })) { +    // Check if we have a case like this: +    // +    // %a = COPY $physreg +    // %b = COPY %a +    // +    // In this case, I1 and I2 will both be equal to %a = COPY $physreg. +    // From that, we know that they must have the same value, since they must +    // have come from the same COPY. +    return I1->isIdenticalTo(*I2); +  } + +  // We don't have any physical registers, so we don't necessarily need the +  // same vreg defs. +  // +  // On the off-chance that there's some target instruction feeding into the +  // instruction, let's use produceSameValue instead of isIdenticalTo. +  if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { +    // Handle instructions with multiple defs that produce same values. Values +    // are same for operands with same index. +    // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) +    // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) +    // I1 and I2 are different instructions but produce same values, +    // %1 and %6 are same, %1 and %7 are not the same value. +    return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == +           I2->findRegisterDefOperandIdx(InstAndDef2->Reg); +  } +  return false; +} + +bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { +  if (!MOP.isReg()) +    return false; +  auto *MI = MRI.getVRegDef(MOP.getReg()); +  auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI); +  return MaybeCst && MaybeCst->getBitWidth() <= 64 && +         MaybeCst->getSExtValue() == C; +} + +bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, +                                                     unsigned OpIdx) { +  assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); +  Register OldReg = MI.getOperand(0).getReg(); +  Register Replacement = MI.getOperand(OpIdx).getReg(); +  assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); +  MI.eraseFromParent(); +  replaceRegWith(MRI, OldReg, Replacement); +  return true; +} + +bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, +                                                 Register Replacement) { +  assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); +  Register OldReg = MI.getOperand(0).getReg(); +  assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); +  MI.eraseFromParent(); +  replaceRegWith(MRI, OldReg, Replacement); +  return true; +} + +bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { +  assert(MI.getOpcode() == TargetOpcode::G_SELECT); +  // Match (cond ? x : x) +  return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && +         canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), +                       MRI); +} + +bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { +  return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && +         canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), +                       MRI); +} + +bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { +  return matchConstantOp(MI.getOperand(OpIdx), 0) && +         canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), +                       MRI); +} + +bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { +  MachineOperand &MO = MI.getOperand(OpIdx); +  return MO.isReg() && +         getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); +} + +bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, +                                                        unsigned OpIdx) { +  MachineOperand &MO = MI.getOperand(OpIdx); +  return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); +} + +bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { +  assert(MI.getNumDefs() == 1 && "Expected only one def?"); +  Builder.setInstr(MI); +  Builder.buildFConstant(MI.getOperand(0), C); +  MI.eraseFromParent(); +  return true; +} + +bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { +  assert(MI.getNumDefs() == 1 && "Expected only one def?"); +  Builder.setInstr(MI); +  Builder.buildConstant(MI.getOperand(0), C); +  MI.eraseFromParent(); +  return true; +} + +bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { +  assert(MI.getNumDefs() == 1 && "Expected only one def?"); +  Builder.setInstr(MI); +  Builder.buildConstant(MI.getOperand(0), C); +  MI.eraseFromParent(); +  return true; +} + +bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { +  assert(MI.getNumDefs() == 1 && "Expected only one def?"); +  Builder.setInstr(MI); +  Builder.buildUndef(MI.getOperand(0)); +  MI.eraseFromParent(); +  return true; +} + +bool CombinerHelper::matchSimplifyAddToSub( +    MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { +  Register LHS = MI.getOperand(1).getReg(); +  Register RHS = MI.getOperand(2).getReg(); +  Register &NewLHS = std::get<0>(MatchInfo); +  Register &NewRHS = std::get<1>(MatchInfo); + +  // Helper lambda to check for opportunities for +  // ((0-A) + B) -> B - A +  // (A + (0-B)) -> A - B +  auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { +    if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) +      return false; +    NewLHS = MaybeNewLHS; +    return true; +  }; + +  return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); +} + +bool CombinerHelper::matchCombineInsertVecElts( +    MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && +         "Invalid opcode"); +  Register DstReg = MI.getOperand(0).getReg(); +  LLT DstTy = MRI.getType(DstReg); +  assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); +  unsigned NumElts = DstTy.getNumElements(); +  // If this MI is part of a sequence of insert_vec_elts, then +  // don't do the combine in the middle of the sequence. +  if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == +                                   TargetOpcode::G_INSERT_VECTOR_ELT) +    return false; +  MachineInstr *CurrInst = &MI; +  MachineInstr *TmpInst; +  int64_t IntImm; +  Register TmpReg; +  MatchInfo.resize(NumElts); +  while (mi_match( +      CurrInst->getOperand(0).getReg(), MRI, +      m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { +    if (IntImm >= NumElts || IntImm < 0) +      return false; +    if (!MatchInfo[IntImm]) +      MatchInfo[IntImm] = TmpReg; +    CurrInst = TmpInst; +  } +  // Variable index. +  if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) +    return false; +  if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { +    for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { +      if (!MatchInfo[I - 1].isValid()) +        MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); +    } +    return true; +  } +  // If we didn't end in a G_IMPLICIT_DEF, bail out. +  return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; +} + +void CombinerHelper::applyCombineInsertVecElts( +    MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { +  Builder.setInstr(MI); +  Register UndefReg; +  auto GetUndef = [&]() { +    if (UndefReg) +      return UndefReg; +    LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); +    UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); +    return UndefReg; +  }; +  for (unsigned I = 0; I < MatchInfo.size(); ++I) { +    if (!MatchInfo[I]) +      MatchInfo[I] = GetUndef(); +  } +  Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); +  MI.eraseFromParent(); +} + +void CombinerHelper::applySimplifyAddToSub( +    MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { +  Builder.setInstr(MI); +  Register SubLHS, SubRHS; +  std::tie(SubLHS, SubRHS) = MatchInfo; +  Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); +  MI.eraseFromParent(); +} + +bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( +    MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { +  // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... +  // +  // Creates the new hand + logic instruction (but does not insert them.) +  // +  // On success, MatchInfo is populated with the new instructions. These are +  // inserted in applyHoistLogicOpWithSameOpcodeHands. +  unsigned LogicOpcode = MI.getOpcode(); +  assert(LogicOpcode == TargetOpcode::G_AND || +         LogicOpcode == TargetOpcode::G_OR || +         LogicOpcode == TargetOpcode::G_XOR); +  MachineIRBuilder MIB(MI); +  Register Dst = MI.getOperand(0).getReg(); +  Register LHSReg = MI.getOperand(1).getReg(); +  Register RHSReg = MI.getOperand(2).getReg(); + +  // Don't recompute anything. +  if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) +    return false; + +  // Make sure we have (hand x, ...), (hand y, ...) +  MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); +  MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); +  if (!LeftHandInst || !RightHandInst) +    return false; +  unsigned HandOpcode = LeftHandInst->getOpcode(); +  if (HandOpcode != RightHandInst->getOpcode()) +    return false; +  if (!LeftHandInst->getOperand(1).isReg() || +      !RightHandInst->getOperand(1).isReg()) +    return false; + +  // Make sure the types match up, and if we're doing this post-legalization, +  // we end up with legal types. +  Register X = LeftHandInst->getOperand(1).getReg(); +  Register Y = RightHandInst->getOperand(1).getReg(); +  LLT XTy = MRI.getType(X); +  LLT YTy = MRI.getType(Y); +  if (XTy != YTy) +    return false; +  if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) +    return false; + +  // Optional extra source register. +  Register ExtraHandOpSrcReg; +  switch (HandOpcode) { +  default: +    return false; +  case TargetOpcode::G_ANYEXT: +  case TargetOpcode::G_SEXT: +  case TargetOpcode::G_ZEXT: { +    // Match: logic (ext X), (ext Y) --> ext (logic X, Y) +    break; +  } +  case TargetOpcode::G_AND: +  case TargetOpcode::G_ASHR: +  case TargetOpcode::G_LSHR: +  case TargetOpcode::G_SHL: { +    // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z +    MachineOperand &ZOp = LeftHandInst->getOperand(2); +    if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) +      return false; +    ExtraHandOpSrcReg = ZOp.getReg(); +    break; +  } +  } + +  // Record the steps to build the new instructions. +  // +  // Steps to build (logic x, y) +  auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); +  OperandBuildSteps LogicBuildSteps = { +      [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, +      [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, +      [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; +  InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); + +  // Steps to build hand (logic x, y), ...z +  OperandBuildSteps HandBuildSteps = { +      [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, +      [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; +  if (ExtraHandOpSrcReg.isValid()) +    HandBuildSteps.push_back( +        [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); +  InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); + +  MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); +  return true; +} + +void CombinerHelper::applyBuildInstructionSteps( +    MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { +  assert(MatchInfo.InstrsToBuild.size() && +         "Expected at least one instr to build?"); +  Builder.setInstr(MI); +  for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { +    assert(InstrToBuild.Opcode && "Expected a valid opcode?"); +    assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); +    MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); +    for (auto &OperandFn : InstrToBuild.OperandFns) +      OperandFn(Instr); +  } +  MI.eraseFromParent(); +} + +bool CombinerHelper::matchAshrShlToSextInreg( +    MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_ASHR); +  int64_t ShlCst, AshrCst; +  Register Src; +  if (!mi_match(MI.getOperand(0).getReg(), MRI, +                m_GAShr(m_GShl(m_Reg(Src), m_ICstOrSplat(ShlCst)), +                        m_ICstOrSplat(AshrCst)))) +    return false; +  if (ShlCst != AshrCst) +    return false; +  if (!isLegalOrBeforeLegalizer( +          {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) +    return false; +  MatchInfo = std::make_tuple(Src, ShlCst); +  return true; +} + +void CombinerHelper::applyAshShlToSextInreg( +    MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_ASHR); +  Register Src; +  int64_t ShiftAmt; +  std::tie(Src, ShiftAmt) = MatchInfo; +  unsigned Size = MRI.getType(Src).getScalarSizeInBits(); +  Builder.setInstrAndDebugLoc(MI); +  Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); +  MI.eraseFromParent(); +} + +/// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 +bool CombinerHelper::matchOverlappingAnd( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_AND); + +  Register Dst = MI.getOperand(0).getReg(); +  LLT Ty = MRI.getType(Dst); + +  Register R; +  int64_t C1; +  int64_t C2; +  if (!mi_match( +          Dst, MRI, +          m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) +    return false; + +  MatchInfo = [=](MachineIRBuilder &B) { +    if (C1 & C2) { +      B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); +      return; +    } +    auto Zero = B.buildConstant(Ty, 0); +    replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); +  }; +  return true; +} + +bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, +                                       Register &Replacement) { +  // Given +  // +  // %y:_(sN) = G_SOMETHING +  // %x:_(sN) = G_SOMETHING +  // %res:_(sN) = G_AND %x, %y +  // +  // Eliminate the G_AND when it is known that x & y == x or x & y == y. +  // +  // Patterns like this can appear as a result of legalization. E.g. +  // +  // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y +  // %one:_(s32) = G_CONSTANT i32 1 +  // %and:_(s32) = G_AND %cmp, %one +  // +  // In this case, G_ICMP only produces a single bit, so x & 1 == x. +  assert(MI.getOpcode() == TargetOpcode::G_AND); +  if (!KB) +    return false; + +  Register AndDst = MI.getOperand(0).getReg(); +  Register LHS = MI.getOperand(1).getReg(); +  Register RHS = MI.getOperand(2).getReg(); +  KnownBits LHSBits = KB->getKnownBits(LHS); +  KnownBits RHSBits = KB->getKnownBits(RHS); + +  // Check that x & Mask == x. +  // x & 1 == x, always +  // x & 0 == x, only if x is also 0 +  // Meaning Mask has no effect if every bit is either one in Mask or zero in x. +  // +  // Check if we can replace AndDst with the LHS of the G_AND +  if (canReplaceReg(AndDst, LHS, MRI) && +      (LHSBits.Zero | RHSBits.One).isAllOnes()) { +    Replacement = LHS; +    return true; +  } + +  // Check if we can replace AndDst with the RHS of the G_AND +  if (canReplaceReg(AndDst, RHS, MRI) && +      (LHSBits.One | RHSBits.Zero).isAllOnes()) { +    Replacement = RHS; +    return true; +  } + +  return false; +} + +bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { +  // Given +  // +  // %y:_(sN) = G_SOMETHING +  // %x:_(sN) = G_SOMETHING +  // %res:_(sN) = G_OR %x, %y +  // +  // Eliminate the G_OR when it is known that x | y == x or x | y == y. +  assert(MI.getOpcode() == TargetOpcode::G_OR); +  if (!KB) +    return false; + +  Register OrDst = MI.getOperand(0).getReg(); +  Register LHS = MI.getOperand(1).getReg(); +  Register RHS = MI.getOperand(2).getReg(); +  KnownBits LHSBits = KB->getKnownBits(LHS); +  KnownBits RHSBits = KB->getKnownBits(RHS); + +  // Check that x | Mask == x. +  // x | 0 == x, always +  // x | 1 == x, only if x is also 1 +  // Meaning Mask has no effect if every bit is either zero in Mask or one in x. +  // +  // Check if we can replace OrDst with the LHS of the G_OR +  if (canReplaceReg(OrDst, LHS, MRI) && +      (LHSBits.One | RHSBits.Zero).isAllOnes()) { +    Replacement = LHS; +    return true; +  } + +  // Check if we can replace OrDst with the RHS of the G_OR +  if (canReplaceReg(OrDst, RHS, MRI) && +      (LHSBits.Zero | RHSBits.One).isAllOnes()) { +    Replacement = RHS; +    return true; +  } + +  return false; +} + +bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { +  // If the input is already sign extended, just drop the extension. +  Register Src = MI.getOperand(1).getReg(); +  unsigned ExtBits = MI.getOperand(2).getImm(); +  unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); +  return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); +} + +static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, +                             int64_t Cst, bool IsVector, bool IsFP) { +  // For i1, Cst will always be -1 regardless of boolean contents. +  return (ScalarSizeBits == 1 && Cst == -1) || +         isConstTrueVal(TLI, Cst, IsVector, IsFP); +} + +bool CombinerHelper::matchNotCmp(MachineInstr &MI, +                                 SmallVectorImpl<Register> &RegsToNegate) { +  assert(MI.getOpcode() == TargetOpcode::G_XOR); +  LLT Ty = MRI.getType(MI.getOperand(0).getReg()); +  const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); +  Register XorSrc; +  Register CstReg; +  // We match xor(src, true) here. +  if (!mi_match(MI.getOperand(0).getReg(), MRI, +                m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) +    return false; + +  if (!MRI.hasOneNonDBGUse(XorSrc)) +    return false; + +  // Check that XorSrc is the root of a tree of comparisons combined with ANDs +  // and ORs. The suffix of RegsToNegate starting from index I is used a work +  // list of tree nodes to visit. +  RegsToNegate.push_back(XorSrc); +  // Remember whether the comparisons are all integer or all floating point. +  bool IsInt = false; +  bool IsFP = false; +  for (unsigned I = 0; I < RegsToNegate.size(); ++I) { +    Register Reg = RegsToNegate[I]; +    if (!MRI.hasOneNonDBGUse(Reg)) +      return false; +    MachineInstr *Def = MRI.getVRegDef(Reg); +    switch (Def->getOpcode()) { +    default: +      // Don't match if the tree contains anything other than ANDs, ORs and +      // comparisons. +      return false; +    case TargetOpcode::G_ICMP: +      if (IsFP) +        return false; +      IsInt = true; +      // When we apply the combine we will invert the predicate. +      break; +    case TargetOpcode::G_FCMP: +      if (IsInt) +        return false; +      IsFP = true; +      // When we apply the combine we will invert the predicate. +      break; +    case TargetOpcode::G_AND: +    case TargetOpcode::G_OR: +      // Implement De Morgan's laws: +      // ~(x & y) -> ~x | ~y +      // ~(x | y) -> ~x & ~y +      // When we apply the combine we will change the opcode and recursively +      // negate the operands. +      RegsToNegate.push_back(Def->getOperand(1).getReg()); +      RegsToNegate.push_back(Def->getOperand(2).getReg()); +      break; +    } +  } + +  // Now we know whether the comparisons are integer or floating point, check +  // the constant in the xor. +  int64_t Cst; +  if (Ty.isVector()) { +    MachineInstr *CstDef = MRI.getVRegDef(CstReg); +    auto MaybeCst = getIConstantSplatSExtVal(*CstDef, MRI); +    if (!MaybeCst) +      return false; +    if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) +      return false; +  } else { +    if (!mi_match(CstReg, MRI, m_ICst(Cst))) +      return false; +    if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) +      return false; +  } + +  return true; +} + +void CombinerHelper::applyNotCmp(MachineInstr &MI, +                                 SmallVectorImpl<Register> &RegsToNegate) { +  for (Register Reg : RegsToNegate) { +    MachineInstr *Def = MRI.getVRegDef(Reg); +    Observer.changingInstr(*Def); +    // For each comparison, invert the opcode. For each AND and OR, change the +    // opcode. +    switch (Def->getOpcode()) { +    default: +      llvm_unreachable("Unexpected opcode"); +    case TargetOpcode::G_ICMP: +    case TargetOpcode::G_FCMP: { +      MachineOperand &PredOp = Def->getOperand(1); +      CmpInst::Predicate NewP = CmpInst::getInversePredicate( +          (CmpInst::Predicate)PredOp.getPredicate()); +      PredOp.setPredicate(NewP); +      break; +    } +    case TargetOpcode::G_AND: +      Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); +      break; +    case TargetOpcode::G_OR: +      Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); +      break; +    } +    Observer.changedInstr(*Def); +  } + +  replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); +  MI.eraseFromParent(); +} + +bool CombinerHelper::matchXorOfAndWithSameReg( +    MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { +  // Match (xor (and x, y), y) (or any of its commuted cases) +  assert(MI.getOpcode() == TargetOpcode::G_XOR); +  Register &X = MatchInfo.first; +  Register &Y = MatchInfo.second; +  Register AndReg = MI.getOperand(1).getReg(); +  Register SharedReg = MI.getOperand(2).getReg(); + +  // Find a G_AND on either side of the G_XOR. +  // Look for one of +  // +  // (xor (and x, y), SharedReg) +  // (xor SharedReg, (and x, y)) +  if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { +    std::swap(AndReg, SharedReg); +    if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) +      return false; +  } + +  // Only do this if we'll eliminate the G_AND. +  if (!MRI.hasOneNonDBGUse(AndReg)) +    return false; + +  // We can combine if SharedReg is the same as either the LHS or RHS of the +  // G_AND. +  if (Y != SharedReg) +    std::swap(X, Y); +  return Y == SharedReg; +} + +void CombinerHelper::applyXorOfAndWithSameReg( +    MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { +  // Fold (xor (and x, y), y) -> (and (not x), y) +  Builder.setInstrAndDebugLoc(MI); +  Register X, Y; +  std::tie(X, Y) = MatchInfo; +  auto Not = Builder.buildNot(MRI.getType(X), X); +  Observer.changingInstr(MI); +  MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); +  MI.getOperand(1).setReg(Not->getOperand(0).getReg()); +  MI.getOperand(2).setReg(Y); +  Observer.changedInstr(MI); +} + +bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { +  auto &PtrAdd = cast<GPtrAdd>(MI); +  Register DstReg = PtrAdd.getReg(0); +  LLT Ty = MRI.getType(DstReg); +  const DataLayout &DL = Builder.getMF().getDataLayout(); + +  if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) +    return false; + +  if (Ty.isPointer()) { +    auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI); +    return ConstVal && *ConstVal == 0; +  } + +  assert(Ty.isVector() && "Expecting a vector type"); +  const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); +  return isBuildVectorAllZeros(*VecMI, MRI); +} + +void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { +  auto &PtrAdd = cast<GPtrAdd>(MI); +  Builder.setInstrAndDebugLoc(PtrAdd); +  Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); +  PtrAdd.eraseFromParent(); +} + +/// The second source operand is known to be a power of 2. +void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { +  Register DstReg = MI.getOperand(0).getReg(); +  Register Src0 = MI.getOperand(1).getReg(); +  Register Pow2Src1 = MI.getOperand(2).getReg(); +  LLT Ty = MRI.getType(DstReg); +  Builder.setInstrAndDebugLoc(MI); + +  // Fold (urem x, pow2) -> (and x, pow2-1) +  auto NegOne = Builder.buildConstant(Ty, -1); +  auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); +  Builder.buildAnd(DstReg, Src0, Add); +  MI.eraseFromParent(); +} + +bool CombinerHelper::matchFoldBinOpIntoSelect(MachineInstr &MI, +                                              unsigned &SelectOpNo) { +  Register LHS = MI.getOperand(1).getReg(); +  Register RHS = MI.getOperand(2).getReg(); + +  Register OtherOperandReg = RHS; +  SelectOpNo = 1; +  MachineInstr *Select = MRI.getVRegDef(LHS); + +  // Don't do this unless the old select is going away. We want to eliminate the +  // binary operator, not replace a binop with a select. +  if (Select->getOpcode() != TargetOpcode::G_SELECT || +      !MRI.hasOneNonDBGUse(LHS)) { +    OtherOperandReg = LHS; +    SelectOpNo = 2; +    Select = MRI.getVRegDef(RHS); +    if (Select->getOpcode() != TargetOpcode::G_SELECT || +        !MRI.hasOneNonDBGUse(RHS)) +      return false; +  } + +  MachineInstr *SelectLHS = MRI.getVRegDef(Select->getOperand(2).getReg()); +  MachineInstr *SelectRHS = MRI.getVRegDef(Select->getOperand(3).getReg()); + +  if (!isConstantOrConstantVector(*SelectLHS, MRI, +                                  /*AllowFP*/ true, +                                  /*AllowOpaqueConstants*/ false)) +    return false; +  if (!isConstantOrConstantVector(*SelectRHS, MRI, +                                  /*AllowFP*/ true, +                                  /*AllowOpaqueConstants*/ false)) +    return false; + +  unsigned BinOpcode = MI.getOpcode(); + +  // We know know one of the operands is a select of constants. Now verify that +  // the other binary operator operand is either a constant, or we can handle a +  // variable. +  bool CanFoldNonConst = +      (BinOpcode == TargetOpcode::G_AND || BinOpcode == TargetOpcode::G_OR) && +      (isNullOrNullSplat(*SelectLHS, MRI) || +       isAllOnesOrAllOnesSplat(*SelectLHS, MRI)) && +      (isNullOrNullSplat(*SelectRHS, MRI) || +       isAllOnesOrAllOnesSplat(*SelectRHS, MRI)); +  if (CanFoldNonConst) +    return true; + +  return isConstantOrConstantVector(*MRI.getVRegDef(OtherOperandReg), MRI, +                                    /*AllowFP*/ true, +                                    /*AllowOpaqueConstants*/ false); +} + +/// \p SelectOperand is the operand in binary operator \p MI that is the select +/// to fold. +bool CombinerHelper::applyFoldBinOpIntoSelect(MachineInstr &MI, +                                              const unsigned &SelectOperand) { +  Builder.setInstrAndDebugLoc(MI); + +  Register Dst = MI.getOperand(0).getReg(); +  Register LHS = MI.getOperand(1).getReg(); +  Register RHS = MI.getOperand(2).getReg(); +  MachineInstr *Select = MRI.getVRegDef(MI.getOperand(SelectOperand).getReg()); + +  Register SelectCond = Select->getOperand(1).getReg(); +  Register SelectTrue = Select->getOperand(2).getReg(); +  Register SelectFalse = Select->getOperand(3).getReg(); + +  LLT Ty = MRI.getType(Dst); +  unsigned BinOpcode = MI.getOpcode(); + +  Register FoldTrue, FoldFalse; + +  // We have a select-of-constants followed by a binary operator with a +  // constant. Eliminate the binop by pulling the constant math into the select. +  // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO +  if (SelectOperand == 1) { +    // TODO: SelectionDAG verifies this actually constant folds before +    // committing to the combine. + +    FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {SelectTrue, RHS}).getReg(0); +    FoldFalse = +        Builder.buildInstr(BinOpcode, {Ty}, {SelectFalse, RHS}).getReg(0); +  } else { +    FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectTrue}).getReg(0); +    FoldFalse = +        Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectFalse}).getReg(0); +  } + +  Builder.buildSelect(Dst, SelectCond, FoldTrue, FoldFalse, MI.getFlags()); +  MI.eraseFromParent(); + +  return true; +} + +std::optional<SmallVector<Register, 8>> +CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { +  assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); +  // We want to detect if Root is part of a tree which represents a bunch +  // of loads being merged into a larger load. We'll try to recognize patterns +  // like, for example: +  // +  //  Reg   Reg +  //   \    / +  //    OR_1   Reg +  //     \    / +  //      OR_2 +  //        \     Reg +  //         .. / +  //        Root +  // +  //  Reg   Reg   Reg   Reg +  //     \ /       \   / +  //     OR_1      OR_2 +  //       \       / +  //        \    / +  //         ... +  //         Root +  // +  // Each "Reg" may have been produced by a load + some arithmetic. This +  // function will save each of them. +  SmallVector<Register, 8> RegsToVisit; +  SmallVector<const MachineInstr *, 7> Ors = {Root}; + +  // In the "worst" case, we're dealing with a load for each byte. So, there +  // are at most #bytes - 1 ORs. +  const unsigned MaxIter = +      MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; +  for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { +    if (Ors.empty()) +      break; +    const MachineInstr *Curr = Ors.pop_back_val(); +    Register OrLHS = Curr->getOperand(1).getReg(); +    Register OrRHS = Curr->getOperand(2).getReg(); + +    // In the combine, we want to elimate the entire tree. +    if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) +      return std::nullopt; + +    // If it's a G_OR, save it and continue to walk. If it's not, then it's +    // something that may be a load + arithmetic. +    if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) +      Ors.push_back(Or); +    else +      RegsToVisit.push_back(OrLHS); +    if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) +      Ors.push_back(Or); +    else +      RegsToVisit.push_back(OrRHS); +  } + +  // We're going to try and merge each register into a wider power-of-2 type, +  // so we ought to have an even number of registers. +  if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) +    return std::nullopt; +  return RegsToVisit; +} + +/// Helper function for findLoadOffsetsForLoadOrCombine. +/// +/// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, +/// and then moving that value into a specific byte offset. +/// +/// e.g. x[i] << 24 +/// +/// \returns The load instruction and the byte offset it is moved into. +static std::optional<std::pair<GZExtLoad *, int64_t>> +matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, +                         const MachineRegisterInfo &MRI) { +  assert(MRI.hasOneNonDBGUse(Reg) && +         "Expected Reg to only have one non-debug use?"); +  Register MaybeLoad; +  int64_t Shift; +  if (!mi_match(Reg, MRI, +                m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { +    Shift = 0; +    MaybeLoad = Reg; +  } + +  if (Shift % MemSizeInBits != 0) +    return std::nullopt; + +  // TODO: Handle other types of loads. +  auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); +  if (!Load) +    return std::nullopt; + +  if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) +    return std::nullopt; + +  return std::make_pair(Load, Shift / MemSizeInBits); +} + +std::optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> +CombinerHelper::findLoadOffsetsForLoadOrCombine( +    SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, +    const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { + +  // Each load found for the pattern. There should be one for each RegsToVisit. +  SmallSetVector<const MachineInstr *, 8> Loads; + +  // The lowest index used in any load. (The lowest "i" for each x[i].) +  int64_t LowestIdx = INT64_MAX; + +  // The load which uses the lowest index. +  GZExtLoad *LowestIdxLoad = nullptr; + +  // Keeps track of the load indices we see. We shouldn't see any indices twice. +  SmallSet<int64_t, 8> SeenIdx; + +  // Ensure each load is in the same MBB. +  // TODO: Support multiple MachineBasicBlocks. +  MachineBasicBlock *MBB = nullptr; +  const MachineMemOperand *MMO = nullptr; + +  // Earliest instruction-order load in the pattern. +  GZExtLoad *EarliestLoad = nullptr; + +  // Latest instruction-order load in the pattern. +  GZExtLoad *LatestLoad = nullptr; + +  // Base pointer which every load should share. +  Register BasePtr; + +  // We want to find a load for each register. Each load should have some +  // appropriate bit twiddling arithmetic. During this loop, we will also keep +  // track of the load which uses the lowest index. Later, we will check if we +  // can use its pointer in the final, combined load. +  for (auto Reg : RegsToVisit) { +    // Find the load, and find the position that it will end up in (e.g. a +    // shifted) value. +    auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); +    if (!LoadAndPos) +      return std::nullopt; +    GZExtLoad *Load; +    int64_t DstPos; +    std::tie(Load, DstPos) = *LoadAndPos; + +    // TODO: Handle multiple MachineBasicBlocks. Currently not handled because +    // it is difficult to check for stores/calls/etc between loads. +    MachineBasicBlock *LoadMBB = Load->getParent(); +    if (!MBB) +      MBB = LoadMBB; +    if (LoadMBB != MBB) +      return std::nullopt; + +    // Make sure that the MachineMemOperands of every seen load are compatible. +    auto &LoadMMO = Load->getMMO(); +    if (!MMO) +      MMO = &LoadMMO; +    if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) +      return std::nullopt; + +    // Find out what the base pointer and index for the load is. +    Register LoadPtr; +    int64_t Idx; +    if (!mi_match(Load->getOperand(1).getReg(), MRI, +                  m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { +      LoadPtr = Load->getOperand(1).getReg(); +      Idx = 0; +    } + +    // Don't combine things like a[i], a[i] -> a bigger load. +    if (!SeenIdx.insert(Idx).second) +      return std::nullopt; + +    // Every load must share the same base pointer; don't combine things like: +    // +    // a[i], b[i + 1] -> a bigger load. +    if (!BasePtr.isValid()) +      BasePtr = LoadPtr; +    if (BasePtr != LoadPtr) +      return std::nullopt; + +    if (Idx < LowestIdx) { +      LowestIdx = Idx; +      LowestIdxLoad = Load; +    } + +    // Keep track of the byte offset that this load ends up at. If we have seen +    // the byte offset, then stop here. We do not want to combine: +    // +    // a[i] << 16, a[i + k] << 16 -> a bigger load. +    if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) +      return std::nullopt; +    Loads.insert(Load); + +    // Keep track of the position of the earliest/latest loads in the pattern. +    // We will check that there are no load fold barriers between them later +    // on. +    // +    // FIXME: Is there a better way to check for load fold barriers? +    if (!EarliestLoad || dominates(*Load, *EarliestLoad)) +      EarliestLoad = Load; +    if (!LatestLoad || dominates(*LatestLoad, *Load)) +      LatestLoad = Load; +  } + +  // We found a load for each register. Let's check if each load satisfies the +  // pattern. +  assert(Loads.size() == RegsToVisit.size() && +         "Expected to find a load for each register?"); +  assert(EarliestLoad != LatestLoad && EarliestLoad && +         LatestLoad && "Expected at least two loads?"); + +  // Check if there are any stores, calls, etc. between any of the loads. If +  // there are, then we can't safely perform the combine. +  // +  // MaxIter is chosen based off the (worst case) number of iterations it +  // typically takes to succeed in the LLVM test suite plus some padding. +  // +  // FIXME: Is there a better way to check for load fold barriers? +  const unsigned MaxIter = 20; +  unsigned Iter = 0; +  for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), +                                                 LatestLoad->getIterator())) { +    if (Loads.count(&MI)) +      continue; +    if (MI.isLoadFoldBarrier()) +      return std::nullopt; +    if (Iter++ == MaxIter) +      return std::nullopt; +  } + +  return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); +} + +bool CombinerHelper::matchLoadOrCombine( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_OR); +  MachineFunction &MF = *MI.getMF(); +  // Assuming a little-endian target, transform: +  //  s8 *a = ... +  //  s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) +  // => +  //  s32 val = *((i32)a) +  // +  //  s8 *a = ... +  //  s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] +  // => +  //  s32 val = BSWAP(*((s32)a)) +  Register Dst = MI.getOperand(0).getReg(); +  LLT Ty = MRI.getType(Dst); +  if (Ty.isVector()) +    return false; + +  // We need to combine at least two loads into this type. Since the smallest +  // possible load is into a byte, we need at least a 16-bit wide type. +  const unsigned WideMemSizeInBits = Ty.getSizeInBits(); +  if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) +    return false; + +  // Match a collection of non-OR instructions in the pattern. +  auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); +  if (!RegsToVisit) +    return false; + +  // We have a collection of non-OR instructions. Figure out how wide each of +  // the small loads should be based off of the number of potential loads we +  // found. +  const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); +  if (NarrowMemSizeInBits % 8 != 0) +    return false; + +  // Check if each register feeding into each OR is a load from the same +  // base pointer + some arithmetic. +  // +  // e.g. a[0], a[1] << 8, a[2] << 16, etc. +  // +  // Also verify that each of these ends up putting a[i] into the same memory +  // offset as a load into a wide type would. +  SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; +  GZExtLoad *LowestIdxLoad, *LatestLoad; +  int64_t LowestIdx; +  auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( +      MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); +  if (!MaybeLoadInfo) +    return false; +  std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; + +  // We have a bunch of loads being OR'd together. Using the addresses + offsets +  // we found before, check if this corresponds to a big or little endian byte +  // pattern. If it does, then we can represent it using a load + possibly a +  // BSWAP. +  bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); +  std::optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); +  if (!IsBigEndian) +    return false; +  bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; +  if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) +    return false; + +  // Make sure that the load from the lowest index produces offset 0 in the +  // final value. +  // +  // This ensures that we won't combine something like this: +  // +  // load x[i] -> byte 2 +  // load x[i+1] -> byte 0 ---> wide_load x[i] +  // load x[i+2] -> byte 1 +  const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; +  const unsigned ZeroByteOffset = +      *IsBigEndian +          ? bigEndianByteAt(NumLoadsInTy, 0) +          : littleEndianByteAt(NumLoadsInTy, 0); +  auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); +  if (ZeroOffsetIdx == MemOffset2Idx.end() || +      ZeroOffsetIdx->second != LowestIdx) +    return false; + +  // We wil reuse the pointer from the load which ends up at byte offset 0. It +  // may not use index 0. +  Register Ptr = LowestIdxLoad->getPointerReg(); +  const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); +  LegalityQuery::MemDesc MMDesc(MMO); +  MMDesc.MemoryTy = Ty; +  if (!isLegalOrBeforeLegalizer( +          {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) +    return false; +  auto PtrInfo = MMO.getPointerInfo(); +  auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); + +  // Load must be allowed and fast on the target. +  LLVMContext &C = MF.getFunction().getContext(); +  auto &DL = MF.getDataLayout(); +  unsigned Fast = 0; +  if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || +      !Fast) +    return false; + +  MatchInfo = [=](MachineIRBuilder &MIB) { +    MIB.setInstrAndDebugLoc(*LatestLoad); +    Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; +    MIB.buildLoad(LoadDst, Ptr, *NewMMO); +    if (NeedsBSwap) +      MIB.buildBSwap(Dst, LoadDst); +  }; +  return true; +} + +/// Check if the store \p Store is a truncstore that can be merged. That is, +/// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty +/// Register then it does not need to match and SrcVal is set to the source +/// value found. +/// On match, returns the start byte offset of the \p SrcVal that is being +/// stored. +static std::optional<int64_t> +getTruncStoreByteOffset(GStore &Store, Register &SrcVal, +                        MachineRegisterInfo &MRI) { +  Register TruncVal; +  if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal)))) +    return std::nullopt; + +  // The shift amount must be a constant multiple of the narrow type. +  // It is translated to the offset address in the wide source value "y". +  // +  // x = G_LSHR y, ShiftAmtC +  // s8 z = G_TRUNC x +  // store z, ... +  Register FoundSrcVal; +  int64_t ShiftAmt; +  if (!mi_match(TruncVal, MRI, +                m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)), +                         m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) { +    if (!SrcVal.isValid() || TruncVal == SrcVal) { +      if (!SrcVal.isValid()) +        SrcVal = TruncVal; +      return 0; // If it's the lowest index store. +    } +    return std::nullopt; +  } + +  unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); +  if (ShiftAmt % NarrowBits!= 0) +    return std::nullopt; +  const unsigned Offset = ShiftAmt / NarrowBits; + +  if (SrcVal.isValid() && FoundSrcVal != SrcVal) +    return std::nullopt; + +  if (!SrcVal.isValid()) +    SrcVal = FoundSrcVal; +  else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal)) +    return std::nullopt; +  return Offset; +} + +/// Match a pattern where a wide type scalar value is stored by several narrow +/// stores. Fold it into a single store or a BSWAP and a store if the targets +/// supports it. +/// +/// Assuming little endian target: +///  i8 *p = ... +///  i32 val = ... +///  p[0] = (val >> 0) & 0xFF; +///  p[1] = (val >> 8) & 0xFF; +///  p[2] = (val >> 16) & 0xFF; +///  p[3] = (val >> 24) & 0xFF; +/// => +///  *((i32)p) = val; +/// +///  i8 *p = ... +///  i32 val = ... +///  p[0] = (val >> 24) & 0xFF; +///  p[1] = (val >> 16) & 0xFF; +///  p[2] = (val >> 8) & 0xFF; +///  p[3] = (val >> 0) & 0xFF; +/// => +///  *((i32)p) = BSWAP(val); +bool CombinerHelper::matchTruncStoreMerge(MachineInstr &MI, +                                          MergeTruncStoresInfo &MatchInfo) { +  auto &StoreMI = cast<GStore>(MI); +  LLT MemTy = StoreMI.getMMO().getMemoryType(); + +  // We only handle merging simple stores of 1-4 bytes. +  if (!MemTy.isScalar()) +    return false; +  switch (MemTy.getSizeInBits()) { +  case 8: +  case 16: +  case 32: +    break; +  default: +    return false; +  } +  if (!StoreMI.isSimple()) +    return false; + +  // We do a simple search for mergeable stores prior to this one. +  // Any potential alias hazard along the way terminates the search. +  SmallVector<GStore *> FoundStores; + +  // We're looking for: +  // 1) a (store(trunc(...))) +  // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get +  //    the partial value stored. +  // 3) where the offsets form either a little or big-endian sequence. + +  auto &LastStore = StoreMI; + +  // The single base pointer that all stores must use. +  Register BaseReg; +  int64_t LastOffset; +  if (!mi_match(LastStore.getPointerReg(), MRI, +                m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) { +    BaseReg = LastStore.getPointerReg(); +    LastOffset = 0; +  } + +  GStore *LowestIdxStore = &LastStore; +  int64_t LowestIdxOffset = LastOffset; + +  Register WideSrcVal; +  auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, MRI); +  if (!LowestShiftAmt) +    return false; // Didn't match a trunc. +  assert(WideSrcVal.isValid()); + +  LLT WideStoreTy = MRI.getType(WideSrcVal); +  // The wide type might not be a multiple of the memory type, e.g. s48 and s32. +  if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0) +    return false; +  const unsigned NumStoresRequired = +      WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); + +  SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); +  OffsetMap[*LowestShiftAmt] = LastOffset; +  FoundStores.emplace_back(&LastStore); + +  // Search the block up for more stores. +  // We use a search threshold of 10 instructions here because the combiner +  // works top-down within a block, and we don't want to search an unbounded +  // number of predecessor instructions trying to find matching stores. +  // If we moved this optimization into a separate pass then we could probably +  // use a more efficient search without having a hard-coded threshold. +  const int MaxInstsToCheck = 10; +  int NumInstsChecked = 0; +  for (auto II = ++LastStore.getReverseIterator(); +       II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; +       ++II) { +    NumInstsChecked++; +    GStore *NewStore; +    if ((NewStore = dyn_cast<GStore>(&*II))) { +      if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) +        break; +    } else if (II->isLoadFoldBarrier() || II->mayLoad()) { +      break; +    } else { +      continue; // This is a safe instruction we can look past. +    } + +    Register NewBaseReg; +    int64_t MemOffset; +    // Check we're storing to the same base + some offset. +    if (!mi_match(NewStore->getPointerReg(), MRI, +                  m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) { +      NewBaseReg = NewStore->getPointerReg(); +      MemOffset = 0; +    } +    if (BaseReg != NewBaseReg) +      break; + +    auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, MRI); +    if (!ShiftByteOffset) +      break; +    if (MemOffset < LowestIdxOffset) { +      LowestIdxOffset = MemOffset; +      LowestIdxStore = NewStore; +    } + +    // Map the offset in the store and the offset in the combined value, and +    // early return if it has been set before. +    if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || +        OffsetMap[*ShiftByteOffset] != INT64_MAX) +      break; +    OffsetMap[*ShiftByteOffset] = MemOffset; + +    FoundStores.emplace_back(NewStore); +    // Reset counter since we've found a matching inst. +    NumInstsChecked = 0; +    if (FoundStores.size() == NumStoresRequired) +      break; +  } + +  if (FoundStores.size() != NumStoresRequired) { +    return false; +  } + +  const auto &DL = LastStore.getMF()->getDataLayout(); +  auto &C = LastStore.getMF()->getFunction().getContext(); +  // Check that a store of the wide type is both allowed and fast on the target +  unsigned Fast = 0; +  bool Allowed = getTargetLowering().allowsMemoryAccess( +      C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast); +  if (!Allowed || !Fast) +    return false; + +  // Check if the pieces of the value are going to the expected places in memory +  // to merge the stores. +  unsigned NarrowBits = MemTy.getScalarSizeInBits(); +  auto checkOffsets = [&](bool MatchLittleEndian) { +    if (MatchLittleEndian) { +      for (unsigned i = 0; i != NumStoresRequired; ++i) +        if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) +          return false; +    } else { // MatchBigEndian by reversing loop counter. +      for (unsigned i = 0, j = NumStoresRequired - 1; i != NumStoresRequired; +           ++i, --j) +        if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) +          return false; +    } +    return true; +  }; + +  // Check if the offsets line up for the native data layout of this target. +  bool NeedBswap = false; +  bool NeedRotate = false; +  if (!checkOffsets(DL.isLittleEndian())) { +    // Special-case: check if byte offsets line up for the opposite endian. +    if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) +      NeedBswap = true; +    else if (NumStoresRequired == 2 && checkOffsets(DL.isBigEndian())) +      NeedRotate = true; +    else +      return false; +  } + +  if (NeedBswap && +      !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}})) +    return false; +  if (NeedRotate && +      !isLegalOrBeforeLegalizer({TargetOpcode::G_ROTR, {WideStoreTy}})) +    return false; + +  MatchInfo.NeedBSwap = NeedBswap; +  MatchInfo.NeedRotate = NeedRotate; +  MatchInfo.LowestIdxStore = LowestIdxStore; +  MatchInfo.WideSrcVal = WideSrcVal; +  MatchInfo.FoundStores = std::move(FoundStores); +  return true; +} + +void CombinerHelper::applyTruncStoreMerge(MachineInstr &MI, +                                          MergeTruncStoresInfo &MatchInfo) { + +  Builder.setInstrAndDebugLoc(MI); +  Register WideSrcVal = MatchInfo.WideSrcVal; +  LLT WideStoreTy = MRI.getType(WideSrcVal); + +  if (MatchInfo.NeedBSwap) { +    WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0); +  } else if (MatchInfo.NeedRotate) { +    assert(WideStoreTy.getSizeInBits() % 2 == 0 && +           "Unexpected type for rotate"); +    auto RotAmt = +        Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2); +    WideSrcVal = +        Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0); +  } + +  Builder.buildStore(WideSrcVal, MatchInfo.LowestIdxStore->getPointerReg(), +                     MatchInfo.LowestIdxStore->getMMO().getPointerInfo(), +                     MatchInfo.LowestIdxStore->getMMO().getAlign()); + +  // Erase the old stores. +  for (auto *ST : MatchInfo.FoundStores) +    ST->eraseFromParent(); +} + +bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, +                                            MachineInstr *&ExtMI) { +  assert(MI.getOpcode() == TargetOpcode::G_PHI); + +  Register DstReg = MI.getOperand(0).getReg(); + +  // TODO: Extending a vector may be expensive, don't do this until heuristics +  // are better. +  if (MRI.getType(DstReg).isVector()) +    return false; + +  // Try to match a phi, whose only use is an extend. +  if (!MRI.hasOneNonDBGUse(DstReg)) +    return false; +  ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); +  switch (ExtMI->getOpcode()) { +  case TargetOpcode::G_ANYEXT: +    return true; // G_ANYEXT is usually free. +  case TargetOpcode::G_ZEXT: +  case TargetOpcode::G_SEXT: +    break; +  default: +    return false; +  } + +  // If the target is likely to fold this extend away, don't propagate. +  if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) +    return false; + +  // We don't want to propagate the extends unless there's a good chance that +  // they'll be optimized in some way. +  // Collect the unique incoming values. +  SmallPtrSet<MachineInstr *, 4> InSrcs; +  for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { +    auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); +    switch (DefMI->getOpcode()) { +    case TargetOpcode::G_LOAD: +    case TargetOpcode::G_TRUNC: +    case TargetOpcode::G_SEXT: +    case TargetOpcode::G_ZEXT: +    case TargetOpcode::G_ANYEXT: +    case TargetOpcode::G_CONSTANT: +      InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); +      // Don't try to propagate if there are too many places to create new +      // extends, chances are it'll increase code size. +      if (InSrcs.size() > 2) +        return false; +      break; +    default: +      return false; +    } +  } +  return true; +} + +void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, +                                            MachineInstr *&ExtMI) { +  assert(MI.getOpcode() == TargetOpcode::G_PHI); +  Register DstReg = ExtMI->getOperand(0).getReg(); +  LLT ExtTy = MRI.getType(DstReg); + +  // Propagate the extension into the block of each incoming reg's block. +  // Use a SetVector here because PHIs can have duplicate edges, and we want +  // deterministic iteration order. +  SmallSetVector<MachineInstr *, 8> SrcMIs; +  SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; +  for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { +    auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); +    if (!SrcMIs.insert(SrcMI)) +      continue; + +    // Build an extend after each src inst. +    auto *MBB = SrcMI->getParent(); +    MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); +    if (InsertPt != MBB->end() && InsertPt->isPHI()) +      InsertPt = MBB->getFirstNonPHI(); + +    Builder.setInsertPt(*SrcMI->getParent(), InsertPt); +    Builder.setDebugLoc(MI.getDebugLoc()); +    auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, +                                          SrcMI->getOperand(0).getReg()); +    OldToNewSrcMap[SrcMI] = NewExt; +  } + +  // Create a new phi with the extended inputs. +  Builder.setInstrAndDebugLoc(MI); +  auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); +  NewPhi.addDef(DstReg); +  for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { +    if (!MO.isReg()) { +      NewPhi.addMBB(MO.getMBB()); +      continue; +    } +    auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; +    NewPhi.addUse(NewSrc->getOperand(0).getReg()); +  } +  Builder.insertInstr(NewPhi); +  ExtMI->eraseFromParent(); +} + +bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, +                                                Register &Reg) { +  assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); +  // If we have a constant index, look for a G_BUILD_VECTOR source +  // and find the source register that the index maps to. +  Register SrcVec = MI.getOperand(1).getReg(); +  LLT SrcTy = MRI.getType(SrcVec); + +  auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); +  if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) +    return false; + +  unsigned VecIdx = Cst->Value.getZExtValue(); + +  // Check if we have a build_vector or build_vector_trunc with an optional +  // trunc in front. +  MachineInstr *SrcVecMI = MRI.getVRegDef(SrcVec); +  if (SrcVecMI->getOpcode() == TargetOpcode::G_TRUNC) { +    SrcVecMI = MRI.getVRegDef(SrcVecMI->getOperand(1).getReg()); +  } + +  if (SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR && +      SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR_TRUNC) +    return false; + +  EVT Ty(getMVTForLLT(SrcTy)); +  if (!MRI.hasOneNonDBGUse(SrcVec) && +      !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) +    return false; + +  Reg = SrcVecMI->getOperand(VecIdx + 1).getReg(); +  return true; +} + +void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, +                                                Register &Reg) { +  // Check the type of the register, since it may have come from a +  // G_BUILD_VECTOR_TRUNC. +  LLT ScalarTy = MRI.getType(Reg); +  Register DstReg = MI.getOperand(0).getReg(); +  LLT DstTy = MRI.getType(DstReg); + +  Builder.setInstrAndDebugLoc(MI); +  if (ScalarTy != DstTy) { +    assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); +    Builder.buildTrunc(DstReg, Reg); +    MI.eraseFromParent(); +    return; +  } +  replaceSingleDefInstWithReg(MI, Reg); +} + +bool CombinerHelper::matchExtractAllEltsFromBuildVector( +    MachineInstr &MI, +    SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { +  assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); +  // This combine tries to find build_vector's which have every source element +  // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like +  // the masked load scalarization is run late in the pipeline. There's already +  // a combine for a similar pattern starting from the extract, but that +  // doesn't attempt to do it if there are multiple uses of the build_vector, +  // which in this case is true. Starting the combine from the build_vector +  // feels more natural than trying to find sibling nodes of extracts. +  // E.g. +  //  %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 +  //  %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 +  //  %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 +  //  %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 +  //  %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 +  // ==> +  // replace ext{1,2,3,4} with %s{1,2,3,4} + +  Register DstReg = MI.getOperand(0).getReg(); +  LLT DstTy = MRI.getType(DstReg); +  unsigned NumElts = DstTy.getNumElements(); + +  SmallBitVector ExtractedElts(NumElts); +  for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) { +    if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) +      return false; +    auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI); +    if (!Cst) +      return false; +    unsigned Idx = Cst->getZExtValue(); +    if (Idx >= NumElts) +      return false; // Out of range. +    ExtractedElts.set(Idx); +    SrcDstPairs.emplace_back( +        std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); +  } +  // Match if every element was extracted. +  return ExtractedElts.all(); +} + +void CombinerHelper::applyExtractAllEltsFromBuildVector( +    MachineInstr &MI, +    SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { +  assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); +  for (auto &Pair : SrcDstPairs) { +    auto *ExtMI = Pair.second; +    replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); +    ExtMI->eraseFromParent(); +  } +  MI.eraseFromParent(); +} + +void CombinerHelper::applyBuildFn( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  Builder.setInstrAndDebugLoc(MI); +  MatchInfo(Builder); +  MI.eraseFromParent(); +} + +void CombinerHelper::applyBuildFnNoErase( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  Builder.setInstrAndDebugLoc(MI); +  MatchInfo(Builder); +} + +bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI, +                                               BuildFnTy &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_OR); + +  Register Dst = MI.getOperand(0).getReg(); +  LLT Ty = MRI.getType(Dst); +  unsigned BitWidth = Ty.getScalarSizeInBits(); + +  Register ShlSrc, ShlAmt, LShrSrc, LShrAmt, Amt; +  unsigned FshOpc = 0; + +  // Match (or (shl ...), (lshr ...)). +  if (!mi_match(Dst, MRI, +                // m_GOr() handles the commuted version as well. +                m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)), +                      m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt))))) +    return false; + +  // Given constants C0 and C1 such that C0 + C1 is bit-width: +  // (or (shl x, C0), (lshr y, C1)) -> (fshl x, y, C0) or (fshr x, y, C1) +  int64_t CstShlAmt, CstLShrAmt; +  if (mi_match(ShlAmt, MRI, m_ICstOrSplat(CstShlAmt)) && +      mi_match(LShrAmt, MRI, m_ICstOrSplat(CstLShrAmt)) && +      CstShlAmt + CstLShrAmt == BitWidth) { +    FshOpc = TargetOpcode::G_FSHR; +    Amt = LShrAmt; + +  } else if (mi_match(LShrAmt, MRI, +                      m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && +             ShlAmt == Amt) { +    // (or (shl x, amt), (lshr y, (sub bw, amt))) -> (fshl x, y, amt) +    FshOpc = TargetOpcode::G_FSHL; + +  } else if (mi_match(ShlAmt, MRI, +                      m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && +             LShrAmt == Amt) { +    // (or (shl x, (sub bw, amt)), (lshr y, amt)) -> (fshr x, y, amt) +    FshOpc = TargetOpcode::G_FSHR; + +  } else { +    return false; +  } + +  LLT AmtTy = MRI.getType(Amt); +  if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}})) +    return false; + +  MatchInfo = [=](MachineIRBuilder &B) { +    B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, Amt}); +  }; +  return true; +} + +/// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. +bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { +  unsigned Opc = MI.getOpcode(); +  assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); +  Register X = MI.getOperand(1).getReg(); +  Register Y = MI.getOperand(2).getReg(); +  if (X != Y) +    return false; +  unsigned RotateOpc = +      Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; +  return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); +} + +void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { +  unsigned Opc = MI.getOpcode(); +  assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); +  bool IsFSHL = Opc == TargetOpcode::G_FSHL; +  Observer.changingInstr(MI); +  MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL +                                         : TargetOpcode::G_ROTR)); +  MI.removeOperand(2); +  Observer.changedInstr(MI); +} + +// Fold (rot x, c) -> (rot x, c % BitSize) +bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { +  assert(MI.getOpcode() == TargetOpcode::G_ROTL || +         MI.getOpcode() == TargetOpcode::G_ROTR); +  unsigned Bitsize = +      MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); +  Register AmtReg = MI.getOperand(2).getReg(); +  bool OutOfRange = false; +  auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { +    if (auto *CI = dyn_cast<ConstantInt>(C)) +      OutOfRange |= CI->getValue().uge(Bitsize); +    return true; +  }; +  return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; +} + +void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { +  assert(MI.getOpcode() == TargetOpcode::G_ROTL || +         MI.getOpcode() == TargetOpcode::G_ROTR); +  unsigned Bitsize = +      MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); +  Builder.setInstrAndDebugLoc(MI); +  Register Amt = MI.getOperand(2).getReg(); +  LLT AmtTy = MRI.getType(Amt); +  auto Bits = Builder.buildConstant(AmtTy, Bitsize); +  Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); +  Observer.changingInstr(MI); +  MI.getOperand(2).setReg(Amt); +  Observer.changedInstr(MI); +} + +bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, +                                                   int64_t &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_ICMP); +  auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); +  auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); +  auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); +  std::optional<bool> KnownVal; +  switch (Pred) { +  default: +    llvm_unreachable("Unexpected G_ICMP predicate?"); +  case CmpInst::ICMP_EQ: +    KnownVal = KnownBits::eq(KnownLHS, KnownRHS); +    break; +  case CmpInst::ICMP_NE: +    KnownVal = KnownBits::ne(KnownLHS, KnownRHS); +    break; +  case CmpInst::ICMP_SGE: +    KnownVal = KnownBits::sge(KnownLHS, KnownRHS); +    break; +  case CmpInst::ICMP_SGT: +    KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); +    break; +  case CmpInst::ICMP_SLE: +    KnownVal = KnownBits::sle(KnownLHS, KnownRHS); +    break; +  case CmpInst::ICMP_SLT: +    KnownVal = KnownBits::slt(KnownLHS, KnownRHS); +    break; +  case CmpInst::ICMP_UGE: +    KnownVal = KnownBits::uge(KnownLHS, KnownRHS); +    break; +  case CmpInst::ICMP_UGT: +    KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); +    break; +  case CmpInst::ICMP_ULE: +    KnownVal = KnownBits::ule(KnownLHS, KnownRHS); +    break; +  case CmpInst::ICMP_ULT: +    KnownVal = KnownBits::ult(KnownLHS, KnownRHS); +    break; +  } +  if (!KnownVal) +    return false; +  MatchInfo = +      *KnownVal +          ? getICmpTrueVal(getTargetLowering(), +                           /*IsVector = */ +                           MRI.getType(MI.getOperand(0).getReg()).isVector(), +                           /* IsFP = */ false) +          : 0; +  return true; +} + +bool CombinerHelper::matchICmpToLHSKnownBits( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_ICMP); +  // Given: +  // +  // %x = G_WHATEVER (... x is known to be 0 or 1 ...) +  // %cmp = G_ICMP ne %x, 0 +  // +  // Or: +  // +  // %x = G_WHATEVER (... x is known to be 0 or 1 ...) +  // %cmp = G_ICMP eq %x, 1 +  // +  // We can replace %cmp with %x assuming true is 1 on the target. +  auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); +  if (!CmpInst::isEquality(Pred)) +    return false; +  Register Dst = MI.getOperand(0).getReg(); +  LLT DstTy = MRI.getType(Dst); +  if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(), +                     /* IsFP = */ false) != 1) +    return false; +  int64_t OneOrZero = Pred == CmpInst::ICMP_EQ; +  if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero))) +    return false; +  Register LHS = MI.getOperand(2).getReg(); +  auto KnownLHS = KB->getKnownBits(LHS); +  if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1) +    return false; +  // Make sure replacing Dst with the LHS is a legal operation. +  LLT LHSTy = MRI.getType(LHS); +  unsigned LHSSize = LHSTy.getSizeInBits(); +  unsigned DstSize = DstTy.getSizeInBits(); +  unsigned Op = TargetOpcode::COPY; +  if (DstSize != LHSSize) +    Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT; +  if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}})) +    return false; +  MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); }; +  return true; +} + +// Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0 +bool CombinerHelper::matchAndOrDisjointMask( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_AND); + +  // Ignore vector types to simplify matching the two constants. +  // TODO: do this for vectors and scalars via a demanded bits analysis. +  LLT Ty = MRI.getType(MI.getOperand(0).getReg()); +  if (Ty.isVector()) +    return false; + +  Register Src; +  Register AndMaskReg; +  int64_t AndMaskBits; +  int64_t OrMaskBits; +  if (!mi_match(MI, MRI, +                m_GAnd(m_GOr(m_Reg(Src), m_ICst(OrMaskBits)), +                       m_all_of(m_ICst(AndMaskBits), m_Reg(AndMaskReg))))) +    return false; + +  // Check if OrMask could turn on any bits in Src. +  if (AndMaskBits & OrMaskBits) +    return false; + +  MatchInfo = [=, &MI](MachineIRBuilder &B) { +    Observer.changingInstr(MI); +    // Canonicalize the result to have the constant on the RHS. +    if (MI.getOperand(1).getReg() == AndMaskReg) +      MI.getOperand(2).setReg(AndMaskReg); +    MI.getOperand(1).setReg(Src); +    Observer.changedInstr(MI); +  }; +  return true; +} + +/// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. +bool CombinerHelper::matchBitfieldExtractFromSExtInReg( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); +  Register Dst = MI.getOperand(0).getReg(); +  Register Src = MI.getOperand(1).getReg(); +  LLT Ty = MRI.getType(Src); +  LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); +  if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) +    return false; +  int64_t Width = MI.getOperand(2).getImm(); +  Register ShiftSrc; +  int64_t ShiftImm; +  if (!mi_match( +          Src, MRI, +          m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), +                                  m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) +    return false; +  if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) +    return false; + +  MatchInfo = [=](MachineIRBuilder &B) { +    auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); +    auto Cst2 = B.buildConstant(ExtractTy, Width); +    B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); +  }; +  return true; +} + +/// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. +bool CombinerHelper::matchBitfieldExtractFromAnd( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_AND); +  Register Dst = MI.getOperand(0).getReg(); +  LLT Ty = MRI.getType(Dst); +  LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); +  if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal( +          TargetOpcode::G_UBFX, Ty, ExtractTy)) +    return false; + +  int64_t AndImm, LSBImm; +  Register ShiftSrc; +  const unsigned Size = Ty.getScalarSizeInBits(); +  if (!mi_match(MI.getOperand(0).getReg(), MRI, +                m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), +                       m_ICst(AndImm)))) +    return false; + +  // The mask is a mask of the low bits iff imm & (imm+1) == 0. +  auto MaybeMask = static_cast<uint64_t>(AndImm); +  if (MaybeMask & (MaybeMask + 1)) +    return false; + +  // LSB must fit within the register. +  if (static_cast<uint64_t>(LSBImm) >= Size) +    return false; + +  uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); +  MatchInfo = [=](MachineIRBuilder &B) { +    auto WidthCst = B.buildConstant(ExtractTy, Width); +    auto LSBCst = B.buildConstant(ExtractTy, LSBImm); +    B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); +  }; +  return true; +} + +bool CombinerHelper::matchBitfieldExtractFromShr( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  const unsigned Opcode = MI.getOpcode(); +  assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); + +  const Register Dst = MI.getOperand(0).getReg(); + +  const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR +                                  ? TargetOpcode::G_SBFX +                                  : TargetOpcode::G_UBFX; + +  // Check if the type we would use for the extract is legal +  LLT Ty = MRI.getType(Dst); +  LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); +  if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) +    return false; + +  Register ShlSrc; +  int64_t ShrAmt; +  int64_t ShlAmt; +  const unsigned Size = Ty.getScalarSizeInBits(); + +  // Try to match shr (shl x, c1), c2 +  if (!mi_match(Dst, MRI, +                m_BinOp(Opcode, +                        m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), +                        m_ICst(ShrAmt)))) +    return false; + +  // Make sure that the shift sizes can fit a bitfield extract +  if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) +    return false; + +  // Skip this combine if the G_SEXT_INREG combine could handle it +  if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) +    return false; + +  // Calculate start position and width of the extract +  const int64_t Pos = ShrAmt - ShlAmt; +  const int64_t Width = Size - ShrAmt; + +  MatchInfo = [=](MachineIRBuilder &B) { +    auto WidthCst = B.buildConstant(ExtractTy, Width); +    auto PosCst = B.buildConstant(ExtractTy, Pos); +    B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); +  }; +  return true; +} + +bool CombinerHelper::matchBitfieldExtractFromShrAnd( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  const unsigned Opcode = MI.getOpcode(); +  assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR); + +  const Register Dst = MI.getOperand(0).getReg(); +  LLT Ty = MRI.getType(Dst); +  LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); +  if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal( +          TargetOpcode::G_UBFX, Ty, ExtractTy)) +    return false; + +  // Try to match shr (and x, c1), c2 +  Register AndSrc; +  int64_t ShrAmt; +  int64_t SMask; +  if (!mi_match(Dst, MRI, +                m_BinOp(Opcode, +                        m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))), +                        m_ICst(ShrAmt)))) +    return false; + +  const unsigned Size = Ty.getScalarSizeInBits(); +  if (ShrAmt < 0 || ShrAmt >= Size) +    return false; + +  // If the shift subsumes the mask, emit the 0 directly. +  if (0 == (SMask >> ShrAmt)) { +    MatchInfo = [=](MachineIRBuilder &B) { +      B.buildConstant(Dst, 0); +    }; +    return true; +  } + +  // Check that ubfx can do the extraction, with no holes in the mask. +  uint64_t UMask = SMask; +  UMask |= maskTrailingOnes<uint64_t>(ShrAmt); +  UMask &= maskTrailingOnes<uint64_t>(Size); +  if (!isMask_64(UMask)) +    return false; + +  // Calculate start position and width of the extract. +  const int64_t Pos = ShrAmt; +  const int64_t Width = countTrailingOnes(UMask) - ShrAmt; + +  // It's preferable to keep the shift, rather than form G_SBFX. +  // TODO: remove the G_AND via demanded bits analysis. +  if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size) +    return false; + +  MatchInfo = [=](MachineIRBuilder &B) { +    auto WidthCst = B.buildConstant(ExtractTy, Width); +    auto PosCst = B.buildConstant(ExtractTy, Pos); +    B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst}); +  }; +  return true; +} + +bool CombinerHelper::reassociationCanBreakAddressingModePattern( +    MachineInstr &PtrAdd) { +  assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); + +  Register Src1Reg = PtrAdd.getOperand(1).getReg(); +  MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); +  if (!Src1Def) +    return false; + +  Register Src2Reg = PtrAdd.getOperand(2).getReg(); + +  if (MRI.hasOneNonDBGUse(Src1Reg)) +    return false; + +  auto C1 = getIConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); +  if (!C1) +    return false; +  auto C2 = getIConstantVRegVal(Src2Reg, MRI); +  if (!C2) +    return false; + +  const APInt &C1APIntVal = *C1; +  const APInt &C2APIntVal = *C2; +  const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); + +  for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { +    // This combine may end up running before ptrtoint/inttoptr combines +    // manage to eliminate redundant conversions, so try to look through them. +    MachineInstr *ConvUseMI = &UseMI; +    unsigned ConvUseOpc = ConvUseMI->getOpcode(); +    while (ConvUseOpc == TargetOpcode::G_INTTOPTR || +           ConvUseOpc == TargetOpcode::G_PTRTOINT) { +      Register DefReg = ConvUseMI->getOperand(0).getReg(); +      if (!MRI.hasOneNonDBGUse(DefReg)) +        break; +      ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); +      ConvUseOpc = ConvUseMI->getOpcode(); +    } +    auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || +                     ConvUseOpc == TargetOpcode::G_STORE; +    if (!LoadStore) +      continue; +    // Is x[offset2] already not a legal addressing mode? If so then +    // reassociating the constants breaks nothing (we test offset2 because +    // that's the one we hope to fold into the load or store). +    TargetLoweringBase::AddrMode AM; +    AM.HasBaseReg = true; +    AM.BaseOffs = C2APIntVal.getSExtValue(); +    unsigned AS = +        MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); +    Type *AccessTy = +        getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), +                      PtrAdd.getMF()->getFunction().getContext()); +    const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); +    if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, +                                   AccessTy, AS)) +      continue; + +    // Would x[offset1+offset2] still be a legal addressing mode? +    AM.BaseOffs = CombinedValue; +    if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, +                                   AccessTy, AS)) +      return true; +  } + +  return false; +} + +bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI, +                                                  MachineInstr *RHS, +                                                  BuildFnTy &MatchInfo) { +  // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) +  Register Src1Reg = MI.getOperand(1).getReg(); +  if (RHS->getOpcode() != TargetOpcode::G_ADD) +    return false; +  auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI); +  if (!C2) +    return false; + +  MatchInfo = [=, &MI](MachineIRBuilder &B) { +    LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); + +    auto NewBase = +        Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); +    Observer.changingInstr(MI); +    MI.getOperand(1).setReg(NewBase.getReg(0)); +    MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); +    Observer.changedInstr(MI); +  }; +  return !reassociationCanBreakAddressingModePattern(MI); +} + +bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI, +                                                  MachineInstr *LHS, +                                                  MachineInstr *RHS, +                                                  BuildFnTy &MatchInfo) { +  // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C) +  // if and only if (G_PTR_ADD X, C) has one use. +  Register LHSBase; +  std::optional<ValueAndVReg> LHSCstOff; +  if (!mi_match(MI.getBaseReg(), MRI, +                m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff))))) +    return false; + +  auto *LHSPtrAdd = cast<GPtrAdd>(LHS); +  MatchInfo = [=, &MI](MachineIRBuilder &B) { +    // When we change LHSPtrAdd's offset register we might cause it to use a reg +    // before its def. Sink the instruction so the outer PTR_ADD to ensure this +    // doesn't happen. +    LHSPtrAdd->moveBefore(&MI); +    Register RHSReg = MI.getOffsetReg(); +    // set VReg will cause type mismatch if it comes from extend/trunc +    auto NewCst = B.buildConstant(MRI.getType(RHSReg), LHSCstOff->Value); +    Observer.changingInstr(MI); +    MI.getOperand(2).setReg(NewCst.getReg(0)); +    Observer.changedInstr(MI); +    Observer.changingInstr(*LHSPtrAdd); +    LHSPtrAdd->getOperand(2).setReg(RHSReg); +    Observer.changedInstr(*LHSPtrAdd); +  }; +  return !reassociationCanBreakAddressingModePattern(MI); +} + +bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI, +                                                        MachineInstr *LHS, +                                                        MachineInstr *RHS, +                                                        BuildFnTy &MatchInfo) { +  // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) +  auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS); +  if (!LHSPtrAdd) +    return false; + +  Register Src2Reg = MI.getOperand(2).getReg(); +  Register LHSSrc1 = LHSPtrAdd->getBaseReg(); +  Register LHSSrc2 = LHSPtrAdd->getOffsetReg(); +  auto C1 = getIConstantVRegVal(LHSSrc2, MRI); +  if (!C1) +    return false; +  auto C2 = getIConstantVRegVal(Src2Reg, MRI); +  if (!C2) +    return false; + +  MatchInfo = [=, &MI](MachineIRBuilder &B) { +    auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); +    Observer.changingInstr(MI); +    MI.getOperand(1).setReg(LHSSrc1); +    MI.getOperand(2).setReg(NewCst.getReg(0)); +    Observer.changedInstr(MI); +  }; +  return !reassociationCanBreakAddressingModePattern(MI); +} + +bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI, +                                        BuildFnTy &MatchInfo) { +  auto &PtrAdd = cast<GPtrAdd>(MI); +  // We're trying to match a few pointer computation patterns here for +  // re-association opportunities. +  // 1) Isolating a constant operand to be on the RHS, e.g.: +  // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) +  // +  // 2) Folding two constants in each sub-tree as long as such folding +  // doesn't break a legal addressing mode. +  // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) +  // +  // 3) Move a constant from the LHS of an inner op to the RHS of the outer. +  // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C) +  // iif (G_PTR_ADD X, C) has one use. +  MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg()); +  MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg()); + +  // Try to match example 2. +  if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo)) +    return true; + +  // Try to match example 3. +  if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo)) +    return true; + +  // Try to match example 1. +  if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo)) +    return true; + +  return false; +} + +bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { +  Register Op1 = MI.getOperand(1).getReg(); +  Register Op2 = MI.getOperand(2).getReg(); +  auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); +  if (!MaybeCst) +    return false; +  MatchInfo = *MaybeCst; +  return true; +} + +bool CombinerHelper::matchNarrowBinopFeedingAnd( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  // Look for a binop feeding into an AND with a mask: +  // +  // %add = G_ADD %lhs, %rhs +  // %and = G_AND %add, 000...11111111 +  // +  // Check if it's possible to perform the binop at a narrower width and zext +  // back to the original width like so: +  // +  // %narrow_lhs = G_TRUNC %lhs +  // %narrow_rhs = G_TRUNC %rhs +  // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs +  // %new_add = G_ZEXT %narrow_add +  // %and = G_AND %new_add, 000...11111111 +  // +  // This can allow later combines to eliminate the G_AND if it turns out +  // that the mask is irrelevant. +  assert(MI.getOpcode() == TargetOpcode::G_AND); +  Register Dst = MI.getOperand(0).getReg(); +  Register AndLHS = MI.getOperand(1).getReg(); +  Register AndRHS = MI.getOperand(2).getReg(); +  LLT WideTy = MRI.getType(Dst); + +  // If the potential binop has more than one use, then it's possible that one +  // of those uses will need its full width. +  if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) +    return false; + +  // Check if the LHS feeding the AND is impacted by the high bits that we're +  // masking out. +  // +  // e.g. for 64-bit x, y: +  // +  // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 +  MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); +  if (!LHSInst) +    return false; +  unsigned LHSOpc = LHSInst->getOpcode(); +  switch (LHSOpc) { +  default: +    return false; +  case TargetOpcode::G_ADD: +  case TargetOpcode::G_SUB: +  case TargetOpcode::G_MUL: +  case TargetOpcode::G_AND: +  case TargetOpcode::G_OR: +  case TargetOpcode::G_XOR: +    break; +  } + +  // Find the mask on the RHS. +  auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI); +  if (!Cst) +    return false; +  auto Mask = Cst->Value; +  if (!Mask.isMask()) +    return false; + +  // No point in combining if there's nothing to truncate. +  unsigned NarrowWidth = Mask.countTrailingOnes(); +  if (NarrowWidth == WideTy.getSizeInBits()) +    return false; +  LLT NarrowTy = LLT::scalar(NarrowWidth); + +  // Check if adding the zext + truncates could be harmful. +  auto &MF = *MI.getMF(); +  const auto &TLI = getTargetLowering(); +  LLVMContext &Ctx = MF.getFunction().getContext(); +  auto &DL = MF.getDataLayout(); +  if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || +      !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) +    return false; +  if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || +      !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) +    return false; +  Register BinOpLHS = LHSInst->getOperand(1).getReg(); +  Register BinOpRHS = LHSInst->getOperand(2).getReg(); +  MatchInfo = [=, &MI](MachineIRBuilder &B) { +    auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); +    auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); +    auto NarrowBinOp = +        Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); +    auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); +    Observer.changingInstr(MI); +    MI.getOperand(1).setReg(Ext.getReg(0)); +    Observer.changedInstr(MI); +  }; +  return true; +} + +bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) { +  unsigned Opc = MI.getOpcode(); +  assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO); + +  if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2))) +    return false; + +  MatchInfo = [=, &MI](MachineIRBuilder &B) { +    Observer.changingInstr(MI); +    unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO +                                                   : TargetOpcode::G_SADDO; +    MI.setDesc(Builder.getTII().get(NewOpc)); +    MI.getOperand(3).setReg(MI.getOperand(2).getReg()); +    Observer.changedInstr(MI); +  }; +  return true; +} + +bool CombinerHelper::matchMulOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) { +  // (G_*MULO x, 0) -> 0 + no carry out +  assert(MI.getOpcode() == TargetOpcode::G_UMULO || +         MI.getOpcode() == TargetOpcode::G_SMULO); +  if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0))) +    return false; +  Register Dst = MI.getOperand(0).getReg(); +  Register Carry = MI.getOperand(1).getReg(); +  if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Dst)) || +      !isConstantLegalOrBeforeLegalizer(MRI.getType(Carry))) +    return false; +  MatchInfo = [=](MachineIRBuilder &B) { +    B.buildConstant(Dst, 0); +    B.buildConstant(Carry, 0); +  }; +  return true; +} + +bool CombinerHelper::matchAddOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) { +  // (G_*ADDO x, 0) -> x + no carry out +  assert(MI.getOpcode() == TargetOpcode::G_UADDO || +         MI.getOpcode() == TargetOpcode::G_SADDO); +  if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0))) +    return false; +  Register Carry = MI.getOperand(1).getReg(); +  if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Carry))) +    return false; +  Register Dst = MI.getOperand(0).getReg(); +  Register LHS = MI.getOperand(2).getReg(); +  MatchInfo = [=](MachineIRBuilder &B) { +    B.buildCopy(Dst, LHS); +    B.buildConstant(Carry, 0); +  }; +  return true; +} + +bool CombinerHelper::matchAddEToAddO(MachineInstr &MI, BuildFnTy &MatchInfo) { +  // (G_*ADDE x, y, 0) -> (G_*ADDO x, y) +  // (G_*SUBE x, y, 0) -> (G_*SUBO x, y) +  assert(MI.getOpcode() == TargetOpcode::G_UADDE || +         MI.getOpcode() == TargetOpcode::G_SADDE || +         MI.getOpcode() == TargetOpcode::G_USUBE || +         MI.getOpcode() == TargetOpcode::G_SSUBE); +  if (!mi_match(MI.getOperand(4).getReg(), MRI, m_SpecificICstOrSplat(0))) +    return false; +  MatchInfo = [&](MachineIRBuilder &B) { +    unsigned NewOpcode; +    switch (MI.getOpcode()) { +    case TargetOpcode::G_UADDE: +      NewOpcode = TargetOpcode::G_UADDO; +      break; +    case TargetOpcode::G_SADDE: +      NewOpcode = TargetOpcode::G_SADDO; +      break; +    case TargetOpcode::G_USUBE: +      NewOpcode = TargetOpcode::G_USUBO; +      break; +    case TargetOpcode::G_SSUBE: +      NewOpcode = TargetOpcode::G_SSUBO; +      break; +    } +    Observer.changingInstr(MI); +    MI.setDesc(B.getTII().get(NewOpcode)); +    MI.removeOperand(4); +    Observer.changedInstr(MI); +  }; +  return true; +} + +bool CombinerHelper::matchSubAddSameReg(MachineInstr &MI, +                                        BuildFnTy &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_SUB); +  Register Dst = MI.getOperand(0).getReg(); +  // (x + y) - z -> x (if y == z) +  // (x + y) - z -> y (if x == z) +  Register X, Y, Z; +  if (mi_match(Dst, MRI, m_GSub(m_GAdd(m_Reg(X), m_Reg(Y)), m_Reg(Z)))) { +    Register ReplaceReg; +    int64_t CstX, CstY; +    if (Y == Z || (mi_match(Y, MRI, m_ICstOrSplat(CstY)) && +                   mi_match(Z, MRI, m_SpecificICstOrSplat(CstY)))) +      ReplaceReg = X; +    else if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) && +                        mi_match(Z, MRI, m_SpecificICstOrSplat(CstX)))) +      ReplaceReg = Y; +    if (ReplaceReg) { +      MatchInfo = [=](MachineIRBuilder &B) { B.buildCopy(Dst, ReplaceReg); }; +      return true; +    } +  } + +  // x - (y + z) -> 0 - y (if x == z) +  // x - (y + z) -> 0 - z (if x == y) +  if (mi_match(Dst, MRI, m_GSub(m_Reg(X), m_GAdd(m_Reg(Y), m_Reg(Z))))) { +    Register ReplaceReg; +    int64_t CstX; +    if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) && +                   mi_match(Z, MRI, m_SpecificICstOrSplat(CstX)))) +      ReplaceReg = Y; +    else if (X == Y || (mi_match(X, MRI, m_ICstOrSplat(CstX)) && +                        mi_match(Y, MRI, m_SpecificICstOrSplat(CstX)))) +      ReplaceReg = Z; +    if (ReplaceReg) { +      MatchInfo = [=](MachineIRBuilder &B) { +        auto Zero = B.buildConstant(MRI.getType(Dst), 0); +        B.buildSub(Dst, Zero, ReplaceReg); +      }; +      return true; +    } +  } +  return false; +} + +MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) { +  assert(MI.getOpcode() == TargetOpcode::G_UDIV); +  auto &UDiv = cast<GenericMachineInstr>(MI); +  Register Dst = UDiv.getReg(0); +  Register LHS = UDiv.getReg(1); +  Register RHS = UDiv.getReg(2); +  LLT Ty = MRI.getType(Dst); +  LLT ScalarTy = Ty.getScalarType(); +  const unsigned EltBits = ScalarTy.getScalarSizeInBits(); +  LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); +  LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType(); +  auto &MIB = Builder; +  MIB.setInstrAndDebugLoc(MI); + +  bool UseNPQ = false; +  SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; + +  auto BuildUDIVPattern = [&](const Constant *C) { +    auto *CI = cast<ConstantInt>(C); +    const APInt &Divisor = CI->getValue(); + +    bool SelNPQ = false; +    APInt Magic(Divisor.getBitWidth(), 0); +    unsigned PreShift = 0, PostShift = 0; + +    // Magic algorithm doesn't work for division by 1. We need to emit a select +    // at the end. +    // TODO: Use undef values for divisor of 1. +    if (!Divisor.isOneValue()) { +      UnsignedDivisionByConstantInfo magics = +          UnsignedDivisionByConstantInfo::get(Divisor); + +      Magic = std::move(magics.Magic); + +      assert(magics.PreShift < Divisor.getBitWidth() && +             "We shouldn't generate an undefined shift!"); +      assert(magics.PostShift < Divisor.getBitWidth() && +             "We shouldn't generate an undefined shift!"); +      assert((!magics.IsAdd || magics.PreShift == 0) && "Unexpected pre-shift"); +      PreShift = magics.PreShift; +      PostShift = magics.PostShift; +      SelNPQ = magics.IsAdd; +    } + +    PreShifts.push_back( +        MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0)); +    MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0)); +    NPQFactors.push_back( +        MIB.buildConstant(ScalarTy, +                          SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) +                                 : APInt::getZero(EltBits)) +            .getReg(0)); +    PostShifts.push_back( +        MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0)); +    UseNPQ |= SelNPQ; +    return true; +  }; + +  // Collect the shifts/magic values from each element. +  bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern); +  (void)Matched; +  assert(Matched && "Expected unary predicate match to succeed"); + +  Register PreShift, PostShift, MagicFactor, NPQFactor; +  auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI); +  if (RHSDef) { +    PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0); +    MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0); +    NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0); +    PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0); +  } else { +    assert(MRI.getType(RHS).isScalar() && +           "Non-build_vector operation should have been a scalar"); +    PreShift = PreShifts[0]; +    MagicFactor = MagicFactors[0]; +    PostShift = PostShifts[0]; +  } + +  Register Q = LHS; +  Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0); + +  // Multiply the numerator (operand 0) by the magic value. +  Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0); + +  if (UseNPQ) { +    Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0); + +    // For vectors we might have a mix of non-NPQ/NPQ paths, so use +    // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero. +    if (Ty.isVector()) +      NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0); +    else +      NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0); + +    Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0); +  } + +  Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0); +  auto One = MIB.buildConstant(Ty, 1); +  auto IsOne = MIB.buildICmp( +      CmpInst::Predicate::ICMP_EQ, +      Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One); +  return MIB.buildSelect(Ty, IsOne, LHS, Q); +} + +bool CombinerHelper::matchUDivByConst(MachineInstr &MI) { +  assert(MI.getOpcode() == TargetOpcode::G_UDIV); +  Register Dst = MI.getOperand(0).getReg(); +  Register RHS = MI.getOperand(2).getReg(); +  LLT DstTy = MRI.getType(Dst); +  auto *RHSDef = MRI.getVRegDef(RHS); +  if (!isConstantOrConstantVector(*RHSDef, MRI)) +    return false; + +  auto &MF = *MI.getMF(); +  AttributeList Attr = MF.getFunction().getAttributes(); +  const auto &TLI = getTargetLowering(); +  LLVMContext &Ctx = MF.getFunction().getContext(); +  auto &DL = MF.getDataLayout(); +  if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr)) +    return false; + +  // Don't do this for minsize because the instruction sequence is usually +  // larger. +  if (MF.getFunction().hasMinSize()) +    return false; + +  // Don't do this if the types are not going to be legal. +  if (LI) { +    if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}})) +      return false; +    if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}})) +      return false; +    if (!isLegalOrBeforeLegalizer( +            {TargetOpcode::G_ICMP, +             {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1), +              DstTy}})) +      return false; +  } + +  auto CheckEltValue = [&](const Constant *C) { +    if (auto *CI = dyn_cast_or_null<ConstantInt>(C)) +      return !CI->isZero(); +    return false; +  }; +  return matchUnaryPredicate(MRI, RHS, CheckEltValue); +} + +void CombinerHelper::applyUDivByConst(MachineInstr &MI) { +  auto *NewMI = buildUDivUsingMul(MI); +  replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg()); +} + +bool CombinerHelper::matchSDivByConst(MachineInstr &MI) { +  assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV"); +  Register Dst = MI.getOperand(0).getReg(); +  Register RHS = MI.getOperand(2).getReg(); +  LLT DstTy = MRI.getType(Dst); + +  auto &MF = *MI.getMF(); +  AttributeList Attr = MF.getFunction().getAttributes(); +  const auto &TLI = getTargetLowering(); +  LLVMContext &Ctx = MF.getFunction().getContext(); +  auto &DL = MF.getDataLayout(); +  if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr)) +    return false; + +  // Don't do this for minsize because the instruction sequence is usually +  // larger. +  if (MF.getFunction().hasMinSize()) +    return false; + +  // If the sdiv has an 'exact' flag we can use a simpler lowering. +  if (MI.getFlag(MachineInstr::MIFlag::IsExact)) { +    return matchUnaryPredicate( +        MRI, RHS, [](const Constant *C) { return C && !C->isZeroValue(); }); +  } + +  // Don't support the general case for now. +  return false; +} + +void CombinerHelper::applySDivByConst(MachineInstr &MI) { +  auto *NewMI = buildSDivUsingMul(MI); +  replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg()); +} + +MachineInstr *CombinerHelper::buildSDivUsingMul(MachineInstr &MI) { +  assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV"); +  auto &SDiv = cast<GenericMachineInstr>(MI); +  Register Dst = SDiv.getReg(0); +  Register LHS = SDiv.getReg(1); +  Register RHS = SDiv.getReg(2); +  LLT Ty = MRI.getType(Dst); +  LLT ScalarTy = Ty.getScalarType(); +  LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); +  LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType(); +  auto &MIB = Builder; +  MIB.setInstrAndDebugLoc(MI); + +  bool UseSRA = false; +  SmallVector<Register, 16> Shifts, Factors; + +  auto *RHSDef = cast<GenericMachineInstr>(getDefIgnoringCopies(RHS, MRI)); +  bool IsSplat = getIConstantSplatVal(*RHSDef, MRI).has_value(); + +  auto BuildSDIVPattern = [&](const Constant *C) { +    // Don't recompute inverses for each splat element. +    if (IsSplat && !Factors.empty()) { +      Shifts.push_back(Shifts[0]); +      Factors.push_back(Factors[0]); +      return true; +    } + +    auto *CI = cast<ConstantInt>(C); +    APInt Divisor = CI->getValue(); +    unsigned Shift = Divisor.countTrailingZeros(); +    if (Shift) { +      Divisor.ashrInPlace(Shift); +      UseSRA = true; +    } + +    // Calculate the multiplicative inverse modulo BW. +    // 2^W requires W + 1 bits, so we have to extend and then truncate. +    unsigned W = Divisor.getBitWidth(); +    APInt Factor = Divisor.zext(W + 1) +                       .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) +                       .trunc(W); +    Shifts.push_back(MIB.buildConstant(ScalarShiftAmtTy, Shift).getReg(0)); +    Factors.push_back(MIB.buildConstant(ScalarTy, Factor).getReg(0)); +    return true; +  }; + +  // Collect all magic values from the build vector. +  bool Matched = matchUnaryPredicate(MRI, RHS, BuildSDIVPattern); +  (void)Matched; +  assert(Matched && "Expected unary predicate match to succeed"); + +  Register Shift, Factor; +  if (Ty.isVector()) { +    Shift = MIB.buildBuildVector(ShiftAmtTy, Shifts).getReg(0); +    Factor = MIB.buildBuildVector(Ty, Factors).getReg(0); +  } else { +    Shift = Shifts[0]; +    Factor = Factors[0]; +  } + +  Register Res = LHS; + +  if (UseSRA) +    Res = MIB.buildAShr(Ty, Res, Shift, MachineInstr::IsExact).getReg(0); + +  return MIB.buildMul(Ty, Res, Factor); +} + +bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) { +  assert(MI.getOpcode() == TargetOpcode::G_UMULH); +  Register RHS = MI.getOperand(2).getReg(); +  Register Dst = MI.getOperand(0).getReg(); +  LLT Ty = MRI.getType(Dst); +  LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); +  auto MatchPow2ExceptOne = [&](const Constant *C) { +    if (auto *CI = dyn_cast<ConstantInt>(C)) +      return CI->getValue().isPowerOf2() && !CI->getValue().isOne(); +    return false; +  }; +  if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false)) +    return false; +  return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}}); +} + +void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) { +  Register LHS = MI.getOperand(1).getReg(); +  Register RHS = MI.getOperand(2).getReg(); +  Register Dst = MI.getOperand(0).getReg(); +  LLT Ty = MRI.getType(Dst); +  LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); +  unsigned NumEltBits = Ty.getScalarSizeInBits(); + +  Builder.setInstrAndDebugLoc(MI); +  auto LogBase2 = buildLogBase2(RHS, Builder); +  auto ShiftAmt = +      Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2); +  auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt); +  Builder.buildLShr(Dst, LHS, Trunc); +  MI.eraseFromParent(); +} + +bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI, +                                               BuildFnTy &MatchInfo) { +  unsigned Opc = MI.getOpcode(); +  assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB || +         Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || +         Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA); + +  Register Dst = MI.getOperand(0).getReg(); +  Register X = MI.getOperand(1).getReg(); +  Register Y = MI.getOperand(2).getReg(); +  LLT Type = MRI.getType(Dst); + +  // fold (fadd x, fneg(y)) -> (fsub x, y) +  // fold (fadd fneg(y), x) -> (fsub x, y) +  // G_ADD is commutative so both cases are checked by m_GFAdd +  if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) && +      isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) { +    Opc = TargetOpcode::G_FSUB; +  } +  /// fold (fsub x, fneg(y)) -> (fadd x, y) +  else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) && +           isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) { +    Opc = TargetOpcode::G_FADD; +  } +  // fold (fmul fneg(x), fneg(y)) -> (fmul x, y) +  // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y) +  // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z) +  // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z) +  else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || +            Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) && +           mi_match(X, MRI, m_GFNeg(m_Reg(X))) && +           mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) { +    // no opcode change +  } else +    return false; + +  MatchInfo = [=, &MI](MachineIRBuilder &B) { +    Observer.changingInstr(MI); +    MI.setDesc(B.getTII().get(Opc)); +    MI.getOperand(1).setReg(X); +    MI.getOperand(2).setReg(Y); +    Observer.changedInstr(MI); +  }; +  return true; +} + +bool CombinerHelper::matchFsubToFneg(MachineInstr &MI, Register &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_FSUB); + +  Register LHS = MI.getOperand(1).getReg(); +  MatchInfo = MI.getOperand(2).getReg(); +  LLT Ty = MRI.getType(MI.getOperand(0).getReg()); + +  const auto LHSCst = Ty.isVector() +                          ? getFConstantSplat(LHS, MRI, /* allowUndef */ true) +                          : getFConstantVRegValWithLookThrough(LHS, MRI); +  if (!LHSCst) +    return false; + +  // -0.0 is always allowed +  if (LHSCst->Value.isNegZero()) +    return true; + +  // +0.0 is only allowed if nsz is set. +  if (LHSCst->Value.isPosZero()) +    return MI.getFlag(MachineInstr::FmNsz); + +  return false; +} + +void CombinerHelper::applyFsubToFneg(MachineInstr &MI, Register &MatchInfo) { +  Builder.setInstrAndDebugLoc(MI); +  Register Dst = MI.getOperand(0).getReg(); +  Builder.buildFNeg( +      Dst, Builder.buildFCanonicalize(MRI.getType(Dst), MatchInfo).getReg(0)); +  eraseInst(MI); +} + +/// Checks if \p MI is TargetOpcode::G_FMUL and contractable either +/// due to global flags or MachineInstr flags. +static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) { +  if (MI.getOpcode() != TargetOpcode::G_FMUL) +    return false; +  return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract); +} + +static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1, +                        const MachineRegisterInfo &MRI) { +  return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()), +                       MRI.use_instr_nodbg_end()) > +         std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()), +                       MRI.use_instr_nodbg_end()); +} + +bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI, +                                         bool &AllowFusionGlobally, +                                         bool &HasFMAD, bool &Aggressive, +                                         bool CanReassociate) { + +  auto *MF = MI.getMF(); +  const auto &TLI = *MF->getSubtarget().getTargetLowering(); +  const TargetOptions &Options = MF->getTarget().Options; +  LLT DstType = MRI.getType(MI.getOperand(0).getReg()); + +  if (CanReassociate && +      !(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc))) +    return false; + +  // Floating-point multiply-add with intermediate rounding. +  HasFMAD = (!isPreLegalize() && TLI.isFMADLegal(MI, DstType)); +  // Floating-point multiply-add without intermediate rounding. +  bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) && +                isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}}); +  // No valid opcode, do not combine. +  if (!HasFMAD && !HasFMA) +    return false; + +  AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast || +                        Options.UnsafeFPMath || HasFMAD; +  // If the addition is not contractable, do not combine. +  if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract)) +    return false; + +  Aggressive = TLI.enableAggressiveFMAFusion(DstType); +  return true; +} + +bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_FADD); + +  bool AllowFusionGlobally, HasFMAD, Aggressive; +  if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) +    return false; + +  Register Op1 = MI.getOperand(1).getReg(); +  Register Op2 = MI.getOperand(2).getReg(); +  DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; +  DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; +  unsigned PreferredFusedOpcode = +      HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; + +  // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), +  // prefer to fold the multiply with fewer uses. +  if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && +      isContractableFMul(*RHS.MI, AllowFusionGlobally)) { +    if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) +      std::swap(LHS, RHS); +  } + +  // fold (fadd (fmul x, y), z) -> (fma x, y, z) +  if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && +      (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) { +    MatchInfo = [=, &MI](MachineIRBuilder &B) { +      B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, +                   {LHS.MI->getOperand(1).getReg(), +                    LHS.MI->getOperand(2).getReg(), RHS.Reg}); +    }; +    return true; +  } + +  // fold (fadd x, (fmul y, z)) -> (fma y, z, x) +  if (isContractableFMul(*RHS.MI, AllowFusionGlobally) && +      (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) { +    MatchInfo = [=, &MI](MachineIRBuilder &B) { +      B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, +                   {RHS.MI->getOperand(1).getReg(), +                    RHS.MI->getOperand(2).getReg(), LHS.Reg}); +    }; +    return true; +  } + +  return false; +} + +bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_FADD); + +  bool AllowFusionGlobally, HasFMAD, Aggressive; +  if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) +    return false; + +  const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); +  Register Op1 = MI.getOperand(1).getReg(); +  Register Op2 = MI.getOperand(2).getReg(); +  DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; +  DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; +  LLT DstType = MRI.getType(MI.getOperand(0).getReg()); + +  unsigned PreferredFusedOpcode = +      HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; + +  // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), +  // prefer to fold the multiply with fewer uses. +  if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && +      isContractableFMul(*RHS.MI, AllowFusionGlobally)) { +    if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) +      std::swap(LHS, RHS); +  } + +  // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) +  MachineInstr *FpExtSrc; +  if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && +      isContractableFMul(*FpExtSrc, AllowFusionGlobally) && +      TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, +                          MRI.getType(FpExtSrc->getOperand(1).getReg()))) { +    MatchInfo = [=, &MI](MachineIRBuilder &B) { +      auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); +      auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); +      B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, +                   {FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg}); +    }; +    return true; +  } + +  // fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z) +  // Note: Commutes FADD operands. +  if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && +      isContractableFMul(*FpExtSrc, AllowFusionGlobally) && +      TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, +                          MRI.getType(FpExtSrc->getOperand(1).getReg()))) { +    MatchInfo = [=, &MI](MachineIRBuilder &B) { +      auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); +      auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); +      B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, +                   {FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg}); +    }; +    return true; +  } + +  return false; +} + +bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_FADD); + +  bool AllowFusionGlobally, HasFMAD, Aggressive; +  if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true)) +    return false; + +  Register Op1 = MI.getOperand(1).getReg(); +  Register Op2 = MI.getOperand(2).getReg(); +  DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; +  DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; +  LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + +  unsigned PreferredFusedOpcode = +      HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; + +  // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), +  // prefer to fold the multiply with fewer uses. +  if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && +      isContractableFMul(*RHS.MI, AllowFusionGlobally)) { +    if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) +      std::swap(LHS, RHS); +  } + +  MachineInstr *FMA = nullptr; +  Register Z; +  // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z)) +  if (LHS.MI->getOpcode() == PreferredFusedOpcode && +      (MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() == +       TargetOpcode::G_FMUL) && +      MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) && +      MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) { +    FMA = LHS.MI; +    Z = RHS.Reg; +  } +  // fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z)) +  else if (RHS.MI->getOpcode() == PreferredFusedOpcode && +           (MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() == +            TargetOpcode::G_FMUL) && +           MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) && +           MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) { +    Z = LHS.Reg; +    FMA = RHS.MI; +  } + +  if (FMA) { +    MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg()); +    Register X = FMA->getOperand(1).getReg(); +    Register Y = FMA->getOperand(2).getReg(); +    Register U = FMulMI->getOperand(1).getReg(); +    Register V = FMulMI->getOperand(2).getReg(); + +    MatchInfo = [=, &MI](MachineIRBuilder &B) { +      Register InnerFMA = MRI.createGenericVirtualRegister(DstTy); +      B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z}); +      B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, +                   {X, Y, InnerFMA}); +    }; +    return true; +  } + +  return false; +} + +bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_FADD); + +  bool AllowFusionGlobally, HasFMAD, Aggressive; +  if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) +    return false; + +  if (!Aggressive) +    return false; + +  const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); +  LLT DstType = MRI.getType(MI.getOperand(0).getReg()); +  Register Op1 = MI.getOperand(1).getReg(); +  Register Op2 = MI.getOperand(2).getReg(); +  DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; +  DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; + +  unsigned PreferredFusedOpcode = +      HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; + +  // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), +  // prefer to fold the multiply with fewer uses. +  if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && +      isContractableFMul(*RHS.MI, AllowFusionGlobally)) { +    if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) +      std::swap(LHS, RHS); +  } + +  // Builds: (fma x, y, (fma (fpext u), (fpext v), z)) +  auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X, +                                 Register Y, MachineIRBuilder &B) { +    Register FpExtU = B.buildFPExt(DstType, U).getReg(0); +    Register FpExtV = B.buildFPExt(DstType, V).getReg(0); +    Register InnerFMA = +        B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z}) +            .getReg(0); +    B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, +                 {X, Y, InnerFMA}); +  }; + +  MachineInstr *FMulMI, *FMAMI; +  // fold (fadd (fma x, y, (fpext (fmul u, v))), z) +  //   -> (fma x, y, (fma (fpext u), (fpext v), z)) +  if (LHS.MI->getOpcode() == PreferredFusedOpcode && +      mi_match(LHS.MI->getOperand(3).getReg(), MRI, +               m_GFPExt(m_MInstr(FMulMI))) && +      isContractableFMul(*FMulMI, AllowFusionGlobally) && +      TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, +                          MRI.getType(FMulMI->getOperand(0).getReg()))) { +    MatchInfo = [=](MachineIRBuilder &B) { +      buildMatchInfo(FMulMI->getOperand(1).getReg(), +                     FMulMI->getOperand(2).getReg(), RHS.Reg, +                     LHS.MI->getOperand(1).getReg(), +                     LHS.MI->getOperand(2).getReg(), B); +    }; +    return true; +  } + +  // fold (fadd (fpext (fma x, y, (fmul u, v))), z) +  //   -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) +  // FIXME: This turns two single-precision and one double-precision +  // operation into two double-precision operations, which might not be +  // interesting for all targets, especially GPUs. +  if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && +      FMAMI->getOpcode() == PreferredFusedOpcode) { +    MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); +    if (isContractableFMul(*FMulMI, AllowFusionGlobally) && +        TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, +                            MRI.getType(FMAMI->getOperand(0).getReg()))) { +      MatchInfo = [=](MachineIRBuilder &B) { +        Register X = FMAMI->getOperand(1).getReg(); +        Register Y = FMAMI->getOperand(2).getReg(); +        X = B.buildFPExt(DstType, X).getReg(0); +        Y = B.buildFPExt(DstType, Y).getReg(0); +        buildMatchInfo(FMulMI->getOperand(1).getReg(), +                       FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B); +      }; + +      return true; +    } +  } + +  // fold (fadd z, (fma x, y, (fpext (fmul u, v))) +  //   -> (fma x, y, (fma (fpext u), (fpext v), z)) +  if (RHS.MI->getOpcode() == PreferredFusedOpcode && +      mi_match(RHS.MI->getOperand(3).getReg(), MRI, +               m_GFPExt(m_MInstr(FMulMI))) && +      isContractableFMul(*FMulMI, AllowFusionGlobally) && +      TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, +                          MRI.getType(FMulMI->getOperand(0).getReg()))) { +    MatchInfo = [=](MachineIRBuilder &B) { +      buildMatchInfo(FMulMI->getOperand(1).getReg(), +                     FMulMI->getOperand(2).getReg(), LHS.Reg, +                     RHS.MI->getOperand(1).getReg(), +                     RHS.MI->getOperand(2).getReg(), B); +    }; +    return true; +  } + +  // fold (fadd z, (fpext (fma x, y, (fmul u, v))) +  //   -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) +  // FIXME: This turns two single-precision and one double-precision +  // operation into two double-precision operations, which might not be +  // interesting for all targets, especially GPUs. +  if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && +      FMAMI->getOpcode() == PreferredFusedOpcode) { +    MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); +    if (isContractableFMul(*FMulMI, AllowFusionGlobally) && +        TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, +                            MRI.getType(FMAMI->getOperand(0).getReg()))) { +      MatchInfo = [=](MachineIRBuilder &B) { +        Register X = FMAMI->getOperand(1).getReg(); +        Register Y = FMAMI->getOperand(2).getReg(); +        X = B.buildFPExt(DstType, X).getReg(0); +        Y = B.buildFPExt(DstType, Y).getReg(0); +        buildMatchInfo(FMulMI->getOperand(1).getReg(), +                       FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B); +      }; +      return true; +    } +  } + +  return false; +} + +bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_FSUB); + +  bool AllowFusionGlobally, HasFMAD, Aggressive; +  if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) +    return false; + +  Register Op1 = MI.getOperand(1).getReg(); +  Register Op2 = MI.getOperand(2).getReg(); +  DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; +  DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; +  LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + +  // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), +  // prefer to fold the multiply with fewer uses. +  int FirstMulHasFewerUses = true; +  if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && +      isContractableFMul(*RHS.MI, AllowFusionGlobally) && +      hasMoreUses(*LHS.MI, *RHS.MI, MRI)) +    FirstMulHasFewerUses = false; + +  unsigned PreferredFusedOpcode = +      HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; + +  // fold (fsub (fmul x, y), z) -> (fma x, y, -z) +  if (FirstMulHasFewerUses && +      (isContractableFMul(*LHS.MI, AllowFusionGlobally) && +       (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) { +    MatchInfo = [=, &MI](MachineIRBuilder &B) { +      Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0); +      B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, +                   {LHS.MI->getOperand(1).getReg(), +                    LHS.MI->getOperand(2).getReg(), NegZ}); +    }; +    return true; +  } +  // fold (fsub x, (fmul y, z)) -> (fma -y, z, x) +  else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) && +            (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) { +    MatchInfo = [=, &MI](MachineIRBuilder &B) { +      Register NegY = +          B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0); +      B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, +                   {NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg}); +    }; +    return true; +  } + +  return false; +} + +bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_FSUB); + +  bool AllowFusionGlobally, HasFMAD, Aggressive; +  if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) +    return false; + +  Register LHSReg = MI.getOperand(1).getReg(); +  Register RHSReg = MI.getOperand(2).getReg(); +  LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + +  unsigned PreferredFusedOpcode = +      HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; + +  MachineInstr *FMulMI; +  // fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z)) +  if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && +      (Aggressive || (MRI.hasOneNonDBGUse(LHSReg) && +                      MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && +      isContractableFMul(*FMulMI, AllowFusionGlobally)) { +    MatchInfo = [=, &MI](MachineIRBuilder &B) { +      Register NegX = +          B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); +      Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); +      B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, +                   {NegX, FMulMI->getOperand(2).getReg(), NegZ}); +    }; +    return true; +  } + +  // fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x) +  if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && +      (Aggressive || (MRI.hasOneNonDBGUse(RHSReg) && +                      MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && +      isContractableFMul(*FMulMI, AllowFusionGlobally)) { +    MatchInfo = [=, &MI](MachineIRBuilder &B) { +      B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, +                   {FMulMI->getOperand(1).getReg(), +                    FMulMI->getOperand(2).getReg(), LHSReg}); +    }; +    return true; +  } + +  return false; +} + +bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_FSUB); + +  bool AllowFusionGlobally, HasFMAD, Aggressive; +  if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) +    return false; + +  Register LHSReg = MI.getOperand(1).getReg(); +  Register RHSReg = MI.getOperand(2).getReg(); +  LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + +  unsigned PreferredFusedOpcode = +      HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; + +  MachineInstr *FMulMI; +  // fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z)) +  if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && +      isContractableFMul(*FMulMI, AllowFusionGlobally) && +      (Aggressive || MRI.hasOneNonDBGUse(LHSReg))) { +    MatchInfo = [=, &MI](MachineIRBuilder &B) { +      Register FpExtX = +          B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); +      Register FpExtY = +          B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); +      Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); +      B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, +                   {FpExtX, FpExtY, NegZ}); +    }; +    return true; +  } + +  // fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x) +  if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && +      isContractableFMul(*FMulMI, AllowFusionGlobally) && +      (Aggressive || MRI.hasOneNonDBGUse(RHSReg))) { +    MatchInfo = [=, &MI](MachineIRBuilder &B) { +      Register FpExtY = +          B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); +      Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0); +      Register FpExtZ = +          B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); +      B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, +                   {NegY, FpExtZ, LHSReg}); +    }; +    return true; +  } + +  return false; +} + +bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA( +    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_FSUB); + +  bool AllowFusionGlobally, HasFMAD, Aggressive; +  if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) +    return false; + +  const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); +  LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); +  Register LHSReg = MI.getOperand(1).getReg(); +  Register RHSReg = MI.getOperand(2).getReg(); + +  unsigned PreferredFusedOpcode = +      HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; + +  auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z, +                            MachineIRBuilder &B) { +    Register FpExtX = B.buildFPExt(DstTy, X).getReg(0); +    Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0); +    B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z}); +  }; + +  MachineInstr *FMulMI; +  // fold (fsub (fpext (fneg (fmul x, y))), z) -> +  //      (fneg (fma (fpext x), (fpext y), z)) +  // fold (fsub (fneg (fpext (fmul x, y))), z) -> +  //      (fneg (fma (fpext x), (fpext y), z)) +  if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || +       mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && +      isContractableFMul(*FMulMI, AllowFusionGlobally) && +      TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, +                          MRI.getType(FMulMI->getOperand(0).getReg()))) { +    MatchInfo = [=, &MI](MachineIRBuilder &B) { +      Register FMAReg = MRI.createGenericVirtualRegister(DstTy); +      buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(), +                     FMulMI->getOperand(2).getReg(), RHSReg, B); +      B.buildFNeg(MI.getOperand(0).getReg(), FMAReg); +    }; +    return true; +  } + +  // fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x) +  // fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x) +  if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || +       mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && +      isContractableFMul(*FMulMI, AllowFusionGlobally) && +      TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, +                          MRI.getType(FMulMI->getOperand(0).getReg()))) { +    MatchInfo = [=, &MI](MachineIRBuilder &B) { +      buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(), +                     FMulMI->getOperand(2).getReg(), LHSReg, B); +    }; +    return true; +  } + +  return false; +} + +bool CombinerHelper::matchSelectToLogical(MachineInstr &MI, +                                          BuildFnTy &MatchInfo) { +  GSelect &Sel = cast<GSelect>(MI); +  Register DstReg = Sel.getReg(0); +  Register Cond = Sel.getCondReg(); +  Register TrueReg = Sel.getTrueReg(); +  Register FalseReg = Sel.getFalseReg(); + +  auto *TrueDef = getDefIgnoringCopies(TrueReg, MRI); +  auto *FalseDef = getDefIgnoringCopies(FalseReg, MRI); + +  const LLT CondTy = MRI.getType(Cond); +  const LLT OpTy = MRI.getType(TrueReg); +  if (CondTy != OpTy || OpTy.getScalarSizeInBits() != 1) +    return false; + +  // We have a boolean select. + +  // select Cond, Cond, F --> or Cond, F +  // select Cond, 1, F    --> or Cond, F +  auto MaybeCstTrue = isConstantOrConstantSplatVector(*TrueDef, MRI); +  if (Cond == TrueReg || (MaybeCstTrue && MaybeCstTrue->isOne())) { +    MatchInfo = [=](MachineIRBuilder &MIB) { +      MIB.buildOr(DstReg, Cond, FalseReg); +    }; +    return true; +  } + +  // select Cond, T, Cond --> and Cond, T +  // select Cond, T, 0    --> and Cond, T +  auto MaybeCstFalse = isConstantOrConstantSplatVector(*FalseDef, MRI); +  if (Cond == FalseReg || (MaybeCstFalse && MaybeCstFalse->isZero())) { +    MatchInfo = [=](MachineIRBuilder &MIB) { +      MIB.buildAnd(DstReg, Cond, TrueReg); +    }; +    return true; +  } + + // select Cond, T, 1 --> or (not Cond), T +  if (MaybeCstFalse && MaybeCstFalse->isOne()) { +    MatchInfo = [=](MachineIRBuilder &MIB) { +      MIB.buildOr(DstReg, MIB.buildNot(OpTy, Cond), TrueReg); +    }; +    return true; +  } + +  // select Cond, 0, F --> and (not Cond), F +  if (MaybeCstTrue && MaybeCstTrue->isZero()) { +    MatchInfo = [=](MachineIRBuilder &MIB) { +      MIB.buildAnd(DstReg, MIB.buildNot(OpTy, Cond), FalseReg); +    }; +    return true; +  } +  return false; +} + +bool CombinerHelper::matchCombineFMinMaxNaN(MachineInstr &MI, +                                            unsigned &IdxToPropagate) { +  bool PropagateNaN; +  switch (MI.getOpcode()) { +  default: +    return false; +  case TargetOpcode::G_FMINNUM: +  case TargetOpcode::G_FMAXNUM: +    PropagateNaN = false; +    break; +  case TargetOpcode::G_FMINIMUM: +  case TargetOpcode::G_FMAXIMUM: +    PropagateNaN = true; +    break; +  } + +  auto MatchNaN = [&](unsigned Idx) { +    Register MaybeNaNReg = MI.getOperand(Idx).getReg(); +    const ConstantFP *MaybeCst = getConstantFPVRegVal(MaybeNaNReg, MRI); +    if (!MaybeCst || !MaybeCst->getValueAPF().isNaN()) +      return false; +    IdxToPropagate = PropagateNaN ? Idx : (Idx == 1 ? 2 : 1); +    return true; +  }; + +  return MatchNaN(1) || MatchNaN(2); +} + +bool CombinerHelper::matchAddSubSameReg(MachineInstr &MI, Register &Src) { +  assert(MI.getOpcode() == TargetOpcode::G_ADD && "Expected a G_ADD"); +  Register LHS = MI.getOperand(1).getReg(); +  Register RHS = MI.getOperand(2).getReg(); + +  // Helper lambda to check for opportunities for +  // A + (B - A) -> B +  // (B - A) + A -> B +  auto CheckFold = [&](Register MaybeSub, Register MaybeSameReg) { +    Register Reg; +    return mi_match(MaybeSub, MRI, m_GSub(m_Reg(Src), m_Reg(Reg))) && +           Reg == MaybeSameReg; +  }; +  return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); +} + +bool CombinerHelper::matchBuildVectorIdentityFold(MachineInstr &MI, +                                                  Register &MatchInfo) { +  // This combine folds the following patterns: +  // +  //  G_BUILD_VECTOR_TRUNC (G_BITCAST(x), G_LSHR(G_BITCAST(x), k)) +  //  G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), G_TRUNC(G_LSHR(G_BITCAST(x), k))) +  //    into +  //      x +  //    if +  //      k == sizeof(VecEltTy)/2 +  //      type(x) == type(dst) +  // +  //  G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), undef) +  //    into +  //      x +  //    if +  //      type(x) == type(dst) + +  LLT DstVecTy = MRI.getType(MI.getOperand(0).getReg()); +  LLT DstEltTy = DstVecTy.getElementType(); + +  Register Lo, Hi; + +  if (mi_match( +          MI, MRI, +          m_GBuildVector(m_GTrunc(m_GBitcast(m_Reg(Lo))), m_GImplicitDef()))) { +    MatchInfo = Lo; +    return MRI.getType(MatchInfo) == DstVecTy; +  } + +  std::optional<ValueAndVReg> ShiftAmount; +  const auto LoPattern = m_GBitcast(m_Reg(Lo)); +  const auto HiPattern = m_GLShr(m_GBitcast(m_Reg(Hi)), m_GCst(ShiftAmount)); +  if (mi_match( +          MI, MRI, +          m_any_of(m_GBuildVectorTrunc(LoPattern, HiPattern), +                   m_GBuildVector(m_GTrunc(LoPattern), m_GTrunc(HiPattern))))) { +    if (Lo == Hi && ShiftAmount->Value == DstEltTy.getSizeInBits()) { +      MatchInfo = Lo; +      return MRI.getType(MatchInfo) == DstVecTy; +    } +  } + +  return false; +} + +bool CombinerHelper::matchTruncBuildVectorFold(MachineInstr &MI, +                                               Register &MatchInfo) { +  // Replace (G_TRUNC (G_BITCAST (G_BUILD_VECTOR x, y)) with just x +  // if type(x) == type(G_TRUNC) +  if (!mi_match(MI.getOperand(1).getReg(), MRI, +                m_GBitcast(m_GBuildVector(m_Reg(MatchInfo), m_Reg())))) +    return false; + +  return MRI.getType(MatchInfo) == MRI.getType(MI.getOperand(0).getReg()); +} + +bool CombinerHelper::matchTruncLshrBuildVectorFold(MachineInstr &MI, +                                                   Register &MatchInfo) { +  // Replace (G_TRUNC (G_LSHR (G_BITCAST (G_BUILD_VECTOR x, y)), K)) with +  //    y if K == size of vector element type +  std::optional<ValueAndVReg> ShiftAmt; +  if (!mi_match(MI.getOperand(1).getReg(), MRI, +                m_GLShr(m_GBitcast(m_GBuildVector(m_Reg(), m_Reg(MatchInfo))), +                        m_GCst(ShiftAmt)))) +    return false; + +  LLT MatchTy = MRI.getType(MatchInfo); +  return ShiftAmt->Value.getZExtValue() == MatchTy.getSizeInBits() && +         MatchTy == MRI.getType(MI.getOperand(0).getReg()); +} + +unsigned CombinerHelper::getFPMinMaxOpcForSelect( +    CmpInst::Predicate Pred, LLT DstTy, +    SelectPatternNaNBehaviour VsNaNRetVal) const { +  assert(VsNaNRetVal != SelectPatternNaNBehaviour::NOT_APPLICABLE && +         "Expected a NaN behaviour?"); +  // Choose an opcode based off of legality or the behaviour when one of the +  // LHS/RHS may be NaN. +  switch (Pred) { +  default: +    return 0; +  case CmpInst::FCMP_UGT: +  case CmpInst::FCMP_UGE: +  case CmpInst::FCMP_OGT: +  case CmpInst::FCMP_OGE: +    if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER) +      return TargetOpcode::G_FMAXNUM; +    if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN) +      return TargetOpcode::G_FMAXIMUM; +    if (isLegal({TargetOpcode::G_FMAXNUM, {DstTy}})) +      return TargetOpcode::G_FMAXNUM; +    if (isLegal({TargetOpcode::G_FMAXIMUM, {DstTy}})) +      return TargetOpcode::G_FMAXIMUM; +    return 0; +  case CmpInst::FCMP_ULT: +  case CmpInst::FCMP_ULE: +  case CmpInst::FCMP_OLT: +  case CmpInst::FCMP_OLE: +    if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER) +      return TargetOpcode::G_FMINNUM; +    if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN) +      return TargetOpcode::G_FMINIMUM; +    if (isLegal({TargetOpcode::G_FMINNUM, {DstTy}})) +      return TargetOpcode::G_FMINNUM; +    if (!isLegal({TargetOpcode::G_FMINIMUM, {DstTy}})) +      return 0; +    return TargetOpcode::G_FMINIMUM; +  } +} + +CombinerHelper::SelectPatternNaNBehaviour +CombinerHelper::computeRetValAgainstNaN(Register LHS, Register RHS, +                                        bool IsOrderedComparison) const { +  bool LHSSafe = isKnownNeverNaN(LHS, MRI); +  bool RHSSafe = isKnownNeverNaN(RHS, MRI); +  // Completely unsafe. +  if (!LHSSafe && !RHSSafe) +    return SelectPatternNaNBehaviour::NOT_APPLICABLE; +  if (LHSSafe && RHSSafe) +    return SelectPatternNaNBehaviour::RETURNS_ANY; +  // An ordered comparison will return false when given a NaN, so it +  // returns the RHS. +  if (IsOrderedComparison) +    return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_NAN +                   : SelectPatternNaNBehaviour::RETURNS_OTHER; +  // An unordered comparison will return true when given a NaN, so it +  // returns the LHS. +  return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_OTHER +                 : SelectPatternNaNBehaviour::RETURNS_NAN; +} + +bool CombinerHelper::matchFPSelectToMinMax(Register Dst, Register Cond, +                                           Register TrueVal, Register FalseVal, +                                           BuildFnTy &MatchInfo) { +  // Match: select (fcmp cond x, y) x, y +  //        select (fcmp cond x, y) y, x +  // And turn it into fminnum/fmaxnum or fmin/fmax based off of the condition. +  LLT DstTy = MRI.getType(Dst); +  // Bail out early on pointers, since we'll never want to fold to a min/max. +  if (DstTy.isPointer()) +    return false; +  // Match a floating point compare with a less-than/greater-than predicate. +  // TODO: Allow multiple users of the compare if they are all selects. +  CmpInst::Predicate Pred; +  Register CmpLHS, CmpRHS; +  if (!mi_match(Cond, MRI, +                m_OneNonDBGUse( +                    m_GFCmp(m_Pred(Pred), m_Reg(CmpLHS), m_Reg(CmpRHS)))) || +      CmpInst::isEquality(Pred)) +    return false; +  SelectPatternNaNBehaviour ResWithKnownNaNInfo = +      computeRetValAgainstNaN(CmpLHS, CmpRHS, CmpInst::isOrdered(Pred)); +  if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::NOT_APPLICABLE) +    return false; +  if (TrueVal == CmpRHS && FalseVal == CmpLHS) { +    std::swap(CmpLHS, CmpRHS); +    Pred = CmpInst::getSwappedPredicate(Pred); +    if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_NAN) +      ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_OTHER; +    else if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_OTHER) +      ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_NAN; +  } +  if (TrueVal != CmpLHS || FalseVal != CmpRHS) +    return false; +  // Decide what type of max/min this should be based off of the predicate. +  unsigned Opc = getFPMinMaxOpcForSelect(Pred, DstTy, ResWithKnownNaNInfo); +  if (!Opc || !isLegal({Opc, {DstTy}})) +    return false; +  // Comparisons between signed zero and zero may have different results... +  // unless we have fmaximum/fminimum. In that case, we know -0 < 0. +  if (Opc != TargetOpcode::G_FMAXIMUM && Opc != TargetOpcode::G_FMINIMUM) { +    // We don't know if a comparison between two 0s will give us a consistent +    // result. Be conservative and only proceed if at least one side is +    // non-zero. +    auto KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpLHS, MRI); +    if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero()) { +      KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpRHS, MRI); +      if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero()) +        return false; +    } +  } +  MatchInfo = [=](MachineIRBuilder &B) { +    B.buildInstr(Opc, {Dst}, {CmpLHS, CmpRHS}); +  }; +  return true; +} + +bool CombinerHelper::matchSimplifySelectToMinMax(MachineInstr &MI, +                                                 BuildFnTy &MatchInfo) { +  // TODO: Handle integer cases. +  assert(MI.getOpcode() == TargetOpcode::G_SELECT); +  // Condition may be fed by a truncated compare. +  Register Cond = MI.getOperand(1).getReg(); +  Register MaybeTrunc; +  if (mi_match(Cond, MRI, m_OneNonDBGUse(m_GTrunc(m_Reg(MaybeTrunc))))) +    Cond = MaybeTrunc; +  Register Dst = MI.getOperand(0).getReg(); +  Register TrueVal = MI.getOperand(2).getReg(); +  Register FalseVal = MI.getOperand(3).getReg(); +  return matchFPSelectToMinMax(Dst, Cond, TrueVal, FalseVal, MatchInfo); +} + +bool CombinerHelper::matchRedundantBinOpInEquality(MachineInstr &MI, +                                                   BuildFnTy &MatchInfo) { +  assert(MI.getOpcode() == TargetOpcode::G_ICMP); +  // (X + Y) == X --> Y == 0 +  // (X + Y) != X --> Y != 0 +  // (X - Y) == X --> Y == 0 +  // (X - Y) != X --> Y != 0 +  // (X ^ Y) == X --> Y == 0 +  // (X ^ Y) != X --> Y != 0 +  Register Dst = MI.getOperand(0).getReg(); +  CmpInst::Predicate Pred; +  Register X, Y, OpLHS, OpRHS; +  bool MatchedSub = mi_match( +      Dst, MRI, +      m_c_GICmp(m_Pred(Pred), m_Reg(X), m_GSub(m_Reg(OpLHS), m_Reg(Y)))); +  if (MatchedSub && X != OpLHS) +    return false; +  if (!MatchedSub) { +    if (!mi_match(Dst, MRI, +                  m_c_GICmp(m_Pred(Pred), m_Reg(X), +                            m_any_of(m_GAdd(m_Reg(OpLHS), m_Reg(OpRHS)), +                                     m_GXor(m_Reg(OpLHS), m_Reg(OpRHS)))))) +      return false; +    Y = X == OpLHS ? OpRHS : X == OpRHS ? OpLHS : Register(); +  } +  MatchInfo = [=](MachineIRBuilder &B) { +    auto Zero = B.buildConstant(MRI.getType(Y), 0); +    B.buildICmp(Pred, Dst, Y, Zero); +  }; +  return CmpInst::isEquality(Pred) && Y.isValid(); +} + +bool CombinerHelper::tryCombine(MachineInstr &MI) { +  if (tryCombineCopy(MI)) +    return true; +  if (tryCombineExtendingLoads(MI)) +    return true; +  if (tryCombineIndexedLoadStore(MI)) +    return true; +  return false; +}  | 
