aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Bitcode/Reader/BitcodeReader.cpp
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm16/lib/Bitcode/Reader/BitcodeReader.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm16/lib/Bitcode/Reader/BitcodeReader.cpp')
-rw-r--r--contrib/libs/llvm16/lib/Bitcode/Reader/BitcodeReader.cpp8229
1 files changed, 8229 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Bitcode/Reader/BitcodeReader.cpp b/contrib/libs/llvm16/lib/Bitcode/Reader/BitcodeReader.cpp
new file mode 100644
index 0000000000..f014521264
--- /dev/null
+++ b/contrib/libs/llvm16/lib/Bitcode/Reader/BitcodeReader.cpp
@@ -0,0 +1,8229 @@
+//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Bitcode/BitcodeReader.h"
+#include "MetadataLoader.h"
+#include "ValueList.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Bitcode/BitcodeCommon.h"
+#include "llvm/Bitcode/LLVMBitCodes.h"
+#include "llvm/Bitstream/BitstreamReader.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/AutoUpgrade.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Comdat.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GVMaterializer.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalIFunc.h"
+#include "llvm/IR/GlobalObject.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/IntrinsicsAArch64.h"
+#include "llvm/IR/IntrinsicsARM.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/ModuleSummaryIndex.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/Verifier.h"
+#include "llvm/Support/AtomicOrdering.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Error.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ErrorOr.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/ModRef.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <deque>
+#include <map>
+#include <memory>
+#include <optional>
+#include <set>
+#include <string>
+#include <system_error>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+static cl::opt<bool> PrintSummaryGUIDs(
+ "print-summary-global-ids", cl::init(false), cl::Hidden,
+ cl::desc(
+ "Print the global id for each value when reading the module summary"));
+
+static cl::opt<bool> ExpandConstantExprs(
+ "expand-constant-exprs", cl::Hidden,
+ cl::desc(
+ "Expand constant expressions to instructions for testing purposes"));
+
+namespace {
+
+enum {
+ SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
+};
+
+} // end anonymous namespace
+
+static Error error(const Twine &Message) {
+ return make_error<StringError>(
+ Message, make_error_code(BitcodeError::CorruptedBitcode));
+}
+
+static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
+ if (!Stream.canSkipToPos(4))
+ return createStringError(std::errc::illegal_byte_sequence,
+ "file too small to contain bitcode header");
+ for (unsigned C : {'B', 'C'})
+ if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
+ if (Res.get() != C)
+ return createStringError(std::errc::illegal_byte_sequence,
+ "file doesn't start with bitcode header");
+ } else
+ return Res.takeError();
+ for (unsigned C : {0x0, 0xC, 0xE, 0xD})
+ if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
+ if (Res.get() != C)
+ return createStringError(std::errc::illegal_byte_sequence,
+ "file doesn't start with bitcode header");
+ } else
+ return Res.takeError();
+ return Error::success();
+}
+
+static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
+ const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
+ const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
+
+ if (Buffer.getBufferSize() & 3)
+ return error("Invalid bitcode signature");
+
+ // If we have a wrapper header, parse it and ignore the non-bc file contents.
+ // The magic number is 0x0B17C0DE stored in little endian.
+ if (isBitcodeWrapper(BufPtr, BufEnd))
+ if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
+ return error("Invalid bitcode wrapper header");
+
+ BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
+ if (Error Err = hasInvalidBitcodeHeader(Stream))
+ return std::move(Err);
+
+ return std::move(Stream);
+}
+
+/// Convert a string from a record into an std::string, return true on failure.
+template <typename StrTy>
+static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
+ StrTy &Result) {
+ if (Idx > Record.size())
+ return true;
+
+ Result.append(Record.begin() + Idx, Record.end());
+ return false;
+}
+
+// Strip all the TBAA attachment for the module.
+static void stripTBAA(Module *M) {
+ for (auto &F : *M) {
+ if (F.isMaterializable())
+ continue;
+ for (auto &I : instructions(F))
+ I.setMetadata(LLVMContext::MD_tbaa, nullptr);
+ }
+}
+
+/// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
+/// "epoch" encoded in the bitcode, and return the producer name if any.
+static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
+ if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
+ return std::move(Err);
+
+ // Read all the records.
+ SmallVector<uint64_t, 64> Record;
+
+ std::string ProducerIdentification;
+
+ while (true) {
+ BitstreamEntry Entry;
+ if (Error E = Stream.advance().moveInto(Entry))
+ return std::move(E);
+
+ switch (Entry.Kind) {
+ default:
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ return ProducerIdentification;
+ case BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Read a record.
+ Record.clear();
+ Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeBitCode)
+ return MaybeBitCode.takeError();
+ switch (MaybeBitCode.get()) {
+ default: // Default behavior: reject
+ return error("Invalid value");
+ case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
+ convertToString(Record, 0, ProducerIdentification);
+ break;
+ case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
+ unsigned epoch = (unsigned)Record[0];
+ if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
+ return error(
+ Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
+ "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
+ }
+ }
+ }
+ }
+}
+
+static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
+ // We expect a number of well-defined blocks, though we don't necessarily
+ // need to understand them all.
+ while (true) {
+ if (Stream.AtEndOfStream())
+ return "";
+
+ BitstreamEntry Entry;
+ if (Error E = Stream.advance().moveInto(Entry))
+ return std::move(E);
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::EndBlock:
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+
+ case BitstreamEntry::SubBlock:
+ if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
+ return readIdentificationBlock(Stream);
+
+ // Ignore other sub-blocks.
+ if (Error Err = Stream.SkipBlock())
+ return std::move(Err);
+ continue;
+ case BitstreamEntry::Record:
+ if (Error E = Stream.skipRecord(Entry.ID).takeError())
+ return std::move(E);
+ continue;
+ }
+ }
+}
+
+static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
+ if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
+ return std::move(Err);
+
+ SmallVector<uint64_t, 64> Record;
+ // Read all the records for this module.
+
+ while (true) {
+ Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::SubBlock: // Handled for us already.
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ return false;
+ case BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Read a record.
+ Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeRecord)
+ return MaybeRecord.takeError();
+ switch (MaybeRecord.get()) {
+ default:
+ break; // Default behavior, ignore unknown content.
+ case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
+ std::string S;
+ if (convertToString(Record, 0, S))
+ return error("Invalid section name record");
+ // Check for the i386 and other (x86_64, ARM) conventions
+ if (S.find("__DATA,__objc_catlist") != std::string::npos ||
+ S.find("__OBJC,__category") != std::string::npos)
+ return true;
+ break;
+ }
+ }
+ Record.clear();
+ }
+ llvm_unreachable("Exit infinite loop");
+}
+
+static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
+ // We expect a number of well-defined blocks, though we don't necessarily
+ // need to understand them all.
+ while (true) {
+ BitstreamEntry Entry;
+ if (Error E = Stream.advance().moveInto(Entry))
+ return std::move(E);
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ return false;
+
+ case BitstreamEntry::SubBlock:
+ if (Entry.ID == bitc::MODULE_BLOCK_ID)
+ return hasObjCCategoryInModule(Stream);
+
+ // Ignore other sub-blocks.
+ if (Error Err = Stream.SkipBlock())
+ return std::move(Err);
+ continue;
+
+ case BitstreamEntry::Record:
+ if (Error E = Stream.skipRecord(Entry.ID).takeError())
+ return std::move(E);
+ continue;
+ }
+ }
+}
+
+static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
+ if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
+ return std::move(Err);
+
+ SmallVector<uint64_t, 64> Record;
+
+ std::string Triple;
+
+ // Read all the records for this module.
+ while (true) {
+ Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::SubBlock: // Handled for us already.
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ return Triple;
+ case BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Read a record.
+ Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeRecord)
+ return MaybeRecord.takeError();
+ switch (MaybeRecord.get()) {
+ default: break; // Default behavior, ignore unknown content.
+ case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
+ std::string S;
+ if (convertToString(Record, 0, S))
+ return error("Invalid triple record");
+ Triple = S;
+ break;
+ }
+ }
+ Record.clear();
+ }
+ llvm_unreachable("Exit infinite loop");
+}
+
+static Expected<std::string> readTriple(BitstreamCursor &Stream) {
+ // We expect a number of well-defined blocks, though we don't necessarily
+ // need to understand them all.
+ while (true) {
+ Expected<BitstreamEntry> MaybeEntry = Stream.advance();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ return "";
+
+ case BitstreamEntry::SubBlock:
+ if (Entry.ID == bitc::MODULE_BLOCK_ID)
+ return readModuleTriple(Stream);
+
+ // Ignore other sub-blocks.
+ if (Error Err = Stream.SkipBlock())
+ return std::move(Err);
+ continue;
+
+ case BitstreamEntry::Record:
+ if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
+ continue;
+ else
+ return Skipped.takeError();
+ }
+ }
+}
+
+namespace {
+
+class BitcodeReaderBase {
+protected:
+ BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
+ : Stream(std::move(Stream)), Strtab(Strtab) {
+ this->Stream.setBlockInfo(&BlockInfo);
+ }
+
+ BitstreamBlockInfo BlockInfo;
+ BitstreamCursor Stream;
+ StringRef Strtab;
+
+ /// In version 2 of the bitcode we store names of global values and comdats in
+ /// a string table rather than in the VST.
+ bool UseStrtab = false;
+
+ Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
+
+ /// If this module uses a string table, pop the reference to the string table
+ /// and return the referenced string and the rest of the record. Otherwise
+ /// just return the record itself.
+ std::pair<StringRef, ArrayRef<uint64_t>>
+ readNameFromStrtab(ArrayRef<uint64_t> Record);
+
+ Error readBlockInfo();
+
+ // Contains an arbitrary and optional string identifying the bitcode producer
+ std::string ProducerIdentification;
+
+ Error error(const Twine &Message);
+};
+
+} // end anonymous namespace
+
+Error BitcodeReaderBase::error(const Twine &Message) {
+ std::string FullMsg = Message.str();
+ if (!ProducerIdentification.empty())
+ FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
+ LLVM_VERSION_STRING "')";
+ return ::error(FullMsg);
+}
+
+Expected<unsigned>
+BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
+ if (Record.empty())
+ return error("Invalid version record");
+ unsigned ModuleVersion = Record[0];
+ if (ModuleVersion > 2)
+ return error("Invalid value");
+ UseStrtab = ModuleVersion >= 2;
+ return ModuleVersion;
+}
+
+std::pair<StringRef, ArrayRef<uint64_t>>
+BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
+ if (!UseStrtab)
+ return {"", Record};
+ // Invalid reference. Let the caller complain about the record being empty.
+ if (Record[0] + Record[1] > Strtab.size())
+ return {"", {}};
+ return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
+}
+
+namespace {
+
+/// This represents a constant expression or constant aggregate using a custom
+/// structure internal to the bitcode reader. Later, this structure will be
+/// expanded by materializeValue() either into a constant expression/aggregate,
+/// or into an instruction sequence at the point of use. This allows us to
+/// upgrade bitcode using constant expressions even if this kind of constant
+/// expression is no longer supported.
+class BitcodeConstant final : public Value,
+ TrailingObjects<BitcodeConstant, unsigned> {
+ friend TrailingObjects;
+
+ // Value subclass ID: Pick largest possible value to avoid any clashes.
+ static constexpr uint8_t SubclassID = 255;
+
+public:
+ // Opcodes used for non-expressions. This includes constant aggregates
+ // (struct, array, vector) that might need expansion, as well as non-leaf
+ // constants that don't need expansion (no_cfi, dso_local, blockaddress),
+ // but still go through BitcodeConstant to avoid different uselist orders
+ // between the two cases.
+ static constexpr uint8_t ConstantStructOpcode = 255;
+ static constexpr uint8_t ConstantArrayOpcode = 254;
+ static constexpr uint8_t ConstantVectorOpcode = 253;
+ static constexpr uint8_t NoCFIOpcode = 252;
+ static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
+ static constexpr uint8_t BlockAddressOpcode = 250;
+ static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
+
+ // Separate struct to make passing different number of parameters to
+ // BitcodeConstant::create() more convenient.
+ struct ExtraInfo {
+ uint8_t Opcode;
+ uint8_t Flags;
+ unsigned Extra;
+ Type *SrcElemTy;
+
+ ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0,
+ Type *SrcElemTy = nullptr)
+ : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {}
+ };
+
+ uint8_t Opcode;
+ uint8_t Flags;
+ unsigned NumOperands;
+ unsigned Extra; // GEP inrange index or blockaddress BB id.
+ Type *SrcElemTy; // GEP source element type.
+
+private:
+ BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
+ : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
+ NumOperands(OpIDs.size()), Extra(Info.Extra),
+ SrcElemTy(Info.SrcElemTy) {
+ std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
+ getTrailingObjects<unsigned>());
+ }
+
+ BitcodeConstant &operator=(const BitcodeConstant &) = delete;
+
+public:
+ static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
+ const ExtraInfo &Info,
+ ArrayRef<unsigned> OpIDs) {
+ void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
+ alignof(BitcodeConstant));
+ return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
+ }
+
+ static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
+
+ ArrayRef<unsigned> getOperandIDs() const {
+ return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
+ }
+
+ std::optional<unsigned> getInRangeIndex() const {
+ assert(Opcode == Instruction::GetElementPtr);
+ if (Extra == (unsigned)-1)
+ return std::nullopt;
+ return Extra;
+ }
+
+ const char *getOpcodeName() const {
+ return Instruction::getOpcodeName(Opcode);
+ }
+};
+
+class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
+ LLVMContext &Context;
+ Module *TheModule = nullptr;
+ // Next offset to start scanning for lazy parsing of function bodies.
+ uint64_t NextUnreadBit = 0;
+ // Last function offset found in the VST.
+ uint64_t LastFunctionBlockBit = 0;
+ bool SeenValueSymbolTable = false;
+ uint64_t VSTOffset = 0;
+
+ std::vector<std::string> SectionTable;
+ std::vector<std::string> GCTable;
+
+ std::vector<Type *> TypeList;
+ /// Track type IDs of contained types. Order is the same as the contained
+ /// types of a Type*. This is used during upgrades of typed pointer IR in
+ /// opaque pointer mode.
+ DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
+ /// In some cases, we need to create a type ID for a type that was not
+ /// explicitly encoded in the bitcode, or we don't know about at the current
+ /// point. For example, a global may explicitly encode the value type ID, but
+ /// not have a type ID for the pointer to value type, for which we create a
+ /// virtual type ID instead. This map stores the new type ID that was created
+ /// for the given pair of Type and contained type ID.
+ DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
+ DenseMap<Function *, unsigned> FunctionTypeIDs;
+ /// Allocator for BitcodeConstants. This should come before ValueList,
+ /// because the ValueList might hold ValueHandles to these constants, so
+ /// ValueList must be destroyed before Alloc.
+ BumpPtrAllocator Alloc;
+ BitcodeReaderValueList ValueList;
+ std::optional<MetadataLoader> MDLoader;
+ std::vector<Comdat *> ComdatList;
+ DenseSet<GlobalObject *> ImplicitComdatObjects;
+ SmallVector<Instruction *, 64> InstructionList;
+
+ std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
+ std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
+
+ struct FunctionOperandInfo {
+ Function *F;
+ unsigned PersonalityFn;
+ unsigned Prefix;
+ unsigned Prologue;
+ };
+ std::vector<FunctionOperandInfo> FunctionOperands;
+
+ /// The set of attributes by index. Index zero in the file is for null, and
+ /// is thus not represented here. As such all indices are off by one.
+ std::vector<AttributeList> MAttributes;
+
+ /// The set of attribute groups.
+ std::map<unsigned, AttributeList> MAttributeGroups;
+
+ /// While parsing a function body, this is a list of the basic blocks for the
+ /// function.
+ std::vector<BasicBlock*> FunctionBBs;
+
+ // When reading the module header, this list is populated with functions that
+ // have bodies later in the file.
+ std::vector<Function*> FunctionsWithBodies;
+
+ // When intrinsic functions are encountered which require upgrading they are
+ // stored here with their replacement function.
+ using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
+ UpdatedIntrinsicMap UpgradedIntrinsics;
+
+ // Several operations happen after the module header has been read, but
+ // before function bodies are processed. This keeps track of whether
+ // we've done this yet.
+ bool SeenFirstFunctionBody = false;
+
+ /// When function bodies are initially scanned, this map contains info about
+ /// where to find deferred function body in the stream.
+ DenseMap<Function*, uint64_t> DeferredFunctionInfo;
+
+ /// When Metadata block is initially scanned when parsing the module, we may
+ /// choose to defer parsing of the metadata. This vector contains info about
+ /// which Metadata blocks are deferred.
+ std::vector<uint64_t> DeferredMetadataInfo;
+
+ /// These are basic blocks forward-referenced by block addresses. They are
+ /// inserted lazily into functions when they're loaded. The basic block ID is
+ /// its index into the vector.
+ DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
+ std::deque<Function *> BasicBlockFwdRefQueue;
+
+ /// These are Functions that contain BlockAddresses which refer a different
+ /// Function. When parsing the different Function, queue Functions that refer
+ /// to the different Function. Those Functions must be materialized in order
+ /// to resolve their BlockAddress constants before the different Function
+ /// gets moved into another Module.
+ std::vector<Function *> BackwardRefFunctions;
+
+ /// Indicates that we are using a new encoding for instruction operands where
+ /// most operands in the current FUNCTION_BLOCK are encoded relative to the
+ /// instruction number, for a more compact encoding. Some instruction
+ /// operands are not relative to the instruction ID: basic block numbers, and
+ /// types. Once the old style function blocks have been phased out, we would
+ /// not need this flag.
+ bool UseRelativeIDs = false;
+
+ /// True if all functions will be materialized, negating the need to process
+ /// (e.g.) blockaddress forward references.
+ bool WillMaterializeAllForwardRefs = false;
+
+ bool StripDebugInfo = false;
+ TBAAVerifier TBAAVerifyHelper;
+
+ std::vector<std::string> BundleTags;
+ SmallVector<SyncScope::ID, 8> SSIDs;
+
+ std::optional<ValueTypeCallbackTy> ValueTypeCallback;
+
+public:
+ BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
+ StringRef ProducerIdentification, LLVMContext &Context);
+
+ Error materializeForwardReferencedFunctions();
+
+ Error materialize(GlobalValue *GV) override;
+ Error materializeModule() override;
+ std::vector<StructType *> getIdentifiedStructTypes() const override;
+
+ /// Main interface to parsing a bitcode buffer.
+ /// \returns true if an error occurred.
+ Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
+ bool IsImporting, ParserCallbacks Callbacks = {});
+
+ static uint64_t decodeSignRotatedValue(uint64_t V);
+
+ /// Materialize any deferred Metadata block.
+ Error materializeMetadata() override;
+
+ void setStripDebugInfo() override;
+
+private:
+ std::vector<StructType *> IdentifiedStructTypes;
+ StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
+ StructType *createIdentifiedStructType(LLVMContext &Context);
+
+ static constexpr unsigned InvalidTypeID = ~0u;
+
+ Type *getTypeByID(unsigned ID);
+ Type *getPtrElementTypeByID(unsigned ID);
+ unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
+ unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
+
+ void callValueTypeCallback(Value *F, unsigned TypeID);
+ Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
+ Expected<Constant *> getValueForInitializer(unsigned ID);
+
+ Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
+ BasicBlock *ConstExprInsertBB) {
+ if (Ty && Ty->isMetadataTy())
+ return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
+ return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
+ }
+
+ Metadata *getFnMetadataByID(unsigned ID) {
+ return MDLoader->getMetadataFwdRefOrLoad(ID);
+ }
+
+ BasicBlock *getBasicBlock(unsigned ID) const {
+ if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
+ return FunctionBBs[ID];
+ }
+
+ AttributeList getAttributes(unsigned i) const {
+ if (i-1 < MAttributes.size())
+ return MAttributes[i-1];
+ return AttributeList();
+ }
+
+ /// Read a value/type pair out of the specified record from slot 'Slot'.
+ /// Increment Slot past the number of slots used in the record. Return true on
+ /// failure.
+ bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
+ unsigned InstNum, Value *&ResVal, unsigned &TypeID,
+ BasicBlock *ConstExprInsertBB) {
+ if (Slot == Record.size()) return true;
+ unsigned ValNo = (unsigned)Record[Slot++];
+ // Adjust the ValNo, if it was encoded relative to the InstNum.
+ if (UseRelativeIDs)
+ ValNo = InstNum - ValNo;
+ if (ValNo < InstNum) {
+ // If this is not a forward reference, just return the value we already
+ // have.
+ TypeID = ValueList.getTypeID(ValNo);
+ ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
+ assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
+ "Incorrect type ID stored for value");
+ return ResVal == nullptr;
+ }
+ if (Slot == Record.size())
+ return true;
+
+ TypeID = (unsigned)Record[Slot++];
+ ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
+ ConstExprInsertBB);
+ return ResVal == nullptr;
+ }
+
+ /// Read a value out of the specified record from slot 'Slot'. Increment Slot
+ /// past the number of slots used by the value in the record. Return true if
+ /// there is an error.
+ bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
+ unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
+ BasicBlock *ConstExprInsertBB) {
+ if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
+ return true;
+ // All values currently take a single record slot.
+ ++Slot;
+ return false;
+ }
+
+ /// Like popValue, but does not increment the Slot number.
+ bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
+ unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
+ BasicBlock *ConstExprInsertBB) {
+ ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
+ return ResVal == nullptr;
+ }
+
+ /// Version of getValue that returns ResVal directly, or 0 if there is an
+ /// error.
+ Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
+ unsigned InstNum, Type *Ty, unsigned TyID,
+ BasicBlock *ConstExprInsertBB) {
+ if (Slot == Record.size()) return nullptr;
+ unsigned ValNo = (unsigned)Record[Slot];
+ // Adjust the ValNo, if it was encoded relative to the InstNum.
+ if (UseRelativeIDs)
+ ValNo = InstNum - ValNo;
+ return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
+ }
+
+ /// Like getValue, but decodes signed VBRs.
+ Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
+ unsigned InstNum, Type *Ty, unsigned TyID,
+ BasicBlock *ConstExprInsertBB) {
+ if (Slot == Record.size()) return nullptr;
+ unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
+ // Adjust the ValNo, if it was encoded relative to the InstNum.
+ if (UseRelativeIDs)
+ ValNo = InstNum - ValNo;
+ return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
+ }
+
+ /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
+ /// corresponding argument's pointee type. Also upgrades intrinsics that now
+ /// require an elementtype attribute.
+ Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
+
+ /// Converts alignment exponent (i.e. power of two (or zero)) to the
+ /// corresponding alignment to use. If alignment is too large, returns
+ /// a corresponding error code.
+ Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
+ Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
+ Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
+ ParserCallbacks Callbacks = {});
+
+ Error parseComdatRecord(ArrayRef<uint64_t> Record);
+ Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
+ Error parseFunctionRecord(ArrayRef<uint64_t> Record);
+ Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
+ ArrayRef<uint64_t> Record);
+
+ Error parseAttributeBlock();
+ Error parseAttributeGroupBlock();
+ Error parseTypeTable();
+ Error parseTypeTableBody();
+ Error parseOperandBundleTags();
+ Error parseSyncScopeNames();
+
+ Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
+ unsigned NameIndex, Triple &TT);
+ void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
+ ArrayRef<uint64_t> Record);
+ Error parseValueSymbolTable(uint64_t Offset = 0);
+ Error parseGlobalValueSymbolTable();
+ Error parseConstants();
+ Error rememberAndSkipFunctionBodies();
+ Error rememberAndSkipFunctionBody();
+ /// Save the positions of the Metadata blocks and skip parsing the blocks.
+ Error rememberAndSkipMetadata();
+ Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
+ Error parseFunctionBody(Function *F);
+ Error globalCleanup();
+ Error resolveGlobalAndIndirectSymbolInits();
+ Error parseUseLists();
+ Error findFunctionInStream(
+ Function *F,
+ DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
+
+ SyncScope::ID getDecodedSyncScopeID(unsigned Val);
+};
+
+/// Class to manage reading and parsing function summary index bitcode
+/// files/sections.
+class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
+ /// The module index built during parsing.
+ ModuleSummaryIndex &TheIndex;
+
+ /// Indicates whether we have encountered a global value summary section
+ /// yet during parsing.
+ bool SeenGlobalValSummary = false;
+
+ /// Indicates whether we have already parsed the VST, used for error checking.
+ bool SeenValueSymbolTable = false;
+
+ /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
+ /// Used to enable on-demand parsing of the VST.
+ uint64_t VSTOffset = 0;
+
+ // Map to save ValueId to ValueInfo association that was recorded in the
+ // ValueSymbolTable. It is used after the VST is parsed to convert
+ // call graph edges read from the function summary from referencing
+ // callees by their ValueId to using the ValueInfo instead, which is how
+ // they are recorded in the summary index being built.
+ // We save a GUID which refers to the same global as the ValueInfo, but
+ // ignoring the linkage, i.e. for values other than local linkage they are
+ // identical (this is the second tuple member).
+ // The third tuple member is the real GUID of the ValueInfo.
+ DenseMap<unsigned,
+ std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
+ ValueIdToValueInfoMap;
+
+ /// Map populated during module path string table parsing, from the
+ /// module ID to a string reference owned by the index's module
+ /// path string table, used to correlate with combined index
+ /// summary records.
+ DenseMap<uint64_t, StringRef> ModuleIdMap;
+
+ /// Original source file name recorded in a bitcode record.
+ std::string SourceFileName;
+
+ /// The string identifier given to this module by the client, normally the
+ /// path to the bitcode file.
+ StringRef ModulePath;
+
+ /// For per-module summary indexes, the unique numerical identifier given to
+ /// this module by the client.
+ unsigned ModuleId;
+
+ /// Callback to ask whether a symbol is the prevailing copy when invoked
+ /// during combined index building.
+ std::function<bool(GlobalValue::GUID)> IsPrevailing;
+
+ /// Saves the stack ids from the STACK_IDS record to consult when adding stack
+ /// ids from the lists in the callsite and alloc entries to the index.
+ std::vector<uint64_t> StackIds;
+
+public:
+ ModuleSummaryIndexBitcodeReader(
+ BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
+ StringRef ModulePath, unsigned ModuleId,
+ std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
+
+ Error parseModule();
+
+private:
+ void setValueGUID(uint64_t ValueID, StringRef ValueName,
+ GlobalValue::LinkageTypes Linkage,
+ StringRef SourceFileName);
+ Error parseValueSymbolTable(
+ uint64_t Offset,
+ DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
+ std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
+ std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
+ bool IsOldProfileFormat,
+ bool HasProfile,
+ bool HasRelBF);
+ Error parseEntireSummary(unsigned ID);
+ Error parseModuleStringTable();
+ void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
+ void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
+ TypeIdCompatibleVtableInfo &TypeId);
+ std::vector<FunctionSummary::ParamAccess>
+ parseParamAccesses(ArrayRef<uint64_t> Record);
+
+ template <bool AllowNullValueInfo = false>
+ std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
+ getValueInfoFromValueId(unsigned ValueId);
+
+ void addThisModule();
+ ModuleSummaryIndex::ModuleInfo *getThisModule();
+};
+
+} // end anonymous namespace
+
+std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
+ Error Err) {
+ if (Err) {
+ std::error_code EC;
+ handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
+ EC = EIB.convertToErrorCode();
+ Ctx.emitError(EIB.message());
+ });
+ return EC;
+ }
+ return std::error_code();
+}
+
+BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
+ StringRef ProducerIdentification,
+ LLVMContext &Context)
+ : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
+ ValueList(this->Stream.SizeInBytes(),
+ [this](unsigned ValID, BasicBlock *InsertBB) {
+ return materializeValue(ValID, InsertBB);
+ }) {
+ this->ProducerIdentification = std::string(ProducerIdentification);
+}
+
+Error BitcodeReader::materializeForwardReferencedFunctions() {
+ if (WillMaterializeAllForwardRefs)
+ return Error::success();
+
+ // Prevent recursion.
+ WillMaterializeAllForwardRefs = true;
+
+ while (!BasicBlockFwdRefQueue.empty()) {
+ Function *F = BasicBlockFwdRefQueue.front();
+ BasicBlockFwdRefQueue.pop_front();
+ assert(F && "Expected valid function");
+ if (!BasicBlockFwdRefs.count(F))
+ // Already materialized.
+ continue;
+
+ // Check for a function that isn't materializable to prevent an infinite
+ // loop. When parsing a blockaddress stored in a global variable, there
+ // isn't a trivial way to check if a function will have a body without a
+ // linear search through FunctionsWithBodies, so just check it here.
+ if (!F->isMaterializable())
+ return error("Never resolved function from blockaddress");
+
+ // Try to materialize F.
+ if (Error Err = materialize(F))
+ return Err;
+ }
+ assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
+
+ for (Function *F : BackwardRefFunctions)
+ if (Error Err = materialize(F))
+ return Err;
+ BackwardRefFunctions.clear();
+
+ // Reset state.
+ WillMaterializeAllForwardRefs = false;
+ return Error::success();
+}
+
+//===----------------------------------------------------------------------===//
+// Helper functions to implement forward reference resolution, etc.
+//===----------------------------------------------------------------------===//
+
+static bool hasImplicitComdat(size_t Val) {
+ switch (Val) {
+ default:
+ return false;
+ case 1: // Old WeakAnyLinkage
+ case 4: // Old LinkOnceAnyLinkage
+ case 10: // Old WeakODRLinkage
+ case 11: // Old LinkOnceODRLinkage
+ return true;
+ }
+}
+
+static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
+ switch (Val) {
+ default: // Map unknown/new linkages to external
+ case 0:
+ return GlobalValue::ExternalLinkage;
+ case 2:
+ return GlobalValue::AppendingLinkage;
+ case 3:
+ return GlobalValue::InternalLinkage;
+ case 5:
+ return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
+ case 6:
+ return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
+ case 7:
+ return GlobalValue::ExternalWeakLinkage;
+ case 8:
+ return GlobalValue::CommonLinkage;
+ case 9:
+ return GlobalValue::PrivateLinkage;
+ case 12:
+ return GlobalValue::AvailableExternallyLinkage;
+ case 13:
+ return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
+ case 14:
+ return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
+ case 15:
+ return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
+ case 1: // Old value with implicit comdat.
+ case 16:
+ return GlobalValue::WeakAnyLinkage;
+ case 10: // Old value with implicit comdat.
+ case 17:
+ return GlobalValue::WeakODRLinkage;
+ case 4: // Old value with implicit comdat.
+ case 18:
+ return GlobalValue::LinkOnceAnyLinkage;
+ case 11: // Old value with implicit comdat.
+ case 19:
+ return GlobalValue::LinkOnceODRLinkage;
+ }
+}
+
+static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
+ FunctionSummary::FFlags Flags;
+ Flags.ReadNone = RawFlags & 0x1;
+ Flags.ReadOnly = (RawFlags >> 1) & 0x1;
+ Flags.NoRecurse = (RawFlags >> 2) & 0x1;
+ Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
+ Flags.NoInline = (RawFlags >> 4) & 0x1;
+ Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
+ Flags.NoUnwind = (RawFlags >> 6) & 0x1;
+ Flags.MayThrow = (RawFlags >> 7) & 0x1;
+ Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
+ Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
+ return Flags;
+}
+
+// Decode the flags for GlobalValue in the summary. The bits for each attribute:
+//
+// linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
+// visibility: [8, 10).
+static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
+ uint64_t Version) {
+ // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
+ // like getDecodedLinkage() above. Any future change to the linkage enum and
+ // to getDecodedLinkage() will need to be taken into account here as above.
+ auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
+ auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
+ RawFlags = RawFlags >> 4;
+ bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
+ // The Live flag wasn't introduced until version 3. For dead stripping
+ // to work correctly on earlier versions, we must conservatively treat all
+ // values as live.
+ bool Live = (RawFlags & 0x2) || Version < 3;
+ bool Local = (RawFlags & 0x4);
+ bool AutoHide = (RawFlags & 0x8);
+
+ return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
+ Live, Local, AutoHide);
+}
+
+// Decode the flags for GlobalVariable in the summary
+static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
+ return GlobalVarSummary::GVarFlags(
+ (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
+ (RawFlags & 0x4) ? true : false,
+ (GlobalObject::VCallVisibility)(RawFlags >> 3));
+}
+
+static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
+ switch (Val) {
+ default: // Map unknown visibilities to default.
+ case 0: return GlobalValue::DefaultVisibility;
+ case 1: return GlobalValue::HiddenVisibility;
+ case 2: return GlobalValue::ProtectedVisibility;
+ }
+}
+
+static GlobalValue::DLLStorageClassTypes
+getDecodedDLLStorageClass(unsigned Val) {
+ switch (Val) {
+ default: // Map unknown values to default.
+ case 0: return GlobalValue::DefaultStorageClass;
+ case 1: return GlobalValue::DLLImportStorageClass;
+ case 2: return GlobalValue::DLLExportStorageClass;
+ }
+}
+
+static bool getDecodedDSOLocal(unsigned Val) {
+ switch(Val) {
+ default: // Map unknown values to preemptable.
+ case 0: return false;
+ case 1: return true;
+ }
+}
+
+static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
+ switch (Val) {
+ case 0: return GlobalVariable::NotThreadLocal;
+ default: // Map unknown non-zero value to general dynamic.
+ case 1: return GlobalVariable::GeneralDynamicTLSModel;
+ case 2: return GlobalVariable::LocalDynamicTLSModel;
+ case 3: return GlobalVariable::InitialExecTLSModel;
+ case 4: return GlobalVariable::LocalExecTLSModel;
+ }
+}
+
+static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
+ switch (Val) {
+ default: // Map unknown to UnnamedAddr::None.
+ case 0: return GlobalVariable::UnnamedAddr::None;
+ case 1: return GlobalVariable::UnnamedAddr::Global;
+ case 2: return GlobalVariable::UnnamedAddr::Local;
+ }
+}
+
+static int getDecodedCastOpcode(unsigned Val) {
+ switch (Val) {
+ default: return -1;
+ case bitc::CAST_TRUNC : return Instruction::Trunc;
+ case bitc::CAST_ZEXT : return Instruction::ZExt;
+ case bitc::CAST_SEXT : return Instruction::SExt;
+ case bitc::CAST_FPTOUI : return Instruction::FPToUI;
+ case bitc::CAST_FPTOSI : return Instruction::FPToSI;
+ case bitc::CAST_UITOFP : return Instruction::UIToFP;
+ case bitc::CAST_SITOFP : return Instruction::SIToFP;
+ case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
+ case bitc::CAST_FPEXT : return Instruction::FPExt;
+ case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
+ case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
+ case bitc::CAST_BITCAST : return Instruction::BitCast;
+ case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
+ }
+}
+
+static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
+ bool IsFP = Ty->isFPOrFPVectorTy();
+ // UnOps are only valid for int/fp or vector of int/fp types
+ if (!IsFP && !Ty->isIntOrIntVectorTy())
+ return -1;
+
+ switch (Val) {
+ default:
+ return -1;
+ case bitc::UNOP_FNEG:
+ return IsFP ? Instruction::FNeg : -1;
+ }
+}
+
+static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
+ bool IsFP = Ty->isFPOrFPVectorTy();
+ // BinOps are only valid for int/fp or vector of int/fp types
+ if (!IsFP && !Ty->isIntOrIntVectorTy())
+ return -1;
+
+ switch (Val) {
+ default:
+ return -1;
+ case bitc::BINOP_ADD:
+ return IsFP ? Instruction::FAdd : Instruction::Add;
+ case bitc::BINOP_SUB:
+ return IsFP ? Instruction::FSub : Instruction::Sub;
+ case bitc::BINOP_MUL:
+ return IsFP ? Instruction::FMul : Instruction::Mul;
+ case bitc::BINOP_UDIV:
+ return IsFP ? -1 : Instruction::UDiv;
+ case bitc::BINOP_SDIV:
+ return IsFP ? Instruction::FDiv : Instruction::SDiv;
+ case bitc::BINOP_UREM:
+ return IsFP ? -1 : Instruction::URem;
+ case bitc::BINOP_SREM:
+ return IsFP ? Instruction::FRem : Instruction::SRem;
+ case bitc::BINOP_SHL:
+ return IsFP ? -1 : Instruction::Shl;
+ case bitc::BINOP_LSHR:
+ return IsFP ? -1 : Instruction::LShr;
+ case bitc::BINOP_ASHR:
+ return IsFP ? -1 : Instruction::AShr;
+ case bitc::BINOP_AND:
+ return IsFP ? -1 : Instruction::And;
+ case bitc::BINOP_OR:
+ return IsFP ? -1 : Instruction::Or;
+ case bitc::BINOP_XOR:
+ return IsFP ? -1 : Instruction::Xor;
+ }
+}
+
+static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
+ switch (Val) {
+ default: return AtomicRMWInst::BAD_BINOP;
+ case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
+ case bitc::RMW_ADD: return AtomicRMWInst::Add;
+ case bitc::RMW_SUB: return AtomicRMWInst::Sub;
+ case bitc::RMW_AND: return AtomicRMWInst::And;
+ case bitc::RMW_NAND: return AtomicRMWInst::Nand;
+ case bitc::RMW_OR: return AtomicRMWInst::Or;
+ case bitc::RMW_XOR: return AtomicRMWInst::Xor;
+ case bitc::RMW_MAX: return AtomicRMWInst::Max;
+ case bitc::RMW_MIN: return AtomicRMWInst::Min;
+ case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
+ case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
+ case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
+ case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
+ case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
+ case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
+ case bitc::RMW_UINC_WRAP:
+ return AtomicRMWInst::UIncWrap;
+ case bitc::RMW_UDEC_WRAP:
+ return AtomicRMWInst::UDecWrap;
+ }
+}
+
+static AtomicOrdering getDecodedOrdering(unsigned Val) {
+ switch (Val) {
+ case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
+ case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
+ case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
+ case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
+ case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
+ case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
+ default: // Map unknown orderings to sequentially-consistent.
+ case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
+ }
+}
+
+static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
+ switch (Val) {
+ default: // Map unknown selection kinds to any.
+ case bitc::COMDAT_SELECTION_KIND_ANY:
+ return Comdat::Any;
+ case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
+ return Comdat::ExactMatch;
+ case bitc::COMDAT_SELECTION_KIND_LARGEST:
+ return Comdat::Largest;
+ case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
+ return Comdat::NoDeduplicate;
+ case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
+ return Comdat::SameSize;
+ }
+}
+
+static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
+ FastMathFlags FMF;
+ if (0 != (Val & bitc::UnsafeAlgebra))
+ FMF.setFast();
+ if (0 != (Val & bitc::AllowReassoc))
+ FMF.setAllowReassoc();
+ if (0 != (Val & bitc::NoNaNs))
+ FMF.setNoNaNs();
+ if (0 != (Val & bitc::NoInfs))
+ FMF.setNoInfs();
+ if (0 != (Val & bitc::NoSignedZeros))
+ FMF.setNoSignedZeros();
+ if (0 != (Val & bitc::AllowReciprocal))
+ FMF.setAllowReciprocal();
+ if (0 != (Val & bitc::AllowContract))
+ FMF.setAllowContract(true);
+ if (0 != (Val & bitc::ApproxFunc))
+ FMF.setApproxFunc();
+ return FMF;
+}
+
+static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
+ // A GlobalValue with local linkage cannot have a DLL storage class.
+ if (GV->hasLocalLinkage())
+ return;
+ switch (Val) {
+ case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
+ case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
+ }
+}
+
+Type *BitcodeReader::getTypeByID(unsigned ID) {
+ // The type table size is always specified correctly.
+ if (ID >= TypeList.size())
+ return nullptr;
+
+ if (Type *Ty = TypeList[ID])
+ return Ty;
+
+ // If we have a forward reference, the only possible case is when it is to a
+ // named struct. Just create a placeholder for now.
+ return TypeList[ID] = createIdentifiedStructType(Context);
+}
+
+unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
+ auto It = ContainedTypeIDs.find(ID);
+ if (It == ContainedTypeIDs.end())
+ return InvalidTypeID;
+
+ if (Idx >= It->second.size())
+ return InvalidTypeID;
+
+ return It->second[Idx];
+}
+
+Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
+ if (ID >= TypeList.size())
+ return nullptr;
+
+ Type *Ty = TypeList[ID];
+ if (!Ty->isPointerTy())
+ return nullptr;
+
+ Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0));
+ if (!ElemTy)
+ return nullptr;
+
+ assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) &&
+ "Incorrect element type");
+ return ElemTy;
+}
+
+unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
+ ArrayRef<unsigned> ChildTypeIDs) {
+ unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
+ auto CacheKey = std::make_pair(Ty, ChildTypeID);
+ auto It = VirtualTypeIDs.find(CacheKey);
+ if (It != VirtualTypeIDs.end()) {
+ // The cmpxchg return value is the only place we need more than one
+ // contained type ID, however the second one will always be the same (i1),
+ // so we don't need to include it in the cache key. This asserts that the
+ // contained types are indeed as expected and there are no collisions.
+ assert((ChildTypeIDs.empty() ||
+ ContainedTypeIDs[It->second] == ChildTypeIDs) &&
+ "Incorrect cached contained type IDs");
+ return It->second;
+ }
+
+#ifndef NDEBUG
+ if (!Ty->isOpaquePointerTy()) {
+ assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() &&
+ "Wrong number of contained types");
+ for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) {
+ assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) &&
+ "Incorrect contained type ID");
+ }
+ }
+#endif
+
+ unsigned TypeID = TypeList.size();
+ TypeList.push_back(Ty);
+ if (!ChildTypeIDs.empty())
+ append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
+ VirtualTypeIDs.insert({CacheKey, TypeID});
+ return TypeID;
+}
+
+static bool isConstExprSupported(uint8_t Opcode) {
+ // These are not real constant expressions, always consider them supported.
+ if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
+ return true;
+
+ // If -expand-constant-exprs is set, we want to consider all expressions
+ // as unsupported.
+ if (ExpandConstantExprs)
+ return false;
+
+ if (Instruction::isBinaryOp(Opcode))
+ return ConstantExpr::isSupportedBinOp(Opcode);
+
+ return Opcode != Instruction::FNeg;
+}
+
+Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
+ BasicBlock *InsertBB) {
+ // Quickly handle the case where there is no BitcodeConstant to resolve.
+ if (StartValID < ValueList.size() && ValueList[StartValID] &&
+ !isa<BitcodeConstant>(ValueList[StartValID]))
+ return ValueList[StartValID];
+
+ SmallDenseMap<unsigned, Value *> MaterializedValues;
+ SmallVector<unsigned> Worklist;
+ Worklist.push_back(StartValID);
+ while (!Worklist.empty()) {
+ unsigned ValID = Worklist.back();
+ if (MaterializedValues.count(ValID)) {
+ // Duplicate expression that was already handled.
+ Worklist.pop_back();
+ continue;
+ }
+
+ if (ValID >= ValueList.size() || !ValueList[ValID])
+ return error("Invalid value ID");
+
+ Value *V = ValueList[ValID];
+ auto *BC = dyn_cast<BitcodeConstant>(V);
+ if (!BC) {
+ MaterializedValues.insert({ValID, V});
+ Worklist.pop_back();
+ continue;
+ }
+
+ // Iterate in reverse, so values will get popped from the worklist in
+ // expected order.
+ SmallVector<Value *> Ops;
+ for (unsigned OpID : reverse(BC->getOperandIDs())) {
+ auto It = MaterializedValues.find(OpID);
+ if (It != MaterializedValues.end())
+ Ops.push_back(It->second);
+ else
+ Worklist.push_back(OpID);
+ }
+
+ // Some expressions have not been resolved yet, handle them first and then
+ // revisit this one.
+ if (Ops.size() != BC->getOperandIDs().size())
+ continue;
+ std::reverse(Ops.begin(), Ops.end());
+
+ SmallVector<Constant *> ConstOps;
+ for (Value *Op : Ops)
+ if (auto *C = dyn_cast<Constant>(Op))
+ ConstOps.push_back(C);
+
+ // Materialize as constant expression if possible.
+ if (isConstExprSupported(BC->Opcode) && ConstOps.size() == Ops.size()) {
+ Constant *C;
+ if (Instruction::isCast(BC->Opcode)) {
+ C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
+ if (!C)
+ C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
+ } else if (Instruction::isBinaryOp(BC->Opcode)) {
+ C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
+ } else {
+ switch (BC->Opcode) {
+ case BitcodeConstant::NoCFIOpcode: {
+ auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
+ if (!GV)
+ return error("no_cfi operand must be GlobalValue");
+ C = NoCFIValue::get(GV);
+ break;
+ }
+ case BitcodeConstant::DSOLocalEquivalentOpcode: {
+ auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
+ if (!GV)
+ return error("dso_local operand must be GlobalValue");
+ C = DSOLocalEquivalent::get(GV);
+ break;
+ }
+ case BitcodeConstant::BlockAddressOpcode: {
+ Function *Fn = dyn_cast<Function>(ConstOps[0]);
+ if (!Fn)
+ return error("blockaddress operand must be a function");
+
+ // If the function is already parsed we can insert the block address
+ // right away.
+ BasicBlock *BB;
+ unsigned BBID = BC->Extra;
+ if (!BBID)
+ // Invalid reference to entry block.
+ return error("Invalid ID");
+ if (!Fn->empty()) {
+ Function::iterator BBI = Fn->begin(), BBE = Fn->end();
+ for (size_t I = 0, E = BBID; I != E; ++I) {
+ if (BBI == BBE)
+ return error("Invalid ID");
+ ++BBI;
+ }
+ BB = &*BBI;
+ } else {
+ // Otherwise insert a placeholder and remember it so it can be
+ // inserted when the function is parsed.
+ auto &FwdBBs = BasicBlockFwdRefs[Fn];
+ if (FwdBBs.empty())
+ BasicBlockFwdRefQueue.push_back(Fn);
+ if (FwdBBs.size() < BBID + 1)
+ FwdBBs.resize(BBID + 1);
+ if (!FwdBBs[BBID])
+ FwdBBs[BBID] = BasicBlock::Create(Context);
+ BB = FwdBBs[BBID];
+ }
+ C = BlockAddress::get(Fn, BB);
+ break;
+ }
+ case BitcodeConstant::ConstantStructOpcode:
+ C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
+ break;
+ case BitcodeConstant::ConstantArrayOpcode:
+ C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
+ break;
+ case BitcodeConstant::ConstantVectorOpcode:
+ C = ConstantVector::get(ConstOps);
+ break;
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
+ break;
+ case Instruction::GetElementPtr:
+ C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0],
+ ArrayRef(ConstOps).drop_front(),
+ BC->Flags, BC->getInRangeIndex());
+ break;
+ case Instruction::Select:
+ C = ConstantExpr::getSelect(ConstOps[0], ConstOps[1], ConstOps[2]);
+ break;
+ case Instruction::ExtractElement:
+ C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
+ break;
+ case Instruction::InsertElement:
+ C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
+ ConstOps[2]);
+ break;
+ case Instruction::ShuffleVector: {
+ SmallVector<int, 16> Mask;
+ ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
+ C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
+ break;
+ }
+ default:
+ llvm_unreachable("Unhandled bitcode constant");
+ }
+ }
+
+ // Cache resolved constant.
+ ValueList.replaceValueWithoutRAUW(ValID, C);
+ MaterializedValues.insert({ValID, C});
+ Worklist.pop_back();
+ continue;
+ }
+
+ if (!InsertBB)
+ return error(Twine("Value referenced by initializer is an unsupported "
+ "constant expression of type ") +
+ BC->getOpcodeName());
+
+ // Materialize as instructions if necessary.
+ Instruction *I;
+ if (Instruction::isCast(BC->Opcode)) {
+ I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
+ BC->getType(), "constexpr", InsertBB);
+ } else if (Instruction::isUnaryOp(BC->Opcode)) {
+ I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
+ "constexpr", InsertBB);
+ } else if (Instruction::isBinaryOp(BC->Opcode)) {
+ I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
+ Ops[1], "constexpr", InsertBB);
+ if (isa<OverflowingBinaryOperator>(I)) {
+ if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
+ I->setHasNoSignedWrap();
+ if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
+ I->setHasNoUnsignedWrap();
+ }
+ if (isa<PossiblyExactOperator>(I) &&
+ (BC->Flags & PossiblyExactOperator::IsExact))
+ I->setIsExact();
+ } else {
+ switch (BC->Opcode) {
+ case BitcodeConstant::ConstantVectorOpcode: {
+ Type *IdxTy = Type::getInt32Ty(BC->getContext());
+ Value *V = PoisonValue::get(BC->getType());
+ for (auto Pair : enumerate(Ops)) {
+ Value *Idx = ConstantInt::get(IdxTy, Pair.index());
+ V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
+ InsertBB);
+ }
+ I = cast<Instruction>(V);
+ break;
+ }
+ case BitcodeConstant::ConstantStructOpcode:
+ case BitcodeConstant::ConstantArrayOpcode: {
+ Value *V = PoisonValue::get(BC->getType());
+ for (auto Pair : enumerate(Ops))
+ V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
+ "constexpr.ins", InsertBB);
+ I = cast<Instruction>(V);
+ break;
+ }
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
+ (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
+ "constexpr", InsertBB);
+ break;
+ case Instruction::GetElementPtr:
+ I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
+ ArrayRef(Ops).drop_front(), "constexpr",
+ InsertBB);
+ if (BC->Flags)
+ cast<GetElementPtrInst>(I)->setIsInBounds();
+ break;
+ case Instruction::Select:
+ I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
+ break;
+ case Instruction::ExtractElement:
+ I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
+ break;
+ case Instruction::InsertElement:
+ I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
+ InsertBB);
+ break;
+ case Instruction::ShuffleVector:
+ I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
+ InsertBB);
+ break;
+ default:
+ llvm_unreachable("Unhandled bitcode constant");
+ }
+ }
+
+ MaterializedValues.insert({ValID, I});
+ Worklist.pop_back();
+ }
+
+ return MaterializedValues[StartValID];
+}
+
+Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
+ Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
+ if (!MaybeV)
+ return MaybeV.takeError();
+
+ // Result must be Constant if InsertBB is nullptr.
+ return cast<Constant>(MaybeV.get());
+}
+
+StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
+ StringRef Name) {
+ auto *Ret = StructType::create(Context, Name);
+ IdentifiedStructTypes.push_back(Ret);
+ return Ret;
+}
+
+StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
+ auto *Ret = StructType::create(Context);
+ IdentifiedStructTypes.push_back(Ret);
+ return Ret;
+}
+
+//===----------------------------------------------------------------------===//
+// Functions for parsing blocks from the bitcode file
+//===----------------------------------------------------------------------===//
+
+static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
+ switch (Val) {
+ case Attribute::EndAttrKinds:
+ case Attribute::EmptyKey:
+ case Attribute::TombstoneKey:
+ llvm_unreachable("Synthetic enumerators which should never get here");
+
+ case Attribute::None: return 0;
+ case Attribute::ZExt: return 1 << 0;
+ case Attribute::SExt: return 1 << 1;
+ case Attribute::NoReturn: return 1 << 2;
+ case Attribute::InReg: return 1 << 3;
+ case Attribute::StructRet: return 1 << 4;
+ case Attribute::NoUnwind: return 1 << 5;
+ case Attribute::NoAlias: return 1 << 6;
+ case Attribute::ByVal: return 1 << 7;
+ case Attribute::Nest: return 1 << 8;
+ case Attribute::ReadNone: return 1 << 9;
+ case Attribute::ReadOnly: return 1 << 10;
+ case Attribute::NoInline: return 1 << 11;
+ case Attribute::AlwaysInline: return 1 << 12;
+ case Attribute::OptimizeForSize: return 1 << 13;
+ case Attribute::StackProtect: return 1 << 14;
+ case Attribute::StackProtectReq: return 1 << 15;
+ case Attribute::Alignment: return 31 << 16;
+ case Attribute::NoCapture: return 1 << 21;
+ case Attribute::NoRedZone: return 1 << 22;
+ case Attribute::NoImplicitFloat: return 1 << 23;
+ case Attribute::Naked: return 1 << 24;
+ case Attribute::InlineHint: return 1 << 25;
+ case Attribute::StackAlignment: return 7 << 26;
+ case Attribute::ReturnsTwice: return 1 << 29;
+ case Attribute::UWTable: return 1 << 30;
+ case Attribute::NonLazyBind: return 1U << 31;
+ case Attribute::SanitizeAddress: return 1ULL << 32;
+ case Attribute::MinSize: return 1ULL << 33;
+ case Attribute::NoDuplicate: return 1ULL << 34;
+ case Attribute::StackProtectStrong: return 1ULL << 35;
+ case Attribute::SanitizeThread: return 1ULL << 36;
+ case Attribute::SanitizeMemory: return 1ULL << 37;
+ case Attribute::NoBuiltin: return 1ULL << 38;
+ case Attribute::Returned: return 1ULL << 39;
+ case Attribute::Cold: return 1ULL << 40;
+ case Attribute::Builtin: return 1ULL << 41;
+ case Attribute::OptimizeNone: return 1ULL << 42;
+ case Attribute::InAlloca: return 1ULL << 43;
+ case Attribute::NonNull: return 1ULL << 44;
+ case Attribute::JumpTable: return 1ULL << 45;
+ case Attribute::Convergent: return 1ULL << 46;
+ case Attribute::SafeStack: return 1ULL << 47;
+ case Attribute::NoRecurse: return 1ULL << 48;
+ // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
+ // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
+ case Attribute::SwiftSelf: return 1ULL << 51;
+ case Attribute::SwiftError: return 1ULL << 52;
+ case Attribute::WriteOnly: return 1ULL << 53;
+ case Attribute::Speculatable: return 1ULL << 54;
+ case Attribute::StrictFP: return 1ULL << 55;
+ case Attribute::SanitizeHWAddress: return 1ULL << 56;
+ case Attribute::NoCfCheck: return 1ULL << 57;
+ case Attribute::OptForFuzzing: return 1ULL << 58;
+ case Attribute::ShadowCallStack: return 1ULL << 59;
+ case Attribute::SpeculativeLoadHardening:
+ return 1ULL << 60;
+ case Attribute::ImmArg:
+ return 1ULL << 61;
+ case Attribute::WillReturn:
+ return 1ULL << 62;
+ case Attribute::NoFree:
+ return 1ULL << 63;
+ default:
+ // Other attributes are not supported in the raw format,
+ // as we ran out of space.
+ return 0;
+ }
+ llvm_unreachable("Unsupported attribute type");
+}
+
+static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
+ if (!Val) return;
+
+ for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
+ I = Attribute::AttrKind(I + 1)) {
+ if (uint64_t A = (Val & getRawAttributeMask(I))) {
+ if (I == Attribute::Alignment)
+ B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
+ else if (I == Attribute::StackAlignment)
+ B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
+ else if (Attribute::isTypeAttrKind(I))
+ B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
+ else
+ B.addAttribute(I);
+ }
+ }
+}
+
+/// This fills an AttrBuilder object with the LLVM attributes that have
+/// been decoded from the given integer. This function must stay in sync with
+/// 'encodeLLVMAttributesForBitcode'.
+static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
+ uint64_t EncodedAttrs,
+ uint64_t AttrIdx) {
+ // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
+ // the bits above 31 down by 11 bits.
+ unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
+ assert((!Alignment || isPowerOf2_32(Alignment)) &&
+ "Alignment must be a power of two.");
+
+ if (Alignment)
+ B.addAlignmentAttr(Alignment);
+
+ uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
+ (EncodedAttrs & 0xffff);
+
+ if (AttrIdx == AttributeList::FunctionIndex) {
+ // Upgrade old memory attributes.
+ MemoryEffects ME = MemoryEffects::unknown();
+ if (Attrs & (1ULL << 9)) {
+ // ReadNone
+ Attrs &= ~(1ULL << 9);
+ ME &= MemoryEffects::none();
+ }
+ if (Attrs & (1ULL << 10)) {
+ // ReadOnly
+ Attrs &= ~(1ULL << 10);
+ ME &= MemoryEffects::readOnly();
+ }
+ if (Attrs & (1ULL << 49)) {
+ // InaccessibleMemOnly
+ Attrs &= ~(1ULL << 49);
+ ME &= MemoryEffects::inaccessibleMemOnly();
+ }
+ if (Attrs & (1ULL << 50)) {
+ // InaccessibleMemOrArgMemOnly
+ Attrs &= ~(1ULL << 50);
+ ME &= MemoryEffects::inaccessibleOrArgMemOnly();
+ }
+ if (Attrs & (1ULL << 53)) {
+ // WriteOnly
+ Attrs &= ~(1ULL << 53);
+ ME &= MemoryEffects::writeOnly();
+ }
+ if (ME != MemoryEffects::unknown())
+ B.addMemoryAttr(ME);
+ }
+
+ addRawAttributeValue(B, Attrs);
+}
+
+Error BitcodeReader::parseAttributeBlock() {
+ if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
+ return Err;
+
+ if (!MAttributes.empty())
+ return error("Invalid multiple blocks");
+
+ SmallVector<uint64_t, 64> Record;
+
+ SmallVector<AttributeList, 8> Attrs;
+
+ // Read all the records.
+ while (true) {
+ Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::SubBlock: // Handled for us already.
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ return Error::success();
+ case BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Read a record.
+ Record.clear();
+ Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeRecord)
+ return MaybeRecord.takeError();
+ switch (MaybeRecord.get()) {
+ default: // Default behavior: ignore.
+ break;
+ case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
+ // Deprecated, but still needed to read old bitcode files.
+ if (Record.size() & 1)
+ return error("Invalid parameter attribute record");
+
+ for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
+ AttrBuilder B(Context);
+ decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
+ Attrs.push_back(AttributeList::get(Context, Record[i], B));
+ }
+
+ MAttributes.push_back(AttributeList::get(Context, Attrs));
+ Attrs.clear();
+ break;
+ case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
+ for (unsigned i = 0, e = Record.size(); i != e; ++i)
+ Attrs.push_back(MAttributeGroups[Record[i]]);
+
+ MAttributes.push_back(AttributeList::get(Context, Attrs));
+ Attrs.clear();
+ break;
+ }
+ }
+}
+
+// Returns Attribute::None on unrecognized codes.
+static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
+ switch (Code) {
+ default:
+ return Attribute::None;
+ case bitc::ATTR_KIND_ALIGNMENT:
+ return Attribute::Alignment;
+ case bitc::ATTR_KIND_ALWAYS_INLINE:
+ return Attribute::AlwaysInline;
+ case bitc::ATTR_KIND_BUILTIN:
+ return Attribute::Builtin;
+ case bitc::ATTR_KIND_BY_VAL:
+ return Attribute::ByVal;
+ case bitc::ATTR_KIND_IN_ALLOCA:
+ return Attribute::InAlloca;
+ case bitc::ATTR_KIND_COLD:
+ return Attribute::Cold;
+ case bitc::ATTR_KIND_CONVERGENT:
+ return Attribute::Convergent;
+ case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
+ return Attribute::DisableSanitizerInstrumentation;
+ case bitc::ATTR_KIND_ELEMENTTYPE:
+ return Attribute::ElementType;
+ case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
+ return Attribute::FnRetThunkExtern;
+ case bitc::ATTR_KIND_INLINE_HINT:
+ return Attribute::InlineHint;
+ case bitc::ATTR_KIND_IN_REG:
+ return Attribute::InReg;
+ case bitc::ATTR_KIND_JUMP_TABLE:
+ return Attribute::JumpTable;
+ case bitc::ATTR_KIND_MEMORY:
+ return Attribute::Memory;
+ case bitc::ATTR_KIND_MIN_SIZE:
+ return Attribute::MinSize;
+ case bitc::ATTR_KIND_NAKED:
+ return Attribute::Naked;
+ case bitc::ATTR_KIND_NEST:
+ return Attribute::Nest;
+ case bitc::ATTR_KIND_NO_ALIAS:
+ return Attribute::NoAlias;
+ case bitc::ATTR_KIND_NO_BUILTIN:
+ return Attribute::NoBuiltin;
+ case bitc::ATTR_KIND_NO_CALLBACK:
+ return Attribute::NoCallback;
+ case bitc::ATTR_KIND_NO_CAPTURE:
+ return Attribute::NoCapture;
+ case bitc::ATTR_KIND_NO_DUPLICATE:
+ return Attribute::NoDuplicate;
+ case bitc::ATTR_KIND_NOFREE:
+ return Attribute::NoFree;
+ case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
+ return Attribute::NoImplicitFloat;
+ case bitc::ATTR_KIND_NO_INLINE:
+ return Attribute::NoInline;
+ case bitc::ATTR_KIND_NO_RECURSE:
+ return Attribute::NoRecurse;
+ case bitc::ATTR_KIND_NO_MERGE:
+ return Attribute::NoMerge;
+ case bitc::ATTR_KIND_NON_LAZY_BIND:
+ return Attribute::NonLazyBind;
+ case bitc::ATTR_KIND_NON_NULL:
+ return Attribute::NonNull;
+ case bitc::ATTR_KIND_DEREFERENCEABLE:
+ return Attribute::Dereferenceable;
+ case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
+ return Attribute::DereferenceableOrNull;
+ case bitc::ATTR_KIND_ALLOC_ALIGN:
+ return Attribute::AllocAlign;
+ case bitc::ATTR_KIND_ALLOC_KIND:
+ return Attribute::AllocKind;
+ case bitc::ATTR_KIND_ALLOC_SIZE:
+ return Attribute::AllocSize;
+ case bitc::ATTR_KIND_ALLOCATED_POINTER:
+ return Attribute::AllocatedPointer;
+ case bitc::ATTR_KIND_NO_RED_ZONE:
+ return Attribute::NoRedZone;
+ case bitc::ATTR_KIND_NO_RETURN:
+ return Attribute::NoReturn;
+ case bitc::ATTR_KIND_NOSYNC:
+ return Attribute::NoSync;
+ case bitc::ATTR_KIND_NOCF_CHECK:
+ return Attribute::NoCfCheck;
+ case bitc::ATTR_KIND_NO_PROFILE:
+ return Attribute::NoProfile;
+ case bitc::ATTR_KIND_SKIP_PROFILE:
+ return Attribute::SkipProfile;
+ case bitc::ATTR_KIND_NO_UNWIND:
+ return Attribute::NoUnwind;
+ case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
+ return Attribute::NoSanitizeBounds;
+ case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
+ return Attribute::NoSanitizeCoverage;
+ case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
+ return Attribute::NullPointerIsValid;
+ case bitc::ATTR_KIND_OPT_FOR_FUZZING:
+ return Attribute::OptForFuzzing;
+ case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
+ return Attribute::OptimizeForSize;
+ case bitc::ATTR_KIND_OPTIMIZE_NONE:
+ return Attribute::OptimizeNone;
+ case bitc::ATTR_KIND_READ_NONE:
+ return Attribute::ReadNone;
+ case bitc::ATTR_KIND_READ_ONLY:
+ return Attribute::ReadOnly;
+ case bitc::ATTR_KIND_RETURNED:
+ return Attribute::Returned;
+ case bitc::ATTR_KIND_RETURNS_TWICE:
+ return Attribute::ReturnsTwice;
+ case bitc::ATTR_KIND_S_EXT:
+ return Attribute::SExt;
+ case bitc::ATTR_KIND_SPECULATABLE:
+ return Attribute::Speculatable;
+ case bitc::ATTR_KIND_STACK_ALIGNMENT:
+ return Attribute::StackAlignment;
+ case bitc::ATTR_KIND_STACK_PROTECT:
+ return Attribute::StackProtect;
+ case bitc::ATTR_KIND_STACK_PROTECT_REQ:
+ return Attribute::StackProtectReq;
+ case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
+ return Attribute::StackProtectStrong;
+ case bitc::ATTR_KIND_SAFESTACK:
+ return Attribute::SafeStack;
+ case bitc::ATTR_KIND_SHADOWCALLSTACK:
+ return Attribute::ShadowCallStack;
+ case bitc::ATTR_KIND_STRICT_FP:
+ return Attribute::StrictFP;
+ case bitc::ATTR_KIND_STRUCT_RET:
+ return Attribute::StructRet;
+ case bitc::ATTR_KIND_SANITIZE_ADDRESS:
+ return Attribute::SanitizeAddress;
+ case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
+ return Attribute::SanitizeHWAddress;
+ case bitc::ATTR_KIND_SANITIZE_THREAD:
+ return Attribute::SanitizeThread;
+ case bitc::ATTR_KIND_SANITIZE_MEMORY:
+ return Attribute::SanitizeMemory;
+ case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
+ return Attribute::SpeculativeLoadHardening;
+ case bitc::ATTR_KIND_SWIFT_ERROR:
+ return Attribute::SwiftError;
+ case bitc::ATTR_KIND_SWIFT_SELF:
+ return Attribute::SwiftSelf;
+ case bitc::ATTR_KIND_SWIFT_ASYNC:
+ return Attribute::SwiftAsync;
+ case bitc::ATTR_KIND_UW_TABLE:
+ return Attribute::UWTable;
+ case bitc::ATTR_KIND_VSCALE_RANGE:
+ return Attribute::VScaleRange;
+ case bitc::ATTR_KIND_WILLRETURN:
+ return Attribute::WillReturn;
+ case bitc::ATTR_KIND_WRITEONLY:
+ return Attribute::WriteOnly;
+ case bitc::ATTR_KIND_Z_EXT:
+ return Attribute::ZExt;
+ case bitc::ATTR_KIND_IMMARG:
+ return Attribute::ImmArg;
+ case bitc::ATTR_KIND_SANITIZE_MEMTAG:
+ return Attribute::SanitizeMemTag;
+ case bitc::ATTR_KIND_PREALLOCATED:
+ return Attribute::Preallocated;
+ case bitc::ATTR_KIND_NOUNDEF:
+ return Attribute::NoUndef;
+ case bitc::ATTR_KIND_BYREF:
+ return Attribute::ByRef;
+ case bitc::ATTR_KIND_MUSTPROGRESS:
+ return Attribute::MustProgress;
+ case bitc::ATTR_KIND_HOT:
+ return Attribute::Hot;
+ case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
+ return Attribute::PresplitCoroutine;
+ }
+}
+
+Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
+ MaybeAlign &Alignment) {
+ // Note: Alignment in bitcode files is incremented by 1, so that zero
+ // can be used for default alignment.
+ if (Exponent > Value::MaxAlignmentExponent + 1)
+ return error("Invalid alignment value");
+ Alignment = decodeMaybeAlign(Exponent);
+ return Error::success();
+}
+
+Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
+ *Kind = getAttrFromCode(Code);
+ if (*Kind == Attribute::None)
+ return error("Unknown attribute kind (" + Twine(Code) + ")");
+ return Error::success();
+}
+
+static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
+ switch (EncodedKind) {
+ case bitc::ATTR_KIND_READ_NONE:
+ ME &= MemoryEffects::none();
+ return true;
+ case bitc::ATTR_KIND_READ_ONLY:
+ ME &= MemoryEffects::readOnly();
+ return true;
+ case bitc::ATTR_KIND_WRITEONLY:
+ ME &= MemoryEffects::writeOnly();
+ return true;
+ case bitc::ATTR_KIND_ARGMEMONLY:
+ ME &= MemoryEffects::argMemOnly();
+ return true;
+ case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
+ ME &= MemoryEffects::inaccessibleMemOnly();
+ return true;
+ case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
+ ME &= MemoryEffects::inaccessibleOrArgMemOnly();
+ return true;
+ default:
+ return false;
+ }
+}
+
+Error BitcodeReader::parseAttributeGroupBlock() {
+ if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
+ return Err;
+
+ if (!MAttributeGroups.empty())
+ return error("Invalid multiple blocks");
+
+ SmallVector<uint64_t, 64> Record;
+
+ // Read all the records.
+ while (true) {
+ Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::SubBlock: // Handled for us already.
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ return Error::success();
+ case BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Read a record.
+ Record.clear();
+ Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeRecord)
+ return MaybeRecord.takeError();
+ switch (MaybeRecord.get()) {
+ default: // Default behavior: ignore.
+ break;
+ case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
+ if (Record.size() < 3)
+ return error("Invalid grp record");
+
+ uint64_t GrpID = Record[0];
+ uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
+
+ AttrBuilder B(Context);
+ MemoryEffects ME = MemoryEffects::unknown();
+ for (unsigned i = 2, e = Record.size(); i != e; ++i) {
+ if (Record[i] == 0) { // Enum attribute
+ Attribute::AttrKind Kind;
+ uint64_t EncodedKind = Record[++i];
+ if (Idx == AttributeList::FunctionIndex &&
+ upgradeOldMemoryAttribute(ME, EncodedKind))
+ continue;
+
+ if (Error Err = parseAttrKind(EncodedKind, &Kind))
+ return Err;
+
+ // Upgrade old-style byval attribute to one with a type, even if it's
+ // nullptr. We will have to insert the real type when we associate
+ // this AttributeList with a function.
+ if (Kind == Attribute::ByVal)
+ B.addByValAttr(nullptr);
+ else if (Kind == Attribute::StructRet)
+ B.addStructRetAttr(nullptr);
+ else if (Kind == Attribute::InAlloca)
+ B.addInAllocaAttr(nullptr);
+ else if (Kind == Attribute::UWTable)
+ B.addUWTableAttr(UWTableKind::Default);
+ else if (Attribute::isEnumAttrKind(Kind))
+ B.addAttribute(Kind);
+ else
+ return error("Not an enum attribute");
+ } else if (Record[i] == 1) { // Integer attribute
+ Attribute::AttrKind Kind;
+ if (Error Err = parseAttrKind(Record[++i], &Kind))
+ return Err;
+ if (!Attribute::isIntAttrKind(Kind))
+ return error("Not an int attribute");
+ if (Kind == Attribute::Alignment)
+ B.addAlignmentAttr(Record[++i]);
+ else if (Kind == Attribute::StackAlignment)
+ B.addStackAlignmentAttr(Record[++i]);
+ else if (Kind == Attribute::Dereferenceable)
+ B.addDereferenceableAttr(Record[++i]);
+ else if (Kind == Attribute::DereferenceableOrNull)
+ B.addDereferenceableOrNullAttr(Record[++i]);
+ else if (Kind == Attribute::AllocSize)
+ B.addAllocSizeAttrFromRawRepr(Record[++i]);
+ else if (Kind == Attribute::VScaleRange)
+ B.addVScaleRangeAttrFromRawRepr(Record[++i]);
+ else if (Kind == Attribute::UWTable)
+ B.addUWTableAttr(UWTableKind(Record[++i]));
+ else if (Kind == Attribute::AllocKind)
+ B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
+ else if (Kind == Attribute::Memory)
+ B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
+ } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
+ bool HasValue = (Record[i++] == 4);
+ SmallString<64> KindStr;
+ SmallString<64> ValStr;
+
+ while (Record[i] != 0 && i != e)
+ KindStr += Record[i++];
+ assert(Record[i] == 0 && "Kind string not null terminated");
+
+ if (HasValue) {
+ // Has a value associated with it.
+ ++i; // Skip the '0' that terminates the "kind" string.
+ while (Record[i] != 0 && i != e)
+ ValStr += Record[i++];
+ assert(Record[i] == 0 && "Value string not null terminated");
+ }
+
+ B.addAttribute(KindStr.str(), ValStr.str());
+ } else if (Record[i] == 5 || Record[i] == 6) {
+ bool HasType = Record[i] == 6;
+ Attribute::AttrKind Kind;
+ if (Error Err = parseAttrKind(Record[++i], &Kind))
+ return Err;
+ if (!Attribute::isTypeAttrKind(Kind))
+ return error("Not a type attribute");
+
+ B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
+ } else {
+ return error("Invalid attribute group entry");
+ }
+ }
+
+ if (ME != MemoryEffects::unknown())
+ B.addMemoryAttr(ME);
+
+ UpgradeAttributes(B);
+ MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
+ break;
+ }
+ }
+ }
+}
+
+Error BitcodeReader::parseTypeTable() {
+ if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
+ return Err;
+
+ return parseTypeTableBody();
+}
+
+Error BitcodeReader::parseTypeTableBody() {
+ if (!TypeList.empty())
+ return error("Invalid multiple blocks");
+
+ SmallVector<uint64_t, 64> Record;
+ unsigned NumRecords = 0;
+
+ SmallString<64> TypeName;
+
+ // Read all the records for this type table.
+ while (true) {
+ Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::SubBlock: // Handled for us already.
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ if (NumRecords != TypeList.size())
+ return error("Malformed block");
+ return Error::success();
+ case BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Read a record.
+ Record.clear();
+ Type *ResultTy = nullptr;
+ SmallVector<unsigned> ContainedIDs;
+ Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeRecord)
+ return MaybeRecord.takeError();
+ switch (MaybeRecord.get()) {
+ default:
+ return error("Invalid value");
+ case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
+ // TYPE_CODE_NUMENTRY contains a count of the number of types in the
+ // type list. This allows us to reserve space.
+ if (Record.empty())
+ return error("Invalid numentry record");
+ TypeList.resize(Record[0]);
+ continue;
+ case bitc::TYPE_CODE_VOID: // VOID
+ ResultTy = Type::getVoidTy(Context);
+ break;
+ case bitc::TYPE_CODE_HALF: // HALF
+ ResultTy = Type::getHalfTy(Context);
+ break;
+ case bitc::TYPE_CODE_BFLOAT: // BFLOAT
+ ResultTy = Type::getBFloatTy(Context);
+ break;
+ case bitc::TYPE_CODE_FLOAT: // FLOAT
+ ResultTy = Type::getFloatTy(Context);
+ break;
+ case bitc::TYPE_CODE_DOUBLE: // DOUBLE
+ ResultTy = Type::getDoubleTy(Context);
+ break;
+ case bitc::TYPE_CODE_X86_FP80: // X86_FP80
+ ResultTy = Type::getX86_FP80Ty(Context);
+ break;
+ case bitc::TYPE_CODE_FP128: // FP128
+ ResultTy = Type::getFP128Ty(Context);
+ break;
+ case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
+ ResultTy = Type::getPPC_FP128Ty(Context);
+ break;
+ case bitc::TYPE_CODE_LABEL: // LABEL
+ ResultTy = Type::getLabelTy(Context);
+ break;
+ case bitc::TYPE_CODE_METADATA: // METADATA
+ ResultTy = Type::getMetadataTy(Context);
+ break;
+ case bitc::TYPE_CODE_X86_MMX: // X86_MMX
+ ResultTy = Type::getX86_MMXTy(Context);
+ break;
+ case bitc::TYPE_CODE_X86_AMX: // X86_AMX
+ ResultTy = Type::getX86_AMXTy(Context);
+ break;
+ case bitc::TYPE_CODE_TOKEN: // TOKEN
+ ResultTy = Type::getTokenTy(Context);
+ break;
+ case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
+ if (Record.empty())
+ return error("Invalid integer record");
+
+ uint64_t NumBits = Record[0];
+ if (NumBits < IntegerType::MIN_INT_BITS ||
+ NumBits > IntegerType::MAX_INT_BITS)
+ return error("Bitwidth for integer type out of range");
+ ResultTy = IntegerType::get(Context, NumBits);
+ break;
+ }
+ case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
+ // [pointee type, address space]
+ if (Record.empty())
+ return error("Invalid pointer record");
+ unsigned AddressSpace = 0;
+ if (Record.size() == 2)
+ AddressSpace = Record[1];
+ ResultTy = getTypeByID(Record[0]);
+ if (!ResultTy ||
+ !PointerType::isValidElementType(ResultTy))
+ return error("Invalid type");
+ ContainedIDs.push_back(Record[0]);
+ ResultTy = PointerType::get(ResultTy, AddressSpace);
+ break;
+ }
+ case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
+ if (Record.size() != 1)
+ return error("Invalid opaque pointer record");
+ if (Context.supportsTypedPointers())
+ return error(
+ "Opaque pointers are only supported in -opaque-pointers mode");
+ unsigned AddressSpace = Record[0];
+ ResultTy = PointerType::get(Context, AddressSpace);
+ break;
+ }
+ case bitc::TYPE_CODE_FUNCTION_OLD: {
+ // Deprecated, but still needed to read old bitcode files.
+ // FUNCTION: [vararg, attrid, retty, paramty x N]
+ if (Record.size() < 3)
+ return error("Invalid function record");
+ SmallVector<Type*, 8> ArgTys;
+ for (unsigned i = 3, e = Record.size(); i != e; ++i) {
+ if (Type *T = getTypeByID(Record[i]))
+ ArgTys.push_back(T);
+ else
+ break;
+ }
+
+ ResultTy = getTypeByID(Record[2]);
+ if (!ResultTy || ArgTys.size() < Record.size()-3)
+ return error("Invalid type");
+
+ ContainedIDs.append(Record.begin() + 2, Record.end());
+ ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
+ break;
+ }
+ case bitc::TYPE_CODE_FUNCTION: {
+ // FUNCTION: [vararg, retty, paramty x N]
+ if (Record.size() < 2)
+ return error("Invalid function record");
+ SmallVector<Type*, 8> ArgTys;
+ for (unsigned i = 2, e = Record.size(); i != e; ++i) {
+ if (Type *T = getTypeByID(Record[i])) {
+ if (!FunctionType::isValidArgumentType(T))
+ return error("Invalid function argument type");
+ ArgTys.push_back(T);
+ }
+ else
+ break;
+ }
+
+ ResultTy = getTypeByID(Record[1]);
+ if (!ResultTy || ArgTys.size() < Record.size()-2)
+ return error("Invalid type");
+
+ ContainedIDs.append(Record.begin() + 1, Record.end());
+ ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
+ break;
+ }
+ case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
+ if (Record.empty())
+ return error("Invalid anon struct record");
+ SmallVector<Type*, 8> EltTys;
+ for (unsigned i = 1, e = Record.size(); i != e; ++i) {
+ if (Type *T = getTypeByID(Record[i]))
+ EltTys.push_back(T);
+ else
+ break;
+ }
+ if (EltTys.size() != Record.size()-1)
+ return error("Invalid type");
+ ContainedIDs.append(Record.begin() + 1, Record.end());
+ ResultTy = StructType::get(Context, EltTys, Record[0]);
+ break;
+ }
+ case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
+ if (convertToString(Record, 0, TypeName))
+ return error("Invalid struct name record");
+ continue;
+
+ case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
+ if (Record.empty())
+ return error("Invalid named struct record");
+
+ if (NumRecords >= TypeList.size())
+ return error("Invalid TYPE table");
+
+ // Check to see if this was forward referenced, if so fill in the temp.
+ StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
+ if (Res) {
+ Res->setName(TypeName);
+ TypeList[NumRecords] = nullptr;
+ } else // Otherwise, create a new struct.
+ Res = createIdentifiedStructType(Context, TypeName);
+ TypeName.clear();
+
+ SmallVector<Type*, 8> EltTys;
+ for (unsigned i = 1, e = Record.size(); i != e; ++i) {
+ if (Type *T = getTypeByID(Record[i]))
+ EltTys.push_back(T);
+ else
+ break;
+ }
+ if (EltTys.size() != Record.size()-1)
+ return error("Invalid named struct record");
+ Res->setBody(EltTys, Record[0]);
+ ContainedIDs.append(Record.begin() + 1, Record.end());
+ ResultTy = Res;
+ break;
+ }
+ case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
+ if (Record.size() != 1)
+ return error("Invalid opaque type record");
+
+ if (NumRecords >= TypeList.size())
+ return error("Invalid TYPE table");
+
+ // Check to see if this was forward referenced, if so fill in the temp.
+ StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
+ if (Res) {
+ Res->setName(TypeName);
+ TypeList[NumRecords] = nullptr;
+ } else // Otherwise, create a new struct with no body.
+ Res = createIdentifiedStructType(Context, TypeName);
+ TypeName.clear();
+ ResultTy = Res;
+ break;
+ }
+ case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
+ if (Record.size() < 1)
+ return error("Invalid target extension type record");
+
+ if (NumRecords >= TypeList.size())
+ return error("Invalid TYPE table");
+
+ if (Record[0] >= Record.size())
+ return error("Too many type parameters");
+
+ unsigned NumTys = Record[0];
+ SmallVector<Type *, 4> TypeParams;
+ SmallVector<unsigned, 8> IntParams;
+ for (unsigned i = 0; i < NumTys; i++) {
+ if (Type *T = getTypeByID(Record[i + 1]))
+ TypeParams.push_back(T);
+ else
+ return error("Invalid type");
+ }
+
+ for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
+ if (Record[i] > UINT_MAX)
+ return error("Integer parameter too large");
+ IntParams.push_back(Record[i]);
+ }
+ ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
+ TypeName.clear();
+ break;
+ }
+ case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
+ if (Record.size() < 2)
+ return error("Invalid array type record");
+ ResultTy = getTypeByID(Record[1]);
+ if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
+ return error("Invalid type");
+ ContainedIDs.push_back(Record[1]);
+ ResultTy = ArrayType::get(ResultTy, Record[0]);
+ break;
+ case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or
+ // [numelts, eltty, scalable]
+ if (Record.size() < 2)
+ return error("Invalid vector type record");
+ if (Record[0] == 0)
+ return error("Invalid vector length");
+ ResultTy = getTypeByID(Record[1]);
+ if (!ResultTy || !VectorType::isValidElementType(ResultTy))
+ return error("Invalid type");
+ bool Scalable = Record.size() > 2 ? Record[2] : false;
+ ContainedIDs.push_back(Record[1]);
+ ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
+ break;
+ }
+
+ if (NumRecords >= TypeList.size())
+ return error("Invalid TYPE table");
+ if (TypeList[NumRecords])
+ return error(
+ "Invalid TYPE table: Only named structs can be forward referenced");
+ assert(ResultTy && "Didn't read a type?");
+ TypeList[NumRecords] = ResultTy;
+ if (!ContainedIDs.empty())
+ ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
+ ++NumRecords;
+ }
+}
+
+Error BitcodeReader::parseOperandBundleTags() {
+ if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
+ return Err;
+
+ if (!BundleTags.empty())
+ return error("Invalid multiple blocks");
+
+ SmallVector<uint64_t, 64> Record;
+
+ while (true) {
+ Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::SubBlock: // Handled for us already.
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ return Error::success();
+ case BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Tags are implicitly mapped to integers by their order.
+
+ Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeRecord)
+ return MaybeRecord.takeError();
+ if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
+ return error("Invalid operand bundle record");
+
+ // OPERAND_BUNDLE_TAG: [strchr x N]
+ BundleTags.emplace_back();
+ if (convertToString(Record, 0, BundleTags.back()))
+ return error("Invalid operand bundle record");
+ Record.clear();
+ }
+}
+
+Error BitcodeReader::parseSyncScopeNames() {
+ if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
+ return Err;
+
+ if (!SSIDs.empty())
+ return error("Invalid multiple synchronization scope names blocks");
+
+ SmallVector<uint64_t, 64> Record;
+ while (true) {
+ Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::SubBlock: // Handled for us already.
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ if (SSIDs.empty())
+ return error("Invalid empty synchronization scope names block");
+ return Error::success();
+ case BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Synchronization scope names are implicitly mapped to synchronization
+ // scope IDs by their order.
+
+ Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeRecord)
+ return MaybeRecord.takeError();
+ if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
+ return error("Invalid sync scope record");
+
+ SmallString<16> SSN;
+ if (convertToString(Record, 0, SSN))
+ return error("Invalid sync scope record");
+
+ SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
+ Record.clear();
+ }
+}
+
+/// Associate a value with its name from the given index in the provided record.
+Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
+ unsigned NameIndex, Triple &TT) {
+ SmallString<128> ValueName;
+ if (convertToString(Record, NameIndex, ValueName))
+ return error("Invalid record");
+ unsigned ValueID = Record[0];
+ if (ValueID >= ValueList.size() || !ValueList[ValueID])
+ return error("Invalid record");
+ Value *V = ValueList[ValueID];
+
+ StringRef NameStr(ValueName.data(), ValueName.size());
+ if (NameStr.find_first_of(0) != StringRef::npos)
+ return error("Invalid value name");
+ V->setName(NameStr);
+ auto *GO = dyn_cast<GlobalObject>(V);
+ if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
+ GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
+ return V;
+}
+
+/// Helper to note and return the current location, and jump to the given
+/// offset.
+static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
+ BitstreamCursor &Stream) {
+ // Save the current parsing location so we can jump back at the end
+ // of the VST read.
+ uint64_t CurrentBit = Stream.GetCurrentBitNo();
+ if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
+ return std::move(JumpFailed);
+ Expected<BitstreamEntry> MaybeEntry = Stream.advance();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
+ MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
+ return error("Expected value symbol table subblock");
+ return CurrentBit;
+}
+
+void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
+ Function *F,
+ ArrayRef<uint64_t> Record) {
+ // Note that we subtract 1 here because the offset is relative to one word
+ // before the start of the identification or module block, which was
+ // historically always the start of the regular bitcode header.
+ uint64_t FuncWordOffset = Record[1] - 1;
+ uint64_t FuncBitOffset = FuncWordOffset * 32;
+ DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
+ // Set the LastFunctionBlockBit to point to the last function block.
+ // Later when parsing is resumed after function materialization,
+ // we can simply skip that last function block.
+ if (FuncBitOffset > LastFunctionBlockBit)
+ LastFunctionBlockBit = FuncBitOffset;
+}
+
+/// Read a new-style GlobalValue symbol table.
+Error BitcodeReader::parseGlobalValueSymbolTable() {
+ unsigned FuncBitcodeOffsetDelta =
+ Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
+
+ if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
+ return Err;
+
+ SmallVector<uint64_t, 64> Record;
+ while (true) {
+ Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::SubBlock:
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ return Error::success();
+ case BitstreamEntry::Record:
+ break;
+ }
+
+ Record.clear();
+ Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeRecord)
+ return MaybeRecord.takeError();
+ switch (MaybeRecord.get()) {
+ case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
+ unsigned ValueID = Record[0];
+ if (ValueID >= ValueList.size() || !ValueList[ValueID])
+ return error("Invalid value reference in symbol table");
+ setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
+ cast<Function>(ValueList[ValueID]), Record);
+ break;
+ }
+ }
+ }
+}
+
+/// Parse the value symbol table at either the current parsing location or
+/// at the given bit offset if provided.
+Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
+ uint64_t CurrentBit;
+ // Pass in the Offset to distinguish between calling for the module-level
+ // VST (where we want to jump to the VST offset) and the function-level
+ // VST (where we don't).
+ if (Offset > 0) {
+ Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
+ if (!MaybeCurrentBit)
+ return MaybeCurrentBit.takeError();
+ CurrentBit = MaybeCurrentBit.get();
+ // If this module uses a string table, read this as a module-level VST.
+ if (UseStrtab) {
+ if (Error Err = parseGlobalValueSymbolTable())
+ return Err;
+ if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
+ return JumpFailed;
+ return Error::success();
+ }
+ // Otherwise, the VST will be in a similar format to a function-level VST,
+ // and will contain symbol names.
+ }
+
+ // Compute the delta between the bitcode indices in the VST (the word offset
+ // to the word-aligned ENTER_SUBBLOCK for the function block, and that
+ // expected by the lazy reader. The reader's EnterSubBlock expects to have
+ // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
+ // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
+ // just before entering the VST subblock because: 1) the EnterSubBlock
+ // changes the AbbrevID width; 2) the VST block is nested within the same
+ // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
+ // AbbrevID width before calling EnterSubBlock; and 3) when we want to
+ // jump to the FUNCTION_BLOCK using this offset later, we don't want
+ // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
+ unsigned FuncBitcodeOffsetDelta =
+ Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
+
+ if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
+ return Err;
+
+ SmallVector<uint64_t, 64> Record;
+
+ Triple TT(TheModule->getTargetTriple());
+
+ // Read all the records for this value table.
+ SmallString<128> ValueName;
+
+ while (true) {
+ Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::SubBlock: // Handled for us already.
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ if (Offset > 0)
+ if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
+ return JumpFailed;
+ return Error::success();
+ case BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Read a record.
+ Record.clear();
+ Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeRecord)
+ return MaybeRecord.takeError();
+ switch (MaybeRecord.get()) {
+ default: // Default behavior: unknown type.
+ break;
+ case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
+ Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
+ if (Error Err = ValOrErr.takeError())
+ return Err;
+ ValOrErr.get();
+ break;
+ }
+ case bitc::VST_CODE_FNENTRY: {
+ // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
+ Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
+ if (Error Err = ValOrErr.takeError())
+ return Err;
+ Value *V = ValOrErr.get();
+
+ // Ignore function offsets emitted for aliases of functions in older
+ // versions of LLVM.
+ if (auto *F = dyn_cast<Function>(V))
+ setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
+ break;
+ }
+ case bitc::VST_CODE_BBENTRY: {
+ if (convertToString(Record, 1, ValueName))
+ return error("Invalid bbentry record");
+ BasicBlock *BB = getBasicBlock(Record[0]);
+ if (!BB)
+ return error("Invalid bbentry record");
+
+ BB->setName(StringRef(ValueName.data(), ValueName.size()));
+ ValueName.clear();
+ break;
+ }
+ }
+ }
+}
+
+/// Decode a signed value stored with the sign bit in the LSB for dense VBR
+/// encoding.
+uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
+ if ((V & 1) == 0)
+ return V >> 1;
+ if (V != 1)
+ return -(V >> 1);
+ // There is no such thing as -0 with integers. "-0" really means MININT.
+ return 1ULL << 63;
+}
+
+/// Resolve all of the initializers for global values and aliases that we can.
+Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
+ std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
+ std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
+ std::vector<FunctionOperandInfo> FunctionOperandWorklist;
+
+ GlobalInitWorklist.swap(GlobalInits);
+ IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
+ FunctionOperandWorklist.swap(FunctionOperands);
+
+ while (!GlobalInitWorklist.empty()) {
+ unsigned ValID = GlobalInitWorklist.back().second;
+ if (ValID >= ValueList.size()) {
+ // Not ready to resolve this yet, it requires something later in the file.
+ GlobalInits.push_back(GlobalInitWorklist.back());
+ } else {
+ Expected<Constant *> MaybeC = getValueForInitializer(ValID);
+ if (!MaybeC)
+ return MaybeC.takeError();
+ GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
+ }
+ GlobalInitWorklist.pop_back();
+ }
+
+ while (!IndirectSymbolInitWorklist.empty()) {
+ unsigned ValID = IndirectSymbolInitWorklist.back().second;
+ if (ValID >= ValueList.size()) {
+ IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
+ } else {
+ Expected<Constant *> MaybeC = getValueForInitializer(ValID);
+ if (!MaybeC)
+ return MaybeC.takeError();
+ Constant *C = MaybeC.get();
+ GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
+ if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
+ if (C->getType() != GV->getType())
+ return error("Alias and aliasee types don't match");
+ GA->setAliasee(C);
+ } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
+ Type *ResolverFTy =
+ GlobalIFunc::getResolverFunctionType(GI->getValueType());
+ // Transparently fix up the type for compatibility with older bitcode
+ GI->setResolver(ConstantExpr::getBitCast(
+ C, ResolverFTy->getPointerTo(GI->getAddressSpace())));
+ } else {
+ return error("Expected an alias or an ifunc");
+ }
+ }
+ IndirectSymbolInitWorklist.pop_back();
+ }
+
+ while (!FunctionOperandWorklist.empty()) {
+ FunctionOperandInfo &Info = FunctionOperandWorklist.back();
+ if (Info.PersonalityFn) {
+ unsigned ValID = Info.PersonalityFn - 1;
+ if (ValID < ValueList.size()) {
+ Expected<Constant *> MaybeC = getValueForInitializer(ValID);
+ if (!MaybeC)
+ return MaybeC.takeError();
+ Info.F->setPersonalityFn(MaybeC.get());
+ Info.PersonalityFn = 0;
+ }
+ }
+ if (Info.Prefix) {
+ unsigned ValID = Info.Prefix - 1;
+ if (ValID < ValueList.size()) {
+ Expected<Constant *> MaybeC = getValueForInitializer(ValID);
+ if (!MaybeC)
+ return MaybeC.takeError();
+ Info.F->setPrefixData(MaybeC.get());
+ Info.Prefix = 0;
+ }
+ }
+ if (Info.Prologue) {
+ unsigned ValID = Info.Prologue - 1;
+ if (ValID < ValueList.size()) {
+ Expected<Constant *> MaybeC = getValueForInitializer(ValID);
+ if (!MaybeC)
+ return MaybeC.takeError();
+ Info.F->setPrologueData(MaybeC.get());
+ Info.Prologue = 0;
+ }
+ }
+ if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
+ FunctionOperands.push_back(Info);
+ FunctionOperandWorklist.pop_back();
+ }
+
+ return Error::success();
+}
+
+APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
+ SmallVector<uint64_t, 8> Words(Vals.size());
+ transform(Vals, Words.begin(),
+ BitcodeReader::decodeSignRotatedValue);
+
+ return APInt(TypeBits, Words);
+}
+
+Error BitcodeReader::parseConstants() {
+ if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
+ return Err;
+
+ SmallVector<uint64_t, 64> Record;
+
+ // Read all the records for this value table.
+ Type *CurTy = Type::getInt32Ty(Context);
+ unsigned Int32TyID = getVirtualTypeID(CurTy);
+ unsigned CurTyID = Int32TyID;
+ Type *CurElemTy = nullptr;
+ unsigned NextCstNo = ValueList.size();
+
+ while (true) {
+ Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::SubBlock: // Handled for us already.
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ if (NextCstNo != ValueList.size())
+ return error("Invalid constant reference");
+ return Error::success();
+ case BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Read a record.
+ Record.clear();
+ Type *VoidType = Type::getVoidTy(Context);
+ Value *V = nullptr;
+ Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeBitCode)
+ return MaybeBitCode.takeError();
+ switch (unsigned BitCode = MaybeBitCode.get()) {
+ default: // Default behavior: unknown constant
+ case bitc::CST_CODE_UNDEF: // UNDEF
+ V = UndefValue::get(CurTy);
+ break;
+ case bitc::CST_CODE_POISON: // POISON
+ V = PoisonValue::get(CurTy);
+ break;
+ case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
+ if (Record.empty())
+ return error("Invalid settype record");
+ if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
+ return error("Invalid settype record");
+ if (TypeList[Record[0]] == VoidType)
+ return error("Invalid constant type");
+ CurTyID = Record[0];
+ CurTy = TypeList[CurTyID];
+ CurElemTy = getPtrElementTypeByID(CurTyID);
+ continue; // Skip the ValueList manipulation.
+ case bitc::CST_CODE_NULL: // NULL
+ if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
+ return error("Invalid type for a constant null value");
+ if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
+ if (!TETy->hasProperty(TargetExtType::HasZeroInit))
+ return error("Invalid type for a constant null value");
+ V = Constant::getNullValue(CurTy);
+ break;
+ case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
+ if (!CurTy->isIntegerTy() || Record.empty())
+ return error("Invalid integer const record");
+ V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
+ break;
+ case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
+ if (!CurTy->isIntegerTy() || Record.empty())
+ return error("Invalid wide integer const record");
+
+ APInt VInt =
+ readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
+ V = ConstantInt::get(Context, VInt);
+
+ break;
+ }
+ case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
+ if (Record.empty())
+ return error("Invalid float const record");
+ if (CurTy->isHalfTy())
+ V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
+ APInt(16, (uint16_t)Record[0])));
+ else if (CurTy->isBFloatTy())
+ V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
+ APInt(16, (uint32_t)Record[0])));
+ else if (CurTy->isFloatTy())
+ V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
+ APInt(32, (uint32_t)Record[0])));
+ else if (CurTy->isDoubleTy())
+ V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
+ APInt(64, Record[0])));
+ else if (CurTy->isX86_FP80Ty()) {
+ // Bits are not stored the same way as a normal i80 APInt, compensate.
+ uint64_t Rearrange[2];
+ Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
+ Rearrange[1] = Record[0] >> 48;
+ V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
+ APInt(80, Rearrange)));
+ } else if (CurTy->isFP128Ty())
+ V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
+ APInt(128, Record)));
+ else if (CurTy->isPPC_FP128Ty())
+ V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
+ APInt(128, Record)));
+ else
+ V = UndefValue::get(CurTy);
+ break;
+ }
+
+ case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
+ if (Record.empty())
+ return error("Invalid aggregate record");
+
+ unsigned Size = Record.size();
+ SmallVector<unsigned, 16> Elts;
+ for (unsigned i = 0; i != Size; ++i)
+ Elts.push_back(Record[i]);
+
+ if (isa<StructType>(CurTy)) {
+ V = BitcodeConstant::create(
+ Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
+ } else if (isa<ArrayType>(CurTy)) {
+ V = BitcodeConstant::create(Alloc, CurTy,
+ BitcodeConstant::ConstantArrayOpcode, Elts);
+ } else if (isa<VectorType>(CurTy)) {
+ V = BitcodeConstant::create(
+ Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
+ } else {
+ V = UndefValue::get(CurTy);
+ }
+ break;
+ }
+ case bitc::CST_CODE_STRING: // STRING: [values]
+ case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
+ if (Record.empty())
+ return error("Invalid string record");
+
+ SmallString<16> Elts(Record.begin(), Record.end());
+ V = ConstantDataArray::getString(Context, Elts,
+ BitCode == bitc::CST_CODE_CSTRING);
+ break;
+ }
+ case bitc::CST_CODE_DATA: {// DATA: [n x value]
+ if (Record.empty())
+ return error("Invalid data record");
+
+ Type *EltTy;
+ if (auto *Array = dyn_cast<ArrayType>(CurTy))
+ EltTy = Array->getElementType();
+ else
+ EltTy = cast<VectorType>(CurTy)->getElementType();
+ if (EltTy->isIntegerTy(8)) {
+ SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
+ if (isa<VectorType>(CurTy))
+ V = ConstantDataVector::get(Context, Elts);
+ else
+ V = ConstantDataArray::get(Context, Elts);
+ } else if (EltTy->isIntegerTy(16)) {
+ SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
+ if (isa<VectorType>(CurTy))
+ V = ConstantDataVector::get(Context, Elts);
+ else
+ V = ConstantDataArray::get(Context, Elts);
+ } else if (EltTy->isIntegerTy(32)) {
+ SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
+ if (isa<VectorType>(CurTy))
+ V = ConstantDataVector::get(Context, Elts);
+ else
+ V = ConstantDataArray::get(Context, Elts);
+ } else if (EltTy->isIntegerTy(64)) {
+ SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
+ if (isa<VectorType>(CurTy))
+ V = ConstantDataVector::get(Context, Elts);
+ else
+ V = ConstantDataArray::get(Context, Elts);
+ } else if (EltTy->isHalfTy()) {
+ SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
+ if (isa<VectorType>(CurTy))
+ V = ConstantDataVector::getFP(EltTy, Elts);
+ else
+ V = ConstantDataArray::getFP(EltTy, Elts);
+ } else if (EltTy->isBFloatTy()) {
+ SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
+ if (isa<VectorType>(CurTy))
+ V = ConstantDataVector::getFP(EltTy, Elts);
+ else
+ V = ConstantDataArray::getFP(EltTy, Elts);
+ } else if (EltTy->isFloatTy()) {
+ SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
+ if (isa<VectorType>(CurTy))
+ V = ConstantDataVector::getFP(EltTy, Elts);
+ else
+ V = ConstantDataArray::getFP(EltTy, Elts);
+ } else if (EltTy->isDoubleTy()) {
+ SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
+ if (isa<VectorType>(CurTy))
+ V = ConstantDataVector::getFP(EltTy, Elts);
+ else
+ V = ConstantDataArray::getFP(EltTy, Elts);
+ } else {
+ return error("Invalid type for value");
+ }
+ break;
+ }
+ case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval]
+ if (Record.size() < 2)
+ return error("Invalid unary op constexpr record");
+ int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
+ if (Opc < 0) {
+ V = UndefValue::get(CurTy); // Unknown unop.
+ } else {
+ V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
+ }
+ break;
+ }
+ case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
+ if (Record.size() < 3)
+ return error("Invalid binary op constexpr record");
+ int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
+ if (Opc < 0) {
+ V = UndefValue::get(CurTy); // Unknown binop.
+ } else {
+ uint8_t Flags = 0;
+ if (Record.size() >= 4) {
+ if (Opc == Instruction::Add ||
+ Opc == Instruction::Sub ||
+ Opc == Instruction::Mul ||
+ Opc == Instruction::Shl) {
+ if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
+ Flags |= OverflowingBinaryOperator::NoSignedWrap;
+ if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
+ Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
+ } else if (Opc == Instruction::SDiv ||
+ Opc == Instruction::UDiv ||
+ Opc == Instruction::LShr ||
+ Opc == Instruction::AShr) {
+ if (Record[3] & (1 << bitc::PEO_EXACT))
+ Flags |= SDivOperator::IsExact;
+ }
+ }
+ V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
+ {(unsigned)Record[1], (unsigned)Record[2]});
+ }
+ break;
+ }
+ case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
+ if (Record.size() < 3)
+ return error("Invalid cast constexpr record");
+ int Opc = getDecodedCastOpcode(Record[0]);
+ if (Opc < 0) {
+ V = UndefValue::get(CurTy); // Unknown cast.
+ } else {
+ unsigned OpTyID = Record[1];
+ Type *OpTy = getTypeByID(OpTyID);
+ if (!OpTy)
+ return error("Invalid cast constexpr record");
+ V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
+ }
+ break;
+ }
+ case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
+ case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
+ case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
+ // operands]
+ if (Record.size() < 2)
+ return error("Constant GEP record must have at least two elements");
+ unsigned OpNum = 0;
+ Type *PointeeType = nullptr;
+ if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
+ Record.size() % 2)
+ PointeeType = getTypeByID(Record[OpNum++]);
+
+ bool InBounds = false;
+ std::optional<unsigned> InRangeIndex;
+ if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
+ uint64_t Op = Record[OpNum++];
+ InBounds = Op & 1;
+ InRangeIndex = Op >> 1;
+ } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
+ InBounds = true;
+
+ SmallVector<unsigned, 16> Elts;
+ unsigned BaseTypeID = Record[OpNum];
+ while (OpNum != Record.size()) {
+ unsigned ElTyID = Record[OpNum++];
+ Type *ElTy = getTypeByID(ElTyID);
+ if (!ElTy)
+ return error("Invalid getelementptr constexpr record");
+ Elts.push_back(Record[OpNum++]);
+ }
+
+ if (Elts.size() < 1)
+ return error("Invalid gep with no operands");
+
+ Type *BaseType = getTypeByID(BaseTypeID);
+ if (isa<VectorType>(BaseType)) {
+ BaseTypeID = getContainedTypeID(BaseTypeID, 0);
+ BaseType = getTypeByID(BaseTypeID);
+ }
+
+ PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
+ if (!OrigPtrTy)
+ return error("GEP base operand must be pointer or vector of pointer");
+
+ if (!PointeeType) {
+ PointeeType = getPtrElementTypeByID(BaseTypeID);
+ if (!PointeeType)
+ return error("Missing element type for old-style constant GEP");
+ } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
+ return error("Explicit gep operator type does not match pointee type "
+ "of pointer operand");
+
+ V = BitcodeConstant::create(Alloc, CurTy,
+ {Instruction::GetElementPtr, InBounds,
+ InRangeIndex.value_or(-1), PointeeType},
+ Elts);
+ break;
+ }
+ case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
+ if (Record.size() < 3)
+ return error("Invalid select constexpr record");
+
+ V = BitcodeConstant::create(
+ Alloc, CurTy, Instruction::Select,
+ {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
+ break;
+ }
+ case bitc::CST_CODE_CE_EXTRACTELT
+ : { // CE_EXTRACTELT: [opty, opval, opty, opval]
+ if (Record.size() < 3)
+ return error("Invalid extractelement constexpr record");
+ unsigned OpTyID = Record[0];
+ VectorType *OpTy =
+ dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
+ if (!OpTy)
+ return error("Invalid extractelement constexpr record");
+ unsigned IdxRecord;
+ if (Record.size() == 4) {
+ unsigned IdxTyID = Record[2];
+ Type *IdxTy = getTypeByID(IdxTyID);
+ if (!IdxTy)
+ return error("Invalid extractelement constexpr record");
+ IdxRecord = Record[3];
+ } else {
+ // Deprecated, but still needed to read old bitcode files.
+ IdxRecord = Record[2];
+ }
+ V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
+ {(unsigned)Record[1], IdxRecord});
+ break;
+ }
+ case bitc::CST_CODE_CE_INSERTELT
+ : { // CE_INSERTELT: [opval, opval, opty, opval]
+ VectorType *OpTy = dyn_cast<VectorType>(CurTy);
+ if (Record.size() < 3 || !OpTy)
+ return error("Invalid insertelement constexpr record");
+ unsigned IdxRecord;
+ if (Record.size() == 4) {
+ unsigned IdxTyID = Record[2];
+ Type *IdxTy = getTypeByID(IdxTyID);
+ if (!IdxTy)
+ return error("Invalid insertelement constexpr record");
+ IdxRecord = Record[3];
+ } else {
+ // Deprecated, but still needed to read old bitcode files.
+ IdxRecord = Record[2];
+ }
+ V = BitcodeConstant::create(
+ Alloc, CurTy, Instruction::InsertElement,
+ {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
+ break;
+ }
+ case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
+ VectorType *OpTy = dyn_cast<VectorType>(CurTy);
+ if (Record.size() < 3 || !OpTy)
+ return error("Invalid shufflevector constexpr record");
+ V = BitcodeConstant::create(
+ Alloc, CurTy, Instruction::ShuffleVector,
+ {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
+ break;
+ }
+ case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
+ VectorType *RTy = dyn_cast<VectorType>(CurTy);
+ VectorType *OpTy =
+ dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
+ if (Record.size() < 4 || !RTy || !OpTy)
+ return error("Invalid shufflevector constexpr record");
+ V = BitcodeConstant::create(
+ Alloc, CurTy, Instruction::ShuffleVector,
+ {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
+ break;
+ }
+ case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
+ if (Record.size() < 4)
+ return error("Invalid cmp constexpt record");
+ unsigned OpTyID = Record[0];
+ Type *OpTy = getTypeByID(OpTyID);
+ if (!OpTy)
+ return error("Invalid cmp constexpr record");
+ V = BitcodeConstant::create(
+ Alloc, CurTy,
+ {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
+ : Instruction::ICmp),
+ (uint8_t)Record[3]},
+ {(unsigned)Record[1], (unsigned)Record[2]});
+ break;
+ }
+ // This maintains backward compatibility, pre-asm dialect keywords.
+ // Deprecated, but still needed to read old bitcode files.
+ case bitc::CST_CODE_INLINEASM_OLD: {
+ if (Record.size() < 2)
+ return error("Invalid inlineasm record");
+ std::string AsmStr, ConstrStr;
+ bool HasSideEffects = Record[0] & 1;
+ bool IsAlignStack = Record[0] >> 1;
+ unsigned AsmStrSize = Record[1];
+ if (2+AsmStrSize >= Record.size())
+ return error("Invalid inlineasm record");
+ unsigned ConstStrSize = Record[2+AsmStrSize];
+ if (3+AsmStrSize+ConstStrSize > Record.size())
+ return error("Invalid inlineasm record");
+
+ for (unsigned i = 0; i != AsmStrSize; ++i)
+ AsmStr += (char)Record[2+i];
+ for (unsigned i = 0; i != ConstStrSize; ++i)
+ ConstrStr += (char)Record[3+AsmStrSize+i];
+ UpgradeInlineAsmString(&AsmStr);
+ if (!CurElemTy)
+ return error("Missing element type for old-style inlineasm");
+ V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
+ HasSideEffects, IsAlignStack);
+ break;
+ }
+ // This version adds support for the asm dialect keywords (e.g.,
+ // inteldialect).
+ case bitc::CST_CODE_INLINEASM_OLD2: {
+ if (Record.size() < 2)
+ return error("Invalid inlineasm record");
+ std::string AsmStr, ConstrStr;
+ bool HasSideEffects = Record[0] & 1;
+ bool IsAlignStack = (Record[0] >> 1) & 1;
+ unsigned AsmDialect = Record[0] >> 2;
+ unsigned AsmStrSize = Record[1];
+ if (2+AsmStrSize >= Record.size())
+ return error("Invalid inlineasm record");
+ unsigned ConstStrSize = Record[2+AsmStrSize];
+ if (3+AsmStrSize+ConstStrSize > Record.size())
+ return error("Invalid inlineasm record");
+
+ for (unsigned i = 0; i != AsmStrSize; ++i)
+ AsmStr += (char)Record[2+i];
+ for (unsigned i = 0; i != ConstStrSize; ++i)
+ ConstrStr += (char)Record[3+AsmStrSize+i];
+ UpgradeInlineAsmString(&AsmStr);
+ if (!CurElemTy)
+ return error("Missing element type for old-style inlineasm");
+ V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
+ HasSideEffects, IsAlignStack,
+ InlineAsm::AsmDialect(AsmDialect));
+ break;
+ }
+ // This version adds support for the unwind keyword.
+ case bitc::CST_CODE_INLINEASM_OLD3: {
+ if (Record.size() < 2)
+ return error("Invalid inlineasm record");
+ unsigned OpNum = 0;
+ std::string AsmStr, ConstrStr;
+ bool HasSideEffects = Record[OpNum] & 1;
+ bool IsAlignStack = (Record[OpNum] >> 1) & 1;
+ unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
+ bool CanThrow = (Record[OpNum] >> 3) & 1;
+ ++OpNum;
+ unsigned AsmStrSize = Record[OpNum];
+ ++OpNum;
+ if (OpNum + AsmStrSize >= Record.size())
+ return error("Invalid inlineasm record");
+ unsigned ConstStrSize = Record[OpNum + AsmStrSize];
+ if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
+ return error("Invalid inlineasm record");
+
+ for (unsigned i = 0; i != AsmStrSize; ++i)
+ AsmStr += (char)Record[OpNum + i];
+ ++OpNum;
+ for (unsigned i = 0; i != ConstStrSize; ++i)
+ ConstrStr += (char)Record[OpNum + AsmStrSize + i];
+ UpgradeInlineAsmString(&AsmStr);
+ if (!CurElemTy)
+ return error("Missing element type for old-style inlineasm");
+ V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
+ HasSideEffects, IsAlignStack,
+ InlineAsm::AsmDialect(AsmDialect), CanThrow);
+ break;
+ }
+ // This version adds explicit function type.
+ case bitc::CST_CODE_INLINEASM: {
+ if (Record.size() < 3)
+ return error("Invalid inlineasm record");
+ unsigned OpNum = 0;
+ auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
+ ++OpNum;
+ if (!FnTy)
+ return error("Invalid inlineasm record");
+ std::string AsmStr, ConstrStr;
+ bool HasSideEffects = Record[OpNum] & 1;
+ bool IsAlignStack = (Record[OpNum] >> 1) & 1;
+ unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
+ bool CanThrow = (Record[OpNum] >> 3) & 1;
+ ++OpNum;
+ unsigned AsmStrSize = Record[OpNum];
+ ++OpNum;
+ if (OpNum + AsmStrSize >= Record.size())
+ return error("Invalid inlineasm record");
+ unsigned ConstStrSize = Record[OpNum + AsmStrSize];
+ if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
+ return error("Invalid inlineasm record");
+
+ for (unsigned i = 0; i != AsmStrSize; ++i)
+ AsmStr += (char)Record[OpNum + i];
+ ++OpNum;
+ for (unsigned i = 0; i != ConstStrSize; ++i)
+ ConstrStr += (char)Record[OpNum + AsmStrSize + i];
+ UpgradeInlineAsmString(&AsmStr);
+ V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
+ InlineAsm::AsmDialect(AsmDialect), CanThrow);
+ break;
+ }
+ case bitc::CST_CODE_BLOCKADDRESS:{
+ if (Record.size() < 3)
+ return error("Invalid blockaddress record");
+ unsigned FnTyID = Record[0];
+ Type *FnTy = getTypeByID(FnTyID);
+ if (!FnTy)
+ return error("Invalid blockaddress record");
+ V = BitcodeConstant::create(
+ Alloc, CurTy,
+ {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
+ Record[1]);
+ break;
+ }
+ case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
+ if (Record.size() < 2)
+ return error("Invalid dso_local record");
+ unsigned GVTyID = Record[0];
+ Type *GVTy = getTypeByID(GVTyID);
+ if (!GVTy)
+ return error("Invalid dso_local record");
+ V = BitcodeConstant::create(
+ Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
+ break;
+ }
+ case bitc::CST_CODE_NO_CFI_VALUE: {
+ if (Record.size() < 2)
+ return error("Invalid no_cfi record");
+ unsigned GVTyID = Record[0];
+ Type *GVTy = getTypeByID(GVTyID);
+ if (!GVTy)
+ return error("Invalid no_cfi record");
+ V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
+ Record[1]);
+ break;
+ }
+ }
+
+ assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
+ if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
+ return Err;
+ ++NextCstNo;
+ }
+}
+
+Error BitcodeReader::parseUseLists() {
+ if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
+ return Err;
+
+ // Read all the records.
+ SmallVector<uint64_t, 64> Record;
+
+ while (true) {
+ Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::SubBlock: // Handled for us already.
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ return Error::success();
+ case BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Read a use list record.
+ Record.clear();
+ bool IsBB = false;
+ Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeRecord)
+ return MaybeRecord.takeError();
+ switch (MaybeRecord.get()) {
+ default: // Default behavior: unknown type.
+ break;
+ case bitc::USELIST_CODE_BB:
+ IsBB = true;
+ [[fallthrough]];
+ case bitc::USELIST_CODE_DEFAULT: {
+ unsigned RecordLength = Record.size();
+ if (RecordLength < 3)
+ // Records should have at least an ID and two indexes.
+ return error("Invalid record");
+ unsigned ID = Record.pop_back_val();
+
+ Value *V;
+ if (IsBB) {
+ assert(ID < FunctionBBs.size() && "Basic block not found");
+ V = FunctionBBs[ID];
+ } else
+ V = ValueList[ID];
+ unsigned NumUses = 0;
+ SmallDenseMap<const Use *, unsigned, 16> Order;
+ for (const Use &U : V->materialized_uses()) {
+ if (++NumUses > Record.size())
+ break;
+ Order[&U] = Record[NumUses - 1];
+ }
+ if (Order.size() != Record.size() || NumUses > Record.size())
+ // Mismatches can happen if the functions are being materialized lazily
+ // (out-of-order), or a value has been upgraded.
+ break;
+
+ V->sortUseList([&](const Use &L, const Use &R) {
+ return Order.lookup(&L) < Order.lookup(&R);
+ });
+ break;
+ }
+ }
+ }
+}
+
+/// When we see the block for metadata, remember where it is and then skip it.
+/// This lets us lazily deserialize the metadata.
+Error BitcodeReader::rememberAndSkipMetadata() {
+ // Save the current stream state.
+ uint64_t CurBit = Stream.GetCurrentBitNo();
+ DeferredMetadataInfo.push_back(CurBit);
+
+ // Skip over the block for now.
+ if (Error Err = Stream.SkipBlock())
+ return Err;
+ return Error::success();
+}
+
+Error BitcodeReader::materializeMetadata() {
+ for (uint64_t BitPos : DeferredMetadataInfo) {
+ // Move the bit stream to the saved position.
+ if (Error JumpFailed = Stream.JumpToBit(BitPos))
+ return JumpFailed;
+ if (Error Err = MDLoader->parseModuleMetadata())
+ return Err;
+ }
+
+ // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
+ // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
+ // multiple times.
+ if (!TheModule->getNamedMetadata("llvm.linker.options")) {
+ if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
+ NamedMDNode *LinkerOpts =
+ TheModule->getOrInsertNamedMetadata("llvm.linker.options");
+ for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
+ LinkerOpts->addOperand(cast<MDNode>(MDOptions));
+ }
+ }
+
+ DeferredMetadataInfo.clear();
+ return Error::success();
+}
+
+void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
+
+/// When we see the block for a function body, remember where it is and then
+/// skip it. This lets us lazily deserialize the functions.
+Error BitcodeReader::rememberAndSkipFunctionBody() {
+ // Get the function we are talking about.
+ if (FunctionsWithBodies.empty())
+ return error("Insufficient function protos");
+
+ Function *Fn = FunctionsWithBodies.back();
+ FunctionsWithBodies.pop_back();
+
+ // Save the current stream state.
+ uint64_t CurBit = Stream.GetCurrentBitNo();
+ assert(
+ (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
+ "Mismatch between VST and scanned function offsets");
+ DeferredFunctionInfo[Fn] = CurBit;
+
+ // Skip over the function block for now.
+ if (Error Err = Stream.SkipBlock())
+ return Err;
+ return Error::success();
+}
+
+Error BitcodeReader::globalCleanup() {
+ // Patch the initializers for globals and aliases up.
+ if (Error Err = resolveGlobalAndIndirectSymbolInits())
+ return Err;
+ if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
+ return error("Malformed global initializer set");
+
+ // Look for intrinsic functions which need to be upgraded at some point
+ // and functions that need to have their function attributes upgraded.
+ for (Function &F : *TheModule) {
+ MDLoader->upgradeDebugIntrinsics(F);
+ Function *NewFn;
+ if (UpgradeIntrinsicFunction(&F, NewFn))
+ UpgradedIntrinsics[&F] = NewFn;
+ // Look for functions that rely on old function attribute behavior.
+ UpgradeFunctionAttributes(F);
+ }
+
+ // Look for global variables which need to be renamed.
+ std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
+ for (GlobalVariable &GV : TheModule->globals())
+ if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
+ UpgradedVariables.emplace_back(&GV, Upgraded);
+ for (auto &Pair : UpgradedVariables) {
+ Pair.first->eraseFromParent();
+ TheModule->getGlobalList().push_back(Pair.second);
+ }
+
+ // Force deallocation of memory for these vectors to favor the client that
+ // want lazy deserialization.
+ std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
+ std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
+ return Error::success();
+}
+
+/// Support for lazy parsing of function bodies. This is required if we
+/// either have an old bitcode file without a VST forward declaration record,
+/// or if we have an anonymous function being materialized, since anonymous
+/// functions do not have a name and are therefore not in the VST.
+Error BitcodeReader::rememberAndSkipFunctionBodies() {
+ if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
+ return JumpFailed;
+
+ if (Stream.AtEndOfStream())
+ return error("Could not find function in stream");
+
+ if (!SeenFirstFunctionBody)
+ return error("Trying to materialize functions before seeing function blocks");
+
+ // An old bitcode file with the symbol table at the end would have
+ // finished the parse greedily.
+ assert(SeenValueSymbolTable);
+
+ SmallVector<uint64_t, 64> Record;
+
+ while (true) {
+ Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ llvm::BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ default:
+ return error("Expect SubBlock");
+ case BitstreamEntry::SubBlock:
+ switch (Entry.ID) {
+ default:
+ return error("Expect function block");
+ case bitc::FUNCTION_BLOCK_ID:
+ if (Error Err = rememberAndSkipFunctionBody())
+ return Err;
+ NextUnreadBit = Stream.GetCurrentBitNo();
+ return Error::success();
+ }
+ }
+ }
+}
+
+Error BitcodeReaderBase::readBlockInfo() {
+ Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
+ Stream.ReadBlockInfoBlock();
+ if (!MaybeNewBlockInfo)
+ return MaybeNewBlockInfo.takeError();
+ std::optional<BitstreamBlockInfo> NewBlockInfo =
+ std::move(MaybeNewBlockInfo.get());
+ if (!NewBlockInfo)
+ return error("Malformed block");
+ BlockInfo = std::move(*NewBlockInfo);
+ return Error::success();
+}
+
+Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
+ // v1: [selection_kind, name]
+ // v2: [strtab_offset, strtab_size, selection_kind]
+ StringRef Name;
+ std::tie(Name, Record) = readNameFromStrtab(Record);
+
+ if (Record.empty())
+ return error("Invalid record");
+ Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
+ std::string OldFormatName;
+ if (!UseStrtab) {
+ if (Record.size() < 2)
+ return error("Invalid record");
+ unsigned ComdatNameSize = Record[1];
+ if (ComdatNameSize > Record.size() - 2)
+ return error("Comdat name size too large");
+ OldFormatName.reserve(ComdatNameSize);
+ for (unsigned i = 0; i != ComdatNameSize; ++i)
+ OldFormatName += (char)Record[2 + i];
+ Name = OldFormatName;
+ }
+ Comdat *C = TheModule->getOrInsertComdat(Name);
+ C->setSelectionKind(SK);
+ ComdatList.push_back(C);
+ return Error::success();
+}
+
+static void inferDSOLocal(GlobalValue *GV) {
+ // infer dso_local from linkage and visibility if it is not encoded.
+ if (GV->hasLocalLinkage() ||
+ (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
+ GV->setDSOLocal(true);
+}
+
+GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
+ GlobalValue::SanitizerMetadata Meta;
+ if (V & (1 << 0))
+ Meta.NoAddress = true;
+ if (V & (1 << 1))
+ Meta.NoHWAddress = true;
+ if (V & (1 << 2))
+ Meta.Memtag = true;
+ if (V & (1 << 3))
+ Meta.IsDynInit = true;
+ return Meta;
+}
+
+Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
+ // v1: [pointer type, isconst, initid, linkage, alignment, section,
+ // visibility, threadlocal, unnamed_addr, externally_initialized,
+ // dllstorageclass, comdat, attributes, preemption specifier,
+ // partition strtab offset, partition strtab size] (name in VST)
+ // v2: [strtab_offset, strtab_size, v1]
+ StringRef Name;
+ std::tie(Name, Record) = readNameFromStrtab(Record);
+
+ if (Record.size() < 6)
+ return error("Invalid record");
+ unsigned TyID = Record[0];
+ Type *Ty = getTypeByID(TyID);
+ if (!Ty)
+ return error("Invalid record");
+ bool isConstant = Record[1] & 1;
+ bool explicitType = Record[1] & 2;
+ unsigned AddressSpace;
+ if (explicitType) {
+ AddressSpace = Record[1] >> 2;
+ } else {
+ if (!Ty->isPointerTy())
+ return error("Invalid type for value");
+ AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
+ TyID = getContainedTypeID(TyID);
+ Ty = getTypeByID(TyID);
+ if (!Ty)
+ return error("Missing element type for old-style global");
+ }
+
+ uint64_t RawLinkage = Record[3];
+ GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
+ MaybeAlign Alignment;
+ if (Error Err = parseAlignmentValue(Record[4], Alignment))
+ return Err;
+ std::string Section;
+ if (Record[5]) {
+ if (Record[5] - 1 >= SectionTable.size())
+ return error("Invalid ID");
+ Section = SectionTable[Record[5] - 1];
+ }
+ GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
+ // Local linkage must have default visibility.
+ // auto-upgrade `hidden` and `protected` for old bitcode.
+ if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
+ Visibility = getDecodedVisibility(Record[6]);
+
+ GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
+ if (Record.size() > 7)
+ TLM = getDecodedThreadLocalMode(Record[7]);
+
+ GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
+ if (Record.size() > 8)
+ UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
+
+ bool ExternallyInitialized = false;
+ if (Record.size() > 9)
+ ExternallyInitialized = Record[9];
+
+ GlobalVariable *NewGV =
+ new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
+ nullptr, TLM, AddressSpace, ExternallyInitialized);
+ NewGV->setAlignment(Alignment);
+ if (!Section.empty())
+ NewGV->setSection(Section);
+ NewGV->setVisibility(Visibility);
+ NewGV->setUnnamedAddr(UnnamedAddr);
+
+ if (Record.size() > 10) {
+ // A GlobalValue with local linkage cannot have a DLL storage class.
+ if (!NewGV->hasLocalLinkage()) {
+ NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
+ }
+ } else {
+ upgradeDLLImportExportLinkage(NewGV, RawLinkage);
+ }
+
+ ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
+
+ // Remember which value to use for the global initializer.
+ if (unsigned InitID = Record[2])
+ GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
+
+ if (Record.size() > 11) {
+ if (unsigned ComdatID = Record[11]) {
+ if (ComdatID > ComdatList.size())
+ return error("Invalid global variable comdat ID");
+ NewGV->setComdat(ComdatList[ComdatID - 1]);
+ }
+ } else if (hasImplicitComdat(RawLinkage)) {
+ ImplicitComdatObjects.insert(NewGV);
+ }
+
+ if (Record.size() > 12) {
+ auto AS = getAttributes(Record[12]).getFnAttrs();
+ NewGV->setAttributes(AS);
+ }
+
+ if (Record.size() > 13) {
+ NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
+ }
+ inferDSOLocal(NewGV);
+
+ // Check whether we have enough values to read a partition name.
+ if (Record.size() > 15)
+ NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
+
+ if (Record.size() > 16 && Record[16]) {
+ llvm::GlobalValue::SanitizerMetadata Meta =
+ deserializeSanitizerMetadata(Record[16]);
+ NewGV->setSanitizerMetadata(Meta);
+ }
+
+ return Error::success();
+}
+
+void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
+ if (ValueTypeCallback) {
+ (*ValueTypeCallback)(
+ F, TypeID, [this](unsigned I) { return getTypeByID(I); },
+ [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
+ }
+}
+
+Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
+ // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
+ // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
+ // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST)
+ // v2: [strtab_offset, strtab_size, v1]
+ StringRef Name;
+ std::tie(Name, Record) = readNameFromStrtab(Record);
+
+ if (Record.size() < 8)
+ return error("Invalid record");
+ unsigned FTyID = Record[0];
+ Type *FTy = getTypeByID(FTyID);
+ if (!FTy)
+ return error("Invalid record");
+ if (isa<PointerType>(FTy)) {
+ FTyID = getContainedTypeID(FTyID, 0);
+ FTy = getTypeByID(FTyID);
+ if (!FTy)
+ return error("Missing element type for old-style function");
+ }
+
+ if (!isa<FunctionType>(FTy))
+ return error("Invalid type for value");
+ auto CC = static_cast<CallingConv::ID>(Record[1]);
+ if (CC & ~CallingConv::MaxID)
+ return error("Invalid calling convention ID");
+
+ unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
+ if (Record.size() > 16)
+ AddrSpace = Record[16];
+
+ Function *Func =
+ Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
+ AddrSpace, Name, TheModule);
+
+ assert(Func->getFunctionType() == FTy &&
+ "Incorrect fully specified type provided for function");
+ FunctionTypeIDs[Func] = FTyID;
+
+ Func->setCallingConv(CC);
+ bool isProto = Record[2];
+ uint64_t RawLinkage = Record[3];
+ Func->setLinkage(getDecodedLinkage(RawLinkage));
+ Func->setAttributes(getAttributes(Record[4]));
+ callValueTypeCallback(Func, FTyID);
+
+ // Upgrade any old-style byval or sret without a type by propagating the
+ // argument's pointee type. There should be no opaque pointers where the byval
+ // type is implicit.
+ for (unsigned i = 0; i != Func->arg_size(); ++i) {
+ for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
+ Attribute::InAlloca}) {
+ if (!Func->hasParamAttribute(i, Kind))
+ continue;
+
+ if (Func->getParamAttribute(i, Kind).getValueAsType())
+ continue;
+
+ Func->removeParamAttr(i, Kind);
+
+ unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
+ Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
+ if (!PtrEltTy)
+ return error("Missing param element type for attribute upgrade");
+
+ Attribute NewAttr;
+ switch (Kind) {
+ case Attribute::ByVal:
+ NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
+ break;
+ case Attribute::StructRet:
+ NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
+ break;
+ case Attribute::InAlloca:
+ NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
+ break;
+ default:
+ llvm_unreachable("not an upgraded type attribute");
+ }
+
+ Func->addParamAttr(i, NewAttr);
+ }
+ }
+
+ if (Func->getCallingConv() == CallingConv::X86_INTR &&
+ !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
+ unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
+ Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
+ if (!ByValTy)
+ return error("Missing param element type for x86_intrcc upgrade");
+ Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
+ Func->addParamAttr(0, NewAttr);
+ }
+
+ MaybeAlign Alignment;
+ if (Error Err = parseAlignmentValue(Record[5], Alignment))
+ return Err;
+ Func->setAlignment(Alignment);
+ if (Record[6]) {
+ if (Record[6] - 1 >= SectionTable.size())
+ return error("Invalid ID");
+ Func->setSection(SectionTable[Record[6] - 1]);
+ }
+ // Local linkage must have default visibility.
+ // auto-upgrade `hidden` and `protected` for old bitcode.
+ if (!Func->hasLocalLinkage())
+ Func->setVisibility(getDecodedVisibility(Record[7]));
+ if (Record.size() > 8 && Record[8]) {
+ if (Record[8] - 1 >= GCTable.size())
+ return error("Invalid ID");
+ Func->setGC(GCTable[Record[8] - 1]);
+ }
+ GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
+ if (Record.size() > 9)
+ UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
+ Func->setUnnamedAddr(UnnamedAddr);
+
+ FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
+ if (Record.size() > 10)
+ OperandInfo.Prologue = Record[10];
+
+ if (Record.size() > 11) {
+ // A GlobalValue with local linkage cannot have a DLL storage class.
+ if (!Func->hasLocalLinkage()) {
+ Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
+ }
+ } else {
+ upgradeDLLImportExportLinkage(Func, RawLinkage);
+ }
+
+ if (Record.size() > 12) {
+ if (unsigned ComdatID = Record[12]) {
+ if (ComdatID > ComdatList.size())
+ return error("Invalid function comdat ID");
+ Func->setComdat(ComdatList[ComdatID - 1]);
+ }
+ } else if (hasImplicitComdat(RawLinkage)) {
+ ImplicitComdatObjects.insert(Func);
+ }
+
+ if (Record.size() > 13)
+ OperandInfo.Prefix = Record[13];
+
+ if (Record.size() > 14)
+ OperandInfo.PersonalityFn = Record[14];
+
+ if (Record.size() > 15) {
+ Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
+ }
+ inferDSOLocal(Func);
+
+ // Record[16] is the address space number.
+
+ // Check whether we have enough values to read a partition name. Also make
+ // sure Strtab has enough values.
+ if (Record.size() > 18 && Strtab.data() &&
+ Record[17] + Record[18] <= Strtab.size()) {
+ Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
+ }
+
+ ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
+
+ if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
+ FunctionOperands.push_back(OperandInfo);
+
+ // If this is a function with a body, remember the prototype we are
+ // creating now, so that we can match up the body with them later.
+ if (!isProto) {
+ Func->setIsMaterializable(true);
+ FunctionsWithBodies.push_back(Func);
+ DeferredFunctionInfo[Func] = 0;
+ }
+ return Error::success();
+}
+
+Error BitcodeReader::parseGlobalIndirectSymbolRecord(
+ unsigned BitCode, ArrayRef<uint64_t> Record) {
+ // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
+ // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
+ // dllstorageclass, threadlocal, unnamed_addr,
+ // preemption specifier] (name in VST)
+ // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
+ // visibility, dllstorageclass, threadlocal, unnamed_addr,
+ // preemption specifier] (name in VST)
+ // v2: [strtab_offset, strtab_size, v1]
+ StringRef Name;
+ std::tie(Name, Record) = readNameFromStrtab(Record);
+
+ bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
+ if (Record.size() < (3 + (unsigned)NewRecord))
+ return error("Invalid record");
+ unsigned OpNum = 0;
+ unsigned TypeID = Record[OpNum++];
+ Type *Ty = getTypeByID(TypeID);
+ if (!Ty)
+ return error("Invalid record");
+
+ unsigned AddrSpace;
+ if (!NewRecord) {
+ auto *PTy = dyn_cast<PointerType>(Ty);
+ if (!PTy)
+ return error("Invalid type for value");
+ AddrSpace = PTy->getAddressSpace();
+ TypeID = getContainedTypeID(TypeID);
+ Ty = getTypeByID(TypeID);
+ if (!Ty)
+ return error("Missing element type for old-style indirect symbol");
+ } else {
+ AddrSpace = Record[OpNum++];
+ }
+
+ auto Val = Record[OpNum++];
+ auto Linkage = Record[OpNum++];
+ GlobalValue *NewGA;
+ if (BitCode == bitc::MODULE_CODE_ALIAS ||
+ BitCode == bitc::MODULE_CODE_ALIAS_OLD)
+ NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
+ TheModule);
+ else
+ NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
+ nullptr, TheModule);
+
+ // Local linkage must have default visibility.
+ // auto-upgrade `hidden` and `protected` for old bitcode.
+ if (OpNum != Record.size()) {
+ auto VisInd = OpNum++;
+ if (!NewGA->hasLocalLinkage())
+ NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
+ }
+ if (BitCode == bitc::MODULE_CODE_ALIAS ||
+ BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
+ if (OpNum != Record.size()) {
+ auto S = Record[OpNum++];
+ // A GlobalValue with local linkage cannot have a DLL storage class.
+ if (!NewGA->hasLocalLinkage())
+ NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
+ }
+ else
+ upgradeDLLImportExportLinkage(NewGA, Linkage);
+ if (OpNum != Record.size())
+ NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
+ if (OpNum != Record.size())
+ NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
+ }
+ if (OpNum != Record.size())
+ NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
+ inferDSOLocal(NewGA);
+
+ // Check whether we have enough values to read a partition name.
+ if (OpNum + 1 < Record.size()) {
+ NewGA->setPartition(
+ StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
+ OpNum += 2;
+ }
+
+ ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
+ IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
+ return Error::success();
+}
+
+Error BitcodeReader::parseModule(uint64_t ResumeBit,
+ bool ShouldLazyLoadMetadata,
+ ParserCallbacks Callbacks) {
+ this->ValueTypeCallback = std::move(Callbacks.ValueType);
+ if (ResumeBit) {
+ if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
+ return JumpFailed;
+ } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
+ return Err;
+
+ SmallVector<uint64_t, 64> Record;
+
+ // Parts of bitcode parsing depend on the datalayout. Make sure we
+ // finalize the datalayout before we run any of that code.
+ bool ResolvedDataLayout = false;
+ // In order to support importing modules with illegal data layout strings,
+ // delay parsing the data layout string until after upgrades and overrides
+ // have been applied, allowing to fix illegal data layout strings.
+ // Initialize to the current module's layout string in case none is specified.
+ std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
+
+ auto ResolveDataLayout = [&]() -> Error {
+ if (ResolvedDataLayout)
+ return Error::success();
+
+ // Datalayout and triple can't be parsed after this point.
+ ResolvedDataLayout = true;
+
+ // Auto-upgrade the layout string
+ TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
+ TentativeDataLayoutStr, TheModule->getTargetTriple());
+
+ // Apply override
+ if (Callbacks.DataLayout) {
+ if (auto LayoutOverride = (*Callbacks.DataLayout)(
+ TheModule->getTargetTriple(), TentativeDataLayoutStr))
+ TentativeDataLayoutStr = *LayoutOverride;
+ }
+
+ // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
+ Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
+ if (!MaybeDL)
+ return MaybeDL.takeError();
+
+ TheModule->setDataLayout(MaybeDL.get());
+ return Error::success();
+ };
+
+ // Read all the records for this module.
+ while (true) {
+ Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ llvm::BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ if (Error Err = ResolveDataLayout())
+ return Err;
+ return globalCleanup();
+
+ case BitstreamEntry::SubBlock:
+ switch (Entry.ID) {
+ default: // Skip unknown content.
+ if (Error Err = Stream.SkipBlock())
+ return Err;
+ break;
+ case bitc::BLOCKINFO_BLOCK_ID:
+ if (Error Err = readBlockInfo())
+ return Err;
+ break;
+ case bitc::PARAMATTR_BLOCK_ID:
+ if (Error Err = parseAttributeBlock())
+ return Err;
+ break;
+ case bitc::PARAMATTR_GROUP_BLOCK_ID:
+ if (Error Err = parseAttributeGroupBlock())
+ return Err;
+ break;
+ case bitc::TYPE_BLOCK_ID_NEW:
+ if (Error Err = parseTypeTable())
+ return Err;
+ break;
+ case bitc::VALUE_SYMTAB_BLOCK_ID:
+ if (!SeenValueSymbolTable) {
+ // Either this is an old form VST without function index and an
+ // associated VST forward declaration record (which would have caused
+ // the VST to be jumped to and parsed before it was encountered
+ // normally in the stream), or there were no function blocks to
+ // trigger an earlier parsing of the VST.
+ assert(VSTOffset == 0 || FunctionsWithBodies.empty());
+ if (Error Err = parseValueSymbolTable())
+ return Err;
+ SeenValueSymbolTable = true;
+ } else {
+ // We must have had a VST forward declaration record, which caused
+ // the parser to jump to and parse the VST earlier.
+ assert(VSTOffset > 0);
+ if (Error Err = Stream.SkipBlock())
+ return Err;
+ }
+ break;
+ case bitc::CONSTANTS_BLOCK_ID:
+ if (Error Err = parseConstants())
+ return Err;
+ if (Error Err = resolveGlobalAndIndirectSymbolInits())
+ return Err;
+ break;
+ case bitc::METADATA_BLOCK_ID:
+ if (ShouldLazyLoadMetadata) {
+ if (Error Err = rememberAndSkipMetadata())
+ return Err;
+ break;
+ }
+ assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
+ if (Error Err = MDLoader->parseModuleMetadata())
+ return Err;
+ break;
+ case bitc::METADATA_KIND_BLOCK_ID:
+ if (Error Err = MDLoader->parseMetadataKinds())
+ return Err;
+ break;
+ case bitc::FUNCTION_BLOCK_ID:
+ if (Error Err = ResolveDataLayout())
+ return Err;
+
+ // If this is the first function body we've seen, reverse the
+ // FunctionsWithBodies list.
+ if (!SeenFirstFunctionBody) {
+ std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
+ if (Error Err = globalCleanup())
+ return Err;
+ SeenFirstFunctionBody = true;
+ }
+
+ if (VSTOffset > 0) {
+ // If we have a VST forward declaration record, make sure we
+ // parse the VST now if we haven't already. It is needed to
+ // set up the DeferredFunctionInfo vector for lazy reading.
+ if (!SeenValueSymbolTable) {
+ if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
+ return Err;
+ SeenValueSymbolTable = true;
+ // Fall through so that we record the NextUnreadBit below.
+ // This is necessary in case we have an anonymous function that
+ // is later materialized. Since it will not have a VST entry we
+ // need to fall back to the lazy parse to find its offset.
+ } else {
+ // If we have a VST forward declaration record, but have already
+ // parsed the VST (just above, when the first function body was
+ // encountered here), then we are resuming the parse after
+ // materializing functions. The ResumeBit points to the
+ // start of the last function block recorded in the
+ // DeferredFunctionInfo map. Skip it.
+ if (Error Err = Stream.SkipBlock())
+ return Err;
+ continue;
+ }
+ }
+
+ // Support older bitcode files that did not have the function
+ // index in the VST, nor a VST forward declaration record, as
+ // well as anonymous functions that do not have VST entries.
+ // Build the DeferredFunctionInfo vector on the fly.
+ if (Error Err = rememberAndSkipFunctionBody())
+ return Err;
+
+ // Suspend parsing when we reach the function bodies. Subsequent
+ // materialization calls will resume it when necessary. If the bitcode
+ // file is old, the symbol table will be at the end instead and will not
+ // have been seen yet. In this case, just finish the parse now.
+ if (SeenValueSymbolTable) {
+ NextUnreadBit = Stream.GetCurrentBitNo();
+ // After the VST has been parsed, we need to make sure intrinsic name
+ // are auto-upgraded.
+ return globalCleanup();
+ }
+ break;
+ case bitc::USELIST_BLOCK_ID:
+ if (Error Err = parseUseLists())
+ return Err;
+ break;
+ case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
+ if (Error Err = parseOperandBundleTags())
+ return Err;
+ break;
+ case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
+ if (Error Err = parseSyncScopeNames())
+ return Err;
+ break;
+ }
+ continue;
+
+ case BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Read a record.
+ Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeBitCode)
+ return MaybeBitCode.takeError();
+ switch (unsigned BitCode = MaybeBitCode.get()) {
+ default: break; // Default behavior, ignore unknown content.
+ case bitc::MODULE_CODE_VERSION: {
+ Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
+ if (!VersionOrErr)
+ return VersionOrErr.takeError();
+ UseRelativeIDs = *VersionOrErr >= 1;
+ break;
+ }
+ case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
+ if (ResolvedDataLayout)
+ return error("target triple too late in module");
+ std::string S;
+ if (convertToString(Record, 0, S))
+ return error("Invalid record");
+ TheModule->setTargetTriple(S);
+ break;
+ }
+ case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
+ if (ResolvedDataLayout)
+ return error("datalayout too late in module");
+ if (convertToString(Record, 0, TentativeDataLayoutStr))
+ return error("Invalid record");
+ break;
+ }
+ case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
+ std::string S;
+ if (convertToString(Record, 0, S))
+ return error("Invalid record");
+ TheModule->setModuleInlineAsm(S);
+ break;
+ }
+ case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
+ // Deprecated, but still needed to read old bitcode files.
+ std::string S;
+ if (convertToString(Record, 0, S))
+ return error("Invalid record");
+ // Ignore value.
+ break;
+ }
+ case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
+ std::string S;
+ if (convertToString(Record, 0, S))
+ return error("Invalid record");
+ SectionTable.push_back(S);
+ break;
+ }
+ case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
+ std::string S;
+ if (convertToString(Record, 0, S))
+ return error("Invalid record");
+ GCTable.push_back(S);
+ break;
+ }
+ case bitc::MODULE_CODE_COMDAT:
+ if (Error Err = parseComdatRecord(Record))
+ return Err;
+ break;
+ // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
+ // written by ThinLinkBitcodeWriter. See
+ // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
+ // record
+ // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
+ case bitc::MODULE_CODE_GLOBALVAR:
+ if (Error Err = parseGlobalVarRecord(Record))
+ return Err;
+ break;
+ case bitc::MODULE_CODE_FUNCTION:
+ if (Error Err = ResolveDataLayout())
+ return Err;
+ if (Error Err = parseFunctionRecord(Record))
+ return Err;
+ break;
+ case bitc::MODULE_CODE_IFUNC:
+ case bitc::MODULE_CODE_ALIAS:
+ case bitc::MODULE_CODE_ALIAS_OLD:
+ if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
+ return Err;
+ break;
+ /// MODULE_CODE_VSTOFFSET: [offset]
+ case bitc::MODULE_CODE_VSTOFFSET:
+ if (Record.empty())
+ return error("Invalid record");
+ // Note that we subtract 1 here because the offset is relative to one word
+ // before the start of the identification or module block, which was
+ // historically always the start of the regular bitcode header.
+ VSTOffset = Record[0] - 1;
+ break;
+ /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
+ case bitc::MODULE_CODE_SOURCE_FILENAME:
+ SmallString<128> ValueName;
+ if (convertToString(Record, 0, ValueName))
+ return error("Invalid record");
+ TheModule->setSourceFileName(ValueName);
+ break;
+ }
+ Record.clear();
+ }
+ this->ValueTypeCallback = std::nullopt;
+ return Error::success();
+}
+
+Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
+ bool IsImporting,
+ ParserCallbacks Callbacks) {
+ TheModule = M;
+ MetadataLoaderCallbacks MDCallbacks;
+ MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
+ MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
+ return getContainedTypeID(I, J);
+ };
+ MDCallbacks.MDType = Callbacks.MDType;
+ MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
+ return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
+}
+
+Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
+ if (!isa<PointerType>(PtrType))
+ return error("Load/Store operand is not a pointer type");
+
+ if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
+ return error("Explicit load/store type does not match pointee "
+ "type of pointer operand");
+ if (!PointerType::isLoadableOrStorableType(ValType))
+ return error("Cannot load/store from pointer");
+ return Error::success();
+}
+
+Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
+ ArrayRef<unsigned> ArgTyIDs) {
+ AttributeList Attrs = CB->getAttributes();
+ for (unsigned i = 0; i != CB->arg_size(); ++i) {
+ for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
+ Attribute::InAlloca}) {
+ if (!Attrs.hasParamAttr(i, Kind) ||
+ Attrs.getParamAttr(i, Kind).getValueAsType())
+ continue;
+
+ Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
+ if (!PtrEltTy)
+ return error("Missing element type for typed attribute upgrade");
+
+ Attribute NewAttr;
+ switch (Kind) {
+ case Attribute::ByVal:
+ NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
+ break;
+ case Attribute::StructRet:
+ NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
+ break;
+ case Attribute::InAlloca:
+ NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
+ break;
+ default:
+ llvm_unreachable("not an upgraded type attribute");
+ }
+
+ Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
+ }
+ }
+
+ if (CB->isInlineAsm()) {
+ const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
+ unsigned ArgNo = 0;
+ for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
+ if (!CI.hasArg())
+ continue;
+
+ if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
+ Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
+ if (!ElemTy)
+ return error("Missing element type for inline asm upgrade");
+ Attrs = Attrs.addParamAttribute(
+ Context, ArgNo,
+ Attribute::get(Context, Attribute::ElementType, ElemTy));
+ }
+
+ ArgNo++;
+ }
+ }
+
+ switch (CB->getIntrinsicID()) {
+ case Intrinsic::preserve_array_access_index:
+ case Intrinsic::preserve_struct_access_index:
+ case Intrinsic::aarch64_ldaxr:
+ case Intrinsic::aarch64_ldxr:
+ case Intrinsic::aarch64_stlxr:
+ case Intrinsic::aarch64_stxr:
+ case Intrinsic::arm_ldaex:
+ case Intrinsic::arm_ldrex:
+ case Intrinsic::arm_stlex:
+ case Intrinsic::arm_strex: {
+ unsigned ArgNo;
+ switch (CB->getIntrinsicID()) {
+ case Intrinsic::aarch64_stlxr:
+ case Intrinsic::aarch64_stxr:
+ case Intrinsic::arm_stlex:
+ case Intrinsic::arm_strex:
+ ArgNo = 1;
+ break;
+ default:
+ ArgNo = 0;
+ break;
+ }
+ if (!Attrs.getParamElementType(ArgNo)) {
+ Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
+ if (!ElTy)
+ return error("Missing element type for elementtype upgrade");
+ Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
+ Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
+ }
+ break;
+ }
+ default:
+ break;
+ }
+
+ CB->setAttributes(Attrs);
+ return Error::success();
+}
+
+/// Lazily parse the specified function body block.
+Error BitcodeReader::parseFunctionBody(Function *F) {
+ if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
+ return Err;
+
+ // Unexpected unresolved metadata when parsing function.
+ if (MDLoader->hasFwdRefs())
+ return error("Invalid function metadata: incoming forward references");
+
+ InstructionList.clear();
+ unsigned ModuleValueListSize = ValueList.size();
+ unsigned ModuleMDLoaderSize = MDLoader->size();
+
+ // Add all the function arguments to the value table.
+ unsigned ArgNo = 0;
+ unsigned FTyID = FunctionTypeIDs[F];
+ for (Argument &I : F->args()) {
+ unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
+ assert(I.getType() == getTypeByID(ArgTyID) &&
+ "Incorrect fully specified type for Function Argument");
+ ValueList.push_back(&I, ArgTyID);
+ ++ArgNo;
+ }
+ unsigned NextValueNo = ValueList.size();
+ BasicBlock *CurBB = nullptr;
+ unsigned CurBBNo = 0;
+ // Block into which constant expressions from phi nodes are materialized.
+ BasicBlock *PhiConstExprBB = nullptr;
+ // Edge blocks for phi nodes into which constant expressions have been
+ // expanded.
+ SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
+ ConstExprEdgeBBs;
+
+ DebugLoc LastLoc;
+ auto getLastInstruction = [&]() -> Instruction * {
+ if (CurBB && !CurBB->empty())
+ return &CurBB->back();
+ else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
+ !FunctionBBs[CurBBNo - 1]->empty())
+ return &FunctionBBs[CurBBNo - 1]->back();
+ return nullptr;
+ };
+
+ std::vector<OperandBundleDef> OperandBundles;
+
+ // Read all the records.
+ SmallVector<uint64_t, 64> Record;
+
+ while (true) {
+ Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ llvm::BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ goto OutOfRecordLoop;
+
+ case BitstreamEntry::SubBlock:
+ switch (Entry.ID) {
+ default: // Skip unknown content.
+ if (Error Err = Stream.SkipBlock())
+ return Err;
+ break;
+ case bitc::CONSTANTS_BLOCK_ID:
+ if (Error Err = parseConstants())
+ return Err;
+ NextValueNo = ValueList.size();
+ break;
+ case bitc::VALUE_SYMTAB_BLOCK_ID:
+ if (Error Err = parseValueSymbolTable())
+ return Err;
+ break;
+ case bitc::METADATA_ATTACHMENT_ID:
+ if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
+ return Err;
+ break;
+ case bitc::METADATA_BLOCK_ID:
+ assert(DeferredMetadataInfo.empty() &&
+ "Must read all module-level metadata before function-level");
+ if (Error Err = MDLoader->parseFunctionMetadata())
+ return Err;
+ break;
+ case bitc::USELIST_BLOCK_ID:
+ if (Error Err = parseUseLists())
+ return Err;
+ break;
+ }
+ continue;
+
+ case BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Read a record.
+ Record.clear();
+ Instruction *I = nullptr;
+ unsigned ResTypeID = InvalidTypeID;
+ Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeBitCode)
+ return MaybeBitCode.takeError();
+ switch (unsigned BitCode = MaybeBitCode.get()) {
+ default: // Default behavior: reject
+ return error("Invalid value");
+ case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
+ if (Record.empty() || Record[0] == 0)
+ return error("Invalid record");
+ // Create all the basic blocks for the function.
+ FunctionBBs.resize(Record[0]);
+
+ // See if anything took the address of blocks in this function.
+ auto BBFRI = BasicBlockFwdRefs.find(F);
+ if (BBFRI == BasicBlockFwdRefs.end()) {
+ for (BasicBlock *&BB : FunctionBBs)
+ BB = BasicBlock::Create(Context, "", F);
+ } else {
+ auto &BBRefs = BBFRI->second;
+ // Check for invalid basic block references.
+ if (BBRefs.size() > FunctionBBs.size())
+ return error("Invalid ID");
+ assert(!BBRefs.empty() && "Unexpected empty array");
+ assert(!BBRefs.front() && "Invalid reference to entry block");
+ for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
+ ++I)
+ if (I < RE && BBRefs[I]) {
+ BBRefs[I]->insertInto(F);
+ FunctionBBs[I] = BBRefs[I];
+ } else {
+ FunctionBBs[I] = BasicBlock::Create(Context, "", F);
+ }
+
+ // Erase from the table.
+ BasicBlockFwdRefs.erase(BBFRI);
+ }
+
+ CurBB = FunctionBBs[0];
+ continue;
+ }
+
+ case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
+ // The record should not be emitted if it's an empty list.
+ if (Record.empty())
+ return error("Invalid record");
+ // When we have the RARE case of a BlockAddress Constant that is not
+ // scoped to the Function it refers to, we need to conservatively
+ // materialize the referred to Function, regardless of whether or not
+ // that Function will ultimately be linked, otherwise users of
+ // BitcodeReader might start splicing out Function bodies such that we
+ // might no longer be able to materialize the BlockAddress since the
+ // BasicBlock (and entire body of the Function) the BlockAddress refers
+ // to may have been moved. In the case that the user of BitcodeReader
+ // decides ultimately not to link the Function body, materializing here
+ // could be considered wasteful, but it's better than a deserialization
+ // failure as described. This keeps BitcodeReader unaware of complex
+ // linkage policy decisions such as those use by LTO, leaving those
+ // decisions "one layer up."
+ for (uint64_t ValID : Record)
+ if (auto *F = dyn_cast<Function>(ValueList[ValID]))
+ BackwardRefFunctions.push_back(F);
+ else
+ return error("Invalid record");
+
+ continue;
+
+ case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
+ // This record indicates that the last instruction is at the same
+ // location as the previous instruction with a location.
+ I = getLastInstruction();
+
+ if (!I)
+ return error("Invalid record");
+ I->setDebugLoc(LastLoc);
+ I = nullptr;
+ continue;
+
+ case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
+ I = getLastInstruction();
+ if (!I || Record.size() < 4)
+ return error("Invalid record");
+
+ unsigned Line = Record[0], Col = Record[1];
+ unsigned ScopeID = Record[2], IAID = Record[3];
+ bool isImplicitCode = Record.size() == 5 && Record[4];
+
+ MDNode *Scope = nullptr, *IA = nullptr;
+ if (ScopeID) {
+ Scope = dyn_cast_or_null<MDNode>(
+ MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
+ if (!Scope)
+ return error("Invalid record");
+ }
+ if (IAID) {
+ IA = dyn_cast_or_null<MDNode>(
+ MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
+ if (!IA)
+ return error("Invalid record");
+ }
+ LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
+ isImplicitCode);
+ I->setDebugLoc(LastLoc);
+ I = nullptr;
+ continue;
+ }
+ case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
+ unsigned OpNum = 0;
+ Value *LHS;
+ unsigned TypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
+ OpNum+1 > Record.size())
+ return error("Invalid record");
+
+ int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
+ if (Opc == -1)
+ return error("Invalid record");
+ I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
+ ResTypeID = TypeID;
+ InstructionList.push_back(I);
+ if (OpNum < Record.size()) {
+ if (isa<FPMathOperator>(I)) {
+ FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
+ if (FMF.any())
+ I->setFastMathFlags(FMF);
+ }
+ }
+ break;
+ }
+ case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
+ unsigned OpNum = 0;
+ Value *LHS, *RHS;
+ unsigned TypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
+ popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
+ CurBB) ||
+ OpNum+1 > Record.size())
+ return error("Invalid record");
+
+ int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
+ if (Opc == -1)
+ return error("Invalid record");
+ I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
+ ResTypeID = TypeID;
+ InstructionList.push_back(I);
+ if (OpNum < Record.size()) {
+ if (Opc == Instruction::Add ||
+ Opc == Instruction::Sub ||
+ Opc == Instruction::Mul ||
+ Opc == Instruction::Shl) {
+ if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
+ cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
+ if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
+ cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
+ } else if (Opc == Instruction::SDiv ||
+ Opc == Instruction::UDiv ||
+ Opc == Instruction::LShr ||
+ Opc == Instruction::AShr) {
+ if (Record[OpNum] & (1 << bitc::PEO_EXACT))
+ cast<BinaryOperator>(I)->setIsExact(true);
+ } else if (isa<FPMathOperator>(I)) {
+ FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
+ if (FMF.any())
+ I->setFastMathFlags(FMF);
+ }
+
+ }
+ break;
+ }
+ case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
+ unsigned OpNum = 0;
+ Value *Op;
+ unsigned OpTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
+ OpNum+2 != Record.size())
+ return error("Invalid record");
+
+ ResTypeID = Record[OpNum];
+ Type *ResTy = getTypeByID(ResTypeID);
+ int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
+ if (Opc == -1 || !ResTy)
+ return error("Invalid record");
+ Instruction *Temp = nullptr;
+ if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
+ if (Temp) {
+ InstructionList.push_back(Temp);
+ assert(CurBB && "No current BB?");
+ Temp->insertInto(CurBB, CurBB->end());
+ }
+ } else {
+ auto CastOp = (Instruction::CastOps)Opc;
+ if (!CastInst::castIsValid(CastOp, Op, ResTy))
+ return error("Invalid cast");
+ I = CastInst::Create(CastOp, Op, ResTy);
+ }
+ InstructionList.push_back(I);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
+ case bitc::FUNC_CODE_INST_GEP_OLD:
+ case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
+ unsigned OpNum = 0;
+
+ unsigned TyID;
+ Type *Ty;
+ bool InBounds;
+
+ if (BitCode == bitc::FUNC_CODE_INST_GEP) {
+ InBounds = Record[OpNum++];
+ TyID = Record[OpNum++];
+ Ty = getTypeByID(TyID);
+ } else {
+ InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
+ TyID = InvalidTypeID;
+ Ty = nullptr;
+ }
+
+ Value *BasePtr;
+ unsigned BasePtrTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
+ CurBB))
+ return error("Invalid record");
+
+ if (!Ty) {
+ TyID = getContainedTypeID(BasePtrTypeID);
+ if (BasePtr->getType()->isVectorTy())
+ TyID = getContainedTypeID(TyID);
+ Ty = getTypeByID(TyID);
+ } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
+ ->isOpaqueOrPointeeTypeMatches(Ty)) {
+ return error(
+ "Explicit gep type does not match pointee type of pointer operand");
+ }
+
+ SmallVector<Value*, 16> GEPIdx;
+ while (OpNum != Record.size()) {
+ Value *Op;
+ unsigned OpTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
+ return error("Invalid record");
+ GEPIdx.push_back(Op);
+ }
+
+ I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
+
+ ResTypeID = TyID;
+ if (cast<GEPOperator>(I)->getNumIndices() != 0) {
+ auto GTI = std::next(gep_type_begin(I));
+ for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
+ unsigned SubType = 0;
+ if (GTI.isStruct()) {
+ ConstantInt *IdxC =
+ Idx->getType()->isVectorTy()
+ ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
+ : cast<ConstantInt>(Idx);
+ SubType = IdxC->getZExtValue();
+ }
+ ResTypeID = getContainedTypeID(ResTypeID, SubType);
+ ++GTI;
+ }
+ }
+
+ // At this point ResTypeID is the result element type. We need a pointer
+ // or vector of pointer to it.
+ ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
+ if (I->getType()->isVectorTy())
+ ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
+
+ InstructionList.push_back(I);
+ if (InBounds)
+ cast<GetElementPtrInst>(I)->setIsInBounds(true);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_EXTRACTVAL: {
+ // EXTRACTVAL: [opty, opval, n x indices]
+ unsigned OpNum = 0;
+ Value *Agg;
+ unsigned AggTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
+ return error("Invalid record");
+ Type *Ty = Agg->getType();
+
+ unsigned RecSize = Record.size();
+ if (OpNum == RecSize)
+ return error("EXTRACTVAL: Invalid instruction with 0 indices");
+
+ SmallVector<unsigned, 4> EXTRACTVALIdx;
+ ResTypeID = AggTypeID;
+ for (; OpNum != RecSize; ++OpNum) {
+ bool IsArray = Ty->isArrayTy();
+ bool IsStruct = Ty->isStructTy();
+ uint64_t Index = Record[OpNum];
+
+ if (!IsStruct && !IsArray)
+ return error("EXTRACTVAL: Invalid type");
+ if ((unsigned)Index != Index)
+ return error("Invalid value");
+ if (IsStruct && Index >= Ty->getStructNumElements())
+ return error("EXTRACTVAL: Invalid struct index");
+ if (IsArray && Index >= Ty->getArrayNumElements())
+ return error("EXTRACTVAL: Invalid array index");
+ EXTRACTVALIdx.push_back((unsigned)Index);
+
+ if (IsStruct) {
+ Ty = Ty->getStructElementType(Index);
+ ResTypeID = getContainedTypeID(ResTypeID, Index);
+ } else {
+ Ty = Ty->getArrayElementType();
+ ResTypeID = getContainedTypeID(ResTypeID);
+ }
+ }
+
+ I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
+ InstructionList.push_back(I);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_INSERTVAL: {
+ // INSERTVAL: [opty, opval, opty, opval, n x indices]
+ unsigned OpNum = 0;
+ Value *Agg;
+ unsigned AggTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
+ return error("Invalid record");
+ Value *Val;
+ unsigned ValTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
+ return error("Invalid record");
+
+ unsigned RecSize = Record.size();
+ if (OpNum == RecSize)
+ return error("INSERTVAL: Invalid instruction with 0 indices");
+
+ SmallVector<unsigned, 4> INSERTVALIdx;
+ Type *CurTy = Agg->getType();
+ for (; OpNum != RecSize; ++OpNum) {
+ bool IsArray = CurTy->isArrayTy();
+ bool IsStruct = CurTy->isStructTy();
+ uint64_t Index = Record[OpNum];
+
+ if (!IsStruct && !IsArray)
+ return error("INSERTVAL: Invalid type");
+ if ((unsigned)Index != Index)
+ return error("Invalid value");
+ if (IsStruct && Index >= CurTy->getStructNumElements())
+ return error("INSERTVAL: Invalid struct index");
+ if (IsArray && Index >= CurTy->getArrayNumElements())
+ return error("INSERTVAL: Invalid array index");
+
+ INSERTVALIdx.push_back((unsigned)Index);
+ if (IsStruct)
+ CurTy = CurTy->getStructElementType(Index);
+ else
+ CurTy = CurTy->getArrayElementType();
+ }
+
+ if (CurTy != Val->getType())
+ return error("Inserted value type doesn't match aggregate type");
+
+ I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
+ ResTypeID = AggTypeID;
+ InstructionList.push_back(I);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
+ // obsolete form of select
+ // handles select i1 ... in old bitcode
+ unsigned OpNum = 0;
+ Value *TrueVal, *FalseVal, *Cond;
+ unsigned TypeID;
+ Type *CondType = Type::getInt1Ty(Context);
+ if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
+ CurBB) ||
+ popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
+ FalseVal, CurBB) ||
+ popValue(Record, OpNum, NextValueNo, CondType,
+ getVirtualTypeID(CondType), Cond, CurBB))
+ return error("Invalid record");
+
+ I = SelectInst::Create(Cond, TrueVal, FalseVal);
+ ResTypeID = TypeID;
+ InstructionList.push_back(I);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
+ // new form of select
+ // handles select i1 or select [N x i1]
+ unsigned OpNum = 0;
+ Value *TrueVal, *FalseVal, *Cond;
+ unsigned ValTypeID, CondTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
+ CurBB) ||
+ popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
+ FalseVal, CurBB) ||
+ getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
+ return error("Invalid record");
+
+ // select condition can be either i1 or [N x i1]
+ if (VectorType* vector_type =
+ dyn_cast<VectorType>(Cond->getType())) {
+ // expect <n x i1>
+ if (vector_type->getElementType() != Type::getInt1Ty(Context))
+ return error("Invalid type for value");
+ } else {
+ // expect i1
+ if (Cond->getType() != Type::getInt1Ty(Context))
+ return error("Invalid type for value");
+ }
+
+ I = SelectInst::Create(Cond, TrueVal, FalseVal);
+ ResTypeID = ValTypeID;
+ InstructionList.push_back(I);
+ if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
+ FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
+ if (FMF.any())
+ I->setFastMathFlags(FMF);
+ }
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
+ unsigned OpNum = 0;
+ Value *Vec, *Idx;
+ unsigned VecTypeID, IdxTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
+ getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
+ return error("Invalid record");
+ if (!Vec->getType()->isVectorTy())
+ return error("Invalid type for value");
+ I = ExtractElementInst::Create(Vec, Idx);
+ ResTypeID = getContainedTypeID(VecTypeID);
+ InstructionList.push_back(I);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
+ unsigned OpNum = 0;
+ Value *Vec, *Elt, *Idx;
+ unsigned VecTypeID, IdxTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
+ return error("Invalid record");
+ if (!Vec->getType()->isVectorTy())
+ return error("Invalid type for value");
+ if (popValue(Record, OpNum, NextValueNo,
+ cast<VectorType>(Vec->getType())->getElementType(),
+ getContainedTypeID(VecTypeID), Elt, CurBB) ||
+ getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
+ return error("Invalid record");
+ I = InsertElementInst::Create(Vec, Elt, Idx);
+ ResTypeID = VecTypeID;
+ InstructionList.push_back(I);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
+ unsigned OpNum = 0;
+ Value *Vec1, *Vec2, *Mask;
+ unsigned Vec1TypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
+ CurBB) ||
+ popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
+ Vec2, CurBB))
+ return error("Invalid record");
+
+ unsigned MaskTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
+ return error("Invalid record");
+ if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
+ return error("Invalid type for value");
+
+ I = new ShuffleVectorInst(Vec1, Vec2, Mask);
+ ResTypeID =
+ getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
+ InstructionList.push_back(I);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
+ // Old form of ICmp/FCmp returning bool
+ // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
+ // both legal on vectors but had different behaviour.
+ case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
+ // FCmp/ICmp returning bool or vector of bool
+
+ unsigned OpNum = 0;
+ Value *LHS, *RHS;
+ unsigned LHSTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
+ popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
+ CurBB))
+ return error("Invalid record");
+
+ if (OpNum >= Record.size())
+ return error(
+ "Invalid record: operand number exceeded available operands");
+
+ unsigned PredVal = Record[OpNum];
+ bool IsFP = LHS->getType()->isFPOrFPVectorTy();
+ FastMathFlags FMF;
+ if (IsFP && Record.size() > OpNum+1)
+ FMF = getDecodedFastMathFlags(Record[++OpNum]);
+
+ if (OpNum+1 != Record.size())
+ return error("Invalid record");
+
+ if (LHS->getType()->isFPOrFPVectorTy())
+ I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
+ else
+ I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
+
+ ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
+ if (LHS->getType()->isVectorTy())
+ ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
+
+ if (FMF.any())
+ I->setFastMathFlags(FMF);
+ InstructionList.push_back(I);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
+ {
+ unsigned Size = Record.size();
+ if (Size == 0) {
+ I = ReturnInst::Create(Context);
+ InstructionList.push_back(I);
+ break;
+ }
+
+ unsigned OpNum = 0;
+ Value *Op = nullptr;
+ unsigned OpTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
+ return error("Invalid record");
+ if (OpNum != Record.size())
+ return error("Invalid record");
+
+ I = ReturnInst::Create(Context, Op);
+ InstructionList.push_back(I);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
+ if (Record.size() != 1 && Record.size() != 3)
+ return error("Invalid record");
+ BasicBlock *TrueDest = getBasicBlock(Record[0]);
+ if (!TrueDest)
+ return error("Invalid record");
+
+ if (Record.size() == 1) {
+ I = BranchInst::Create(TrueDest);
+ InstructionList.push_back(I);
+ }
+ else {
+ BasicBlock *FalseDest = getBasicBlock(Record[1]);
+ Type *CondType = Type::getInt1Ty(Context);
+ Value *Cond = getValue(Record, 2, NextValueNo, CondType,
+ getVirtualTypeID(CondType), CurBB);
+ if (!FalseDest || !Cond)
+ return error("Invalid record");
+ I = BranchInst::Create(TrueDest, FalseDest, Cond);
+ InstructionList.push_back(I);
+ }
+ break;
+ }
+ case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
+ if (Record.size() != 1 && Record.size() != 2)
+ return error("Invalid record");
+ unsigned Idx = 0;
+ Type *TokenTy = Type::getTokenTy(Context);
+ Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
+ getVirtualTypeID(TokenTy), CurBB);
+ if (!CleanupPad)
+ return error("Invalid record");
+ BasicBlock *UnwindDest = nullptr;
+ if (Record.size() == 2) {
+ UnwindDest = getBasicBlock(Record[Idx++]);
+ if (!UnwindDest)
+ return error("Invalid record");
+ }
+
+ I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
+ InstructionList.push_back(I);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
+ if (Record.size() != 2)
+ return error("Invalid record");
+ unsigned Idx = 0;
+ Type *TokenTy = Type::getTokenTy(Context);
+ Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
+ getVirtualTypeID(TokenTy), CurBB);
+ if (!CatchPad)
+ return error("Invalid record");
+ BasicBlock *BB = getBasicBlock(Record[Idx++]);
+ if (!BB)
+ return error("Invalid record");
+
+ I = CatchReturnInst::Create(CatchPad, BB);
+ InstructionList.push_back(I);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
+ // We must have, at minimum, the outer scope and the number of arguments.
+ if (Record.size() < 2)
+ return error("Invalid record");
+
+ unsigned Idx = 0;
+
+ Type *TokenTy = Type::getTokenTy(Context);
+ Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
+ getVirtualTypeID(TokenTy), CurBB);
+
+ unsigned NumHandlers = Record[Idx++];
+
+ SmallVector<BasicBlock *, 2> Handlers;
+ for (unsigned Op = 0; Op != NumHandlers; ++Op) {
+ BasicBlock *BB = getBasicBlock(Record[Idx++]);
+ if (!BB)
+ return error("Invalid record");
+ Handlers.push_back(BB);
+ }
+
+ BasicBlock *UnwindDest = nullptr;
+ if (Idx + 1 == Record.size()) {
+ UnwindDest = getBasicBlock(Record[Idx++]);
+ if (!UnwindDest)
+ return error("Invalid record");
+ }
+
+ if (Record.size() != Idx)
+ return error("Invalid record");
+
+ auto *CatchSwitch =
+ CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
+ for (BasicBlock *Handler : Handlers)
+ CatchSwitch->addHandler(Handler);
+ I = CatchSwitch;
+ ResTypeID = getVirtualTypeID(I->getType());
+ InstructionList.push_back(I);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_CATCHPAD:
+ case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
+ // We must have, at minimum, the outer scope and the number of arguments.
+ if (Record.size() < 2)
+ return error("Invalid record");
+
+ unsigned Idx = 0;
+
+ Type *TokenTy = Type::getTokenTy(Context);
+ Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
+ getVirtualTypeID(TokenTy), CurBB);
+
+ unsigned NumArgOperands = Record[Idx++];
+
+ SmallVector<Value *, 2> Args;
+ for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
+ Value *Val;
+ unsigned ValTypeID;
+ if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
+ return error("Invalid record");
+ Args.push_back(Val);
+ }
+
+ if (Record.size() != Idx)
+ return error("Invalid record");
+
+ if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
+ I = CleanupPadInst::Create(ParentPad, Args);
+ else
+ I = CatchPadInst::Create(ParentPad, Args);
+ ResTypeID = getVirtualTypeID(I->getType());
+ InstructionList.push_back(I);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
+ // Check magic
+ if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
+ // "New" SwitchInst format with case ranges. The changes to write this
+ // format were reverted but we still recognize bitcode that uses it.
+ // Hopefully someday we will have support for case ranges and can use
+ // this format again.
+
+ unsigned OpTyID = Record[1];
+ Type *OpTy = getTypeByID(OpTyID);
+ unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
+
+ Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
+ BasicBlock *Default = getBasicBlock(Record[3]);
+ if (!OpTy || !Cond || !Default)
+ return error("Invalid record");
+
+ unsigned NumCases = Record[4];
+
+ SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
+ InstructionList.push_back(SI);
+
+ unsigned CurIdx = 5;
+ for (unsigned i = 0; i != NumCases; ++i) {
+ SmallVector<ConstantInt*, 1> CaseVals;
+ unsigned NumItems = Record[CurIdx++];
+ for (unsigned ci = 0; ci != NumItems; ++ci) {
+ bool isSingleNumber = Record[CurIdx++];
+
+ APInt Low;
+ unsigned ActiveWords = 1;
+ if (ValueBitWidth > 64)
+ ActiveWords = Record[CurIdx++];
+ Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
+ ValueBitWidth);
+ CurIdx += ActiveWords;
+
+ if (!isSingleNumber) {
+ ActiveWords = 1;
+ if (ValueBitWidth > 64)
+ ActiveWords = Record[CurIdx++];
+ APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
+ ValueBitWidth);
+ CurIdx += ActiveWords;
+
+ // FIXME: It is not clear whether values in the range should be
+ // compared as signed or unsigned values. The partially
+ // implemented changes that used this format in the past used
+ // unsigned comparisons.
+ for ( ; Low.ule(High); ++Low)
+ CaseVals.push_back(ConstantInt::get(Context, Low));
+ } else
+ CaseVals.push_back(ConstantInt::get(Context, Low));
+ }
+ BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
+ for (ConstantInt *Cst : CaseVals)
+ SI->addCase(Cst, DestBB);
+ }
+ I = SI;
+ break;
+ }
+
+ // Old SwitchInst format without case ranges.
+
+ if (Record.size() < 3 || (Record.size() & 1) == 0)
+ return error("Invalid record");
+ unsigned OpTyID = Record[0];
+ Type *OpTy = getTypeByID(OpTyID);
+ Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
+ BasicBlock *Default = getBasicBlock(Record[2]);
+ if (!OpTy || !Cond || !Default)
+ return error("Invalid record");
+ unsigned NumCases = (Record.size()-3)/2;
+ SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
+ InstructionList.push_back(SI);
+ for (unsigned i = 0, e = NumCases; i != e; ++i) {
+ ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
+ getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
+ BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
+ if (!CaseVal || !DestBB) {
+ delete SI;
+ return error("Invalid record");
+ }
+ SI->addCase(CaseVal, DestBB);
+ }
+ I = SI;
+ break;
+ }
+ case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
+ if (Record.size() < 2)
+ return error("Invalid record");
+ unsigned OpTyID = Record[0];
+ Type *OpTy = getTypeByID(OpTyID);
+ Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
+ if (!OpTy || !Address)
+ return error("Invalid record");
+ unsigned NumDests = Record.size()-2;
+ IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
+ InstructionList.push_back(IBI);
+ for (unsigned i = 0, e = NumDests; i != e; ++i) {
+ if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
+ IBI->addDestination(DestBB);
+ } else {
+ delete IBI;
+ return error("Invalid record");
+ }
+ }
+ I = IBI;
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_INVOKE: {
+ // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
+ if (Record.size() < 4)
+ return error("Invalid record");
+ unsigned OpNum = 0;
+ AttributeList PAL = getAttributes(Record[OpNum++]);
+ unsigned CCInfo = Record[OpNum++];
+ BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
+ BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
+
+ unsigned FTyID = InvalidTypeID;
+ FunctionType *FTy = nullptr;
+ if ((CCInfo >> 13) & 1) {
+ FTyID = Record[OpNum++];
+ FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
+ if (!FTy)
+ return error("Explicit invoke type is not a function type");
+ }
+
+ Value *Callee;
+ unsigned CalleeTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
+ CurBB))
+ return error("Invalid record");
+
+ PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
+ if (!CalleeTy)
+ return error("Callee is not a pointer");
+ if (!FTy) {
+ FTyID = getContainedTypeID(CalleeTypeID);
+ FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
+ if (!FTy)
+ return error("Callee is not of pointer to function type");
+ } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
+ return error("Explicit invoke type does not match pointee type of "
+ "callee operand");
+ if (Record.size() < FTy->getNumParams() + OpNum)
+ return error("Insufficient operands to call");
+
+ SmallVector<Value*, 16> Ops;
+ SmallVector<unsigned, 16> ArgTyIDs;
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
+ unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
+ Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
+ ArgTyID, CurBB));
+ ArgTyIDs.push_back(ArgTyID);
+ if (!Ops.back())
+ return error("Invalid record");
+ }
+
+ if (!FTy->isVarArg()) {
+ if (Record.size() != OpNum)
+ return error("Invalid record");
+ } else {
+ // Read type/value pairs for varargs params.
+ while (OpNum != Record.size()) {
+ Value *Op;
+ unsigned OpTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
+ return error("Invalid record");
+ Ops.push_back(Op);
+ ArgTyIDs.push_back(OpTypeID);
+ }
+ }
+
+ // Upgrade the bundles if needed.
+ if (!OperandBundles.empty())
+ UpgradeOperandBundles(OperandBundles);
+
+ I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
+ OperandBundles);
+ ResTypeID = getContainedTypeID(FTyID);
+ OperandBundles.clear();
+ InstructionList.push_back(I);
+ cast<InvokeInst>(I)->setCallingConv(
+ static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
+ cast<InvokeInst>(I)->setAttributes(PAL);
+ if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
+ I->deleteValue();
+ return Err;
+ }
+
+ break;
+ }
+ case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
+ unsigned Idx = 0;
+ Value *Val = nullptr;
+ unsigned ValTypeID;
+ if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
+ return error("Invalid record");
+ I = ResumeInst::Create(Val);
+ InstructionList.push_back(I);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_CALLBR: {
+ // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
+ unsigned OpNum = 0;
+ AttributeList PAL = getAttributes(Record[OpNum++]);
+ unsigned CCInfo = Record[OpNum++];
+
+ BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
+ unsigned NumIndirectDests = Record[OpNum++];
+ SmallVector<BasicBlock *, 16> IndirectDests;
+ for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
+ IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
+
+ unsigned FTyID = InvalidTypeID;
+ FunctionType *FTy = nullptr;
+ if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
+ FTyID = Record[OpNum++];
+ FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
+ if (!FTy)
+ return error("Explicit call type is not a function type");
+ }
+
+ Value *Callee;
+ unsigned CalleeTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
+ CurBB))
+ return error("Invalid record");
+
+ PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
+ if (!OpTy)
+ return error("Callee is not a pointer type");
+ if (!FTy) {
+ FTyID = getContainedTypeID(CalleeTypeID);
+ FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
+ if (!FTy)
+ return error("Callee is not of pointer to function type");
+ } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
+ return error("Explicit call type does not match pointee type of "
+ "callee operand");
+ if (Record.size() < FTy->getNumParams() + OpNum)
+ return error("Insufficient operands to call");
+
+ SmallVector<Value*, 16> Args;
+ SmallVector<unsigned, 16> ArgTyIDs;
+ // Read the fixed params.
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
+ Value *Arg;
+ unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
+ if (FTy->getParamType(i)->isLabelTy())
+ Arg = getBasicBlock(Record[OpNum]);
+ else
+ Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
+ ArgTyID, CurBB);
+ if (!Arg)
+ return error("Invalid record");
+ Args.push_back(Arg);
+ ArgTyIDs.push_back(ArgTyID);
+ }
+
+ // Read type/value pairs for varargs params.
+ if (!FTy->isVarArg()) {
+ if (OpNum != Record.size())
+ return error("Invalid record");
+ } else {
+ while (OpNum != Record.size()) {
+ Value *Op;
+ unsigned OpTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
+ return error("Invalid record");
+ Args.push_back(Op);
+ ArgTyIDs.push_back(OpTypeID);
+ }
+ }
+
+ // Upgrade the bundles if needed.
+ if (!OperandBundles.empty())
+ UpgradeOperandBundles(OperandBundles);
+
+ if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
+ InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
+ auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
+ return CI.Type == InlineAsm::isLabel;
+ };
+ if (none_of(ConstraintInfo, IsLabelConstraint)) {
+ // Upgrade explicit blockaddress arguments to label constraints.
+ // Verify that the last arguments are blockaddress arguments that
+ // match the indirect destinations. Clang always generates callbr
+ // in this form. We could support reordering with more effort.
+ unsigned FirstBlockArg = Args.size() - IndirectDests.size();
+ for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
+ unsigned LabelNo = ArgNo - FirstBlockArg;
+ auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
+ if (!BA || BA->getFunction() != F ||
+ LabelNo > IndirectDests.size() ||
+ BA->getBasicBlock() != IndirectDests[LabelNo])
+ return error("callbr argument does not match indirect dest");
+ }
+
+ // Remove blockaddress arguments.
+ Args.erase(Args.begin() + FirstBlockArg, Args.end());
+ ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
+
+ // Recreate the function type with less arguments.
+ SmallVector<Type *> ArgTys;
+ for (Value *Arg : Args)
+ ArgTys.push_back(Arg->getType());
+ FTy =
+ FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
+
+ // Update constraint string to use label constraints.
+ std::string Constraints = IA->getConstraintString();
+ unsigned ArgNo = 0;
+ size_t Pos = 0;
+ for (const auto &CI : ConstraintInfo) {
+ if (CI.hasArg()) {
+ if (ArgNo >= FirstBlockArg)
+ Constraints.insert(Pos, "!");
+ ++ArgNo;
+ }
+
+ // Go to next constraint in string.
+ Pos = Constraints.find(',', Pos);
+ if (Pos == std::string::npos)
+ break;
+ ++Pos;
+ }
+
+ Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
+ IA->hasSideEffects(), IA->isAlignStack(),
+ IA->getDialect(), IA->canThrow());
+ }
+ }
+
+ I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
+ OperandBundles);
+ ResTypeID = getContainedTypeID(FTyID);
+ OperandBundles.clear();
+ InstructionList.push_back(I);
+ cast<CallBrInst>(I)->setCallingConv(
+ static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
+ cast<CallBrInst>(I)->setAttributes(PAL);
+ if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
+ I->deleteValue();
+ return Err;
+ }
+ break;
+ }
+ case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
+ I = new UnreachableInst(Context);
+ InstructionList.push_back(I);
+ break;
+ case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
+ if (Record.empty())
+ return error("Invalid phi record");
+ // The first record specifies the type.
+ unsigned TyID = Record[0];
+ Type *Ty = getTypeByID(TyID);
+ if (!Ty)
+ return error("Invalid phi record");
+
+ // Phi arguments are pairs of records of [value, basic block].
+ // There is an optional final record for fast-math-flags if this phi has a
+ // floating-point type.
+ size_t NumArgs = (Record.size() - 1) / 2;
+ PHINode *PN = PHINode::Create(Ty, NumArgs);
+ if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
+ PN->deleteValue();
+ return error("Invalid phi record");
+ }
+ InstructionList.push_back(PN);
+
+ SmallDenseMap<BasicBlock *, Value *> Args;
+ for (unsigned i = 0; i != NumArgs; i++) {
+ BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
+ if (!BB) {
+ PN->deleteValue();
+ return error("Invalid phi BB");
+ }
+
+ // Phi nodes may contain the same predecessor multiple times, in which
+ // case the incoming value must be identical. Directly reuse the already
+ // seen value here, to avoid expanding a constant expression multiple
+ // times.
+ auto It = Args.find(BB);
+ if (It != Args.end()) {
+ PN->addIncoming(It->second, BB);
+ continue;
+ }
+
+ // If there already is a block for this edge (from a different phi),
+ // use it.
+ BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
+ if (!EdgeBB) {
+ // Otherwise, use a temporary block (that we will discard if it
+ // turns out to be unnecessary).
+ if (!PhiConstExprBB)
+ PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
+ EdgeBB = PhiConstExprBB;
+ }
+
+ // With the new function encoding, it is possible that operands have
+ // negative IDs (for forward references). Use a signed VBR
+ // representation to keep the encoding small.
+ Value *V;
+ if (UseRelativeIDs)
+ V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
+ else
+ V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
+ if (!V) {
+ PN->deleteValue();
+ PhiConstExprBB->eraseFromParent();
+ return error("Invalid phi record");
+ }
+
+ if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
+ ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
+ PhiConstExprBB = nullptr;
+ }
+ PN->addIncoming(V, BB);
+ Args.insert({BB, V});
+ }
+ I = PN;
+ ResTypeID = TyID;
+
+ // If there are an even number of records, the final record must be FMF.
+ if (Record.size() % 2 == 0) {
+ assert(isa<FPMathOperator>(I) && "Unexpected phi type");
+ FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
+ if (FMF.any())
+ I->setFastMathFlags(FMF);
+ }
+
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_LANDINGPAD:
+ case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
+ // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
+ unsigned Idx = 0;
+ if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
+ if (Record.size() < 3)
+ return error("Invalid record");
+ } else {
+ assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
+ if (Record.size() < 4)
+ return error("Invalid record");
+ }
+ ResTypeID = Record[Idx++];
+ Type *Ty = getTypeByID(ResTypeID);
+ if (!Ty)
+ return error("Invalid record");
+ if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
+ Value *PersFn = nullptr;
+ unsigned PersFnTypeID;
+ if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
+ nullptr))
+ return error("Invalid record");
+
+ if (!F->hasPersonalityFn())
+ F->setPersonalityFn(cast<Constant>(PersFn));
+ else if (F->getPersonalityFn() != cast<Constant>(PersFn))
+ return error("Personality function mismatch");
+ }
+
+ bool IsCleanup = !!Record[Idx++];
+ unsigned NumClauses = Record[Idx++];
+ LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
+ LP->setCleanup(IsCleanup);
+ for (unsigned J = 0; J != NumClauses; ++J) {
+ LandingPadInst::ClauseType CT =
+ LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
+ Value *Val;
+ unsigned ValTypeID;
+
+ if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
+ nullptr)) {
+ delete LP;
+ return error("Invalid record");
+ }
+
+ assert((CT != LandingPadInst::Catch ||
+ !isa<ArrayType>(Val->getType())) &&
+ "Catch clause has a invalid type!");
+ assert((CT != LandingPadInst::Filter ||
+ isa<ArrayType>(Val->getType())) &&
+ "Filter clause has invalid type!");
+ LP->addClause(cast<Constant>(Val));
+ }
+
+ I = LP;
+ InstructionList.push_back(I);
+ break;
+ }
+
+ case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
+ if (Record.size() != 4 && Record.size() != 5)
+ return error("Invalid record");
+ using APV = AllocaPackedValues;
+ const uint64_t Rec = Record[3];
+ const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
+ const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
+ unsigned TyID = Record[0];
+ Type *Ty = getTypeByID(TyID);
+ if (!Bitfield::get<APV::ExplicitType>(Rec)) {
+ TyID = getContainedTypeID(TyID);
+ Ty = getTypeByID(TyID);
+ if (!Ty)
+ return error("Missing element type for old-style alloca");
+ }
+ unsigned OpTyID = Record[1];
+ Type *OpTy = getTypeByID(OpTyID);
+ Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
+ MaybeAlign Align;
+ uint64_t AlignExp =
+ Bitfield::get<APV::AlignLower>(Rec) |
+ (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
+ if (Error Err = parseAlignmentValue(AlignExp, Align)) {
+ return Err;
+ }
+ if (!Ty || !Size)
+ return error("Invalid record");
+
+ const DataLayout &DL = TheModule->getDataLayout();
+ unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
+
+ SmallPtrSet<Type *, 4> Visited;
+ if (!Align && !Ty->isSized(&Visited))
+ return error("alloca of unsized type");
+ if (!Align)
+ Align = DL.getPrefTypeAlign(Ty);
+
+ AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
+ AI->setUsedWithInAlloca(InAlloca);
+ AI->setSwiftError(SwiftError);
+ I = AI;
+ ResTypeID = getVirtualTypeID(AI->getType(), TyID);
+ InstructionList.push_back(I);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
+ unsigned OpNum = 0;
+ Value *Op;
+ unsigned OpTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
+ (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
+ return error("Invalid record");
+
+ if (!isa<PointerType>(Op->getType()))
+ return error("Load operand is not a pointer type");
+
+ Type *Ty = nullptr;
+ if (OpNum + 3 == Record.size()) {
+ ResTypeID = Record[OpNum++];
+ Ty = getTypeByID(ResTypeID);
+ } else {
+ ResTypeID = getContainedTypeID(OpTypeID);
+ Ty = getTypeByID(ResTypeID);
+ if (!Ty)
+ return error("Missing element type for old-style load");
+ }
+
+ if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
+ return Err;
+
+ MaybeAlign Align;
+ if (Error Err = parseAlignmentValue(Record[OpNum], Align))
+ return Err;
+ SmallPtrSet<Type *, 4> Visited;
+ if (!Align && !Ty->isSized(&Visited))
+ return error("load of unsized type");
+ if (!Align)
+ Align = TheModule->getDataLayout().getABITypeAlign(Ty);
+ I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
+ InstructionList.push_back(I);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_LOADATOMIC: {
+ // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
+ unsigned OpNum = 0;
+ Value *Op;
+ unsigned OpTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
+ (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
+ return error("Invalid record");
+
+ if (!isa<PointerType>(Op->getType()))
+ return error("Load operand is not a pointer type");
+
+ Type *Ty = nullptr;
+ if (OpNum + 5 == Record.size()) {
+ ResTypeID = Record[OpNum++];
+ Ty = getTypeByID(ResTypeID);
+ } else {
+ ResTypeID = getContainedTypeID(OpTypeID);
+ Ty = getTypeByID(ResTypeID);
+ if (!Ty)
+ return error("Missing element type for old style atomic load");
+ }
+
+ if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
+ return Err;
+
+ AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
+ if (Ordering == AtomicOrdering::NotAtomic ||
+ Ordering == AtomicOrdering::Release ||
+ Ordering == AtomicOrdering::AcquireRelease)
+ return error("Invalid record");
+ if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
+ return error("Invalid record");
+ SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
+
+ MaybeAlign Align;
+ if (Error Err = parseAlignmentValue(Record[OpNum], Align))
+ return Err;
+ if (!Align)
+ return error("Alignment missing from atomic load");
+ I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
+ InstructionList.push_back(I);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_STORE:
+ case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
+ unsigned OpNum = 0;
+ Value *Val, *Ptr;
+ unsigned PtrTypeID, ValTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
+ return error("Invalid record");
+
+ if (BitCode == bitc::FUNC_CODE_INST_STORE) {
+ if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
+ return error("Invalid record");
+ } else {
+ ValTypeID = getContainedTypeID(PtrTypeID);
+ if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
+ ValTypeID, Val, CurBB))
+ return error("Invalid record");
+ }
+
+ if (OpNum + 2 != Record.size())
+ return error("Invalid record");
+
+ if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
+ return Err;
+ MaybeAlign Align;
+ if (Error Err = parseAlignmentValue(Record[OpNum], Align))
+ return Err;
+ SmallPtrSet<Type *, 4> Visited;
+ if (!Align && !Val->getType()->isSized(&Visited))
+ return error("store of unsized type");
+ if (!Align)
+ Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
+ I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
+ InstructionList.push_back(I);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_STOREATOMIC:
+ case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
+ // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
+ unsigned OpNum = 0;
+ Value *Val, *Ptr;
+ unsigned PtrTypeID, ValTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
+ !isa<PointerType>(Ptr->getType()))
+ return error("Invalid record");
+ if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
+ if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
+ return error("Invalid record");
+ } else {
+ ValTypeID = getContainedTypeID(PtrTypeID);
+ if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
+ ValTypeID, Val, CurBB))
+ return error("Invalid record");
+ }
+
+ if (OpNum + 4 != Record.size())
+ return error("Invalid record");
+
+ if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
+ return Err;
+ AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
+ if (Ordering == AtomicOrdering::NotAtomic ||
+ Ordering == AtomicOrdering::Acquire ||
+ Ordering == AtomicOrdering::AcquireRelease)
+ return error("Invalid record");
+ SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
+ if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
+ return error("Invalid record");
+
+ MaybeAlign Align;
+ if (Error Err = parseAlignmentValue(Record[OpNum], Align))
+ return Err;
+ if (!Align)
+ return error("Alignment missing from atomic store");
+ I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
+ InstructionList.push_back(I);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
+ // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
+ // failure_ordering?, weak?]
+ const size_t NumRecords = Record.size();
+ unsigned OpNum = 0;
+ Value *Ptr = nullptr;
+ unsigned PtrTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
+ return error("Invalid record");
+
+ if (!isa<PointerType>(Ptr->getType()))
+ return error("Cmpxchg operand is not a pointer type");
+
+ Value *Cmp = nullptr;
+ unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
+ if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
+ CmpTypeID, Cmp, CurBB))
+ return error("Invalid record");
+
+ Value *New = nullptr;
+ if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
+ New, CurBB) ||
+ NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
+ return error("Invalid record");
+
+ const AtomicOrdering SuccessOrdering =
+ getDecodedOrdering(Record[OpNum + 1]);
+ if (SuccessOrdering == AtomicOrdering::NotAtomic ||
+ SuccessOrdering == AtomicOrdering::Unordered)
+ return error("Invalid record");
+
+ const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
+
+ if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
+ return Err;
+
+ const AtomicOrdering FailureOrdering =
+ NumRecords < 7
+ ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
+ : getDecodedOrdering(Record[OpNum + 3]);
+
+ if (FailureOrdering == AtomicOrdering::NotAtomic ||
+ FailureOrdering == AtomicOrdering::Unordered)
+ return error("Invalid record");
+
+ const Align Alignment(
+ TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
+
+ I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
+ FailureOrdering, SSID);
+ cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
+
+ if (NumRecords < 8) {
+ // Before weak cmpxchgs existed, the instruction simply returned the
+ // value loaded from memory, so bitcode files from that era will be
+ // expecting the first component of a modern cmpxchg.
+ I->insertInto(CurBB, CurBB->end());
+ I = ExtractValueInst::Create(I, 0);
+ ResTypeID = CmpTypeID;
+ } else {
+ cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
+ unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
+ ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
+ }
+
+ InstructionList.push_back(I);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_CMPXCHG: {
+ // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
+ // failure_ordering, weak, align?]
+ const size_t NumRecords = Record.size();
+ unsigned OpNum = 0;
+ Value *Ptr = nullptr;
+ unsigned PtrTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
+ return error("Invalid record");
+
+ if (!isa<PointerType>(Ptr->getType()))
+ return error("Cmpxchg operand is not a pointer type");
+
+ Value *Cmp = nullptr;
+ unsigned CmpTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
+ return error("Invalid record");
+
+ Value *Val = nullptr;
+ if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
+ CurBB))
+ return error("Invalid record");
+
+ if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
+ return error("Invalid record");
+
+ const bool IsVol = Record[OpNum];
+
+ const AtomicOrdering SuccessOrdering =
+ getDecodedOrdering(Record[OpNum + 1]);
+ if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
+ return error("Invalid cmpxchg success ordering");
+
+ const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
+
+ if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
+ return Err;
+
+ const AtomicOrdering FailureOrdering =
+ getDecodedOrdering(Record[OpNum + 3]);
+ if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
+ return error("Invalid cmpxchg failure ordering");
+
+ const bool IsWeak = Record[OpNum + 4];
+
+ MaybeAlign Alignment;
+
+ if (NumRecords == (OpNum + 6)) {
+ if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
+ return Err;
+ }
+ if (!Alignment)
+ Alignment =
+ Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
+
+ I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
+ FailureOrdering, SSID);
+ cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
+ cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
+
+ unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
+ ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
+
+ InstructionList.push_back(I);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
+ case bitc::FUNC_CODE_INST_ATOMICRMW: {
+ // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
+ // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
+ const size_t NumRecords = Record.size();
+ unsigned OpNum = 0;
+
+ Value *Ptr = nullptr;
+ unsigned PtrTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
+ return error("Invalid record");
+
+ if (!isa<PointerType>(Ptr->getType()))
+ return error("Invalid record");
+
+ Value *Val = nullptr;
+ unsigned ValTypeID = InvalidTypeID;
+ if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
+ ValTypeID = getContainedTypeID(PtrTypeID);
+ if (popValue(Record, OpNum, NextValueNo,
+ getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
+ return error("Invalid record");
+ } else {
+ if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
+ return error("Invalid record");
+ }
+
+ if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
+ return error("Invalid record");
+
+ const AtomicRMWInst::BinOp Operation =
+ getDecodedRMWOperation(Record[OpNum]);
+ if (Operation < AtomicRMWInst::FIRST_BINOP ||
+ Operation > AtomicRMWInst::LAST_BINOP)
+ return error("Invalid record");
+
+ const bool IsVol = Record[OpNum + 1];
+
+ const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
+ if (Ordering == AtomicOrdering::NotAtomic ||
+ Ordering == AtomicOrdering::Unordered)
+ return error("Invalid record");
+
+ const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
+
+ MaybeAlign Alignment;
+
+ if (NumRecords == (OpNum + 5)) {
+ if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
+ return Err;
+ }
+
+ if (!Alignment)
+ Alignment =
+ Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
+
+ I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
+ ResTypeID = ValTypeID;
+ cast<AtomicRMWInst>(I)->setVolatile(IsVol);
+
+ InstructionList.push_back(I);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
+ if (2 != Record.size())
+ return error("Invalid record");
+ AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
+ if (Ordering == AtomicOrdering::NotAtomic ||
+ Ordering == AtomicOrdering::Unordered ||
+ Ordering == AtomicOrdering::Monotonic)
+ return error("Invalid record");
+ SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
+ I = new FenceInst(Context, Ordering, SSID);
+ InstructionList.push_back(I);
+ break;
+ }
+ case bitc::FUNC_CODE_INST_CALL: {
+ // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
+ if (Record.size() < 3)
+ return error("Invalid record");
+
+ unsigned OpNum = 0;
+ AttributeList PAL = getAttributes(Record[OpNum++]);
+ unsigned CCInfo = Record[OpNum++];
+
+ FastMathFlags FMF;
+ if ((CCInfo >> bitc::CALL_FMF) & 1) {
+ FMF = getDecodedFastMathFlags(Record[OpNum++]);
+ if (!FMF.any())
+ return error("Fast math flags indicator set for call with no FMF");
+ }
+
+ unsigned FTyID = InvalidTypeID;
+ FunctionType *FTy = nullptr;
+ if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
+ FTyID = Record[OpNum++];
+ FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
+ if (!FTy)
+ return error("Explicit call type is not a function type");
+ }
+
+ Value *Callee;
+ unsigned CalleeTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
+ CurBB))
+ return error("Invalid record");
+
+ PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
+ if (!OpTy)
+ return error("Callee is not a pointer type");
+ if (!FTy) {
+ FTyID = getContainedTypeID(CalleeTypeID);
+ FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
+ if (!FTy)
+ return error("Callee is not of pointer to function type");
+ } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
+ return error("Explicit call type does not match pointee type of "
+ "callee operand");
+ if (Record.size() < FTy->getNumParams() + OpNum)
+ return error("Insufficient operands to call");
+
+ SmallVector<Value*, 16> Args;
+ SmallVector<unsigned, 16> ArgTyIDs;
+ // Read the fixed params.
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
+ unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
+ if (FTy->getParamType(i)->isLabelTy())
+ Args.push_back(getBasicBlock(Record[OpNum]));
+ else
+ Args.push_back(getValue(Record, OpNum, NextValueNo,
+ FTy->getParamType(i), ArgTyID, CurBB));
+ ArgTyIDs.push_back(ArgTyID);
+ if (!Args.back())
+ return error("Invalid record");
+ }
+
+ // Read type/value pairs for varargs params.
+ if (!FTy->isVarArg()) {
+ if (OpNum != Record.size())
+ return error("Invalid record");
+ } else {
+ while (OpNum != Record.size()) {
+ Value *Op;
+ unsigned OpTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
+ return error("Invalid record");
+ Args.push_back(Op);
+ ArgTyIDs.push_back(OpTypeID);
+ }
+ }
+
+ // Upgrade the bundles if needed.
+ if (!OperandBundles.empty())
+ UpgradeOperandBundles(OperandBundles);
+
+ I = CallInst::Create(FTy, Callee, Args, OperandBundles);
+ ResTypeID = getContainedTypeID(FTyID);
+ OperandBundles.clear();
+ InstructionList.push_back(I);
+ cast<CallInst>(I)->setCallingConv(
+ static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
+ CallInst::TailCallKind TCK = CallInst::TCK_None;
+ if (CCInfo & 1 << bitc::CALL_TAIL)
+ TCK = CallInst::TCK_Tail;
+ if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
+ TCK = CallInst::TCK_MustTail;
+ if (CCInfo & (1 << bitc::CALL_NOTAIL))
+ TCK = CallInst::TCK_NoTail;
+ cast<CallInst>(I)->setTailCallKind(TCK);
+ cast<CallInst>(I)->setAttributes(PAL);
+ if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
+ I->deleteValue();
+ return Err;
+ }
+ if (FMF.any()) {
+ if (!isa<FPMathOperator>(I))
+ return error("Fast-math-flags specified for call without "
+ "floating-point scalar or vector return type");
+ I->setFastMathFlags(FMF);
+ }
+ break;
+ }
+ case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
+ if (Record.size() < 3)
+ return error("Invalid record");
+ unsigned OpTyID = Record[0];
+ Type *OpTy = getTypeByID(OpTyID);
+ Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
+ ResTypeID = Record[2];
+ Type *ResTy = getTypeByID(ResTypeID);
+ if (!OpTy || !Op || !ResTy)
+ return error("Invalid record");
+ I = new VAArgInst(Op, ResTy);
+ InstructionList.push_back(I);
+ break;
+ }
+
+ case bitc::FUNC_CODE_OPERAND_BUNDLE: {
+ // A call or an invoke can be optionally prefixed with some variable
+ // number of operand bundle blocks. These blocks are read into
+ // OperandBundles and consumed at the next call or invoke instruction.
+
+ if (Record.empty() || Record[0] >= BundleTags.size())
+ return error("Invalid record");
+
+ std::vector<Value *> Inputs;
+
+ unsigned OpNum = 1;
+ while (OpNum != Record.size()) {
+ Value *Op;
+ unsigned OpTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
+ return error("Invalid record");
+ Inputs.push_back(Op);
+ }
+
+ OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
+ continue;
+ }
+
+ case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
+ unsigned OpNum = 0;
+ Value *Op = nullptr;
+ unsigned OpTypeID;
+ if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
+ return error("Invalid record");
+ if (OpNum != Record.size())
+ return error("Invalid record");
+
+ I = new FreezeInst(Op);
+ ResTypeID = OpTypeID;
+ InstructionList.push_back(I);
+ break;
+ }
+ }
+
+ // Add instruction to end of current BB. If there is no current BB, reject
+ // this file.
+ if (!CurBB) {
+ I->deleteValue();
+ return error("Invalid instruction with no BB");
+ }
+ if (!OperandBundles.empty()) {
+ I->deleteValue();
+ return error("Operand bundles found with no consumer");
+ }
+ I->insertInto(CurBB, CurBB->end());
+
+ // If this was a terminator instruction, move to the next block.
+ if (I->isTerminator()) {
+ ++CurBBNo;
+ CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
+ }
+
+ // Non-void values get registered in the value table for future use.
+ if (!I->getType()->isVoidTy()) {
+ assert(I->getType() == getTypeByID(ResTypeID) &&
+ "Incorrect result type ID");
+ if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
+ return Err;
+ }
+ }
+
+OutOfRecordLoop:
+
+ if (!OperandBundles.empty())
+ return error("Operand bundles found with no consumer");
+
+ // Check the function list for unresolved values.
+ if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
+ if (!A->getParent()) {
+ // We found at least one unresolved value. Nuke them all to avoid leaks.
+ for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
+ if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
+ A->replaceAllUsesWith(PoisonValue::get(A->getType()));
+ delete A;
+ }
+ }
+ return error("Never resolved value found in function");
+ }
+ }
+
+ // Unexpected unresolved metadata about to be dropped.
+ if (MDLoader->hasFwdRefs())
+ return error("Invalid function metadata: outgoing forward refs");
+
+ if (PhiConstExprBB)
+ PhiConstExprBB->eraseFromParent();
+
+ for (const auto &Pair : ConstExprEdgeBBs) {
+ BasicBlock *From = Pair.first.first;
+ BasicBlock *To = Pair.first.second;
+ BasicBlock *EdgeBB = Pair.second;
+ BranchInst::Create(To, EdgeBB);
+ From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
+ To->replacePhiUsesWith(From, EdgeBB);
+ EdgeBB->moveBefore(To);
+ }
+
+ // Trim the value list down to the size it was before we parsed this function.
+ ValueList.shrinkTo(ModuleValueListSize);
+ MDLoader->shrinkTo(ModuleMDLoaderSize);
+ std::vector<BasicBlock*>().swap(FunctionBBs);
+ return Error::success();
+}
+
+/// Find the function body in the bitcode stream
+Error BitcodeReader::findFunctionInStream(
+ Function *F,
+ DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
+ while (DeferredFunctionInfoIterator->second == 0) {
+ // This is the fallback handling for the old format bitcode that
+ // didn't contain the function index in the VST, or when we have
+ // an anonymous function which would not have a VST entry.
+ // Assert that we have one of those two cases.
+ assert(VSTOffset == 0 || !F->hasName());
+ // Parse the next body in the stream and set its position in the
+ // DeferredFunctionInfo map.
+ if (Error Err = rememberAndSkipFunctionBodies())
+ return Err;
+ }
+ return Error::success();
+}
+
+SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
+ if (Val == SyncScope::SingleThread || Val == SyncScope::System)
+ return SyncScope::ID(Val);
+ if (Val >= SSIDs.size())
+ return SyncScope::System; // Map unknown synchronization scopes to system.
+ return SSIDs[Val];
+}
+
+//===----------------------------------------------------------------------===//
+// GVMaterializer implementation
+//===----------------------------------------------------------------------===//
+
+Error BitcodeReader::materialize(GlobalValue *GV) {
+ Function *F = dyn_cast<Function>(GV);
+ // If it's not a function or is already material, ignore the request.
+ if (!F || !F->isMaterializable())
+ return Error::success();
+
+ DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
+ assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
+ // If its position is recorded as 0, its body is somewhere in the stream
+ // but we haven't seen it yet.
+ if (DFII->second == 0)
+ if (Error Err = findFunctionInStream(F, DFII))
+ return Err;
+
+ // Materialize metadata before parsing any function bodies.
+ if (Error Err = materializeMetadata())
+ return Err;
+
+ // Move the bit stream to the saved position of the deferred function body.
+ if (Error JumpFailed = Stream.JumpToBit(DFII->second))
+ return JumpFailed;
+ if (Error Err = parseFunctionBody(F))
+ return Err;
+ F->setIsMaterializable(false);
+
+ if (StripDebugInfo)
+ stripDebugInfo(*F);
+
+ // Upgrade any old intrinsic calls in the function.
+ for (auto &I : UpgradedIntrinsics) {
+ for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
+ if (CallInst *CI = dyn_cast<CallInst>(U))
+ UpgradeIntrinsicCall(CI, I.second);
+ }
+
+ // Finish fn->subprogram upgrade for materialized functions.
+ if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
+ F->setSubprogram(SP);
+
+ // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
+ if (!MDLoader->isStrippingTBAA()) {
+ for (auto &I : instructions(F)) {
+ MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
+ if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
+ continue;
+ MDLoader->setStripTBAA(true);
+ stripTBAA(F->getParent());
+ }
+ }
+
+ for (auto &I : instructions(F)) {
+ // "Upgrade" older incorrect branch weights by dropping them.
+ if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
+ if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
+ MDString *MDS = cast<MDString>(MD->getOperand(0));
+ StringRef ProfName = MDS->getString();
+ // Check consistency of !prof branch_weights metadata.
+ if (!ProfName.equals("branch_weights"))
+ continue;
+ unsigned ExpectedNumOperands = 0;
+ if (BranchInst *BI = dyn_cast<BranchInst>(&I))
+ ExpectedNumOperands = BI->getNumSuccessors();
+ else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
+ ExpectedNumOperands = SI->getNumSuccessors();
+ else if (isa<CallInst>(&I))
+ ExpectedNumOperands = 1;
+ else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
+ ExpectedNumOperands = IBI->getNumDestinations();
+ else if (isa<SelectInst>(&I))
+ ExpectedNumOperands = 2;
+ else
+ continue; // ignore and continue.
+
+ // If branch weight doesn't match, just strip branch weight.
+ if (MD->getNumOperands() != 1 + ExpectedNumOperands)
+ I.setMetadata(LLVMContext::MD_prof, nullptr);
+ }
+ }
+
+ // Remove incompatible attributes on function calls.
+ if (auto *CI = dyn_cast<CallBase>(&I)) {
+ CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
+ CI->getFunctionType()->getReturnType()));
+
+ for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
+ CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
+ CI->getArgOperand(ArgNo)->getType()));
+ }
+ }
+
+ // Look for functions that rely on old function attribute behavior.
+ UpgradeFunctionAttributes(*F);
+
+ // Bring in any functions that this function forward-referenced via
+ // blockaddresses.
+ return materializeForwardReferencedFunctions();
+}
+
+Error BitcodeReader::materializeModule() {
+ if (Error Err = materializeMetadata())
+ return Err;
+
+ // Promise to materialize all forward references.
+ WillMaterializeAllForwardRefs = true;
+
+ // Iterate over the module, deserializing any functions that are still on
+ // disk.
+ for (Function &F : *TheModule) {
+ if (Error Err = materialize(&F))
+ return Err;
+ }
+ // At this point, if there are any function bodies, parse the rest of
+ // the bits in the module past the last function block we have recorded
+ // through either lazy scanning or the VST.
+ if (LastFunctionBlockBit || NextUnreadBit)
+ if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
+ ? LastFunctionBlockBit
+ : NextUnreadBit))
+ return Err;
+
+ // Check that all block address forward references got resolved (as we
+ // promised above).
+ if (!BasicBlockFwdRefs.empty())
+ return error("Never resolved function from blockaddress");
+
+ // Upgrade any intrinsic calls that slipped through (should not happen!) and
+ // delete the old functions to clean up. We can't do this unless the entire
+ // module is materialized because there could always be another function body
+ // with calls to the old function.
+ for (auto &I : UpgradedIntrinsics) {
+ for (auto *U : I.first->users()) {
+ if (CallInst *CI = dyn_cast<CallInst>(U))
+ UpgradeIntrinsicCall(CI, I.second);
+ }
+ if (!I.first->use_empty())
+ I.first->replaceAllUsesWith(I.second);
+ I.first->eraseFromParent();
+ }
+ UpgradedIntrinsics.clear();
+
+ UpgradeDebugInfo(*TheModule);
+
+ UpgradeModuleFlags(*TheModule);
+
+ UpgradeARCRuntime(*TheModule);
+
+ return Error::success();
+}
+
+std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
+ return IdentifiedStructTypes;
+}
+
+ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
+ BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
+ StringRef ModulePath, unsigned ModuleId,
+ std::function<bool(GlobalValue::GUID)> IsPrevailing)
+ : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
+ ModulePath(ModulePath), ModuleId(ModuleId), IsPrevailing(IsPrevailing) {}
+
+void ModuleSummaryIndexBitcodeReader::addThisModule() {
+ TheIndex.addModule(ModulePath, ModuleId);
+}
+
+ModuleSummaryIndex::ModuleInfo *
+ModuleSummaryIndexBitcodeReader::getThisModule() {
+ return TheIndex.getModule(ModulePath);
+}
+
+template <bool AllowNullValueInfo>
+std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
+ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
+ auto VGI = ValueIdToValueInfoMap[ValueId];
+ // We can have a null value info for memprof callsite info records in
+ // distributed ThinLTO index files when the callee function summary is not
+ // included in the index. The bitcode writer records 0 in that case,
+ // and the caller of this helper will set AllowNullValueInfo to true.
+ assert(AllowNullValueInfo || std::get<0>(VGI));
+ return VGI;
+}
+
+void ModuleSummaryIndexBitcodeReader::setValueGUID(
+ uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
+ StringRef SourceFileName) {
+ std::string GlobalId =
+ GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
+ auto ValueGUID = GlobalValue::getGUID(GlobalId);
+ auto OriginalNameID = ValueGUID;
+ if (GlobalValue::isLocalLinkage(Linkage))
+ OriginalNameID = GlobalValue::getGUID(ValueName);
+ if (PrintSummaryGUIDs)
+ dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
+ << ValueName << "\n";
+
+ // UseStrtab is false for legacy summary formats and value names are
+ // created on stack. In that case we save the name in a string saver in
+ // the index so that the value name can be recorded.
+ ValueIdToValueInfoMap[ValueID] = std::make_tuple(
+ TheIndex.getOrInsertValueInfo(
+ ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
+ OriginalNameID, ValueGUID);
+}
+
+// Specialized value symbol table parser used when reading module index
+// blocks where we don't actually create global values. The parsed information
+// is saved in the bitcode reader for use when later parsing summaries.
+Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
+ uint64_t Offset,
+ DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
+ // With a strtab the VST is not required to parse the summary.
+ if (UseStrtab)
+ return Error::success();
+
+ assert(Offset > 0 && "Expected non-zero VST offset");
+ Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
+ if (!MaybeCurrentBit)
+ return MaybeCurrentBit.takeError();
+ uint64_t CurrentBit = MaybeCurrentBit.get();
+
+ if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
+ return Err;
+
+ SmallVector<uint64_t, 64> Record;
+
+ // Read all the records for this value table.
+ SmallString<128> ValueName;
+
+ while (true) {
+ Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::SubBlock: // Handled for us already.
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ // Done parsing VST, jump back to wherever we came from.
+ if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
+ return JumpFailed;
+ return Error::success();
+ case BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Read a record.
+ Record.clear();
+ Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeRecord)
+ return MaybeRecord.takeError();
+ switch (MaybeRecord.get()) {
+ default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
+ break;
+ case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
+ if (convertToString(Record, 1, ValueName))
+ return error("Invalid record");
+ unsigned ValueID = Record[0];
+ assert(!SourceFileName.empty());
+ auto VLI = ValueIdToLinkageMap.find(ValueID);
+ assert(VLI != ValueIdToLinkageMap.end() &&
+ "No linkage found for VST entry?");
+ auto Linkage = VLI->second;
+ setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
+ ValueName.clear();
+ break;
+ }
+ case bitc::VST_CODE_FNENTRY: {
+ // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
+ if (convertToString(Record, 2, ValueName))
+ return error("Invalid record");
+ unsigned ValueID = Record[0];
+ assert(!SourceFileName.empty());
+ auto VLI = ValueIdToLinkageMap.find(ValueID);
+ assert(VLI != ValueIdToLinkageMap.end() &&
+ "No linkage found for VST entry?");
+ auto Linkage = VLI->second;
+ setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
+ ValueName.clear();
+ break;
+ }
+ case bitc::VST_CODE_COMBINED_ENTRY: {
+ // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
+ unsigned ValueID = Record[0];
+ GlobalValue::GUID RefGUID = Record[1];
+ // The "original name", which is the second value of the pair will be
+ // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
+ ValueIdToValueInfoMap[ValueID] = std::make_tuple(
+ TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
+ break;
+ }
+ }
+ }
+}
+
+// Parse just the blocks needed for building the index out of the module.
+// At the end of this routine the module Index is populated with a map
+// from global value id to GlobalValueSummary objects.
+Error ModuleSummaryIndexBitcodeReader::parseModule() {
+ if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
+ return Err;
+
+ SmallVector<uint64_t, 64> Record;
+ DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
+ unsigned ValueId = 0;
+
+ // Read the index for this module.
+ while (true) {
+ Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ llvm::BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ return Error::success();
+
+ case BitstreamEntry::SubBlock:
+ switch (Entry.ID) {
+ default: // Skip unknown content.
+ if (Error Err = Stream.SkipBlock())
+ return Err;
+ break;
+ case bitc::BLOCKINFO_BLOCK_ID:
+ // Need to parse these to get abbrev ids (e.g. for VST)
+ if (Error Err = readBlockInfo())
+ return Err;
+ break;
+ case bitc::VALUE_SYMTAB_BLOCK_ID:
+ // Should have been parsed earlier via VSTOffset, unless there
+ // is no summary section.
+ assert(((SeenValueSymbolTable && VSTOffset > 0) ||
+ !SeenGlobalValSummary) &&
+ "Expected early VST parse via VSTOffset record");
+ if (Error Err = Stream.SkipBlock())
+ return Err;
+ break;
+ case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
+ case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
+ // Add the module if it is a per-module index (has a source file name).
+ if (!SourceFileName.empty())
+ addThisModule();
+ assert(!SeenValueSymbolTable &&
+ "Already read VST when parsing summary block?");
+ // We might not have a VST if there were no values in the
+ // summary. An empty summary block generated when we are
+ // performing ThinLTO compiles so we don't later invoke
+ // the regular LTO process on them.
+ if (VSTOffset > 0) {
+ if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
+ return Err;
+ SeenValueSymbolTable = true;
+ }
+ SeenGlobalValSummary = true;
+ if (Error Err = parseEntireSummary(Entry.ID))
+ return Err;
+ break;
+ case bitc::MODULE_STRTAB_BLOCK_ID:
+ if (Error Err = parseModuleStringTable())
+ return Err;
+ break;
+ }
+ continue;
+
+ case BitstreamEntry::Record: {
+ Record.clear();
+ Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeBitCode)
+ return MaybeBitCode.takeError();
+ switch (MaybeBitCode.get()) {
+ default:
+ break; // Default behavior, ignore unknown content.
+ case bitc::MODULE_CODE_VERSION: {
+ if (Error Err = parseVersionRecord(Record).takeError())
+ return Err;
+ break;
+ }
+ /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
+ case bitc::MODULE_CODE_SOURCE_FILENAME: {
+ SmallString<128> ValueName;
+ if (convertToString(Record, 0, ValueName))
+ return error("Invalid record");
+ SourceFileName = ValueName.c_str();
+ break;
+ }
+ /// MODULE_CODE_HASH: [5*i32]
+ case bitc::MODULE_CODE_HASH: {
+ if (Record.size() != 5)
+ return error("Invalid hash length " + Twine(Record.size()).str());
+ auto &Hash = getThisModule()->second.second;
+ int Pos = 0;
+ for (auto &Val : Record) {
+ assert(!(Val >> 32) && "Unexpected high bits set");
+ Hash[Pos++] = Val;
+ }
+ break;
+ }
+ /// MODULE_CODE_VSTOFFSET: [offset]
+ case bitc::MODULE_CODE_VSTOFFSET:
+ if (Record.empty())
+ return error("Invalid record");
+ // Note that we subtract 1 here because the offset is relative to one
+ // word before the start of the identification or module block, which
+ // was historically always the start of the regular bitcode header.
+ VSTOffset = Record[0] - 1;
+ break;
+ // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
+ // v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
+ // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
+ // v2: [strtab offset, strtab size, v1]
+ case bitc::MODULE_CODE_GLOBALVAR:
+ case bitc::MODULE_CODE_FUNCTION:
+ case bitc::MODULE_CODE_ALIAS: {
+ StringRef Name;
+ ArrayRef<uint64_t> GVRecord;
+ std::tie(Name, GVRecord) = readNameFromStrtab(Record);
+ if (GVRecord.size() <= 3)
+ return error("Invalid record");
+ uint64_t RawLinkage = GVRecord[3];
+ GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
+ if (!UseStrtab) {
+ ValueIdToLinkageMap[ValueId++] = Linkage;
+ break;
+ }
+
+ setValueGUID(ValueId++, Name, Linkage, SourceFileName);
+ break;
+ }
+ }
+ }
+ continue;
+ }
+ }
+}
+
+std::vector<ValueInfo>
+ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
+ std::vector<ValueInfo> Ret;
+ Ret.reserve(Record.size());
+ for (uint64_t RefValueId : Record)
+ Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
+ return Ret;
+}
+
+std::vector<FunctionSummary::EdgeTy>
+ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
+ bool IsOldProfileFormat,
+ bool HasProfile, bool HasRelBF) {
+ std::vector<FunctionSummary::EdgeTy> Ret;
+ Ret.reserve(Record.size());
+ for (unsigned I = 0, E = Record.size(); I != E; ++I) {
+ CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
+ uint64_t RelBF = 0;
+ ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
+ if (IsOldProfileFormat) {
+ I += 1; // Skip old callsitecount field
+ if (HasProfile)
+ I += 1; // Skip old profilecount field
+ } else if (HasProfile)
+ Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
+ else if (HasRelBF)
+ RelBF = Record[++I];
+ Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
+ }
+ return Ret;
+}
+
+static void
+parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
+ WholeProgramDevirtResolution &Wpd) {
+ uint64_t ArgNum = Record[Slot++];
+ WholeProgramDevirtResolution::ByArg &B =
+ Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
+ Slot += ArgNum;
+
+ B.TheKind =
+ static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
+ B.Info = Record[Slot++];
+ B.Byte = Record[Slot++];
+ B.Bit = Record[Slot++];
+}
+
+static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
+ StringRef Strtab, size_t &Slot,
+ TypeIdSummary &TypeId) {
+ uint64_t Id = Record[Slot++];
+ WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
+
+ Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
+ Wpd.SingleImplName = {Strtab.data() + Record[Slot],
+ static_cast<size_t>(Record[Slot + 1])};
+ Slot += 2;
+
+ uint64_t ResByArgNum = Record[Slot++];
+ for (uint64_t I = 0; I != ResByArgNum; ++I)
+ parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
+}
+
+static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
+ StringRef Strtab,
+ ModuleSummaryIndex &TheIndex) {
+ size_t Slot = 0;
+ TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
+ {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
+ Slot += 2;
+
+ TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
+ TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
+ TypeId.TTRes.AlignLog2 = Record[Slot++];
+ TypeId.TTRes.SizeM1 = Record[Slot++];
+ TypeId.TTRes.BitMask = Record[Slot++];
+ TypeId.TTRes.InlineBits = Record[Slot++];
+
+ while (Slot < Record.size())
+ parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
+}
+
+std::vector<FunctionSummary::ParamAccess>
+ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
+ auto ReadRange = [&]() {
+ APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
+ BitcodeReader::decodeSignRotatedValue(Record.front()));
+ Record = Record.drop_front();
+ APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
+ BitcodeReader::decodeSignRotatedValue(Record.front()));
+ Record = Record.drop_front();
+ ConstantRange Range{Lower, Upper};
+ assert(!Range.isFullSet());
+ assert(!Range.isUpperSignWrapped());
+ return Range;
+ };
+
+ std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
+ while (!Record.empty()) {
+ PendingParamAccesses.emplace_back();
+ FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
+ ParamAccess.ParamNo = Record.front();
+ Record = Record.drop_front();
+ ParamAccess.Use = ReadRange();
+ ParamAccess.Calls.resize(Record.front());
+ Record = Record.drop_front();
+ for (auto &Call : ParamAccess.Calls) {
+ Call.ParamNo = Record.front();
+ Record = Record.drop_front();
+ Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
+ Record = Record.drop_front();
+ Call.Offsets = ReadRange();
+ }
+ }
+ return PendingParamAccesses;
+}
+
+void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
+ ArrayRef<uint64_t> Record, size_t &Slot,
+ TypeIdCompatibleVtableInfo &TypeId) {
+ uint64_t Offset = Record[Slot++];
+ ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
+ TypeId.push_back({Offset, Callee});
+}
+
+void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
+ ArrayRef<uint64_t> Record) {
+ size_t Slot = 0;
+ TypeIdCompatibleVtableInfo &TypeId =
+ TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
+ {Strtab.data() + Record[Slot],
+ static_cast<size_t>(Record[Slot + 1])});
+ Slot += 2;
+
+ while (Slot < Record.size())
+ parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
+}
+
+static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
+ unsigned WOCnt) {
+ // Readonly and writeonly refs are in the end of the refs list.
+ assert(ROCnt + WOCnt <= Refs.size());
+ unsigned FirstWORef = Refs.size() - WOCnt;
+ unsigned RefNo = FirstWORef - ROCnt;
+ for (; RefNo < FirstWORef; ++RefNo)
+ Refs[RefNo].setReadOnly();
+ for (; RefNo < Refs.size(); ++RefNo)
+ Refs[RefNo].setWriteOnly();
+}
+
+// Eagerly parse the entire summary block. This populates the GlobalValueSummary
+// objects in the index.
+Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
+ if (Error Err = Stream.EnterSubBlock(ID))
+ return Err;
+ SmallVector<uint64_t, 64> Record;
+
+ // Parse version
+ {
+ Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ BitstreamEntry Entry = MaybeEntry.get();
+
+ if (Entry.Kind != BitstreamEntry::Record)
+ return error("Invalid Summary Block: record for version expected");
+ Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeRecord)
+ return MaybeRecord.takeError();
+ if (MaybeRecord.get() != bitc::FS_VERSION)
+ return error("Invalid Summary Block: version expected");
+ }
+ const uint64_t Version = Record[0];
+ const bool IsOldProfileFormat = Version == 1;
+ if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
+ return error("Invalid summary version " + Twine(Version) +
+ ". Version should be in the range [1-" +
+ Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
+ "].");
+ Record.clear();
+
+ // Keep around the last seen summary to be used when we see an optional
+ // "OriginalName" attachement.
+ GlobalValueSummary *LastSeenSummary = nullptr;
+ GlobalValue::GUID LastSeenGUID = 0;
+
+ // We can expect to see any number of type ID information records before
+ // each function summary records; these variables store the information
+ // collected so far so that it can be used to create the summary object.
+ std::vector<GlobalValue::GUID> PendingTypeTests;
+ std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
+ PendingTypeCheckedLoadVCalls;
+ std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
+ PendingTypeCheckedLoadConstVCalls;
+ std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
+
+ std::vector<CallsiteInfo> PendingCallsites;
+ std::vector<AllocInfo> PendingAllocs;
+
+ while (true) {
+ Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::SubBlock: // Handled for us already.
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ return Error::success();
+ case BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Read a record. The record format depends on whether this
+ // is a per-module index or a combined index file. In the per-module
+ // case the records contain the associated value's ID for correlation
+ // with VST entries. In the combined index the correlation is done
+ // via the bitcode offset of the summary records (which were saved
+ // in the combined index VST entries). The records also contain
+ // information used for ThinLTO renaming and importing.
+ Record.clear();
+ Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeBitCode)
+ return MaybeBitCode.takeError();
+ switch (unsigned BitCode = MaybeBitCode.get()) {
+ default: // Default behavior: ignore.
+ break;
+ case bitc::FS_FLAGS: { // [flags]
+ TheIndex.setFlags(Record[0]);
+ break;
+ }
+ case bitc::FS_VALUE_GUID: { // [valueid, refguid]
+ uint64_t ValueID = Record[0];
+ GlobalValue::GUID RefGUID = Record[1];
+ ValueIdToValueInfoMap[ValueID] = std::make_tuple(
+ TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
+ break;
+ }
+ // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
+ // numrefs x valueid, n x (valueid)]
+ // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
+ // numrefs x valueid,
+ // n x (valueid, hotness)]
+ // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
+ // numrefs x valueid,
+ // n x (valueid, relblockfreq)]
+ case bitc::FS_PERMODULE:
+ case bitc::FS_PERMODULE_RELBF:
+ case bitc::FS_PERMODULE_PROFILE: {
+ unsigned ValueID = Record[0];
+ uint64_t RawFlags = Record[1];
+ unsigned InstCount = Record[2];
+ uint64_t RawFunFlags = 0;
+ unsigned NumRefs = Record[3];
+ unsigned NumRORefs = 0, NumWORefs = 0;
+ int RefListStartIndex = 4;
+ if (Version >= 4) {
+ RawFunFlags = Record[3];
+ NumRefs = Record[4];
+ RefListStartIndex = 5;
+ if (Version >= 5) {
+ NumRORefs = Record[5];
+ RefListStartIndex = 6;
+ if (Version >= 7) {
+ NumWORefs = Record[6];
+ RefListStartIndex = 7;
+ }
+ }
+ }
+
+ auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
+ // The module path string ref set in the summary must be owned by the
+ // index's module string table. Since we don't have a module path
+ // string table section in the per-module index, we create a single
+ // module path string table entry with an empty (0) ID to take
+ // ownership.
+ int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
+ assert(Record.size() >= RefListStartIndex + NumRefs &&
+ "Record size inconsistent with number of references");
+ std::vector<ValueInfo> Refs = makeRefList(
+ ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
+ bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
+ bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
+ std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
+ ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
+ IsOldProfileFormat, HasProfile, HasRelBF);
+ setSpecialRefs(Refs, NumRORefs, NumWORefs);
+ auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
+ // In order to save memory, only record the memprof summaries if this is
+ // the prevailing copy of a symbol. The linker doesn't resolve local
+ // linkage values so don't check whether those are prevailing.
+ auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
+ if (IsPrevailing &&
+ !GlobalValue::isLocalLinkage(LT) &&
+ !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
+ PendingCallsites.clear();
+ PendingAllocs.clear();
+ }
+ auto FS = std::make_unique<FunctionSummary>(
+ Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
+ std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
+ std::move(PendingTypeTestAssumeVCalls),
+ std::move(PendingTypeCheckedLoadVCalls),
+ std::move(PendingTypeTestAssumeConstVCalls),
+ std::move(PendingTypeCheckedLoadConstVCalls),
+ std::move(PendingParamAccesses), std::move(PendingCallsites),
+ std::move(PendingAllocs));
+ FS->setModulePath(getThisModule()->first());
+ FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
+ TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
+ std::move(FS));
+ break;
+ }
+ // FS_ALIAS: [valueid, flags, valueid]
+ // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
+ // they expect all aliasee summaries to be available.
+ case bitc::FS_ALIAS: {
+ unsigned ValueID = Record[0];
+ uint64_t RawFlags = Record[1];
+ unsigned AliaseeID = Record[2];
+ auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
+ auto AS = std::make_unique<AliasSummary>(Flags);
+ // The module path string ref set in the summary must be owned by the
+ // index's module string table. Since we don't have a module path
+ // string table section in the per-module index, we create a single
+ // module path string table entry with an empty (0) ID to take
+ // ownership.
+ AS->setModulePath(getThisModule()->first());
+
+ auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
+ auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
+ if (!AliaseeInModule)
+ return error("Alias expects aliasee summary to be parsed");
+ AS->setAliasee(AliaseeVI, AliaseeInModule);
+
+ auto GUID = getValueInfoFromValueId(ValueID);
+ AS->setOriginalName(std::get<1>(GUID));
+ TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
+ break;
+ }
+ // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
+ case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
+ unsigned ValueID = Record[0];
+ uint64_t RawFlags = Record[1];
+ unsigned RefArrayStart = 2;
+ GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
+ /* WriteOnly */ false,
+ /* Constant */ false,
+ GlobalObject::VCallVisibilityPublic);
+ auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
+ if (Version >= 5) {
+ GVF = getDecodedGVarFlags(Record[2]);
+ RefArrayStart = 3;
+ }
+ std::vector<ValueInfo> Refs =
+ makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
+ auto FS =
+ std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
+ FS->setModulePath(getThisModule()->first());
+ auto GUID = getValueInfoFromValueId(ValueID);
+ FS->setOriginalName(std::get<1>(GUID));
+ TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
+ break;
+ }
+ // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
+ // numrefs, numrefs x valueid,
+ // n x (valueid, offset)]
+ case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
+ unsigned ValueID = Record[0];
+ uint64_t RawFlags = Record[1];
+ GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
+ unsigned NumRefs = Record[3];
+ unsigned RefListStartIndex = 4;
+ unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
+ auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
+ std::vector<ValueInfo> Refs = makeRefList(
+ ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
+ VTableFuncList VTableFuncs;
+ for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
+ ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
+ uint64_t Offset = Record[++I];
+ VTableFuncs.push_back({Callee, Offset});
+ }
+ auto VS =
+ std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
+ VS->setModulePath(getThisModule()->first());
+ VS->setVTableFuncs(VTableFuncs);
+ auto GUID = getValueInfoFromValueId(ValueID);
+ VS->setOriginalName(std::get<1>(GUID));
+ TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
+ break;
+ }
+ // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
+ // numrefs x valueid, n x (valueid)]
+ // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
+ // numrefs x valueid, n x (valueid, hotness)]
+ case bitc::FS_COMBINED:
+ case bitc::FS_COMBINED_PROFILE: {
+ unsigned ValueID = Record[0];
+ uint64_t ModuleId = Record[1];
+ uint64_t RawFlags = Record[2];
+ unsigned InstCount = Record[3];
+ uint64_t RawFunFlags = 0;
+ uint64_t EntryCount = 0;
+ unsigned NumRefs = Record[4];
+ unsigned NumRORefs = 0, NumWORefs = 0;
+ int RefListStartIndex = 5;
+
+ if (Version >= 4) {
+ RawFunFlags = Record[4];
+ RefListStartIndex = 6;
+ size_t NumRefsIndex = 5;
+ if (Version >= 5) {
+ unsigned NumRORefsOffset = 1;
+ RefListStartIndex = 7;
+ if (Version >= 6) {
+ NumRefsIndex = 6;
+ EntryCount = Record[5];
+ RefListStartIndex = 8;
+ if (Version >= 7) {
+ RefListStartIndex = 9;
+ NumWORefs = Record[8];
+ NumRORefsOffset = 2;
+ }
+ }
+ NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
+ }
+ NumRefs = Record[NumRefsIndex];
+ }
+
+ auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
+ int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
+ assert(Record.size() >= RefListStartIndex + NumRefs &&
+ "Record size inconsistent with number of references");
+ std::vector<ValueInfo> Refs = makeRefList(
+ ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
+ bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
+ std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
+ ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
+ IsOldProfileFormat, HasProfile, false);
+ ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
+ setSpecialRefs(Refs, NumRORefs, NumWORefs);
+ auto FS = std::make_unique<FunctionSummary>(
+ Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
+ std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
+ std::move(PendingTypeTestAssumeVCalls),
+ std::move(PendingTypeCheckedLoadVCalls),
+ std::move(PendingTypeTestAssumeConstVCalls),
+ std::move(PendingTypeCheckedLoadConstVCalls),
+ std::move(PendingParamAccesses), std::move(PendingCallsites),
+ std::move(PendingAllocs));
+ LastSeenSummary = FS.get();
+ LastSeenGUID = VI.getGUID();
+ FS->setModulePath(ModuleIdMap[ModuleId]);
+ TheIndex.addGlobalValueSummary(VI, std::move(FS));
+ break;
+ }
+ // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
+ // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
+ // they expect all aliasee summaries to be available.
+ case bitc::FS_COMBINED_ALIAS: {
+ unsigned ValueID = Record[0];
+ uint64_t ModuleId = Record[1];
+ uint64_t RawFlags = Record[2];
+ unsigned AliaseeValueId = Record[3];
+ auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
+ auto AS = std::make_unique<AliasSummary>(Flags);
+ LastSeenSummary = AS.get();
+ AS->setModulePath(ModuleIdMap[ModuleId]);
+
+ auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
+ auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
+ AS->setAliasee(AliaseeVI, AliaseeInModule);
+
+ ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
+ LastSeenGUID = VI.getGUID();
+ TheIndex.addGlobalValueSummary(VI, std::move(AS));
+ break;
+ }
+ // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
+ case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
+ unsigned ValueID = Record[0];
+ uint64_t ModuleId = Record[1];
+ uint64_t RawFlags = Record[2];
+ unsigned RefArrayStart = 3;
+ GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
+ /* WriteOnly */ false,
+ /* Constant */ false,
+ GlobalObject::VCallVisibilityPublic);
+ auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
+ if (Version >= 5) {
+ GVF = getDecodedGVarFlags(Record[3]);
+ RefArrayStart = 4;
+ }
+ std::vector<ValueInfo> Refs =
+ makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
+ auto FS =
+ std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
+ LastSeenSummary = FS.get();
+ FS->setModulePath(ModuleIdMap[ModuleId]);
+ ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
+ LastSeenGUID = VI.getGUID();
+ TheIndex.addGlobalValueSummary(VI, std::move(FS));
+ break;
+ }
+ // FS_COMBINED_ORIGINAL_NAME: [original_name]
+ case bitc::FS_COMBINED_ORIGINAL_NAME: {
+ uint64_t OriginalName = Record[0];
+ if (!LastSeenSummary)
+ return error("Name attachment that does not follow a combined record");
+ LastSeenSummary->setOriginalName(OriginalName);
+ TheIndex.addOriginalName(LastSeenGUID, OriginalName);
+ // Reset the LastSeenSummary
+ LastSeenSummary = nullptr;
+ LastSeenGUID = 0;
+ break;
+ }
+ case bitc::FS_TYPE_TESTS:
+ assert(PendingTypeTests.empty());
+ llvm::append_range(PendingTypeTests, Record);
+ break;
+
+ case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
+ assert(PendingTypeTestAssumeVCalls.empty());
+ for (unsigned I = 0; I != Record.size(); I += 2)
+ PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
+ break;
+
+ case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
+ assert(PendingTypeCheckedLoadVCalls.empty());
+ for (unsigned I = 0; I != Record.size(); I += 2)
+ PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
+ break;
+
+ case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
+ PendingTypeTestAssumeConstVCalls.push_back(
+ {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
+ break;
+
+ case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
+ PendingTypeCheckedLoadConstVCalls.push_back(
+ {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
+ break;
+
+ case bitc::FS_CFI_FUNCTION_DEFS: {
+ std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
+ for (unsigned I = 0; I != Record.size(); I += 2)
+ CfiFunctionDefs.insert(
+ {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
+ break;
+ }
+
+ case bitc::FS_CFI_FUNCTION_DECLS: {
+ std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
+ for (unsigned I = 0; I != Record.size(); I += 2)
+ CfiFunctionDecls.insert(
+ {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
+ break;
+ }
+
+ case bitc::FS_TYPE_ID:
+ parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
+ break;
+
+ case bitc::FS_TYPE_ID_METADATA:
+ parseTypeIdCompatibleVtableSummaryRecord(Record);
+ break;
+
+ case bitc::FS_BLOCK_COUNT:
+ TheIndex.addBlockCount(Record[0]);
+ break;
+
+ case bitc::FS_PARAM_ACCESS: {
+ PendingParamAccesses = parseParamAccesses(Record);
+ break;
+ }
+
+ case bitc::FS_STACK_IDS: { // [n x stackid]
+ // Save stack ids in the reader to consult when adding stack ids from the
+ // lists in the stack node and alloc node entries.
+ StackIds = ArrayRef<uint64_t>(Record);
+ break;
+ }
+
+ case bitc::FS_PERMODULE_CALLSITE_INFO: {
+ unsigned ValueID = Record[0];
+ SmallVector<unsigned> StackIdList;
+ for (auto R = Record.begin() + 1; R != Record.end(); R++) {
+ assert(*R < StackIds.size());
+ StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
+ }
+ ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
+ PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
+ break;
+ }
+
+ case bitc::FS_COMBINED_CALLSITE_INFO: {
+ auto RecordIter = Record.begin();
+ unsigned ValueID = *RecordIter++;
+ unsigned NumStackIds = *RecordIter++;
+ unsigned NumVersions = *RecordIter++;
+ assert(Record.size() == 3 + NumStackIds + NumVersions);
+ SmallVector<unsigned> StackIdList;
+ for (unsigned J = 0; J < NumStackIds; J++) {
+ assert(*RecordIter < StackIds.size());
+ StackIdList.push_back(
+ TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
+ }
+ SmallVector<unsigned> Versions;
+ for (unsigned J = 0; J < NumVersions; J++)
+ Versions.push_back(*RecordIter++);
+ ValueInfo VI = std::get<0>(
+ getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
+ PendingCallsites.push_back(
+ CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
+ break;
+ }
+
+ case bitc::FS_PERMODULE_ALLOC_INFO: {
+ unsigned I = 0;
+ std::vector<MIBInfo> MIBs;
+ while (I < Record.size()) {
+ assert(Record.size() - I >= 2);
+ AllocationType AllocType = (AllocationType)Record[I++];
+ unsigned NumStackEntries = Record[I++];
+ assert(Record.size() - I >= NumStackEntries);
+ SmallVector<unsigned> StackIdList;
+ for (unsigned J = 0; J < NumStackEntries; J++) {
+ assert(Record[I] < StackIds.size());
+ StackIdList.push_back(
+ TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
+ }
+ MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
+ }
+ PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
+ break;
+ }
+
+ case bitc::FS_COMBINED_ALLOC_INFO: {
+ unsigned I = 0;
+ std::vector<MIBInfo> MIBs;
+ unsigned NumMIBs = Record[I++];
+ unsigned NumVersions = Record[I++];
+ unsigned MIBsRead = 0;
+ while (MIBsRead++ < NumMIBs) {
+ assert(Record.size() - I >= 2);
+ AllocationType AllocType = (AllocationType)Record[I++];
+ unsigned NumStackEntries = Record[I++];
+ assert(Record.size() - I >= NumStackEntries);
+ SmallVector<unsigned> StackIdList;
+ for (unsigned J = 0; J < NumStackEntries; J++) {
+ assert(Record[I] < StackIds.size());
+ StackIdList.push_back(
+ TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
+ }
+ MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
+ }
+ assert(Record.size() - I >= NumVersions);
+ SmallVector<uint8_t> Versions;
+ for (unsigned J = 0; J < NumVersions; J++)
+ Versions.push_back(Record[I++]);
+ PendingAllocs.push_back(
+ AllocInfo(std::move(Versions), std::move(MIBs)));
+ break;
+ }
+ }
+ }
+ llvm_unreachable("Exit infinite loop");
+}
+
+// Parse the module string table block into the Index.
+// This populates the ModulePathStringTable map in the index.
+Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
+ if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
+ return Err;
+
+ SmallVector<uint64_t, 64> Record;
+
+ SmallString<128> ModulePath;
+ ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
+
+ while (true) {
+ Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::SubBlock: // Handled for us already.
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ return Error::success();
+ case BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ Record.clear();
+ Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeRecord)
+ return MaybeRecord.takeError();
+ switch (MaybeRecord.get()) {
+ default: // Default behavior: ignore.
+ break;
+ case bitc::MST_CODE_ENTRY: {
+ // MST_ENTRY: [modid, namechar x N]
+ uint64_t ModuleId = Record[0];
+
+ if (convertToString(Record, 1, ModulePath))
+ return error("Invalid record");
+
+ LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
+ ModuleIdMap[ModuleId] = LastSeenModule->first();
+
+ ModulePath.clear();
+ break;
+ }
+ /// MST_CODE_HASH: [5*i32]
+ case bitc::MST_CODE_HASH: {
+ if (Record.size() != 5)
+ return error("Invalid hash length " + Twine(Record.size()).str());
+ if (!LastSeenModule)
+ return error("Invalid hash that does not follow a module path");
+ int Pos = 0;
+ for (auto &Val : Record) {
+ assert(!(Val >> 32) && "Unexpected high bits set");
+ LastSeenModule->second.second[Pos++] = Val;
+ }
+ // Reset LastSeenModule to avoid overriding the hash unexpectedly.
+ LastSeenModule = nullptr;
+ break;
+ }
+ }
+ }
+ llvm_unreachable("Exit infinite loop");
+}
+
+namespace {
+
+// FIXME: This class is only here to support the transition to llvm::Error. It
+// will be removed once this transition is complete. Clients should prefer to
+// deal with the Error value directly, rather than converting to error_code.
+class BitcodeErrorCategoryType : public std::error_category {
+ const char *name() const noexcept override {
+ return "llvm.bitcode";
+ }
+
+ std::string message(int IE) const override {
+ BitcodeError E = static_cast<BitcodeError>(IE);
+ switch (E) {
+ case BitcodeError::CorruptedBitcode:
+ return "Corrupted bitcode";
+ }
+ llvm_unreachable("Unknown error type!");
+ }
+};
+
+} // end anonymous namespace
+
+const std::error_category &llvm::BitcodeErrorCategory() {
+ static BitcodeErrorCategoryType ErrorCategory;
+ return ErrorCategory;
+}
+
+static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
+ unsigned Block, unsigned RecordID) {
+ if (Error Err = Stream.EnterSubBlock(Block))
+ return std::move(Err);
+
+ StringRef Strtab;
+ while (true) {
+ Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ llvm::BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::EndBlock:
+ return Strtab;
+
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+
+ case BitstreamEntry::SubBlock:
+ if (Error Err = Stream.SkipBlock())
+ return std::move(Err);
+ break;
+
+ case BitstreamEntry::Record:
+ StringRef Blob;
+ SmallVector<uint64_t, 1> Record;
+ Expected<unsigned> MaybeRecord =
+ Stream.readRecord(Entry.ID, Record, &Blob);
+ if (!MaybeRecord)
+ return MaybeRecord.takeError();
+ if (MaybeRecord.get() == RecordID)
+ Strtab = Blob;
+ break;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// External interface
+//===----------------------------------------------------------------------===//
+
+Expected<std::vector<BitcodeModule>>
+llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
+ auto FOrErr = getBitcodeFileContents(Buffer);
+ if (!FOrErr)
+ return FOrErr.takeError();
+ return std::move(FOrErr->Mods);
+}
+
+Expected<BitcodeFileContents>
+llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
+ Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
+ if (!StreamOrErr)
+ return StreamOrErr.takeError();
+ BitstreamCursor &Stream = *StreamOrErr;
+
+ BitcodeFileContents F;
+ while (true) {
+ uint64_t BCBegin = Stream.getCurrentByteNo();
+
+ // We may be consuming bitcode from a client that leaves garbage at the end
+ // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
+ // the end that there cannot possibly be another module, stop looking.
+ if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
+ return F;
+
+ Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ llvm::BitstreamEntry Entry = MaybeEntry.get();
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::EndBlock:
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+
+ case BitstreamEntry::SubBlock: {
+ uint64_t IdentificationBit = -1ull;
+ if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
+ IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
+ if (Error Err = Stream.SkipBlock())
+ return std::move(Err);
+
+ {
+ Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
+ if (!MaybeEntry)
+ return MaybeEntry.takeError();
+ Entry = MaybeEntry.get();
+ }
+
+ if (Entry.Kind != BitstreamEntry::SubBlock ||
+ Entry.ID != bitc::MODULE_BLOCK_ID)
+ return error("Malformed block");
+ }
+
+ if (Entry.ID == bitc::MODULE_BLOCK_ID) {
+ uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
+ if (Error Err = Stream.SkipBlock())
+ return std::move(Err);
+
+ F.Mods.push_back({Stream.getBitcodeBytes().slice(
+ BCBegin, Stream.getCurrentByteNo() - BCBegin),
+ Buffer.getBufferIdentifier(), IdentificationBit,
+ ModuleBit});
+ continue;
+ }
+
+ if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
+ Expected<StringRef> Strtab =
+ readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
+ if (!Strtab)
+ return Strtab.takeError();
+ // This string table is used by every preceding bitcode module that does
+ // not have its own string table. A bitcode file may have multiple
+ // string tables if it was created by binary concatenation, for example
+ // with "llvm-cat -b".
+ for (BitcodeModule &I : llvm::reverse(F.Mods)) {
+ if (!I.Strtab.empty())
+ break;
+ I.Strtab = *Strtab;
+ }
+ // Similarly, the string table is used by every preceding symbol table;
+ // normally there will be just one unless the bitcode file was created
+ // by binary concatenation.
+ if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
+ F.StrtabForSymtab = *Strtab;
+ continue;
+ }
+
+ if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
+ Expected<StringRef> SymtabOrErr =
+ readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
+ if (!SymtabOrErr)
+ return SymtabOrErr.takeError();
+
+ // We can expect the bitcode file to have multiple symbol tables if it
+ // was created by binary concatenation. In that case we silently
+ // ignore any subsequent symbol tables, which is fine because this is a
+ // low level function. The client is expected to notice that the number
+ // of modules in the symbol table does not match the number of modules
+ // in the input file and regenerate the symbol table.
+ if (F.Symtab.empty())
+ F.Symtab = *SymtabOrErr;
+ continue;
+ }
+
+ if (Error Err = Stream.SkipBlock())
+ return std::move(Err);
+ continue;
+ }
+ case BitstreamEntry::Record:
+ if (Error E = Stream.skipRecord(Entry.ID).takeError())
+ return std::move(E);
+ continue;
+ }
+ }
+}
+
+/// Get a lazy one-at-time loading module from bitcode.
+///
+/// This isn't always used in a lazy context. In particular, it's also used by
+/// \a parseModule(). If this is truly lazy, then we need to eagerly pull
+/// in forward-referenced functions from block address references.
+///
+/// \param[in] MaterializeAll Set to \c true if we should materialize
+/// everything.
+Expected<std::unique_ptr<Module>>
+BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
+ bool ShouldLazyLoadMetadata, bool IsImporting,
+ ParserCallbacks Callbacks) {
+ BitstreamCursor Stream(Buffer);
+
+ std::string ProducerIdentification;
+ if (IdentificationBit != -1ull) {
+ if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
+ return std::move(JumpFailed);
+ if (Error E =
+ readIdentificationBlock(Stream).moveInto(ProducerIdentification))
+ return std::move(E);
+ }
+
+ if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
+ return std::move(JumpFailed);
+ auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
+ Context);
+
+ std::unique_ptr<Module> M =
+ std::make_unique<Module>(ModuleIdentifier, Context);
+ M->setMaterializer(R);
+
+ // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
+ if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
+ IsImporting, Callbacks))
+ return std::move(Err);
+
+ if (MaterializeAll) {
+ // Read in the entire module, and destroy the BitcodeReader.
+ if (Error Err = M->materializeAll())
+ return std::move(Err);
+ } else {
+ // Resolve forward references from blockaddresses.
+ if (Error Err = R->materializeForwardReferencedFunctions())
+ return std::move(Err);
+ }
+ return std::move(M);
+}
+
+Expected<std::unique_ptr<Module>>
+BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
+ bool IsImporting, ParserCallbacks Callbacks) {
+ return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
+ Callbacks);
+}
+
+// Parse the specified bitcode buffer and merge the index into CombinedIndex.
+// We don't use ModuleIdentifier here because the client may need to control the
+// module path used in the combined summary (e.g. when reading summaries for
+// regular LTO modules).
+Error BitcodeModule::readSummary(
+ ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, uint64_t ModuleId,
+ std::function<bool(GlobalValue::GUID)> IsPrevailing) {
+ BitstreamCursor Stream(Buffer);
+ if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
+ return JumpFailed;
+
+ ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
+ ModulePath, ModuleId, IsPrevailing);
+ return R.parseModule();
+}
+
+// Parse the specified bitcode buffer, returning the function info index.
+Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
+ BitstreamCursor Stream(Buffer);
+ if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
+ return std::move(JumpFailed);
+
+ auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
+ ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
+ ModuleIdentifier, 0);
+
+ if (Error Err = R.parseModule())
+ return std::move(Err);
+
+ return std::move(Index);
+}
+
+static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
+ unsigned ID) {
+ if (Error Err = Stream.EnterSubBlock(ID))
+ return std::move(Err);
+ SmallVector<uint64_t, 64> Record;
+
+ while (true) {
+ BitstreamEntry Entry;
+ if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
+ return std::move(E);
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::SubBlock: // Handled for us already.
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ // If no flags record found, conservatively return true to mimic
+ // behavior before this flag was added.
+ return true;
+ case BitstreamEntry::Record:
+ // The interesting case.
+ break;
+ }
+
+ // Look for the FS_FLAGS record.
+ Record.clear();
+ Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
+ if (!MaybeBitCode)
+ return MaybeBitCode.takeError();
+ switch (MaybeBitCode.get()) {
+ default: // Default behavior: ignore.
+ break;
+ case bitc::FS_FLAGS: { // [flags]
+ uint64_t Flags = Record[0];
+ // Scan flags.
+ assert(Flags <= 0xff && "Unexpected bits in flag");
+
+ return Flags & 0x8;
+ }
+ }
+ }
+ llvm_unreachable("Exit infinite loop");
+}
+
+// Check if the given bitcode buffer contains a global value summary block.
+Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
+ BitstreamCursor Stream(Buffer);
+ if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
+ return std::move(JumpFailed);
+
+ if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
+ return std::move(Err);
+
+ while (true) {
+ llvm::BitstreamEntry Entry;
+ if (Error E = Stream.advance().moveInto(Entry))
+ return std::move(E);
+
+ switch (Entry.Kind) {
+ case BitstreamEntry::Error:
+ return error("Malformed block");
+ case BitstreamEntry::EndBlock:
+ return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
+ /*EnableSplitLTOUnit=*/false};
+
+ case BitstreamEntry::SubBlock:
+ if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
+ Expected<bool> EnableSplitLTOUnit =
+ getEnableSplitLTOUnitFlag(Stream, Entry.ID);
+ if (!EnableSplitLTOUnit)
+ return EnableSplitLTOUnit.takeError();
+ return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
+ *EnableSplitLTOUnit};
+ }
+
+ if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
+ Expected<bool> EnableSplitLTOUnit =
+ getEnableSplitLTOUnitFlag(Stream, Entry.ID);
+ if (!EnableSplitLTOUnit)
+ return EnableSplitLTOUnit.takeError();
+ return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
+ *EnableSplitLTOUnit};
+ }
+
+ // Ignore other sub-blocks.
+ if (Error Err = Stream.SkipBlock())
+ return std::move(Err);
+ continue;
+
+ case BitstreamEntry::Record:
+ if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
+ continue;
+ else
+ return StreamFailed.takeError();
+ }
+ }
+}
+
+static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
+ Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
+ if (!MsOrErr)
+ return MsOrErr.takeError();
+
+ if (MsOrErr->size() != 1)
+ return error("Expected a single module");
+
+ return (*MsOrErr)[0];
+}
+
+Expected<std::unique_ptr<Module>>
+llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
+ bool ShouldLazyLoadMetadata, bool IsImporting,
+ ParserCallbacks Callbacks) {
+ Expected<BitcodeModule> BM = getSingleModule(Buffer);
+ if (!BM)
+ return BM.takeError();
+
+ return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
+ Callbacks);
+}
+
+Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
+ std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
+ bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
+ auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
+ IsImporting, Callbacks);
+ if (MOrErr)
+ (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
+ return MOrErr;
+}
+
+Expected<std::unique_ptr<Module>>
+BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
+ return getModuleImpl(Context, true, false, false, Callbacks);
+ // TODO: Restore the use-lists to the in-memory state when the bitcode was
+ // written. We must defer until the Module has been fully materialized.
+}
+
+Expected<std::unique_ptr<Module>>
+llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
+ ParserCallbacks Callbacks) {
+ Expected<BitcodeModule> BM = getSingleModule(Buffer);
+ if (!BM)
+ return BM.takeError();
+
+ return BM->parseModule(Context, Callbacks);
+}
+
+Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
+ Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
+ if (!StreamOrErr)
+ return StreamOrErr.takeError();
+
+ return readTriple(*StreamOrErr);
+}
+
+Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
+ Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
+ if (!StreamOrErr)
+ return StreamOrErr.takeError();
+
+ return hasObjCCategory(*StreamOrErr);
+}
+
+Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
+ Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
+ if (!StreamOrErr)
+ return StreamOrErr.takeError();
+
+ return readIdentificationCode(*StreamOrErr);
+}
+
+Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
+ ModuleSummaryIndex &CombinedIndex,
+ uint64_t ModuleId) {
+ Expected<BitcodeModule> BM = getSingleModule(Buffer);
+ if (!BM)
+ return BM.takeError();
+
+ return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
+}
+
+Expected<std::unique_ptr<ModuleSummaryIndex>>
+llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
+ Expected<BitcodeModule> BM = getSingleModule(Buffer);
+ if (!BM)
+ return BM.takeError();
+
+ return BM->getSummary();
+}
+
+Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
+ Expected<BitcodeModule> BM = getSingleModule(Buffer);
+ if (!BM)
+ return BM.takeError();
+
+ return BM->getLTOInfo();
+}
+
+Expected<std::unique_ptr<ModuleSummaryIndex>>
+llvm::getModuleSummaryIndexForFile(StringRef Path,
+ bool IgnoreEmptyThinLTOIndexFile) {
+ ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
+ MemoryBuffer::getFileOrSTDIN(Path);
+ if (!FileOrErr)
+ return errorCodeToError(FileOrErr.getError());
+ if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
+ return nullptr;
+ return getModuleSummaryIndex(**FileOrErr);
+}