diff options
author | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
---|---|---|
committer | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
commit | 6ffe9e53658409f212834330e13564e4952558f6 (patch) | |
tree | 85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm16/lib/Bitcode/Reader/BitcodeReader.cpp | |
parent | 726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff) | |
download | ydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz |
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm16/lib/Bitcode/Reader/BitcodeReader.cpp')
-rw-r--r-- | contrib/libs/llvm16/lib/Bitcode/Reader/BitcodeReader.cpp | 8229 |
1 files changed, 8229 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Bitcode/Reader/BitcodeReader.cpp b/contrib/libs/llvm16/lib/Bitcode/Reader/BitcodeReader.cpp new file mode 100644 index 0000000000..f014521264 --- /dev/null +++ b/contrib/libs/llvm16/lib/Bitcode/Reader/BitcodeReader.cpp @@ -0,0 +1,8229 @@ +//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "llvm/Bitcode/BitcodeReader.h" +#include "MetadataLoader.h" +#include "ValueList.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Triple.h" +#include "llvm/ADT/Twine.h" +#include "llvm/Bitcode/BitcodeCommon.h" +#include "llvm/Bitcode/LLVMBitCodes.h" +#include "llvm/Bitstream/BitstreamReader.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/AutoUpgrade.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Comdat.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GVMaterializer.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalIFunc.h" +#include "llvm/IR/GlobalObject.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/IntrinsicsAArch64.h" +#include "llvm/IR/IntrinsicsARM.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/ModuleSummaryIndex.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/Verifier.h" +#include "llvm/Support/AtomicOrdering.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Error.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/ErrorOr.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/MemoryBuffer.h" +#include "llvm/Support/ModRef.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <deque> +#include <map> +#include <memory> +#include <optional> +#include <set> +#include <string> +#include <system_error> +#include <tuple> +#include <utility> +#include <vector> + +using namespace llvm; + +static cl::opt<bool> PrintSummaryGUIDs( + "print-summary-global-ids", cl::init(false), cl::Hidden, + cl::desc( + "Print the global id for each value when reading the module summary")); + +static cl::opt<bool> ExpandConstantExprs( + "expand-constant-exprs", cl::Hidden, + cl::desc( + "Expand constant expressions to instructions for testing purposes")); + +namespace { + +enum { + SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex +}; + +} // end anonymous namespace + +static Error error(const Twine &Message) { + return make_error<StringError>( + Message, make_error_code(BitcodeError::CorruptedBitcode)); +} + +static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { + if (!Stream.canSkipToPos(4)) + return createStringError(std::errc::illegal_byte_sequence, + "file too small to contain bitcode header"); + for (unsigned C : {'B', 'C'}) + if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { + if (Res.get() != C) + return createStringError(std::errc::illegal_byte_sequence, + "file doesn't start with bitcode header"); + } else + return Res.takeError(); + for (unsigned C : {0x0, 0xC, 0xE, 0xD}) + if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { + if (Res.get() != C) + return createStringError(std::errc::illegal_byte_sequence, + "file doesn't start with bitcode header"); + } else + return Res.takeError(); + return Error::success(); +} + +static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { + const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); + const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); + + if (Buffer.getBufferSize() & 3) + return error("Invalid bitcode signature"); + + // If we have a wrapper header, parse it and ignore the non-bc file contents. + // The magic number is 0x0B17C0DE stored in little endian. + if (isBitcodeWrapper(BufPtr, BufEnd)) + if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) + return error("Invalid bitcode wrapper header"); + + BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); + if (Error Err = hasInvalidBitcodeHeader(Stream)) + return std::move(Err); + + return std::move(Stream); +} + +/// Convert a string from a record into an std::string, return true on failure. +template <typename StrTy> +static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, + StrTy &Result) { + if (Idx > Record.size()) + return true; + + Result.append(Record.begin() + Idx, Record.end()); + return false; +} + +// Strip all the TBAA attachment for the module. +static void stripTBAA(Module *M) { + for (auto &F : *M) { + if (F.isMaterializable()) + continue; + for (auto &I : instructions(F)) + I.setMetadata(LLVMContext::MD_tbaa, nullptr); + } +} + +/// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the +/// "epoch" encoded in the bitcode, and return the producer name if any. +static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { + if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) + return std::move(Err); + + // Read all the records. + SmallVector<uint64_t, 64> Record; + + std::string ProducerIdentification; + + while (true) { + BitstreamEntry Entry; + if (Error E = Stream.advance().moveInto(Entry)) + return std::move(E); + + switch (Entry.Kind) { + default: + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + return ProducerIdentification; + case BitstreamEntry::Record: + // The interesting case. + break; + } + + // Read a record. + Record.clear(); + Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); + if (!MaybeBitCode) + return MaybeBitCode.takeError(); + switch (MaybeBitCode.get()) { + default: // Default behavior: reject + return error("Invalid value"); + case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] + convertToString(Record, 0, ProducerIdentification); + break; + case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] + unsigned epoch = (unsigned)Record[0]; + if (epoch != bitc::BITCODE_CURRENT_EPOCH) { + return error( + Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + + "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); + } + } + } + } +} + +static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { + // We expect a number of well-defined blocks, though we don't necessarily + // need to understand them all. + while (true) { + if (Stream.AtEndOfStream()) + return ""; + + BitstreamEntry Entry; + if (Error E = Stream.advance().moveInto(Entry)) + return std::move(E); + + switch (Entry.Kind) { + case BitstreamEntry::EndBlock: + case BitstreamEntry::Error: + return error("Malformed block"); + + case BitstreamEntry::SubBlock: + if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) + return readIdentificationBlock(Stream); + + // Ignore other sub-blocks. + if (Error Err = Stream.SkipBlock()) + return std::move(Err); + continue; + case BitstreamEntry::Record: + if (Error E = Stream.skipRecord(Entry.ID).takeError()) + return std::move(E); + continue; + } + } +} + +static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { + if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) + return std::move(Err); + + SmallVector<uint64_t, 64> Record; + // Read all the records for this module. + + while (true) { + Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::SubBlock: // Handled for us already. + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + return false; + case BitstreamEntry::Record: + // The interesting case. + break; + } + + // Read a record. + Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); + if (!MaybeRecord) + return MaybeRecord.takeError(); + switch (MaybeRecord.get()) { + default: + break; // Default behavior, ignore unknown content. + case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] + std::string S; + if (convertToString(Record, 0, S)) + return error("Invalid section name record"); + // Check for the i386 and other (x86_64, ARM) conventions + if (S.find("__DATA,__objc_catlist") != std::string::npos || + S.find("__OBJC,__category") != std::string::npos) + return true; + break; + } + } + Record.clear(); + } + llvm_unreachable("Exit infinite loop"); +} + +static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { + // We expect a number of well-defined blocks, though we don't necessarily + // need to understand them all. + while (true) { + BitstreamEntry Entry; + if (Error E = Stream.advance().moveInto(Entry)) + return std::move(E); + + switch (Entry.Kind) { + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + return false; + + case BitstreamEntry::SubBlock: + if (Entry.ID == bitc::MODULE_BLOCK_ID) + return hasObjCCategoryInModule(Stream); + + // Ignore other sub-blocks. + if (Error Err = Stream.SkipBlock()) + return std::move(Err); + continue; + + case BitstreamEntry::Record: + if (Error E = Stream.skipRecord(Entry.ID).takeError()) + return std::move(E); + continue; + } + } +} + +static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { + if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) + return std::move(Err); + + SmallVector<uint64_t, 64> Record; + + std::string Triple; + + // Read all the records for this module. + while (true) { + Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::SubBlock: // Handled for us already. + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + return Triple; + case BitstreamEntry::Record: + // The interesting case. + break; + } + + // Read a record. + Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); + if (!MaybeRecord) + return MaybeRecord.takeError(); + switch (MaybeRecord.get()) { + default: break; // Default behavior, ignore unknown content. + case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] + std::string S; + if (convertToString(Record, 0, S)) + return error("Invalid triple record"); + Triple = S; + break; + } + } + Record.clear(); + } + llvm_unreachable("Exit infinite loop"); +} + +static Expected<std::string> readTriple(BitstreamCursor &Stream) { + // We expect a number of well-defined blocks, though we don't necessarily + // need to understand them all. + while (true) { + Expected<BitstreamEntry> MaybeEntry = Stream.advance(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + return ""; + + case BitstreamEntry::SubBlock: + if (Entry.ID == bitc::MODULE_BLOCK_ID) + return readModuleTriple(Stream); + + // Ignore other sub-blocks. + if (Error Err = Stream.SkipBlock()) + return std::move(Err); + continue; + + case BitstreamEntry::Record: + if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) + continue; + else + return Skipped.takeError(); + } + } +} + +namespace { + +class BitcodeReaderBase { +protected: + BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) + : Stream(std::move(Stream)), Strtab(Strtab) { + this->Stream.setBlockInfo(&BlockInfo); + } + + BitstreamBlockInfo BlockInfo; + BitstreamCursor Stream; + StringRef Strtab; + + /// In version 2 of the bitcode we store names of global values and comdats in + /// a string table rather than in the VST. + bool UseStrtab = false; + + Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); + + /// If this module uses a string table, pop the reference to the string table + /// and return the referenced string and the rest of the record. Otherwise + /// just return the record itself. + std::pair<StringRef, ArrayRef<uint64_t>> + readNameFromStrtab(ArrayRef<uint64_t> Record); + + Error readBlockInfo(); + + // Contains an arbitrary and optional string identifying the bitcode producer + std::string ProducerIdentification; + + Error error(const Twine &Message); +}; + +} // end anonymous namespace + +Error BitcodeReaderBase::error(const Twine &Message) { + std::string FullMsg = Message.str(); + if (!ProducerIdentification.empty()) + FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + + LLVM_VERSION_STRING "')"; + return ::error(FullMsg); +} + +Expected<unsigned> +BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { + if (Record.empty()) + return error("Invalid version record"); + unsigned ModuleVersion = Record[0]; + if (ModuleVersion > 2) + return error("Invalid value"); + UseStrtab = ModuleVersion >= 2; + return ModuleVersion; +} + +std::pair<StringRef, ArrayRef<uint64_t>> +BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { + if (!UseStrtab) + return {"", Record}; + // Invalid reference. Let the caller complain about the record being empty. + if (Record[0] + Record[1] > Strtab.size()) + return {"", {}}; + return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; +} + +namespace { + +/// This represents a constant expression or constant aggregate using a custom +/// structure internal to the bitcode reader. Later, this structure will be +/// expanded by materializeValue() either into a constant expression/aggregate, +/// or into an instruction sequence at the point of use. This allows us to +/// upgrade bitcode using constant expressions even if this kind of constant +/// expression is no longer supported. +class BitcodeConstant final : public Value, + TrailingObjects<BitcodeConstant, unsigned> { + friend TrailingObjects; + + // Value subclass ID: Pick largest possible value to avoid any clashes. + static constexpr uint8_t SubclassID = 255; + +public: + // Opcodes used for non-expressions. This includes constant aggregates + // (struct, array, vector) that might need expansion, as well as non-leaf + // constants that don't need expansion (no_cfi, dso_local, blockaddress), + // but still go through BitcodeConstant to avoid different uselist orders + // between the two cases. + static constexpr uint8_t ConstantStructOpcode = 255; + static constexpr uint8_t ConstantArrayOpcode = 254; + static constexpr uint8_t ConstantVectorOpcode = 253; + static constexpr uint8_t NoCFIOpcode = 252; + static constexpr uint8_t DSOLocalEquivalentOpcode = 251; + static constexpr uint8_t BlockAddressOpcode = 250; + static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; + + // Separate struct to make passing different number of parameters to + // BitcodeConstant::create() more convenient. + struct ExtraInfo { + uint8_t Opcode; + uint8_t Flags; + unsigned Extra; + Type *SrcElemTy; + + ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0, + Type *SrcElemTy = nullptr) + : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {} + }; + + uint8_t Opcode; + uint8_t Flags; + unsigned NumOperands; + unsigned Extra; // GEP inrange index or blockaddress BB id. + Type *SrcElemTy; // GEP source element type. + +private: + BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) + : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), + NumOperands(OpIDs.size()), Extra(Info.Extra), + SrcElemTy(Info.SrcElemTy) { + std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), + getTrailingObjects<unsigned>()); + } + + BitcodeConstant &operator=(const BitcodeConstant &) = delete; + +public: + static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, + const ExtraInfo &Info, + ArrayRef<unsigned> OpIDs) { + void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), + alignof(BitcodeConstant)); + return new (Mem) BitcodeConstant(Ty, Info, OpIDs); + } + + static bool classof(const Value *V) { return V->getValueID() == SubclassID; } + + ArrayRef<unsigned> getOperandIDs() const { + return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); + } + + std::optional<unsigned> getInRangeIndex() const { + assert(Opcode == Instruction::GetElementPtr); + if (Extra == (unsigned)-1) + return std::nullopt; + return Extra; + } + + const char *getOpcodeName() const { + return Instruction::getOpcodeName(Opcode); + } +}; + +class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { + LLVMContext &Context; + Module *TheModule = nullptr; + // Next offset to start scanning for lazy parsing of function bodies. + uint64_t NextUnreadBit = 0; + // Last function offset found in the VST. + uint64_t LastFunctionBlockBit = 0; + bool SeenValueSymbolTable = false; + uint64_t VSTOffset = 0; + + std::vector<std::string> SectionTable; + std::vector<std::string> GCTable; + + std::vector<Type *> TypeList; + /// Track type IDs of contained types. Order is the same as the contained + /// types of a Type*. This is used during upgrades of typed pointer IR in + /// opaque pointer mode. + DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; + /// In some cases, we need to create a type ID for a type that was not + /// explicitly encoded in the bitcode, or we don't know about at the current + /// point. For example, a global may explicitly encode the value type ID, but + /// not have a type ID for the pointer to value type, for which we create a + /// virtual type ID instead. This map stores the new type ID that was created + /// for the given pair of Type and contained type ID. + DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; + DenseMap<Function *, unsigned> FunctionTypeIDs; + /// Allocator for BitcodeConstants. This should come before ValueList, + /// because the ValueList might hold ValueHandles to these constants, so + /// ValueList must be destroyed before Alloc. + BumpPtrAllocator Alloc; + BitcodeReaderValueList ValueList; + std::optional<MetadataLoader> MDLoader; + std::vector<Comdat *> ComdatList; + DenseSet<GlobalObject *> ImplicitComdatObjects; + SmallVector<Instruction *, 64> InstructionList; + + std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; + std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; + + struct FunctionOperandInfo { + Function *F; + unsigned PersonalityFn; + unsigned Prefix; + unsigned Prologue; + }; + std::vector<FunctionOperandInfo> FunctionOperands; + + /// The set of attributes by index. Index zero in the file is for null, and + /// is thus not represented here. As such all indices are off by one. + std::vector<AttributeList> MAttributes; + + /// The set of attribute groups. + std::map<unsigned, AttributeList> MAttributeGroups; + + /// While parsing a function body, this is a list of the basic blocks for the + /// function. + std::vector<BasicBlock*> FunctionBBs; + + // When reading the module header, this list is populated with functions that + // have bodies later in the file. + std::vector<Function*> FunctionsWithBodies; + + // When intrinsic functions are encountered which require upgrading they are + // stored here with their replacement function. + using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; + UpdatedIntrinsicMap UpgradedIntrinsics; + + // Several operations happen after the module header has been read, but + // before function bodies are processed. This keeps track of whether + // we've done this yet. + bool SeenFirstFunctionBody = false; + + /// When function bodies are initially scanned, this map contains info about + /// where to find deferred function body in the stream. + DenseMap<Function*, uint64_t> DeferredFunctionInfo; + + /// When Metadata block is initially scanned when parsing the module, we may + /// choose to defer parsing of the metadata. This vector contains info about + /// which Metadata blocks are deferred. + std::vector<uint64_t> DeferredMetadataInfo; + + /// These are basic blocks forward-referenced by block addresses. They are + /// inserted lazily into functions when they're loaded. The basic block ID is + /// its index into the vector. + DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; + std::deque<Function *> BasicBlockFwdRefQueue; + + /// These are Functions that contain BlockAddresses which refer a different + /// Function. When parsing the different Function, queue Functions that refer + /// to the different Function. Those Functions must be materialized in order + /// to resolve their BlockAddress constants before the different Function + /// gets moved into another Module. + std::vector<Function *> BackwardRefFunctions; + + /// Indicates that we are using a new encoding for instruction operands where + /// most operands in the current FUNCTION_BLOCK are encoded relative to the + /// instruction number, for a more compact encoding. Some instruction + /// operands are not relative to the instruction ID: basic block numbers, and + /// types. Once the old style function blocks have been phased out, we would + /// not need this flag. + bool UseRelativeIDs = false; + + /// True if all functions will be materialized, negating the need to process + /// (e.g.) blockaddress forward references. + bool WillMaterializeAllForwardRefs = false; + + bool StripDebugInfo = false; + TBAAVerifier TBAAVerifyHelper; + + std::vector<std::string> BundleTags; + SmallVector<SyncScope::ID, 8> SSIDs; + + std::optional<ValueTypeCallbackTy> ValueTypeCallback; + +public: + BitcodeReader(BitstreamCursor Stream, StringRef Strtab, + StringRef ProducerIdentification, LLVMContext &Context); + + Error materializeForwardReferencedFunctions(); + + Error materialize(GlobalValue *GV) override; + Error materializeModule() override; + std::vector<StructType *> getIdentifiedStructTypes() const override; + + /// Main interface to parsing a bitcode buffer. + /// \returns true if an error occurred. + Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, + bool IsImporting, ParserCallbacks Callbacks = {}); + + static uint64_t decodeSignRotatedValue(uint64_t V); + + /// Materialize any deferred Metadata block. + Error materializeMetadata() override; + + void setStripDebugInfo() override; + +private: + std::vector<StructType *> IdentifiedStructTypes; + StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); + StructType *createIdentifiedStructType(LLVMContext &Context); + + static constexpr unsigned InvalidTypeID = ~0u; + + Type *getTypeByID(unsigned ID); + Type *getPtrElementTypeByID(unsigned ID); + unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); + unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); + + void callValueTypeCallback(Value *F, unsigned TypeID); + Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); + Expected<Constant *> getValueForInitializer(unsigned ID); + + Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, + BasicBlock *ConstExprInsertBB) { + if (Ty && Ty->isMetadataTy()) + return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); + return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); + } + + Metadata *getFnMetadataByID(unsigned ID) { + return MDLoader->getMetadataFwdRefOrLoad(ID); + } + + BasicBlock *getBasicBlock(unsigned ID) const { + if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID + return FunctionBBs[ID]; + } + + AttributeList getAttributes(unsigned i) const { + if (i-1 < MAttributes.size()) + return MAttributes[i-1]; + return AttributeList(); + } + + /// Read a value/type pair out of the specified record from slot 'Slot'. + /// Increment Slot past the number of slots used in the record. Return true on + /// failure. + bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, + unsigned InstNum, Value *&ResVal, unsigned &TypeID, + BasicBlock *ConstExprInsertBB) { + if (Slot == Record.size()) return true; + unsigned ValNo = (unsigned)Record[Slot++]; + // Adjust the ValNo, if it was encoded relative to the InstNum. + if (UseRelativeIDs) + ValNo = InstNum - ValNo; + if (ValNo < InstNum) { + // If this is not a forward reference, just return the value we already + // have. + TypeID = ValueList.getTypeID(ValNo); + ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); + assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && + "Incorrect type ID stored for value"); + return ResVal == nullptr; + } + if (Slot == Record.size()) + return true; + + TypeID = (unsigned)Record[Slot++]; + ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, + ConstExprInsertBB); + return ResVal == nullptr; + } + + /// Read a value out of the specified record from slot 'Slot'. Increment Slot + /// past the number of slots used by the value in the record. Return true if + /// there is an error. + bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, + unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, + BasicBlock *ConstExprInsertBB) { + if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) + return true; + // All values currently take a single record slot. + ++Slot; + return false; + } + + /// Like popValue, but does not increment the Slot number. + bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, + unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, + BasicBlock *ConstExprInsertBB) { + ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); + return ResVal == nullptr; + } + + /// Version of getValue that returns ResVal directly, or 0 if there is an + /// error. + Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, + unsigned InstNum, Type *Ty, unsigned TyID, + BasicBlock *ConstExprInsertBB) { + if (Slot == Record.size()) return nullptr; + unsigned ValNo = (unsigned)Record[Slot]; + // Adjust the ValNo, if it was encoded relative to the InstNum. + if (UseRelativeIDs) + ValNo = InstNum - ValNo; + return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); + } + + /// Like getValue, but decodes signed VBRs. + Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, + unsigned InstNum, Type *Ty, unsigned TyID, + BasicBlock *ConstExprInsertBB) { + if (Slot == Record.size()) return nullptr; + unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); + // Adjust the ValNo, if it was encoded relative to the InstNum. + if (UseRelativeIDs) + ValNo = InstNum - ValNo; + return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); + } + + /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the + /// corresponding argument's pointee type. Also upgrades intrinsics that now + /// require an elementtype attribute. + Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); + + /// Converts alignment exponent (i.e. power of two (or zero)) to the + /// corresponding alignment to use. If alignment is too large, returns + /// a corresponding error code. + Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); + Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); + Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, + ParserCallbacks Callbacks = {}); + + Error parseComdatRecord(ArrayRef<uint64_t> Record); + Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); + Error parseFunctionRecord(ArrayRef<uint64_t> Record); + Error parseGlobalIndirectSymbolRecord(unsigned BitCode, + ArrayRef<uint64_t> Record); + + Error parseAttributeBlock(); + Error parseAttributeGroupBlock(); + Error parseTypeTable(); + Error parseTypeTableBody(); + Error parseOperandBundleTags(); + Error parseSyncScopeNames(); + + Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, + unsigned NameIndex, Triple &TT); + void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, + ArrayRef<uint64_t> Record); + Error parseValueSymbolTable(uint64_t Offset = 0); + Error parseGlobalValueSymbolTable(); + Error parseConstants(); + Error rememberAndSkipFunctionBodies(); + Error rememberAndSkipFunctionBody(); + /// Save the positions of the Metadata blocks and skip parsing the blocks. + Error rememberAndSkipMetadata(); + Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); + Error parseFunctionBody(Function *F); + Error globalCleanup(); + Error resolveGlobalAndIndirectSymbolInits(); + Error parseUseLists(); + Error findFunctionInStream( + Function *F, + DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); + + SyncScope::ID getDecodedSyncScopeID(unsigned Val); +}; + +/// Class to manage reading and parsing function summary index bitcode +/// files/sections. +class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { + /// The module index built during parsing. + ModuleSummaryIndex &TheIndex; + + /// Indicates whether we have encountered a global value summary section + /// yet during parsing. + bool SeenGlobalValSummary = false; + + /// Indicates whether we have already parsed the VST, used for error checking. + bool SeenValueSymbolTable = false; + + /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. + /// Used to enable on-demand parsing of the VST. + uint64_t VSTOffset = 0; + + // Map to save ValueId to ValueInfo association that was recorded in the + // ValueSymbolTable. It is used after the VST is parsed to convert + // call graph edges read from the function summary from referencing + // callees by their ValueId to using the ValueInfo instead, which is how + // they are recorded in the summary index being built. + // We save a GUID which refers to the same global as the ValueInfo, but + // ignoring the linkage, i.e. for values other than local linkage they are + // identical (this is the second tuple member). + // The third tuple member is the real GUID of the ValueInfo. + DenseMap<unsigned, + std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> + ValueIdToValueInfoMap; + + /// Map populated during module path string table parsing, from the + /// module ID to a string reference owned by the index's module + /// path string table, used to correlate with combined index + /// summary records. + DenseMap<uint64_t, StringRef> ModuleIdMap; + + /// Original source file name recorded in a bitcode record. + std::string SourceFileName; + + /// The string identifier given to this module by the client, normally the + /// path to the bitcode file. + StringRef ModulePath; + + /// For per-module summary indexes, the unique numerical identifier given to + /// this module by the client. + unsigned ModuleId; + + /// Callback to ask whether a symbol is the prevailing copy when invoked + /// during combined index building. + std::function<bool(GlobalValue::GUID)> IsPrevailing; + + /// Saves the stack ids from the STACK_IDS record to consult when adding stack + /// ids from the lists in the callsite and alloc entries to the index. + std::vector<uint64_t> StackIds; + +public: + ModuleSummaryIndexBitcodeReader( + BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, + StringRef ModulePath, unsigned ModuleId, + std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); + + Error parseModule(); + +private: + void setValueGUID(uint64_t ValueID, StringRef ValueName, + GlobalValue::LinkageTypes Linkage, + StringRef SourceFileName); + Error parseValueSymbolTable( + uint64_t Offset, + DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); + std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); + std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, + bool IsOldProfileFormat, + bool HasProfile, + bool HasRelBF); + Error parseEntireSummary(unsigned ID); + Error parseModuleStringTable(); + void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); + void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, + TypeIdCompatibleVtableInfo &TypeId); + std::vector<FunctionSummary::ParamAccess> + parseParamAccesses(ArrayRef<uint64_t> Record); + + template <bool AllowNullValueInfo = false> + std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> + getValueInfoFromValueId(unsigned ValueId); + + void addThisModule(); + ModuleSummaryIndex::ModuleInfo *getThisModule(); +}; + +} // end anonymous namespace + +std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, + Error Err) { + if (Err) { + std::error_code EC; + handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { + EC = EIB.convertToErrorCode(); + Ctx.emitError(EIB.message()); + }); + return EC; + } + return std::error_code(); +} + +BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, + StringRef ProducerIdentification, + LLVMContext &Context) + : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), + ValueList(this->Stream.SizeInBytes(), + [this](unsigned ValID, BasicBlock *InsertBB) { + return materializeValue(ValID, InsertBB); + }) { + this->ProducerIdentification = std::string(ProducerIdentification); +} + +Error BitcodeReader::materializeForwardReferencedFunctions() { + if (WillMaterializeAllForwardRefs) + return Error::success(); + + // Prevent recursion. + WillMaterializeAllForwardRefs = true; + + while (!BasicBlockFwdRefQueue.empty()) { + Function *F = BasicBlockFwdRefQueue.front(); + BasicBlockFwdRefQueue.pop_front(); + assert(F && "Expected valid function"); + if (!BasicBlockFwdRefs.count(F)) + // Already materialized. + continue; + + // Check for a function that isn't materializable to prevent an infinite + // loop. When parsing a blockaddress stored in a global variable, there + // isn't a trivial way to check if a function will have a body without a + // linear search through FunctionsWithBodies, so just check it here. + if (!F->isMaterializable()) + return error("Never resolved function from blockaddress"); + + // Try to materialize F. + if (Error Err = materialize(F)) + return Err; + } + assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); + + for (Function *F : BackwardRefFunctions) + if (Error Err = materialize(F)) + return Err; + BackwardRefFunctions.clear(); + + // Reset state. + WillMaterializeAllForwardRefs = false; + return Error::success(); +} + +//===----------------------------------------------------------------------===// +// Helper functions to implement forward reference resolution, etc. +//===----------------------------------------------------------------------===// + +static bool hasImplicitComdat(size_t Val) { + switch (Val) { + default: + return false; + case 1: // Old WeakAnyLinkage + case 4: // Old LinkOnceAnyLinkage + case 10: // Old WeakODRLinkage + case 11: // Old LinkOnceODRLinkage + return true; + } +} + +static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { + switch (Val) { + default: // Map unknown/new linkages to external + case 0: + return GlobalValue::ExternalLinkage; + case 2: + return GlobalValue::AppendingLinkage; + case 3: + return GlobalValue::InternalLinkage; + case 5: + return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage + case 6: + return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage + case 7: + return GlobalValue::ExternalWeakLinkage; + case 8: + return GlobalValue::CommonLinkage; + case 9: + return GlobalValue::PrivateLinkage; + case 12: + return GlobalValue::AvailableExternallyLinkage; + case 13: + return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage + case 14: + return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage + case 15: + return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage + case 1: // Old value with implicit comdat. + case 16: + return GlobalValue::WeakAnyLinkage; + case 10: // Old value with implicit comdat. + case 17: + return GlobalValue::WeakODRLinkage; + case 4: // Old value with implicit comdat. + case 18: + return GlobalValue::LinkOnceAnyLinkage; + case 11: // Old value with implicit comdat. + case 19: + return GlobalValue::LinkOnceODRLinkage; + } +} + +static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { + FunctionSummary::FFlags Flags; + Flags.ReadNone = RawFlags & 0x1; + Flags.ReadOnly = (RawFlags >> 1) & 0x1; + Flags.NoRecurse = (RawFlags >> 2) & 0x1; + Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; + Flags.NoInline = (RawFlags >> 4) & 0x1; + Flags.AlwaysInline = (RawFlags >> 5) & 0x1; + Flags.NoUnwind = (RawFlags >> 6) & 0x1; + Flags.MayThrow = (RawFlags >> 7) & 0x1; + Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; + Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; + return Flags; +} + +// Decode the flags for GlobalValue in the summary. The bits for each attribute: +// +// linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, +// visibility: [8, 10). +static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, + uint64_t Version) { + // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage + // like getDecodedLinkage() above. Any future change to the linkage enum and + // to getDecodedLinkage() will need to be taken into account here as above. + auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits + auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits + RawFlags = RawFlags >> 4; + bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; + // The Live flag wasn't introduced until version 3. For dead stripping + // to work correctly on earlier versions, we must conservatively treat all + // values as live. + bool Live = (RawFlags & 0x2) || Version < 3; + bool Local = (RawFlags & 0x4); + bool AutoHide = (RawFlags & 0x8); + + return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, + Live, Local, AutoHide); +} + +// Decode the flags for GlobalVariable in the summary +static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { + return GlobalVarSummary::GVarFlags( + (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, + (RawFlags & 0x4) ? true : false, + (GlobalObject::VCallVisibility)(RawFlags >> 3)); +} + +static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { + switch (Val) { + default: // Map unknown visibilities to default. + case 0: return GlobalValue::DefaultVisibility; + case 1: return GlobalValue::HiddenVisibility; + case 2: return GlobalValue::ProtectedVisibility; + } +} + +static GlobalValue::DLLStorageClassTypes +getDecodedDLLStorageClass(unsigned Val) { + switch (Val) { + default: // Map unknown values to default. + case 0: return GlobalValue::DefaultStorageClass; + case 1: return GlobalValue::DLLImportStorageClass; + case 2: return GlobalValue::DLLExportStorageClass; + } +} + +static bool getDecodedDSOLocal(unsigned Val) { + switch(Val) { + default: // Map unknown values to preemptable. + case 0: return false; + case 1: return true; + } +} + +static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { + switch (Val) { + case 0: return GlobalVariable::NotThreadLocal; + default: // Map unknown non-zero value to general dynamic. + case 1: return GlobalVariable::GeneralDynamicTLSModel; + case 2: return GlobalVariable::LocalDynamicTLSModel; + case 3: return GlobalVariable::InitialExecTLSModel; + case 4: return GlobalVariable::LocalExecTLSModel; + } +} + +static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { + switch (Val) { + default: // Map unknown to UnnamedAddr::None. + case 0: return GlobalVariable::UnnamedAddr::None; + case 1: return GlobalVariable::UnnamedAddr::Global; + case 2: return GlobalVariable::UnnamedAddr::Local; + } +} + +static int getDecodedCastOpcode(unsigned Val) { + switch (Val) { + default: return -1; + case bitc::CAST_TRUNC : return Instruction::Trunc; + case bitc::CAST_ZEXT : return Instruction::ZExt; + case bitc::CAST_SEXT : return Instruction::SExt; + case bitc::CAST_FPTOUI : return Instruction::FPToUI; + case bitc::CAST_FPTOSI : return Instruction::FPToSI; + case bitc::CAST_UITOFP : return Instruction::UIToFP; + case bitc::CAST_SITOFP : return Instruction::SIToFP; + case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; + case bitc::CAST_FPEXT : return Instruction::FPExt; + case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; + case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; + case bitc::CAST_BITCAST : return Instruction::BitCast; + case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; + } +} + +static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { + bool IsFP = Ty->isFPOrFPVectorTy(); + // UnOps are only valid for int/fp or vector of int/fp types + if (!IsFP && !Ty->isIntOrIntVectorTy()) + return -1; + + switch (Val) { + default: + return -1; + case bitc::UNOP_FNEG: + return IsFP ? Instruction::FNeg : -1; + } +} + +static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { + bool IsFP = Ty->isFPOrFPVectorTy(); + // BinOps are only valid for int/fp or vector of int/fp types + if (!IsFP && !Ty->isIntOrIntVectorTy()) + return -1; + + switch (Val) { + default: + return -1; + case bitc::BINOP_ADD: + return IsFP ? Instruction::FAdd : Instruction::Add; + case bitc::BINOP_SUB: + return IsFP ? Instruction::FSub : Instruction::Sub; + case bitc::BINOP_MUL: + return IsFP ? Instruction::FMul : Instruction::Mul; + case bitc::BINOP_UDIV: + return IsFP ? -1 : Instruction::UDiv; + case bitc::BINOP_SDIV: + return IsFP ? Instruction::FDiv : Instruction::SDiv; + case bitc::BINOP_UREM: + return IsFP ? -1 : Instruction::URem; + case bitc::BINOP_SREM: + return IsFP ? Instruction::FRem : Instruction::SRem; + case bitc::BINOP_SHL: + return IsFP ? -1 : Instruction::Shl; + case bitc::BINOP_LSHR: + return IsFP ? -1 : Instruction::LShr; + case bitc::BINOP_ASHR: + return IsFP ? -1 : Instruction::AShr; + case bitc::BINOP_AND: + return IsFP ? -1 : Instruction::And; + case bitc::BINOP_OR: + return IsFP ? -1 : Instruction::Or; + case bitc::BINOP_XOR: + return IsFP ? -1 : Instruction::Xor; + } +} + +static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { + switch (Val) { + default: return AtomicRMWInst::BAD_BINOP; + case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; + case bitc::RMW_ADD: return AtomicRMWInst::Add; + case bitc::RMW_SUB: return AtomicRMWInst::Sub; + case bitc::RMW_AND: return AtomicRMWInst::And; + case bitc::RMW_NAND: return AtomicRMWInst::Nand; + case bitc::RMW_OR: return AtomicRMWInst::Or; + case bitc::RMW_XOR: return AtomicRMWInst::Xor; + case bitc::RMW_MAX: return AtomicRMWInst::Max; + case bitc::RMW_MIN: return AtomicRMWInst::Min; + case bitc::RMW_UMAX: return AtomicRMWInst::UMax; + case bitc::RMW_UMIN: return AtomicRMWInst::UMin; + case bitc::RMW_FADD: return AtomicRMWInst::FAdd; + case bitc::RMW_FSUB: return AtomicRMWInst::FSub; + case bitc::RMW_FMAX: return AtomicRMWInst::FMax; + case bitc::RMW_FMIN: return AtomicRMWInst::FMin; + case bitc::RMW_UINC_WRAP: + return AtomicRMWInst::UIncWrap; + case bitc::RMW_UDEC_WRAP: + return AtomicRMWInst::UDecWrap; + } +} + +static AtomicOrdering getDecodedOrdering(unsigned Val) { + switch (Val) { + case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; + case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; + case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; + case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; + case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; + case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; + default: // Map unknown orderings to sequentially-consistent. + case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; + } +} + +static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { + switch (Val) { + default: // Map unknown selection kinds to any. + case bitc::COMDAT_SELECTION_KIND_ANY: + return Comdat::Any; + case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: + return Comdat::ExactMatch; + case bitc::COMDAT_SELECTION_KIND_LARGEST: + return Comdat::Largest; + case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: + return Comdat::NoDeduplicate; + case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: + return Comdat::SameSize; + } +} + +static FastMathFlags getDecodedFastMathFlags(unsigned Val) { + FastMathFlags FMF; + if (0 != (Val & bitc::UnsafeAlgebra)) + FMF.setFast(); + if (0 != (Val & bitc::AllowReassoc)) + FMF.setAllowReassoc(); + if (0 != (Val & bitc::NoNaNs)) + FMF.setNoNaNs(); + if (0 != (Val & bitc::NoInfs)) + FMF.setNoInfs(); + if (0 != (Val & bitc::NoSignedZeros)) + FMF.setNoSignedZeros(); + if (0 != (Val & bitc::AllowReciprocal)) + FMF.setAllowReciprocal(); + if (0 != (Val & bitc::AllowContract)) + FMF.setAllowContract(true); + if (0 != (Val & bitc::ApproxFunc)) + FMF.setApproxFunc(); + return FMF; +} + +static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { + // A GlobalValue with local linkage cannot have a DLL storage class. + if (GV->hasLocalLinkage()) + return; + switch (Val) { + case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; + case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; + } +} + +Type *BitcodeReader::getTypeByID(unsigned ID) { + // The type table size is always specified correctly. + if (ID >= TypeList.size()) + return nullptr; + + if (Type *Ty = TypeList[ID]) + return Ty; + + // If we have a forward reference, the only possible case is when it is to a + // named struct. Just create a placeholder for now. + return TypeList[ID] = createIdentifiedStructType(Context); +} + +unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { + auto It = ContainedTypeIDs.find(ID); + if (It == ContainedTypeIDs.end()) + return InvalidTypeID; + + if (Idx >= It->second.size()) + return InvalidTypeID; + + return It->second[Idx]; +} + +Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { + if (ID >= TypeList.size()) + return nullptr; + + Type *Ty = TypeList[ID]; + if (!Ty->isPointerTy()) + return nullptr; + + Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0)); + if (!ElemTy) + return nullptr; + + assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) && + "Incorrect element type"); + return ElemTy; +} + +unsigned BitcodeReader::getVirtualTypeID(Type *Ty, + ArrayRef<unsigned> ChildTypeIDs) { + unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; + auto CacheKey = std::make_pair(Ty, ChildTypeID); + auto It = VirtualTypeIDs.find(CacheKey); + if (It != VirtualTypeIDs.end()) { + // The cmpxchg return value is the only place we need more than one + // contained type ID, however the second one will always be the same (i1), + // so we don't need to include it in the cache key. This asserts that the + // contained types are indeed as expected and there are no collisions. + assert((ChildTypeIDs.empty() || + ContainedTypeIDs[It->second] == ChildTypeIDs) && + "Incorrect cached contained type IDs"); + return It->second; + } + +#ifndef NDEBUG + if (!Ty->isOpaquePointerTy()) { + assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() && + "Wrong number of contained types"); + for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) { + assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) && + "Incorrect contained type ID"); + } + } +#endif + + unsigned TypeID = TypeList.size(); + TypeList.push_back(Ty); + if (!ChildTypeIDs.empty()) + append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); + VirtualTypeIDs.insert({CacheKey, TypeID}); + return TypeID; +} + +static bool isConstExprSupported(uint8_t Opcode) { + // These are not real constant expressions, always consider them supported. + if (Opcode >= BitcodeConstant::FirstSpecialOpcode) + return true; + + // If -expand-constant-exprs is set, we want to consider all expressions + // as unsupported. + if (ExpandConstantExprs) + return false; + + if (Instruction::isBinaryOp(Opcode)) + return ConstantExpr::isSupportedBinOp(Opcode); + + return Opcode != Instruction::FNeg; +} + +Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, + BasicBlock *InsertBB) { + // Quickly handle the case where there is no BitcodeConstant to resolve. + if (StartValID < ValueList.size() && ValueList[StartValID] && + !isa<BitcodeConstant>(ValueList[StartValID])) + return ValueList[StartValID]; + + SmallDenseMap<unsigned, Value *> MaterializedValues; + SmallVector<unsigned> Worklist; + Worklist.push_back(StartValID); + while (!Worklist.empty()) { + unsigned ValID = Worklist.back(); + if (MaterializedValues.count(ValID)) { + // Duplicate expression that was already handled. + Worklist.pop_back(); + continue; + } + + if (ValID >= ValueList.size() || !ValueList[ValID]) + return error("Invalid value ID"); + + Value *V = ValueList[ValID]; + auto *BC = dyn_cast<BitcodeConstant>(V); + if (!BC) { + MaterializedValues.insert({ValID, V}); + Worklist.pop_back(); + continue; + } + + // Iterate in reverse, so values will get popped from the worklist in + // expected order. + SmallVector<Value *> Ops; + for (unsigned OpID : reverse(BC->getOperandIDs())) { + auto It = MaterializedValues.find(OpID); + if (It != MaterializedValues.end()) + Ops.push_back(It->second); + else + Worklist.push_back(OpID); + } + + // Some expressions have not been resolved yet, handle them first and then + // revisit this one. + if (Ops.size() != BC->getOperandIDs().size()) + continue; + std::reverse(Ops.begin(), Ops.end()); + + SmallVector<Constant *> ConstOps; + for (Value *Op : Ops) + if (auto *C = dyn_cast<Constant>(Op)) + ConstOps.push_back(C); + + // Materialize as constant expression if possible. + if (isConstExprSupported(BC->Opcode) && ConstOps.size() == Ops.size()) { + Constant *C; + if (Instruction::isCast(BC->Opcode)) { + C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); + if (!C) + C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); + } else if (Instruction::isBinaryOp(BC->Opcode)) { + C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); + } else { + switch (BC->Opcode) { + case BitcodeConstant::NoCFIOpcode: { + auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); + if (!GV) + return error("no_cfi operand must be GlobalValue"); + C = NoCFIValue::get(GV); + break; + } + case BitcodeConstant::DSOLocalEquivalentOpcode: { + auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); + if (!GV) + return error("dso_local operand must be GlobalValue"); + C = DSOLocalEquivalent::get(GV); + break; + } + case BitcodeConstant::BlockAddressOpcode: { + Function *Fn = dyn_cast<Function>(ConstOps[0]); + if (!Fn) + return error("blockaddress operand must be a function"); + + // If the function is already parsed we can insert the block address + // right away. + BasicBlock *BB; + unsigned BBID = BC->Extra; + if (!BBID) + // Invalid reference to entry block. + return error("Invalid ID"); + if (!Fn->empty()) { + Function::iterator BBI = Fn->begin(), BBE = Fn->end(); + for (size_t I = 0, E = BBID; I != E; ++I) { + if (BBI == BBE) + return error("Invalid ID"); + ++BBI; + } + BB = &*BBI; + } else { + // Otherwise insert a placeholder and remember it so it can be + // inserted when the function is parsed. + auto &FwdBBs = BasicBlockFwdRefs[Fn]; + if (FwdBBs.empty()) + BasicBlockFwdRefQueue.push_back(Fn); + if (FwdBBs.size() < BBID + 1) + FwdBBs.resize(BBID + 1); + if (!FwdBBs[BBID]) + FwdBBs[BBID] = BasicBlock::Create(Context); + BB = FwdBBs[BBID]; + } + C = BlockAddress::get(Fn, BB); + break; + } + case BitcodeConstant::ConstantStructOpcode: + C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); + break; + case BitcodeConstant::ConstantArrayOpcode: + C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); + break; + case BitcodeConstant::ConstantVectorOpcode: + C = ConstantVector::get(ConstOps); + break; + case Instruction::ICmp: + case Instruction::FCmp: + C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); + break; + case Instruction::GetElementPtr: + C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0], + ArrayRef(ConstOps).drop_front(), + BC->Flags, BC->getInRangeIndex()); + break; + case Instruction::Select: + C = ConstantExpr::getSelect(ConstOps[0], ConstOps[1], ConstOps[2]); + break; + case Instruction::ExtractElement: + C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); + break; + case Instruction::InsertElement: + C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], + ConstOps[2]); + break; + case Instruction::ShuffleVector: { + SmallVector<int, 16> Mask; + ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); + C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); + break; + } + default: + llvm_unreachable("Unhandled bitcode constant"); + } + } + + // Cache resolved constant. + ValueList.replaceValueWithoutRAUW(ValID, C); + MaterializedValues.insert({ValID, C}); + Worklist.pop_back(); + continue; + } + + if (!InsertBB) + return error(Twine("Value referenced by initializer is an unsupported " + "constant expression of type ") + + BC->getOpcodeName()); + + // Materialize as instructions if necessary. + Instruction *I; + if (Instruction::isCast(BC->Opcode)) { + I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], + BC->getType(), "constexpr", InsertBB); + } else if (Instruction::isUnaryOp(BC->Opcode)) { + I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], + "constexpr", InsertBB); + } else if (Instruction::isBinaryOp(BC->Opcode)) { + I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], + Ops[1], "constexpr", InsertBB); + if (isa<OverflowingBinaryOperator>(I)) { + if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) + I->setHasNoSignedWrap(); + if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) + I->setHasNoUnsignedWrap(); + } + if (isa<PossiblyExactOperator>(I) && + (BC->Flags & PossiblyExactOperator::IsExact)) + I->setIsExact(); + } else { + switch (BC->Opcode) { + case BitcodeConstant::ConstantVectorOpcode: { + Type *IdxTy = Type::getInt32Ty(BC->getContext()); + Value *V = PoisonValue::get(BC->getType()); + for (auto Pair : enumerate(Ops)) { + Value *Idx = ConstantInt::get(IdxTy, Pair.index()); + V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", + InsertBB); + } + I = cast<Instruction>(V); + break; + } + case BitcodeConstant::ConstantStructOpcode: + case BitcodeConstant::ConstantArrayOpcode: { + Value *V = PoisonValue::get(BC->getType()); + for (auto Pair : enumerate(Ops)) + V = InsertValueInst::Create(V, Pair.value(), Pair.index(), + "constexpr.ins", InsertBB); + I = cast<Instruction>(V); + break; + } + case Instruction::ICmp: + case Instruction::FCmp: + I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, + (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], + "constexpr", InsertBB); + break; + case Instruction::GetElementPtr: + I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], + ArrayRef(Ops).drop_front(), "constexpr", + InsertBB); + if (BC->Flags) + cast<GetElementPtrInst>(I)->setIsInBounds(); + break; + case Instruction::Select: + I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); + break; + case Instruction::ExtractElement: + I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); + break; + case Instruction::InsertElement: + I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", + InsertBB); + break; + case Instruction::ShuffleVector: + I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", + InsertBB); + break; + default: + llvm_unreachable("Unhandled bitcode constant"); + } + } + + MaterializedValues.insert({ValID, I}); + Worklist.pop_back(); + } + + return MaterializedValues[StartValID]; +} + +Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { + Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); + if (!MaybeV) + return MaybeV.takeError(); + + // Result must be Constant if InsertBB is nullptr. + return cast<Constant>(MaybeV.get()); +} + +StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, + StringRef Name) { + auto *Ret = StructType::create(Context, Name); + IdentifiedStructTypes.push_back(Ret); + return Ret; +} + +StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { + auto *Ret = StructType::create(Context); + IdentifiedStructTypes.push_back(Ret); + return Ret; +} + +//===----------------------------------------------------------------------===// +// Functions for parsing blocks from the bitcode file +//===----------------------------------------------------------------------===// + +static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { + switch (Val) { + case Attribute::EndAttrKinds: + case Attribute::EmptyKey: + case Attribute::TombstoneKey: + llvm_unreachable("Synthetic enumerators which should never get here"); + + case Attribute::None: return 0; + case Attribute::ZExt: return 1 << 0; + case Attribute::SExt: return 1 << 1; + case Attribute::NoReturn: return 1 << 2; + case Attribute::InReg: return 1 << 3; + case Attribute::StructRet: return 1 << 4; + case Attribute::NoUnwind: return 1 << 5; + case Attribute::NoAlias: return 1 << 6; + case Attribute::ByVal: return 1 << 7; + case Attribute::Nest: return 1 << 8; + case Attribute::ReadNone: return 1 << 9; + case Attribute::ReadOnly: return 1 << 10; + case Attribute::NoInline: return 1 << 11; + case Attribute::AlwaysInline: return 1 << 12; + case Attribute::OptimizeForSize: return 1 << 13; + case Attribute::StackProtect: return 1 << 14; + case Attribute::StackProtectReq: return 1 << 15; + case Attribute::Alignment: return 31 << 16; + case Attribute::NoCapture: return 1 << 21; + case Attribute::NoRedZone: return 1 << 22; + case Attribute::NoImplicitFloat: return 1 << 23; + case Attribute::Naked: return 1 << 24; + case Attribute::InlineHint: return 1 << 25; + case Attribute::StackAlignment: return 7 << 26; + case Attribute::ReturnsTwice: return 1 << 29; + case Attribute::UWTable: return 1 << 30; + case Attribute::NonLazyBind: return 1U << 31; + case Attribute::SanitizeAddress: return 1ULL << 32; + case Attribute::MinSize: return 1ULL << 33; + case Attribute::NoDuplicate: return 1ULL << 34; + case Attribute::StackProtectStrong: return 1ULL << 35; + case Attribute::SanitizeThread: return 1ULL << 36; + case Attribute::SanitizeMemory: return 1ULL << 37; + case Attribute::NoBuiltin: return 1ULL << 38; + case Attribute::Returned: return 1ULL << 39; + case Attribute::Cold: return 1ULL << 40; + case Attribute::Builtin: return 1ULL << 41; + case Attribute::OptimizeNone: return 1ULL << 42; + case Attribute::InAlloca: return 1ULL << 43; + case Attribute::NonNull: return 1ULL << 44; + case Attribute::JumpTable: return 1ULL << 45; + case Attribute::Convergent: return 1ULL << 46; + case Attribute::SafeStack: return 1ULL << 47; + case Attribute::NoRecurse: return 1ULL << 48; + // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. + // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. + case Attribute::SwiftSelf: return 1ULL << 51; + case Attribute::SwiftError: return 1ULL << 52; + case Attribute::WriteOnly: return 1ULL << 53; + case Attribute::Speculatable: return 1ULL << 54; + case Attribute::StrictFP: return 1ULL << 55; + case Attribute::SanitizeHWAddress: return 1ULL << 56; + case Attribute::NoCfCheck: return 1ULL << 57; + case Attribute::OptForFuzzing: return 1ULL << 58; + case Attribute::ShadowCallStack: return 1ULL << 59; + case Attribute::SpeculativeLoadHardening: + return 1ULL << 60; + case Attribute::ImmArg: + return 1ULL << 61; + case Attribute::WillReturn: + return 1ULL << 62; + case Attribute::NoFree: + return 1ULL << 63; + default: + // Other attributes are not supported in the raw format, + // as we ran out of space. + return 0; + } + llvm_unreachable("Unsupported attribute type"); +} + +static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { + if (!Val) return; + + for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; + I = Attribute::AttrKind(I + 1)) { + if (uint64_t A = (Val & getRawAttributeMask(I))) { + if (I == Attribute::Alignment) + B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); + else if (I == Attribute::StackAlignment) + B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); + else if (Attribute::isTypeAttrKind(I)) + B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. + else + B.addAttribute(I); + } + } +} + +/// This fills an AttrBuilder object with the LLVM attributes that have +/// been decoded from the given integer. This function must stay in sync with +/// 'encodeLLVMAttributesForBitcode'. +static void decodeLLVMAttributesForBitcode(AttrBuilder &B, + uint64_t EncodedAttrs, + uint64_t AttrIdx) { + // The alignment is stored as a 16-bit raw value from bits 31--16. We shift + // the bits above 31 down by 11 bits. + unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; + assert((!Alignment || isPowerOf2_32(Alignment)) && + "Alignment must be a power of two."); + + if (Alignment) + B.addAlignmentAttr(Alignment); + + uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | + (EncodedAttrs & 0xffff); + + if (AttrIdx == AttributeList::FunctionIndex) { + // Upgrade old memory attributes. + MemoryEffects ME = MemoryEffects::unknown(); + if (Attrs & (1ULL << 9)) { + // ReadNone + Attrs &= ~(1ULL << 9); + ME &= MemoryEffects::none(); + } + if (Attrs & (1ULL << 10)) { + // ReadOnly + Attrs &= ~(1ULL << 10); + ME &= MemoryEffects::readOnly(); + } + if (Attrs & (1ULL << 49)) { + // InaccessibleMemOnly + Attrs &= ~(1ULL << 49); + ME &= MemoryEffects::inaccessibleMemOnly(); + } + if (Attrs & (1ULL << 50)) { + // InaccessibleMemOrArgMemOnly + Attrs &= ~(1ULL << 50); + ME &= MemoryEffects::inaccessibleOrArgMemOnly(); + } + if (Attrs & (1ULL << 53)) { + // WriteOnly + Attrs &= ~(1ULL << 53); + ME &= MemoryEffects::writeOnly(); + } + if (ME != MemoryEffects::unknown()) + B.addMemoryAttr(ME); + } + + addRawAttributeValue(B, Attrs); +} + +Error BitcodeReader::parseAttributeBlock() { + if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) + return Err; + + if (!MAttributes.empty()) + return error("Invalid multiple blocks"); + + SmallVector<uint64_t, 64> Record; + + SmallVector<AttributeList, 8> Attrs; + + // Read all the records. + while (true) { + Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::SubBlock: // Handled for us already. + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + return Error::success(); + case BitstreamEntry::Record: + // The interesting case. + break; + } + + // Read a record. + Record.clear(); + Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); + if (!MaybeRecord) + return MaybeRecord.takeError(); + switch (MaybeRecord.get()) { + default: // Default behavior: ignore. + break; + case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] + // Deprecated, but still needed to read old bitcode files. + if (Record.size() & 1) + return error("Invalid parameter attribute record"); + + for (unsigned i = 0, e = Record.size(); i != e; i += 2) { + AttrBuilder B(Context); + decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); + Attrs.push_back(AttributeList::get(Context, Record[i], B)); + } + + MAttributes.push_back(AttributeList::get(Context, Attrs)); + Attrs.clear(); + break; + case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] + for (unsigned i = 0, e = Record.size(); i != e; ++i) + Attrs.push_back(MAttributeGroups[Record[i]]); + + MAttributes.push_back(AttributeList::get(Context, Attrs)); + Attrs.clear(); + break; + } + } +} + +// Returns Attribute::None on unrecognized codes. +static Attribute::AttrKind getAttrFromCode(uint64_t Code) { + switch (Code) { + default: + return Attribute::None; + case bitc::ATTR_KIND_ALIGNMENT: + return Attribute::Alignment; + case bitc::ATTR_KIND_ALWAYS_INLINE: + return Attribute::AlwaysInline; + case bitc::ATTR_KIND_BUILTIN: + return Attribute::Builtin; + case bitc::ATTR_KIND_BY_VAL: + return Attribute::ByVal; + case bitc::ATTR_KIND_IN_ALLOCA: + return Attribute::InAlloca; + case bitc::ATTR_KIND_COLD: + return Attribute::Cold; + case bitc::ATTR_KIND_CONVERGENT: + return Attribute::Convergent; + case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: + return Attribute::DisableSanitizerInstrumentation; + case bitc::ATTR_KIND_ELEMENTTYPE: + return Attribute::ElementType; + case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: + return Attribute::FnRetThunkExtern; + case bitc::ATTR_KIND_INLINE_HINT: + return Attribute::InlineHint; + case bitc::ATTR_KIND_IN_REG: + return Attribute::InReg; + case bitc::ATTR_KIND_JUMP_TABLE: + return Attribute::JumpTable; + case bitc::ATTR_KIND_MEMORY: + return Attribute::Memory; + case bitc::ATTR_KIND_MIN_SIZE: + return Attribute::MinSize; + case bitc::ATTR_KIND_NAKED: + return Attribute::Naked; + case bitc::ATTR_KIND_NEST: + return Attribute::Nest; + case bitc::ATTR_KIND_NO_ALIAS: + return Attribute::NoAlias; + case bitc::ATTR_KIND_NO_BUILTIN: + return Attribute::NoBuiltin; + case bitc::ATTR_KIND_NO_CALLBACK: + return Attribute::NoCallback; + case bitc::ATTR_KIND_NO_CAPTURE: + return Attribute::NoCapture; + case bitc::ATTR_KIND_NO_DUPLICATE: + return Attribute::NoDuplicate; + case bitc::ATTR_KIND_NOFREE: + return Attribute::NoFree; + case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: + return Attribute::NoImplicitFloat; + case bitc::ATTR_KIND_NO_INLINE: + return Attribute::NoInline; + case bitc::ATTR_KIND_NO_RECURSE: + return Attribute::NoRecurse; + case bitc::ATTR_KIND_NO_MERGE: + return Attribute::NoMerge; + case bitc::ATTR_KIND_NON_LAZY_BIND: + return Attribute::NonLazyBind; + case bitc::ATTR_KIND_NON_NULL: + return Attribute::NonNull; + case bitc::ATTR_KIND_DEREFERENCEABLE: + return Attribute::Dereferenceable; + case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: + return Attribute::DereferenceableOrNull; + case bitc::ATTR_KIND_ALLOC_ALIGN: + return Attribute::AllocAlign; + case bitc::ATTR_KIND_ALLOC_KIND: + return Attribute::AllocKind; + case bitc::ATTR_KIND_ALLOC_SIZE: + return Attribute::AllocSize; + case bitc::ATTR_KIND_ALLOCATED_POINTER: + return Attribute::AllocatedPointer; + case bitc::ATTR_KIND_NO_RED_ZONE: + return Attribute::NoRedZone; + case bitc::ATTR_KIND_NO_RETURN: + return Attribute::NoReturn; + case bitc::ATTR_KIND_NOSYNC: + return Attribute::NoSync; + case bitc::ATTR_KIND_NOCF_CHECK: + return Attribute::NoCfCheck; + case bitc::ATTR_KIND_NO_PROFILE: + return Attribute::NoProfile; + case bitc::ATTR_KIND_SKIP_PROFILE: + return Attribute::SkipProfile; + case bitc::ATTR_KIND_NO_UNWIND: + return Attribute::NoUnwind; + case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: + return Attribute::NoSanitizeBounds; + case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: + return Attribute::NoSanitizeCoverage; + case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: + return Attribute::NullPointerIsValid; + case bitc::ATTR_KIND_OPT_FOR_FUZZING: + return Attribute::OptForFuzzing; + case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: + return Attribute::OptimizeForSize; + case bitc::ATTR_KIND_OPTIMIZE_NONE: + return Attribute::OptimizeNone; + case bitc::ATTR_KIND_READ_NONE: + return Attribute::ReadNone; + case bitc::ATTR_KIND_READ_ONLY: + return Attribute::ReadOnly; + case bitc::ATTR_KIND_RETURNED: + return Attribute::Returned; + case bitc::ATTR_KIND_RETURNS_TWICE: + return Attribute::ReturnsTwice; + case bitc::ATTR_KIND_S_EXT: + return Attribute::SExt; + case bitc::ATTR_KIND_SPECULATABLE: + return Attribute::Speculatable; + case bitc::ATTR_KIND_STACK_ALIGNMENT: + return Attribute::StackAlignment; + case bitc::ATTR_KIND_STACK_PROTECT: + return Attribute::StackProtect; + case bitc::ATTR_KIND_STACK_PROTECT_REQ: + return Attribute::StackProtectReq; + case bitc::ATTR_KIND_STACK_PROTECT_STRONG: + return Attribute::StackProtectStrong; + case bitc::ATTR_KIND_SAFESTACK: + return Attribute::SafeStack; + case bitc::ATTR_KIND_SHADOWCALLSTACK: + return Attribute::ShadowCallStack; + case bitc::ATTR_KIND_STRICT_FP: + return Attribute::StrictFP; + case bitc::ATTR_KIND_STRUCT_RET: + return Attribute::StructRet; + case bitc::ATTR_KIND_SANITIZE_ADDRESS: + return Attribute::SanitizeAddress; + case bitc::ATTR_KIND_SANITIZE_HWADDRESS: + return Attribute::SanitizeHWAddress; + case bitc::ATTR_KIND_SANITIZE_THREAD: + return Attribute::SanitizeThread; + case bitc::ATTR_KIND_SANITIZE_MEMORY: + return Attribute::SanitizeMemory; + case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: + return Attribute::SpeculativeLoadHardening; + case bitc::ATTR_KIND_SWIFT_ERROR: + return Attribute::SwiftError; + case bitc::ATTR_KIND_SWIFT_SELF: + return Attribute::SwiftSelf; + case bitc::ATTR_KIND_SWIFT_ASYNC: + return Attribute::SwiftAsync; + case bitc::ATTR_KIND_UW_TABLE: + return Attribute::UWTable; + case bitc::ATTR_KIND_VSCALE_RANGE: + return Attribute::VScaleRange; + case bitc::ATTR_KIND_WILLRETURN: + return Attribute::WillReturn; + case bitc::ATTR_KIND_WRITEONLY: + return Attribute::WriteOnly; + case bitc::ATTR_KIND_Z_EXT: + return Attribute::ZExt; + case bitc::ATTR_KIND_IMMARG: + return Attribute::ImmArg; + case bitc::ATTR_KIND_SANITIZE_MEMTAG: + return Attribute::SanitizeMemTag; + case bitc::ATTR_KIND_PREALLOCATED: + return Attribute::Preallocated; + case bitc::ATTR_KIND_NOUNDEF: + return Attribute::NoUndef; + case bitc::ATTR_KIND_BYREF: + return Attribute::ByRef; + case bitc::ATTR_KIND_MUSTPROGRESS: + return Attribute::MustProgress; + case bitc::ATTR_KIND_HOT: + return Attribute::Hot; + case bitc::ATTR_KIND_PRESPLIT_COROUTINE: + return Attribute::PresplitCoroutine; + } +} + +Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, + MaybeAlign &Alignment) { + // Note: Alignment in bitcode files is incremented by 1, so that zero + // can be used for default alignment. + if (Exponent > Value::MaxAlignmentExponent + 1) + return error("Invalid alignment value"); + Alignment = decodeMaybeAlign(Exponent); + return Error::success(); +} + +Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { + *Kind = getAttrFromCode(Code); + if (*Kind == Attribute::None) + return error("Unknown attribute kind (" + Twine(Code) + ")"); + return Error::success(); +} + +static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { + switch (EncodedKind) { + case bitc::ATTR_KIND_READ_NONE: + ME &= MemoryEffects::none(); + return true; + case bitc::ATTR_KIND_READ_ONLY: + ME &= MemoryEffects::readOnly(); + return true; + case bitc::ATTR_KIND_WRITEONLY: + ME &= MemoryEffects::writeOnly(); + return true; + case bitc::ATTR_KIND_ARGMEMONLY: + ME &= MemoryEffects::argMemOnly(); + return true; + case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: + ME &= MemoryEffects::inaccessibleMemOnly(); + return true; + case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: + ME &= MemoryEffects::inaccessibleOrArgMemOnly(); + return true; + default: + return false; + } +} + +Error BitcodeReader::parseAttributeGroupBlock() { + if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) + return Err; + + if (!MAttributeGroups.empty()) + return error("Invalid multiple blocks"); + + SmallVector<uint64_t, 64> Record; + + // Read all the records. + while (true) { + Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::SubBlock: // Handled for us already. + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + return Error::success(); + case BitstreamEntry::Record: + // The interesting case. + break; + } + + // Read a record. + Record.clear(); + Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); + if (!MaybeRecord) + return MaybeRecord.takeError(); + switch (MaybeRecord.get()) { + default: // Default behavior: ignore. + break; + case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] + if (Record.size() < 3) + return error("Invalid grp record"); + + uint64_t GrpID = Record[0]; + uint64_t Idx = Record[1]; // Index of the object this attribute refers to. + + AttrBuilder B(Context); + MemoryEffects ME = MemoryEffects::unknown(); + for (unsigned i = 2, e = Record.size(); i != e; ++i) { + if (Record[i] == 0) { // Enum attribute + Attribute::AttrKind Kind; + uint64_t EncodedKind = Record[++i]; + if (Idx == AttributeList::FunctionIndex && + upgradeOldMemoryAttribute(ME, EncodedKind)) + continue; + + if (Error Err = parseAttrKind(EncodedKind, &Kind)) + return Err; + + // Upgrade old-style byval attribute to one with a type, even if it's + // nullptr. We will have to insert the real type when we associate + // this AttributeList with a function. + if (Kind == Attribute::ByVal) + B.addByValAttr(nullptr); + else if (Kind == Attribute::StructRet) + B.addStructRetAttr(nullptr); + else if (Kind == Attribute::InAlloca) + B.addInAllocaAttr(nullptr); + else if (Kind == Attribute::UWTable) + B.addUWTableAttr(UWTableKind::Default); + else if (Attribute::isEnumAttrKind(Kind)) + B.addAttribute(Kind); + else + return error("Not an enum attribute"); + } else if (Record[i] == 1) { // Integer attribute + Attribute::AttrKind Kind; + if (Error Err = parseAttrKind(Record[++i], &Kind)) + return Err; + if (!Attribute::isIntAttrKind(Kind)) + return error("Not an int attribute"); + if (Kind == Attribute::Alignment) + B.addAlignmentAttr(Record[++i]); + else if (Kind == Attribute::StackAlignment) + B.addStackAlignmentAttr(Record[++i]); + else if (Kind == Attribute::Dereferenceable) + B.addDereferenceableAttr(Record[++i]); + else if (Kind == Attribute::DereferenceableOrNull) + B.addDereferenceableOrNullAttr(Record[++i]); + else if (Kind == Attribute::AllocSize) + B.addAllocSizeAttrFromRawRepr(Record[++i]); + else if (Kind == Attribute::VScaleRange) + B.addVScaleRangeAttrFromRawRepr(Record[++i]); + else if (Kind == Attribute::UWTable) + B.addUWTableAttr(UWTableKind(Record[++i])); + else if (Kind == Attribute::AllocKind) + B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); + else if (Kind == Attribute::Memory) + B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); + } else if (Record[i] == 3 || Record[i] == 4) { // String attribute + bool HasValue = (Record[i++] == 4); + SmallString<64> KindStr; + SmallString<64> ValStr; + + while (Record[i] != 0 && i != e) + KindStr += Record[i++]; + assert(Record[i] == 0 && "Kind string not null terminated"); + + if (HasValue) { + // Has a value associated with it. + ++i; // Skip the '0' that terminates the "kind" string. + while (Record[i] != 0 && i != e) + ValStr += Record[i++]; + assert(Record[i] == 0 && "Value string not null terminated"); + } + + B.addAttribute(KindStr.str(), ValStr.str()); + } else if (Record[i] == 5 || Record[i] == 6) { + bool HasType = Record[i] == 6; + Attribute::AttrKind Kind; + if (Error Err = parseAttrKind(Record[++i], &Kind)) + return Err; + if (!Attribute::isTypeAttrKind(Kind)) + return error("Not a type attribute"); + + B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); + } else { + return error("Invalid attribute group entry"); + } + } + + if (ME != MemoryEffects::unknown()) + B.addMemoryAttr(ME); + + UpgradeAttributes(B); + MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); + break; + } + } + } +} + +Error BitcodeReader::parseTypeTable() { + if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) + return Err; + + return parseTypeTableBody(); +} + +Error BitcodeReader::parseTypeTableBody() { + if (!TypeList.empty()) + return error("Invalid multiple blocks"); + + SmallVector<uint64_t, 64> Record; + unsigned NumRecords = 0; + + SmallString<64> TypeName; + + // Read all the records for this type table. + while (true) { + Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::SubBlock: // Handled for us already. + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + if (NumRecords != TypeList.size()) + return error("Malformed block"); + return Error::success(); + case BitstreamEntry::Record: + // The interesting case. + break; + } + + // Read a record. + Record.clear(); + Type *ResultTy = nullptr; + SmallVector<unsigned> ContainedIDs; + Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); + if (!MaybeRecord) + return MaybeRecord.takeError(); + switch (MaybeRecord.get()) { + default: + return error("Invalid value"); + case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] + // TYPE_CODE_NUMENTRY contains a count of the number of types in the + // type list. This allows us to reserve space. + if (Record.empty()) + return error("Invalid numentry record"); + TypeList.resize(Record[0]); + continue; + case bitc::TYPE_CODE_VOID: // VOID + ResultTy = Type::getVoidTy(Context); + break; + case bitc::TYPE_CODE_HALF: // HALF + ResultTy = Type::getHalfTy(Context); + break; + case bitc::TYPE_CODE_BFLOAT: // BFLOAT + ResultTy = Type::getBFloatTy(Context); + break; + case bitc::TYPE_CODE_FLOAT: // FLOAT + ResultTy = Type::getFloatTy(Context); + break; + case bitc::TYPE_CODE_DOUBLE: // DOUBLE + ResultTy = Type::getDoubleTy(Context); + break; + case bitc::TYPE_CODE_X86_FP80: // X86_FP80 + ResultTy = Type::getX86_FP80Ty(Context); + break; + case bitc::TYPE_CODE_FP128: // FP128 + ResultTy = Type::getFP128Ty(Context); + break; + case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 + ResultTy = Type::getPPC_FP128Ty(Context); + break; + case bitc::TYPE_CODE_LABEL: // LABEL + ResultTy = Type::getLabelTy(Context); + break; + case bitc::TYPE_CODE_METADATA: // METADATA + ResultTy = Type::getMetadataTy(Context); + break; + case bitc::TYPE_CODE_X86_MMX: // X86_MMX + ResultTy = Type::getX86_MMXTy(Context); + break; + case bitc::TYPE_CODE_X86_AMX: // X86_AMX + ResultTy = Type::getX86_AMXTy(Context); + break; + case bitc::TYPE_CODE_TOKEN: // TOKEN + ResultTy = Type::getTokenTy(Context); + break; + case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] + if (Record.empty()) + return error("Invalid integer record"); + + uint64_t NumBits = Record[0]; + if (NumBits < IntegerType::MIN_INT_BITS || + NumBits > IntegerType::MAX_INT_BITS) + return error("Bitwidth for integer type out of range"); + ResultTy = IntegerType::get(Context, NumBits); + break; + } + case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or + // [pointee type, address space] + if (Record.empty()) + return error("Invalid pointer record"); + unsigned AddressSpace = 0; + if (Record.size() == 2) + AddressSpace = Record[1]; + ResultTy = getTypeByID(Record[0]); + if (!ResultTy || + !PointerType::isValidElementType(ResultTy)) + return error("Invalid type"); + ContainedIDs.push_back(Record[0]); + ResultTy = PointerType::get(ResultTy, AddressSpace); + break; + } + case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] + if (Record.size() != 1) + return error("Invalid opaque pointer record"); + if (Context.supportsTypedPointers()) + return error( + "Opaque pointers are only supported in -opaque-pointers mode"); + unsigned AddressSpace = Record[0]; + ResultTy = PointerType::get(Context, AddressSpace); + break; + } + case bitc::TYPE_CODE_FUNCTION_OLD: { + // Deprecated, but still needed to read old bitcode files. + // FUNCTION: [vararg, attrid, retty, paramty x N] + if (Record.size() < 3) + return error("Invalid function record"); + SmallVector<Type*, 8> ArgTys; + for (unsigned i = 3, e = Record.size(); i != e; ++i) { + if (Type *T = getTypeByID(Record[i])) + ArgTys.push_back(T); + else + break; + } + + ResultTy = getTypeByID(Record[2]); + if (!ResultTy || ArgTys.size() < Record.size()-3) + return error("Invalid type"); + + ContainedIDs.append(Record.begin() + 2, Record.end()); + ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); + break; + } + case bitc::TYPE_CODE_FUNCTION: { + // FUNCTION: [vararg, retty, paramty x N] + if (Record.size() < 2) + return error("Invalid function record"); + SmallVector<Type*, 8> ArgTys; + for (unsigned i = 2, e = Record.size(); i != e; ++i) { + if (Type *T = getTypeByID(Record[i])) { + if (!FunctionType::isValidArgumentType(T)) + return error("Invalid function argument type"); + ArgTys.push_back(T); + } + else + break; + } + + ResultTy = getTypeByID(Record[1]); + if (!ResultTy || ArgTys.size() < Record.size()-2) + return error("Invalid type"); + + ContainedIDs.append(Record.begin() + 1, Record.end()); + ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); + break; + } + case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] + if (Record.empty()) + return error("Invalid anon struct record"); + SmallVector<Type*, 8> EltTys; + for (unsigned i = 1, e = Record.size(); i != e; ++i) { + if (Type *T = getTypeByID(Record[i])) + EltTys.push_back(T); + else + break; + } + if (EltTys.size() != Record.size()-1) + return error("Invalid type"); + ContainedIDs.append(Record.begin() + 1, Record.end()); + ResultTy = StructType::get(Context, EltTys, Record[0]); + break; + } + case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] + if (convertToString(Record, 0, TypeName)) + return error("Invalid struct name record"); + continue; + + case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] + if (Record.empty()) + return error("Invalid named struct record"); + + if (NumRecords >= TypeList.size()) + return error("Invalid TYPE table"); + + // Check to see if this was forward referenced, if so fill in the temp. + StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); + if (Res) { + Res->setName(TypeName); + TypeList[NumRecords] = nullptr; + } else // Otherwise, create a new struct. + Res = createIdentifiedStructType(Context, TypeName); + TypeName.clear(); + + SmallVector<Type*, 8> EltTys; + for (unsigned i = 1, e = Record.size(); i != e; ++i) { + if (Type *T = getTypeByID(Record[i])) + EltTys.push_back(T); + else + break; + } + if (EltTys.size() != Record.size()-1) + return error("Invalid named struct record"); + Res->setBody(EltTys, Record[0]); + ContainedIDs.append(Record.begin() + 1, Record.end()); + ResultTy = Res; + break; + } + case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] + if (Record.size() != 1) + return error("Invalid opaque type record"); + + if (NumRecords >= TypeList.size()) + return error("Invalid TYPE table"); + + // Check to see if this was forward referenced, if so fill in the temp. + StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); + if (Res) { + Res->setName(TypeName); + TypeList[NumRecords] = nullptr; + } else // Otherwise, create a new struct with no body. + Res = createIdentifiedStructType(Context, TypeName); + TypeName.clear(); + ResultTy = Res; + break; + } + case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] + if (Record.size() < 1) + return error("Invalid target extension type record"); + + if (NumRecords >= TypeList.size()) + return error("Invalid TYPE table"); + + if (Record[0] >= Record.size()) + return error("Too many type parameters"); + + unsigned NumTys = Record[0]; + SmallVector<Type *, 4> TypeParams; + SmallVector<unsigned, 8> IntParams; + for (unsigned i = 0; i < NumTys; i++) { + if (Type *T = getTypeByID(Record[i + 1])) + TypeParams.push_back(T); + else + return error("Invalid type"); + } + + for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { + if (Record[i] > UINT_MAX) + return error("Integer parameter too large"); + IntParams.push_back(Record[i]); + } + ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); + TypeName.clear(); + break; + } + case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] + if (Record.size() < 2) + return error("Invalid array type record"); + ResultTy = getTypeByID(Record[1]); + if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) + return error("Invalid type"); + ContainedIDs.push_back(Record[1]); + ResultTy = ArrayType::get(ResultTy, Record[0]); + break; + case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or + // [numelts, eltty, scalable] + if (Record.size() < 2) + return error("Invalid vector type record"); + if (Record[0] == 0) + return error("Invalid vector length"); + ResultTy = getTypeByID(Record[1]); + if (!ResultTy || !VectorType::isValidElementType(ResultTy)) + return error("Invalid type"); + bool Scalable = Record.size() > 2 ? Record[2] : false; + ContainedIDs.push_back(Record[1]); + ResultTy = VectorType::get(ResultTy, Record[0], Scalable); + break; + } + + if (NumRecords >= TypeList.size()) + return error("Invalid TYPE table"); + if (TypeList[NumRecords]) + return error( + "Invalid TYPE table: Only named structs can be forward referenced"); + assert(ResultTy && "Didn't read a type?"); + TypeList[NumRecords] = ResultTy; + if (!ContainedIDs.empty()) + ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); + ++NumRecords; + } +} + +Error BitcodeReader::parseOperandBundleTags() { + if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) + return Err; + + if (!BundleTags.empty()) + return error("Invalid multiple blocks"); + + SmallVector<uint64_t, 64> Record; + + while (true) { + Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::SubBlock: // Handled for us already. + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + return Error::success(); + case BitstreamEntry::Record: + // The interesting case. + break; + } + + // Tags are implicitly mapped to integers by their order. + + Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); + if (!MaybeRecord) + return MaybeRecord.takeError(); + if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) + return error("Invalid operand bundle record"); + + // OPERAND_BUNDLE_TAG: [strchr x N] + BundleTags.emplace_back(); + if (convertToString(Record, 0, BundleTags.back())) + return error("Invalid operand bundle record"); + Record.clear(); + } +} + +Error BitcodeReader::parseSyncScopeNames() { + if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) + return Err; + + if (!SSIDs.empty()) + return error("Invalid multiple synchronization scope names blocks"); + + SmallVector<uint64_t, 64> Record; + while (true) { + Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::SubBlock: // Handled for us already. + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + if (SSIDs.empty()) + return error("Invalid empty synchronization scope names block"); + return Error::success(); + case BitstreamEntry::Record: + // The interesting case. + break; + } + + // Synchronization scope names are implicitly mapped to synchronization + // scope IDs by their order. + + Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); + if (!MaybeRecord) + return MaybeRecord.takeError(); + if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) + return error("Invalid sync scope record"); + + SmallString<16> SSN; + if (convertToString(Record, 0, SSN)) + return error("Invalid sync scope record"); + + SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); + Record.clear(); + } +} + +/// Associate a value with its name from the given index in the provided record. +Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, + unsigned NameIndex, Triple &TT) { + SmallString<128> ValueName; + if (convertToString(Record, NameIndex, ValueName)) + return error("Invalid record"); + unsigned ValueID = Record[0]; + if (ValueID >= ValueList.size() || !ValueList[ValueID]) + return error("Invalid record"); + Value *V = ValueList[ValueID]; + + StringRef NameStr(ValueName.data(), ValueName.size()); + if (NameStr.find_first_of(0) != StringRef::npos) + return error("Invalid value name"); + V->setName(NameStr); + auto *GO = dyn_cast<GlobalObject>(V); + if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) + GO->setComdat(TheModule->getOrInsertComdat(V->getName())); + return V; +} + +/// Helper to note and return the current location, and jump to the given +/// offset. +static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, + BitstreamCursor &Stream) { + // Save the current parsing location so we can jump back at the end + // of the VST read. + uint64_t CurrentBit = Stream.GetCurrentBitNo(); + if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) + return std::move(JumpFailed); + Expected<BitstreamEntry> MaybeEntry = Stream.advance(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || + MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) + return error("Expected value symbol table subblock"); + return CurrentBit; +} + +void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, + Function *F, + ArrayRef<uint64_t> Record) { + // Note that we subtract 1 here because the offset is relative to one word + // before the start of the identification or module block, which was + // historically always the start of the regular bitcode header. + uint64_t FuncWordOffset = Record[1] - 1; + uint64_t FuncBitOffset = FuncWordOffset * 32; + DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; + // Set the LastFunctionBlockBit to point to the last function block. + // Later when parsing is resumed after function materialization, + // we can simply skip that last function block. + if (FuncBitOffset > LastFunctionBlockBit) + LastFunctionBlockBit = FuncBitOffset; +} + +/// Read a new-style GlobalValue symbol table. +Error BitcodeReader::parseGlobalValueSymbolTable() { + unsigned FuncBitcodeOffsetDelta = + Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; + + if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) + return Err; + + SmallVector<uint64_t, 64> Record; + while (true) { + Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::SubBlock: + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + return Error::success(); + case BitstreamEntry::Record: + break; + } + + Record.clear(); + Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); + if (!MaybeRecord) + return MaybeRecord.takeError(); + switch (MaybeRecord.get()) { + case bitc::VST_CODE_FNENTRY: { // [valueid, offset] + unsigned ValueID = Record[0]; + if (ValueID >= ValueList.size() || !ValueList[ValueID]) + return error("Invalid value reference in symbol table"); + setDeferredFunctionInfo(FuncBitcodeOffsetDelta, + cast<Function>(ValueList[ValueID]), Record); + break; + } + } + } +} + +/// Parse the value symbol table at either the current parsing location or +/// at the given bit offset if provided. +Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { + uint64_t CurrentBit; + // Pass in the Offset to distinguish between calling for the module-level + // VST (where we want to jump to the VST offset) and the function-level + // VST (where we don't). + if (Offset > 0) { + Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); + if (!MaybeCurrentBit) + return MaybeCurrentBit.takeError(); + CurrentBit = MaybeCurrentBit.get(); + // If this module uses a string table, read this as a module-level VST. + if (UseStrtab) { + if (Error Err = parseGlobalValueSymbolTable()) + return Err; + if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) + return JumpFailed; + return Error::success(); + } + // Otherwise, the VST will be in a similar format to a function-level VST, + // and will contain symbol names. + } + + // Compute the delta between the bitcode indices in the VST (the word offset + // to the word-aligned ENTER_SUBBLOCK for the function block, and that + // expected by the lazy reader. The reader's EnterSubBlock expects to have + // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID + // (size BlockIDWidth). Note that we access the stream's AbbrevID width here + // just before entering the VST subblock because: 1) the EnterSubBlock + // changes the AbbrevID width; 2) the VST block is nested within the same + // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same + // AbbrevID width before calling EnterSubBlock; and 3) when we want to + // jump to the FUNCTION_BLOCK using this offset later, we don't want + // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. + unsigned FuncBitcodeOffsetDelta = + Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; + + if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) + return Err; + + SmallVector<uint64_t, 64> Record; + + Triple TT(TheModule->getTargetTriple()); + + // Read all the records for this value table. + SmallString<128> ValueName; + + while (true) { + Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::SubBlock: // Handled for us already. + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + if (Offset > 0) + if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) + return JumpFailed; + return Error::success(); + case BitstreamEntry::Record: + // The interesting case. + break; + } + + // Read a record. + Record.clear(); + Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); + if (!MaybeRecord) + return MaybeRecord.takeError(); + switch (MaybeRecord.get()) { + default: // Default behavior: unknown type. + break; + case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] + Expected<Value *> ValOrErr = recordValue(Record, 1, TT); + if (Error Err = ValOrErr.takeError()) + return Err; + ValOrErr.get(); + break; + } + case bitc::VST_CODE_FNENTRY: { + // VST_CODE_FNENTRY: [valueid, offset, namechar x N] + Expected<Value *> ValOrErr = recordValue(Record, 2, TT); + if (Error Err = ValOrErr.takeError()) + return Err; + Value *V = ValOrErr.get(); + + // Ignore function offsets emitted for aliases of functions in older + // versions of LLVM. + if (auto *F = dyn_cast<Function>(V)) + setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); + break; + } + case bitc::VST_CODE_BBENTRY: { + if (convertToString(Record, 1, ValueName)) + return error("Invalid bbentry record"); + BasicBlock *BB = getBasicBlock(Record[0]); + if (!BB) + return error("Invalid bbentry record"); + + BB->setName(StringRef(ValueName.data(), ValueName.size())); + ValueName.clear(); + break; + } + } + } +} + +/// Decode a signed value stored with the sign bit in the LSB for dense VBR +/// encoding. +uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { + if ((V & 1) == 0) + return V >> 1; + if (V != 1) + return -(V >> 1); + // There is no such thing as -0 with integers. "-0" really means MININT. + return 1ULL << 63; +} + +/// Resolve all of the initializers for global values and aliases that we can. +Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { + std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; + std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; + std::vector<FunctionOperandInfo> FunctionOperandWorklist; + + GlobalInitWorklist.swap(GlobalInits); + IndirectSymbolInitWorklist.swap(IndirectSymbolInits); + FunctionOperandWorklist.swap(FunctionOperands); + + while (!GlobalInitWorklist.empty()) { + unsigned ValID = GlobalInitWorklist.back().second; + if (ValID >= ValueList.size()) { + // Not ready to resolve this yet, it requires something later in the file. + GlobalInits.push_back(GlobalInitWorklist.back()); + } else { + Expected<Constant *> MaybeC = getValueForInitializer(ValID); + if (!MaybeC) + return MaybeC.takeError(); + GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); + } + GlobalInitWorklist.pop_back(); + } + + while (!IndirectSymbolInitWorklist.empty()) { + unsigned ValID = IndirectSymbolInitWorklist.back().second; + if (ValID >= ValueList.size()) { + IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); + } else { + Expected<Constant *> MaybeC = getValueForInitializer(ValID); + if (!MaybeC) + return MaybeC.takeError(); + Constant *C = MaybeC.get(); + GlobalValue *GV = IndirectSymbolInitWorklist.back().first; + if (auto *GA = dyn_cast<GlobalAlias>(GV)) { + if (C->getType() != GV->getType()) + return error("Alias and aliasee types don't match"); + GA->setAliasee(C); + } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { + Type *ResolverFTy = + GlobalIFunc::getResolverFunctionType(GI->getValueType()); + // Transparently fix up the type for compatibility with older bitcode + GI->setResolver(ConstantExpr::getBitCast( + C, ResolverFTy->getPointerTo(GI->getAddressSpace()))); + } else { + return error("Expected an alias or an ifunc"); + } + } + IndirectSymbolInitWorklist.pop_back(); + } + + while (!FunctionOperandWorklist.empty()) { + FunctionOperandInfo &Info = FunctionOperandWorklist.back(); + if (Info.PersonalityFn) { + unsigned ValID = Info.PersonalityFn - 1; + if (ValID < ValueList.size()) { + Expected<Constant *> MaybeC = getValueForInitializer(ValID); + if (!MaybeC) + return MaybeC.takeError(); + Info.F->setPersonalityFn(MaybeC.get()); + Info.PersonalityFn = 0; + } + } + if (Info.Prefix) { + unsigned ValID = Info.Prefix - 1; + if (ValID < ValueList.size()) { + Expected<Constant *> MaybeC = getValueForInitializer(ValID); + if (!MaybeC) + return MaybeC.takeError(); + Info.F->setPrefixData(MaybeC.get()); + Info.Prefix = 0; + } + } + if (Info.Prologue) { + unsigned ValID = Info.Prologue - 1; + if (ValID < ValueList.size()) { + Expected<Constant *> MaybeC = getValueForInitializer(ValID); + if (!MaybeC) + return MaybeC.takeError(); + Info.F->setPrologueData(MaybeC.get()); + Info.Prologue = 0; + } + } + if (Info.PersonalityFn || Info.Prefix || Info.Prologue) + FunctionOperands.push_back(Info); + FunctionOperandWorklist.pop_back(); + } + + return Error::success(); +} + +APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { + SmallVector<uint64_t, 8> Words(Vals.size()); + transform(Vals, Words.begin(), + BitcodeReader::decodeSignRotatedValue); + + return APInt(TypeBits, Words); +} + +Error BitcodeReader::parseConstants() { + if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) + return Err; + + SmallVector<uint64_t, 64> Record; + + // Read all the records for this value table. + Type *CurTy = Type::getInt32Ty(Context); + unsigned Int32TyID = getVirtualTypeID(CurTy); + unsigned CurTyID = Int32TyID; + Type *CurElemTy = nullptr; + unsigned NextCstNo = ValueList.size(); + + while (true) { + Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::SubBlock: // Handled for us already. + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + if (NextCstNo != ValueList.size()) + return error("Invalid constant reference"); + return Error::success(); + case BitstreamEntry::Record: + // The interesting case. + break; + } + + // Read a record. + Record.clear(); + Type *VoidType = Type::getVoidTy(Context); + Value *V = nullptr; + Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); + if (!MaybeBitCode) + return MaybeBitCode.takeError(); + switch (unsigned BitCode = MaybeBitCode.get()) { + default: // Default behavior: unknown constant + case bitc::CST_CODE_UNDEF: // UNDEF + V = UndefValue::get(CurTy); + break; + case bitc::CST_CODE_POISON: // POISON + V = PoisonValue::get(CurTy); + break; + case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] + if (Record.empty()) + return error("Invalid settype record"); + if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) + return error("Invalid settype record"); + if (TypeList[Record[0]] == VoidType) + return error("Invalid constant type"); + CurTyID = Record[0]; + CurTy = TypeList[CurTyID]; + CurElemTy = getPtrElementTypeByID(CurTyID); + continue; // Skip the ValueList manipulation. + case bitc::CST_CODE_NULL: // NULL + if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) + return error("Invalid type for a constant null value"); + if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) + if (!TETy->hasProperty(TargetExtType::HasZeroInit)) + return error("Invalid type for a constant null value"); + V = Constant::getNullValue(CurTy); + break; + case bitc::CST_CODE_INTEGER: // INTEGER: [intval] + if (!CurTy->isIntegerTy() || Record.empty()) + return error("Invalid integer const record"); + V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); + break; + case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] + if (!CurTy->isIntegerTy() || Record.empty()) + return error("Invalid wide integer const record"); + + APInt VInt = + readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); + V = ConstantInt::get(Context, VInt); + + break; + } + case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] + if (Record.empty()) + return error("Invalid float const record"); + if (CurTy->isHalfTy()) + V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), + APInt(16, (uint16_t)Record[0]))); + else if (CurTy->isBFloatTy()) + V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), + APInt(16, (uint32_t)Record[0]))); + else if (CurTy->isFloatTy()) + V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), + APInt(32, (uint32_t)Record[0]))); + else if (CurTy->isDoubleTy()) + V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), + APInt(64, Record[0]))); + else if (CurTy->isX86_FP80Ty()) { + // Bits are not stored the same way as a normal i80 APInt, compensate. + uint64_t Rearrange[2]; + Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); + Rearrange[1] = Record[0] >> 48; + V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), + APInt(80, Rearrange))); + } else if (CurTy->isFP128Ty()) + V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), + APInt(128, Record))); + else if (CurTy->isPPC_FP128Ty()) + V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), + APInt(128, Record))); + else + V = UndefValue::get(CurTy); + break; + } + + case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] + if (Record.empty()) + return error("Invalid aggregate record"); + + unsigned Size = Record.size(); + SmallVector<unsigned, 16> Elts; + for (unsigned i = 0; i != Size; ++i) + Elts.push_back(Record[i]); + + if (isa<StructType>(CurTy)) { + V = BitcodeConstant::create( + Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); + } else if (isa<ArrayType>(CurTy)) { + V = BitcodeConstant::create(Alloc, CurTy, + BitcodeConstant::ConstantArrayOpcode, Elts); + } else if (isa<VectorType>(CurTy)) { + V = BitcodeConstant::create( + Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); + } else { + V = UndefValue::get(CurTy); + } + break; + } + case bitc::CST_CODE_STRING: // STRING: [values] + case bitc::CST_CODE_CSTRING: { // CSTRING: [values] + if (Record.empty()) + return error("Invalid string record"); + + SmallString<16> Elts(Record.begin(), Record.end()); + V = ConstantDataArray::getString(Context, Elts, + BitCode == bitc::CST_CODE_CSTRING); + break; + } + case bitc::CST_CODE_DATA: {// DATA: [n x value] + if (Record.empty()) + return error("Invalid data record"); + + Type *EltTy; + if (auto *Array = dyn_cast<ArrayType>(CurTy)) + EltTy = Array->getElementType(); + else + EltTy = cast<VectorType>(CurTy)->getElementType(); + if (EltTy->isIntegerTy(8)) { + SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); + if (isa<VectorType>(CurTy)) + V = ConstantDataVector::get(Context, Elts); + else + V = ConstantDataArray::get(Context, Elts); + } else if (EltTy->isIntegerTy(16)) { + SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); + if (isa<VectorType>(CurTy)) + V = ConstantDataVector::get(Context, Elts); + else + V = ConstantDataArray::get(Context, Elts); + } else if (EltTy->isIntegerTy(32)) { + SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); + if (isa<VectorType>(CurTy)) + V = ConstantDataVector::get(Context, Elts); + else + V = ConstantDataArray::get(Context, Elts); + } else if (EltTy->isIntegerTy(64)) { + SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); + if (isa<VectorType>(CurTy)) + V = ConstantDataVector::get(Context, Elts); + else + V = ConstantDataArray::get(Context, Elts); + } else if (EltTy->isHalfTy()) { + SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); + if (isa<VectorType>(CurTy)) + V = ConstantDataVector::getFP(EltTy, Elts); + else + V = ConstantDataArray::getFP(EltTy, Elts); + } else if (EltTy->isBFloatTy()) { + SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); + if (isa<VectorType>(CurTy)) + V = ConstantDataVector::getFP(EltTy, Elts); + else + V = ConstantDataArray::getFP(EltTy, Elts); + } else if (EltTy->isFloatTy()) { + SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); + if (isa<VectorType>(CurTy)) + V = ConstantDataVector::getFP(EltTy, Elts); + else + V = ConstantDataArray::getFP(EltTy, Elts); + } else if (EltTy->isDoubleTy()) { + SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); + if (isa<VectorType>(CurTy)) + V = ConstantDataVector::getFP(EltTy, Elts); + else + V = ConstantDataArray::getFP(EltTy, Elts); + } else { + return error("Invalid type for value"); + } + break; + } + case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] + if (Record.size() < 2) + return error("Invalid unary op constexpr record"); + int Opc = getDecodedUnaryOpcode(Record[0], CurTy); + if (Opc < 0) { + V = UndefValue::get(CurTy); // Unknown unop. + } else { + V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); + } + break; + } + case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] + if (Record.size() < 3) + return error("Invalid binary op constexpr record"); + int Opc = getDecodedBinaryOpcode(Record[0], CurTy); + if (Opc < 0) { + V = UndefValue::get(CurTy); // Unknown binop. + } else { + uint8_t Flags = 0; + if (Record.size() >= 4) { + if (Opc == Instruction::Add || + Opc == Instruction::Sub || + Opc == Instruction::Mul || + Opc == Instruction::Shl) { + if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) + Flags |= OverflowingBinaryOperator::NoSignedWrap; + if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) + Flags |= OverflowingBinaryOperator::NoUnsignedWrap; + } else if (Opc == Instruction::SDiv || + Opc == Instruction::UDiv || + Opc == Instruction::LShr || + Opc == Instruction::AShr) { + if (Record[3] & (1 << bitc::PEO_EXACT)) + Flags |= SDivOperator::IsExact; + } + } + V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, + {(unsigned)Record[1], (unsigned)Record[2]}); + } + break; + } + case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] + if (Record.size() < 3) + return error("Invalid cast constexpr record"); + int Opc = getDecodedCastOpcode(Record[0]); + if (Opc < 0) { + V = UndefValue::get(CurTy); // Unknown cast. + } else { + unsigned OpTyID = Record[1]; + Type *OpTy = getTypeByID(OpTyID); + if (!OpTy) + return error("Invalid cast constexpr record"); + V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); + } + break; + } + case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] + case bitc::CST_CODE_CE_GEP: // [ty, n x operands] + case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x + // operands] + if (Record.size() < 2) + return error("Constant GEP record must have at least two elements"); + unsigned OpNum = 0; + Type *PointeeType = nullptr; + if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || + Record.size() % 2) + PointeeType = getTypeByID(Record[OpNum++]); + + bool InBounds = false; + std::optional<unsigned> InRangeIndex; + if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { + uint64_t Op = Record[OpNum++]; + InBounds = Op & 1; + InRangeIndex = Op >> 1; + } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) + InBounds = true; + + SmallVector<unsigned, 16> Elts; + unsigned BaseTypeID = Record[OpNum]; + while (OpNum != Record.size()) { + unsigned ElTyID = Record[OpNum++]; + Type *ElTy = getTypeByID(ElTyID); + if (!ElTy) + return error("Invalid getelementptr constexpr record"); + Elts.push_back(Record[OpNum++]); + } + + if (Elts.size() < 1) + return error("Invalid gep with no operands"); + + Type *BaseType = getTypeByID(BaseTypeID); + if (isa<VectorType>(BaseType)) { + BaseTypeID = getContainedTypeID(BaseTypeID, 0); + BaseType = getTypeByID(BaseTypeID); + } + + PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); + if (!OrigPtrTy) + return error("GEP base operand must be pointer or vector of pointer"); + + if (!PointeeType) { + PointeeType = getPtrElementTypeByID(BaseTypeID); + if (!PointeeType) + return error("Missing element type for old-style constant GEP"); + } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) + return error("Explicit gep operator type does not match pointee type " + "of pointer operand"); + + V = BitcodeConstant::create(Alloc, CurTy, + {Instruction::GetElementPtr, InBounds, + InRangeIndex.value_or(-1), PointeeType}, + Elts); + break; + } + case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] + if (Record.size() < 3) + return error("Invalid select constexpr record"); + + V = BitcodeConstant::create( + Alloc, CurTy, Instruction::Select, + {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); + break; + } + case bitc::CST_CODE_CE_EXTRACTELT + : { // CE_EXTRACTELT: [opty, opval, opty, opval] + if (Record.size() < 3) + return error("Invalid extractelement constexpr record"); + unsigned OpTyID = Record[0]; + VectorType *OpTy = + dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); + if (!OpTy) + return error("Invalid extractelement constexpr record"); + unsigned IdxRecord; + if (Record.size() == 4) { + unsigned IdxTyID = Record[2]; + Type *IdxTy = getTypeByID(IdxTyID); + if (!IdxTy) + return error("Invalid extractelement constexpr record"); + IdxRecord = Record[3]; + } else { + // Deprecated, but still needed to read old bitcode files. + IdxRecord = Record[2]; + } + V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, + {(unsigned)Record[1], IdxRecord}); + break; + } + case bitc::CST_CODE_CE_INSERTELT + : { // CE_INSERTELT: [opval, opval, opty, opval] + VectorType *OpTy = dyn_cast<VectorType>(CurTy); + if (Record.size() < 3 || !OpTy) + return error("Invalid insertelement constexpr record"); + unsigned IdxRecord; + if (Record.size() == 4) { + unsigned IdxTyID = Record[2]; + Type *IdxTy = getTypeByID(IdxTyID); + if (!IdxTy) + return error("Invalid insertelement constexpr record"); + IdxRecord = Record[3]; + } else { + // Deprecated, but still needed to read old bitcode files. + IdxRecord = Record[2]; + } + V = BitcodeConstant::create( + Alloc, CurTy, Instruction::InsertElement, + {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); + break; + } + case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] + VectorType *OpTy = dyn_cast<VectorType>(CurTy); + if (Record.size() < 3 || !OpTy) + return error("Invalid shufflevector constexpr record"); + V = BitcodeConstant::create( + Alloc, CurTy, Instruction::ShuffleVector, + {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); + break; + } + case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] + VectorType *RTy = dyn_cast<VectorType>(CurTy); + VectorType *OpTy = + dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); + if (Record.size() < 4 || !RTy || !OpTy) + return error("Invalid shufflevector constexpr record"); + V = BitcodeConstant::create( + Alloc, CurTy, Instruction::ShuffleVector, + {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); + break; + } + case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] + if (Record.size() < 4) + return error("Invalid cmp constexpt record"); + unsigned OpTyID = Record[0]; + Type *OpTy = getTypeByID(OpTyID); + if (!OpTy) + return error("Invalid cmp constexpr record"); + V = BitcodeConstant::create( + Alloc, CurTy, + {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp + : Instruction::ICmp), + (uint8_t)Record[3]}, + {(unsigned)Record[1], (unsigned)Record[2]}); + break; + } + // This maintains backward compatibility, pre-asm dialect keywords. + // Deprecated, but still needed to read old bitcode files. + case bitc::CST_CODE_INLINEASM_OLD: { + if (Record.size() < 2) + return error("Invalid inlineasm record"); + std::string AsmStr, ConstrStr; + bool HasSideEffects = Record[0] & 1; + bool IsAlignStack = Record[0] >> 1; + unsigned AsmStrSize = Record[1]; + if (2+AsmStrSize >= Record.size()) + return error("Invalid inlineasm record"); + unsigned ConstStrSize = Record[2+AsmStrSize]; + if (3+AsmStrSize+ConstStrSize > Record.size()) + return error("Invalid inlineasm record"); + + for (unsigned i = 0; i != AsmStrSize; ++i) + AsmStr += (char)Record[2+i]; + for (unsigned i = 0; i != ConstStrSize; ++i) + ConstrStr += (char)Record[3+AsmStrSize+i]; + UpgradeInlineAsmString(&AsmStr); + if (!CurElemTy) + return error("Missing element type for old-style inlineasm"); + V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, + HasSideEffects, IsAlignStack); + break; + } + // This version adds support for the asm dialect keywords (e.g., + // inteldialect). + case bitc::CST_CODE_INLINEASM_OLD2: { + if (Record.size() < 2) + return error("Invalid inlineasm record"); + std::string AsmStr, ConstrStr; + bool HasSideEffects = Record[0] & 1; + bool IsAlignStack = (Record[0] >> 1) & 1; + unsigned AsmDialect = Record[0] >> 2; + unsigned AsmStrSize = Record[1]; + if (2+AsmStrSize >= Record.size()) + return error("Invalid inlineasm record"); + unsigned ConstStrSize = Record[2+AsmStrSize]; + if (3+AsmStrSize+ConstStrSize > Record.size()) + return error("Invalid inlineasm record"); + + for (unsigned i = 0; i != AsmStrSize; ++i) + AsmStr += (char)Record[2+i]; + for (unsigned i = 0; i != ConstStrSize; ++i) + ConstrStr += (char)Record[3+AsmStrSize+i]; + UpgradeInlineAsmString(&AsmStr); + if (!CurElemTy) + return error("Missing element type for old-style inlineasm"); + V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, + HasSideEffects, IsAlignStack, + InlineAsm::AsmDialect(AsmDialect)); + break; + } + // This version adds support for the unwind keyword. + case bitc::CST_CODE_INLINEASM_OLD3: { + if (Record.size() < 2) + return error("Invalid inlineasm record"); + unsigned OpNum = 0; + std::string AsmStr, ConstrStr; + bool HasSideEffects = Record[OpNum] & 1; + bool IsAlignStack = (Record[OpNum] >> 1) & 1; + unsigned AsmDialect = (Record[OpNum] >> 2) & 1; + bool CanThrow = (Record[OpNum] >> 3) & 1; + ++OpNum; + unsigned AsmStrSize = Record[OpNum]; + ++OpNum; + if (OpNum + AsmStrSize >= Record.size()) + return error("Invalid inlineasm record"); + unsigned ConstStrSize = Record[OpNum + AsmStrSize]; + if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) + return error("Invalid inlineasm record"); + + for (unsigned i = 0; i != AsmStrSize; ++i) + AsmStr += (char)Record[OpNum + i]; + ++OpNum; + for (unsigned i = 0; i != ConstStrSize; ++i) + ConstrStr += (char)Record[OpNum + AsmStrSize + i]; + UpgradeInlineAsmString(&AsmStr); + if (!CurElemTy) + return error("Missing element type for old-style inlineasm"); + V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, + HasSideEffects, IsAlignStack, + InlineAsm::AsmDialect(AsmDialect), CanThrow); + break; + } + // This version adds explicit function type. + case bitc::CST_CODE_INLINEASM: { + if (Record.size() < 3) + return error("Invalid inlineasm record"); + unsigned OpNum = 0; + auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); + ++OpNum; + if (!FnTy) + return error("Invalid inlineasm record"); + std::string AsmStr, ConstrStr; + bool HasSideEffects = Record[OpNum] & 1; + bool IsAlignStack = (Record[OpNum] >> 1) & 1; + unsigned AsmDialect = (Record[OpNum] >> 2) & 1; + bool CanThrow = (Record[OpNum] >> 3) & 1; + ++OpNum; + unsigned AsmStrSize = Record[OpNum]; + ++OpNum; + if (OpNum + AsmStrSize >= Record.size()) + return error("Invalid inlineasm record"); + unsigned ConstStrSize = Record[OpNum + AsmStrSize]; + if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) + return error("Invalid inlineasm record"); + + for (unsigned i = 0; i != AsmStrSize; ++i) + AsmStr += (char)Record[OpNum + i]; + ++OpNum; + for (unsigned i = 0; i != ConstStrSize; ++i) + ConstrStr += (char)Record[OpNum + AsmStrSize + i]; + UpgradeInlineAsmString(&AsmStr); + V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, + InlineAsm::AsmDialect(AsmDialect), CanThrow); + break; + } + case bitc::CST_CODE_BLOCKADDRESS:{ + if (Record.size() < 3) + return error("Invalid blockaddress record"); + unsigned FnTyID = Record[0]; + Type *FnTy = getTypeByID(FnTyID); + if (!FnTy) + return error("Invalid blockaddress record"); + V = BitcodeConstant::create( + Alloc, CurTy, + {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, + Record[1]); + break; + } + case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { + if (Record.size() < 2) + return error("Invalid dso_local record"); + unsigned GVTyID = Record[0]; + Type *GVTy = getTypeByID(GVTyID); + if (!GVTy) + return error("Invalid dso_local record"); + V = BitcodeConstant::create( + Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); + break; + } + case bitc::CST_CODE_NO_CFI_VALUE: { + if (Record.size() < 2) + return error("Invalid no_cfi record"); + unsigned GVTyID = Record[0]; + Type *GVTy = getTypeByID(GVTyID); + if (!GVTy) + return error("Invalid no_cfi record"); + V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, + Record[1]); + break; + } + } + + assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); + if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) + return Err; + ++NextCstNo; + } +} + +Error BitcodeReader::parseUseLists() { + if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) + return Err; + + // Read all the records. + SmallVector<uint64_t, 64> Record; + + while (true) { + Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::SubBlock: // Handled for us already. + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + return Error::success(); + case BitstreamEntry::Record: + // The interesting case. + break; + } + + // Read a use list record. + Record.clear(); + bool IsBB = false; + Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); + if (!MaybeRecord) + return MaybeRecord.takeError(); + switch (MaybeRecord.get()) { + default: // Default behavior: unknown type. + break; + case bitc::USELIST_CODE_BB: + IsBB = true; + [[fallthrough]]; + case bitc::USELIST_CODE_DEFAULT: { + unsigned RecordLength = Record.size(); + if (RecordLength < 3) + // Records should have at least an ID and two indexes. + return error("Invalid record"); + unsigned ID = Record.pop_back_val(); + + Value *V; + if (IsBB) { + assert(ID < FunctionBBs.size() && "Basic block not found"); + V = FunctionBBs[ID]; + } else + V = ValueList[ID]; + unsigned NumUses = 0; + SmallDenseMap<const Use *, unsigned, 16> Order; + for (const Use &U : V->materialized_uses()) { + if (++NumUses > Record.size()) + break; + Order[&U] = Record[NumUses - 1]; + } + if (Order.size() != Record.size() || NumUses > Record.size()) + // Mismatches can happen if the functions are being materialized lazily + // (out-of-order), or a value has been upgraded. + break; + + V->sortUseList([&](const Use &L, const Use &R) { + return Order.lookup(&L) < Order.lookup(&R); + }); + break; + } + } + } +} + +/// When we see the block for metadata, remember where it is and then skip it. +/// This lets us lazily deserialize the metadata. +Error BitcodeReader::rememberAndSkipMetadata() { + // Save the current stream state. + uint64_t CurBit = Stream.GetCurrentBitNo(); + DeferredMetadataInfo.push_back(CurBit); + + // Skip over the block for now. + if (Error Err = Stream.SkipBlock()) + return Err; + return Error::success(); +} + +Error BitcodeReader::materializeMetadata() { + for (uint64_t BitPos : DeferredMetadataInfo) { + // Move the bit stream to the saved position. + if (Error JumpFailed = Stream.JumpToBit(BitPos)) + return JumpFailed; + if (Error Err = MDLoader->parseModuleMetadata()) + return Err; + } + + // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level + // metadata. Only upgrade if the new option doesn't exist to avoid upgrade + // multiple times. + if (!TheModule->getNamedMetadata("llvm.linker.options")) { + if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { + NamedMDNode *LinkerOpts = + TheModule->getOrInsertNamedMetadata("llvm.linker.options"); + for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) + LinkerOpts->addOperand(cast<MDNode>(MDOptions)); + } + } + + DeferredMetadataInfo.clear(); + return Error::success(); +} + +void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } + +/// When we see the block for a function body, remember where it is and then +/// skip it. This lets us lazily deserialize the functions. +Error BitcodeReader::rememberAndSkipFunctionBody() { + // Get the function we are talking about. + if (FunctionsWithBodies.empty()) + return error("Insufficient function protos"); + + Function *Fn = FunctionsWithBodies.back(); + FunctionsWithBodies.pop_back(); + + // Save the current stream state. + uint64_t CurBit = Stream.GetCurrentBitNo(); + assert( + (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && + "Mismatch between VST and scanned function offsets"); + DeferredFunctionInfo[Fn] = CurBit; + + // Skip over the function block for now. + if (Error Err = Stream.SkipBlock()) + return Err; + return Error::success(); +} + +Error BitcodeReader::globalCleanup() { + // Patch the initializers for globals and aliases up. + if (Error Err = resolveGlobalAndIndirectSymbolInits()) + return Err; + if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) + return error("Malformed global initializer set"); + + // Look for intrinsic functions which need to be upgraded at some point + // and functions that need to have their function attributes upgraded. + for (Function &F : *TheModule) { + MDLoader->upgradeDebugIntrinsics(F); + Function *NewFn; + if (UpgradeIntrinsicFunction(&F, NewFn)) + UpgradedIntrinsics[&F] = NewFn; + // Look for functions that rely on old function attribute behavior. + UpgradeFunctionAttributes(F); + } + + // Look for global variables which need to be renamed. + std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; + for (GlobalVariable &GV : TheModule->globals()) + if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) + UpgradedVariables.emplace_back(&GV, Upgraded); + for (auto &Pair : UpgradedVariables) { + Pair.first->eraseFromParent(); + TheModule->getGlobalList().push_back(Pair.second); + } + + // Force deallocation of memory for these vectors to favor the client that + // want lazy deserialization. + std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); + std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); + return Error::success(); +} + +/// Support for lazy parsing of function bodies. This is required if we +/// either have an old bitcode file without a VST forward declaration record, +/// or if we have an anonymous function being materialized, since anonymous +/// functions do not have a name and are therefore not in the VST. +Error BitcodeReader::rememberAndSkipFunctionBodies() { + if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) + return JumpFailed; + + if (Stream.AtEndOfStream()) + return error("Could not find function in stream"); + + if (!SeenFirstFunctionBody) + return error("Trying to materialize functions before seeing function blocks"); + + // An old bitcode file with the symbol table at the end would have + // finished the parse greedily. + assert(SeenValueSymbolTable); + + SmallVector<uint64_t, 64> Record; + + while (true) { + Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + llvm::BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + default: + return error("Expect SubBlock"); + case BitstreamEntry::SubBlock: + switch (Entry.ID) { + default: + return error("Expect function block"); + case bitc::FUNCTION_BLOCK_ID: + if (Error Err = rememberAndSkipFunctionBody()) + return Err; + NextUnreadBit = Stream.GetCurrentBitNo(); + return Error::success(); + } + } + } +} + +Error BitcodeReaderBase::readBlockInfo() { + Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = + Stream.ReadBlockInfoBlock(); + if (!MaybeNewBlockInfo) + return MaybeNewBlockInfo.takeError(); + std::optional<BitstreamBlockInfo> NewBlockInfo = + std::move(MaybeNewBlockInfo.get()); + if (!NewBlockInfo) + return error("Malformed block"); + BlockInfo = std::move(*NewBlockInfo); + return Error::success(); +} + +Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { + // v1: [selection_kind, name] + // v2: [strtab_offset, strtab_size, selection_kind] + StringRef Name; + std::tie(Name, Record) = readNameFromStrtab(Record); + + if (Record.empty()) + return error("Invalid record"); + Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); + std::string OldFormatName; + if (!UseStrtab) { + if (Record.size() < 2) + return error("Invalid record"); + unsigned ComdatNameSize = Record[1]; + if (ComdatNameSize > Record.size() - 2) + return error("Comdat name size too large"); + OldFormatName.reserve(ComdatNameSize); + for (unsigned i = 0; i != ComdatNameSize; ++i) + OldFormatName += (char)Record[2 + i]; + Name = OldFormatName; + } + Comdat *C = TheModule->getOrInsertComdat(Name); + C->setSelectionKind(SK); + ComdatList.push_back(C); + return Error::success(); +} + +static void inferDSOLocal(GlobalValue *GV) { + // infer dso_local from linkage and visibility if it is not encoded. + if (GV->hasLocalLinkage() || + (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) + GV->setDSOLocal(true); +} + +GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { + GlobalValue::SanitizerMetadata Meta; + if (V & (1 << 0)) + Meta.NoAddress = true; + if (V & (1 << 1)) + Meta.NoHWAddress = true; + if (V & (1 << 2)) + Meta.Memtag = true; + if (V & (1 << 3)) + Meta.IsDynInit = true; + return Meta; +} + +Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { + // v1: [pointer type, isconst, initid, linkage, alignment, section, + // visibility, threadlocal, unnamed_addr, externally_initialized, + // dllstorageclass, comdat, attributes, preemption specifier, + // partition strtab offset, partition strtab size] (name in VST) + // v2: [strtab_offset, strtab_size, v1] + StringRef Name; + std::tie(Name, Record) = readNameFromStrtab(Record); + + if (Record.size() < 6) + return error("Invalid record"); + unsigned TyID = Record[0]; + Type *Ty = getTypeByID(TyID); + if (!Ty) + return error("Invalid record"); + bool isConstant = Record[1] & 1; + bool explicitType = Record[1] & 2; + unsigned AddressSpace; + if (explicitType) { + AddressSpace = Record[1] >> 2; + } else { + if (!Ty->isPointerTy()) + return error("Invalid type for value"); + AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); + TyID = getContainedTypeID(TyID); + Ty = getTypeByID(TyID); + if (!Ty) + return error("Missing element type for old-style global"); + } + + uint64_t RawLinkage = Record[3]; + GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); + MaybeAlign Alignment; + if (Error Err = parseAlignmentValue(Record[4], Alignment)) + return Err; + std::string Section; + if (Record[5]) { + if (Record[5] - 1 >= SectionTable.size()) + return error("Invalid ID"); + Section = SectionTable[Record[5] - 1]; + } + GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; + // Local linkage must have default visibility. + // auto-upgrade `hidden` and `protected` for old bitcode. + if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) + Visibility = getDecodedVisibility(Record[6]); + + GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; + if (Record.size() > 7) + TLM = getDecodedThreadLocalMode(Record[7]); + + GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; + if (Record.size() > 8) + UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); + + bool ExternallyInitialized = false; + if (Record.size() > 9) + ExternallyInitialized = Record[9]; + + GlobalVariable *NewGV = + new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, + nullptr, TLM, AddressSpace, ExternallyInitialized); + NewGV->setAlignment(Alignment); + if (!Section.empty()) + NewGV->setSection(Section); + NewGV->setVisibility(Visibility); + NewGV->setUnnamedAddr(UnnamedAddr); + + if (Record.size() > 10) { + // A GlobalValue with local linkage cannot have a DLL storage class. + if (!NewGV->hasLocalLinkage()) { + NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); + } + } else { + upgradeDLLImportExportLinkage(NewGV, RawLinkage); + } + + ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); + + // Remember which value to use for the global initializer. + if (unsigned InitID = Record[2]) + GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); + + if (Record.size() > 11) { + if (unsigned ComdatID = Record[11]) { + if (ComdatID > ComdatList.size()) + return error("Invalid global variable comdat ID"); + NewGV->setComdat(ComdatList[ComdatID - 1]); + } + } else if (hasImplicitComdat(RawLinkage)) { + ImplicitComdatObjects.insert(NewGV); + } + + if (Record.size() > 12) { + auto AS = getAttributes(Record[12]).getFnAttrs(); + NewGV->setAttributes(AS); + } + + if (Record.size() > 13) { + NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); + } + inferDSOLocal(NewGV); + + // Check whether we have enough values to read a partition name. + if (Record.size() > 15) + NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); + + if (Record.size() > 16 && Record[16]) { + llvm::GlobalValue::SanitizerMetadata Meta = + deserializeSanitizerMetadata(Record[16]); + NewGV->setSanitizerMetadata(Meta); + } + + return Error::success(); +} + +void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { + if (ValueTypeCallback) { + (*ValueTypeCallback)( + F, TypeID, [this](unsigned I) { return getTypeByID(I); }, + [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); + } +} + +Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { + // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, + // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, + // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) + // v2: [strtab_offset, strtab_size, v1] + StringRef Name; + std::tie(Name, Record) = readNameFromStrtab(Record); + + if (Record.size() < 8) + return error("Invalid record"); + unsigned FTyID = Record[0]; + Type *FTy = getTypeByID(FTyID); + if (!FTy) + return error("Invalid record"); + if (isa<PointerType>(FTy)) { + FTyID = getContainedTypeID(FTyID, 0); + FTy = getTypeByID(FTyID); + if (!FTy) + return error("Missing element type for old-style function"); + } + + if (!isa<FunctionType>(FTy)) + return error("Invalid type for value"); + auto CC = static_cast<CallingConv::ID>(Record[1]); + if (CC & ~CallingConv::MaxID) + return error("Invalid calling convention ID"); + + unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); + if (Record.size() > 16) + AddrSpace = Record[16]; + + Function *Func = + Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, + AddrSpace, Name, TheModule); + + assert(Func->getFunctionType() == FTy && + "Incorrect fully specified type provided for function"); + FunctionTypeIDs[Func] = FTyID; + + Func->setCallingConv(CC); + bool isProto = Record[2]; + uint64_t RawLinkage = Record[3]; + Func->setLinkage(getDecodedLinkage(RawLinkage)); + Func->setAttributes(getAttributes(Record[4])); + callValueTypeCallback(Func, FTyID); + + // Upgrade any old-style byval or sret without a type by propagating the + // argument's pointee type. There should be no opaque pointers where the byval + // type is implicit. + for (unsigned i = 0; i != Func->arg_size(); ++i) { + for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, + Attribute::InAlloca}) { + if (!Func->hasParamAttribute(i, Kind)) + continue; + + if (Func->getParamAttribute(i, Kind).getValueAsType()) + continue; + + Func->removeParamAttr(i, Kind); + + unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); + Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); + if (!PtrEltTy) + return error("Missing param element type for attribute upgrade"); + + Attribute NewAttr; + switch (Kind) { + case Attribute::ByVal: + NewAttr = Attribute::getWithByValType(Context, PtrEltTy); + break; + case Attribute::StructRet: + NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); + break; + case Attribute::InAlloca: + NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); + break; + default: + llvm_unreachable("not an upgraded type attribute"); + } + + Func->addParamAttr(i, NewAttr); + } + } + + if (Func->getCallingConv() == CallingConv::X86_INTR && + !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { + unsigned ParamTypeID = getContainedTypeID(FTyID, 1); + Type *ByValTy = getPtrElementTypeByID(ParamTypeID); + if (!ByValTy) + return error("Missing param element type for x86_intrcc upgrade"); + Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); + Func->addParamAttr(0, NewAttr); + } + + MaybeAlign Alignment; + if (Error Err = parseAlignmentValue(Record[5], Alignment)) + return Err; + Func->setAlignment(Alignment); + if (Record[6]) { + if (Record[6] - 1 >= SectionTable.size()) + return error("Invalid ID"); + Func->setSection(SectionTable[Record[6] - 1]); + } + // Local linkage must have default visibility. + // auto-upgrade `hidden` and `protected` for old bitcode. + if (!Func->hasLocalLinkage()) + Func->setVisibility(getDecodedVisibility(Record[7])); + if (Record.size() > 8 && Record[8]) { + if (Record[8] - 1 >= GCTable.size()) + return error("Invalid ID"); + Func->setGC(GCTable[Record[8] - 1]); + } + GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; + if (Record.size() > 9) + UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); + Func->setUnnamedAddr(UnnamedAddr); + + FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; + if (Record.size() > 10) + OperandInfo.Prologue = Record[10]; + + if (Record.size() > 11) { + // A GlobalValue with local linkage cannot have a DLL storage class. + if (!Func->hasLocalLinkage()) { + Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); + } + } else { + upgradeDLLImportExportLinkage(Func, RawLinkage); + } + + if (Record.size() > 12) { + if (unsigned ComdatID = Record[12]) { + if (ComdatID > ComdatList.size()) + return error("Invalid function comdat ID"); + Func->setComdat(ComdatList[ComdatID - 1]); + } + } else if (hasImplicitComdat(RawLinkage)) { + ImplicitComdatObjects.insert(Func); + } + + if (Record.size() > 13) + OperandInfo.Prefix = Record[13]; + + if (Record.size() > 14) + OperandInfo.PersonalityFn = Record[14]; + + if (Record.size() > 15) { + Func->setDSOLocal(getDecodedDSOLocal(Record[15])); + } + inferDSOLocal(Func); + + // Record[16] is the address space number. + + // Check whether we have enough values to read a partition name. Also make + // sure Strtab has enough values. + if (Record.size() > 18 && Strtab.data() && + Record[17] + Record[18] <= Strtab.size()) { + Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); + } + + ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); + + if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) + FunctionOperands.push_back(OperandInfo); + + // If this is a function with a body, remember the prototype we are + // creating now, so that we can match up the body with them later. + if (!isProto) { + Func->setIsMaterializable(true); + FunctionsWithBodies.push_back(Func); + DeferredFunctionInfo[Func] = 0; + } + return Error::success(); +} + +Error BitcodeReader::parseGlobalIndirectSymbolRecord( + unsigned BitCode, ArrayRef<uint64_t> Record) { + // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) + // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, + // dllstorageclass, threadlocal, unnamed_addr, + // preemption specifier] (name in VST) + // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, + // visibility, dllstorageclass, threadlocal, unnamed_addr, + // preemption specifier] (name in VST) + // v2: [strtab_offset, strtab_size, v1] + StringRef Name; + std::tie(Name, Record) = readNameFromStrtab(Record); + + bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; + if (Record.size() < (3 + (unsigned)NewRecord)) + return error("Invalid record"); + unsigned OpNum = 0; + unsigned TypeID = Record[OpNum++]; + Type *Ty = getTypeByID(TypeID); + if (!Ty) + return error("Invalid record"); + + unsigned AddrSpace; + if (!NewRecord) { + auto *PTy = dyn_cast<PointerType>(Ty); + if (!PTy) + return error("Invalid type for value"); + AddrSpace = PTy->getAddressSpace(); + TypeID = getContainedTypeID(TypeID); + Ty = getTypeByID(TypeID); + if (!Ty) + return error("Missing element type for old-style indirect symbol"); + } else { + AddrSpace = Record[OpNum++]; + } + + auto Val = Record[OpNum++]; + auto Linkage = Record[OpNum++]; + GlobalValue *NewGA; + if (BitCode == bitc::MODULE_CODE_ALIAS || + BitCode == bitc::MODULE_CODE_ALIAS_OLD) + NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, + TheModule); + else + NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, + nullptr, TheModule); + + // Local linkage must have default visibility. + // auto-upgrade `hidden` and `protected` for old bitcode. + if (OpNum != Record.size()) { + auto VisInd = OpNum++; + if (!NewGA->hasLocalLinkage()) + NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); + } + if (BitCode == bitc::MODULE_CODE_ALIAS || + BitCode == bitc::MODULE_CODE_ALIAS_OLD) { + if (OpNum != Record.size()) { + auto S = Record[OpNum++]; + // A GlobalValue with local linkage cannot have a DLL storage class. + if (!NewGA->hasLocalLinkage()) + NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); + } + else + upgradeDLLImportExportLinkage(NewGA, Linkage); + if (OpNum != Record.size()) + NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); + if (OpNum != Record.size()) + NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); + } + if (OpNum != Record.size()) + NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); + inferDSOLocal(NewGA); + + // Check whether we have enough values to read a partition name. + if (OpNum + 1 < Record.size()) { + NewGA->setPartition( + StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); + OpNum += 2; + } + + ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); + IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); + return Error::success(); +} + +Error BitcodeReader::parseModule(uint64_t ResumeBit, + bool ShouldLazyLoadMetadata, + ParserCallbacks Callbacks) { + this->ValueTypeCallback = std::move(Callbacks.ValueType); + if (ResumeBit) { + if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) + return JumpFailed; + } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) + return Err; + + SmallVector<uint64_t, 64> Record; + + // Parts of bitcode parsing depend on the datalayout. Make sure we + // finalize the datalayout before we run any of that code. + bool ResolvedDataLayout = false; + // In order to support importing modules with illegal data layout strings, + // delay parsing the data layout string until after upgrades and overrides + // have been applied, allowing to fix illegal data layout strings. + // Initialize to the current module's layout string in case none is specified. + std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); + + auto ResolveDataLayout = [&]() -> Error { + if (ResolvedDataLayout) + return Error::success(); + + // Datalayout and triple can't be parsed after this point. + ResolvedDataLayout = true; + + // Auto-upgrade the layout string + TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( + TentativeDataLayoutStr, TheModule->getTargetTriple()); + + // Apply override + if (Callbacks.DataLayout) { + if (auto LayoutOverride = (*Callbacks.DataLayout)( + TheModule->getTargetTriple(), TentativeDataLayoutStr)) + TentativeDataLayoutStr = *LayoutOverride; + } + + // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. + Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); + if (!MaybeDL) + return MaybeDL.takeError(); + + TheModule->setDataLayout(MaybeDL.get()); + return Error::success(); + }; + + // Read all the records for this module. + while (true) { + Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + llvm::BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + if (Error Err = ResolveDataLayout()) + return Err; + return globalCleanup(); + + case BitstreamEntry::SubBlock: + switch (Entry.ID) { + default: // Skip unknown content. + if (Error Err = Stream.SkipBlock()) + return Err; + break; + case bitc::BLOCKINFO_BLOCK_ID: + if (Error Err = readBlockInfo()) + return Err; + break; + case bitc::PARAMATTR_BLOCK_ID: + if (Error Err = parseAttributeBlock()) + return Err; + break; + case bitc::PARAMATTR_GROUP_BLOCK_ID: + if (Error Err = parseAttributeGroupBlock()) + return Err; + break; + case bitc::TYPE_BLOCK_ID_NEW: + if (Error Err = parseTypeTable()) + return Err; + break; + case bitc::VALUE_SYMTAB_BLOCK_ID: + if (!SeenValueSymbolTable) { + // Either this is an old form VST without function index and an + // associated VST forward declaration record (which would have caused + // the VST to be jumped to and parsed before it was encountered + // normally in the stream), or there were no function blocks to + // trigger an earlier parsing of the VST. + assert(VSTOffset == 0 || FunctionsWithBodies.empty()); + if (Error Err = parseValueSymbolTable()) + return Err; + SeenValueSymbolTable = true; + } else { + // We must have had a VST forward declaration record, which caused + // the parser to jump to and parse the VST earlier. + assert(VSTOffset > 0); + if (Error Err = Stream.SkipBlock()) + return Err; + } + break; + case bitc::CONSTANTS_BLOCK_ID: + if (Error Err = parseConstants()) + return Err; + if (Error Err = resolveGlobalAndIndirectSymbolInits()) + return Err; + break; + case bitc::METADATA_BLOCK_ID: + if (ShouldLazyLoadMetadata) { + if (Error Err = rememberAndSkipMetadata()) + return Err; + break; + } + assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); + if (Error Err = MDLoader->parseModuleMetadata()) + return Err; + break; + case bitc::METADATA_KIND_BLOCK_ID: + if (Error Err = MDLoader->parseMetadataKinds()) + return Err; + break; + case bitc::FUNCTION_BLOCK_ID: + if (Error Err = ResolveDataLayout()) + return Err; + + // If this is the first function body we've seen, reverse the + // FunctionsWithBodies list. + if (!SeenFirstFunctionBody) { + std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); + if (Error Err = globalCleanup()) + return Err; + SeenFirstFunctionBody = true; + } + + if (VSTOffset > 0) { + // If we have a VST forward declaration record, make sure we + // parse the VST now if we haven't already. It is needed to + // set up the DeferredFunctionInfo vector for lazy reading. + if (!SeenValueSymbolTable) { + if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) + return Err; + SeenValueSymbolTable = true; + // Fall through so that we record the NextUnreadBit below. + // This is necessary in case we have an anonymous function that + // is later materialized. Since it will not have a VST entry we + // need to fall back to the lazy parse to find its offset. + } else { + // If we have a VST forward declaration record, but have already + // parsed the VST (just above, when the first function body was + // encountered here), then we are resuming the parse after + // materializing functions. The ResumeBit points to the + // start of the last function block recorded in the + // DeferredFunctionInfo map. Skip it. + if (Error Err = Stream.SkipBlock()) + return Err; + continue; + } + } + + // Support older bitcode files that did not have the function + // index in the VST, nor a VST forward declaration record, as + // well as anonymous functions that do not have VST entries. + // Build the DeferredFunctionInfo vector on the fly. + if (Error Err = rememberAndSkipFunctionBody()) + return Err; + + // Suspend parsing when we reach the function bodies. Subsequent + // materialization calls will resume it when necessary. If the bitcode + // file is old, the symbol table will be at the end instead and will not + // have been seen yet. In this case, just finish the parse now. + if (SeenValueSymbolTable) { + NextUnreadBit = Stream.GetCurrentBitNo(); + // After the VST has been parsed, we need to make sure intrinsic name + // are auto-upgraded. + return globalCleanup(); + } + break; + case bitc::USELIST_BLOCK_ID: + if (Error Err = parseUseLists()) + return Err; + break; + case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: + if (Error Err = parseOperandBundleTags()) + return Err; + break; + case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: + if (Error Err = parseSyncScopeNames()) + return Err; + break; + } + continue; + + case BitstreamEntry::Record: + // The interesting case. + break; + } + + // Read a record. + Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); + if (!MaybeBitCode) + return MaybeBitCode.takeError(); + switch (unsigned BitCode = MaybeBitCode.get()) { + default: break; // Default behavior, ignore unknown content. + case bitc::MODULE_CODE_VERSION: { + Expected<unsigned> VersionOrErr = parseVersionRecord(Record); + if (!VersionOrErr) + return VersionOrErr.takeError(); + UseRelativeIDs = *VersionOrErr >= 1; + break; + } + case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] + if (ResolvedDataLayout) + return error("target triple too late in module"); + std::string S; + if (convertToString(Record, 0, S)) + return error("Invalid record"); + TheModule->setTargetTriple(S); + break; + } + case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] + if (ResolvedDataLayout) + return error("datalayout too late in module"); + if (convertToString(Record, 0, TentativeDataLayoutStr)) + return error("Invalid record"); + break; + } + case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] + std::string S; + if (convertToString(Record, 0, S)) + return error("Invalid record"); + TheModule->setModuleInlineAsm(S); + break; + } + case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] + // Deprecated, but still needed to read old bitcode files. + std::string S; + if (convertToString(Record, 0, S)) + return error("Invalid record"); + // Ignore value. + break; + } + case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] + std::string S; + if (convertToString(Record, 0, S)) + return error("Invalid record"); + SectionTable.push_back(S); + break; + } + case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] + std::string S; + if (convertToString(Record, 0, S)) + return error("Invalid record"); + GCTable.push_back(S); + break; + } + case bitc::MODULE_CODE_COMDAT: + if (Error Err = parseComdatRecord(Record)) + return Err; + break; + // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} + // written by ThinLinkBitcodeWriter. See + // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each + // record + // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) + case bitc::MODULE_CODE_GLOBALVAR: + if (Error Err = parseGlobalVarRecord(Record)) + return Err; + break; + case bitc::MODULE_CODE_FUNCTION: + if (Error Err = ResolveDataLayout()) + return Err; + if (Error Err = parseFunctionRecord(Record)) + return Err; + break; + case bitc::MODULE_CODE_IFUNC: + case bitc::MODULE_CODE_ALIAS: + case bitc::MODULE_CODE_ALIAS_OLD: + if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) + return Err; + break; + /// MODULE_CODE_VSTOFFSET: [offset] + case bitc::MODULE_CODE_VSTOFFSET: + if (Record.empty()) + return error("Invalid record"); + // Note that we subtract 1 here because the offset is relative to one word + // before the start of the identification or module block, which was + // historically always the start of the regular bitcode header. + VSTOffset = Record[0] - 1; + break; + /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] + case bitc::MODULE_CODE_SOURCE_FILENAME: + SmallString<128> ValueName; + if (convertToString(Record, 0, ValueName)) + return error("Invalid record"); + TheModule->setSourceFileName(ValueName); + break; + } + Record.clear(); + } + this->ValueTypeCallback = std::nullopt; + return Error::success(); +} + +Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, + bool IsImporting, + ParserCallbacks Callbacks) { + TheModule = M; + MetadataLoaderCallbacks MDCallbacks; + MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; + MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { + return getContainedTypeID(I, J); + }; + MDCallbacks.MDType = Callbacks.MDType; + MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); + return parseModule(0, ShouldLazyLoadMetadata, Callbacks); +} + +Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { + if (!isa<PointerType>(PtrType)) + return error("Load/Store operand is not a pointer type"); + + if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) + return error("Explicit load/store type does not match pointee " + "type of pointer operand"); + if (!PointerType::isLoadableOrStorableType(ValType)) + return error("Cannot load/store from pointer"); + return Error::success(); +} + +Error BitcodeReader::propagateAttributeTypes(CallBase *CB, + ArrayRef<unsigned> ArgTyIDs) { + AttributeList Attrs = CB->getAttributes(); + for (unsigned i = 0; i != CB->arg_size(); ++i) { + for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, + Attribute::InAlloca}) { + if (!Attrs.hasParamAttr(i, Kind) || + Attrs.getParamAttr(i, Kind).getValueAsType()) + continue; + + Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); + if (!PtrEltTy) + return error("Missing element type for typed attribute upgrade"); + + Attribute NewAttr; + switch (Kind) { + case Attribute::ByVal: + NewAttr = Attribute::getWithByValType(Context, PtrEltTy); + break; + case Attribute::StructRet: + NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); + break; + case Attribute::InAlloca: + NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); + break; + default: + llvm_unreachable("not an upgraded type attribute"); + } + + Attrs = Attrs.addParamAttribute(Context, i, NewAttr); + } + } + + if (CB->isInlineAsm()) { + const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); + unsigned ArgNo = 0; + for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { + if (!CI.hasArg()) + continue; + + if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { + Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); + if (!ElemTy) + return error("Missing element type for inline asm upgrade"); + Attrs = Attrs.addParamAttribute( + Context, ArgNo, + Attribute::get(Context, Attribute::ElementType, ElemTy)); + } + + ArgNo++; + } + } + + switch (CB->getIntrinsicID()) { + case Intrinsic::preserve_array_access_index: + case Intrinsic::preserve_struct_access_index: + case Intrinsic::aarch64_ldaxr: + case Intrinsic::aarch64_ldxr: + case Intrinsic::aarch64_stlxr: + case Intrinsic::aarch64_stxr: + case Intrinsic::arm_ldaex: + case Intrinsic::arm_ldrex: + case Intrinsic::arm_stlex: + case Intrinsic::arm_strex: { + unsigned ArgNo; + switch (CB->getIntrinsicID()) { + case Intrinsic::aarch64_stlxr: + case Intrinsic::aarch64_stxr: + case Intrinsic::arm_stlex: + case Intrinsic::arm_strex: + ArgNo = 1; + break; + default: + ArgNo = 0; + break; + } + if (!Attrs.getParamElementType(ArgNo)) { + Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); + if (!ElTy) + return error("Missing element type for elementtype upgrade"); + Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); + Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); + } + break; + } + default: + break; + } + + CB->setAttributes(Attrs); + return Error::success(); +} + +/// Lazily parse the specified function body block. +Error BitcodeReader::parseFunctionBody(Function *F) { + if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) + return Err; + + // Unexpected unresolved metadata when parsing function. + if (MDLoader->hasFwdRefs()) + return error("Invalid function metadata: incoming forward references"); + + InstructionList.clear(); + unsigned ModuleValueListSize = ValueList.size(); + unsigned ModuleMDLoaderSize = MDLoader->size(); + + // Add all the function arguments to the value table. + unsigned ArgNo = 0; + unsigned FTyID = FunctionTypeIDs[F]; + for (Argument &I : F->args()) { + unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); + assert(I.getType() == getTypeByID(ArgTyID) && + "Incorrect fully specified type for Function Argument"); + ValueList.push_back(&I, ArgTyID); + ++ArgNo; + } + unsigned NextValueNo = ValueList.size(); + BasicBlock *CurBB = nullptr; + unsigned CurBBNo = 0; + // Block into which constant expressions from phi nodes are materialized. + BasicBlock *PhiConstExprBB = nullptr; + // Edge blocks for phi nodes into which constant expressions have been + // expanded. + SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> + ConstExprEdgeBBs; + + DebugLoc LastLoc; + auto getLastInstruction = [&]() -> Instruction * { + if (CurBB && !CurBB->empty()) + return &CurBB->back(); + else if (CurBBNo && FunctionBBs[CurBBNo - 1] && + !FunctionBBs[CurBBNo - 1]->empty()) + return &FunctionBBs[CurBBNo - 1]->back(); + return nullptr; + }; + + std::vector<OperandBundleDef> OperandBundles; + + // Read all the records. + SmallVector<uint64_t, 64> Record; + + while (true) { + Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + llvm::BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + goto OutOfRecordLoop; + + case BitstreamEntry::SubBlock: + switch (Entry.ID) { + default: // Skip unknown content. + if (Error Err = Stream.SkipBlock()) + return Err; + break; + case bitc::CONSTANTS_BLOCK_ID: + if (Error Err = parseConstants()) + return Err; + NextValueNo = ValueList.size(); + break; + case bitc::VALUE_SYMTAB_BLOCK_ID: + if (Error Err = parseValueSymbolTable()) + return Err; + break; + case bitc::METADATA_ATTACHMENT_ID: + if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) + return Err; + break; + case bitc::METADATA_BLOCK_ID: + assert(DeferredMetadataInfo.empty() && + "Must read all module-level metadata before function-level"); + if (Error Err = MDLoader->parseFunctionMetadata()) + return Err; + break; + case bitc::USELIST_BLOCK_ID: + if (Error Err = parseUseLists()) + return Err; + break; + } + continue; + + case BitstreamEntry::Record: + // The interesting case. + break; + } + + // Read a record. + Record.clear(); + Instruction *I = nullptr; + unsigned ResTypeID = InvalidTypeID; + Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); + if (!MaybeBitCode) + return MaybeBitCode.takeError(); + switch (unsigned BitCode = MaybeBitCode.get()) { + default: // Default behavior: reject + return error("Invalid value"); + case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] + if (Record.empty() || Record[0] == 0) + return error("Invalid record"); + // Create all the basic blocks for the function. + FunctionBBs.resize(Record[0]); + + // See if anything took the address of blocks in this function. + auto BBFRI = BasicBlockFwdRefs.find(F); + if (BBFRI == BasicBlockFwdRefs.end()) { + for (BasicBlock *&BB : FunctionBBs) + BB = BasicBlock::Create(Context, "", F); + } else { + auto &BBRefs = BBFRI->second; + // Check for invalid basic block references. + if (BBRefs.size() > FunctionBBs.size()) + return error("Invalid ID"); + assert(!BBRefs.empty() && "Unexpected empty array"); + assert(!BBRefs.front() && "Invalid reference to entry block"); + for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; + ++I) + if (I < RE && BBRefs[I]) { + BBRefs[I]->insertInto(F); + FunctionBBs[I] = BBRefs[I]; + } else { + FunctionBBs[I] = BasicBlock::Create(Context, "", F); + } + + // Erase from the table. + BasicBlockFwdRefs.erase(BBFRI); + } + + CurBB = FunctionBBs[0]; + continue; + } + + case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] + // The record should not be emitted if it's an empty list. + if (Record.empty()) + return error("Invalid record"); + // When we have the RARE case of a BlockAddress Constant that is not + // scoped to the Function it refers to, we need to conservatively + // materialize the referred to Function, regardless of whether or not + // that Function will ultimately be linked, otherwise users of + // BitcodeReader might start splicing out Function bodies such that we + // might no longer be able to materialize the BlockAddress since the + // BasicBlock (and entire body of the Function) the BlockAddress refers + // to may have been moved. In the case that the user of BitcodeReader + // decides ultimately not to link the Function body, materializing here + // could be considered wasteful, but it's better than a deserialization + // failure as described. This keeps BitcodeReader unaware of complex + // linkage policy decisions such as those use by LTO, leaving those + // decisions "one layer up." + for (uint64_t ValID : Record) + if (auto *F = dyn_cast<Function>(ValueList[ValID])) + BackwardRefFunctions.push_back(F); + else + return error("Invalid record"); + + continue; + + case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN + // This record indicates that the last instruction is at the same + // location as the previous instruction with a location. + I = getLastInstruction(); + + if (!I) + return error("Invalid record"); + I->setDebugLoc(LastLoc); + I = nullptr; + continue; + + case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] + I = getLastInstruction(); + if (!I || Record.size() < 4) + return error("Invalid record"); + + unsigned Line = Record[0], Col = Record[1]; + unsigned ScopeID = Record[2], IAID = Record[3]; + bool isImplicitCode = Record.size() == 5 && Record[4]; + + MDNode *Scope = nullptr, *IA = nullptr; + if (ScopeID) { + Scope = dyn_cast_or_null<MDNode>( + MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); + if (!Scope) + return error("Invalid record"); + } + if (IAID) { + IA = dyn_cast_or_null<MDNode>( + MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); + if (!IA) + return error("Invalid record"); + } + LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, + isImplicitCode); + I->setDebugLoc(LastLoc); + I = nullptr; + continue; + } + case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] + unsigned OpNum = 0; + Value *LHS; + unsigned TypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || + OpNum+1 > Record.size()) + return error("Invalid record"); + + int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); + if (Opc == -1) + return error("Invalid record"); + I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); + ResTypeID = TypeID; + InstructionList.push_back(I); + if (OpNum < Record.size()) { + if (isa<FPMathOperator>(I)) { + FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); + if (FMF.any()) + I->setFastMathFlags(FMF); + } + } + break; + } + case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] + unsigned OpNum = 0; + Value *LHS, *RHS; + unsigned TypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || + popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, + CurBB) || + OpNum+1 > Record.size()) + return error("Invalid record"); + + int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); + if (Opc == -1) + return error("Invalid record"); + I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); + ResTypeID = TypeID; + InstructionList.push_back(I); + if (OpNum < Record.size()) { + if (Opc == Instruction::Add || + Opc == Instruction::Sub || + Opc == Instruction::Mul || + Opc == Instruction::Shl) { + if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) + cast<BinaryOperator>(I)->setHasNoSignedWrap(true); + if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) + cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); + } else if (Opc == Instruction::SDiv || + Opc == Instruction::UDiv || + Opc == Instruction::LShr || + Opc == Instruction::AShr) { + if (Record[OpNum] & (1 << bitc::PEO_EXACT)) + cast<BinaryOperator>(I)->setIsExact(true); + } else if (isa<FPMathOperator>(I)) { + FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); + if (FMF.any()) + I->setFastMathFlags(FMF); + } + + } + break; + } + case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] + unsigned OpNum = 0; + Value *Op; + unsigned OpTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || + OpNum+2 != Record.size()) + return error("Invalid record"); + + ResTypeID = Record[OpNum]; + Type *ResTy = getTypeByID(ResTypeID); + int Opc = getDecodedCastOpcode(Record[OpNum + 1]); + if (Opc == -1 || !ResTy) + return error("Invalid record"); + Instruction *Temp = nullptr; + if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { + if (Temp) { + InstructionList.push_back(Temp); + assert(CurBB && "No current BB?"); + Temp->insertInto(CurBB, CurBB->end()); + } + } else { + auto CastOp = (Instruction::CastOps)Opc; + if (!CastInst::castIsValid(CastOp, Op, ResTy)) + return error("Invalid cast"); + I = CastInst::Create(CastOp, Op, ResTy); + } + InstructionList.push_back(I); + break; + } + case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: + case bitc::FUNC_CODE_INST_GEP_OLD: + case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] + unsigned OpNum = 0; + + unsigned TyID; + Type *Ty; + bool InBounds; + + if (BitCode == bitc::FUNC_CODE_INST_GEP) { + InBounds = Record[OpNum++]; + TyID = Record[OpNum++]; + Ty = getTypeByID(TyID); + } else { + InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; + TyID = InvalidTypeID; + Ty = nullptr; + } + + Value *BasePtr; + unsigned BasePtrTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, + CurBB)) + return error("Invalid record"); + + if (!Ty) { + TyID = getContainedTypeID(BasePtrTypeID); + if (BasePtr->getType()->isVectorTy()) + TyID = getContainedTypeID(TyID); + Ty = getTypeByID(TyID); + } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) + ->isOpaqueOrPointeeTypeMatches(Ty)) { + return error( + "Explicit gep type does not match pointee type of pointer operand"); + } + + SmallVector<Value*, 16> GEPIdx; + while (OpNum != Record.size()) { + Value *Op; + unsigned OpTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) + return error("Invalid record"); + GEPIdx.push_back(Op); + } + + I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); + + ResTypeID = TyID; + if (cast<GEPOperator>(I)->getNumIndices() != 0) { + auto GTI = std::next(gep_type_begin(I)); + for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { + unsigned SubType = 0; + if (GTI.isStruct()) { + ConstantInt *IdxC = + Idx->getType()->isVectorTy() + ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) + : cast<ConstantInt>(Idx); + SubType = IdxC->getZExtValue(); + } + ResTypeID = getContainedTypeID(ResTypeID, SubType); + ++GTI; + } + } + + // At this point ResTypeID is the result element type. We need a pointer + // or vector of pointer to it. + ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); + if (I->getType()->isVectorTy()) + ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); + + InstructionList.push_back(I); + if (InBounds) + cast<GetElementPtrInst>(I)->setIsInBounds(true); + break; + } + + case bitc::FUNC_CODE_INST_EXTRACTVAL: { + // EXTRACTVAL: [opty, opval, n x indices] + unsigned OpNum = 0; + Value *Agg; + unsigned AggTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) + return error("Invalid record"); + Type *Ty = Agg->getType(); + + unsigned RecSize = Record.size(); + if (OpNum == RecSize) + return error("EXTRACTVAL: Invalid instruction with 0 indices"); + + SmallVector<unsigned, 4> EXTRACTVALIdx; + ResTypeID = AggTypeID; + for (; OpNum != RecSize; ++OpNum) { + bool IsArray = Ty->isArrayTy(); + bool IsStruct = Ty->isStructTy(); + uint64_t Index = Record[OpNum]; + + if (!IsStruct && !IsArray) + return error("EXTRACTVAL: Invalid type"); + if ((unsigned)Index != Index) + return error("Invalid value"); + if (IsStruct && Index >= Ty->getStructNumElements()) + return error("EXTRACTVAL: Invalid struct index"); + if (IsArray && Index >= Ty->getArrayNumElements()) + return error("EXTRACTVAL: Invalid array index"); + EXTRACTVALIdx.push_back((unsigned)Index); + + if (IsStruct) { + Ty = Ty->getStructElementType(Index); + ResTypeID = getContainedTypeID(ResTypeID, Index); + } else { + Ty = Ty->getArrayElementType(); + ResTypeID = getContainedTypeID(ResTypeID); + } + } + + I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); + InstructionList.push_back(I); + break; + } + + case bitc::FUNC_CODE_INST_INSERTVAL: { + // INSERTVAL: [opty, opval, opty, opval, n x indices] + unsigned OpNum = 0; + Value *Agg; + unsigned AggTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) + return error("Invalid record"); + Value *Val; + unsigned ValTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) + return error("Invalid record"); + + unsigned RecSize = Record.size(); + if (OpNum == RecSize) + return error("INSERTVAL: Invalid instruction with 0 indices"); + + SmallVector<unsigned, 4> INSERTVALIdx; + Type *CurTy = Agg->getType(); + for (; OpNum != RecSize; ++OpNum) { + bool IsArray = CurTy->isArrayTy(); + bool IsStruct = CurTy->isStructTy(); + uint64_t Index = Record[OpNum]; + + if (!IsStruct && !IsArray) + return error("INSERTVAL: Invalid type"); + if ((unsigned)Index != Index) + return error("Invalid value"); + if (IsStruct && Index >= CurTy->getStructNumElements()) + return error("INSERTVAL: Invalid struct index"); + if (IsArray && Index >= CurTy->getArrayNumElements()) + return error("INSERTVAL: Invalid array index"); + + INSERTVALIdx.push_back((unsigned)Index); + if (IsStruct) + CurTy = CurTy->getStructElementType(Index); + else + CurTy = CurTy->getArrayElementType(); + } + + if (CurTy != Val->getType()) + return error("Inserted value type doesn't match aggregate type"); + + I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); + ResTypeID = AggTypeID; + InstructionList.push_back(I); + break; + } + + case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] + // obsolete form of select + // handles select i1 ... in old bitcode + unsigned OpNum = 0; + Value *TrueVal, *FalseVal, *Cond; + unsigned TypeID; + Type *CondType = Type::getInt1Ty(Context); + if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, + CurBB) || + popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, + FalseVal, CurBB) || + popValue(Record, OpNum, NextValueNo, CondType, + getVirtualTypeID(CondType), Cond, CurBB)) + return error("Invalid record"); + + I = SelectInst::Create(Cond, TrueVal, FalseVal); + ResTypeID = TypeID; + InstructionList.push_back(I); + break; + } + + case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] + // new form of select + // handles select i1 or select [N x i1] + unsigned OpNum = 0; + Value *TrueVal, *FalseVal, *Cond; + unsigned ValTypeID, CondTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, + CurBB) || + popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, + FalseVal, CurBB) || + getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) + return error("Invalid record"); + + // select condition can be either i1 or [N x i1] + if (VectorType* vector_type = + dyn_cast<VectorType>(Cond->getType())) { + // expect <n x i1> + if (vector_type->getElementType() != Type::getInt1Ty(Context)) + return error("Invalid type for value"); + } else { + // expect i1 + if (Cond->getType() != Type::getInt1Ty(Context)) + return error("Invalid type for value"); + } + + I = SelectInst::Create(Cond, TrueVal, FalseVal); + ResTypeID = ValTypeID; + InstructionList.push_back(I); + if (OpNum < Record.size() && isa<FPMathOperator>(I)) { + FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); + if (FMF.any()) + I->setFastMathFlags(FMF); + } + break; + } + + case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] + unsigned OpNum = 0; + Value *Vec, *Idx; + unsigned VecTypeID, IdxTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || + getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) + return error("Invalid record"); + if (!Vec->getType()->isVectorTy()) + return error("Invalid type for value"); + I = ExtractElementInst::Create(Vec, Idx); + ResTypeID = getContainedTypeID(VecTypeID); + InstructionList.push_back(I); + break; + } + + case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] + unsigned OpNum = 0; + Value *Vec, *Elt, *Idx; + unsigned VecTypeID, IdxTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) + return error("Invalid record"); + if (!Vec->getType()->isVectorTy()) + return error("Invalid type for value"); + if (popValue(Record, OpNum, NextValueNo, + cast<VectorType>(Vec->getType())->getElementType(), + getContainedTypeID(VecTypeID), Elt, CurBB) || + getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) + return error("Invalid record"); + I = InsertElementInst::Create(Vec, Elt, Idx); + ResTypeID = VecTypeID; + InstructionList.push_back(I); + break; + } + + case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] + unsigned OpNum = 0; + Value *Vec1, *Vec2, *Mask; + unsigned Vec1TypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, + CurBB) || + popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, + Vec2, CurBB)) + return error("Invalid record"); + + unsigned MaskTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) + return error("Invalid record"); + if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) + return error("Invalid type for value"); + + I = new ShuffleVectorInst(Vec1, Vec2, Mask); + ResTypeID = + getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); + InstructionList.push_back(I); + break; + } + + case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] + // Old form of ICmp/FCmp returning bool + // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were + // both legal on vectors but had different behaviour. + case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] + // FCmp/ICmp returning bool or vector of bool + + unsigned OpNum = 0; + Value *LHS, *RHS; + unsigned LHSTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || + popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, + CurBB)) + return error("Invalid record"); + + if (OpNum >= Record.size()) + return error( + "Invalid record: operand number exceeded available operands"); + + unsigned PredVal = Record[OpNum]; + bool IsFP = LHS->getType()->isFPOrFPVectorTy(); + FastMathFlags FMF; + if (IsFP && Record.size() > OpNum+1) + FMF = getDecodedFastMathFlags(Record[++OpNum]); + + if (OpNum+1 != Record.size()) + return error("Invalid record"); + + if (LHS->getType()->isFPOrFPVectorTy()) + I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); + else + I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); + + ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); + if (LHS->getType()->isVectorTy()) + ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); + + if (FMF.any()) + I->setFastMathFlags(FMF); + InstructionList.push_back(I); + break; + } + + case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] + { + unsigned Size = Record.size(); + if (Size == 0) { + I = ReturnInst::Create(Context); + InstructionList.push_back(I); + break; + } + + unsigned OpNum = 0; + Value *Op = nullptr; + unsigned OpTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) + return error("Invalid record"); + if (OpNum != Record.size()) + return error("Invalid record"); + + I = ReturnInst::Create(Context, Op); + InstructionList.push_back(I); + break; + } + case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] + if (Record.size() != 1 && Record.size() != 3) + return error("Invalid record"); + BasicBlock *TrueDest = getBasicBlock(Record[0]); + if (!TrueDest) + return error("Invalid record"); + + if (Record.size() == 1) { + I = BranchInst::Create(TrueDest); + InstructionList.push_back(I); + } + else { + BasicBlock *FalseDest = getBasicBlock(Record[1]); + Type *CondType = Type::getInt1Ty(Context); + Value *Cond = getValue(Record, 2, NextValueNo, CondType, + getVirtualTypeID(CondType), CurBB); + if (!FalseDest || !Cond) + return error("Invalid record"); + I = BranchInst::Create(TrueDest, FalseDest, Cond); + InstructionList.push_back(I); + } + break; + } + case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] + if (Record.size() != 1 && Record.size() != 2) + return error("Invalid record"); + unsigned Idx = 0; + Type *TokenTy = Type::getTokenTy(Context); + Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, + getVirtualTypeID(TokenTy), CurBB); + if (!CleanupPad) + return error("Invalid record"); + BasicBlock *UnwindDest = nullptr; + if (Record.size() == 2) { + UnwindDest = getBasicBlock(Record[Idx++]); + if (!UnwindDest) + return error("Invalid record"); + } + + I = CleanupReturnInst::Create(CleanupPad, UnwindDest); + InstructionList.push_back(I); + break; + } + case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] + if (Record.size() != 2) + return error("Invalid record"); + unsigned Idx = 0; + Type *TokenTy = Type::getTokenTy(Context); + Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, + getVirtualTypeID(TokenTy), CurBB); + if (!CatchPad) + return error("Invalid record"); + BasicBlock *BB = getBasicBlock(Record[Idx++]); + if (!BB) + return error("Invalid record"); + + I = CatchReturnInst::Create(CatchPad, BB); + InstructionList.push_back(I); + break; + } + case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] + // We must have, at minimum, the outer scope and the number of arguments. + if (Record.size() < 2) + return error("Invalid record"); + + unsigned Idx = 0; + + Type *TokenTy = Type::getTokenTy(Context); + Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, + getVirtualTypeID(TokenTy), CurBB); + + unsigned NumHandlers = Record[Idx++]; + + SmallVector<BasicBlock *, 2> Handlers; + for (unsigned Op = 0; Op != NumHandlers; ++Op) { + BasicBlock *BB = getBasicBlock(Record[Idx++]); + if (!BB) + return error("Invalid record"); + Handlers.push_back(BB); + } + + BasicBlock *UnwindDest = nullptr; + if (Idx + 1 == Record.size()) { + UnwindDest = getBasicBlock(Record[Idx++]); + if (!UnwindDest) + return error("Invalid record"); + } + + if (Record.size() != Idx) + return error("Invalid record"); + + auto *CatchSwitch = + CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); + for (BasicBlock *Handler : Handlers) + CatchSwitch->addHandler(Handler); + I = CatchSwitch; + ResTypeID = getVirtualTypeID(I->getType()); + InstructionList.push_back(I); + break; + } + case bitc::FUNC_CODE_INST_CATCHPAD: + case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] + // We must have, at minimum, the outer scope and the number of arguments. + if (Record.size() < 2) + return error("Invalid record"); + + unsigned Idx = 0; + + Type *TokenTy = Type::getTokenTy(Context); + Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, + getVirtualTypeID(TokenTy), CurBB); + + unsigned NumArgOperands = Record[Idx++]; + + SmallVector<Value *, 2> Args; + for (unsigned Op = 0; Op != NumArgOperands; ++Op) { + Value *Val; + unsigned ValTypeID; + if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) + return error("Invalid record"); + Args.push_back(Val); + } + + if (Record.size() != Idx) + return error("Invalid record"); + + if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) + I = CleanupPadInst::Create(ParentPad, Args); + else + I = CatchPadInst::Create(ParentPad, Args); + ResTypeID = getVirtualTypeID(I->getType()); + InstructionList.push_back(I); + break; + } + case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] + // Check magic + if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { + // "New" SwitchInst format with case ranges. The changes to write this + // format were reverted but we still recognize bitcode that uses it. + // Hopefully someday we will have support for case ranges and can use + // this format again. + + unsigned OpTyID = Record[1]; + Type *OpTy = getTypeByID(OpTyID); + unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); + + Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); + BasicBlock *Default = getBasicBlock(Record[3]); + if (!OpTy || !Cond || !Default) + return error("Invalid record"); + + unsigned NumCases = Record[4]; + + SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); + InstructionList.push_back(SI); + + unsigned CurIdx = 5; + for (unsigned i = 0; i != NumCases; ++i) { + SmallVector<ConstantInt*, 1> CaseVals; + unsigned NumItems = Record[CurIdx++]; + for (unsigned ci = 0; ci != NumItems; ++ci) { + bool isSingleNumber = Record[CurIdx++]; + + APInt Low; + unsigned ActiveWords = 1; + if (ValueBitWidth > 64) + ActiveWords = Record[CurIdx++]; + Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), + ValueBitWidth); + CurIdx += ActiveWords; + + if (!isSingleNumber) { + ActiveWords = 1; + if (ValueBitWidth > 64) + ActiveWords = Record[CurIdx++]; + APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), + ValueBitWidth); + CurIdx += ActiveWords; + + // FIXME: It is not clear whether values in the range should be + // compared as signed or unsigned values. The partially + // implemented changes that used this format in the past used + // unsigned comparisons. + for ( ; Low.ule(High); ++Low) + CaseVals.push_back(ConstantInt::get(Context, Low)); + } else + CaseVals.push_back(ConstantInt::get(Context, Low)); + } + BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); + for (ConstantInt *Cst : CaseVals) + SI->addCase(Cst, DestBB); + } + I = SI; + break; + } + + // Old SwitchInst format without case ranges. + + if (Record.size() < 3 || (Record.size() & 1) == 0) + return error("Invalid record"); + unsigned OpTyID = Record[0]; + Type *OpTy = getTypeByID(OpTyID); + Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); + BasicBlock *Default = getBasicBlock(Record[2]); + if (!OpTy || !Cond || !Default) + return error("Invalid record"); + unsigned NumCases = (Record.size()-3)/2; + SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); + InstructionList.push_back(SI); + for (unsigned i = 0, e = NumCases; i != e; ++i) { + ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( + getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); + BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); + if (!CaseVal || !DestBB) { + delete SI; + return error("Invalid record"); + } + SI->addCase(CaseVal, DestBB); + } + I = SI; + break; + } + case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] + if (Record.size() < 2) + return error("Invalid record"); + unsigned OpTyID = Record[0]; + Type *OpTy = getTypeByID(OpTyID); + Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); + if (!OpTy || !Address) + return error("Invalid record"); + unsigned NumDests = Record.size()-2; + IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); + InstructionList.push_back(IBI); + for (unsigned i = 0, e = NumDests; i != e; ++i) { + if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { + IBI->addDestination(DestBB); + } else { + delete IBI; + return error("Invalid record"); + } + } + I = IBI; + break; + } + + case bitc::FUNC_CODE_INST_INVOKE: { + // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] + if (Record.size() < 4) + return error("Invalid record"); + unsigned OpNum = 0; + AttributeList PAL = getAttributes(Record[OpNum++]); + unsigned CCInfo = Record[OpNum++]; + BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); + BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); + + unsigned FTyID = InvalidTypeID; + FunctionType *FTy = nullptr; + if ((CCInfo >> 13) & 1) { + FTyID = Record[OpNum++]; + FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); + if (!FTy) + return error("Explicit invoke type is not a function type"); + } + + Value *Callee; + unsigned CalleeTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, + CurBB)) + return error("Invalid record"); + + PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); + if (!CalleeTy) + return error("Callee is not a pointer"); + if (!FTy) { + FTyID = getContainedTypeID(CalleeTypeID); + FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); + if (!FTy) + return error("Callee is not of pointer to function type"); + } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) + return error("Explicit invoke type does not match pointee type of " + "callee operand"); + if (Record.size() < FTy->getNumParams() + OpNum) + return error("Insufficient operands to call"); + + SmallVector<Value*, 16> Ops; + SmallVector<unsigned, 16> ArgTyIDs; + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { + unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); + Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), + ArgTyID, CurBB)); + ArgTyIDs.push_back(ArgTyID); + if (!Ops.back()) + return error("Invalid record"); + } + + if (!FTy->isVarArg()) { + if (Record.size() != OpNum) + return error("Invalid record"); + } else { + // Read type/value pairs for varargs params. + while (OpNum != Record.size()) { + Value *Op; + unsigned OpTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) + return error("Invalid record"); + Ops.push_back(Op); + ArgTyIDs.push_back(OpTypeID); + } + } + + // Upgrade the bundles if needed. + if (!OperandBundles.empty()) + UpgradeOperandBundles(OperandBundles); + + I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, + OperandBundles); + ResTypeID = getContainedTypeID(FTyID); + OperandBundles.clear(); + InstructionList.push_back(I); + cast<InvokeInst>(I)->setCallingConv( + static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); + cast<InvokeInst>(I)->setAttributes(PAL); + if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { + I->deleteValue(); + return Err; + } + + break; + } + case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] + unsigned Idx = 0; + Value *Val = nullptr; + unsigned ValTypeID; + if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) + return error("Invalid record"); + I = ResumeInst::Create(Val); + InstructionList.push_back(I); + break; + } + case bitc::FUNC_CODE_INST_CALLBR: { + // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] + unsigned OpNum = 0; + AttributeList PAL = getAttributes(Record[OpNum++]); + unsigned CCInfo = Record[OpNum++]; + + BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); + unsigned NumIndirectDests = Record[OpNum++]; + SmallVector<BasicBlock *, 16> IndirectDests; + for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) + IndirectDests.push_back(getBasicBlock(Record[OpNum++])); + + unsigned FTyID = InvalidTypeID; + FunctionType *FTy = nullptr; + if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { + FTyID = Record[OpNum++]; + FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); + if (!FTy) + return error("Explicit call type is not a function type"); + } + + Value *Callee; + unsigned CalleeTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, + CurBB)) + return error("Invalid record"); + + PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); + if (!OpTy) + return error("Callee is not a pointer type"); + if (!FTy) { + FTyID = getContainedTypeID(CalleeTypeID); + FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); + if (!FTy) + return error("Callee is not of pointer to function type"); + } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) + return error("Explicit call type does not match pointee type of " + "callee operand"); + if (Record.size() < FTy->getNumParams() + OpNum) + return error("Insufficient operands to call"); + + SmallVector<Value*, 16> Args; + SmallVector<unsigned, 16> ArgTyIDs; + // Read the fixed params. + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { + Value *Arg; + unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); + if (FTy->getParamType(i)->isLabelTy()) + Arg = getBasicBlock(Record[OpNum]); + else + Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), + ArgTyID, CurBB); + if (!Arg) + return error("Invalid record"); + Args.push_back(Arg); + ArgTyIDs.push_back(ArgTyID); + } + + // Read type/value pairs for varargs params. + if (!FTy->isVarArg()) { + if (OpNum != Record.size()) + return error("Invalid record"); + } else { + while (OpNum != Record.size()) { + Value *Op; + unsigned OpTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) + return error("Invalid record"); + Args.push_back(Op); + ArgTyIDs.push_back(OpTypeID); + } + } + + // Upgrade the bundles if needed. + if (!OperandBundles.empty()) + UpgradeOperandBundles(OperandBundles); + + if (auto *IA = dyn_cast<InlineAsm>(Callee)) { + InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); + auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { + return CI.Type == InlineAsm::isLabel; + }; + if (none_of(ConstraintInfo, IsLabelConstraint)) { + // Upgrade explicit blockaddress arguments to label constraints. + // Verify that the last arguments are blockaddress arguments that + // match the indirect destinations. Clang always generates callbr + // in this form. We could support reordering with more effort. + unsigned FirstBlockArg = Args.size() - IndirectDests.size(); + for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { + unsigned LabelNo = ArgNo - FirstBlockArg; + auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); + if (!BA || BA->getFunction() != F || + LabelNo > IndirectDests.size() || + BA->getBasicBlock() != IndirectDests[LabelNo]) + return error("callbr argument does not match indirect dest"); + } + + // Remove blockaddress arguments. + Args.erase(Args.begin() + FirstBlockArg, Args.end()); + ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); + + // Recreate the function type with less arguments. + SmallVector<Type *> ArgTys; + for (Value *Arg : Args) + ArgTys.push_back(Arg->getType()); + FTy = + FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); + + // Update constraint string to use label constraints. + std::string Constraints = IA->getConstraintString(); + unsigned ArgNo = 0; + size_t Pos = 0; + for (const auto &CI : ConstraintInfo) { + if (CI.hasArg()) { + if (ArgNo >= FirstBlockArg) + Constraints.insert(Pos, "!"); + ++ArgNo; + } + + // Go to next constraint in string. + Pos = Constraints.find(',', Pos); + if (Pos == std::string::npos) + break; + ++Pos; + } + + Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, + IA->hasSideEffects(), IA->isAlignStack(), + IA->getDialect(), IA->canThrow()); + } + } + + I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, + OperandBundles); + ResTypeID = getContainedTypeID(FTyID); + OperandBundles.clear(); + InstructionList.push_back(I); + cast<CallBrInst>(I)->setCallingConv( + static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); + cast<CallBrInst>(I)->setAttributes(PAL); + if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { + I->deleteValue(); + return Err; + } + break; + } + case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE + I = new UnreachableInst(Context); + InstructionList.push_back(I); + break; + case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] + if (Record.empty()) + return error("Invalid phi record"); + // The first record specifies the type. + unsigned TyID = Record[0]; + Type *Ty = getTypeByID(TyID); + if (!Ty) + return error("Invalid phi record"); + + // Phi arguments are pairs of records of [value, basic block]. + // There is an optional final record for fast-math-flags if this phi has a + // floating-point type. + size_t NumArgs = (Record.size() - 1) / 2; + PHINode *PN = PHINode::Create(Ty, NumArgs); + if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { + PN->deleteValue(); + return error("Invalid phi record"); + } + InstructionList.push_back(PN); + + SmallDenseMap<BasicBlock *, Value *> Args; + for (unsigned i = 0; i != NumArgs; i++) { + BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); + if (!BB) { + PN->deleteValue(); + return error("Invalid phi BB"); + } + + // Phi nodes may contain the same predecessor multiple times, in which + // case the incoming value must be identical. Directly reuse the already + // seen value here, to avoid expanding a constant expression multiple + // times. + auto It = Args.find(BB); + if (It != Args.end()) { + PN->addIncoming(It->second, BB); + continue; + } + + // If there already is a block for this edge (from a different phi), + // use it. + BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); + if (!EdgeBB) { + // Otherwise, use a temporary block (that we will discard if it + // turns out to be unnecessary). + if (!PhiConstExprBB) + PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); + EdgeBB = PhiConstExprBB; + } + + // With the new function encoding, it is possible that operands have + // negative IDs (for forward references). Use a signed VBR + // representation to keep the encoding small. + Value *V; + if (UseRelativeIDs) + V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); + else + V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); + if (!V) { + PN->deleteValue(); + PhiConstExprBB->eraseFromParent(); + return error("Invalid phi record"); + } + + if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { + ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); + PhiConstExprBB = nullptr; + } + PN->addIncoming(V, BB); + Args.insert({BB, V}); + } + I = PN; + ResTypeID = TyID; + + // If there are an even number of records, the final record must be FMF. + if (Record.size() % 2 == 0) { + assert(isa<FPMathOperator>(I) && "Unexpected phi type"); + FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); + if (FMF.any()) + I->setFastMathFlags(FMF); + } + + break; + } + + case bitc::FUNC_CODE_INST_LANDINGPAD: + case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { + // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] + unsigned Idx = 0; + if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { + if (Record.size() < 3) + return error("Invalid record"); + } else { + assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); + if (Record.size() < 4) + return error("Invalid record"); + } + ResTypeID = Record[Idx++]; + Type *Ty = getTypeByID(ResTypeID); + if (!Ty) + return error("Invalid record"); + if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { + Value *PersFn = nullptr; + unsigned PersFnTypeID; + if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, + nullptr)) + return error("Invalid record"); + + if (!F->hasPersonalityFn()) + F->setPersonalityFn(cast<Constant>(PersFn)); + else if (F->getPersonalityFn() != cast<Constant>(PersFn)) + return error("Personality function mismatch"); + } + + bool IsCleanup = !!Record[Idx++]; + unsigned NumClauses = Record[Idx++]; + LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); + LP->setCleanup(IsCleanup); + for (unsigned J = 0; J != NumClauses; ++J) { + LandingPadInst::ClauseType CT = + LandingPadInst::ClauseType(Record[Idx++]); (void)CT; + Value *Val; + unsigned ValTypeID; + + if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, + nullptr)) { + delete LP; + return error("Invalid record"); + } + + assert((CT != LandingPadInst::Catch || + !isa<ArrayType>(Val->getType())) && + "Catch clause has a invalid type!"); + assert((CT != LandingPadInst::Filter || + isa<ArrayType>(Val->getType())) && + "Filter clause has invalid type!"); + LP->addClause(cast<Constant>(Val)); + } + + I = LP; + InstructionList.push_back(I); + break; + } + + case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] + if (Record.size() != 4 && Record.size() != 5) + return error("Invalid record"); + using APV = AllocaPackedValues; + const uint64_t Rec = Record[3]; + const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); + const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); + unsigned TyID = Record[0]; + Type *Ty = getTypeByID(TyID); + if (!Bitfield::get<APV::ExplicitType>(Rec)) { + TyID = getContainedTypeID(TyID); + Ty = getTypeByID(TyID); + if (!Ty) + return error("Missing element type for old-style alloca"); + } + unsigned OpTyID = Record[1]; + Type *OpTy = getTypeByID(OpTyID); + Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); + MaybeAlign Align; + uint64_t AlignExp = + Bitfield::get<APV::AlignLower>(Rec) | + (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); + if (Error Err = parseAlignmentValue(AlignExp, Align)) { + return Err; + } + if (!Ty || !Size) + return error("Invalid record"); + + const DataLayout &DL = TheModule->getDataLayout(); + unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); + + SmallPtrSet<Type *, 4> Visited; + if (!Align && !Ty->isSized(&Visited)) + return error("alloca of unsized type"); + if (!Align) + Align = DL.getPrefTypeAlign(Ty); + + AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); + AI->setUsedWithInAlloca(InAlloca); + AI->setSwiftError(SwiftError); + I = AI; + ResTypeID = getVirtualTypeID(AI->getType(), TyID); + InstructionList.push_back(I); + break; + } + case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] + unsigned OpNum = 0; + Value *Op; + unsigned OpTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || + (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) + return error("Invalid record"); + + if (!isa<PointerType>(Op->getType())) + return error("Load operand is not a pointer type"); + + Type *Ty = nullptr; + if (OpNum + 3 == Record.size()) { + ResTypeID = Record[OpNum++]; + Ty = getTypeByID(ResTypeID); + } else { + ResTypeID = getContainedTypeID(OpTypeID); + Ty = getTypeByID(ResTypeID); + if (!Ty) + return error("Missing element type for old-style load"); + } + + if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) + return Err; + + MaybeAlign Align; + if (Error Err = parseAlignmentValue(Record[OpNum], Align)) + return Err; + SmallPtrSet<Type *, 4> Visited; + if (!Align && !Ty->isSized(&Visited)) + return error("load of unsized type"); + if (!Align) + Align = TheModule->getDataLayout().getABITypeAlign(Ty); + I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); + InstructionList.push_back(I); + break; + } + case bitc::FUNC_CODE_INST_LOADATOMIC: { + // LOADATOMIC: [opty, op, align, vol, ordering, ssid] + unsigned OpNum = 0; + Value *Op; + unsigned OpTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || + (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) + return error("Invalid record"); + + if (!isa<PointerType>(Op->getType())) + return error("Load operand is not a pointer type"); + + Type *Ty = nullptr; + if (OpNum + 5 == Record.size()) { + ResTypeID = Record[OpNum++]; + Ty = getTypeByID(ResTypeID); + } else { + ResTypeID = getContainedTypeID(OpTypeID); + Ty = getTypeByID(ResTypeID); + if (!Ty) + return error("Missing element type for old style atomic load"); + } + + if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) + return Err; + + AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); + if (Ordering == AtomicOrdering::NotAtomic || + Ordering == AtomicOrdering::Release || + Ordering == AtomicOrdering::AcquireRelease) + return error("Invalid record"); + if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) + return error("Invalid record"); + SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); + + MaybeAlign Align; + if (Error Err = parseAlignmentValue(Record[OpNum], Align)) + return Err; + if (!Align) + return error("Alignment missing from atomic load"); + I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); + InstructionList.push_back(I); + break; + } + case bitc::FUNC_CODE_INST_STORE: + case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] + unsigned OpNum = 0; + Value *Val, *Ptr; + unsigned PtrTypeID, ValTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) + return error("Invalid record"); + + if (BitCode == bitc::FUNC_CODE_INST_STORE) { + if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) + return error("Invalid record"); + } else { + ValTypeID = getContainedTypeID(PtrTypeID); + if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), + ValTypeID, Val, CurBB)) + return error("Invalid record"); + } + + if (OpNum + 2 != Record.size()) + return error("Invalid record"); + + if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) + return Err; + MaybeAlign Align; + if (Error Err = parseAlignmentValue(Record[OpNum], Align)) + return Err; + SmallPtrSet<Type *, 4> Visited; + if (!Align && !Val->getType()->isSized(&Visited)) + return error("store of unsized type"); + if (!Align) + Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); + I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); + InstructionList.push_back(I); + break; + } + case bitc::FUNC_CODE_INST_STOREATOMIC: + case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { + // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] + unsigned OpNum = 0; + Value *Val, *Ptr; + unsigned PtrTypeID, ValTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || + !isa<PointerType>(Ptr->getType())) + return error("Invalid record"); + if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { + if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) + return error("Invalid record"); + } else { + ValTypeID = getContainedTypeID(PtrTypeID); + if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), + ValTypeID, Val, CurBB)) + return error("Invalid record"); + } + + if (OpNum + 4 != Record.size()) + return error("Invalid record"); + + if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) + return Err; + AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); + if (Ordering == AtomicOrdering::NotAtomic || + Ordering == AtomicOrdering::Acquire || + Ordering == AtomicOrdering::AcquireRelease) + return error("Invalid record"); + SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); + if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) + return error("Invalid record"); + + MaybeAlign Align; + if (Error Err = parseAlignmentValue(Record[OpNum], Align)) + return Err; + if (!Align) + return error("Alignment missing from atomic store"); + I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); + InstructionList.push_back(I); + break; + } + case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { + // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, + // failure_ordering?, weak?] + const size_t NumRecords = Record.size(); + unsigned OpNum = 0; + Value *Ptr = nullptr; + unsigned PtrTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) + return error("Invalid record"); + + if (!isa<PointerType>(Ptr->getType())) + return error("Cmpxchg operand is not a pointer type"); + + Value *Cmp = nullptr; + unsigned CmpTypeID = getContainedTypeID(PtrTypeID); + if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), + CmpTypeID, Cmp, CurBB)) + return error("Invalid record"); + + Value *New = nullptr; + if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, + New, CurBB) || + NumRecords < OpNum + 3 || NumRecords > OpNum + 5) + return error("Invalid record"); + + const AtomicOrdering SuccessOrdering = + getDecodedOrdering(Record[OpNum + 1]); + if (SuccessOrdering == AtomicOrdering::NotAtomic || + SuccessOrdering == AtomicOrdering::Unordered) + return error("Invalid record"); + + const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); + + if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) + return Err; + + const AtomicOrdering FailureOrdering = + NumRecords < 7 + ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) + : getDecodedOrdering(Record[OpNum + 3]); + + if (FailureOrdering == AtomicOrdering::NotAtomic || + FailureOrdering == AtomicOrdering::Unordered) + return error("Invalid record"); + + const Align Alignment( + TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); + + I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, + FailureOrdering, SSID); + cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); + + if (NumRecords < 8) { + // Before weak cmpxchgs existed, the instruction simply returned the + // value loaded from memory, so bitcode files from that era will be + // expecting the first component of a modern cmpxchg. + I->insertInto(CurBB, CurBB->end()); + I = ExtractValueInst::Create(I, 0); + ResTypeID = CmpTypeID; + } else { + cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); + unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); + ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); + } + + InstructionList.push_back(I); + break; + } + case bitc::FUNC_CODE_INST_CMPXCHG: { + // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, + // failure_ordering, weak, align?] + const size_t NumRecords = Record.size(); + unsigned OpNum = 0; + Value *Ptr = nullptr; + unsigned PtrTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) + return error("Invalid record"); + + if (!isa<PointerType>(Ptr->getType())) + return error("Cmpxchg operand is not a pointer type"); + + Value *Cmp = nullptr; + unsigned CmpTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) + return error("Invalid record"); + + Value *Val = nullptr; + if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, + CurBB)) + return error("Invalid record"); + + if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) + return error("Invalid record"); + + const bool IsVol = Record[OpNum]; + + const AtomicOrdering SuccessOrdering = + getDecodedOrdering(Record[OpNum + 1]); + if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) + return error("Invalid cmpxchg success ordering"); + + const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); + + if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) + return Err; + + const AtomicOrdering FailureOrdering = + getDecodedOrdering(Record[OpNum + 3]); + if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) + return error("Invalid cmpxchg failure ordering"); + + const bool IsWeak = Record[OpNum + 4]; + + MaybeAlign Alignment; + + if (NumRecords == (OpNum + 6)) { + if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) + return Err; + } + if (!Alignment) + Alignment = + Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); + + I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, + FailureOrdering, SSID); + cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); + cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); + + unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); + ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); + + InstructionList.push_back(I); + break; + } + case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: + case bitc::FUNC_CODE_INST_ATOMICRMW: { + // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] + // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] + const size_t NumRecords = Record.size(); + unsigned OpNum = 0; + + Value *Ptr = nullptr; + unsigned PtrTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) + return error("Invalid record"); + + if (!isa<PointerType>(Ptr->getType())) + return error("Invalid record"); + + Value *Val = nullptr; + unsigned ValTypeID = InvalidTypeID; + if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { + ValTypeID = getContainedTypeID(PtrTypeID); + if (popValue(Record, OpNum, NextValueNo, + getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) + return error("Invalid record"); + } else { + if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) + return error("Invalid record"); + } + + if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) + return error("Invalid record"); + + const AtomicRMWInst::BinOp Operation = + getDecodedRMWOperation(Record[OpNum]); + if (Operation < AtomicRMWInst::FIRST_BINOP || + Operation > AtomicRMWInst::LAST_BINOP) + return error("Invalid record"); + + const bool IsVol = Record[OpNum + 1]; + + const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); + if (Ordering == AtomicOrdering::NotAtomic || + Ordering == AtomicOrdering::Unordered) + return error("Invalid record"); + + const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); + + MaybeAlign Alignment; + + if (NumRecords == (OpNum + 5)) { + if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) + return Err; + } + + if (!Alignment) + Alignment = + Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); + + I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); + ResTypeID = ValTypeID; + cast<AtomicRMWInst>(I)->setVolatile(IsVol); + + InstructionList.push_back(I); + break; + } + case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] + if (2 != Record.size()) + return error("Invalid record"); + AtomicOrdering Ordering = getDecodedOrdering(Record[0]); + if (Ordering == AtomicOrdering::NotAtomic || + Ordering == AtomicOrdering::Unordered || + Ordering == AtomicOrdering::Monotonic) + return error("Invalid record"); + SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); + I = new FenceInst(Context, Ordering, SSID); + InstructionList.push_back(I); + break; + } + case bitc::FUNC_CODE_INST_CALL: { + // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] + if (Record.size() < 3) + return error("Invalid record"); + + unsigned OpNum = 0; + AttributeList PAL = getAttributes(Record[OpNum++]); + unsigned CCInfo = Record[OpNum++]; + + FastMathFlags FMF; + if ((CCInfo >> bitc::CALL_FMF) & 1) { + FMF = getDecodedFastMathFlags(Record[OpNum++]); + if (!FMF.any()) + return error("Fast math flags indicator set for call with no FMF"); + } + + unsigned FTyID = InvalidTypeID; + FunctionType *FTy = nullptr; + if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { + FTyID = Record[OpNum++]; + FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); + if (!FTy) + return error("Explicit call type is not a function type"); + } + + Value *Callee; + unsigned CalleeTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, + CurBB)) + return error("Invalid record"); + + PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); + if (!OpTy) + return error("Callee is not a pointer type"); + if (!FTy) { + FTyID = getContainedTypeID(CalleeTypeID); + FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); + if (!FTy) + return error("Callee is not of pointer to function type"); + } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) + return error("Explicit call type does not match pointee type of " + "callee operand"); + if (Record.size() < FTy->getNumParams() + OpNum) + return error("Insufficient operands to call"); + + SmallVector<Value*, 16> Args; + SmallVector<unsigned, 16> ArgTyIDs; + // Read the fixed params. + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { + unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); + if (FTy->getParamType(i)->isLabelTy()) + Args.push_back(getBasicBlock(Record[OpNum])); + else + Args.push_back(getValue(Record, OpNum, NextValueNo, + FTy->getParamType(i), ArgTyID, CurBB)); + ArgTyIDs.push_back(ArgTyID); + if (!Args.back()) + return error("Invalid record"); + } + + // Read type/value pairs for varargs params. + if (!FTy->isVarArg()) { + if (OpNum != Record.size()) + return error("Invalid record"); + } else { + while (OpNum != Record.size()) { + Value *Op; + unsigned OpTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) + return error("Invalid record"); + Args.push_back(Op); + ArgTyIDs.push_back(OpTypeID); + } + } + + // Upgrade the bundles if needed. + if (!OperandBundles.empty()) + UpgradeOperandBundles(OperandBundles); + + I = CallInst::Create(FTy, Callee, Args, OperandBundles); + ResTypeID = getContainedTypeID(FTyID); + OperandBundles.clear(); + InstructionList.push_back(I); + cast<CallInst>(I)->setCallingConv( + static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); + CallInst::TailCallKind TCK = CallInst::TCK_None; + if (CCInfo & 1 << bitc::CALL_TAIL) + TCK = CallInst::TCK_Tail; + if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) + TCK = CallInst::TCK_MustTail; + if (CCInfo & (1 << bitc::CALL_NOTAIL)) + TCK = CallInst::TCK_NoTail; + cast<CallInst>(I)->setTailCallKind(TCK); + cast<CallInst>(I)->setAttributes(PAL); + if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { + I->deleteValue(); + return Err; + } + if (FMF.any()) { + if (!isa<FPMathOperator>(I)) + return error("Fast-math-flags specified for call without " + "floating-point scalar or vector return type"); + I->setFastMathFlags(FMF); + } + break; + } + case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] + if (Record.size() < 3) + return error("Invalid record"); + unsigned OpTyID = Record[0]; + Type *OpTy = getTypeByID(OpTyID); + Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); + ResTypeID = Record[2]; + Type *ResTy = getTypeByID(ResTypeID); + if (!OpTy || !Op || !ResTy) + return error("Invalid record"); + I = new VAArgInst(Op, ResTy); + InstructionList.push_back(I); + break; + } + + case bitc::FUNC_CODE_OPERAND_BUNDLE: { + // A call or an invoke can be optionally prefixed with some variable + // number of operand bundle blocks. These blocks are read into + // OperandBundles and consumed at the next call or invoke instruction. + + if (Record.empty() || Record[0] >= BundleTags.size()) + return error("Invalid record"); + + std::vector<Value *> Inputs; + + unsigned OpNum = 1; + while (OpNum != Record.size()) { + Value *Op; + unsigned OpTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) + return error("Invalid record"); + Inputs.push_back(Op); + } + + OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); + continue; + } + + case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] + unsigned OpNum = 0; + Value *Op = nullptr; + unsigned OpTypeID; + if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) + return error("Invalid record"); + if (OpNum != Record.size()) + return error("Invalid record"); + + I = new FreezeInst(Op); + ResTypeID = OpTypeID; + InstructionList.push_back(I); + break; + } + } + + // Add instruction to end of current BB. If there is no current BB, reject + // this file. + if (!CurBB) { + I->deleteValue(); + return error("Invalid instruction with no BB"); + } + if (!OperandBundles.empty()) { + I->deleteValue(); + return error("Operand bundles found with no consumer"); + } + I->insertInto(CurBB, CurBB->end()); + + // If this was a terminator instruction, move to the next block. + if (I->isTerminator()) { + ++CurBBNo; + CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; + } + + // Non-void values get registered in the value table for future use. + if (!I->getType()->isVoidTy()) { + assert(I->getType() == getTypeByID(ResTypeID) && + "Incorrect result type ID"); + if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) + return Err; + } + } + +OutOfRecordLoop: + + if (!OperandBundles.empty()) + return error("Operand bundles found with no consumer"); + + // Check the function list for unresolved values. + if (Argument *A = dyn_cast<Argument>(ValueList.back())) { + if (!A->getParent()) { + // We found at least one unresolved value. Nuke them all to avoid leaks. + for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ + if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { + A->replaceAllUsesWith(PoisonValue::get(A->getType())); + delete A; + } + } + return error("Never resolved value found in function"); + } + } + + // Unexpected unresolved metadata about to be dropped. + if (MDLoader->hasFwdRefs()) + return error("Invalid function metadata: outgoing forward refs"); + + if (PhiConstExprBB) + PhiConstExprBB->eraseFromParent(); + + for (const auto &Pair : ConstExprEdgeBBs) { + BasicBlock *From = Pair.first.first; + BasicBlock *To = Pair.first.second; + BasicBlock *EdgeBB = Pair.second; + BranchInst::Create(To, EdgeBB); + From->getTerminator()->replaceSuccessorWith(To, EdgeBB); + To->replacePhiUsesWith(From, EdgeBB); + EdgeBB->moveBefore(To); + } + + // Trim the value list down to the size it was before we parsed this function. + ValueList.shrinkTo(ModuleValueListSize); + MDLoader->shrinkTo(ModuleMDLoaderSize); + std::vector<BasicBlock*>().swap(FunctionBBs); + return Error::success(); +} + +/// Find the function body in the bitcode stream +Error BitcodeReader::findFunctionInStream( + Function *F, + DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { + while (DeferredFunctionInfoIterator->second == 0) { + // This is the fallback handling for the old format bitcode that + // didn't contain the function index in the VST, or when we have + // an anonymous function which would not have a VST entry. + // Assert that we have one of those two cases. + assert(VSTOffset == 0 || !F->hasName()); + // Parse the next body in the stream and set its position in the + // DeferredFunctionInfo map. + if (Error Err = rememberAndSkipFunctionBodies()) + return Err; + } + return Error::success(); +} + +SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { + if (Val == SyncScope::SingleThread || Val == SyncScope::System) + return SyncScope::ID(Val); + if (Val >= SSIDs.size()) + return SyncScope::System; // Map unknown synchronization scopes to system. + return SSIDs[Val]; +} + +//===----------------------------------------------------------------------===// +// GVMaterializer implementation +//===----------------------------------------------------------------------===// + +Error BitcodeReader::materialize(GlobalValue *GV) { + Function *F = dyn_cast<Function>(GV); + // If it's not a function or is already material, ignore the request. + if (!F || !F->isMaterializable()) + return Error::success(); + + DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); + assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); + // If its position is recorded as 0, its body is somewhere in the stream + // but we haven't seen it yet. + if (DFII->second == 0) + if (Error Err = findFunctionInStream(F, DFII)) + return Err; + + // Materialize metadata before parsing any function bodies. + if (Error Err = materializeMetadata()) + return Err; + + // Move the bit stream to the saved position of the deferred function body. + if (Error JumpFailed = Stream.JumpToBit(DFII->second)) + return JumpFailed; + if (Error Err = parseFunctionBody(F)) + return Err; + F->setIsMaterializable(false); + + if (StripDebugInfo) + stripDebugInfo(*F); + + // Upgrade any old intrinsic calls in the function. + for (auto &I : UpgradedIntrinsics) { + for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) + if (CallInst *CI = dyn_cast<CallInst>(U)) + UpgradeIntrinsicCall(CI, I.second); + } + + // Finish fn->subprogram upgrade for materialized functions. + if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) + F->setSubprogram(SP); + + // Check if the TBAA Metadata are valid, otherwise we will need to strip them. + if (!MDLoader->isStrippingTBAA()) { + for (auto &I : instructions(F)) { + MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); + if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) + continue; + MDLoader->setStripTBAA(true); + stripTBAA(F->getParent()); + } + } + + for (auto &I : instructions(F)) { + // "Upgrade" older incorrect branch weights by dropping them. + if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { + if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { + MDString *MDS = cast<MDString>(MD->getOperand(0)); + StringRef ProfName = MDS->getString(); + // Check consistency of !prof branch_weights metadata. + if (!ProfName.equals("branch_weights")) + continue; + unsigned ExpectedNumOperands = 0; + if (BranchInst *BI = dyn_cast<BranchInst>(&I)) + ExpectedNumOperands = BI->getNumSuccessors(); + else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) + ExpectedNumOperands = SI->getNumSuccessors(); + else if (isa<CallInst>(&I)) + ExpectedNumOperands = 1; + else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) + ExpectedNumOperands = IBI->getNumDestinations(); + else if (isa<SelectInst>(&I)) + ExpectedNumOperands = 2; + else + continue; // ignore and continue. + + // If branch weight doesn't match, just strip branch weight. + if (MD->getNumOperands() != 1 + ExpectedNumOperands) + I.setMetadata(LLVMContext::MD_prof, nullptr); + } + } + + // Remove incompatible attributes on function calls. + if (auto *CI = dyn_cast<CallBase>(&I)) { + CI->removeRetAttrs(AttributeFuncs::typeIncompatible( + CI->getFunctionType()->getReturnType())); + + for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) + CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( + CI->getArgOperand(ArgNo)->getType())); + } + } + + // Look for functions that rely on old function attribute behavior. + UpgradeFunctionAttributes(*F); + + // Bring in any functions that this function forward-referenced via + // blockaddresses. + return materializeForwardReferencedFunctions(); +} + +Error BitcodeReader::materializeModule() { + if (Error Err = materializeMetadata()) + return Err; + + // Promise to materialize all forward references. + WillMaterializeAllForwardRefs = true; + + // Iterate over the module, deserializing any functions that are still on + // disk. + for (Function &F : *TheModule) { + if (Error Err = materialize(&F)) + return Err; + } + // At this point, if there are any function bodies, parse the rest of + // the bits in the module past the last function block we have recorded + // through either lazy scanning or the VST. + if (LastFunctionBlockBit || NextUnreadBit) + if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit + ? LastFunctionBlockBit + : NextUnreadBit)) + return Err; + + // Check that all block address forward references got resolved (as we + // promised above). + if (!BasicBlockFwdRefs.empty()) + return error("Never resolved function from blockaddress"); + + // Upgrade any intrinsic calls that slipped through (should not happen!) and + // delete the old functions to clean up. We can't do this unless the entire + // module is materialized because there could always be another function body + // with calls to the old function. + for (auto &I : UpgradedIntrinsics) { + for (auto *U : I.first->users()) { + if (CallInst *CI = dyn_cast<CallInst>(U)) + UpgradeIntrinsicCall(CI, I.second); + } + if (!I.first->use_empty()) + I.first->replaceAllUsesWith(I.second); + I.first->eraseFromParent(); + } + UpgradedIntrinsics.clear(); + + UpgradeDebugInfo(*TheModule); + + UpgradeModuleFlags(*TheModule); + + UpgradeARCRuntime(*TheModule); + + return Error::success(); +} + +std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { + return IdentifiedStructTypes; +} + +ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( + BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, + StringRef ModulePath, unsigned ModuleId, + std::function<bool(GlobalValue::GUID)> IsPrevailing) + : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), + ModulePath(ModulePath), ModuleId(ModuleId), IsPrevailing(IsPrevailing) {} + +void ModuleSummaryIndexBitcodeReader::addThisModule() { + TheIndex.addModule(ModulePath, ModuleId); +} + +ModuleSummaryIndex::ModuleInfo * +ModuleSummaryIndexBitcodeReader::getThisModule() { + return TheIndex.getModule(ModulePath); +} + +template <bool AllowNullValueInfo> +std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> +ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { + auto VGI = ValueIdToValueInfoMap[ValueId]; + // We can have a null value info for memprof callsite info records in + // distributed ThinLTO index files when the callee function summary is not + // included in the index. The bitcode writer records 0 in that case, + // and the caller of this helper will set AllowNullValueInfo to true. + assert(AllowNullValueInfo || std::get<0>(VGI)); + return VGI; +} + +void ModuleSummaryIndexBitcodeReader::setValueGUID( + uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, + StringRef SourceFileName) { + std::string GlobalId = + GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); + auto ValueGUID = GlobalValue::getGUID(GlobalId); + auto OriginalNameID = ValueGUID; + if (GlobalValue::isLocalLinkage(Linkage)) + OriginalNameID = GlobalValue::getGUID(ValueName); + if (PrintSummaryGUIDs) + dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " + << ValueName << "\n"; + + // UseStrtab is false for legacy summary formats and value names are + // created on stack. In that case we save the name in a string saver in + // the index so that the value name can be recorded. + ValueIdToValueInfoMap[ValueID] = std::make_tuple( + TheIndex.getOrInsertValueInfo( + ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), + OriginalNameID, ValueGUID); +} + +// Specialized value symbol table parser used when reading module index +// blocks where we don't actually create global values. The parsed information +// is saved in the bitcode reader for use when later parsing summaries. +Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( + uint64_t Offset, + DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { + // With a strtab the VST is not required to parse the summary. + if (UseStrtab) + return Error::success(); + + assert(Offset > 0 && "Expected non-zero VST offset"); + Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); + if (!MaybeCurrentBit) + return MaybeCurrentBit.takeError(); + uint64_t CurrentBit = MaybeCurrentBit.get(); + + if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) + return Err; + + SmallVector<uint64_t, 64> Record; + + // Read all the records for this value table. + SmallString<128> ValueName; + + while (true) { + Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::SubBlock: // Handled for us already. + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + // Done parsing VST, jump back to wherever we came from. + if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) + return JumpFailed; + return Error::success(); + case BitstreamEntry::Record: + // The interesting case. + break; + } + + // Read a record. + Record.clear(); + Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); + if (!MaybeRecord) + return MaybeRecord.takeError(); + switch (MaybeRecord.get()) { + default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). + break; + case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] + if (convertToString(Record, 1, ValueName)) + return error("Invalid record"); + unsigned ValueID = Record[0]; + assert(!SourceFileName.empty()); + auto VLI = ValueIdToLinkageMap.find(ValueID); + assert(VLI != ValueIdToLinkageMap.end() && + "No linkage found for VST entry?"); + auto Linkage = VLI->second; + setValueGUID(ValueID, ValueName, Linkage, SourceFileName); + ValueName.clear(); + break; + } + case bitc::VST_CODE_FNENTRY: { + // VST_CODE_FNENTRY: [valueid, offset, namechar x N] + if (convertToString(Record, 2, ValueName)) + return error("Invalid record"); + unsigned ValueID = Record[0]; + assert(!SourceFileName.empty()); + auto VLI = ValueIdToLinkageMap.find(ValueID); + assert(VLI != ValueIdToLinkageMap.end() && + "No linkage found for VST entry?"); + auto Linkage = VLI->second; + setValueGUID(ValueID, ValueName, Linkage, SourceFileName); + ValueName.clear(); + break; + } + case bitc::VST_CODE_COMBINED_ENTRY: { + // VST_CODE_COMBINED_ENTRY: [valueid, refguid] + unsigned ValueID = Record[0]; + GlobalValue::GUID RefGUID = Record[1]; + // The "original name", which is the second value of the pair will be + // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. + ValueIdToValueInfoMap[ValueID] = std::make_tuple( + TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); + break; + } + } + } +} + +// Parse just the blocks needed for building the index out of the module. +// At the end of this routine the module Index is populated with a map +// from global value id to GlobalValueSummary objects. +Error ModuleSummaryIndexBitcodeReader::parseModule() { + if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) + return Err; + + SmallVector<uint64_t, 64> Record; + DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; + unsigned ValueId = 0; + + // Read the index for this module. + while (true) { + Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + llvm::BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + return Error::success(); + + case BitstreamEntry::SubBlock: + switch (Entry.ID) { + default: // Skip unknown content. + if (Error Err = Stream.SkipBlock()) + return Err; + break; + case bitc::BLOCKINFO_BLOCK_ID: + // Need to parse these to get abbrev ids (e.g. for VST) + if (Error Err = readBlockInfo()) + return Err; + break; + case bitc::VALUE_SYMTAB_BLOCK_ID: + // Should have been parsed earlier via VSTOffset, unless there + // is no summary section. + assert(((SeenValueSymbolTable && VSTOffset > 0) || + !SeenGlobalValSummary) && + "Expected early VST parse via VSTOffset record"); + if (Error Err = Stream.SkipBlock()) + return Err; + break; + case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: + case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: + // Add the module if it is a per-module index (has a source file name). + if (!SourceFileName.empty()) + addThisModule(); + assert(!SeenValueSymbolTable && + "Already read VST when parsing summary block?"); + // We might not have a VST if there were no values in the + // summary. An empty summary block generated when we are + // performing ThinLTO compiles so we don't later invoke + // the regular LTO process on them. + if (VSTOffset > 0) { + if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) + return Err; + SeenValueSymbolTable = true; + } + SeenGlobalValSummary = true; + if (Error Err = parseEntireSummary(Entry.ID)) + return Err; + break; + case bitc::MODULE_STRTAB_BLOCK_ID: + if (Error Err = parseModuleStringTable()) + return Err; + break; + } + continue; + + case BitstreamEntry::Record: { + Record.clear(); + Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); + if (!MaybeBitCode) + return MaybeBitCode.takeError(); + switch (MaybeBitCode.get()) { + default: + break; // Default behavior, ignore unknown content. + case bitc::MODULE_CODE_VERSION: { + if (Error Err = parseVersionRecord(Record).takeError()) + return Err; + break; + } + /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] + case bitc::MODULE_CODE_SOURCE_FILENAME: { + SmallString<128> ValueName; + if (convertToString(Record, 0, ValueName)) + return error("Invalid record"); + SourceFileName = ValueName.c_str(); + break; + } + /// MODULE_CODE_HASH: [5*i32] + case bitc::MODULE_CODE_HASH: { + if (Record.size() != 5) + return error("Invalid hash length " + Twine(Record.size()).str()); + auto &Hash = getThisModule()->second.second; + int Pos = 0; + for (auto &Val : Record) { + assert(!(Val >> 32) && "Unexpected high bits set"); + Hash[Pos++] = Val; + } + break; + } + /// MODULE_CODE_VSTOFFSET: [offset] + case bitc::MODULE_CODE_VSTOFFSET: + if (Record.empty()) + return error("Invalid record"); + // Note that we subtract 1 here because the offset is relative to one + // word before the start of the identification or module block, which + // was historically always the start of the regular bitcode header. + VSTOffset = Record[0] - 1; + break; + // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] + // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] + // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] + // v2: [strtab offset, strtab size, v1] + case bitc::MODULE_CODE_GLOBALVAR: + case bitc::MODULE_CODE_FUNCTION: + case bitc::MODULE_CODE_ALIAS: { + StringRef Name; + ArrayRef<uint64_t> GVRecord; + std::tie(Name, GVRecord) = readNameFromStrtab(Record); + if (GVRecord.size() <= 3) + return error("Invalid record"); + uint64_t RawLinkage = GVRecord[3]; + GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); + if (!UseStrtab) { + ValueIdToLinkageMap[ValueId++] = Linkage; + break; + } + + setValueGUID(ValueId++, Name, Linkage, SourceFileName); + break; + } + } + } + continue; + } + } +} + +std::vector<ValueInfo> +ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { + std::vector<ValueInfo> Ret; + Ret.reserve(Record.size()); + for (uint64_t RefValueId : Record) + Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); + return Ret; +} + +std::vector<FunctionSummary::EdgeTy> +ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, + bool IsOldProfileFormat, + bool HasProfile, bool HasRelBF) { + std::vector<FunctionSummary::EdgeTy> Ret; + Ret.reserve(Record.size()); + for (unsigned I = 0, E = Record.size(); I != E; ++I) { + CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; + uint64_t RelBF = 0; + ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); + if (IsOldProfileFormat) { + I += 1; // Skip old callsitecount field + if (HasProfile) + I += 1; // Skip old profilecount field + } else if (HasProfile) + Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); + else if (HasRelBF) + RelBF = Record[++I]; + Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); + } + return Ret; +} + +static void +parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, + WholeProgramDevirtResolution &Wpd) { + uint64_t ArgNum = Record[Slot++]; + WholeProgramDevirtResolution::ByArg &B = + Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; + Slot += ArgNum; + + B.TheKind = + static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); + B.Info = Record[Slot++]; + B.Byte = Record[Slot++]; + B.Bit = Record[Slot++]; +} + +static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, + StringRef Strtab, size_t &Slot, + TypeIdSummary &TypeId) { + uint64_t Id = Record[Slot++]; + WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; + + Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); + Wpd.SingleImplName = {Strtab.data() + Record[Slot], + static_cast<size_t>(Record[Slot + 1])}; + Slot += 2; + + uint64_t ResByArgNum = Record[Slot++]; + for (uint64_t I = 0; I != ResByArgNum; ++I) + parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); +} + +static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, + StringRef Strtab, + ModuleSummaryIndex &TheIndex) { + size_t Slot = 0; + TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( + {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); + Slot += 2; + + TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); + TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; + TypeId.TTRes.AlignLog2 = Record[Slot++]; + TypeId.TTRes.SizeM1 = Record[Slot++]; + TypeId.TTRes.BitMask = Record[Slot++]; + TypeId.TTRes.InlineBits = Record[Slot++]; + + while (Slot < Record.size()) + parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); +} + +std::vector<FunctionSummary::ParamAccess> +ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { + auto ReadRange = [&]() { + APInt Lower(FunctionSummary::ParamAccess::RangeWidth, + BitcodeReader::decodeSignRotatedValue(Record.front())); + Record = Record.drop_front(); + APInt Upper(FunctionSummary::ParamAccess::RangeWidth, + BitcodeReader::decodeSignRotatedValue(Record.front())); + Record = Record.drop_front(); + ConstantRange Range{Lower, Upper}; + assert(!Range.isFullSet()); + assert(!Range.isUpperSignWrapped()); + return Range; + }; + + std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; + while (!Record.empty()) { + PendingParamAccesses.emplace_back(); + FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); + ParamAccess.ParamNo = Record.front(); + Record = Record.drop_front(); + ParamAccess.Use = ReadRange(); + ParamAccess.Calls.resize(Record.front()); + Record = Record.drop_front(); + for (auto &Call : ParamAccess.Calls) { + Call.ParamNo = Record.front(); + Record = Record.drop_front(); + Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); + Record = Record.drop_front(); + Call.Offsets = ReadRange(); + } + } + return PendingParamAccesses; +} + +void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( + ArrayRef<uint64_t> Record, size_t &Slot, + TypeIdCompatibleVtableInfo &TypeId) { + uint64_t Offset = Record[Slot++]; + ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); + TypeId.push_back({Offset, Callee}); +} + +void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( + ArrayRef<uint64_t> Record) { + size_t Slot = 0; + TypeIdCompatibleVtableInfo &TypeId = + TheIndex.getOrInsertTypeIdCompatibleVtableSummary( + {Strtab.data() + Record[Slot], + static_cast<size_t>(Record[Slot + 1])}); + Slot += 2; + + while (Slot < Record.size()) + parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); +} + +static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, + unsigned WOCnt) { + // Readonly and writeonly refs are in the end of the refs list. + assert(ROCnt + WOCnt <= Refs.size()); + unsigned FirstWORef = Refs.size() - WOCnt; + unsigned RefNo = FirstWORef - ROCnt; + for (; RefNo < FirstWORef; ++RefNo) + Refs[RefNo].setReadOnly(); + for (; RefNo < Refs.size(); ++RefNo) + Refs[RefNo].setWriteOnly(); +} + +// Eagerly parse the entire summary block. This populates the GlobalValueSummary +// objects in the index. +Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { + if (Error Err = Stream.EnterSubBlock(ID)) + return Err; + SmallVector<uint64_t, 64> Record; + + // Parse version + { + Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + BitstreamEntry Entry = MaybeEntry.get(); + + if (Entry.Kind != BitstreamEntry::Record) + return error("Invalid Summary Block: record for version expected"); + Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); + if (!MaybeRecord) + return MaybeRecord.takeError(); + if (MaybeRecord.get() != bitc::FS_VERSION) + return error("Invalid Summary Block: version expected"); + } + const uint64_t Version = Record[0]; + const bool IsOldProfileFormat = Version == 1; + if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) + return error("Invalid summary version " + Twine(Version) + + ". Version should be in the range [1-" + + Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + + "]."); + Record.clear(); + + // Keep around the last seen summary to be used when we see an optional + // "OriginalName" attachement. + GlobalValueSummary *LastSeenSummary = nullptr; + GlobalValue::GUID LastSeenGUID = 0; + + // We can expect to see any number of type ID information records before + // each function summary records; these variables store the information + // collected so far so that it can be used to create the summary object. + std::vector<GlobalValue::GUID> PendingTypeTests; + std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, + PendingTypeCheckedLoadVCalls; + std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, + PendingTypeCheckedLoadConstVCalls; + std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; + + std::vector<CallsiteInfo> PendingCallsites; + std::vector<AllocInfo> PendingAllocs; + + while (true) { + Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::SubBlock: // Handled for us already. + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + return Error::success(); + case BitstreamEntry::Record: + // The interesting case. + break; + } + + // Read a record. The record format depends on whether this + // is a per-module index or a combined index file. In the per-module + // case the records contain the associated value's ID for correlation + // with VST entries. In the combined index the correlation is done + // via the bitcode offset of the summary records (which were saved + // in the combined index VST entries). The records also contain + // information used for ThinLTO renaming and importing. + Record.clear(); + Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); + if (!MaybeBitCode) + return MaybeBitCode.takeError(); + switch (unsigned BitCode = MaybeBitCode.get()) { + default: // Default behavior: ignore. + break; + case bitc::FS_FLAGS: { // [flags] + TheIndex.setFlags(Record[0]); + break; + } + case bitc::FS_VALUE_GUID: { // [valueid, refguid] + uint64_t ValueID = Record[0]; + GlobalValue::GUID RefGUID = Record[1]; + ValueIdToValueInfoMap[ValueID] = std::make_tuple( + TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); + break; + } + // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, + // numrefs x valueid, n x (valueid)] + // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, + // numrefs x valueid, + // n x (valueid, hotness)] + // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, + // numrefs x valueid, + // n x (valueid, relblockfreq)] + case bitc::FS_PERMODULE: + case bitc::FS_PERMODULE_RELBF: + case bitc::FS_PERMODULE_PROFILE: { + unsigned ValueID = Record[0]; + uint64_t RawFlags = Record[1]; + unsigned InstCount = Record[2]; + uint64_t RawFunFlags = 0; + unsigned NumRefs = Record[3]; + unsigned NumRORefs = 0, NumWORefs = 0; + int RefListStartIndex = 4; + if (Version >= 4) { + RawFunFlags = Record[3]; + NumRefs = Record[4]; + RefListStartIndex = 5; + if (Version >= 5) { + NumRORefs = Record[5]; + RefListStartIndex = 6; + if (Version >= 7) { + NumWORefs = Record[6]; + RefListStartIndex = 7; + } + } + } + + auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); + // The module path string ref set in the summary must be owned by the + // index's module string table. Since we don't have a module path + // string table section in the per-module index, we create a single + // module path string table entry with an empty (0) ID to take + // ownership. + int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; + assert(Record.size() >= RefListStartIndex + NumRefs && + "Record size inconsistent with number of references"); + std::vector<ValueInfo> Refs = makeRefList( + ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); + bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); + bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); + std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( + ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), + IsOldProfileFormat, HasProfile, HasRelBF); + setSpecialRefs(Refs, NumRORefs, NumWORefs); + auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); + // In order to save memory, only record the memprof summaries if this is + // the prevailing copy of a symbol. The linker doesn't resolve local + // linkage values so don't check whether those are prevailing. + auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; + if (IsPrevailing && + !GlobalValue::isLocalLinkage(LT) && + !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { + PendingCallsites.clear(); + PendingAllocs.clear(); + } + auto FS = std::make_unique<FunctionSummary>( + Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, + std::move(Refs), std::move(Calls), std::move(PendingTypeTests), + std::move(PendingTypeTestAssumeVCalls), + std::move(PendingTypeCheckedLoadVCalls), + std::move(PendingTypeTestAssumeConstVCalls), + std::move(PendingTypeCheckedLoadConstVCalls), + std::move(PendingParamAccesses), std::move(PendingCallsites), + std::move(PendingAllocs)); + FS->setModulePath(getThisModule()->first()); + FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); + TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), + std::move(FS)); + break; + } + // FS_ALIAS: [valueid, flags, valueid] + // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as + // they expect all aliasee summaries to be available. + case bitc::FS_ALIAS: { + unsigned ValueID = Record[0]; + uint64_t RawFlags = Record[1]; + unsigned AliaseeID = Record[2]; + auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); + auto AS = std::make_unique<AliasSummary>(Flags); + // The module path string ref set in the summary must be owned by the + // index's module string table. Since we don't have a module path + // string table section in the per-module index, we create a single + // module path string table entry with an empty (0) ID to take + // ownership. + AS->setModulePath(getThisModule()->first()); + + auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); + auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); + if (!AliaseeInModule) + return error("Alias expects aliasee summary to be parsed"); + AS->setAliasee(AliaseeVI, AliaseeInModule); + + auto GUID = getValueInfoFromValueId(ValueID); + AS->setOriginalName(std::get<1>(GUID)); + TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); + break; + } + // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] + case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { + unsigned ValueID = Record[0]; + uint64_t RawFlags = Record[1]; + unsigned RefArrayStart = 2; + GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, + /* WriteOnly */ false, + /* Constant */ false, + GlobalObject::VCallVisibilityPublic); + auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); + if (Version >= 5) { + GVF = getDecodedGVarFlags(Record[2]); + RefArrayStart = 3; + } + std::vector<ValueInfo> Refs = + makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); + auto FS = + std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); + FS->setModulePath(getThisModule()->first()); + auto GUID = getValueInfoFromValueId(ValueID); + FS->setOriginalName(std::get<1>(GUID)); + TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); + break; + } + // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, + // numrefs, numrefs x valueid, + // n x (valueid, offset)] + case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { + unsigned ValueID = Record[0]; + uint64_t RawFlags = Record[1]; + GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); + unsigned NumRefs = Record[3]; + unsigned RefListStartIndex = 4; + unsigned VTableListStartIndex = RefListStartIndex + NumRefs; + auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); + std::vector<ValueInfo> Refs = makeRefList( + ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); + VTableFuncList VTableFuncs; + for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { + ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); + uint64_t Offset = Record[++I]; + VTableFuncs.push_back({Callee, Offset}); + } + auto VS = + std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); + VS->setModulePath(getThisModule()->first()); + VS->setVTableFuncs(VTableFuncs); + auto GUID = getValueInfoFromValueId(ValueID); + VS->setOriginalName(std::get<1>(GUID)); + TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); + break; + } + // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, + // numrefs x valueid, n x (valueid)] + // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, + // numrefs x valueid, n x (valueid, hotness)] + case bitc::FS_COMBINED: + case bitc::FS_COMBINED_PROFILE: { + unsigned ValueID = Record[0]; + uint64_t ModuleId = Record[1]; + uint64_t RawFlags = Record[2]; + unsigned InstCount = Record[3]; + uint64_t RawFunFlags = 0; + uint64_t EntryCount = 0; + unsigned NumRefs = Record[4]; + unsigned NumRORefs = 0, NumWORefs = 0; + int RefListStartIndex = 5; + + if (Version >= 4) { + RawFunFlags = Record[4]; + RefListStartIndex = 6; + size_t NumRefsIndex = 5; + if (Version >= 5) { + unsigned NumRORefsOffset = 1; + RefListStartIndex = 7; + if (Version >= 6) { + NumRefsIndex = 6; + EntryCount = Record[5]; + RefListStartIndex = 8; + if (Version >= 7) { + RefListStartIndex = 9; + NumWORefs = Record[8]; + NumRORefsOffset = 2; + } + } + NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; + } + NumRefs = Record[NumRefsIndex]; + } + + auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); + int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; + assert(Record.size() >= RefListStartIndex + NumRefs && + "Record size inconsistent with number of references"); + std::vector<ValueInfo> Refs = makeRefList( + ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); + bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); + std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( + ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), + IsOldProfileFormat, HasProfile, false); + ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); + setSpecialRefs(Refs, NumRORefs, NumWORefs); + auto FS = std::make_unique<FunctionSummary>( + Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, + std::move(Refs), std::move(Edges), std::move(PendingTypeTests), + std::move(PendingTypeTestAssumeVCalls), + std::move(PendingTypeCheckedLoadVCalls), + std::move(PendingTypeTestAssumeConstVCalls), + std::move(PendingTypeCheckedLoadConstVCalls), + std::move(PendingParamAccesses), std::move(PendingCallsites), + std::move(PendingAllocs)); + LastSeenSummary = FS.get(); + LastSeenGUID = VI.getGUID(); + FS->setModulePath(ModuleIdMap[ModuleId]); + TheIndex.addGlobalValueSummary(VI, std::move(FS)); + break; + } + // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] + // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as + // they expect all aliasee summaries to be available. + case bitc::FS_COMBINED_ALIAS: { + unsigned ValueID = Record[0]; + uint64_t ModuleId = Record[1]; + uint64_t RawFlags = Record[2]; + unsigned AliaseeValueId = Record[3]; + auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); + auto AS = std::make_unique<AliasSummary>(Flags); + LastSeenSummary = AS.get(); + AS->setModulePath(ModuleIdMap[ModuleId]); + + auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); + auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); + AS->setAliasee(AliaseeVI, AliaseeInModule); + + ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); + LastSeenGUID = VI.getGUID(); + TheIndex.addGlobalValueSummary(VI, std::move(AS)); + break; + } + // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] + case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { + unsigned ValueID = Record[0]; + uint64_t ModuleId = Record[1]; + uint64_t RawFlags = Record[2]; + unsigned RefArrayStart = 3; + GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, + /* WriteOnly */ false, + /* Constant */ false, + GlobalObject::VCallVisibilityPublic); + auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); + if (Version >= 5) { + GVF = getDecodedGVarFlags(Record[3]); + RefArrayStart = 4; + } + std::vector<ValueInfo> Refs = + makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); + auto FS = + std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); + LastSeenSummary = FS.get(); + FS->setModulePath(ModuleIdMap[ModuleId]); + ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); + LastSeenGUID = VI.getGUID(); + TheIndex.addGlobalValueSummary(VI, std::move(FS)); + break; + } + // FS_COMBINED_ORIGINAL_NAME: [original_name] + case bitc::FS_COMBINED_ORIGINAL_NAME: { + uint64_t OriginalName = Record[0]; + if (!LastSeenSummary) + return error("Name attachment that does not follow a combined record"); + LastSeenSummary->setOriginalName(OriginalName); + TheIndex.addOriginalName(LastSeenGUID, OriginalName); + // Reset the LastSeenSummary + LastSeenSummary = nullptr; + LastSeenGUID = 0; + break; + } + case bitc::FS_TYPE_TESTS: + assert(PendingTypeTests.empty()); + llvm::append_range(PendingTypeTests, Record); + break; + + case bitc::FS_TYPE_TEST_ASSUME_VCALLS: + assert(PendingTypeTestAssumeVCalls.empty()); + for (unsigned I = 0; I != Record.size(); I += 2) + PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); + break; + + case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: + assert(PendingTypeCheckedLoadVCalls.empty()); + for (unsigned I = 0; I != Record.size(); I += 2) + PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); + break; + + case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: + PendingTypeTestAssumeConstVCalls.push_back( + {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); + break; + + case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: + PendingTypeCheckedLoadConstVCalls.push_back( + {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); + break; + + case bitc::FS_CFI_FUNCTION_DEFS: { + std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); + for (unsigned I = 0; I != Record.size(); I += 2) + CfiFunctionDefs.insert( + {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); + break; + } + + case bitc::FS_CFI_FUNCTION_DECLS: { + std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); + for (unsigned I = 0; I != Record.size(); I += 2) + CfiFunctionDecls.insert( + {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); + break; + } + + case bitc::FS_TYPE_ID: + parseTypeIdSummaryRecord(Record, Strtab, TheIndex); + break; + + case bitc::FS_TYPE_ID_METADATA: + parseTypeIdCompatibleVtableSummaryRecord(Record); + break; + + case bitc::FS_BLOCK_COUNT: + TheIndex.addBlockCount(Record[0]); + break; + + case bitc::FS_PARAM_ACCESS: { + PendingParamAccesses = parseParamAccesses(Record); + break; + } + + case bitc::FS_STACK_IDS: { // [n x stackid] + // Save stack ids in the reader to consult when adding stack ids from the + // lists in the stack node and alloc node entries. + StackIds = ArrayRef<uint64_t>(Record); + break; + } + + case bitc::FS_PERMODULE_CALLSITE_INFO: { + unsigned ValueID = Record[0]; + SmallVector<unsigned> StackIdList; + for (auto R = Record.begin() + 1; R != Record.end(); R++) { + assert(*R < StackIds.size()); + StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); + } + ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); + PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); + break; + } + + case bitc::FS_COMBINED_CALLSITE_INFO: { + auto RecordIter = Record.begin(); + unsigned ValueID = *RecordIter++; + unsigned NumStackIds = *RecordIter++; + unsigned NumVersions = *RecordIter++; + assert(Record.size() == 3 + NumStackIds + NumVersions); + SmallVector<unsigned> StackIdList; + for (unsigned J = 0; J < NumStackIds; J++) { + assert(*RecordIter < StackIds.size()); + StackIdList.push_back( + TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); + } + SmallVector<unsigned> Versions; + for (unsigned J = 0; J < NumVersions; J++) + Versions.push_back(*RecordIter++); + ValueInfo VI = std::get<0>( + getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); + PendingCallsites.push_back( + CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); + break; + } + + case bitc::FS_PERMODULE_ALLOC_INFO: { + unsigned I = 0; + std::vector<MIBInfo> MIBs; + while (I < Record.size()) { + assert(Record.size() - I >= 2); + AllocationType AllocType = (AllocationType)Record[I++]; + unsigned NumStackEntries = Record[I++]; + assert(Record.size() - I >= NumStackEntries); + SmallVector<unsigned> StackIdList; + for (unsigned J = 0; J < NumStackEntries; J++) { + assert(Record[I] < StackIds.size()); + StackIdList.push_back( + TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); + } + MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); + } + PendingAllocs.push_back(AllocInfo(std::move(MIBs))); + break; + } + + case bitc::FS_COMBINED_ALLOC_INFO: { + unsigned I = 0; + std::vector<MIBInfo> MIBs; + unsigned NumMIBs = Record[I++]; + unsigned NumVersions = Record[I++]; + unsigned MIBsRead = 0; + while (MIBsRead++ < NumMIBs) { + assert(Record.size() - I >= 2); + AllocationType AllocType = (AllocationType)Record[I++]; + unsigned NumStackEntries = Record[I++]; + assert(Record.size() - I >= NumStackEntries); + SmallVector<unsigned> StackIdList; + for (unsigned J = 0; J < NumStackEntries; J++) { + assert(Record[I] < StackIds.size()); + StackIdList.push_back( + TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); + } + MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); + } + assert(Record.size() - I >= NumVersions); + SmallVector<uint8_t> Versions; + for (unsigned J = 0; J < NumVersions; J++) + Versions.push_back(Record[I++]); + PendingAllocs.push_back( + AllocInfo(std::move(Versions), std::move(MIBs))); + break; + } + } + } + llvm_unreachable("Exit infinite loop"); +} + +// Parse the module string table block into the Index. +// This populates the ModulePathStringTable map in the index. +Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { + if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) + return Err; + + SmallVector<uint64_t, 64> Record; + + SmallString<128> ModulePath; + ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; + + while (true) { + Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::SubBlock: // Handled for us already. + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + return Error::success(); + case BitstreamEntry::Record: + // The interesting case. + break; + } + + Record.clear(); + Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); + if (!MaybeRecord) + return MaybeRecord.takeError(); + switch (MaybeRecord.get()) { + default: // Default behavior: ignore. + break; + case bitc::MST_CODE_ENTRY: { + // MST_ENTRY: [modid, namechar x N] + uint64_t ModuleId = Record[0]; + + if (convertToString(Record, 1, ModulePath)) + return error("Invalid record"); + + LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); + ModuleIdMap[ModuleId] = LastSeenModule->first(); + + ModulePath.clear(); + break; + } + /// MST_CODE_HASH: [5*i32] + case bitc::MST_CODE_HASH: { + if (Record.size() != 5) + return error("Invalid hash length " + Twine(Record.size()).str()); + if (!LastSeenModule) + return error("Invalid hash that does not follow a module path"); + int Pos = 0; + for (auto &Val : Record) { + assert(!(Val >> 32) && "Unexpected high bits set"); + LastSeenModule->second.second[Pos++] = Val; + } + // Reset LastSeenModule to avoid overriding the hash unexpectedly. + LastSeenModule = nullptr; + break; + } + } + } + llvm_unreachable("Exit infinite loop"); +} + +namespace { + +// FIXME: This class is only here to support the transition to llvm::Error. It +// will be removed once this transition is complete. Clients should prefer to +// deal with the Error value directly, rather than converting to error_code. +class BitcodeErrorCategoryType : public std::error_category { + const char *name() const noexcept override { + return "llvm.bitcode"; + } + + std::string message(int IE) const override { + BitcodeError E = static_cast<BitcodeError>(IE); + switch (E) { + case BitcodeError::CorruptedBitcode: + return "Corrupted bitcode"; + } + llvm_unreachable("Unknown error type!"); + } +}; + +} // end anonymous namespace + +const std::error_category &llvm::BitcodeErrorCategory() { + static BitcodeErrorCategoryType ErrorCategory; + return ErrorCategory; +} + +static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, + unsigned Block, unsigned RecordID) { + if (Error Err = Stream.EnterSubBlock(Block)) + return std::move(Err); + + StringRef Strtab; + while (true) { + Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + llvm::BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::EndBlock: + return Strtab; + + case BitstreamEntry::Error: + return error("Malformed block"); + + case BitstreamEntry::SubBlock: + if (Error Err = Stream.SkipBlock()) + return std::move(Err); + break; + + case BitstreamEntry::Record: + StringRef Blob; + SmallVector<uint64_t, 1> Record; + Expected<unsigned> MaybeRecord = + Stream.readRecord(Entry.ID, Record, &Blob); + if (!MaybeRecord) + return MaybeRecord.takeError(); + if (MaybeRecord.get() == RecordID) + Strtab = Blob; + break; + } + } +} + +//===----------------------------------------------------------------------===// +// External interface +//===----------------------------------------------------------------------===// + +Expected<std::vector<BitcodeModule>> +llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { + auto FOrErr = getBitcodeFileContents(Buffer); + if (!FOrErr) + return FOrErr.takeError(); + return std::move(FOrErr->Mods); +} + +Expected<BitcodeFileContents> +llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { + Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); + if (!StreamOrErr) + return StreamOrErr.takeError(); + BitstreamCursor &Stream = *StreamOrErr; + + BitcodeFileContents F; + while (true) { + uint64_t BCBegin = Stream.getCurrentByteNo(); + + // We may be consuming bitcode from a client that leaves garbage at the end + // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to + // the end that there cannot possibly be another module, stop looking. + if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) + return F; + + Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + llvm::BitstreamEntry Entry = MaybeEntry.get(); + + switch (Entry.Kind) { + case BitstreamEntry::EndBlock: + case BitstreamEntry::Error: + return error("Malformed block"); + + case BitstreamEntry::SubBlock: { + uint64_t IdentificationBit = -1ull; + if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { + IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; + if (Error Err = Stream.SkipBlock()) + return std::move(Err); + + { + Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); + if (!MaybeEntry) + return MaybeEntry.takeError(); + Entry = MaybeEntry.get(); + } + + if (Entry.Kind != BitstreamEntry::SubBlock || + Entry.ID != bitc::MODULE_BLOCK_ID) + return error("Malformed block"); + } + + if (Entry.ID == bitc::MODULE_BLOCK_ID) { + uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; + if (Error Err = Stream.SkipBlock()) + return std::move(Err); + + F.Mods.push_back({Stream.getBitcodeBytes().slice( + BCBegin, Stream.getCurrentByteNo() - BCBegin), + Buffer.getBufferIdentifier(), IdentificationBit, + ModuleBit}); + continue; + } + + if (Entry.ID == bitc::STRTAB_BLOCK_ID) { + Expected<StringRef> Strtab = + readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); + if (!Strtab) + return Strtab.takeError(); + // This string table is used by every preceding bitcode module that does + // not have its own string table. A bitcode file may have multiple + // string tables if it was created by binary concatenation, for example + // with "llvm-cat -b". + for (BitcodeModule &I : llvm::reverse(F.Mods)) { + if (!I.Strtab.empty()) + break; + I.Strtab = *Strtab; + } + // Similarly, the string table is used by every preceding symbol table; + // normally there will be just one unless the bitcode file was created + // by binary concatenation. + if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) + F.StrtabForSymtab = *Strtab; + continue; + } + + if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { + Expected<StringRef> SymtabOrErr = + readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); + if (!SymtabOrErr) + return SymtabOrErr.takeError(); + + // We can expect the bitcode file to have multiple symbol tables if it + // was created by binary concatenation. In that case we silently + // ignore any subsequent symbol tables, which is fine because this is a + // low level function. The client is expected to notice that the number + // of modules in the symbol table does not match the number of modules + // in the input file and regenerate the symbol table. + if (F.Symtab.empty()) + F.Symtab = *SymtabOrErr; + continue; + } + + if (Error Err = Stream.SkipBlock()) + return std::move(Err); + continue; + } + case BitstreamEntry::Record: + if (Error E = Stream.skipRecord(Entry.ID).takeError()) + return std::move(E); + continue; + } + } +} + +/// Get a lazy one-at-time loading module from bitcode. +/// +/// This isn't always used in a lazy context. In particular, it's also used by +/// \a parseModule(). If this is truly lazy, then we need to eagerly pull +/// in forward-referenced functions from block address references. +/// +/// \param[in] MaterializeAll Set to \c true if we should materialize +/// everything. +Expected<std::unique_ptr<Module>> +BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, + bool ShouldLazyLoadMetadata, bool IsImporting, + ParserCallbacks Callbacks) { + BitstreamCursor Stream(Buffer); + + std::string ProducerIdentification; + if (IdentificationBit != -1ull) { + if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) + return std::move(JumpFailed); + if (Error E = + readIdentificationBlock(Stream).moveInto(ProducerIdentification)) + return std::move(E); + } + + if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) + return std::move(JumpFailed); + auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, + Context); + + std::unique_ptr<Module> M = + std::make_unique<Module>(ModuleIdentifier, Context); + M->setMaterializer(R); + + // Delay parsing Metadata if ShouldLazyLoadMetadata is true. + if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, + IsImporting, Callbacks)) + return std::move(Err); + + if (MaterializeAll) { + // Read in the entire module, and destroy the BitcodeReader. + if (Error Err = M->materializeAll()) + return std::move(Err); + } else { + // Resolve forward references from blockaddresses. + if (Error Err = R->materializeForwardReferencedFunctions()) + return std::move(Err); + } + return std::move(M); +} + +Expected<std::unique_ptr<Module>> +BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, + bool IsImporting, ParserCallbacks Callbacks) { + return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, + Callbacks); +} + +// Parse the specified bitcode buffer and merge the index into CombinedIndex. +// We don't use ModuleIdentifier here because the client may need to control the +// module path used in the combined summary (e.g. when reading summaries for +// regular LTO modules). +Error BitcodeModule::readSummary( + ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, uint64_t ModuleId, + std::function<bool(GlobalValue::GUID)> IsPrevailing) { + BitstreamCursor Stream(Buffer); + if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) + return JumpFailed; + + ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, + ModulePath, ModuleId, IsPrevailing); + return R.parseModule(); +} + +// Parse the specified bitcode buffer, returning the function info index. +Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { + BitstreamCursor Stream(Buffer); + if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) + return std::move(JumpFailed); + + auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); + ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, + ModuleIdentifier, 0); + + if (Error Err = R.parseModule()) + return std::move(Err); + + return std::move(Index); +} + +static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, + unsigned ID) { + if (Error Err = Stream.EnterSubBlock(ID)) + return std::move(Err); + SmallVector<uint64_t, 64> Record; + + while (true) { + BitstreamEntry Entry; + if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) + return std::move(E); + + switch (Entry.Kind) { + case BitstreamEntry::SubBlock: // Handled for us already. + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + // If no flags record found, conservatively return true to mimic + // behavior before this flag was added. + return true; + case BitstreamEntry::Record: + // The interesting case. + break; + } + + // Look for the FS_FLAGS record. + Record.clear(); + Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); + if (!MaybeBitCode) + return MaybeBitCode.takeError(); + switch (MaybeBitCode.get()) { + default: // Default behavior: ignore. + break; + case bitc::FS_FLAGS: { // [flags] + uint64_t Flags = Record[0]; + // Scan flags. + assert(Flags <= 0xff && "Unexpected bits in flag"); + + return Flags & 0x8; + } + } + } + llvm_unreachable("Exit infinite loop"); +} + +// Check if the given bitcode buffer contains a global value summary block. +Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { + BitstreamCursor Stream(Buffer); + if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) + return std::move(JumpFailed); + + if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) + return std::move(Err); + + while (true) { + llvm::BitstreamEntry Entry; + if (Error E = Stream.advance().moveInto(Entry)) + return std::move(E); + + switch (Entry.Kind) { + case BitstreamEntry::Error: + return error("Malformed block"); + case BitstreamEntry::EndBlock: + return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, + /*EnableSplitLTOUnit=*/false}; + + case BitstreamEntry::SubBlock: + if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { + Expected<bool> EnableSplitLTOUnit = + getEnableSplitLTOUnitFlag(Stream, Entry.ID); + if (!EnableSplitLTOUnit) + return EnableSplitLTOUnit.takeError(); + return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, + *EnableSplitLTOUnit}; + } + + if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { + Expected<bool> EnableSplitLTOUnit = + getEnableSplitLTOUnitFlag(Stream, Entry.ID); + if (!EnableSplitLTOUnit) + return EnableSplitLTOUnit.takeError(); + return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, + *EnableSplitLTOUnit}; + } + + // Ignore other sub-blocks. + if (Error Err = Stream.SkipBlock()) + return std::move(Err); + continue; + + case BitstreamEntry::Record: + if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) + continue; + else + return StreamFailed.takeError(); + } + } +} + +static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { + Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); + if (!MsOrErr) + return MsOrErr.takeError(); + + if (MsOrErr->size() != 1) + return error("Expected a single module"); + + return (*MsOrErr)[0]; +} + +Expected<std::unique_ptr<Module>> +llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, + bool ShouldLazyLoadMetadata, bool IsImporting, + ParserCallbacks Callbacks) { + Expected<BitcodeModule> BM = getSingleModule(Buffer); + if (!BM) + return BM.takeError(); + + return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, + Callbacks); +} + +Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( + std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, + bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { + auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, + IsImporting, Callbacks); + if (MOrErr) + (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); + return MOrErr; +} + +Expected<std::unique_ptr<Module>> +BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { + return getModuleImpl(Context, true, false, false, Callbacks); + // TODO: Restore the use-lists to the in-memory state when the bitcode was + // written. We must defer until the Module has been fully materialized. +} + +Expected<std::unique_ptr<Module>> +llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, + ParserCallbacks Callbacks) { + Expected<BitcodeModule> BM = getSingleModule(Buffer); + if (!BM) + return BM.takeError(); + + return BM->parseModule(Context, Callbacks); +} + +Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { + Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); + if (!StreamOrErr) + return StreamOrErr.takeError(); + + return readTriple(*StreamOrErr); +} + +Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { + Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); + if (!StreamOrErr) + return StreamOrErr.takeError(); + + return hasObjCCategory(*StreamOrErr); +} + +Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { + Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); + if (!StreamOrErr) + return StreamOrErr.takeError(); + + return readIdentificationCode(*StreamOrErr); +} + +Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, + ModuleSummaryIndex &CombinedIndex, + uint64_t ModuleId) { + Expected<BitcodeModule> BM = getSingleModule(Buffer); + if (!BM) + return BM.takeError(); + + return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); +} + +Expected<std::unique_ptr<ModuleSummaryIndex>> +llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { + Expected<BitcodeModule> BM = getSingleModule(Buffer); + if (!BM) + return BM.takeError(); + + return BM->getSummary(); +} + +Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { + Expected<BitcodeModule> BM = getSingleModule(Buffer); + if (!BM) + return BM.takeError(); + + return BM->getLTOInfo(); +} + +Expected<std::unique_ptr<ModuleSummaryIndex>> +llvm::getModuleSummaryIndexForFile(StringRef Path, + bool IgnoreEmptyThinLTOIndexFile) { + ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = + MemoryBuffer::getFileOrSTDIN(Path); + if (!FileOrErr) + return errorCodeToError(FileOrErr.getError()); + if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) + return nullptr; + return getModuleSummaryIndex(**FileOrErr); +} |