diff options
author | vvvv <vvvv@ydb.tech> | 2024-02-06 20:01:22 +0300 |
---|---|---|
committer | vvvv <vvvv@ydb.tech> | 2024-02-06 20:22:16 +0300 |
commit | 0203b7a9a40828bb2bd4c32029b79ff0ea3d1f8f (patch) | |
tree | e630d0d5bd0bd29fc8c2d2842ed2cfde781b993a /contrib/libs/llvm16/lib/Bitcode/Writer/BitcodeWriter.cpp | |
parent | ba27db76d99d12a4f1c06960b5449423218614c4 (diff) | |
download | ydb-0203b7a9a40828bb2bd4c32029b79ff0ea3d1f8f.tar.gz |
llvm16 targets
Diffstat (limited to 'contrib/libs/llvm16/lib/Bitcode/Writer/BitcodeWriter.cpp')
-rw-r--r-- | contrib/libs/llvm16/lib/Bitcode/Writer/BitcodeWriter.cpp | 5240 |
1 files changed, 5240 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Bitcode/Writer/BitcodeWriter.cpp b/contrib/libs/llvm16/lib/Bitcode/Writer/BitcodeWriter.cpp new file mode 100644 index 00000000000..f85fd86c114 --- /dev/null +++ b/contrib/libs/llvm16/lib/Bitcode/Writer/BitcodeWriter.cpp @@ -0,0 +1,5240 @@ +//===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Bitcode writer implementation. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Bitcode/BitcodeWriter.h" +#include "ValueEnumerator.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringMap.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Triple.h" +#include "llvm/Bitcode/BitcodeCommon.h" +#include "llvm/Bitcode/BitcodeReader.h" +#include "llvm/Bitcode/LLVMBitCodes.h" +#include "llvm/Bitstream/BitCodes.h" +#include "llvm/Bitstream/BitstreamWriter.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Comdat.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalIFunc.h" +#include "llvm/IR/GlobalObject.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/ModuleSummaryIndex.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/UseListOrder.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueSymbolTable.h" +#include "llvm/MC/StringTableBuilder.h" +#include "llvm/MC/TargetRegistry.h" +#include "llvm/Object/IRSymtab.h" +#include "llvm/Support/AtomicOrdering.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Endian.h" +#include "llvm/Support/Error.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/SHA1.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <iterator> +#include <map> +#include <memory> +#include <optional> +#include <string> +#include <utility> +#include <vector> + +using namespace llvm; + +static cl::opt<unsigned> + IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), + cl::desc("Number of metadatas above which we emit an index " + "to enable lazy-loading")); +static cl::opt<uint32_t> FlushThreshold( + "bitcode-flush-threshold", cl::Hidden, cl::init(512), + cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); + +static cl::opt<bool> WriteRelBFToSummary( + "write-relbf-to-summary", cl::Hidden, cl::init(false), + cl::desc("Write relative block frequency to function summary ")); + +namespace llvm { +extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; +} + +namespace { + +/// These are manifest constants used by the bitcode writer. They do not need to +/// be kept in sync with the reader, but need to be consistent within this file. +enum { + // VALUE_SYMTAB_BLOCK abbrev id's. + VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, + VST_ENTRY_7_ABBREV, + VST_ENTRY_6_ABBREV, + VST_BBENTRY_6_ABBREV, + + // CONSTANTS_BLOCK abbrev id's. + CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, + CONSTANTS_INTEGER_ABBREV, + CONSTANTS_CE_CAST_Abbrev, + CONSTANTS_NULL_Abbrev, + + // FUNCTION_BLOCK abbrev id's. + FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, + FUNCTION_INST_UNOP_ABBREV, + FUNCTION_INST_UNOP_FLAGS_ABBREV, + FUNCTION_INST_BINOP_ABBREV, + FUNCTION_INST_BINOP_FLAGS_ABBREV, + FUNCTION_INST_CAST_ABBREV, + FUNCTION_INST_RET_VOID_ABBREV, + FUNCTION_INST_RET_VAL_ABBREV, + FUNCTION_INST_UNREACHABLE_ABBREV, + FUNCTION_INST_GEP_ABBREV, +}; + +/// Abstract class to manage the bitcode writing, subclassed for each bitcode +/// file type. +class BitcodeWriterBase { +protected: + /// The stream created and owned by the client. + BitstreamWriter &Stream; + + StringTableBuilder &StrtabBuilder; + +public: + /// Constructs a BitcodeWriterBase object that writes to the provided + /// \p Stream. + BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) + : Stream(Stream), StrtabBuilder(StrtabBuilder) {} + +protected: + void writeModuleVersion(); +}; + +void BitcodeWriterBase::writeModuleVersion() { + // VERSION: [version#] + Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); +} + +/// Base class to manage the module bitcode writing, currently subclassed for +/// ModuleBitcodeWriter and ThinLinkBitcodeWriter. +class ModuleBitcodeWriterBase : public BitcodeWriterBase { +protected: + /// The Module to write to bitcode. + const Module &M; + + /// Enumerates ids for all values in the module. + ValueEnumerator VE; + + /// Optional per-module index to write for ThinLTO. + const ModuleSummaryIndex *Index; + + /// Map that holds the correspondence between GUIDs in the summary index, + /// that came from indirect call profiles, and a value id generated by this + /// class to use in the VST and summary block records. + std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; + + /// Tracks the last value id recorded in the GUIDToValueMap. + unsigned GlobalValueId; + + /// Saves the offset of the VSTOffset record that must eventually be + /// backpatched with the offset of the actual VST. + uint64_t VSTOffsetPlaceholder = 0; + +public: + /// Constructs a ModuleBitcodeWriterBase object for the given Module, + /// writing to the provided \p Buffer. + ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, + BitstreamWriter &Stream, + bool ShouldPreserveUseListOrder, + const ModuleSummaryIndex *Index) + : BitcodeWriterBase(Stream, StrtabBuilder), M(M), + VE(M, ShouldPreserveUseListOrder), Index(Index) { + // Assign ValueIds to any callee values in the index that came from + // indirect call profiles and were recorded as a GUID not a Value* + // (which would have been assigned an ID by the ValueEnumerator). + // The starting ValueId is just after the number of values in the + // ValueEnumerator, so that they can be emitted in the VST. + GlobalValueId = VE.getValues().size(); + if (!Index) + return; + for (const auto &GUIDSummaryLists : *Index) + // Examine all summaries for this GUID. + for (auto &Summary : GUIDSummaryLists.second.SummaryList) + if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) + // For each call in the function summary, see if the call + // is to a GUID (which means it is for an indirect call, + // otherwise we would have a Value for it). If so, synthesize + // a value id. + for (auto &CallEdge : FS->calls()) + if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) + assignValueId(CallEdge.first.getGUID()); + } + +protected: + void writePerModuleGlobalValueSummary(); + +private: + void writePerModuleFunctionSummaryRecord( + SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, + unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, + unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); + void writeModuleLevelReferences(const GlobalVariable &V, + SmallVector<uint64_t, 64> &NameVals, + unsigned FSModRefsAbbrev, + unsigned FSModVTableRefsAbbrev); + + void assignValueId(GlobalValue::GUID ValGUID) { + GUIDToValueIdMap[ValGUID] = ++GlobalValueId; + } + + unsigned getValueId(GlobalValue::GUID ValGUID) { + const auto &VMI = GUIDToValueIdMap.find(ValGUID); + // Expect that any GUID value had a value Id assigned by an + // earlier call to assignValueId. + assert(VMI != GUIDToValueIdMap.end() && + "GUID does not have assigned value Id"); + return VMI->second; + } + + // Helper to get the valueId for the type of value recorded in VI. + unsigned getValueId(ValueInfo VI) { + if (!VI.haveGVs() || !VI.getValue()) + return getValueId(VI.getGUID()); + return VE.getValueID(VI.getValue()); + } + + std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } +}; + +/// Class to manage the bitcode writing for a module. +class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { + /// Pointer to the buffer allocated by caller for bitcode writing. + const SmallVectorImpl<char> &Buffer; + + /// True if a module hash record should be written. + bool GenerateHash; + + /// If non-null, when GenerateHash is true, the resulting hash is written + /// into ModHash. + ModuleHash *ModHash; + + SHA1 Hasher; + + /// The start bit of the identification block. + uint64_t BitcodeStartBit; + +public: + /// Constructs a ModuleBitcodeWriter object for the given Module, + /// writing to the provided \p Buffer. + ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, + StringTableBuilder &StrtabBuilder, + BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, + const ModuleSummaryIndex *Index, bool GenerateHash, + ModuleHash *ModHash = nullptr) + : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, + ShouldPreserveUseListOrder, Index), + Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), + BitcodeStartBit(Stream.GetCurrentBitNo()) {} + + /// Emit the current module to the bitstream. + void write(); + +private: + uint64_t bitcodeStartBit() { return BitcodeStartBit; } + + size_t addToStrtab(StringRef Str); + + void writeAttributeGroupTable(); + void writeAttributeTable(); + void writeTypeTable(); + void writeComdats(); + void writeValueSymbolTableForwardDecl(); + void writeModuleInfo(); + void writeValueAsMetadata(const ValueAsMetadata *MD, + SmallVectorImpl<uint64_t> &Record); + void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + unsigned createDILocationAbbrev(); + void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, + unsigned &Abbrev); + unsigned createGenericDINodeAbbrev(); + void writeGenericDINode(const GenericDINode *N, + SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); + void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDIGenericSubrange(const DIGenericSubrange *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDIEnumerator(const DIEnumerator *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDIStringType(const DIStringType *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDIDerivedType(const DIDerivedType *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDICompositeType(const DICompositeType *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDISubroutineType(const DISubroutineType *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDICompileUnit(const DICompileUnit *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDISubprogram(const DISubprogram *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDILexicalBlock(const DILexicalBlock *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDILexicalBlockFile(const DILexicalBlockFile *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDICommonBlock(const DICommonBlock *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDITemplateValueParameter(const DITemplateValueParameter *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDIGlobalVariable(const DIGlobalVariable *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDILocalVariable(const DILocalVariable *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDILabel(const DILabel *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDIExpression(const DIExpression *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDIObjCProperty(const DIObjCProperty *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDIImportedEntity(const DIImportedEntity *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + unsigned createNamedMetadataAbbrev(); + void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); + unsigned createMetadataStringsAbbrev(); + void writeMetadataStrings(ArrayRef<const Metadata *> Strings, + SmallVectorImpl<uint64_t> &Record); + void writeMetadataRecords(ArrayRef<const Metadata *> MDs, + SmallVectorImpl<uint64_t> &Record, + std::vector<unsigned> *MDAbbrevs = nullptr, + std::vector<uint64_t> *IndexPos = nullptr); + void writeModuleMetadata(); + void writeFunctionMetadata(const Function &F); + void writeFunctionMetadataAttachment(const Function &F); + void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, + const GlobalObject &GO); + void writeModuleMetadataKinds(); + void writeOperandBundleTags(); + void writeSyncScopeNames(); + void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); + void writeModuleConstants(); + bool pushValueAndType(const Value *V, unsigned InstID, + SmallVectorImpl<unsigned> &Vals); + void writeOperandBundles(const CallBase &CB, unsigned InstID); + void pushValue(const Value *V, unsigned InstID, + SmallVectorImpl<unsigned> &Vals); + void pushValueSigned(const Value *V, unsigned InstID, + SmallVectorImpl<uint64_t> &Vals); + void writeInstruction(const Instruction &I, unsigned InstID, + SmallVectorImpl<unsigned> &Vals); + void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); + void writeGlobalValueSymbolTable( + DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); + void writeUseList(UseListOrder &&Order); + void writeUseListBlock(const Function *F); + void + writeFunction(const Function &F, + DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); + void writeBlockInfo(); + void writeModuleHash(size_t BlockStartPos); + + unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { + return unsigned(SSID); + } + + unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } +}; + +/// Class to manage the bitcode writing for a combined index. +class IndexBitcodeWriter : public BitcodeWriterBase { + /// The combined index to write to bitcode. + const ModuleSummaryIndex &Index; + + /// When writing a subset of the index for distributed backends, client + /// provides a map of modules to the corresponding GUIDs/summaries to write. + const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; + + /// Map that holds the correspondence between the GUID used in the combined + /// index and a value id generated by this class to use in references. + std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; + + // The sorted stack id indices actually used in the summary entries being + // written, which will be a subset of those in the full index in the case of + // distributed indexes. + std::vector<unsigned> StackIdIndices; + + /// Tracks the last value id recorded in the GUIDToValueMap. + unsigned GlobalValueId = 0; + +public: + /// Constructs a IndexBitcodeWriter object for the given combined index, + /// writing to the provided \p Buffer. When writing a subset of the index + /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. + IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, + const ModuleSummaryIndex &Index, + const std::map<std::string, GVSummaryMapTy> + *ModuleToSummariesForIndex = nullptr) + : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), + ModuleToSummariesForIndex(ModuleToSummariesForIndex) { + // Assign unique value ids to all summaries to be written, for use + // in writing out the call graph edges. Save the mapping from GUID + // to the new global value id to use when writing those edges, which + // are currently saved in the index in terms of GUID. + forEachSummary([&](GVInfo I, bool IsAliasee) { + GUIDToValueIdMap[I.first] = ++GlobalValueId; + if (IsAliasee) + return; + auto *FS = dyn_cast<FunctionSummary>(I.second); + if (!FS) + return; + // Record all stack id indices actually used in the summary entries being + // written, so that we can compact them in the case of distributed ThinLTO + // indexes. + for (auto &CI : FS->callsites()) + for (auto Idx : CI.StackIdIndices) + StackIdIndices.push_back(Idx); + for (auto &AI : FS->allocs()) + for (auto &MIB : AI.MIBs) + for (auto Idx : MIB.StackIdIndices) + StackIdIndices.push_back(Idx); + }); + llvm::sort(StackIdIndices); + StackIdIndices.erase( + std::unique(StackIdIndices.begin(), StackIdIndices.end()), + StackIdIndices.end()); + } + + /// The below iterator returns the GUID and associated summary. + using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; + + /// Calls the callback for each value GUID and summary to be written to + /// bitcode. This hides the details of whether they are being pulled from the + /// entire index or just those in a provided ModuleToSummariesForIndex map. + template<typename Functor> + void forEachSummary(Functor Callback) { + if (ModuleToSummariesForIndex) { + for (auto &M : *ModuleToSummariesForIndex) + for (auto &Summary : M.second) { + Callback(Summary, false); + // Ensure aliasee is handled, e.g. for assigning a valueId, + // even if we are not importing the aliasee directly (the + // imported alias will contain a copy of aliasee). + if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) + Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); + } + } else { + for (auto &Summaries : Index) + for (auto &Summary : Summaries.second.SummaryList) + Callback({Summaries.first, Summary.get()}, false); + } + } + + /// Calls the callback for each entry in the modulePaths StringMap that + /// should be written to the module path string table. This hides the details + /// of whether they are being pulled from the entire index or just those in a + /// provided ModuleToSummariesForIndex map. + template <typename Functor> void forEachModule(Functor Callback) { + if (ModuleToSummariesForIndex) { + for (const auto &M : *ModuleToSummariesForIndex) { + const auto &MPI = Index.modulePaths().find(M.first); + if (MPI == Index.modulePaths().end()) { + // This should only happen if the bitcode file was empty, in which + // case we shouldn't be importing (the ModuleToSummariesForIndex + // would only include the module we are writing and index for). + assert(ModuleToSummariesForIndex->size() == 1); + continue; + } + Callback(*MPI); + } + } else { + for (const auto &MPSE : Index.modulePaths()) + Callback(MPSE); + } + } + + /// Main entry point for writing a combined index to bitcode. + void write(); + +private: + void writeModStrings(); + void writeCombinedGlobalValueSummary(); + + std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { + auto VMI = GUIDToValueIdMap.find(ValGUID); + if (VMI == GUIDToValueIdMap.end()) + return std::nullopt; + return VMI->second; + } + + std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } +}; + +} // end anonymous namespace + +static unsigned getEncodedCastOpcode(unsigned Opcode) { + switch (Opcode) { + default: llvm_unreachable("Unknown cast instruction!"); + case Instruction::Trunc : return bitc::CAST_TRUNC; + case Instruction::ZExt : return bitc::CAST_ZEXT; + case Instruction::SExt : return bitc::CAST_SEXT; + case Instruction::FPToUI : return bitc::CAST_FPTOUI; + case Instruction::FPToSI : return bitc::CAST_FPTOSI; + case Instruction::UIToFP : return bitc::CAST_UITOFP; + case Instruction::SIToFP : return bitc::CAST_SITOFP; + case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; + case Instruction::FPExt : return bitc::CAST_FPEXT; + case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; + case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; + case Instruction::BitCast : return bitc::CAST_BITCAST; + case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; + } +} + +static unsigned getEncodedUnaryOpcode(unsigned Opcode) { + switch (Opcode) { + default: llvm_unreachable("Unknown binary instruction!"); + case Instruction::FNeg: return bitc::UNOP_FNEG; + } +} + +static unsigned getEncodedBinaryOpcode(unsigned Opcode) { + switch (Opcode) { + default: llvm_unreachable("Unknown binary instruction!"); + case Instruction::Add: + case Instruction::FAdd: return bitc::BINOP_ADD; + case Instruction::Sub: + case Instruction::FSub: return bitc::BINOP_SUB; + case Instruction::Mul: + case Instruction::FMul: return bitc::BINOP_MUL; + case Instruction::UDiv: return bitc::BINOP_UDIV; + case Instruction::FDiv: + case Instruction::SDiv: return bitc::BINOP_SDIV; + case Instruction::URem: return bitc::BINOP_UREM; + case Instruction::FRem: + case Instruction::SRem: return bitc::BINOP_SREM; + case Instruction::Shl: return bitc::BINOP_SHL; + case Instruction::LShr: return bitc::BINOP_LSHR; + case Instruction::AShr: return bitc::BINOP_ASHR; + case Instruction::And: return bitc::BINOP_AND; + case Instruction::Or: return bitc::BINOP_OR; + case Instruction::Xor: return bitc::BINOP_XOR; + } +} + +static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { + switch (Op) { + default: llvm_unreachable("Unknown RMW operation!"); + case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; + case AtomicRMWInst::Add: return bitc::RMW_ADD; + case AtomicRMWInst::Sub: return bitc::RMW_SUB; + case AtomicRMWInst::And: return bitc::RMW_AND; + case AtomicRMWInst::Nand: return bitc::RMW_NAND; + case AtomicRMWInst::Or: return bitc::RMW_OR; + case AtomicRMWInst::Xor: return bitc::RMW_XOR; + case AtomicRMWInst::Max: return bitc::RMW_MAX; + case AtomicRMWInst::Min: return bitc::RMW_MIN; + case AtomicRMWInst::UMax: return bitc::RMW_UMAX; + case AtomicRMWInst::UMin: return bitc::RMW_UMIN; + case AtomicRMWInst::FAdd: return bitc::RMW_FADD; + case AtomicRMWInst::FSub: return bitc::RMW_FSUB; + case AtomicRMWInst::FMax: return bitc::RMW_FMAX; + case AtomicRMWInst::FMin: return bitc::RMW_FMIN; + case AtomicRMWInst::UIncWrap: + return bitc::RMW_UINC_WRAP; + case AtomicRMWInst::UDecWrap: + return bitc::RMW_UDEC_WRAP; + } +} + +static unsigned getEncodedOrdering(AtomicOrdering Ordering) { + switch (Ordering) { + case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; + case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; + case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; + case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; + case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; + case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; + case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; + } + llvm_unreachable("Invalid ordering"); +} + +static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, + StringRef Str, unsigned AbbrevToUse) { + SmallVector<unsigned, 64> Vals; + + // Code: [strchar x N] + for (char C : Str) { + if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) + AbbrevToUse = 0; + Vals.push_back(C); + } + + // Emit the finished record. + Stream.EmitRecord(Code, Vals, AbbrevToUse); +} + +static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { + switch (Kind) { + case Attribute::Alignment: + return bitc::ATTR_KIND_ALIGNMENT; + case Attribute::AllocAlign: + return bitc::ATTR_KIND_ALLOC_ALIGN; + case Attribute::AllocSize: + return bitc::ATTR_KIND_ALLOC_SIZE; + case Attribute::AlwaysInline: + return bitc::ATTR_KIND_ALWAYS_INLINE; + case Attribute::Builtin: + return bitc::ATTR_KIND_BUILTIN; + case Attribute::ByVal: + return bitc::ATTR_KIND_BY_VAL; + case Attribute::Convergent: + return bitc::ATTR_KIND_CONVERGENT; + case Attribute::InAlloca: + return bitc::ATTR_KIND_IN_ALLOCA; + case Attribute::Cold: + return bitc::ATTR_KIND_COLD; + case Attribute::DisableSanitizerInstrumentation: + return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; + case Attribute::FnRetThunkExtern: + return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; + case Attribute::Hot: + return bitc::ATTR_KIND_HOT; + case Attribute::ElementType: + return bitc::ATTR_KIND_ELEMENTTYPE; + case Attribute::InlineHint: + return bitc::ATTR_KIND_INLINE_HINT; + case Attribute::InReg: + return bitc::ATTR_KIND_IN_REG; + case Attribute::JumpTable: + return bitc::ATTR_KIND_JUMP_TABLE; + case Attribute::MinSize: + return bitc::ATTR_KIND_MIN_SIZE; + case Attribute::AllocatedPointer: + return bitc::ATTR_KIND_ALLOCATED_POINTER; + case Attribute::AllocKind: + return bitc::ATTR_KIND_ALLOC_KIND; + case Attribute::Memory: + return bitc::ATTR_KIND_MEMORY; + case Attribute::Naked: + return bitc::ATTR_KIND_NAKED; + case Attribute::Nest: + return bitc::ATTR_KIND_NEST; + case Attribute::NoAlias: + return bitc::ATTR_KIND_NO_ALIAS; + case Attribute::NoBuiltin: + return bitc::ATTR_KIND_NO_BUILTIN; + case Attribute::NoCallback: + return bitc::ATTR_KIND_NO_CALLBACK; + case Attribute::NoCapture: + return bitc::ATTR_KIND_NO_CAPTURE; + case Attribute::NoDuplicate: + return bitc::ATTR_KIND_NO_DUPLICATE; + case Attribute::NoFree: + return bitc::ATTR_KIND_NOFREE; + case Attribute::NoImplicitFloat: + return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; + case Attribute::NoInline: + return bitc::ATTR_KIND_NO_INLINE; + case Attribute::NoRecurse: + return bitc::ATTR_KIND_NO_RECURSE; + case Attribute::NoMerge: + return bitc::ATTR_KIND_NO_MERGE; + case Attribute::NonLazyBind: + return bitc::ATTR_KIND_NON_LAZY_BIND; + case Attribute::NonNull: + return bitc::ATTR_KIND_NON_NULL; + case Attribute::Dereferenceable: + return bitc::ATTR_KIND_DEREFERENCEABLE; + case Attribute::DereferenceableOrNull: + return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; + case Attribute::NoRedZone: + return bitc::ATTR_KIND_NO_RED_ZONE; + case Attribute::NoReturn: + return bitc::ATTR_KIND_NO_RETURN; + case Attribute::NoSync: + return bitc::ATTR_KIND_NOSYNC; + case Attribute::NoCfCheck: + return bitc::ATTR_KIND_NOCF_CHECK; + case Attribute::NoProfile: + return bitc::ATTR_KIND_NO_PROFILE; + case Attribute::SkipProfile: + return bitc::ATTR_KIND_SKIP_PROFILE; + case Attribute::NoUnwind: + return bitc::ATTR_KIND_NO_UNWIND; + case Attribute::NoSanitizeBounds: + return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; + case Attribute::NoSanitizeCoverage: + return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; + case Attribute::NullPointerIsValid: + return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; + case Attribute::OptForFuzzing: + return bitc::ATTR_KIND_OPT_FOR_FUZZING; + case Attribute::OptimizeForSize: + return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; + case Attribute::OptimizeNone: + return bitc::ATTR_KIND_OPTIMIZE_NONE; + case Attribute::ReadNone: + return bitc::ATTR_KIND_READ_NONE; + case Attribute::ReadOnly: + return bitc::ATTR_KIND_READ_ONLY; + case Attribute::Returned: + return bitc::ATTR_KIND_RETURNED; + case Attribute::ReturnsTwice: + return bitc::ATTR_KIND_RETURNS_TWICE; + case Attribute::SExt: + return bitc::ATTR_KIND_S_EXT; + case Attribute::Speculatable: + return bitc::ATTR_KIND_SPECULATABLE; + case Attribute::StackAlignment: + return bitc::ATTR_KIND_STACK_ALIGNMENT; + case Attribute::StackProtect: + return bitc::ATTR_KIND_STACK_PROTECT; + case Attribute::StackProtectReq: + return bitc::ATTR_KIND_STACK_PROTECT_REQ; + case Attribute::StackProtectStrong: + return bitc::ATTR_KIND_STACK_PROTECT_STRONG; + case Attribute::SafeStack: + return bitc::ATTR_KIND_SAFESTACK; + case Attribute::ShadowCallStack: + return bitc::ATTR_KIND_SHADOWCALLSTACK; + case Attribute::StrictFP: + return bitc::ATTR_KIND_STRICT_FP; + case Attribute::StructRet: + return bitc::ATTR_KIND_STRUCT_RET; + case Attribute::SanitizeAddress: + return bitc::ATTR_KIND_SANITIZE_ADDRESS; + case Attribute::SanitizeHWAddress: + return bitc::ATTR_KIND_SANITIZE_HWADDRESS; + case Attribute::SanitizeThread: + return bitc::ATTR_KIND_SANITIZE_THREAD; + case Attribute::SanitizeMemory: + return bitc::ATTR_KIND_SANITIZE_MEMORY; + case Attribute::SpeculativeLoadHardening: + return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; + case Attribute::SwiftError: + return bitc::ATTR_KIND_SWIFT_ERROR; + case Attribute::SwiftSelf: + return bitc::ATTR_KIND_SWIFT_SELF; + case Attribute::SwiftAsync: + return bitc::ATTR_KIND_SWIFT_ASYNC; + case Attribute::UWTable: + return bitc::ATTR_KIND_UW_TABLE; + case Attribute::VScaleRange: + return bitc::ATTR_KIND_VSCALE_RANGE; + case Attribute::WillReturn: + return bitc::ATTR_KIND_WILLRETURN; + case Attribute::WriteOnly: + return bitc::ATTR_KIND_WRITEONLY; + case Attribute::ZExt: + return bitc::ATTR_KIND_Z_EXT; + case Attribute::ImmArg: + return bitc::ATTR_KIND_IMMARG; + case Attribute::SanitizeMemTag: + return bitc::ATTR_KIND_SANITIZE_MEMTAG; + case Attribute::Preallocated: + return bitc::ATTR_KIND_PREALLOCATED; + case Attribute::NoUndef: + return bitc::ATTR_KIND_NOUNDEF; + case Attribute::ByRef: + return bitc::ATTR_KIND_BYREF; + case Attribute::MustProgress: + return bitc::ATTR_KIND_MUSTPROGRESS; + case Attribute::PresplitCoroutine: + return bitc::ATTR_KIND_PRESPLIT_COROUTINE; + case Attribute::EndAttrKinds: + llvm_unreachable("Can not encode end-attribute kinds marker."); + case Attribute::None: + llvm_unreachable("Can not encode none-attribute."); + case Attribute::EmptyKey: + case Attribute::TombstoneKey: + llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); + } + + llvm_unreachable("Trying to encode unknown attribute"); +} + +void ModuleBitcodeWriter::writeAttributeGroupTable() { + const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = + VE.getAttributeGroups(); + if (AttrGrps.empty()) return; + + Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); + + SmallVector<uint64_t, 64> Record; + for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { + unsigned AttrListIndex = Pair.first; + AttributeSet AS = Pair.second; + Record.push_back(VE.getAttributeGroupID(Pair)); + Record.push_back(AttrListIndex); + + for (Attribute Attr : AS) { + if (Attr.isEnumAttribute()) { + Record.push_back(0); + Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); + } else if (Attr.isIntAttribute()) { + Record.push_back(1); + Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); + Record.push_back(Attr.getValueAsInt()); + } else if (Attr.isStringAttribute()) { + StringRef Kind = Attr.getKindAsString(); + StringRef Val = Attr.getValueAsString(); + + Record.push_back(Val.empty() ? 3 : 4); + Record.append(Kind.begin(), Kind.end()); + Record.push_back(0); + if (!Val.empty()) { + Record.append(Val.begin(), Val.end()); + Record.push_back(0); + } + } else { + assert(Attr.isTypeAttribute()); + Type *Ty = Attr.getValueAsType(); + Record.push_back(Ty ? 6 : 5); + Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); + if (Ty) + Record.push_back(VE.getTypeID(Attr.getValueAsType())); + } + } + + Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); + Record.clear(); + } + + Stream.ExitBlock(); +} + +void ModuleBitcodeWriter::writeAttributeTable() { + const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); + if (Attrs.empty()) return; + + Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); + + SmallVector<uint64_t, 64> Record; + for (const AttributeList &AL : Attrs) { + for (unsigned i : AL.indexes()) { + AttributeSet AS = AL.getAttributes(i); + if (AS.hasAttributes()) + Record.push_back(VE.getAttributeGroupID({i, AS})); + } + + Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); + Record.clear(); + } + + Stream.ExitBlock(); +} + +/// WriteTypeTable - Write out the type table for a module. +void ModuleBitcodeWriter::writeTypeTable() { + const ValueEnumerator::TypeList &TypeList = VE.getTypes(); + + Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); + SmallVector<uint64_t, 64> TypeVals; + + uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); + + // Abbrev for TYPE_CODE_POINTER. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); + Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 + unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for TYPE_CODE_OPAQUE_POINTER. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); + Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 + unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for TYPE_CODE_FUNCTION. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); + unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for TYPE_CODE_STRUCT_ANON. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); + unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for TYPE_CODE_STRUCT_NAME. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); + unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for TYPE_CODE_STRUCT_NAMED. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); + unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for TYPE_CODE_ARRAY. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); + unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Emit an entry count so the reader can reserve space. + TypeVals.push_back(TypeList.size()); + Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); + TypeVals.clear(); + + // Loop over all of the types, emitting each in turn. + for (Type *T : TypeList) { + int AbbrevToUse = 0; + unsigned Code = 0; + + switch (T->getTypeID()) { + case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; + case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; + case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; + case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; + case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; + case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; + case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; + case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; + case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; + case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; + case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; + case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; + case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; + case Type::IntegerTyID: + // INTEGER: [width] + Code = bitc::TYPE_CODE_INTEGER; + TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); + break; + case Type::PointerTyID: { + PointerType *PTy = cast<PointerType>(T); + unsigned AddressSpace = PTy->getAddressSpace(); + if (PTy->isOpaque()) { + // OPAQUE_POINTER: [address space] + Code = bitc::TYPE_CODE_OPAQUE_POINTER; + TypeVals.push_back(AddressSpace); + if (AddressSpace == 0) + AbbrevToUse = OpaquePtrAbbrev; + } else { + // POINTER: [pointee type, address space] + Code = bitc::TYPE_CODE_POINTER; + TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); + TypeVals.push_back(AddressSpace); + if (AddressSpace == 0) + AbbrevToUse = PtrAbbrev; + } + break; + } + case Type::FunctionTyID: { + FunctionType *FT = cast<FunctionType>(T); + // FUNCTION: [isvararg, retty, paramty x N] + Code = bitc::TYPE_CODE_FUNCTION; + TypeVals.push_back(FT->isVarArg()); + TypeVals.push_back(VE.getTypeID(FT->getReturnType())); + for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) + TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); + AbbrevToUse = FunctionAbbrev; + break; + } + case Type::StructTyID: { + StructType *ST = cast<StructType>(T); + // STRUCT: [ispacked, eltty x N] + TypeVals.push_back(ST->isPacked()); + // Output all of the element types. + for (Type *ET : ST->elements()) + TypeVals.push_back(VE.getTypeID(ET)); + + if (ST->isLiteral()) { + Code = bitc::TYPE_CODE_STRUCT_ANON; + AbbrevToUse = StructAnonAbbrev; + } else { + if (ST->isOpaque()) { + Code = bitc::TYPE_CODE_OPAQUE; + } else { + Code = bitc::TYPE_CODE_STRUCT_NAMED; + AbbrevToUse = StructNamedAbbrev; + } + + // Emit the name if it is present. + if (!ST->getName().empty()) + writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), + StructNameAbbrev); + } + break; + } + case Type::ArrayTyID: { + ArrayType *AT = cast<ArrayType>(T); + // ARRAY: [numelts, eltty] + Code = bitc::TYPE_CODE_ARRAY; + TypeVals.push_back(AT->getNumElements()); + TypeVals.push_back(VE.getTypeID(AT->getElementType())); + AbbrevToUse = ArrayAbbrev; + break; + } + case Type::FixedVectorTyID: + case Type::ScalableVectorTyID: { + VectorType *VT = cast<VectorType>(T); + // VECTOR [numelts, eltty] or + // [numelts, eltty, scalable] + Code = bitc::TYPE_CODE_VECTOR; + TypeVals.push_back(VT->getElementCount().getKnownMinValue()); + TypeVals.push_back(VE.getTypeID(VT->getElementType())); + if (isa<ScalableVectorType>(VT)) + TypeVals.push_back(true); + break; + } + case Type::TargetExtTyID: { + TargetExtType *TET = cast<TargetExtType>(T); + Code = bitc::TYPE_CODE_TARGET_TYPE; + writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), + StructNameAbbrev); + TypeVals.push_back(TET->getNumTypeParameters()); + for (Type *InnerTy : TET->type_params()) + TypeVals.push_back(VE.getTypeID(InnerTy)); + for (unsigned IntParam : TET->int_params()) + TypeVals.push_back(IntParam); + break; + } + case Type::TypedPointerTyID: + llvm_unreachable("Typed pointers cannot be added to IR modules"); + } + + // Emit the finished record. + Stream.EmitRecord(Code, TypeVals, AbbrevToUse); + TypeVals.clear(); + } + + Stream.ExitBlock(); +} + +static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { + switch (Linkage) { + case GlobalValue::ExternalLinkage: + return 0; + case GlobalValue::WeakAnyLinkage: + return 16; + case GlobalValue::AppendingLinkage: + return 2; + case GlobalValue::InternalLinkage: + return 3; + case GlobalValue::LinkOnceAnyLinkage: + return 18; + case GlobalValue::ExternalWeakLinkage: + return 7; + case GlobalValue::CommonLinkage: + return 8; + case GlobalValue::PrivateLinkage: + return 9; + case GlobalValue::WeakODRLinkage: + return 17; + case GlobalValue::LinkOnceODRLinkage: + return 19; + case GlobalValue::AvailableExternallyLinkage: + return 12; + } + llvm_unreachable("Invalid linkage"); +} + +static unsigned getEncodedLinkage(const GlobalValue &GV) { + return getEncodedLinkage(GV.getLinkage()); +} + +static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { + uint64_t RawFlags = 0; + RawFlags |= Flags.ReadNone; + RawFlags |= (Flags.ReadOnly << 1); + RawFlags |= (Flags.NoRecurse << 2); + RawFlags |= (Flags.ReturnDoesNotAlias << 3); + RawFlags |= (Flags.NoInline << 4); + RawFlags |= (Flags.AlwaysInline << 5); + RawFlags |= (Flags.NoUnwind << 6); + RawFlags |= (Flags.MayThrow << 7); + RawFlags |= (Flags.HasUnknownCall << 8); + RawFlags |= (Flags.MustBeUnreachable << 9); + return RawFlags; +} + +// Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags +// in BitcodeReader.cpp. +static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { + uint64_t RawFlags = 0; + + RawFlags |= Flags.NotEligibleToImport; // bool + RawFlags |= (Flags.Live << 1); + RawFlags |= (Flags.DSOLocal << 2); + RawFlags |= (Flags.CanAutoHide << 3); + + // Linkage don't need to be remapped at that time for the summary. Any future + // change to the getEncodedLinkage() function will need to be taken into + // account here as well. + RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits + + RawFlags |= (Flags.Visibility << 8); // 2 bits + + return RawFlags; +} + +static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { + uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | + (Flags.Constant << 2) | Flags.VCallVisibility << 3; + return RawFlags; +} + +static unsigned getEncodedVisibility(const GlobalValue &GV) { + switch (GV.getVisibility()) { + case GlobalValue::DefaultVisibility: return 0; + case GlobalValue::HiddenVisibility: return 1; + case GlobalValue::ProtectedVisibility: return 2; + } + llvm_unreachable("Invalid visibility"); +} + +static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { + switch (GV.getDLLStorageClass()) { + case GlobalValue::DefaultStorageClass: return 0; + case GlobalValue::DLLImportStorageClass: return 1; + case GlobalValue::DLLExportStorageClass: return 2; + } + llvm_unreachable("Invalid DLL storage class"); +} + +static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { + switch (GV.getThreadLocalMode()) { + case GlobalVariable::NotThreadLocal: return 0; + case GlobalVariable::GeneralDynamicTLSModel: return 1; + case GlobalVariable::LocalDynamicTLSModel: return 2; + case GlobalVariable::InitialExecTLSModel: return 3; + case GlobalVariable::LocalExecTLSModel: return 4; + } + llvm_unreachable("Invalid TLS model"); +} + +static unsigned getEncodedComdatSelectionKind(const Comdat &C) { + switch (C.getSelectionKind()) { + case Comdat::Any: + return bitc::COMDAT_SELECTION_KIND_ANY; + case Comdat::ExactMatch: + return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; + case Comdat::Largest: + return bitc::COMDAT_SELECTION_KIND_LARGEST; + case Comdat::NoDeduplicate: + return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; + case Comdat::SameSize: + return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; + } + llvm_unreachable("Invalid selection kind"); +} + +static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { + switch (GV.getUnnamedAddr()) { + case GlobalValue::UnnamedAddr::None: return 0; + case GlobalValue::UnnamedAddr::Local: return 2; + case GlobalValue::UnnamedAddr::Global: return 1; + } + llvm_unreachable("Invalid unnamed_addr"); +} + +size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { + if (GenerateHash) + Hasher.update(Str); + return StrtabBuilder.add(Str); +} + +void ModuleBitcodeWriter::writeComdats() { + SmallVector<unsigned, 64> Vals; + for (const Comdat *C : VE.getComdats()) { + // COMDAT: [strtab offset, strtab size, selection_kind] + Vals.push_back(addToStrtab(C->getName())); + Vals.push_back(C->getName().size()); + Vals.push_back(getEncodedComdatSelectionKind(*C)); + Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); + Vals.clear(); + } +} + +/// Write a record that will eventually hold the word offset of the +/// module-level VST. For now the offset is 0, which will be backpatched +/// after the real VST is written. Saves the bit offset to backpatch. +void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { + // Write a placeholder value in for the offset of the real VST, + // which is written after the function blocks so that it can include + // the offset of each function. The placeholder offset will be + // updated when the real VST is written. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); + // Blocks are 32-bit aligned, so we can use a 32-bit word offset to + // hold the real VST offset. Must use fixed instead of VBR as we don't + // know how many VBR chunks to reserve ahead of time. + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); + unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Emit the placeholder + uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; + Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); + + // Compute and save the bit offset to the placeholder, which will be + // patched when the real VST is written. We can simply subtract the 32-bit + // fixed size from the current bit number to get the location to backpatch. + VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; +} + +enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; + +/// Determine the encoding to use for the given string name and length. +static StringEncoding getStringEncoding(StringRef Str) { + bool isChar6 = true; + for (char C : Str) { + if (isChar6) + isChar6 = BitCodeAbbrevOp::isChar6(C); + if ((unsigned char)C & 128) + // don't bother scanning the rest. + return SE_Fixed8; + } + if (isChar6) + return SE_Char6; + return SE_Fixed7; +} + +static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), + "Sanitizer Metadata is too large for naive serialization."); +static unsigned +serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { + return Meta.NoAddress | (Meta.NoHWAddress << 1) | + (Meta.Memtag << 2) | (Meta.IsDynInit << 3); +} + +/// Emit top-level description of module, including target triple, inline asm, +/// descriptors for global variables, and function prototype info. +/// Returns the bit offset to backpatch with the location of the real VST. +void ModuleBitcodeWriter::writeModuleInfo() { + // Emit various pieces of data attached to a module. + if (!M.getTargetTriple().empty()) + writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), + 0 /*TODO*/); + const std::string &DL = M.getDataLayoutStr(); + if (!DL.empty()) + writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); + if (!M.getModuleInlineAsm().empty()) + writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), + 0 /*TODO*/); + + // Emit information about sections and GC, computing how many there are. Also + // compute the maximum alignment value. + std::map<std::string, unsigned> SectionMap; + std::map<std::string, unsigned> GCMap; + MaybeAlign MaxAlignment; + unsigned MaxGlobalType = 0; + const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { + if (A) + MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); + }; + for (const GlobalVariable &GV : M.globals()) { + UpdateMaxAlignment(GV.getAlign()); + MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); + if (GV.hasSection()) { + // Give section names unique ID's. + unsigned &Entry = SectionMap[std::string(GV.getSection())]; + if (!Entry) { + writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), + 0 /*TODO*/); + Entry = SectionMap.size(); + } + } + } + for (const Function &F : M) { + UpdateMaxAlignment(F.getAlign()); + if (F.hasSection()) { + // Give section names unique ID's. + unsigned &Entry = SectionMap[std::string(F.getSection())]; + if (!Entry) { + writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), + 0 /*TODO*/); + Entry = SectionMap.size(); + } + } + if (F.hasGC()) { + // Same for GC names. + unsigned &Entry = GCMap[F.getGC()]; + if (!Entry) { + writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), + 0 /*TODO*/); + Entry = GCMap.size(); + } + } + } + + // Emit abbrev for globals, now that we know # sections and max alignment. + unsigned SimpleGVarAbbrev = 0; + if (!M.global_empty()) { + // Add an abbrev for common globals with no visibility or thread localness. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, + Log2_32_Ceil(MaxGlobalType+1))); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 + //| explicitType << 1 + //| constant + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. + if (!MaxAlignment) // Alignment. + Abbv->Add(BitCodeAbbrevOp(0)); + else { + unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, + Log2_32_Ceil(MaxEncAlignment+1))); + } + if (SectionMap.empty()) // Section. + Abbv->Add(BitCodeAbbrevOp(0)); + else + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, + Log2_32_Ceil(SectionMap.size()+1))); + // Don't bother emitting vis + thread local. + SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + } + + SmallVector<unsigned, 64> Vals; + // Emit the module's source file name. + { + StringEncoding Bits = getStringEncoding(M.getSourceFileName()); + BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); + if (Bits == SE_Char6) + AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); + else if (Bits == SE_Fixed7) + AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); + + // MODULE_CODE_SOURCE_FILENAME: [namechar x N] + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(AbbrevOpToUse); + unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + for (const auto P : M.getSourceFileName()) + Vals.push_back((unsigned char)P); + + // Emit the finished record. + Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); + Vals.clear(); + } + + // Emit the global variable information. + for (const GlobalVariable &GV : M.globals()) { + unsigned AbbrevToUse = 0; + + // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, + // linkage, alignment, section, visibility, threadlocal, + // unnamed_addr, externally_initialized, dllstorageclass, + // comdat, attributes, DSO_Local, GlobalSanitizer] + Vals.push_back(addToStrtab(GV.getName())); + Vals.push_back(GV.getName().size()); + Vals.push_back(VE.getTypeID(GV.getValueType())); + Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); + Vals.push_back(GV.isDeclaration() ? 0 : + (VE.getValueID(GV.getInitializer()) + 1)); + Vals.push_back(getEncodedLinkage(GV)); + Vals.push_back(getEncodedAlign(GV.getAlign())); + Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] + : 0); + if (GV.isThreadLocal() || + GV.getVisibility() != GlobalValue::DefaultVisibility || + GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || + GV.isExternallyInitialized() || + GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || + GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || + GV.hasPartition() || GV.hasSanitizerMetadata()) { + Vals.push_back(getEncodedVisibility(GV)); + Vals.push_back(getEncodedThreadLocalMode(GV)); + Vals.push_back(getEncodedUnnamedAddr(GV)); + Vals.push_back(GV.isExternallyInitialized()); + Vals.push_back(getEncodedDLLStorageClass(GV)); + Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); + + auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); + Vals.push_back(VE.getAttributeListID(AL)); + + Vals.push_back(GV.isDSOLocal()); + Vals.push_back(addToStrtab(GV.getPartition())); + Vals.push_back(GV.getPartition().size()); + + Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( + GV.getSanitizerMetadata()) + : 0)); + } else { + AbbrevToUse = SimpleGVarAbbrev; + } + + Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); + Vals.clear(); + } + + // Emit the function proto information. + for (const Function &F : M) { + // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, + // linkage, paramattrs, alignment, section, visibility, gc, + // unnamed_addr, prologuedata, dllstorageclass, comdat, + // prefixdata, personalityfn, DSO_Local, addrspace] + Vals.push_back(addToStrtab(F.getName())); + Vals.push_back(F.getName().size()); + Vals.push_back(VE.getTypeID(F.getFunctionType())); + Vals.push_back(F.getCallingConv()); + Vals.push_back(F.isDeclaration()); + Vals.push_back(getEncodedLinkage(F)); + Vals.push_back(VE.getAttributeListID(F.getAttributes())); + Vals.push_back(getEncodedAlign(F.getAlign())); + Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] + : 0); + Vals.push_back(getEncodedVisibility(F)); + Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); + Vals.push_back(getEncodedUnnamedAddr(F)); + Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) + : 0); + Vals.push_back(getEncodedDLLStorageClass(F)); + Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); + Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) + : 0); + Vals.push_back( + F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); + + Vals.push_back(F.isDSOLocal()); + Vals.push_back(F.getAddressSpace()); + Vals.push_back(addToStrtab(F.getPartition())); + Vals.push_back(F.getPartition().size()); + + unsigned AbbrevToUse = 0; + Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); + Vals.clear(); + } + + // Emit the alias information. + for (const GlobalAlias &A : M.aliases()) { + // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, + // visibility, dllstorageclass, threadlocal, unnamed_addr, + // DSO_Local] + Vals.push_back(addToStrtab(A.getName())); + Vals.push_back(A.getName().size()); + Vals.push_back(VE.getTypeID(A.getValueType())); + Vals.push_back(A.getType()->getAddressSpace()); + Vals.push_back(VE.getValueID(A.getAliasee())); + Vals.push_back(getEncodedLinkage(A)); + Vals.push_back(getEncodedVisibility(A)); + Vals.push_back(getEncodedDLLStorageClass(A)); + Vals.push_back(getEncodedThreadLocalMode(A)); + Vals.push_back(getEncodedUnnamedAddr(A)); + Vals.push_back(A.isDSOLocal()); + Vals.push_back(addToStrtab(A.getPartition())); + Vals.push_back(A.getPartition().size()); + + unsigned AbbrevToUse = 0; + Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); + Vals.clear(); + } + + // Emit the ifunc information. + for (const GlobalIFunc &I : M.ifuncs()) { + // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver + // val#, linkage, visibility, DSO_Local] + Vals.push_back(addToStrtab(I.getName())); + Vals.push_back(I.getName().size()); + Vals.push_back(VE.getTypeID(I.getValueType())); + Vals.push_back(I.getType()->getAddressSpace()); + Vals.push_back(VE.getValueID(I.getResolver())); + Vals.push_back(getEncodedLinkage(I)); + Vals.push_back(getEncodedVisibility(I)); + Vals.push_back(I.isDSOLocal()); + Vals.push_back(addToStrtab(I.getPartition())); + Vals.push_back(I.getPartition().size()); + Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); + Vals.clear(); + } + + writeValueSymbolTableForwardDecl(); +} + +static uint64_t getOptimizationFlags(const Value *V) { + uint64_t Flags = 0; + + if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { + if (OBO->hasNoSignedWrap()) + Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; + if (OBO->hasNoUnsignedWrap()) + Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; + } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { + if (PEO->isExact()) + Flags |= 1 << bitc::PEO_EXACT; + } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { + if (FPMO->hasAllowReassoc()) + Flags |= bitc::AllowReassoc; + if (FPMO->hasNoNaNs()) + Flags |= bitc::NoNaNs; + if (FPMO->hasNoInfs()) + Flags |= bitc::NoInfs; + if (FPMO->hasNoSignedZeros()) + Flags |= bitc::NoSignedZeros; + if (FPMO->hasAllowReciprocal()) + Flags |= bitc::AllowReciprocal; + if (FPMO->hasAllowContract()) + Flags |= bitc::AllowContract; + if (FPMO->hasApproxFunc()) + Flags |= bitc::ApproxFunc; + } + + return Flags; +} + +void ModuleBitcodeWriter::writeValueAsMetadata( + const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { + // Mimic an MDNode with a value as one operand. + Value *V = MD->getValue(); + Record.push_back(VE.getTypeID(V->getType())); + Record.push_back(VE.getValueID(V)); + Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); + Record.clear(); +} + +void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { + Metadata *MD = N->getOperand(i); + assert(!(MD && isa<LocalAsMetadata>(MD)) && + "Unexpected function-local metadata"); + Record.push_back(VE.getMetadataOrNullID(MD)); + } + Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE + : bitc::METADATA_NODE, + Record, Abbrev); + Record.clear(); +} + +unsigned ModuleBitcodeWriter::createDILocationAbbrev() { + // Assume the column is usually under 128, and always output the inlined-at + // location (it's never more expensive than building an array size 1). + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); + return Stream.EmitAbbrev(std::move(Abbv)); +} + +void ModuleBitcodeWriter::writeDILocation(const DILocation *N, + SmallVectorImpl<uint64_t> &Record, + unsigned &Abbrev) { + if (!Abbrev) + Abbrev = createDILocationAbbrev(); + + Record.push_back(N->isDistinct()); + Record.push_back(N->getLine()); + Record.push_back(N->getColumn()); + Record.push_back(VE.getMetadataID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); + Record.push_back(N->isImplicitCode()); + + Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); + Record.clear(); +} + +unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { + // Assume the column is usually under 128, and always output the inlined-at + // location (it's never more expensive than building an array size 1). + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); + return Stream.EmitAbbrev(std::move(Abbv)); +} + +void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, + SmallVectorImpl<uint64_t> &Record, + unsigned &Abbrev) { + if (!Abbrev) + Abbrev = createGenericDINodeAbbrev(); + + Record.push_back(N->isDistinct()); + Record.push_back(N->getTag()); + Record.push_back(0); // Per-tag version field; unused for now. + + for (auto &I : N->operands()) + Record.push_back(VE.getMetadataOrNullID(I)); + + Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + const uint64_t Version = 2 << 1; + Record.push_back((uint64_t)N->isDistinct() | Version); + Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); + Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); + Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); + Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); + + Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDIGenericSubrange( + const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back((uint64_t)N->isDistinct()); + Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); + Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); + Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); + Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); + + Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); + Record.clear(); +} + +static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { + if ((int64_t)V >= 0) + Vals.push_back(V << 1); + else + Vals.push_back((-V << 1) | 1); +} + +static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { + // We have an arbitrary precision integer value to write whose + // bit width is > 64. However, in canonical unsigned integer + // format it is likely that the high bits are going to be zero. + // So, we only write the number of active words. + unsigned NumWords = A.getActiveWords(); + const uint64_t *RawData = A.getRawData(); + for (unsigned i = 0; i < NumWords; i++) + emitSignedInt64(Vals, RawData[i]); +} + +void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + const uint64_t IsBigInt = 1 << 2; + Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); + Record.push_back(N->getValue().getBitWidth()); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + emitWideAPInt(Record, N->getValue()); + + Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(N->getTag()); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(N->getSizeInBits()); + Record.push_back(N->getAlignInBits()); + Record.push_back(N->getEncoding()); + Record.push_back(N->getFlags()); + + Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(N->getTag()); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); + Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); + Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); + Record.push_back(N->getSizeInBits()); + Record.push_back(N->getAlignInBits()); + Record.push_back(N->getEncoding()); + + Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(N->getTag()); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(N->getLine()); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); + Record.push_back(N->getSizeInBits()); + Record.push_back(N->getAlignInBits()); + Record.push_back(N->getOffsetInBits()); + Record.push_back(N->getFlags()); + Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); + + // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means + // that there is no DWARF address space associated with DIDerivedType. + if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) + Record.push_back(*DWARFAddressSpace + 1); + else + Record.push_back(0); + + Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); + + Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDICompositeType( + const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + const unsigned IsNotUsedInOldTypeRef = 0x2; + Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); + Record.push_back(N->getTag()); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(N->getLine()); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); + Record.push_back(N->getSizeInBits()); + Record.push_back(N->getAlignInBits()); + Record.push_back(N->getOffsetInBits()); + Record.push_back(N->getFlags()); + Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); + Record.push_back(N->getRuntimeLang()); + Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); + Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); + Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); + Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); + Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); + Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); + Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); + Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); + Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); + + Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDISubroutineType( + const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + const unsigned HasNoOldTypeRefs = 0x2; + Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); + Record.push_back(N->getFlags()); + Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); + Record.push_back(N->getCC()); + + Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDIFile(const DIFile *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); + Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); + if (N->getRawChecksum()) { + Record.push_back(N->getRawChecksum()->Kind); + Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); + } else { + // Maintain backwards compatibility with the old internal representation of + // CSK_None in ChecksumKind by writing nulls here when Checksum is None. + Record.push_back(0); + Record.push_back(VE.getMetadataOrNullID(nullptr)); + } + auto Source = N->getRawSource(); + if (Source) + Record.push_back(VE.getMetadataOrNullID(Source)); + + Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + assert(N->isDistinct() && "Expected distinct compile units"); + Record.push_back(/* IsDistinct */ true); + Record.push_back(N->getSourceLanguage()); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); + Record.push_back(N->isOptimized()); + Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); + Record.push_back(N->getRuntimeVersion()); + Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); + Record.push_back(N->getEmissionKind()); + Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); + Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); + Record.push_back(/* subprograms */ 0); + Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); + Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); + Record.push_back(N->getDWOId()); + Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); + Record.push_back(N->getSplitDebugInlining()); + Record.push_back(N->getDebugInfoForProfiling()); + Record.push_back((unsigned)N->getNameTableKind()); + Record.push_back(N->getRangesBaseAddress()); + Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); + Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); + + Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + const uint64_t HasUnitFlag = 1 << 1; + const uint64_t HasSPFlagsFlag = 1 << 2; + Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(N->getLine()); + Record.push_back(VE.getMetadataOrNullID(N->getType())); + Record.push_back(N->getScopeLine()); + Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); + Record.push_back(N->getSPFlags()); + Record.push_back(N->getVirtualIndex()); + Record.push_back(N->getFlags()); + Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); + Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); + Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); + Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); + Record.push_back(N->getThisAdjustment()); + Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); + Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); + Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); + + Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(N->getLine()); + Record.push_back(N->getColumn()); + + Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDILexicalBlockFile( + const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(N->getDiscriminator()); + + Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getDecl())); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(N->getLineNo()); + + Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + + Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(N->getMacinfoType()); + Record.push_back(N->getLine()); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); + + Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(N->getMacinfoType()); + Record.push_back(N->getLine()); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); + + Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.reserve(N->getArgs().size()); + for (ValueAsMetadata *MD : N->getArgs()) + Record.push_back(VE.getMetadataID(MD)); + + Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDIModule(const DIModule *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + for (auto &I : N->operands()) + Record.push_back(VE.getMetadataOrNullID(I)); + Record.push_back(N->getLineNo()); + Record.push_back(N->getIsDecl()); + + Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + // There are no arguments for this metadata type. + Record.push_back(N->isDistinct()); + Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDITemplateTypeParameter( + const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getType())); + Record.push_back(N->isDefault()); + + Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDITemplateValueParameter( + const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(N->getTag()); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getType())); + Record.push_back(N->isDefault()); + Record.push_back(VE.getMetadataOrNullID(N->getValue())); + + Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDIGlobalVariable( + const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + const uint64_t Version = 2 << 1; + Record.push_back((uint64_t)N->isDistinct() | Version); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(N->getLine()); + Record.push_back(VE.getMetadataOrNullID(N->getType())); + Record.push_back(N->isLocalToUnit()); + Record.push_back(N->isDefinition()); + Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); + Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); + Record.push_back(N->getAlignInBits()); + Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); + + Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDILocalVariable( + const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + // In order to support all possible bitcode formats in BitcodeReader we need + // to distinguish the following cases: + // 1) Record has no artificial tag (Record[1]), + // has no obsolete inlinedAt field (Record[9]). + // In this case Record size will be 8, HasAlignment flag is false. + // 2) Record has artificial tag (Record[1]), + // has no obsolete inlignedAt field (Record[9]). + // In this case Record size will be 9, HasAlignment flag is false. + // 3) Record has both artificial tag (Record[1]) and + // obsolete inlignedAt field (Record[9]). + // In this case Record size will be 10, HasAlignment flag is false. + // 4) Record has neither artificial tag, nor inlignedAt field, but + // HasAlignment flag is true and Record[8] contains alignment value. + const uint64_t HasAlignmentFlag = 1 << 1; + Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(N->getLine()); + Record.push_back(VE.getMetadataOrNullID(N->getType())); + Record.push_back(N->getArg()); + Record.push_back(N->getFlags()); + Record.push_back(N->getAlignInBits()); + Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); + + Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDILabel( + const DILabel *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back((uint64_t)N->isDistinct()); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(N->getLine()); + + Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.reserve(N->getElements().size() + 1); + const uint64_t Version = 3 << 1; + Record.push_back((uint64_t)N->isDistinct() | Version); + Record.append(N->elements_begin(), N->elements_end()); + + Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDIGlobalVariableExpression( + const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(VE.getMetadataOrNullID(N->getVariable())); + Record.push_back(VE.getMetadataOrNullID(N->getExpression())); + + Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(N->getLine()); + Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); + Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); + Record.push_back(N->getAttributes()); + Record.push_back(VE.getMetadataOrNullID(N->getType())); + + Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); + Record.clear(); +} + +void ModuleBitcodeWriter::writeDIImportedEntity( + const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(N->getTag()); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getEntity())); + Record.push_back(N->getLine()); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); + Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); + + Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); + Record.clear(); +} + +unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); + return Stream.EmitAbbrev(std::move(Abbv)); +} + +void ModuleBitcodeWriter::writeNamedMetadata( + SmallVectorImpl<uint64_t> &Record) { + if (M.named_metadata_empty()) + return; + + unsigned Abbrev = createNamedMetadataAbbrev(); + for (const NamedMDNode &NMD : M.named_metadata()) { + // Write name. + StringRef Str = NMD.getName(); + Record.append(Str.bytes_begin(), Str.bytes_end()); + Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); + Record.clear(); + + // Write named metadata operands. + for (const MDNode *N : NMD.operands()) + Record.push_back(VE.getMetadataID(N)); + Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); + Record.clear(); + } +} + +unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); + return Stream.EmitAbbrev(std::move(Abbv)); +} + +/// Write out a record for MDString. +/// +/// All the metadata strings in a metadata block are emitted in a single +/// record. The sizes and strings themselves are shoved into a blob. +void ModuleBitcodeWriter::writeMetadataStrings( + ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { + if (Strings.empty()) + return; + + // Start the record with the number of strings. + Record.push_back(bitc::METADATA_STRINGS); + Record.push_back(Strings.size()); + + // Emit the sizes of the strings in the blob. + SmallString<256> Blob; + { + BitstreamWriter W(Blob); + for (const Metadata *MD : Strings) + W.EmitVBR(cast<MDString>(MD)->getLength(), 6); + W.FlushToWord(); + } + + // Add the offset to the strings to the record. + Record.push_back(Blob.size()); + + // Add the strings to the blob. + for (const Metadata *MD : Strings) + Blob.append(cast<MDString>(MD)->getString()); + + // Emit the final record. + Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); + Record.clear(); +} + +// Generates an enum to use as an index in the Abbrev array of Metadata record. +enum MetadataAbbrev : unsigned { +#define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, +#include "llvm/IR/Metadata.def" + LastPlusOne +}; + +void ModuleBitcodeWriter::writeMetadataRecords( + ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, + std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { + if (MDs.empty()) + return; + + // Initialize MDNode abbreviations. +#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; +#include "llvm/IR/Metadata.def" + + for (const Metadata *MD : MDs) { + if (IndexPos) + IndexPos->push_back(Stream.GetCurrentBitNo()); + if (const MDNode *N = dyn_cast<MDNode>(MD)) { + assert(N->isResolved() && "Expected forward references to be resolved"); + + switch (N->getMetadataID()) { + default: + llvm_unreachable("Invalid MDNode subclass"); +#define HANDLE_MDNODE_LEAF(CLASS) \ + case Metadata::CLASS##Kind: \ + if (MDAbbrevs) \ + write##CLASS(cast<CLASS>(N), Record, \ + (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ + else \ + write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ + continue; +#include "llvm/IR/Metadata.def" + } + } + writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); + } +} + +void ModuleBitcodeWriter::writeModuleMetadata() { + if (!VE.hasMDs() && M.named_metadata_empty()) + return; + + Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); + SmallVector<uint64_t, 64> Record; + + // Emit all abbrevs upfront, so that the reader can jump in the middle of the + // block and load any metadata. + std::vector<unsigned> MDAbbrevs; + + MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); + MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); + MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = + createGenericDINodeAbbrev(); + + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); + unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); + unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Emit MDStrings together upfront. + writeMetadataStrings(VE.getMDStrings(), Record); + + // We only emit an index for the metadata record if we have more than a given + // (naive) threshold of metadatas, otherwise it is not worth it. + if (VE.getNonMDStrings().size() > IndexThreshold) { + // Write a placeholder value in for the offset of the metadata index, + // which is written after the records, so that it can include + // the offset of each entry. The placeholder offset will be + // updated after all records are emitted. + uint64_t Vals[] = {0, 0}; + Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); + } + + // Compute and save the bit offset to the current position, which will be + // patched when we emit the index later. We can simply subtract the 64-bit + // fixed size from the current bit number to get the location to backpatch. + uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); + + // This index will contain the bitpos for each individual record. + std::vector<uint64_t> IndexPos; + IndexPos.reserve(VE.getNonMDStrings().size()); + + // Write all the records + writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); + + if (VE.getNonMDStrings().size() > IndexThreshold) { + // Now that we have emitted all the records we will emit the index. But + // first + // backpatch the forward reference so that the reader can skip the records + // efficiently. + Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, + Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); + + // Delta encode the index. + uint64_t PreviousValue = IndexOffsetRecordBitPos; + for (auto &Elt : IndexPos) { + auto EltDelta = Elt - PreviousValue; + PreviousValue = Elt; + Elt = EltDelta; + } + // Emit the index record. + Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); + IndexPos.clear(); + } + + // Write the named metadata now. + writeNamedMetadata(Record); + + auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { + SmallVector<uint64_t, 4> Record; + Record.push_back(VE.getValueID(&GO)); + pushGlobalMetadataAttachment(Record, GO); + Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); + }; + for (const Function &F : M) + if (F.isDeclaration() && F.hasMetadata()) + AddDeclAttachedMetadata(F); + // FIXME: Only store metadata for declarations here, and move data for global + // variable definitions to a separate block (PR28134). + for (const GlobalVariable &GV : M.globals()) + if (GV.hasMetadata()) + AddDeclAttachedMetadata(GV); + + Stream.ExitBlock(); +} + +void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { + if (!VE.hasMDs()) + return; + + Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); + SmallVector<uint64_t, 64> Record; + writeMetadataStrings(VE.getMDStrings(), Record); + writeMetadataRecords(VE.getNonMDStrings(), Record); + Stream.ExitBlock(); +} + +void ModuleBitcodeWriter::pushGlobalMetadataAttachment( + SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { + // [n x [id, mdnode]] + SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; + GO.getAllMetadata(MDs); + for (const auto &I : MDs) { + Record.push_back(I.first); + Record.push_back(VE.getMetadataID(I.second)); + } +} + +void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { + Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); + + SmallVector<uint64_t, 64> Record; + + if (F.hasMetadata()) { + pushGlobalMetadataAttachment(Record, F); + Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); + Record.clear(); + } + + // Write metadata attachments + // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] + SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; + for (const BasicBlock &BB : F) + for (const Instruction &I : BB) { + MDs.clear(); + I.getAllMetadataOtherThanDebugLoc(MDs); + + // If no metadata, ignore instruction. + if (MDs.empty()) continue; + + Record.push_back(VE.getInstructionID(&I)); + + for (unsigned i = 0, e = MDs.size(); i != e; ++i) { + Record.push_back(MDs[i].first); + Record.push_back(VE.getMetadataID(MDs[i].second)); + } + Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); + Record.clear(); + } + + Stream.ExitBlock(); +} + +void ModuleBitcodeWriter::writeModuleMetadataKinds() { + SmallVector<uint64_t, 64> Record; + + // Write metadata kinds + // METADATA_KIND - [n x [id, name]] + SmallVector<StringRef, 8> Names; + M.getMDKindNames(Names); + + if (Names.empty()) return; + + Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); + + for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { + Record.push_back(MDKindID); + StringRef KName = Names[MDKindID]; + Record.append(KName.begin(), KName.end()); + + Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); + Record.clear(); + } + + Stream.ExitBlock(); +} + +void ModuleBitcodeWriter::writeOperandBundleTags() { + // Write metadata kinds + // + // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG + // + // OPERAND_BUNDLE_TAG - [strchr x N] + + SmallVector<StringRef, 8> Tags; + M.getOperandBundleTags(Tags); + + if (Tags.empty()) + return; + + Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); + + SmallVector<uint64_t, 64> Record; + + for (auto Tag : Tags) { + Record.append(Tag.begin(), Tag.end()); + + Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); + Record.clear(); + } + + Stream.ExitBlock(); +} + +void ModuleBitcodeWriter::writeSyncScopeNames() { + SmallVector<StringRef, 8> SSNs; + M.getContext().getSyncScopeNames(SSNs); + if (SSNs.empty()) + return; + + Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); + + SmallVector<uint64_t, 64> Record; + for (auto SSN : SSNs) { + Record.append(SSN.begin(), SSN.end()); + Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); + Record.clear(); + } + + Stream.ExitBlock(); +} + +void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, + bool isGlobal) { + if (FirstVal == LastVal) return; + + Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); + + unsigned AggregateAbbrev = 0; + unsigned String8Abbrev = 0; + unsigned CString7Abbrev = 0; + unsigned CString6Abbrev = 0; + // If this is a constant pool for the module, emit module-specific abbrevs. + if (isGlobal) { + // Abbrev for CST_CODE_AGGREGATE. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); + AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for CST_CODE_STRING. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); + String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); + // Abbrev for CST_CODE_CSTRING. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); + CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); + // Abbrev for CST_CODE_CSTRING. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); + CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); + } + + SmallVector<uint64_t, 64> Record; + + const ValueEnumerator::ValueList &Vals = VE.getValues(); + Type *LastTy = nullptr; + for (unsigned i = FirstVal; i != LastVal; ++i) { + const Value *V = Vals[i].first; + // If we need to switch types, do so now. + if (V->getType() != LastTy) { + LastTy = V->getType(); + Record.push_back(VE.getTypeID(LastTy)); + Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, + CONSTANTS_SETTYPE_ABBREV); + Record.clear(); + } + + if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { + Record.push_back(VE.getTypeID(IA->getFunctionType())); + Record.push_back( + unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | + unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); + + // Add the asm string. + const std::string &AsmStr = IA->getAsmString(); + Record.push_back(AsmStr.size()); + Record.append(AsmStr.begin(), AsmStr.end()); + + // Add the constraint string. + const std::string &ConstraintStr = IA->getConstraintString(); + Record.push_back(ConstraintStr.size()); + Record.append(ConstraintStr.begin(), ConstraintStr.end()); + Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); + Record.clear(); + continue; + } + const Constant *C = cast<Constant>(V); + unsigned Code = -1U; + unsigned AbbrevToUse = 0; + if (C->isNullValue()) { + Code = bitc::CST_CODE_NULL; + } else if (isa<PoisonValue>(C)) { + Code = bitc::CST_CODE_POISON; + } else if (isa<UndefValue>(C)) { + Code = bitc::CST_CODE_UNDEF; + } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { + if (IV->getBitWidth() <= 64) { + uint64_t V = IV->getSExtValue(); + emitSignedInt64(Record, V); + Code = bitc::CST_CODE_INTEGER; + AbbrevToUse = CONSTANTS_INTEGER_ABBREV; + } else { // Wide integers, > 64 bits in size. + emitWideAPInt(Record, IV->getValue()); + Code = bitc::CST_CODE_WIDE_INTEGER; + } + } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { + Code = bitc::CST_CODE_FLOAT; + Type *Ty = CFP->getType(); + if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || + Ty->isDoubleTy()) { + Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); + } else if (Ty->isX86_FP80Ty()) { + // api needed to prevent premature destruction + // bits are not in the same order as a normal i80 APInt, compensate. + APInt api = CFP->getValueAPF().bitcastToAPInt(); + const uint64_t *p = api.getRawData(); + Record.push_back((p[1] << 48) | (p[0] >> 16)); + Record.push_back(p[0] & 0xffffLL); + } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { + APInt api = CFP->getValueAPF().bitcastToAPInt(); + const uint64_t *p = api.getRawData(); + Record.push_back(p[0]); + Record.push_back(p[1]); + } else { + assert(0 && "Unknown FP type!"); + } + } else if (isa<ConstantDataSequential>(C) && + cast<ConstantDataSequential>(C)->isString()) { + const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); + // Emit constant strings specially. + unsigned NumElts = Str->getNumElements(); + // If this is a null-terminated string, use the denser CSTRING encoding. + if (Str->isCString()) { + Code = bitc::CST_CODE_CSTRING; + --NumElts; // Don't encode the null, which isn't allowed by char6. + } else { + Code = bitc::CST_CODE_STRING; + AbbrevToUse = String8Abbrev; + } + bool isCStr7 = Code == bitc::CST_CODE_CSTRING; + bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; + for (unsigned i = 0; i != NumElts; ++i) { + unsigned char V = Str->getElementAsInteger(i); + Record.push_back(V); + isCStr7 &= (V & 128) == 0; + if (isCStrChar6) + isCStrChar6 = BitCodeAbbrevOp::isChar6(V); + } + + if (isCStrChar6) + AbbrevToUse = CString6Abbrev; + else if (isCStr7) + AbbrevToUse = CString7Abbrev; + } else if (const ConstantDataSequential *CDS = + dyn_cast<ConstantDataSequential>(C)) { + Code = bitc::CST_CODE_DATA; + Type *EltTy = CDS->getElementType(); + if (isa<IntegerType>(EltTy)) { + for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) + Record.push_back(CDS->getElementAsInteger(i)); + } else { + for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) + Record.push_back( + CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); + } + } else if (isa<ConstantAggregate>(C)) { + Code = bitc::CST_CODE_AGGREGATE; + for (const Value *Op : C->operands()) + Record.push_back(VE.getValueID(Op)); + AbbrevToUse = AggregateAbbrev; + } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { + switch (CE->getOpcode()) { + default: + if (Instruction::isCast(CE->getOpcode())) { + Code = bitc::CST_CODE_CE_CAST; + Record.push_back(getEncodedCastOpcode(CE->getOpcode())); + Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); + Record.push_back(VE.getValueID(C->getOperand(0))); + AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; + } else { + assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); + Code = bitc::CST_CODE_CE_BINOP; + Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + uint64_t Flags = getOptimizationFlags(CE); + if (Flags != 0) + Record.push_back(Flags); + } + break; + case Instruction::FNeg: { + assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); + Code = bitc::CST_CODE_CE_UNOP; + Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); + Record.push_back(VE.getValueID(C->getOperand(0))); + uint64_t Flags = getOptimizationFlags(CE); + if (Flags != 0) + Record.push_back(Flags); + break; + } + case Instruction::GetElementPtr: { + Code = bitc::CST_CODE_CE_GEP; + const auto *GO = cast<GEPOperator>(C); + Record.push_back(VE.getTypeID(GO->getSourceElementType())); + if (std::optional<unsigned> Idx = GO->getInRangeIndex()) { + Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; + Record.push_back((*Idx << 1) | GO->isInBounds()); + } else if (GO->isInBounds()) + Code = bitc::CST_CODE_CE_INBOUNDS_GEP; + for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { + Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); + Record.push_back(VE.getValueID(C->getOperand(i))); + } + break; + } + case Instruction::Select: + Code = bitc::CST_CODE_CE_SELECT; + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + Record.push_back(VE.getValueID(C->getOperand(2))); + break; + case Instruction::ExtractElement: + Code = bitc::CST_CODE_CE_EXTRACTELT; + Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); + Record.push_back(VE.getValueID(C->getOperand(1))); + break; + case Instruction::InsertElement: + Code = bitc::CST_CODE_CE_INSERTELT; + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); + Record.push_back(VE.getValueID(C->getOperand(2))); + break; + case Instruction::ShuffleVector: + // If the return type and argument types are the same, this is a + // standard shufflevector instruction. If the types are different, + // then the shuffle is widening or truncating the input vectors, and + // the argument type must also be encoded. + if (C->getType() == C->getOperand(0)->getType()) { + Code = bitc::CST_CODE_CE_SHUFFLEVEC; + } else { + Code = bitc::CST_CODE_CE_SHUFVEC_EX; + Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); + } + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); + break; + case Instruction::ICmp: + case Instruction::FCmp: + Code = bitc::CST_CODE_CE_CMP; + Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + Record.push_back(CE->getPredicate()); + break; + } + } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { + Code = bitc::CST_CODE_BLOCKADDRESS; + Record.push_back(VE.getTypeID(BA->getFunction()->getType())); + Record.push_back(VE.getValueID(BA->getFunction())); + Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); + } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { + Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; + Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); + Record.push_back(VE.getValueID(Equiv->getGlobalValue())); + } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { + Code = bitc::CST_CODE_NO_CFI_VALUE; + Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); + Record.push_back(VE.getValueID(NC->getGlobalValue())); + } else { +#ifndef NDEBUG + C->dump(); +#endif + llvm_unreachable("Unknown constant!"); + } + Stream.EmitRecord(Code, Record, AbbrevToUse); + Record.clear(); + } + + Stream.ExitBlock(); +} + +void ModuleBitcodeWriter::writeModuleConstants() { + const ValueEnumerator::ValueList &Vals = VE.getValues(); + + // Find the first constant to emit, which is the first non-globalvalue value. + // We know globalvalues have been emitted by WriteModuleInfo. + for (unsigned i = 0, e = Vals.size(); i != e; ++i) { + if (!isa<GlobalValue>(Vals[i].first)) { + writeConstants(i, Vals.size(), true); + return; + } + } +} + +/// pushValueAndType - The file has to encode both the value and type id for +/// many values, because we need to know what type to create for forward +/// references. However, most operands are not forward references, so this type +/// field is not needed. +/// +/// This function adds V's value ID to Vals. If the value ID is higher than the +/// instruction ID, then it is a forward reference, and it also includes the +/// type ID. The value ID that is written is encoded relative to the InstID. +bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, + SmallVectorImpl<unsigned> &Vals) { + unsigned ValID = VE.getValueID(V); + // Make encoding relative to the InstID. + Vals.push_back(InstID - ValID); + if (ValID >= InstID) { + Vals.push_back(VE.getTypeID(V->getType())); + return true; + } + return false; +} + +void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, + unsigned InstID) { + SmallVector<unsigned, 64> Record; + LLVMContext &C = CS.getContext(); + + for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { + const auto &Bundle = CS.getOperandBundleAt(i); + Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); + + for (auto &Input : Bundle.Inputs) + pushValueAndType(Input, InstID, Record); + + Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); + Record.clear(); + } +} + +/// pushValue - Like pushValueAndType, but where the type of the value is +/// omitted (perhaps it was already encoded in an earlier operand). +void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, + SmallVectorImpl<unsigned> &Vals) { + unsigned ValID = VE.getValueID(V); + Vals.push_back(InstID - ValID); +} + +void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, + SmallVectorImpl<uint64_t> &Vals) { + unsigned ValID = VE.getValueID(V); + int64_t diff = ((int32_t)InstID - (int32_t)ValID); + emitSignedInt64(Vals, diff); +} + +/// WriteInstruction - Emit an instruction to the specified stream. +void ModuleBitcodeWriter::writeInstruction(const Instruction &I, + unsigned InstID, + SmallVectorImpl<unsigned> &Vals) { + unsigned Code = 0; + unsigned AbbrevToUse = 0; + VE.setInstructionID(&I); + switch (I.getOpcode()) { + default: + if (Instruction::isCast(I.getOpcode())) { + Code = bitc::FUNC_CODE_INST_CAST; + if (!pushValueAndType(I.getOperand(0), InstID, Vals)) + AbbrevToUse = FUNCTION_INST_CAST_ABBREV; + Vals.push_back(VE.getTypeID(I.getType())); + Vals.push_back(getEncodedCastOpcode(I.getOpcode())); + } else { + assert(isa<BinaryOperator>(I) && "Unknown instruction!"); + Code = bitc::FUNC_CODE_INST_BINOP; + if (!pushValueAndType(I.getOperand(0), InstID, Vals)) + AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; + pushValue(I.getOperand(1), InstID, Vals); + Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); + uint64_t Flags = getOptimizationFlags(&I); + if (Flags != 0) { + if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) + AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; + Vals.push_back(Flags); + } + } + break; + case Instruction::FNeg: { + Code = bitc::FUNC_CODE_INST_UNOP; + if (!pushValueAndType(I.getOperand(0), InstID, Vals)) + AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; + Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); + uint64_t Flags = getOptimizationFlags(&I); + if (Flags != 0) { + if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) + AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; + Vals.push_back(Flags); + } + break; + } + case Instruction::GetElementPtr: { + Code = bitc::FUNC_CODE_INST_GEP; + AbbrevToUse = FUNCTION_INST_GEP_ABBREV; + auto &GEPInst = cast<GetElementPtrInst>(I); + Vals.push_back(GEPInst.isInBounds()); + Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) + pushValueAndType(I.getOperand(i), InstID, Vals); + break; + } + case Instruction::ExtractValue: { + Code = bitc::FUNC_CODE_INST_EXTRACTVAL; + pushValueAndType(I.getOperand(0), InstID, Vals); + const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); + Vals.append(EVI->idx_begin(), EVI->idx_end()); + break; + } + case Instruction::InsertValue: { + Code = bitc::FUNC_CODE_INST_INSERTVAL; + pushValueAndType(I.getOperand(0), InstID, Vals); + pushValueAndType(I.getOperand(1), InstID, Vals); + const InsertValueInst *IVI = cast<InsertValueInst>(&I); + Vals.append(IVI->idx_begin(), IVI->idx_end()); + break; + } + case Instruction::Select: { + Code = bitc::FUNC_CODE_INST_VSELECT; + pushValueAndType(I.getOperand(1), InstID, Vals); + pushValue(I.getOperand(2), InstID, Vals); + pushValueAndType(I.getOperand(0), InstID, Vals); + uint64_t Flags = getOptimizationFlags(&I); + if (Flags != 0) + Vals.push_back(Flags); + break; + } + case Instruction::ExtractElement: + Code = bitc::FUNC_CODE_INST_EXTRACTELT; + pushValueAndType(I.getOperand(0), InstID, Vals); + pushValueAndType(I.getOperand(1), InstID, Vals); + break; + case Instruction::InsertElement: + Code = bitc::FUNC_CODE_INST_INSERTELT; + pushValueAndType(I.getOperand(0), InstID, Vals); + pushValue(I.getOperand(1), InstID, Vals); + pushValueAndType(I.getOperand(2), InstID, Vals); + break; + case Instruction::ShuffleVector: + Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; + pushValueAndType(I.getOperand(0), InstID, Vals); + pushValue(I.getOperand(1), InstID, Vals); + pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, + Vals); + break; + case Instruction::ICmp: + case Instruction::FCmp: { + // compare returning Int1Ty or vector of Int1Ty + Code = bitc::FUNC_CODE_INST_CMP2; + pushValueAndType(I.getOperand(0), InstID, Vals); + pushValue(I.getOperand(1), InstID, Vals); + Vals.push_back(cast<CmpInst>(I).getPredicate()); + uint64_t Flags = getOptimizationFlags(&I); + if (Flags != 0) + Vals.push_back(Flags); + break; + } + + case Instruction::Ret: + { + Code = bitc::FUNC_CODE_INST_RET; + unsigned NumOperands = I.getNumOperands(); + if (NumOperands == 0) + AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; + else if (NumOperands == 1) { + if (!pushValueAndType(I.getOperand(0), InstID, Vals)) + AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; + } else { + for (unsigned i = 0, e = NumOperands; i != e; ++i) + pushValueAndType(I.getOperand(i), InstID, Vals); + } + } + break; + case Instruction::Br: + { + Code = bitc::FUNC_CODE_INST_BR; + const BranchInst &II = cast<BranchInst>(I); + Vals.push_back(VE.getValueID(II.getSuccessor(0))); + if (II.isConditional()) { + Vals.push_back(VE.getValueID(II.getSuccessor(1))); + pushValue(II.getCondition(), InstID, Vals); + } + } + break; + case Instruction::Switch: + { + Code = bitc::FUNC_CODE_INST_SWITCH; + const SwitchInst &SI = cast<SwitchInst>(I); + Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); + pushValue(SI.getCondition(), InstID, Vals); + Vals.push_back(VE.getValueID(SI.getDefaultDest())); + for (auto Case : SI.cases()) { + Vals.push_back(VE.getValueID(Case.getCaseValue())); + Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); + } + } + break; + case Instruction::IndirectBr: + Code = bitc::FUNC_CODE_INST_INDIRECTBR; + Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); + // Encode the address operand as relative, but not the basic blocks. + pushValue(I.getOperand(0), InstID, Vals); + for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) + Vals.push_back(VE.getValueID(I.getOperand(i))); + break; + + case Instruction::Invoke: { + const InvokeInst *II = cast<InvokeInst>(&I); + const Value *Callee = II->getCalledOperand(); + FunctionType *FTy = II->getFunctionType(); + + if (II->hasOperandBundles()) + writeOperandBundles(*II, InstID); + + Code = bitc::FUNC_CODE_INST_INVOKE; + + Vals.push_back(VE.getAttributeListID(II->getAttributes())); + Vals.push_back(II->getCallingConv() | 1 << 13); + Vals.push_back(VE.getValueID(II->getNormalDest())); + Vals.push_back(VE.getValueID(II->getUnwindDest())); + Vals.push_back(VE.getTypeID(FTy)); + pushValueAndType(Callee, InstID, Vals); + + // Emit value #'s for the fixed parameters. + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) + pushValue(I.getOperand(i), InstID, Vals); // fixed param. + + // Emit type/value pairs for varargs params. + if (FTy->isVarArg()) { + for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) + pushValueAndType(I.getOperand(i), InstID, Vals); // vararg + } + break; + } + case Instruction::Resume: + Code = bitc::FUNC_CODE_INST_RESUME; + pushValueAndType(I.getOperand(0), InstID, Vals); + break; + case Instruction::CleanupRet: { + Code = bitc::FUNC_CODE_INST_CLEANUPRET; + const auto &CRI = cast<CleanupReturnInst>(I); + pushValue(CRI.getCleanupPad(), InstID, Vals); + if (CRI.hasUnwindDest()) + Vals.push_back(VE.getValueID(CRI.getUnwindDest())); + break; + } + case Instruction::CatchRet: { + Code = bitc::FUNC_CODE_INST_CATCHRET; + const auto &CRI = cast<CatchReturnInst>(I); + pushValue(CRI.getCatchPad(), InstID, Vals); + Vals.push_back(VE.getValueID(CRI.getSuccessor())); + break; + } + case Instruction::CleanupPad: + case Instruction::CatchPad: { + const auto &FuncletPad = cast<FuncletPadInst>(I); + Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD + : bitc::FUNC_CODE_INST_CLEANUPPAD; + pushValue(FuncletPad.getParentPad(), InstID, Vals); + + unsigned NumArgOperands = FuncletPad.arg_size(); + Vals.push_back(NumArgOperands); + for (unsigned Op = 0; Op != NumArgOperands; ++Op) + pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); + break; + } + case Instruction::CatchSwitch: { + Code = bitc::FUNC_CODE_INST_CATCHSWITCH; + const auto &CatchSwitch = cast<CatchSwitchInst>(I); + + pushValue(CatchSwitch.getParentPad(), InstID, Vals); + + unsigned NumHandlers = CatchSwitch.getNumHandlers(); + Vals.push_back(NumHandlers); + for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) + Vals.push_back(VE.getValueID(CatchPadBB)); + + if (CatchSwitch.hasUnwindDest()) + Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); + break; + } + case Instruction::CallBr: { + const CallBrInst *CBI = cast<CallBrInst>(&I); + const Value *Callee = CBI->getCalledOperand(); + FunctionType *FTy = CBI->getFunctionType(); + + if (CBI->hasOperandBundles()) + writeOperandBundles(*CBI, InstID); + + Code = bitc::FUNC_CODE_INST_CALLBR; + + Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); + + Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | + 1 << bitc::CALL_EXPLICIT_TYPE); + + Vals.push_back(VE.getValueID(CBI->getDefaultDest())); + Vals.push_back(CBI->getNumIndirectDests()); + for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) + Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); + + Vals.push_back(VE.getTypeID(FTy)); + pushValueAndType(Callee, InstID, Vals); + + // Emit value #'s for the fixed parameters. + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) + pushValue(I.getOperand(i), InstID, Vals); // fixed param. + + // Emit type/value pairs for varargs params. + if (FTy->isVarArg()) { + for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) + pushValueAndType(I.getOperand(i), InstID, Vals); // vararg + } + break; + } + case Instruction::Unreachable: + Code = bitc::FUNC_CODE_INST_UNREACHABLE; + AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; + break; + + case Instruction::PHI: { + const PHINode &PN = cast<PHINode>(I); + Code = bitc::FUNC_CODE_INST_PHI; + // With the newer instruction encoding, forward references could give + // negative valued IDs. This is most common for PHIs, so we use + // signed VBRs. + SmallVector<uint64_t, 128> Vals64; + Vals64.push_back(VE.getTypeID(PN.getType())); + for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { + pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); + Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); + } + + uint64_t Flags = getOptimizationFlags(&I); + if (Flags != 0) + Vals64.push_back(Flags); + + // Emit a Vals64 vector and exit. + Stream.EmitRecord(Code, Vals64, AbbrevToUse); + Vals64.clear(); + return; + } + + case Instruction::LandingPad: { + const LandingPadInst &LP = cast<LandingPadInst>(I); + Code = bitc::FUNC_CODE_INST_LANDINGPAD; + Vals.push_back(VE.getTypeID(LP.getType())); + Vals.push_back(LP.isCleanup()); + Vals.push_back(LP.getNumClauses()); + for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { + if (LP.isCatch(I)) + Vals.push_back(LandingPadInst::Catch); + else + Vals.push_back(LandingPadInst::Filter); + pushValueAndType(LP.getClause(I), InstID, Vals); + } + break; + } + + case Instruction::Alloca: { + Code = bitc::FUNC_CODE_INST_ALLOCA; + const AllocaInst &AI = cast<AllocaInst>(I); + Vals.push_back(VE.getTypeID(AI.getAllocatedType())); + Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); + Vals.push_back(VE.getValueID(I.getOperand(0))); // size. + using APV = AllocaPackedValues; + unsigned Record = 0; + unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); + Bitfield::set<APV::AlignLower>( + Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); + Bitfield::set<APV::AlignUpper>(Record, + EncodedAlign >> APV::AlignLower::Bits); + Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); + Bitfield::set<APV::ExplicitType>(Record, true); + Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); + Vals.push_back(Record); + + unsigned AS = AI.getAddressSpace(); + if (AS != M.getDataLayout().getAllocaAddrSpace()) + Vals.push_back(AS); + break; + } + + case Instruction::Load: + if (cast<LoadInst>(I).isAtomic()) { + Code = bitc::FUNC_CODE_INST_LOADATOMIC; + pushValueAndType(I.getOperand(0), InstID, Vals); + } else { + Code = bitc::FUNC_CODE_INST_LOAD; + if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr + AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; + } + Vals.push_back(VE.getTypeID(I.getType())); + Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); + Vals.push_back(cast<LoadInst>(I).isVolatile()); + if (cast<LoadInst>(I).isAtomic()) { + Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); + Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); + } + break; + case Instruction::Store: + if (cast<StoreInst>(I).isAtomic()) + Code = bitc::FUNC_CODE_INST_STOREATOMIC; + else + Code = bitc::FUNC_CODE_INST_STORE; + pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr + pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val + Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); + Vals.push_back(cast<StoreInst>(I).isVolatile()); + if (cast<StoreInst>(I).isAtomic()) { + Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); + Vals.push_back( + getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); + } + break; + case Instruction::AtomicCmpXchg: + Code = bitc::FUNC_CODE_INST_CMPXCHG; + pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr + pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. + pushValue(I.getOperand(2), InstID, Vals); // newval. + Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); + Vals.push_back( + getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); + Vals.push_back( + getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); + Vals.push_back( + getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); + Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); + Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); + break; + case Instruction::AtomicRMW: + Code = bitc::FUNC_CODE_INST_ATOMICRMW; + pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr + pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val + Vals.push_back( + getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); + Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); + Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); + Vals.push_back( + getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); + Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); + break; + case Instruction::Fence: + Code = bitc::FUNC_CODE_INST_FENCE; + Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); + Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); + break; + case Instruction::Call: { + const CallInst &CI = cast<CallInst>(I); + FunctionType *FTy = CI.getFunctionType(); + + if (CI.hasOperandBundles()) + writeOperandBundles(CI, InstID); + + Code = bitc::FUNC_CODE_INST_CALL; + + Vals.push_back(VE.getAttributeListID(CI.getAttributes())); + + unsigned Flags = getOptimizationFlags(&I); + Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | + unsigned(CI.isTailCall()) << bitc::CALL_TAIL | + unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | + 1 << bitc::CALL_EXPLICIT_TYPE | + unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | + unsigned(Flags != 0) << bitc::CALL_FMF); + if (Flags != 0) + Vals.push_back(Flags); + + Vals.push_back(VE.getTypeID(FTy)); + pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee + + // Emit value #'s for the fixed parameters. + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { + // Check for labels (can happen with asm labels). + if (FTy->getParamType(i)->isLabelTy()) + Vals.push_back(VE.getValueID(CI.getArgOperand(i))); + else + pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. + } + + // Emit type/value pairs for varargs params. + if (FTy->isVarArg()) { + for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) + pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs + } + break; + } + case Instruction::VAArg: + Code = bitc::FUNC_CODE_INST_VAARG; + Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty + pushValue(I.getOperand(0), InstID, Vals); // valist. + Vals.push_back(VE.getTypeID(I.getType())); // restype. + break; + case Instruction::Freeze: + Code = bitc::FUNC_CODE_INST_FREEZE; + pushValueAndType(I.getOperand(0), InstID, Vals); + break; + } + + Stream.EmitRecord(Code, Vals, AbbrevToUse); + Vals.clear(); +} + +/// Write a GlobalValue VST to the module. The purpose of this data structure is +/// to allow clients to efficiently find the function body. +void ModuleBitcodeWriter::writeGlobalValueSymbolTable( + DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { + // Get the offset of the VST we are writing, and backpatch it into + // the VST forward declaration record. + uint64_t VSTOffset = Stream.GetCurrentBitNo(); + // The BitcodeStartBit was the stream offset of the identification block. + VSTOffset -= bitcodeStartBit(); + assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); + // Note that we add 1 here because the offset is relative to one word + // before the start of the identification block, which was historically + // always the start of the regular bitcode header. + Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); + + Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); + + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset + unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + for (const Function &F : M) { + uint64_t Record[2]; + + if (F.isDeclaration()) + continue; + + Record[0] = VE.getValueID(&F); + + // Save the word offset of the function (from the start of the + // actual bitcode written to the stream). + uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); + assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); + // Note that we add 1 here because the offset is relative to one word + // before the start of the identification block, which was historically + // always the start of the regular bitcode header. + Record[1] = BitcodeIndex / 32 + 1; + + Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); + } + + Stream.ExitBlock(); +} + +/// Emit names for arguments, instructions and basic blocks in a function. +void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( + const ValueSymbolTable &VST) { + if (VST.empty()) + return; + + Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); + + // FIXME: Set up the abbrev, we know how many values there are! + // FIXME: We know if the type names can use 7-bit ascii. + SmallVector<uint64_t, 64> NameVals; + + for (const ValueName &Name : VST) { + // Figure out the encoding to use for the name. + StringEncoding Bits = getStringEncoding(Name.getKey()); + + unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; + NameVals.push_back(VE.getValueID(Name.getValue())); + + // VST_CODE_ENTRY: [valueid, namechar x N] + // VST_CODE_BBENTRY: [bbid, namechar x N] + unsigned Code; + if (isa<BasicBlock>(Name.getValue())) { + Code = bitc::VST_CODE_BBENTRY; + if (Bits == SE_Char6) + AbbrevToUse = VST_BBENTRY_6_ABBREV; + } else { + Code = bitc::VST_CODE_ENTRY; + if (Bits == SE_Char6) + AbbrevToUse = VST_ENTRY_6_ABBREV; + else if (Bits == SE_Fixed7) + AbbrevToUse = VST_ENTRY_7_ABBREV; + } + + for (const auto P : Name.getKey()) + NameVals.push_back((unsigned char)P); + + // Emit the finished record. + Stream.EmitRecord(Code, NameVals, AbbrevToUse); + NameVals.clear(); + } + + Stream.ExitBlock(); +} + +void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { + assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); + unsigned Code; + if (isa<BasicBlock>(Order.V)) + Code = bitc::USELIST_CODE_BB; + else + Code = bitc::USELIST_CODE_DEFAULT; + + SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); + Record.push_back(VE.getValueID(Order.V)); + Stream.EmitRecord(Code, Record); +} + +void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { + assert(VE.shouldPreserveUseListOrder() && + "Expected to be preserving use-list order"); + + auto hasMore = [&]() { + return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; + }; + if (!hasMore()) + // Nothing to do. + return; + + Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); + while (hasMore()) { + writeUseList(std::move(VE.UseListOrders.back())); + VE.UseListOrders.pop_back(); + } + Stream.ExitBlock(); +} + +/// Emit a function body to the module stream. +void ModuleBitcodeWriter::writeFunction( + const Function &F, + DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { + // Save the bitcode index of the start of this function block for recording + // in the VST. + FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); + + Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); + VE.incorporateFunction(F); + + SmallVector<unsigned, 64> Vals; + + // Emit the number of basic blocks, so the reader can create them ahead of + // time. + Vals.push_back(VE.getBasicBlocks().size()); + Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); + Vals.clear(); + + // If there are function-local constants, emit them now. + unsigned CstStart, CstEnd; + VE.getFunctionConstantRange(CstStart, CstEnd); + writeConstants(CstStart, CstEnd, false); + + // If there is function-local metadata, emit it now. + writeFunctionMetadata(F); + + // Keep a running idea of what the instruction ID is. + unsigned InstID = CstEnd; + + bool NeedsMetadataAttachment = F.hasMetadata(); + + DILocation *LastDL = nullptr; + SmallSetVector<Function *, 4> BlockAddressUsers; + + // Finally, emit all the instructions, in order. + for (const BasicBlock &BB : F) { + for (const Instruction &I : BB) { + writeInstruction(I, InstID, Vals); + + if (!I.getType()->isVoidTy()) + ++InstID; + + // If the instruction has metadata, write a metadata attachment later. + NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); + + // If the instruction has a debug location, emit it. + DILocation *DL = I.getDebugLoc(); + if (!DL) + continue; + + if (DL == LastDL) { + // Just repeat the same debug loc as last time. + Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); + continue; + } + + Vals.push_back(DL->getLine()); + Vals.push_back(DL->getColumn()); + Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); + Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); + Vals.push_back(DL->isImplicitCode()); + Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); + Vals.clear(); + + LastDL = DL; + } + + if (BlockAddress *BA = BlockAddress::lookup(&BB)) { + SmallVector<Value *> Worklist{BA}; + SmallPtrSet<Value *, 8> Visited{BA}; + while (!Worklist.empty()) { + Value *V = Worklist.pop_back_val(); + for (User *U : V->users()) { + if (auto *I = dyn_cast<Instruction>(U)) { + Function *P = I->getFunction(); + if (P != &F) + BlockAddressUsers.insert(P); + } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && + Visited.insert(U).second) + Worklist.push_back(U); + } + } + } + } + + if (!BlockAddressUsers.empty()) { + Vals.resize(BlockAddressUsers.size()); + for (auto I : llvm::enumerate(BlockAddressUsers)) + Vals[I.index()] = VE.getValueID(I.value()); + Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); + Vals.clear(); + } + + // Emit names for all the instructions etc. + if (auto *Symtab = F.getValueSymbolTable()) + writeFunctionLevelValueSymbolTable(*Symtab); + + if (NeedsMetadataAttachment) + writeFunctionMetadataAttachment(F); + if (VE.shouldPreserveUseListOrder()) + writeUseListBlock(&F); + VE.purgeFunction(); + Stream.ExitBlock(); +} + +// Emit blockinfo, which defines the standard abbreviations etc. +void ModuleBitcodeWriter::writeBlockInfo() { + // We only want to emit block info records for blocks that have multiple + // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. + // Other blocks can define their abbrevs inline. + Stream.EnterBlockInfoBlock(); + + { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); + if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != + VST_ENTRY_8_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + + { // 7-bit fixed width VST_CODE_ENTRY strings. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); + if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != + VST_ENTRY_7_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + { // 6-bit char6 VST_CODE_ENTRY strings. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); + if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != + VST_ENTRY_6_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + { // 6-bit char6 VST_CODE_BBENTRY strings. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); + if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != + VST_BBENTRY_6_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + + { // SETTYPE abbrev for CONSTANTS_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, + VE.computeBitsRequiredForTypeIndicies())); + if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != + CONSTANTS_SETTYPE_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + + { // INTEGER abbrev for CONSTANTS_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != + CONSTANTS_INTEGER_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + + { // CE_CAST abbrev for CONSTANTS_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid + VE.computeBitsRequiredForTypeIndicies())); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id + + if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != + CONSTANTS_CE_CAST_Abbrev) + llvm_unreachable("Unexpected abbrev ordering!"); + } + { // NULL abbrev for CONSTANTS_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); + if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != + CONSTANTS_NULL_Abbrev) + llvm_unreachable("Unexpected abbrev ordering!"); + } + + // FIXME: This should only use space for first class types! + + { // INST_LOAD abbrev for FUNCTION_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty + VE.computeBitsRequiredForTypeIndicies())); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != + FUNCTION_INST_LOAD_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + { // INST_UNOP abbrev for FUNCTION_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != + FUNCTION_INST_UNOP_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != + FUNCTION_INST_UNOP_FLAGS_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + { // INST_BINOP abbrev for FUNCTION_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != + FUNCTION_INST_BINOP_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != + FUNCTION_INST_BINOP_FLAGS_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + { // INST_CAST abbrev for FUNCTION_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty + VE.computeBitsRequiredForTypeIndicies())); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != + FUNCTION_INST_CAST_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + + { // INST_RET abbrev for FUNCTION_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != + FUNCTION_INST_RET_VOID_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + { // INST_RET abbrev for FUNCTION_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != + FUNCTION_INST_RET_VAL_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != + FUNCTION_INST_UNREACHABLE_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + { + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty + Log2_32_Ceil(VE.getTypes().size() + 1))); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != + FUNCTION_INST_GEP_ABBREV) + llvm_unreachable("Unexpected abbrev ordering!"); + } + + Stream.ExitBlock(); +} + +/// Write the module path strings, currently only used when generating +/// a combined index file. +void IndexBitcodeWriter::writeModStrings() { + Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); + + // TODO: See which abbrev sizes we actually need to emit + + // 8-bit fixed-width MST_ENTRY strings. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); + unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); + + // 7-bit fixed width MST_ENTRY strings. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); + unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); + + // 6-bit char6 MST_ENTRY strings. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); + unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); + + // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); + unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); + + SmallVector<unsigned, 64> Vals; + forEachModule( + [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { + StringRef Key = MPSE.getKey(); + const auto &Value = MPSE.getValue(); + StringEncoding Bits = getStringEncoding(Key); + unsigned AbbrevToUse = Abbrev8Bit; + if (Bits == SE_Char6) + AbbrevToUse = Abbrev6Bit; + else if (Bits == SE_Fixed7) + AbbrevToUse = Abbrev7Bit; + + Vals.push_back(Value.first); + Vals.append(Key.begin(), Key.end()); + + // Emit the finished record. + Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); + + // Emit an optional hash for the module now + const auto &Hash = Value.second; + if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { + Vals.assign(Hash.begin(), Hash.end()); + // Emit the hash record. + Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); + } + + Vals.clear(); + }); + Stream.ExitBlock(); +} + +/// Write the function type metadata related records that need to appear before +/// a function summary entry (whether per-module or combined). +template <typename Fn> +static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, + FunctionSummary *FS, + Fn GetValueID) { + if (!FS->type_tests().empty()) + Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); + + SmallVector<uint64_t, 64> Record; + + auto WriteVFuncIdVec = [&](uint64_t Ty, + ArrayRef<FunctionSummary::VFuncId> VFs) { + if (VFs.empty()) + return; + Record.clear(); + for (auto &VF : VFs) { + Record.push_back(VF.GUID); + Record.push_back(VF.Offset); + } + Stream.EmitRecord(Ty, Record); + }; + + WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, + FS->type_test_assume_vcalls()); + WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, + FS->type_checked_load_vcalls()); + + auto WriteConstVCallVec = [&](uint64_t Ty, + ArrayRef<FunctionSummary::ConstVCall> VCs) { + for (auto &VC : VCs) { + Record.clear(); + Record.push_back(VC.VFunc.GUID); + Record.push_back(VC.VFunc.Offset); + llvm::append_range(Record, VC.Args); + Stream.EmitRecord(Ty, Record); + } + }; + + WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, + FS->type_test_assume_const_vcalls()); + WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, + FS->type_checked_load_const_vcalls()); + + auto WriteRange = [&](ConstantRange Range) { + Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); + assert(Range.getLower().getNumWords() == 1); + assert(Range.getUpper().getNumWords() == 1); + emitSignedInt64(Record, *Range.getLower().getRawData()); + emitSignedInt64(Record, *Range.getUpper().getRawData()); + }; + + if (!FS->paramAccesses().empty()) { + Record.clear(); + for (auto &Arg : FS->paramAccesses()) { + size_t UndoSize = Record.size(); + Record.push_back(Arg.ParamNo); + WriteRange(Arg.Use); + Record.push_back(Arg.Calls.size()); + for (auto &Call : Arg.Calls) { + Record.push_back(Call.ParamNo); + std::optional<unsigned> ValueID = GetValueID(Call.Callee); + if (!ValueID) { + // If ValueID is unknown we can't drop just this call, we must drop + // entire parameter. + Record.resize(UndoSize); + break; + } + Record.push_back(*ValueID); + WriteRange(Call.Offsets); + } + } + if (!Record.empty()) + Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); + } +} + +/// Collect type IDs from type tests used by function. +static void +getReferencedTypeIds(FunctionSummary *FS, + std::set<GlobalValue::GUID> &ReferencedTypeIds) { + if (!FS->type_tests().empty()) + for (auto &TT : FS->type_tests()) + ReferencedTypeIds.insert(TT); + + auto GetReferencedTypesFromVFuncIdVec = + [&](ArrayRef<FunctionSummary::VFuncId> VFs) { + for (auto &VF : VFs) + ReferencedTypeIds.insert(VF.GUID); + }; + + GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); + GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); + + auto GetReferencedTypesFromConstVCallVec = + [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { + for (auto &VC : VCs) + ReferencedTypeIds.insert(VC.VFunc.GUID); + }; + + GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); + GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); +} + +static void writeWholeProgramDevirtResolutionByArg( + SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, + const WholeProgramDevirtResolution::ByArg &ByArg) { + NameVals.push_back(args.size()); + llvm::append_range(NameVals, args); + + NameVals.push_back(ByArg.TheKind); + NameVals.push_back(ByArg.Info); + NameVals.push_back(ByArg.Byte); + NameVals.push_back(ByArg.Bit); +} + +static void writeWholeProgramDevirtResolution( + SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, + uint64_t Id, const WholeProgramDevirtResolution &Wpd) { + NameVals.push_back(Id); + + NameVals.push_back(Wpd.TheKind); + NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); + NameVals.push_back(Wpd.SingleImplName.size()); + + NameVals.push_back(Wpd.ResByArg.size()); + for (auto &A : Wpd.ResByArg) + writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); +} + +static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, + StringTableBuilder &StrtabBuilder, + const std::string &Id, + const TypeIdSummary &Summary) { + NameVals.push_back(StrtabBuilder.add(Id)); + NameVals.push_back(Id.size()); + + NameVals.push_back(Summary.TTRes.TheKind); + NameVals.push_back(Summary.TTRes.SizeM1BitWidth); + NameVals.push_back(Summary.TTRes.AlignLog2); + NameVals.push_back(Summary.TTRes.SizeM1); + NameVals.push_back(Summary.TTRes.BitMask); + NameVals.push_back(Summary.TTRes.InlineBits); + + for (auto &W : Summary.WPDRes) + writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, + W.second); +} + +static void writeTypeIdCompatibleVtableSummaryRecord( + SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, + const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, + ValueEnumerator &VE) { + NameVals.push_back(StrtabBuilder.add(Id)); + NameVals.push_back(Id.size()); + + for (auto &P : Summary) { + NameVals.push_back(P.AddressPointOffset); + NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); + } +} + +static void writeFunctionHeapProfileRecords( + BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, + unsigned AllocAbbrev, bool PerModule, + std::function<unsigned(const ValueInfo &VI)> GetValueID, + std::function<unsigned(unsigned)> GetStackIndex) { + SmallVector<uint64_t> Record; + + for (auto &CI : FS->callsites()) { + Record.clear(); + // Per module callsite clones should always have a single entry of + // value 0. + assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); + Record.push_back(GetValueID(CI.Callee)); + if (!PerModule) { + Record.push_back(CI.StackIdIndices.size()); + Record.push_back(CI.Clones.size()); + } + for (auto Id : CI.StackIdIndices) + Record.push_back(GetStackIndex(Id)); + if (!PerModule) { + for (auto V : CI.Clones) + Record.push_back(V); + } + Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO + : bitc::FS_COMBINED_CALLSITE_INFO, + Record, CallsiteAbbrev); + } + + for (auto &AI : FS->allocs()) { + Record.clear(); + // Per module alloc versions should always have a single entry of + // value 0. + assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); + if (!PerModule) { + Record.push_back(AI.MIBs.size()); + Record.push_back(AI.Versions.size()); + } + for (auto &MIB : AI.MIBs) { + Record.push_back((uint8_t)MIB.AllocType); + Record.push_back(MIB.StackIdIndices.size()); + for (auto Id : MIB.StackIdIndices) + Record.push_back(GetStackIndex(Id)); + } + if (!PerModule) { + for (auto V : AI.Versions) + Record.push_back(V); + } + Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO + : bitc::FS_COMBINED_ALLOC_INFO, + Record, AllocAbbrev); + } +} + +// Helper to emit a single function summary record. +void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( + SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, + unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, + unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F) { + NameVals.push_back(ValueID); + + FunctionSummary *FS = cast<FunctionSummary>(Summary); + + writeFunctionTypeMetadataRecords( + Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { + return {VE.getValueID(VI.getValue())}; + }); + + writeFunctionHeapProfileRecords( + Stream, FS, CallsiteAbbrev, AllocAbbrev, + /*PerModule*/ true, + /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, + /*GetStackIndex*/ [&](unsigned I) { return I; }); + + auto SpecialRefCnts = FS->specialRefCounts(); + NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); + NameVals.push_back(FS->instCount()); + NameVals.push_back(getEncodedFFlags(FS->fflags())); + NameVals.push_back(FS->refs().size()); + NameVals.push_back(SpecialRefCnts.first); // rorefcnt + NameVals.push_back(SpecialRefCnts.second); // worefcnt + + for (auto &RI : FS->refs()) + NameVals.push_back(VE.getValueID(RI.getValue())); + + bool HasProfileData = + F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; + for (auto &ECI : FS->calls()) { + NameVals.push_back(getValueId(ECI.first)); + if (HasProfileData) + NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); + else if (WriteRelBFToSummary) + NameVals.push_back(ECI.second.RelBlockFreq); + } + + unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); + unsigned Code = + (HasProfileData ? bitc::FS_PERMODULE_PROFILE + : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF + : bitc::FS_PERMODULE)); + + // Emit the finished record. + Stream.EmitRecord(Code, NameVals, FSAbbrev); + NameVals.clear(); +} + +// Collect the global value references in the given variable's initializer, +// and emit them in a summary record. +void ModuleBitcodeWriterBase::writeModuleLevelReferences( + const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, + unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { + auto VI = Index->getValueInfo(V.getGUID()); + if (!VI || VI.getSummaryList().empty()) { + // Only declarations should not have a summary (a declaration might however + // have a summary if the def was in module level asm). + assert(V.isDeclaration()); + return; + } + auto *Summary = VI.getSummaryList()[0].get(); + NameVals.push_back(VE.getValueID(&V)); + GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); + NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); + NameVals.push_back(getEncodedGVarFlags(VS->varflags())); + + auto VTableFuncs = VS->vTableFuncs(); + if (!VTableFuncs.empty()) + NameVals.push_back(VS->refs().size()); + + unsigned SizeBeforeRefs = NameVals.size(); + for (auto &RI : VS->refs()) + NameVals.push_back(VE.getValueID(RI.getValue())); + // Sort the refs for determinism output, the vector returned by FS->refs() has + // been initialized from a DenseSet. + llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); + + if (VTableFuncs.empty()) + Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, + FSModRefsAbbrev); + else { + // VTableFuncs pairs should already be sorted by offset. + for (auto &P : VTableFuncs) { + NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); + NameVals.push_back(P.VTableOffset); + } + + Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, + FSModVTableRefsAbbrev); + } + NameVals.clear(); +} + +/// Emit the per-module summary section alongside the rest of +/// the module's bitcode. +void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { + // By default we compile with ThinLTO if the module has a summary, but the + // client can request full LTO with a module flag. + bool IsThinLTO = true; + if (auto *MD = + mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) + IsThinLTO = MD->getZExtValue(); + Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID + : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, + 4); + + Stream.EmitRecord( + bitc::FS_VERSION, + ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); + + // Write the index flags. + uint64_t Flags = 0; + // Bits 1-3 are set only in the combined index, skip them. + if (Index->enableSplitLTOUnit()) + Flags |= 0x8; + Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); + + if (Index->begin() == Index->end()) { + Stream.ExitBlock(); + return; + } + + for (const auto &GVI : valueIds()) { + Stream.EmitRecord(bitc::FS_VALUE_GUID, + ArrayRef<uint64_t>{GVI.second, GVI.first}); + } + + if (!Index->stackIds().empty()) { + auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); + StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); + // numids x stackid + StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); + Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); + } + + // Abbrev for FS_PERMODULE_PROFILE. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt + // numrefs x valueid, n x (valueid, hotness) + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. + Abbv = std::make_shared<BitCodeAbbrev>(); + if (WriteRelBFToSummary) + Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); + else + Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt + // numrefs x valueid, n x (valueid [, rel_block_freq]) + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs + // numrefs x valueid, n x (valueid , offset) + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for FS_ALIAS. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid + unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for FS_TYPE_ID_METADATA + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length + // n x (valueid , offset) + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid + // n x stackidindex + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); + // n x (alloc type, numstackids, numstackids x stackidindex) + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + SmallVector<uint64_t, 64> NameVals; + // Iterate over the list of functions instead of the Index to + // ensure the ordering is stable. + for (const Function &F : M) { + // Summary emission does not support anonymous functions, they have to + // renamed using the anonymous function renaming pass. + if (!F.hasName()) + report_fatal_error("Unexpected anonymous function when writing summary"); + + ValueInfo VI = Index->getValueInfo(F.getGUID()); + if (!VI || VI.getSummaryList().empty()) { + // Only declarations should not have a summary (a declaration might + // however have a summary if the def was in module level asm). + assert(F.isDeclaration()); + continue; + } + auto *Summary = VI.getSummaryList()[0].get(); + writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), + FSCallsAbbrev, FSCallsProfileAbbrev, + CallsiteAbbrev, AllocAbbrev, F); + } + + // Capture references from GlobalVariable initializers, which are outside + // of a function scope. + for (const GlobalVariable &G : M.globals()) + writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, + FSModVTableRefsAbbrev); + + for (const GlobalAlias &A : M.aliases()) { + auto *Aliasee = A.getAliaseeObject(); + // Skip ifunc and nameless functions which don't have an entry in the + // summary. + if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) + continue; + auto AliasId = VE.getValueID(&A); + auto AliaseeId = VE.getValueID(Aliasee); + NameVals.push_back(AliasId); + auto *Summary = Index->getGlobalValueSummary(A); + AliasSummary *AS = cast<AliasSummary>(Summary); + NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); + NameVals.push_back(AliaseeId); + Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); + NameVals.clear(); + } + + for (auto &S : Index->typeIdCompatibleVtableMap()) { + writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, + S.second, VE); + Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, + TypeIdCompatibleVtableAbbrev); + NameVals.clear(); + } + + Stream.EmitRecord(bitc::FS_BLOCK_COUNT, + ArrayRef<uint64_t>{Index->getBlockCount()}); + + Stream.ExitBlock(); +} + +/// Emit the combined summary section into the combined index file. +void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { + Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); + Stream.EmitRecord( + bitc::FS_VERSION, + ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); + + // Write the index flags. + Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); + + for (const auto &GVI : valueIds()) { + Stream.EmitRecord(bitc::FS_VALUE_GUID, + ArrayRef<uint64_t>{GVI.second, GVI.first}); + } + + if (!StackIdIndices.empty()) { + auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); + StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); + // numids x stackid + StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); + // Write the stack ids used by this index, which will be a subset of those in + // the full index in the case of distributed indexes. + std::vector<uint64_t> StackIds; + for (auto &I : StackIdIndices) + StackIds.push_back(Index.getStackIdAtIndex(I)); + Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); + } + + // Abbrev for FS_COMBINED. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt + // numrefs x valueid, n x (valueid) + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for FS_COMBINED_PROFILE. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt + // numrefs x valueid, n x (valueid, hotness) + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for FS_COMBINED_ALIAS. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid + unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver + // numstackindices x stackidindex, numver x version + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver + // nummib x (alloc type, numstackids, numstackids x stackidindex), + // numver x version + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // The aliases are emitted as a post-pass, and will point to the value + // id of the aliasee. Save them in a vector for post-processing. + SmallVector<AliasSummary *, 64> Aliases; + + // Save the value id for each summary for alias emission. + DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; + + SmallVector<uint64_t, 64> NameVals; + + // Set that will be populated during call to writeFunctionTypeMetadataRecords + // with the type ids referenced by this index file. + std::set<GlobalValue::GUID> ReferencedTypeIds; + + // For local linkage, we also emit the original name separately + // immediately after the record. + auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { + // We don't need to emit the original name if we are writing the index for + // distributed backends (in which case ModuleToSummariesForIndex is + // non-null). The original name is only needed during the thin link, since + // for SamplePGO the indirect call targets for local functions have + // have the original name annotated in profile. + // Continue to emit it when writing out the entire combined index, which is + // used in testing the thin link via llvm-lto. + if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) + return; + NameVals.push_back(S.getOriginalName()); + Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); + NameVals.clear(); + }; + + std::set<GlobalValue::GUID> DefOrUseGUIDs; + forEachSummary([&](GVInfo I, bool IsAliasee) { + GlobalValueSummary *S = I.second; + assert(S); + DefOrUseGUIDs.insert(I.first); + for (const ValueInfo &VI : S->refs()) + DefOrUseGUIDs.insert(VI.getGUID()); + + auto ValueId = getValueId(I.first); + assert(ValueId); + SummaryToValueIdMap[S] = *ValueId; + + // If this is invoked for an aliasee, we want to record the above + // mapping, but then not emit a summary entry (if the aliasee is + // to be imported, we will invoke this separately with IsAliasee=false). + if (IsAliasee) + return; + + if (auto *AS = dyn_cast<AliasSummary>(S)) { + // Will process aliases as a post-pass because the reader wants all + // global to be loaded first. + Aliases.push_back(AS); + return; + } + + if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { + NameVals.push_back(*ValueId); + NameVals.push_back(Index.getModuleId(VS->modulePath())); + NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); + NameVals.push_back(getEncodedGVarFlags(VS->varflags())); + for (auto &RI : VS->refs()) { + auto RefValueId = getValueId(RI.getGUID()); + if (!RefValueId) + continue; + NameVals.push_back(*RefValueId); + } + + // Emit the finished record. + Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, + FSModRefsAbbrev); + NameVals.clear(); + MaybeEmitOriginalName(*S); + return; + } + + auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { + if (!VI) + return std::nullopt; + return getValueId(VI.getGUID()); + }; + + auto *FS = cast<FunctionSummary>(S); + writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); + getReferencedTypeIds(FS, ReferencedTypeIds); + + writeFunctionHeapProfileRecords( + Stream, FS, CallsiteAbbrev, AllocAbbrev, + /*PerModule*/ false, + /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { + std::optional<unsigned> ValueID = GetValueId(VI); + // This can happen in shared index files for distributed ThinLTO if + // the callee function summary is not included. Record 0 which we + // will have to deal with conservatively when doing any kind of + // validation in the ThinLTO backends. + if (!ValueID) + return 0; + return *ValueID; + }, + /*GetStackIndex*/ [&](unsigned I) { + // Get the corresponding index into the list of StackIdIndices + // actually being written for this combined index (which may be a + // subset in the case of distributed indexes). + auto Lower = llvm::lower_bound(StackIdIndices, I); + return std::distance(StackIdIndices.begin(), Lower); + }); + + NameVals.push_back(*ValueId); + NameVals.push_back(Index.getModuleId(FS->modulePath())); + NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); + NameVals.push_back(FS->instCount()); + NameVals.push_back(getEncodedFFlags(FS->fflags())); + NameVals.push_back(FS->entryCount()); + + // Fill in below + NameVals.push_back(0); // numrefs + NameVals.push_back(0); // rorefcnt + NameVals.push_back(0); // worefcnt + + unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; + for (auto &RI : FS->refs()) { + auto RefValueId = getValueId(RI.getGUID()); + if (!RefValueId) + continue; + NameVals.push_back(*RefValueId); + if (RI.isReadOnly()) + RORefCnt++; + else if (RI.isWriteOnly()) + WORefCnt++; + Count++; + } + NameVals[6] = Count; + NameVals[7] = RORefCnt; + NameVals[8] = WORefCnt; + + bool HasProfileData = false; + for (auto &EI : FS->calls()) { + HasProfileData |= + EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; + if (HasProfileData) + break; + } + + for (auto &EI : FS->calls()) { + // If this GUID doesn't have a value id, it doesn't have a function + // summary and we don't need to record any calls to it. + std::optional<unsigned> CallValueId = GetValueId(EI.first); + if (!CallValueId) + continue; + NameVals.push_back(*CallValueId); + if (HasProfileData) + NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); + } + + unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); + unsigned Code = + (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); + + // Emit the finished record. + Stream.EmitRecord(Code, NameVals, FSAbbrev); + NameVals.clear(); + MaybeEmitOriginalName(*S); + }); + + for (auto *AS : Aliases) { + auto AliasValueId = SummaryToValueIdMap[AS]; + assert(AliasValueId); + NameVals.push_back(AliasValueId); + NameVals.push_back(Index.getModuleId(AS->modulePath())); + NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); + auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; + assert(AliaseeValueId); + NameVals.push_back(AliaseeValueId); + + // Emit the finished record. + Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); + NameVals.clear(); + MaybeEmitOriginalName(*AS); + + if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) + getReferencedTypeIds(FS, ReferencedTypeIds); + } + + if (!Index.cfiFunctionDefs().empty()) { + for (auto &S : Index.cfiFunctionDefs()) { + if (DefOrUseGUIDs.count( + GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { + NameVals.push_back(StrtabBuilder.add(S)); + NameVals.push_back(S.size()); + } + } + if (!NameVals.empty()) { + Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); + NameVals.clear(); + } + } + + if (!Index.cfiFunctionDecls().empty()) { + for (auto &S : Index.cfiFunctionDecls()) { + if (DefOrUseGUIDs.count( + GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { + NameVals.push_back(StrtabBuilder.add(S)); + NameVals.push_back(S.size()); + } + } + if (!NameVals.empty()) { + Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); + NameVals.clear(); + } + } + + // Walk the GUIDs that were referenced, and write the + // corresponding type id records. + for (auto &T : ReferencedTypeIds) { + auto TidIter = Index.typeIds().equal_range(T); + for (auto It = TidIter.first; It != TidIter.second; ++It) { + writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, + It->second.second); + Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); + NameVals.clear(); + } + } + + Stream.EmitRecord(bitc::FS_BLOCK_COUNT, + ArrayRef<uint64_t>{Index.getBlockCount()}); + + Stream.ExitBlock(); +} + +/// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the +/// current llvm version, and a record for the epoch number. +static void writeIdentificationBlock(BitstreamWriter &Stream) { + Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); + + // Write the "user readable" string identifying the bitcode producer + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); + auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, + "LLVM" LLVM_VERSION_STRING, StringAbbrev); + + // Write the epoch version + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); + auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; + Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); + Stream.ExitBlock(); +} + +void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { + // Emit the module's hash. + // MODULE_CODE_HASH: [5*i32] + if (GenerateHash) { + uint32_t Vals[5]; + Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], + Buffer.size() - BlockStartPos)); + std::array<uint8_t, 20> Hash = Hasher.result(); + for (int Pos = 0; Pos < 20; Pos += 4) { + Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); + } + + // Emit the finished record. + Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); + + if (ModHash) + // Save the written hash value. + llvm::copy(Vals, std::begin(*ModHash)); + } +} + +void ModuleBitcodeWriter::write() { + writeIdentificationBlock(Stream); + + Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); + size_t BlockStartPos = Buffer.size(); + + writeModuleVersion(); + + // Emit blockinfo, which defines the standard abbreviations etc. + writeBlockInfo(); + + // Emit information describing all of the types in the module. + writeTypeTable(); + + // Emit information about attribute groups. + writeAttributeGroupTable(); + + // Emit information about parameter attributes. + writeAttributeTable(); + + writeComdats(); + + // Emit top-level description of module, including target triple, inline asm, + // descriptors for global variables, and function prototype info. + writeModuleInfo(); + + // Emit constants. + writeModuleConstants(); + + // Emit metadata kind names. + writeModuleMetadataKinds(); + + // Emit metadata. + writeModuleMetadata(); + + // Emit module-level use-lists. + if (VE.shouldPreserveUseListOrder()) + writeUseListBlock(nullptr); + + writeOperandBundleTags(); + writeSyncScopeNames(); + + // Emit function bodies. + DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; + for (const Function &F : M) + if (!F.isDeclaration()) + writeFunction(F, FunctionToBitcodeIndex); + + // Need to write after the above call to WriteFunction which populates + // the summary information in the index. + if (Index) + writePerModuleGlobalValueSummary(); + + writeGlobalValueSymbolTable(FunctionToBitcodeIndex); + + writeModuleHash(BlockStartPos); + + Stream.ExitBlock(); +} + +static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, + uint32_t &Position) { + support::endian::write32le(&Buffer[Position], Value); + Position += 4; +} + +/// If generating a bc file on darwin, we have to emit a +/// header and trailer to make it compatible with the system archiver. To do +/// this we emit the following header, and then emit a trailer that pads the +/// file out to be a multiple of 16 bytes. +/// +/// struct bc_header { +/// uint32_t Magic; // 0x0B17C0DE +/// uint32_t Version; // Version, currently always 0. +/// uint32_t BitcodeOffset; // Offset to traditional bitcode file. +/// uint32_t BitcodeSize; // Size of traditional bitcode file. +/// uint32_t CPUType; // CPU specifier. +/// ... potentially more later ... +/// }; +static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, + const Triple &TT) { + unsigned CPUType = ~0U; + + // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, + // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic + // number from /usr/include/mach/machine.h. It is ok to reproduce the + // specific constants here because they are implicitly part of the Darwin ABI. + enum { + DARWIN_CPU_ARCH_ABI64 = 0x01000000, + DARWIN_CPU_TYPE_X86 = 7, + DARWIN_CPU_TYPE_ARM = 12, + DARWIN_CPU_TYPE_POWERPC = 18 + }; + + Triple::ArchType Arch = TT.getArch(); + if (Arch == Triple::x86_64) + CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; + else if (Arch == Triple::x86) + CPUType = DARWIN_CPU_TYPE_X86; + else if (Arch == Triple::ppc) + CPUType = DARWIN_CPU_TYPE_POWERPC; + else if (Arch == Triple::ppc64) + CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; + else if (Arch == Triple::arm || Arch == Triple::thumb) + CPUType = DARWIN_CPU_TYPE_ARM; + + // Traditional Bitcode starts after header. + assert(Buffer.size() >= BWH_HeaderSize && + "Expected header size to be reserved"); + unsigned BCOffset = BWH_HeaderSize; + unsigned BCSize = Buffer.size() - BWH_HeaderSize; + + // Write the magic and version. + unsigned Position = 0; + writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); + writeInt32ToBuffer(0, Buffer, Position); // Version. + writeInt32ToBuffer(BCOffset, Buffer, Position); + writeInt32ToBuffer(BCSize, Buffer, Position); + writeInt32ToBuffer(CPUType, Buffer, Position); + + // If the file is not a multiple of 16 bytes, insert dummy padding. + while (Buffer.size() & 15) + Buffer.push_back(0); +} + +/// Helper to write the header common to all bitcode files. +static void writeBitcodeHeader(BitstreamWriter &Stream) { + // Emit the file header. + Stream.Emit((unsigned)'B', 8); + Stream.Emit((unsigned)'C', 8); + Stream.Emit(0x0, 4); + Stream.Emit(0xC, 4); + Stream.Emit(0xE, 4); + Stream.Emit(0xD, 4); +} + +BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) + : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { + writeBitcodeHeader(*Stream); +} + +BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } + +void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { + Stream->EnterSubblock(Block, 3); + + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(Record)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); + auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); + + Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); + + Stream->ExitBlock(); +} + +void BitcodeWriter::writeSymtab() { + assert(!WroteStrtab && !WroteSymtab); + + // If any module has module-level inline asm, we will require a registered asm + // parser for the target so that we can create an accurate symbol table for + // the module. + for (Module *M : Mods) { + if (M->getModuleInlineAsm().empty()) + continue; + + std::string Err; + const Triple TT(M->getTargetTriple()); + const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); + if (!T || !T->hasMCAsmParser()) + return; + } + + WroteSymtab = true; + SmallVector<char, 0> Symtab; + // The irsymtab::build function may be unable to create a symbol table if the + // module is malformed (e.g. it contains an invalid alias). Writing a symbol + // table is not required for correctness, but we still want to be able to + // write malformed modules to bitcode files, so swallow the error. + if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { + consumeError(std::move(E)); + return; + } + + writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, + {Symtab.data(), Symtab.size()}); +} + +void BitcodeWriter::writeStrtab() { + assert(!WroteStrtab); + + std::vector<char> Strtab; + StrtabBuilder.finalizeInOrder(); + Strtab.resize(StrtabBuilder.getSize()); + StrtabBuilder.write((uint8_t *)Strtab.data()); + + writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, + {Strtab.data(), Strtab.size()}); + + WroteStrtab = true; +} + +void BitcodeWriter::copyStrtab(StringRef Strtab) { + writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); + WroteStrtab = true; +} + +void BitcodeWriter::writeModule(const Module &M, + bool ShouldPreserveUseListOrder, + const ModuleSummaryIndex *Index, + bool GenerateHash, ModuleHash *ModHash) { + assert(!WroteStrtab); + + // The Mods vector is used by irsymtab::build, which requires non-const + // Modules in case it needs to materialize metadata. But the bitcode writer + // requires that the module is materialized, so we can cast to non-const here, + // after checking that it is in fact materialized. + assert(M.isMaterialized()); + Mods.push_back(const_cast<Module *>(&M)); + + ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, + ShouldPreserveUseListOrder, Index, + GenerateHash, ModHash); + ModuleWriter.write(); +} + +void BitcodeWriter::writeIndex( + const ModuleSummaryIndex *Index, + const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { + IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, + ModuleToSummariesForIndex); + IndexWriter.write(); +} + +/// Write the specified module to the specified output stream. +void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, + bool ShouldPreserveUseListOrder, + const ModuleSummaryIndex *Index, + bool GenerateHash, ModuleHash *ModHash) { + SmallVector<char, 0> Buffer; + Buffer.reserve(256*1024); + + // If this is darwin or another generic macho target, reserve space for the + // header. + Triple TT(M.getTargetTriple()); + if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) + Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); + + BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); + Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, + ModHash); + Writer.writeSymtab(); + Writer.writeStrtab(); + + if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) + emitDarwinBCHeaderAndTrailer(Buffer, TT); + + // Write the generated bitstream to "Out". + if (!Buffer.empty()) + Out.write((char *)&Buffer.front(), Buffer.size()); +} + +void IndexBitcodeWriter::write() { + Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); + + writeModuleVersion(); + + // Write the module paths in the combined index. + writeModStrings(); + + // Write the summary combined index records. + writeCombinedGlobalValueSummary(); + + Stream.ExitBlock(); +} + +// Write the specified module summary index to the given raw output stream, +// where it will be written in a new bitcode block. This is used when +// writing the combined index file for ThinLTO. When writing a subset of the +// index for a distributed backend, provide a \p ModuleToSummariesForIndex map. +void llvm::writeIndexToFile( + const ModuleSummaryIndex &Index, raw_ostream &Out, + const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { + SmallVector<char, 0> Buffer; + Buffer.reserve(256 * 1024); + + BitcodeWriter Writer(Buffer); + Writer.writeIndex(&Index, ModuleToSummariesForIndex); + Writer.writeStrtab(); + + Out.write((char *)&Buffer.front(), Buffer.size()); +} + +namespace { + +/// Class to manage the bitcode writing for a thin link bitcode file. +class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { + /// ModHash is for use in ThinLTO incremental build, generated while writing + /// the module bitcode file. + const ModuleHash *ModHash; + +public: + ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, + BitstreamWriter &Stream, + const ModuleSummaryIndex &Index, + const ModuleHash &ModHash) + : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, + /*ShouldPreserveUseListOrder=*/false, &Index), + ModHash(&ModHash) {} + + void write(); + +private: + void writeSimplifiedModuleInfo(); +}; + +} // end anonymous namespace + +// This function writes a simpilified module info for thin link bitcode file. +// It only contains the source file name along with the name(the offset and +// size in strtab) and linkage for global values. For the global value info +// entry, in order to keep linkage at offset 5, there are three zeros used +// as padding. +void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { + SmallVector<unsigned, 64> Vals; + // Emit the module's source file name. + { + StringEncoding Bits = getStringEncoding(M.getSourceFileName()); + BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); + if (Bits == SE_Char6) + AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); + else if (Bits == SE_Fixed7) + AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); + + // MODULE_CODE_SOURCE_FILENAME: [namechar x N] + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(AbbrevOpToUse); + unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + for (const auto P : M.getSourceFileName()) + Vals.push_back((unsigned char)P); + + Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); + Vals.clear(); + } + + // Emit the global variable information. + for (const GlobalVariable &GV : M.globals()) { + // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] + Vals.push_back(StrtabBuilder.add(GV.getName())); + Vals.push_back(GV.getName().size()); + Vals.push_back(0); + Vals.push_back(0); + Vals.push_back(0); + Vals.push_back(getEncodedLinkage(GV)); + + Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); + Vals.clear(); + } + + // Emit the function proto information. + for (const Function &F : M) { + // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] + Vals.push_back(StrtabBuilder.add(F.getName())); + Vals.push_back(F.getName().size()); + Vals.push_back(0); + Vals.push_back(0); + Vals.push_back(0); + Vals.push_back(getEncodedLinkage(F)); + + Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); + Vals.clear(); + } + + // Emit the alias information. + for (const GlobalAlias &A : M.aliases()) { + // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] + Vals.push_back(StrtabBuilder.add(A.getName())); + Vals.push_back(A.getName().size()); + Vals.push_back(0); + Vals.push_back(0); + Vals.push_back(0); + Vals.push_back(getEncodedLinkage(A)); + + Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); + Vals.clear(); + } + + // Emit the ifunc information. + for (const GlobalIFunc &I : M.ifuncs()) { + // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] + Vals.push_back(StrtabBuilder.add(I.getName())); + Vals.push_back(I.getName().size()); + Vals.push_back(0); + Vals.push_back(0); + Vals.push_back(0); + Vals.push_back(getEncodedLinkage(I)); + + Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); + Vals.clear(); + } +} + +void ThinLinkBitcodeWriter::write() { + Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); + + writeModuleVersion(); + + writeSimplifiedModuleInfo(); + + writePerModuleGlobalValueSummary(); + + // Write module hash. + Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); + + Stream.ExitBlock(); +} + +void BitcodeWriter::writeThinLinkBitcode(const Module &M, + const ModuleSummaryIndex &Index, + const ModuleHash &ModHash) { + assert(!WroteStrtab); + + // The Mods vector is used by irsymtab::build, which requires non-const + // Modules in case it needs to materialize metadata. But the bitcode writer + // requires that the module is materialized, so we can cast to non-const here, + // after checking that it is in fact materialized. + assert(M.isMaterialized()); + Mods.push_back(const_cast<Module *>(&M)); + + ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, + ModHash); + ThinLinkWriter.write(); +} + +// Write the specified thin link bitcode file to the given raw output stream, +// where it will be written in a new bitcode block. This is used when +// writing the per-module index file for ThinLTO. +void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, + const ModuleSummaryIndex &Index, + const ModuleHash &ModHash) { + SmallVector<char, 0> Buffer; + Buffer.reserve(256 * 1024); + + BitcodeWriter Writer(Buffer); + Writer.writeThinLinkBitcode(M, Index, ModHash); + Writer.writeSymtab(); + Writer.writeStrtab(); + + Out.write((char *)&Buffer.front(), Buffer.size()); +} + +static const char *getSectionNameForBitcode(const Triple &T) { + switch (T.getObjectFormat()) { + case Triple::MachO: + return "__LLVM,__bitcode"; + case Triple::COFF: + case Triple::ELF: + case Triple::Wasm: + case Triple::UnknownObjectFormat: + return ".llvmbc"; + case Triple::GOFF: + llvm_unreachable("GOFF is not yet implemented"); + break; + case Triple::SPIRV: + llvm_unreachable("SPIRV is not yet implemented"); + break; + case Triple::XCOFF: + llvm_unreachable("XCOFF is not yet implemented"); + break; + case Triple::DXContainer: + llvm_unreachable("DXContainer is not yet implemented"); + break; + } + llvm_unreachable("Unimplemented ObjectFormatType"); +} + +static const char *getSectionNameForCommandline(const Triple &T) { + switch (T.getObjectFormat()) { + case Triple::MachO: + return "__LLVM,__cmdline"; + case Triple::COFF: + case Triple::ELF: + case Triple::Wasm: + case Triple::UnknownObjectFormat: + return ".llvmcmd"; + case Triple::GOFF: + llvm_unreachable("GOFF is not yet implemented"); + break; + case Triple::SPIRV: + llvm_unreachable("SPIRV is not yet implemented"); + break; + case Triple::XCOFF: + llvm_unreachable("XCOFF is not yet implemented"); + break; + case Triple::DXContainer: + llvm_unreachable("DXC is not yet implemented"); + break; + } + llvm_unreachable("Unimplemented ObjectFormatType"); +} + +void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, + bool EmbedBitcode, bool EmbedCmdline, + const std::vector<uint8_t> &CmdArgs) { + // Save llvm.compiler.used and remove it. + SmallVector<Constant *, 2> UsedArray; + SmallVector<GlobalValue *, 4> UsedGlobals; + Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); + GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); + for (auto *GV : UsedGlobals) { + if (GV->getName() != "llvm.embedded.module" && + GV->getName() != "llvm.cmdline") + UsedArray.push_back( + ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); + } + if (Used) + Used->eraseFromParent(); + + // Embed the bitcode for the llvm module. + std::string Data; + ArrayRef<uint8_t> ModuleData; + Triple T(M.getTargetTriple()); + + if (EmbedBitcode) { + if (Buf.getBufferSize() == 0 || + !isBitcode((const unsigned char *)Buf.getBufferStart(), + (const unsigned char *)Buf.getBufferEnd())) { + // If the input is LLVM Assembly, bitcode is produced by serializing + // the module. Use-lists order need to be preserved in this case. + llvm::raw_string_ostream OS(Data); + llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); + ModuleData = + ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); + } else + // If the input is LLVM bitcode, write the input byte stream directly. + ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), + Buf.getBufferSize()); + } + llvm::Constant *ModuleConstant = + llvm::ConstantDataArray::get(M.getContext(), ModuleData); + llvm::GlobalVariable *GV = new llvm::GlobalVariable( + M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, + ModuleConstant); + GV->setSection(getSectionNameForBitcode(T)); + // Set alignment to 1 to prevent padding between two contributions from input + // sections after linking. + GV->setAlignment(Align(1)); + UsedArray.push_back( + ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); + if (llvm::GlobalVariable *Old = + M.getGlobalVariable("llvm.embedded.module", true)) { + assert(Old->hasZeroLiveUses() && + "llvm.embedded.module can only be used once in llvm.compiler.used"); + GV->takeName(Old); + Old->eraseFromParent(); + } else { + GV->setName("llvm.embedded.module"); + } + + // Skip if only bitcode needs to be embedded. + if (EmbedCmdline) { + // Embed command-line options. + ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), + CmdArgs.size()); + llvm::Constant *CmdConstant = + llvm::ConstantDataArray::get(M.getContext(), CmdData); + GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, + llvm::GlobalValue::PrivateLinkage, + CmdConstant); + GV->setSection(getSectionNameForCommandline(T)); + GV->setAlignment(Align(1)); + UsedArray.push_back( + ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); + if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { + assert(Old->hasZeroLiveUses() && + "llvm.cmdline can only be used once in llvm.compiler.used"); + GV->takeName(Old); + Old->eraseFromParent(); + } else { + GV->setName("llvm.cmdline"); + } + } + + if (UsedArray.empty()) + return; + + // Recreate llvm.compiler.used. + ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); + auto *NewUsed = new GlobalVariable( + M, ATy, false, llvm::GlobalValue::AppendingLinkage, + llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); + NewUsed->setSection("llvm.metadata"); +} |