diff options
| author | vitalyisaev <[email protected]> | 2023-06-29 10:00:50 +0300 |
|---|---|---|
| committer | vitalyisaev <[email protected]> | 2023-06-29 10:00:50 +0300 |
| commit | 6ffe9e53658409f212834330e13564e4952558f6 (patch) | |
| tree | 85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm16/lib/Analysis/ValueTracking.cpp | |
| parent | 726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff) | |
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm16/lib/Analysis/ValueTracking.cpp')
| -rw-r--r-- | contrib/libs/llvm16/lib/Analysis/ValueTracking.cpp | 7535 |
1 files changed, 7535 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Analysis/ValueTracking.cpp b/contrib/libs/llvm16/lib/Analysis/ValueTracking.cpp new file mode 100644 index 00000000000..a13bdade320 --- /dev/null +++ b/contrib/libs/llvm16/lib/Analysis/ValueTracking.cpp @@ -0,0 +1,7535 @@ +//===- ValueTracking.cpp - Walk computations to compute properties --------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains routines that help analyze properties that chains of +// computations have. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AssumeBundleQueries.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/EHPersonalities.h" +#include "llvm/Analysis/GuardUtils.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/IntrinsicsAArch64.h" +#include "llvm/IR/IntrinsicsRISCV.h" +#include "llvm/IR/IntrinsicsX86.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/MathExtras.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <optional> +#include <utility> + +using namespace llvm; +using namespace llvm::PatternMatch; + +// Controls the number of uses of the value searched for possible +// dominating comparisons. +static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", + cl::Hidden, cl::init(20)); + + +/// Returns the bitwidth of the given scalar or pointer type. For vector types, +/// returns the element type's bitwidth. +static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { + if (unsigned BitWidth = Ty->getScalarSizeInBits()) + return BitWidth; + + return DL.getPointerTypeSizeInBits(Ty); +} + +namespace { + +// Simplifying using an assume can only be done in a particular control-flow +// context (the context instruction provides that context). If an assume and +// the context instruction are not in the same block then the DT helps in +// figuring out if we can use it. +struct Query { + const DataLayout &DL; + AssumptionCache *AC; + const Instruction *CxtI; + const DominatorTree *DT; + + // Unlike the other analyses, this may be a nullptr because not all clients + // provide it currently. + OptimizationRemarkEmitter *ORE; + + /// If true, it is safe to use metadata during simplification. + InstrInfoQuery IIQ; + + Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT, bool UseInstrInfo, + OptimizationRemarkEmitter *ORE = nullptr) + : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} +}; + +} // end anonymous namespace + +// Given the provided Value and, potentially, a context instruction, return +// the preferred context instruction (if any). +static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { + // If we've been provided with a context instruction, then use that (provided + // it has been inserted). + if (CxtI && CxtI->getParent()) + return CxtI; + + // If the value is really an already-inserted instruction, then use that. + CxtI = dyn_cast<Instruction>(V); + if (CxtI && CxtI->getParent()) + return CxtI; + + return nullptr; +} + +static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { + // If we've been provided with a context instruction, then use that (provided + // it has been inserted). + if (CxtI && CxtI->getParent()) + return CxtI; + + // If the value is really an already-inserted instruction, then use that. + CxtI = dyn_cast<Instruction>(V1); + if (CxtI && CxtI->getParent()) + return CxtI; + + CxtI = dyn_cast<Instruction>(V2); + if (CxtI && CxtI->getParent()) + return CxtI; + + return nullptr; +} + +static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, + const APInt &DemandedElts, + APInt &DemandedLHS, APInt &DemandedRHS) { + if (isa<ScalableVectorType>(Shuf->getType())) { + assert(DemandedElts == APInt(1,1)); + DemandedLHS = DemandedRHS = DemandedElts; + return true; + } + + int NumElts = + cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); + return llvm::getShuffleDemandedElts(NumElts, Shuf->getShuffleMask(), + DemandedElts, DemandedLHS, DemandedRHS); +} + +static void computeKnownBits(const Value *V, const APInt &DemandedElts, + KnownBits &Known, unsigned Depth, const Query &Q); + +static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, + const Query &Q) { + // Since the number of lanes in a scalable vector is unknown at compile time, + // we track one bit which is implicitly broadcast to all lanes. This means + // that all lanes in a scalable vector are considered demanded. + auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); + APInt DemandedElts = + FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); + computeKnownBits(V, DemandedElts, Known, Depth, Q); +} + +void llvm::computeKnownBits(const Value *V, KnownBits &Known, + const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT, + OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { + ::computeKnownBits(V, Known, Depth, + Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); +} + +void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, + KnownBits &Known, const DataLayout &DL, + unsigned Depth, AssumptionCache *AC, + const Instruction *CxtI, const DominatorTree *DT, + OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { + ::computeKnownBits(V, DemandedElts, Known, Depth, + Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); +} + +static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, + unsigned Depth, const Query &Q); + +static KnownBits computeKnownBits(const Value *V, unsigned Depth, + const Query &Q); + +KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, + unsigned Depth, AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT, + OptimizationRemarkEmitter *ORE, + bool UseInstrInfo) { + return ::computeKnownBits( + V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); +} + +KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, + const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT, + OptimizationRemarkEmitter *ORE, + bool UseInstrInfo) { + return ::computeKnownBits( + V, DemandedElts, Depth, + Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); +} + +bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, + const DataLayout &DL, AssumptionCache *AC, + const Instruction *CxtI, const DominatorTree *DT, + bool UseInstrInfo) { + assert(LHS->getType() == RHS->getType() && + "LHS and RHS should have the same type"); + assert(LHS->getType()->isIntOrIntVectorTy() && + "LHS and RHS should be integers"); + // Look for an inverted mask: (X & ~M) op (Y & M). + { + Value *M; + if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && + match(RHS, m_c_And(m_Specific(M), m_Value()))) + return true; + if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && + match(LHS, m_c_And(m_Specific(M), m_Value()))) + return true; + } + + // X op (Y & ~X) + if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) || + match(LHS, m_c_And(m_Not(m_Specific(RHS)), m_Value()))) + return true; + + // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern + // for constant Y. + Value *Y; + if (match(RHS, + m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) || + match(LHS, m_c_Xor(m_c_And(m_Specific(RHS), m_Value(Y)), m_Deferred(Y)))) + return true; + + // Peek through extends to find a 'not' of the other side: + // (ext Y) op ext(~Y) + // (ext ~Y) op ext(Y) + if ((match(LHS, m_ZExtOrSExt(m_Value(Y))) && + match(RHS, m_ZExtOrSExt(m_Not(m_Specific(Y))))) || + (match(RHS, m_ZExtOrSExt(m_Value(Y))) && + match(LHS, m_ZExtOrSExt(m_Not(m_Specific(Y)))))) + return true; + + // Look for: (A & B) op ~(A | B) + { + Value *A, *B; + if (match(LHS, m_And(m_Value(A), m_Value(B))) && + match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) + return true; + if (match(RHS, m_And(m_Value(A), m_Value(B))) && + match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) + return true; + } + IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); + KnownBits LHSKnown(IT->getBitWidth()); + KnownBits RHSKnown(IT->getBitWidth()); + computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); + computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); + return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); +} + +bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) { + return !I->user_empty() && all_of(I->users(), [](const User *U) { + ICmpInst::Predicate P; + return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P); + }); +} + +static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, + const Query &Q); + +bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, + bool OrZero, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT, bool UseInstrInfo) { + return ::isKnownToBeAPowerOfTwo( + V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); +} + +static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, + unsigned Depth, const Query &Q); + +static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); + +bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT, bool UseInstrInfo) { + return ::isKnownNonZero(V, Depth, + Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); +} + +bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, + unsigned Depth, AssumptionCache *AC, + const Instruction *CxtI, const DominatorTree *DT, + bool UseInstrInfo) { + KnownBits Known = + computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); + return Known.isNonNegative(); +} + +bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT, bool UseInstrInfo) { + if (auto *CI = dyn_cast<ConstantInt>(V)) + return CI->getValue().isStrictlyPositive(); + + // TODO: We'd doing two recursive queries here. We should factor this such + // that only a single query is needed. + return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && + isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); +} + +bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT, bool UseInstrInfo) { + KnownBits Known = + computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); + return Known.isNegative(); +} + +static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, + const Query &Q); + +bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, + const DataLayout &DL, AssumptionCache *AC, + const Instruction *CxtI, const DominatorTree *DT, + bool UseInstrInfo) { + return ::isKnownNonEqual(V1, V2, 0, + Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, + UseInstrInfo, /*ORE=*/nullptr)); +} + +static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, + const Query &Q); + +bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, + const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT, bool UseInstrInfo) { + return ::MaskedValueIsZero( + V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); +} + +static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, + unsigned Depth, const Query &Q); + +static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, + const Query &Q) { + auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); + APInt DemandedElts = + FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); + return ComputeNumSignBits(V, DemandedElts, Depth, Q); +} + +unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, + unsigned Depth, AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT, bool UseInstrInfo) { + return ::ComputeNumSignBits( + V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); +} + +unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL, + unsigned Depth, AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT); + return V->getType()->getScalarSizeInBits() - SignBits + 1; +} + +static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, + bool NSW, const APInt &DemandedElts, + KnownBits &KnownOut, KnownBits &Known2, + unsigned Depth, const Query &Q) { + computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); + + // If one operand is unknown and we have no nowrap information, + // the result will be unknown independently of the second operand. + if (KnownOut.isUnknown() && !NSW) + return; + + computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); + KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); +} + +static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, + const APInt &DemandedElts, KnownBits &Known, + KnownBits &Known2, unsigned Depth, + const Query &Q) { + computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); + computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); + + bool isKnownNegative = false; + bool isKnownNonNegative = false; + // If the multiplication is known not to overflow, compute the sign bit. + if (NSW) { + if (Op0 == Op1) { + // The product of a number with itself is non-negative. + isKnownNonNegative = true; + } else { + bool isKnownNonNegativeOp1 = Known.isNonNegative(); + bool isKnownNonNegativeOp0 = Known2.isNonNegative(); + bool isKnownNegativeOp1 = Known.isNegative(); + bool isKnownNegativeOp0 = Known2.isNegative(); + // The product of two numbers with the same sign is non-negative. + isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || + (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); + // The product of a negative number and a non-negative number is either + // negative or zero. + if (!isKnownNonNegative) + isKnownNegative = + (isKnownNegativeOp1 && isKnownNonNegativeOp0 && + Known2.isNonZero()) || + (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); + } + } + + bool SelfMultiply = Op0 == Op1; + // TODO: SelfMultiply can be poison, but not undef. + if (SelfMultiply) + SelfMultiply &= + isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1); + Known = KnownBits::mul(Known, Known2, SelfMultiply); + + // Only make use of no-wrap flags if we failed to compute the sign bit + // directly. This matters if the multiplication always overflows, in + // which case we prefer to follow the result of the direct computation, + // though as the program is invoking undefined behaviour we can choose + // whatever we like here. + if (isKnownNonNegative && !Known.isNegative()) + Known.makeNonNegative(); + else if (isKnownNegative && !Known.isNonNegative()) + Known.makeNegative(); +} + +void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, + KnownBits &Known) { + unsigned BitWidth = Known.getBitWidth(); + unsigned NumRanges = Ranges.getNumOperands() / 2; + assert(NumRanges >= 1); + + Known.Zero.setAllBits(); + Known.One.setAllBits(); + + for (unsigned i = 0; i < NumRanges; ++i) { + ConstantInt *Lower = + mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); + ConstantInt *Upper = + mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); + ConstantRange Range(Lower->getValue(), Upper->getValue()); + + // The first CommonPrefixBits of all values in Range are equal. + unsigned CommonPrefixBits = + (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); + APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); + APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); + Known.One &= UnsignedMax & Mask; + Known.Zero &= ~UnsignedMax & Mask; + } +} + +static bool isEphemeralValueOf(const Instruction *I, const Value *E) { + SmallVector<const Value *, 16> WorkSet(1, I); + SmallPtrSet<const Value *, 32> Visited; + SmallPtrSet<const Value *, 16> EphValues; + + // The instruction defining an assumption's condition itself is always + // considered ephemeral to that assumption (even if it has other + // non-ephemeral users). See r246696's test case for an example. + if (is_contained(I->operands(), E)) + return true; + + while (!WorkSet.empty()) { + const Value *V = WorkSet.pop_back_val(); + if (!Visited.insert(V).second) + continue; + + // If all uses of this value are ephemeral, then so is this value. + if (llvm::all_of(V->users(), [&](const User *U) { + return EphValues.count(U); + })) { + if (V == E) + return true; + + if (V == I || (isa<Instruction>(V) && + !cast<Instruction>(V)->mayHaveSideEffects() && + !cast<Instruction>(V)->isTerminator())) { + EphValues.insert(V); + if (const User *U = dyn_cast<User>(V)) + append_range(WorkSet, U->operands()); + } + } + } + + return false; +} + +// Is this an intrinsic that cannot be speculated but also cannot trap? +bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { + if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) + return CI->isAssumeLikeIntrinsic(); + + return false; +} + +bool llvm::isValidAssumeForContext(const Instruction *Inv, + const Instruction *CxtI, + const DominatorTree *DT) { + // There are two restrictions on the use of an assume: + // 1. The assume must dominate the context (or the control flow must + // reach the assume whenever it reaches the context). + // 2. The context must not be in the assume's set of ephemeral values + // (otherwise we will use the assume to prove that the condition + // feeding the assume is trivially true, thus causing the removal of + // the assume). + + if (Inv->getParent() == CxtI->getParent()) { + // If Inv and CtxI are in the same block, check if the assume (Inv) is first + // in the BB. + if (Inv->comesBefore(CxtI)) + return true; + + // Don't let an assume affect itself - this would cause the problems + // `isEphemeralValueOf` is trying to prevent, and it would also make + // the loop below go out of bounds. + if (Inv == CxtI) + return false; + + // The context comes first, but they're both in the same block. + // Make sure there is nothing in between that might interrupt + // the control flow, not even CxtI itself. + // We limit the scan distance between the assume and its context instruction + // to avoid a compile-time explosion. This limit is chosen arbitrarily, so + // it can be adjusted if needed (could be turned into a cl::opt). + auto Range = make_range(CxtI->getIterator(), Inv->getIterator()); + if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15)) + return false; + + return !isEphemeralValueOf(Inv, CxtI); + } + + // Inv and CxtI are in different blocks. + if (DT) { + if (DT->dominates(Inv, CxtI)) + return true; + } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { + // We don't have a DT, but this trivially dominates. + return true; + } + + return false; +} + +static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { + // v u> y implies v != 0. + if (Pred == ICmpInst::ICMP_UGT) + return true; + + // Special-case v != 0 to also handle v != null. + if (Pred == ICmpInst::ICMP_NE) + return match(RHS, m_Zero()); + + // All other predicates - rely on generic ConstantRange handling. + const APInt *C; + if (!match(RHS, m_APInt(C))) + return false; + + ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); + return !TrueValues.contains(APInt::getZero(C->getBitWidth())); +} + +static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { + // Use of assumptions is context-sensitive. If we don't have a context, we + // cannot use them! + if (!Q.AC || !Q.CxtI) + return false; + + if (Q.CxtI && V->getType()->isPointerTy()) { + SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; + if (!NullPointerIsDefined(Q.CxtI->getFunction(), + V->getType()->getPointerAddressSpace())) + AttrKinds.push_back(Attribute::Dereferenceable); + + if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) + return true; + } + + for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { + if (!AssumeVH) + continue; + CondGuardInst *I = cast<CondGuardInst>(AssumeVH); + assert(I->getFunction() == Q.CxtI->getFunction() && + "Got assumption for the wrong function!"); + + // Warning: This loop can end up being somewhat performance sensitive. + // We're running this loop for once for each value queried resulting in a + // runtime of ~O(#assumes * #values). + + Value *RHS; + CmpInst::Predicate Pred; + auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); + if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) + return false; + + if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) + return true; + } + + return false; +} + +static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, + unsigned Depth, const Query &Q) { + // Use of assumptions is context-sensitive. If we don't have a context, we + // cannot use them! + if (!Q.AC || !Q.CxtI) + return; + + unsigned BitWidth = Known.getBitWidth(); + + // Refine Known set if the pointer alignment is set by assume bundles. + if (V->getType()->isPointerTy()) { + if (RetainedKnowledge RK = getKnowledgeValidInContext( + V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { + if (isPowerOf2_64(RK.ArgValue)) + Known.Zero.setLowBits(Log2_64(RK.ArgValue)); + } + } + + // Note that the patterns below need to be kept in sync with the code + // in AssumptionCache::updateAffectedValues. + + for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { + if (!AssumeVH) + continue; + CondGuardInst *I = cast<CondGuardInst>(AssumeVH); + assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && + "Got assumption for the wrong function!"); + + // Warning: This loop can end up being somewhat performance sensitive. + // We're running this loop for once for each value queried resulting in a + // runtime of ~O(#assumes * #values). + + Value *Arg = I->getArgOperand(0); + + if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + assert(BitWidth == 1 && "assume operand is not i1?"); + Known.setAllOnes(); + return; + } + if (match(Arg, m_Not(m_Specific(V))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + assert(BitWidth == 1 && "assume operand is not i1?"); + Known.setAllZero(); + return; + } + + // The remaining tests are all recursive, so bail out if we hit the limit. + if (Depth == MaxAnalysisRecursionDepth) + continue; + + ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); + if (!Cmp) + continue; + + // We are attempting to compute known bits for the operands of an assume. + // Do not try to use other assumptions for those recursive calls because + // that can lead to mutual recursion and a compile-time explosion. + // An example of the mutual recursion: computeKnownBits can call + // isKnownNonZero which calls computeKnownBitsFromAssume (this function) + // and so on. + Query QueryNoAC = Q; + QueryNoAC.AC = nullptr; + + // Note that ptrtoint may change the bitwidth. + Value *A, *B; + auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); + + CmpInst::Predicate Pred; + uint64_t C; + switch (Cmp->getPredicate()) { + default: + break; + case ICmpInst::ICMP_EQ: + // assume(v = a) + if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown = + computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + Known.Zero |= RHSKnown.Zero; + Known.One |= RHSKnown.One; + // assume(v & b = a) + } else if (match(Cmp, + m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown = + computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + KnownBits MaskKnown = + computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + + // For those bits in the mask that are known to be one, we can propagate + // known bits from the RHS to V. + Known.Zero |= RHSKnown.Zero & MaskKnown.One; + Known.One |= RHSKnown.One & MaskKnown.One; + // assume(~(v & b) = a) + } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), + m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown = + computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + KnownBits MaskKnown = + computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + + // For those bits in the mask that are known to be one, we can propagate + // inverted known bits from the RHS to V. + Known.Zero |= RHSKnown.One & MaskKnown.One; + Known.One |= RHSKnown.Zero & MaskKnown.One; + // assume(v | b = a) + } else if (match(Cmp, + m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown = + computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + KnownBits BKnown = + computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + + // For those bits in B that are known to be zero, we can propagate known + // bits from the RHS to V. + Known.Zero |= RHSKnown.Zero & BKnown.Zero; + Known.One |= RHSKnown.One & BKnown.Zero; + // assume(~(v | b) = a) + } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), + m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown = + computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + KnownBits BKnown = + computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + + // For those bits in B that are known to be zero, we can propagate + // inverted known bits from the RHS to V. + Known.Zero |= RHSKnown.One & BKnown.Zero; + Known.One |= RHSKnown.Zero & BKnown.Zero; + // assume(v ^ b = a) + } else if (match(Cmp, + m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown = + computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + KnownBits BKnown = + computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + + // For those bits in B that are known to be zero, we can propagate known + // bits from the RHS to V. For those bits in B that are known to be one, + // we can propagate inverted known bits from the RHS to V. + Known.Zero |= RHSKnown.Zero & BKnown.Zero; + Known.One |= RHSKnown.One & BKnown.Zero; + Known.Zero |= RHSKnown.One & BKnown.One; + Known.One |= RHSKnown.Zero & BKnown.One; + // assume(~(v ^ b) = a) + } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), + m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown = + computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + KnownBits BKnown = + computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + + // For those bits in B that are known to be zero, we can propagate + // inverted known bits from the RHS to V. For those bits in B that are + // known to be one, we can propagate known bits from the RHS to V. + Known.Zero |= RHSKnown.One & BKnown.Zero; + Known.One |= RHSKnown.Zero & BKnown.Zero; + Known.Zero |= RHSKnown.Zero & BKnown.One; + Known.One |= RHSKnown.One & BKnown.One; + // assume(v << c = a) + } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), + m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { + KnownBits RHSKnown = + computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + + // For those bits in RHS that are known, we can propagate them to known + // bits in V shifted to the right by C. + RHSKnown.Zero.lshrInPlace(C); + Known.Zero |= RHSKnown.Zero; + RHSKnown.One.lshrInPlace(C); + Known.One |= RHSKnown.One; + // assume(~(v << c) = a) + } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), + m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { + KnownBits RHSKnown = + computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + // For those bits in RHS that are known, we can propagate them inverted + // to known bits in V shifted to the right by C. + RHSKnown.One.lshrInPlace(C); + Known.Zero |= RHSKnown.One; + RHSKnown.Zero.lshrInPlace(C); + Known.One |= RHSKnown.Zero; + // assume(v >> c = a) + } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), + m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { + KnownBits RHSKnown = + computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + // For those bits in RHS that are known, we can propagate them to known + // bits in V shifted to the right by C. + Known.Zero |= RHSKnown.Zero << C; + Known.One |= RHSKnown.One << C; + // assume(~(v >> c) = a) + } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), + m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { + KnownBits RHSKnown = + computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + // For those bits in RHS that are known, we can propagate them inverted + // to known bits in V shifted to the right by C. + Known.Zero |= RHSKnown.One << C; + Known.One |= RHSKnown.Zero << C; + } + break; + case ICmpInst::ICMP_SGE: + // assume(v >=_s c) where c is non-negative + if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown = + computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); + + if (RHSKnown.isNonNegative()) { + // We know that the sign bit is zero. + Known.makeNonNegative(); + } + } + break; + case ICmpInst::ICMP_SGT: + // assume(v >_s c) where c is at least -1. + if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown = + computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); + + if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { + // We know that the sign bit is zero. + Known.makeNonNegative(); + } + } + break; + case ICmpInst::ICMP_SLE: + // assume(v <=_s c) where c is negative + if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown = + computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); + + if (RHSKnown.isNegative()) { + // We know that the sign bit is one. + Known.makeNegative(); + } + } + break; + case ICmpInst::ICMP_SLT: + // assume(v <_s c) where c is non-positive + if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown = + computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + + if (RHSKnown.isZero() || RHSKnown.isNegative()) { + // We know that the sign bit is one. + Known.makeNegative(); + } + } + break; + case ICmpInst::ICMP_ULE: + // assume(v <=_u c) + if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown = + computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + + // Whatever high bits in c are zero are known to be zero. + Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); + } + break; + case ICmpInst::ICMP_ULT: + // assume(v <_u c) + if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown = + computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); + + // If the RHS is known zero, then this assumption must be wrong (nothing + // is unsigned less than zero). Signal a conflict and get out of here. + if (RHSKnown.isZero()) { + Known.Zero.setAllBits(); + Known.One.setAllBits(); + break; + } + + // Whatever high bits in c are zero are known to be zero (if c is a power + // of 2, then one more). + if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) + Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); + else + Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); + } + break; + case ICmpInst::ICMP_NE: { + // assume (v & b != 0) where b is a power of 2 + const APInt *BPow2; + if (match(Cmp, m_ICmp(Pred, m_c_And(m_V, m_Power2(BPow2)), m_Zero())) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + Known.One |= BPow2->zextOrTrunc(BitWidth); + } + } break; + } + } + + // If assumptions conflict with each other or previous known bits, then we + // have a logical fallacy. It's possible that the assumption is not reachable, + // so this isn't a real bug. On the other hand, the program may have undefined + // behavior, or we might have a bug in the compiler. We can't assert/crash, so + // clear out the known bits, try to warn the user, and hope for the best. + if (Known.Zero.intersects(Known.One)) { + Known.resetAll(); + + if (Q.ORE) + Q.ORE->emit([&]() { + auto *CxtI = const_cast<Instruction *>(Q.CxtI); + return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", + CxtI) + << "Detected conflicting code assumptions. Program may " + "have undefined behavior, or compiler may have " + "internal error."; + }); + } +} + +/// Compute known bits from a shift operator, including those with a +/// non-constant shift amount. Known is the output of this function. Known2 is a +/// pre-allocated temporary with the same bit width as Known and on return +/// contains the known bit of the shift value source. KF is an +/// operator-specific function that, given the known-bits and a shift amount, +/// compute the implied known-bits of the shift operator's result respectively +/// for that shift amount. The results from calling KF are conservatively +/// combined for all permitted shift amounts. +static void computeKnownBitsFromShiftOperator( + const Operator *I, const APInt &DemandedElts, KnownBits &Known, + KnownBits &Known2, unsigned Depth, const Query &Q, + function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { + unsigned BitWidth = Known.getBitWidth(); + computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); + computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); + + // Note: We cannot use Known.Zero.getLimitedValue() here, because if + // BitWidth > 64 and any upper bits are known, we'll end up returning the + // limit value (which implies all bits are known). + uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); + uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); + bool ShiftAmtIsConstant = Known.isConstant(); + bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); + + if (ShiftAmtIsConstant) { + Known = KF(Known2, Known); + + // If the known bits conflict, this must be an overflowing left shift, so + // the shift result is poison. We can return anything we want. Choose 0 for + // the best folding opportunity. + if (Known.hasConflict()) + Known.setAllZero(); + + return; + } + + // If the shift amount could be greater than or equal to the bit-width of the + // LHS, the value could be poison, but bail out because the check below is + // expensive. + // TODO: Should we just carry on? + if (MaxShiftAmtIsOutOfRange) { + Known.resetAll(); + return; + } + + // It would be more-clearly correct to use the two temporaries for this + // calculation. Reusing the APInts here to prevent unnecessary allocations. + Known.resetAll(); + + // If we know the shifter operand is nonzero, we can sometimes infer more + // known bits. However this is expensive to compute, so be lazy about it and + // only compute it when absolutely necessary. + std::optional<bool> ShifterOperandIsNonZero; + + // Early exit if we can't constrain any well-defined shift amount. + if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && + !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { + ShifterOperandIsNonZero = + isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); + if (!*ShifterOperandIsNonZero) + return; + } + + Known.Zero.setAllBits(); + Known.One.setAllBits(); + for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { + // Combine the shifted known input bits only for those shift amounts + // compatible with its known constraints. + if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) + continue; + if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) + continue; + // If we know the shifter is nonzero, we may be able to infer more known + // bits. This check is sunk down as far as possible to avoid the expensive + // call to isKnownNonZero if the cheaper checks above fail. + if (ShiftAmt == 0) { + if (!ShifterOperandIsNonZero) + ShifterOperandIsNonZero = + isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); + if (*ShifterOperandIsNonZero) + continue; + } + + Known = KnownBits::commonBits( + Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); + } + + // If the known bits conflict, the result is poison. Return a 0 and hope the + // caller can further optimize that. + if (Known.hasConflict()) + Known.setAllZero(); +} + +static void computeKnownBitsFromOperator(const Operator *I, + const APInt &DemandedElts, + KnownBits &Known, unsigned Depth, + const Query &Q) { + unsigned BitWidth = Known.getBitWidth(); + + KnownBits Known2(BitWidth); + switch (I->getOpcode()) { + default: break; + case Instruction::Load: + if (MDNode *MD = + Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) + computeKnownBitsFromRangeMetadata(*MD, Known); + break; + case Instruction::And: { + // If either the LHS or the RHS are Zero, the result is zero. + computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); + computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); + + Known &= Known2; + + // and(x, add (x, -1)) is a common idiom that always clears the low bit; + // here we handle the more general case of adding any odd number by + // matching the form add(x, add(x, y)) where y is odd. + // TODO: This could be generalized to clearing any bit set in y where the + // following bit is known to be unset in y. + Value *X = nullptr, *Y = nullptr; + if (!Known.Zero[0] && !Known.One[0] && + match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { + Known2.resetAll(); + computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); + if (Known2.countMinTrailingOnes() > 0) + Known.Zero.setBit(0); + } + break; + } + case Instruction::Or: + computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); + computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); + + Known |= Known2; + break; + case Instruction::Xor: + computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); + computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); + + Known ^= Known2; + break; + case Instruction::Mul: { + bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); + computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, + Known, Known2, Depth, Q); + break; + } + case Instruction::UDiv: { + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); + Known = KnownBits::udiv(Known, Known2); + break; + } + case Instruction::Select: { + const Value *LHS = nullptr, *RHS = nullptr; + SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; + if (SelectPatternResult::isMinOrMax(SPF)) { + computeKnownBits(RHS, Known, Depth + 1, Q); + computeKnownBits(LHS, Known2, Depth + 1, Q); + switch (SPF) { + default: + llvm_unreachable("Unhandled select pattern flavor!"); + case SPF_SMAX: + Known = KnownBits::smax(Known, Known2); + break; + case SPF_SMIN: + Known = KnownBits::smin(Known, Known2); + break; + case SPF_UMAX: + Known = KnownBits::umax(Known, Known2); + break; + case SPF_UMIN: + Known = KnownBits::umin(Known, Known2); + break; + } + break; + } + + computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); + computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); + + // Only known if known in both the LHS and RHS. + Known = KnownBits::commonBits(Known, Known2); + + if (SPF == SPF_ABS) { + // RHS from matchSelectPattern returns the negation part of abs pattern. + // If the negate has an NSW flag we can assume the sign bit of the result + // will be 0 because that makes abs(INT_MIN) undefined. + if (match(RHS, m_Neg(m_Specific(LHS))) && + Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS))) + Known.Zero.setSignBit(); + } + + break; + } + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::SIToFP: + case Instruction::UIToFP: + break; // Can't work with floating point. + case Instruction::PtrToInt: + case Instruction::IntToPtr: + // Fall through and handle them the same as zext/trunc. + [[fallthrough]]; + case Instruction::ZExt: + case Instruction::Trunc: { + Type *SrcTy = I->getOperand(0)->getType(); + + unsigned SrcBitWidth; + // Note that we handle pointer operands here because of inttoptr/ptrtoint + // which fall through here. + Type *ScalarTy = SrcTy->getScalarType(); + SrcBitWidth = ScalarTy->isPointerTy() ? + Q.DL.getPointerTypeSizeInBits(ScalarTy) : + Q.DL.getTypeSizeInBits(ScalarTy); + + assert(SrcBitWidth && "SrcBitWidth can't be zero"); + Known = Known.anyextOrTrunc(SrcBitWidth); + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + Known = Known.zextOrTrunc(BitWidth); + break; + } + case Instruction::BitCast: { + Type *SrcTy = I->getOperand(0)->getType(); + if (SrcTy->isIntOrPtrTy() && + // TODO: For now, not handling conversions like: + // (bitcast i64 %x to <2 x i32>) + !I->getType()->isVectorTy()) { + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + break; + } + + // Handle cast from vector integer type to scalar or vector integer. + auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy); + if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() || + !I->getType()->isIntOrIntVectorTy() || + isa<ScalableVectorType>(I->getType())) + break; + + // Look through a cast from narrow vector elements to wider type. + // Examples: v4i32 -> v2i64, v3i8 -> v24 + unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits(); + if (BitWidth % SubBitWidth == 0) { + // Known bits are automatically intersected across demanded elements of a + // vector. So for example, if a bit is computed as known zero, it must be + // zero across all demanded elements of the vector. + // + // For this bitcast, each demanded element of the output is sub-divided + // across a set of smaller vector elements in the source vector. To get + // the known bits for an entire element of the output, compute the known + // bits for each sub-element sequentially. This is done by shifting the + // one-set-bit demanded elements parameter across the sub-elements for + // consecutive calls to computeKnownBits. We are using the demanded + // elements parameter as a mask operator. + // + // The known bits of each sub-element are then inserted into place + // (dependent on endian) to form the full result of known bits. + unsigned NumElts = DemandedElts.getBitWidth(); + unsigned SubScale = BitWidth / SubBitWidth; + APInt SubDemandedElts = APInt::getZero(NumElts * SubScale); + for (unsigned i = 0; i != NumElts; ++i) { + if (DemandedElts[i]) + SubDemandedElts.setBit(i * SubScale); + } + + KnownBits KnownSrc(SubBitWidth); + for (unsigned i = 0; i != SubScale; ++i) { + computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc, + Depth + 1, Q); + unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i; + Known.insertBits(KnownSrc, ShiftElt * SubBitWidth); + } + } + break; + } + case Instruction::SExt: { + // Compute the bits in the result that are not present in the input. + unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); + + Known = Known.trunc(SrcBitWidth); + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + // If the sign bit of the input is known set or clear, then we know the + // top bits of the result. + Known = Known.sext(BitWidth); + break; + } + case Instruction::Shl: { + bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); + auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { + KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); + // If this shift has "nsw" keyword, then the result is either a poison + // value or has the same sign bit as the first operand. + if (NSW) { + if (KnownVal.Zero.isSignBitSet()) + Result.Zero.setSignBit(); + if (KnownVal.One.isSignBitSet()) + Result.One.setSignBit(); + } + return Result; + }; + computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, + KF); + // Trailing zeros of a right-shifted constant never decrease. + const APInt *C; + if (match(I->getOperand(0), m_APInt(C))) + Known.Zero.setLowBits(C->countTrailingZeros()); + break; + } + case Instruction::LShr: { + auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { + return KnownBits::lshr(KnownVal, KnownAmt); + }; + computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, + KF); + // Leading zeros of a left-shifted constant never decrease. + const APInt *C; + if (match(I->getOperand(0), m_APInt(C))) + Known.Zero.setHighBits(C->countLeadingZeros()); + break; + } + case Instruction::AShr: { + auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { + return KnownBits::ashr(KnownVal, KnownAmt); + }; + computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, + KF); + break; + } + case Instruction::Sub: { + bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); + computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, + DemandedElts, Known, Known2, Depth, Q); + break; + } + case Instruction::Add: { + bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); + computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, + DemandedElts, Known, Known2, Depth, Q); + break; + } + case Instruction::SRem: + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); + Known = KnownBits::srem(Known, Known2); + break; + + case Instruction::URem: + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); + Known = KnownBits::urem(Known, Known2); + break; + case Instruction::Alloca: + Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); + break; + case Instruction::GetElementPtr: { + // Analyze all of the subscripts of this getelementptr instruction + // to determine if we can prove known low zero bits. + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + // Accumulate the constant indices in a separate variable + // to minimize the number of calls to computeForAddSub. + APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); + + gep_type_iterator GTI = gep_type_begin(I); + for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { + // TrailZ can only become smaller, short-circuit if we hit zero. + if (Known.isUnknown()) + break; + + Value *Index = I->getOperand(i); + + // Handle case when index is zero. + Constant *CIndex = dyn_cast<Constant>(Index); + if (CIndex && CIndex->isZeroValue()) + continue; + + if (StructType *STy = GTI.getStructTypeOrNull()) { + // Handle struct member offset arithmetic. + + assert(CIndex && + "Access to structure field must be known at compile time"); + + if (CIndex->getType()->isVectorTy()) + Index = CIndex->getSplatValue(); + + unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); + const StructLayout *SL = Q.DL.getStructLayout(STy); + uint64_t Offset = SL->getElementOffset(Idx); + AccConstIndices += Offset; + continue; + } + + // Handle array index arithmetic. + Type *IndexedTy = GTI.getIndexedType(); + if (!IndexedTy->isSized()) { + Known.resetAll(); + break; + } + + unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); + KnownBits IndexBits(IndexBitWidth); + computeKnownBits(Index, IndexBits, Depth + 1, Q); + TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); + uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinValue(); + KnownBits ScalingFactor(IndexBitWidth); + // Multiply by current sizeof type. + // &A[i] == A + i * sizeof(*A[i]). + if (IndexTypeSize.isScalable()) { + // For scalable types the only thing we know about sizeof is + // that this is a multiple of the minimum size. + ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); + } else if (IndexBits.isConstant()) { + APInt IndexConst = IndexBits.getConstant(); + APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); + IndexConst *= ScalingFactor; + AccConstIndices += IndexConst.sextOrTrunc(BitWidth); + continue; + } else { + ScalingFactor = + KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); + } + IndexBits = KnownBits::mul(IndexBits, ScalingFactor); + + // If the offsets have a different width from the pointer, according + // to the language reference we need to sign-extend or truncate them + // to the width of the pointer. + IndexBits = IndexBits.sextOrTrunc(BitWidth); + + // Note that inbounds does *not* guarantee nsw for the addition, as only + // the offset is signed, while the base address is unsigned. + Known = KnownBits::computeForAddSub( + /*Add=*/true, /*NSW=*/false, Known, IndexBits); + } + if (!Known.isUnknown() && !AccConstIndices.isZero()) { + KnownBits Index = KnownBits::makeConstant(AccConstIndices); + Known = KnownBits::computeForAddSub( + /*Add=*/true, /*NSW=*/false, Known, Index); + } + break; + } + case Instruction::PHI: { + const PHINode *P = cast<PHINode>(I); + BinaryOperator *BO = nullptr; + Value *R = nullptr, *L = nullptr; + if (matchSimpleRecurrence(P, BO, R, L)) { + // Handle the case of a simple two-predecessor recurrence PHI. + // There's a lot more that could theoretically be done here, but + // this is sufficient to catch some interesting cases. + unsigned Opcode = BO->getOpcode(); + + // If this is a shift recurrence, we know the bits being shifted in. + // We can combine that with information about the start value of the + // recurrence to conclude facts about the result. + if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || + Opcode == Instruction::Shl) && + BO->getOperand(0) == I) { + + // We have matched a recurrence of the form: + // %iv = [R, %entry], [%iv.next, %backedge] + // %iv.next = shift_op %iv, L + + // Recurse with the phi context to avoid concern about whether facts + // inferred hold at original context instruction. TODO: It may be + // correct to use the original context. IF warranted, explore and + // add sufficient tests to cover. + Query RecQ = Q; + RecQ.CxtI = P; + computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); + switch (Opcode) { + case Instruction::Shl: + // A shl recurrence will only increase the tailing zeros + Known.Zero.setLowBits(Known2.countMinTrailingZeros()); + break; + case Instruction::LShr: + // A lshr recurrence will preserve the leading zeros of the + // start value + Known.Zero.setHighBits(Known2.countMinLeadingZeros()); + break; + case Instruction::AShr: + // An ashr recurrence will extend the initial sign bit + Known.Zero.setHighBits(Known2.countMinLeadingZeros()); + Known.One.setHighBits(Known2.countMinLeadingOnes()); + break; + }; + } + + // Check for operations that have the property that if + // both their operands have low zero bits, the result + // will have low zero bits. + if (Opcode == Instruction::Add || + Opcode == Instruction::Sub || + Opcode == Instruction::And || + Opcode == Instruction::Or || + Opcode == Instruction::Mul) { + // Change the context instruction to the "edge" that flows into the + // phi. This is important because that is where the value is actually + // "evaluated" even though it is used later somewhere else. (see also + // D69571). + Query RecQ = Q; + + unsigned OpNum = P->getOperand(0) == R ? 0 : 1; + Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); + Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); + + // Ok, we have a PHI of the form L op= R. Check for low + // zero bits. + RecQ.CxtI = RInst; + computeKnownBits(R, Known2, Depth + 1, RecQ); + + // We need to take the minimum number of known bits + KnownBits Known3(BitWidth); + RecQ.CxtI = LInst; + computeKnownBits(L, Known3, Depth + 1, RecQ); + + Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), + Known3.countMinTrailingZeros())); + + auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); + if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { + // If initial value of recurrence is nonnegative, and we are adding + // a nonnegative number with nsw, the result can only be nonnegative + // or poison value regardless of the number of times we execute the + // add in phi recurrence. If initial value is negative and we are + // adding a negative number with nsw, the result can only be + // negative or poison value. Similar arguments apply to sub and mul. + // + // (add non-negative, non-negative) --> non-negative + // (add negative, negative) --> negative + if (Opcode == Instruction::Add) { + if (Known2.isNonNegative() && Known3.isNonNegative()) + Known.makeNonNegative(); + else if (Known2.isNegative() && Known3.isNegative()) + Known.makeNegative(); + } + + // (sub nsw non-negative, negative) --> non-negative + // (sub nsw negative, non-negative) --> negative + else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { + if (Known2.isNonNegative() && Known3.isNegative()) + Known.makeNonNegative(); + else if (Known2.isNegative() && Known3.isNonNegative()) + Known.makeNegative(); + } + + // (mul nsw non-negative, non-negative) --> non-negative + else if (Opcode == Instruction::Mul && Known2.isNonNegative() && + Known3.isNonNegative()) + Known.makeNonNegative(); + } + + break; + } + } + + // Unreachable blocks may have zero-operand PHI nodes. + if (P->getNumIncomingValues() == 0) + break; + + // Otherwise take the unions of the known bit sets of the operands, + // taking conservative care to avoid excessive recursion. + if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { + // Skip if every incoming value references to ourself. + if (isa_and_nonnull<UndefValue>(P->hasConstantValue())) + break; + + Known.Zero.setAllBits(); + Known.One.setAllBits(); + for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { + Value *IncValue = P->getIncomingValue(u); + // Skip direct self references. + if (IncValue == P) continue; + + // Change the context instruction to the "edge" that flows into the + // phi. This is important because that is where the value is actually + // "evaluated" even though it is used later somewhere else. (see also + // D69571). + Query RecQ = Q; + RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); + + Known2 = KnownBits(BitWidth); + + // Recurse, but cap the recursion to one level, because we don't + // want to waste time spinning around in loops. + computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); + + // If this failed, see if we can use a conditional branch into the phi + // to help us determine the range of the value. + if (Known2.isUnknown()) { + ICmpInst::Predicate Pred; + const APInt *RHSC; + BasicBlock *TrueSucc, *FalseSucc; + // TODO: Use RHS Value and compute range from its known bits. + if (match(RecQ.CxtI, + m_Br(m_c_ICmp(Pred, m_Specific(IncValue), m_APInt(RHSC)), + m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) { + // Check for cases of duplicate successors. + if ((TrueSucc == P->getParent()) != (FalseSucc == P->getParent())) { + // If we're using the false successor, invert the predicate. + if (FalseSucc == P->getParent()) + Pred = CmpInst::getInversePredicate(Pred); + + switch (Pred) { + case CmpInst::Predicate::ICMP_EQ: + Known2 = KnownBits::makeConstant(*RHSC); + break; + case CmpInst::Predicate::ICMP_ULE: + Known2.Zero.setHighBits(RHSC->countLeadingZeros()); + break; + case CmpInst::Predicate::ICMP_ULT: + Known2.Zero.setHighBits((*RHSC - 1).countLeadingZeros()); + break; + default: + // TODO - add additional integer predicate handling. + break; + } + } + } + } + + Known = KnownBits::commonBits(Known, Known2); + // If all bits have been ruled out, there's no need to check + // more operands. + if (Known.isUnknown()) + break; + } + } + break; + } + case Instruction::Call: + case Instruction::Invoke: + // If range metadata is attached to this call, set known bits from that, + // and then intersect with known bits based on other properties of the + // function. + if (MDNode *MD = + Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) + computeKnownBitsFromRangeMetadata(*MD, Known); + if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { + computeKnownBits(RV, Known2, Depth + 1, Q); + Known.Zero |= Known2.Zero; + Known.One |= Known2.One; + } + if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::abs: { + computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); + bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); + Known = Known2.abs(IntMinIsPoison); + break; + } + case Intrinsic::bitreverse: + computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); + Known.Zero |= Known2.Zero.reverseBits(); + Known.One |= Known2.One.reverseBits(); + break; + case Intrinsic::bswap: + computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); + Known.Zero |= Known2.Zero.byteSwap(); + Known.One |= Known2.One.byteSwap(); + break; + case Intrinsic::ctlz: { + computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); + // If we have a known 1, its position is our upper bound. + unsigned PossibleLZ = Known2.countMaxLeadingZeros(); + // If this call is poison for 0 input, the result will be less than 2^n. + if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) + PossibleLZ = std::min(PossibleLZ, BitWidth - 1); + unsigned LowBits = llvm::bit_width(PossibleLZ); + Known.Zero.setBitsFrom(LowBits); + break; + } + case Intrinsic::cttz: { + computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); + // If we have a known 1, its position is our upper bound. + unsigned PossibleTZ = Known2.countMaxTrailingZeros(); + // If this call is poison for 0 input, the result will be less than 2^n. + if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) + PossibleTZ = std::min(PossibleTZ, BitWidth - 1); + unsigned LowBits = llvm::bit_width(PossibleTZ); + Known.Zero.setBitsFrom(LowBits); + break; + } + case Intrinsic::ctpop: { + computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); + // We can bound the space the count needs. Also, bits known to be zero + // can't contribute to the population. + unsigned BitsPossiblySet = Known2.countMaxPopulation(); + unsigned LowBits = llvm::bit_width(BitsPossiblySet); + Known.Zero.setBitsFrom(LowBits); + // TODO: we could bound KnownOne using the lower bound on the number + // of bits which might be set provided by popcnt KnownOne2. + break; + } + case Intrinsic::fshr: + case Intrinsic::fshl: { + const APInt *SA; + if (!match(I->getOperand(2), m_APInt(SA))) + break; + + // Normalize to funnel shift left. + uint64_t ShiftAmt = SA->urem(BitWidth); + if (II->getIntrinsicID() == Intrinsic::fshr) + ShiftAmt = BitWidth - ShiftAmt; + + KnownBits Known3(BitWidth); + computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); + computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); + + Known.Zero = + Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); + Known.One = + Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); + break; + } + case Intrinsic::uadd_sat: + case Intrinsic::usub_sat: { + bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); + + // Add: Leading ones of either operand are preserved. + // Sub: Leading zeros of LHS and leading ones of RHS are preserved + // as leading zeros in the result. + unsigned LeadingKnown; + if (IsAdd) + LeadingKnown = std::max(Known.countMinLeadingOnes(), + Known2.countMinLeadingOnes()); + else + LeadingKnown = std::max(Known.countMinLeadingZeros(), + Known2.countMinLeadingOnes()); + + Known = KnownBits::computeForAddSub( + IsAdd, /* NSW */ false, Known, Known2); + + // We select between the operation result and all-ones/zero + // respectively, so we can preserve known ones/zeros. + if (IsAdd) { + Known.One.setHighBits(LeadingKnown); + Known.Zero.clearAllBits(); + } else { + Known.Zero.setHighBits(LeadingKnown); + Known.One.clearAllBits(); + } + break; + } + case Intrinsic::umin: + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); + Known = KnownBits::umin(Known, Known2); + break; + case Intrinsic::umax: + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); + Known = KnownBits::umax(Known, Known2); + break; + case Intrinsic::smin: + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); + Known = KnownBits::smin(Known, Known2); + break; + case Intrinsic::smax: + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); + Known = KnownBits::smax(Known, Known2); + break; + case Intrinsic::x86_sse42_crc32_64_64: + Known.Zero.setBitsFrom(32); + break; + case Intrinsic::riscv_vsetvli: + case Intrinsic::riscv_vsetvlimax: + // Assume that VL output is positive and would fit in an int32_t. + // TODO: VLEN might be capped at 16 bits in a future V spec update. + if (BitWidth >= 32) + Known.Zero.setBitsFrom(31); + break; + case Intrinsic::vscale: { + if (!II->getParent() || !II->getFunction() || + !II->getFunction()->hasFnAttribute(Attribute::VScaleRange)) + break; + + auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange); + std::optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); + + if (!VScaleMax) + break; + + unsigned VScaleMin = Attr.getVScaleRangeMin(); + + // If vscale min = max then we know the exact value at compile time + // and hence we know the exact bits. + if (VScaleMin == VScaleMax) { + Known.One = VScaleMin; + Known.Zero = VScaleMin; + Known.Zero.flipAllBits(); + break; + } + + unsigned FirstZeroHighBit = llvm::bit_width(*VScaleMax); + if (FirstZeroHighBit < BitWidth) + Known.Zero.setBitsFrom(FirstZeroHighBit); + + break; + } + } + } + break; + case Instruction::ShuffleVector: { + auto *Shuf = dyn_cast<ShuffleVectorInst>(I); + // FIXME: Do we need to handle ConstantExpr involving shufflevectors? + if (!Shuf) { + Known.resetAll(); + return; + } + // For undef elements, we don't know anything about the common state of + // the shuffle result. + APInt DemandedLHS, DemandedRHS; + if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { + Known.resetAll(); + return; + } + Known.One.setAllBits(); + Known.Zero.setAllBits(); + if (!!DemandedLHS) { + const Value *LHS = Shuf->getOperand(0); + computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); + // If we don't know any bits, early out. + if (Known.isUnknown()) + break; + } + if (!!DemandedRHS) { + const Value *RHS = Shuf->getOperand(1); + computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); + Known = KnownBits::commonBits(Known, Known2); + } + break; + } + case Instruction::InsertElement: { + if (isa<ScalableVectorType>(I->getType())) { + Known.resetAll(); + return; + } + const Value *Vec = I->getOperand(0); + const Value *Elt = I->getOperand(1); + auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); + // Early out if the index is non-constant or out-of-range. + unsigned NumElts = DemandedElts.getBitWidth(); + if (!CIdx || CIdx->getValue().uge(NumElts)) { + Known.resetAll(); + return; + } + Known.One.setAllBits(); + Known.Zero.setAllBits(); + unsigned EltIdx = CIdx->getZExtValue(); + // Do we demand the inserted element? + if (DemandedElts[EltIdx]) { + computeKnownBits(Elt, Known, Depth + 1, Q); + // If we don't know any bits, early out. + if (Known.isUnknown()) + break; + } + // We don't need the base vector element that has been inserted. + APInt DemandedVecElts = DemandedElts; + DemandedVecElts.clearBit(EltIdx); + if (!!DemandedVecElts) { + computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); + Known = KnownBits::commonBits(Known, Known2); + } + break; + } + case Instruction::ExtractElement: { + // Look through extract element. If the index is non-constant or + // out-of-range demand all elements, otherwise just the extracted element. + const Value *Vec = I->getOperand(0); + const Value *Idx = I->getOperand(1); + auto *CIdx = dyn_cast<ConstantInt>(Idx); + if (isa<ScalableVectorType>(Vec->getType())) { + // FIXME: there's probably *something* we can do with scalable vectors + Known.resetAll(); + break; + } + unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); + APInt DemandedVecElts = APInt::getAllOnes(NumElts); + if (CIdx && CIdx->getValue().ult(NumElts)) + DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); + computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); + break; + } + case Instruction::ExtractValue: + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { + const ExtractValueInst *EVI = cast<ExtractValueInst>(I); + if (EVI->getNumIndices() != 1) break; + if (EVI->getIndices()[0] == 0) { + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::uadd_with_overflow: + case Intrinsic::sadd_with_overflow: + computeKnownBitsAddSub(true, II->getArgOperand(0), + II->getArgOperand(1), false, DemandedElts, + Known, Known2, Depth, Q); + break; + case Intrinsic::usub_with_overflow: + case Intrinsic::ssub_with_overflow: + computeKnownBitsAddSub(false, II->getArgOperand(0), + II->getArgOperand(1), false, DemandedElts, + Known, Known2, Depth, Q); + break; + case Intrinsic::umul_with_overflow: + case Intrinsic::smul_with_overflow: + computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, + DemandedElts, Known, Known2, Depth, Q); + break; + } + } + } + break; + case Instruction::Freeze: + if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, + Depth + 1)) + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + break; + } +} + +/// Determine which bits of V are known to be either zero or one and return +/// them. +KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, + unsigned Depth, const Query &Q) { + KnownBits Known(getBitWidth(V->getType(), Q.DL)); + computeKnownBits(V, DemandedElts, Known, Depth, Q); + return Known; +} + +/// Determine which bits of V are known to be either zero or one and return +/// them. +KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { + KnownBits Known(getBitWidth(V->getType(), Q.DL)); + computeKnownBits(V, Known, Depth, Q); + return Known; +} + +/// Determine which bits of V are known to be either zero or one and return +/// them in the Known bit set. +/// +/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that +/// we cannot optimize based on the assumption that it is zero without changing +/// it to be an explicit zero. If we don't change it to zero, other code could +/// optimized based on the contradictory assumption that it is non-zero. +/// Because instcombine aggressively folds operations with undef args anyway, +/// this won't lose us code quality. +/// +/// This function is defined on values with integer type, values with pointer +/// type, and vectors of integers. In the case +/// where V is a vector, known zero, and known one values are the +/// same width as the vector element, and the bit is set only if it is true +/// for all of the demanded elements in the vector specified by DemandedElts. +void computeKnownBits(const Value *V, const APInt &DemandedElts, + KnownBits &Known, unsigned Depth, const Query &Q) { + if (!DemandedElts) { + // No demanded elts, better to assume we don't know anything. + Known.resetAll(); + return; + } + + assert(V && "No Value?"); + assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); + +#ifndef NDEBUG + Type *Ty = V->getType(); + unsigned BitWidth = Known.getBitWidth(); + + assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && + "Not integer or pointer type!"); + + if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { + assert( + FVTy->getNumElements() == DemandedElts.getBitWidth() && + "DemandedElt width should equal the fixed vector number of elements"); + } else { + assert(DemandedElts == APInt(1, 1) && + "DemandedElt width should be 1 for scalars or scalable vectors"); + } + + Type *ScalarTy = Ty->getScalarType(); + if (ScalarTy->isPointerTy()) { + assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && + "V and Known should have same BitWidth"); + } else { + assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && + "V and Known should have same BitWidth"); + } +#endif + + const APInt *C; + if (match(V, m_APInt(C))) { + // We know all of the bits for a scalar constant or a splat vector constant! + Known = KnownBits::makeConstant(*C); + return; + } + // Null and aggregate-zero are all-zeros. + if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { + Known.setAllZero(); + return; + } + // Handle a constant vector by taking the intersection of the known bits of + // each element. + if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { + assert(!isa<ScalableVectorType>(V->getType())); + // We know that CDV must be a vector of integers. Take the intersection of + // each element. + Known.Zero.setAllBits(); Known.One.setAllBits(); + for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { + if (!DemandedElts[i]) + continue; + APInt Elt = CDV->getElementAsAPInt(i); + Known.Zero &= ~Elt; + Known.One &= Elt; + } + return; + } + + if (const auto *CV = dyn_cast<ConstantVector>(V)) { + assert(!isa<ScalableVectorType>(V->getType())); + // We know that CV must be a vector of integers. Take the intersection of + // each element. + Known.Zero.setAllBits(); Known.One.setAllBits(); + for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { + if (!DemandedElts[i]) + continue; + Constant *Element = CV->getAggregateElement(i); + auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); + if (!ElementCI) { + Known.resetAll(); + return; + } + const APInt &Elt = ElementCI->getValue(); + Known.Zero &= ~Elt; + Known.One &= Elt; + } + return; + } + + // Start out not knowing anything. + Known.resetAll(); + + // We can't imply anything about undefs. + if (isa<UndefValue>(V)) + return; + + // There's no point in looking through other users of ConstantData for + // assumptions. Confirm that we've handled them all. + assert(!isa<ConstantData>(V) && "Unhandled constant data!"); + + // All recursive calls that increase depth must come after this. + if (Depth == MaxAnalysisRecursionDepth) + return; + + // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has + // the bits of its aliasee. + if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { + if (!GA->isInterposable()) + computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); + return; + } + + if (const Operator *I = dyn_cast<Operator>(V)) + computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); + + // Aligned pointers have trailing zeros - refine Known.Zero set + if (isa<PointerType>(V->getType())) { + Align Alignment = V->getPointerAlignment(Q.DL); + Known.Zero.setLowBits(Log2(Alignment)); + } + + // computeKnownBitsFromAssume strictly refines Known. + // Therefore, we run them after computeKnownBitsFromOperator. + + // Check whether a nearby assume intrinsic can determine some known bits. + computeKnownBitsFromAssume(V, Known, Depth, Q); + + assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); +} + +/// Try to detect a recurrence that the value of the induction variable is +/// always a power of two (or zero). +static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero, + unsigned Depth, Query &Q) { + BinaryOperator *BO = nullptr; + Value *Start = nullptr, *Step = nullptr; + if (!matchSimpleRecurrence(PN, BO, Start, Step)) + return false; + + // Initial value must be a power of two. + for (const Use &U : PN->operands()) { + if (U.get() == Start) { + // Initial value comes from a different BB, need to adjust context + // instruction for analysis. + Q.CxtI = PN->getIncomingBlock(U)->getTerminator(); + if (!isKnownToBeAPowerOfTwo(Start, OrZero, Depth, Q)) + return false; + } + } + + // Except for Mul, the induction variable must be on the left side of the + // increment expression, otherwise its value can be arbitrary. + if (BO->getOpcode() != Instruction::Mul && BO->getOperand(1) != Step) + return false; + + Q.CxtI = BO->getParent()->getTerminator(); + switch (BO->getOpcode()) { + case Instruction::Mul: + // Power of two is closed under multiplication. + return (OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || + Q.IIQ.hasNoSignedWrap(BO)) && + isKnownToBeAPowerOfTwo(Step, OrZero, Depth, Q); + case Instruction::SDiv: + // Start value must not be signmask for signed division, so simply being a + // power of two is not sufficient, and it has to be a constant. + if (!match(Start, m_Power2()) || match(Start, m_SignMask())) + return false; + [[fallthrough]]; + case Instruction::UDiv: + // Divisor must be a power of two. + // If OrZero is false, cannot guarantee induction variable is non-zero after + // division, same for Shr, unless it is exact division. + return (OrZero || Q.IIQ.isExact(BO)) && + isKnownToBeAPowerOfTwo(Step, false, Depth, Q); + case Instruction::Shl: + return OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO); + case Instruction::AShr: + if (!match(Start, m_Power2()) || match(Start, m_SignMask())) + return false; + [[fallthrough]]; + case Instruction::LShr: + return OrZero || Q.IIQ.isExact(BO); + default: + return false; + } +} + +/// Return true if the given value is known to have exactly one +/// bit set when defined. For vectors return true if every element is known to +/// be a power of two when defined. Supports values with integer or pointer +/// types and vectors of integers. +bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, + const Query &Q) { + assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); + + // Attempt to match against constants. + if (OrZero && match(V, m_Power2OrZero())) + return true; + if (match(V, m_Power2())) + return true; + + // 1 << X is clearly a power of two if the one is not shifted off the end. If + // it is shifted off the end then the result is undefined. + if (match(V, m_Shl(m_One(), m_Value()))) + return true; + + // (signmask) >>l X is clearly a power of two if the one is not shifted off + // the bottom. If it is shifted off the bottom then the result is undefined. + if (match(V, m_LShr(m_SignMask(), m_Value()))) + return true; + + // The remaining tests are all recursive, so bail out if we hit the limit. + if (Depth++ == MaxAnalysisRecursionDepth) + return false; + + Value *X = nullptr, *Y = nullptr; + // A shift left or a logical shift right of a power of two is a power of two + // or zero. + if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || + match(V, m_LShr(m_Value(X), m_Value())))) + return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); + + if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) + return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); + + if (const SelectInst *SI = dyn_cast<SelectInst>(V)) + return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && + isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); + + // Peek through min/max. + if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { + return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && + isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); + } + + if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { + // A power of two and'd with anything is a power of two or zero. + if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || + isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) + return true; + // X & (-X) is always a power of two or zero. + if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) + return true; + return false; + } + + // Adding a power-of-two or zero to the same power-of-two or zero yields + // either the original power-of-two, a larger power-of-two or zero. + if (match(V, m_Add(m_Value(X), m_Value(Y)))) { + const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); + if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || + Q.IIQ.hasNoSignedWrap(VOBO)) { + if (match(X, m_And(m_Specific(Y), m_Value())) || + match(X, m_And(m_Value(), m_Specific(Y)))) + if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) + return true; + if (match(Y, m_And(m_Specific(X), m_Value())) || + match(Y, m_And(m_Value(), m_Specific(X)))) + if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) + return true; + + unsigned BitWidth = V->getType()->getScalarSizeInBits(); + KnownBits LHSBits(BitWidth); + computeKnownBits(X, LHSBits, Depth, Q); + + KnownBits RHSBits(BitWidth); + computeKnownBits(Y, RHSBits, Depth, Q); + // If i8 V is a power of two or zero: + // ZeroBits: 1 1 1 0 1 1 1 1 + // ~ZeroBits: 0 0 0 1 0 0 0 0 + if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) + // If OrZero isn't set, we cannot give back a zero result. + // Make sure either the LHS or RHS has a bit set. + if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) + return true; + } + } + + // A PHI node is power of two if all incoming values are power of two, or if + // it is an induction variable where in each step its value is a power of two. + if (const PHINode *PN = dyn_cast<PHINode>(V)) { + Query RecQ = Q; + + // Check if it is an induction variable and always power of two. + if (isPowerOfTwoRecurrence(PN, OrZero, Depth, RecQ)) + return true; + + // Recursively check all incoming values. Limit recursion to 2 levels, so + // that search complexity is limited to number of operands^2. + unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); + return llvm::all_of(PN->operands(), [&](const Use &U) { + // Value is power of 2 if it is coming from PHI node itself by induction. + if (U.get() == PN) + return true; + + // Change the context instruction to the incoming block where it is + // evaluated. + RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); + return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ); + }); + } + + // An exact divide or right shift can only shift off zero bits, so the result + // is a power of two only if the first operand is a power of two and not + // copying a sign bit (sdiv int_min, 2). + if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || + match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { + return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, + Depth, Q); + } + + return false; +} + +/// Test whether a GEP's result is known to be non-null. +/// +/// Uses properties inherent in a GEP to try to determine whether it is known +/// to be non-null. +/// +/// Currently this routine does not support vector GEPs. +static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, + const Query &Q) { + const Function *F = nullptr; + if (const Instruction *I = dyn_cast<Instruction>(GEP)) + F = I->getFunction(); + + if (!GEP->isInBounds() || + NullPointerIsDefined(F, GEP->getPointerAddressSpace())) + return false; + + // FIXME: Support vector-GEPs. + assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); + + // If the base pointer is non-null, we cannot walk to a null address with an + // inbounds GEP in address space zero. + if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) + return true; + + // Walk the GEP operands and see if any operand introduces a non-zero offset. + // If so, then the GEP cannot produce a null pointer, as doing so would + // inherently violate the inbounds contract within address space zero. + for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); + GTI != GTE; ++GTI) { + // Struct types are easy -- they must always be indexed by a constant. + if (StructType *STy = GTI.getStructTypeOrNull()) { + ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); + unsigned ElementIdx = OpC->getZExtValue(); + const StructLayout *SL = Q.DL.getStructLayout(STy); + uint64_t ElementOffset = SL->getElementOffset(ElementIdx); + if (ElementOffset > 0) + return true; + continue; + } + + // If we have a zero-sized type, the index doesn't matter. Keep looping. + if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).isZero()) + continue; + + // Fast path the constant operand case both for efficiency and so we don't + // increment Depth when just zipping down an all-constant GEP. + if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { + if (!OpC->isZero()) + return true; + continue; + } + + // We post-increment Depth here because while isKnownNonZero increments it + // as well, when we pop back up that increment won't persist. We don't want + // to recurse 10k times just because we have 10k GEP operands. We don't + // bail completely out because we want to handle constant GEPs regardless + // of depth. + if (Depth++ >= MaxAnalysisRecursionDepth) + continue; + + if (isKnownNonZero(GTI.getOperand(), Depth, Q)) + return true; + } + + return false; +} + +static bool isKnownNonNullFromDominatingCondition(const Value *V, + const Instruction *CtxI, + const DominatorTree *DT) { + if (isa<Constant>(V)) + return false; + + if (!CtxI || !DT) + return false; + + unsigned NumUsesExplored = 0; + for (const auto *U : V->users()) { + // Avoid massive lists + if (NumUsesExplored >= DomConditionsMaxUses) + break; + NumUsesExplored++; + + // If the value is used as an argument to a call or invoke, then argument + // attributes may provide an answer about null-ness. + if (const auto *CB = dyn_cast<CallBase>(U)) + if (auto *CalledFunc = CB->getCalledFunction()) + for (const Argument &Arg : CalledFunc->args()) + if (CB->getArgOperand(Arg.getArgNo()) == V && + Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && + DT->dominates(CB, CtxI)) + return true; + + // If the value is used as a load/store, then the pointer must be non null. + if (V == getLoadStorePointerOperand(U)) { + const Instruction *I = cast<Instruction>(U); + if (!NullPointerIsDefined(I->getFunction(), + V->getType()->getPointerAddressSpace()) && + DT->dominates(I, CtxI)) + return true; + } + + // Consider only compare instructions uniquely controlling a branch + Value *RHS; + CmpInst::Predicate Pred; + if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) + continue; + + bool NonNullIfTrue; + if (cmpExcludesZero(Pred, RHS)) + NonNullIfTrue = true; + else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) + NonNullIfTrue = false; + else + continue; + + SmallVector<const User *, 4> WorkList; + SmallPtrSet<const User *, 4> Visited; + for (const auto *CmpU : U->users()) { + assert(WorkList.empty() && "Should be!"); + if (Visited.insert(CmpU).second) + WorkList.push_back(CmpU); + + while (!WorkList.empty()) { + auto *Curr = WorkList.pop_back_val(); + + // If a user is an AND, add all its users to the work list. We only + // propagate "pred != null" condition through AND because it is only + // correct to assume that all conditions of AND are met in true branch. + // TODO: Support similar logic of OR and EQ predicate? + if (NonNullIfTrue) + if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { + for (const auto *CurrU : Curr->users()) + if (Visited.insert(CurrU).second) + WorkList.push_back(CurrU); + continue; + } + + if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { + assert(BI->isConditional() && "uses a comparison!"); + + BasicBlock *NonNullSuccessor = + BI->getSuccessor(NonNullIfTrue ? 0 : 1); + BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); + if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) + return true; + } else if (NonNullIfTrue && isGuard(Curr) && + DT->dominates(cast<Instruction>(Curr), CtxI)) { + return true; + } + } + } + } + + return false; +} + +/// Does the 'Range' metadata (which must be a valid MD_range operand list) +/// ensure that the value it's attached to is never Value? 'RangeType' is +/// is the type of the value described by the range. +static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { + const unsigned NumRanges = Ranges->getNumOperands() / 2; + assert(NumRanges >= 1); + for (unsigned i = 0; i < NumRanges; ++i) { + ConstantInt *Lower = + mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); + ConstantInt *Upper = + mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); + ConstantRange Range(Lower->getValue(), Upper->getValue()); + if (Range.contains(Value)) + return false; + } + return true; +} + +/// Try to detect a recurrence that monotonically increases/decreases from a +/// non-zero starting value. These are common as induction variables. +static bool isNonZeroRecurrence(const PHINode *PN) { + BinaryOperator *BO = nullptr; + Value *Start = nullptr, *Step = nullptr; + const APInt *StartC, *StepC; + if (!matchSimpleRecurrence(PN, BO, Start, Step) || + !match(Start, m_APInt(StartC)) || StartC->isZero()) + return false; + + switch (BO->getOpcode()) { + case Instruction::Add: + // Starting from non-zero and stepping away from zero can never wrap back + // to zero. + return BO->hasNoUnsignedWrap() || + (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && + StartC->isNegative() == StepC->isNegative()); + case Instruction::Mul: + return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && + match(Step, m_APInt(StepC)) && !StepC->isZero(); + case Instruction::Shl: + return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); + case Instruction::AShr: + case Instruction::LShr: + return BO->isExact(); + default: + return false; + } +} + +/// Return true if the given value is known to be non-zero when defined. For +/// vectors, return true if every demanded element is known to be non-zero when +/// defined. For pointers, if the context instruction and dominator tree are +/// specified, perform context-sensitive analysis and return true if the +/// pointer couldn't possibly be null at the specified instruction. +/// Supports values with integer or pointer type and vectors of integers. +bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, + const Query &Q) { + +#ifndef NDEBUG + Type *Ty = V->getType(); + assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); + + if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { + assert( + FVTy->getNumElements() == DemandedElts.getBitWidth() && + "DemandedElt width should equal the fixed vector number of elements"); + } else { + assert(DemandedElts == APInt(1, 1) && + "DemandedElt width should be 1 for scalars"); + } +#endif + + if (auto *C = dyn_cast<Constant>(V)) { + if (C->isNullValue()) + return false; + if (isa<ConstantInt>(C)) + // Must be non-zero due to null test above. + return true; + + // For constant vectors, check that all elements are undefined or known + // non-zero to determine that the whole vector is known non-zero. + if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { + for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { + if (!DemandedElts[i]) + continue; + Constant *Elt = C->getAggregateElement(i); + if (!Elt || Elt->isNullValue()) + return false; + if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) + return false; + } + return true; + } + + // A global variable in address space 0 is non null unless extern weak + // or an absolute symbol reference. Other address spaces may have null as a + // valid address for a global, so we can't assume anything. + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && + GV->getType()->getAddressSpace() == 0) + return true; + } + + // For constant expressions, fall through to the Operator code below. + if (!isa<ConstantExpr>(V)) + return false; + } + + if (auto *I = dyn_cast<Instruction>(V)) { + if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { + // If the possible ranges don't contain zero, then the value is + // definitely non-zero. + if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { + const APInt ZeroValue(Ty->getBitWidth(), 0); + if (rangeMetadataExcludesValue(Ranges, ZeroValue)) + return true; + } + } + } + + if (!isa<Constant>(V) && isKnownNonZeroFromAssume(V, Q)) + return true; + + // Some of the tests below are recursive, so bail out if we hit the limit. + if (Depth++ >= MaxAnalysisRecursionDepth) + return false; + + // Check for pointer simplifications. + + if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { + // Alloca never returns null, malloc might. + if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) + return true; + + // A byval, inalloca may not be null in a non-default addres space. A + // nonnull argument is assumed never 0. + if (const Argument *A = dyn_cast<Argument>(V)) { + if (((A->hasPassPointeeByValueCopyAttr() && + !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || + A->hasNonNullAttr())) + return true; + } + + // A Load tagged with nonnull metadata is never null. + if (const LoadInst *LI = dyn_cast<LoadInst>(V)) + if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) + return true; + + if (const auto *Call = dyn_cast<CallBase>(V)) { + if (Call->isReturnNonNull()) + return true; + if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) + return isKnownNonZero(RP, Depth, Q); + } + } + + if (!isa<Constant>(V) && + isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) + return true; + + const Operator *I = dyn_cast<Operator>(V); + if (!I) + return false; + + unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); + switch (I->getOpcode()) { + case Instruction::GetElementPtr: + if (I->getType()->isPointerTy()) + return isGEPKnownNonNull(cast<GEPOperator>(I), Depth, Q); + break; + case Instruction::BitCast: + if (I->getType()->isPointerTy()) + return isKnownNonZero(I->getOperand(0), Depth, Q); + break; + case Instruction::IntToPtr: + // Note that we have to take special care to avoid looking through + // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well + // as casts that can alter the value, e.g., AddrSpaceCasts. + if (!isa<ScalableVectorType>(I->getType()) && + Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <= + Q.DL.getTypeSizeInBits(I->getType()).getFixedValue()) + return isKnownNonZero(I->getOperand(0), Depth, Q); + break; + case Instruction::PtrToInt: + // Similar to int2ptr above, we can look through ptr2int here if the cast + // is a no-op or an extend and not a truncate. + if (!isa<ScalableVectorType>(I->getType()) && + Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <= + Q.DL.getTypeSizeInBits(I->getType()).getFixedValue()) + return isKnownNonZero(I->getOperand(0), Depth, Q); + break; + case Instruction::Or: + // X | Y != 0 if X != 0 or Y != 0. + return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q) || + isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q); + case Instruction::SExt: + case Instruction::ZExt: + // ext X != 0 if X != 0. + return isKnownNonZero(I->getOperand(0), Depth, Q); + + case Instruction::Shl: { + // shl nuw can't remove any non-zero bits. + const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); + if (Q.IIQ.hasNoUnsignedWrap(BO)) + return isKnownNonZero(I->getOperand(0), Depth, Q); + + // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined + // if the lowest bit is shifted off the end. + KnownBits Known(BitWidth); + computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth, Q); + if (Known.One[0]) + return true; + break; + } + case Instruction::LShr: + case Instruction::AShr: { + // shr exact can only shift out zero bits. + const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); + if (BO->isExact()) + return isKnownNonZero(I->getOperand(0), Depth, Q); + + // shr X, Y != 0 if X is negative. Note that the value of the shift is not + // defined if the sign bit is shifted off the end. + KnownBits Known = + computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q); + if (Known.isNegative()) + return true; + + // If the shifter operand is a constant, and all of the bits shifted + // out are known to be zero, and X is known non-zero then at least one + // non-zero bit must remain. + if (ConstantInt *Shift = dyn_cast<ConstantInt>(I->getOperand(1))) { + auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); + // Is there a known one in the portion not shifted out? + if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) + return true; + // Are all the bits to be shifted out known zero? + if (Known.countMinTrailingZeros() >= ShiftVal) + return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q); + } + break; + } + case Instruction::UDiv: + case Instruction::SDiv: + // div exact can only produce a zero if the dividend is zero. + if (cast<PossiblyExactOperator>(I)->isExact()) + return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q); + break; + case Instruction::Add: { + // X + Y. + KnownBits XKnown = + computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q); + KnownBits YKnown = + computeKnownBits(I->getOperand(1), DemandedElts, Depth, Q); + + // If X and Y are both non-negative (as signed values) then their sum is not + // zero unless both X and Y are zero. + if (XKnown.isNonNegative() && YKnown.isNonNegative()) + if (isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q) || + isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q)) + return true; + + // If X and Y are both negative (as signed values) then their sum is not + // zero unless both X and Y equal INT_MIN. + if (XKnown.isNegative() && YKnown.isNegative()) { + APInt Mask = APInt::getSignedMaxValue(BitWidth); + // The sign bit of X is set. If some other bit is set then X is not equal + // to INT_MIN. + if (XKnown.One.intersects(Mask)) + return true; + // The sign bit of Y is set. If some other bit is set then Y is not equal + // to INT_MIN. + if (YKnown.One.intersects(Mask)) + return true; + } + + // The sum of a non-negative number and a power of two is not zero. + if (XKnown.isNonNegative() && + isKnownToBeAPowerOfTwo(I->getOperand(1), /*OrZero*/ false, Depth, Q)) + return true; + if (YKnown.isNonNegative() && + isKnownToBeAPowerOfTwo(I->getOperand(0), /*OrZero*/ false, Depth, Q)) + return true; + break; + } + case Instruction::Mul: { + // If X and Y are non-zero then so is X * Y as long as the multiplication + // does not overflow. + const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); + if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && + isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q) && + isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q)) + return true; + break; + } + case Instruction::Select: + // (C ? X : Y) != 0 if X != 0 and Y != 0. + if (isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q) && + isKnownNonZero(I->getOperand(2), DemandedElts, Depth, Q)) + return true; + break; + case Instruction::PHI: { + auto *PN = cast<PHINode>(I); + if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) + return true; + + // Check if all incoming values are non-zero using recursion. + Query RecQ = Q; + unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); + return llvm::all_of(PN->operands(), [&](const Use &U) { + if (U.get() == PN) + return true; + RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); + return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); + }); + } + case Instruction::ExtractElement: + if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { + const Value *Vec = EEI->getVectorOperand(); + const Value *Idx = EEI->getIndexOperand(); + auto *CIdx = dyn_cast<ConstantInt>(Idx); + if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { + unsigned NumElts = VecTy->getNumElements(); + APInt DemandedVecElts = APInt::getAllOnes(NumElts); + if (CIdx && CIdx->getValue().ult(NumElts)) + DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); + return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); + } + } + break; + case Instruction::Freeze: + return isKnownNonZero(I->getOperand(0), Depth, Q) && + isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, + Depth); + case Instruction::Call: + if (cast<CallInst>(I)->getIntrinsicID() == Intrinsic::vscale) + return true; + break; + } + + KnownBits Known(BitWidth); + computeKnownBits(V, DemandedElts, Known, Depth, Q); + return Known.One != 0; +} + +bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { + auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); + APInt DemandedElts = + FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); + return isKnownNonZero(V, DemandedElts, Depth, Q); +} + +/// If the pair of operators are the same invertible function, return the +/// the operands of the function corresponding to each input. Otherwise, +/// return std::nullopt. An invertible function is one that is 1-to-1 and maps +/// every input value to exactly one output value. This is equivalent to +/// saying that Op1 and Op2 are equal exactly when the specified pair of +/// operands are equal, (except that Op1 and Op2 may be poison more often.) +static std::optional<std::pair<Value*, Value*>> +getInvertibleOperands(const Operator *Op1, + const Operator *Op2) { + if (Op1->getOpcode() != Op2->getOpcode()) + return std::nullopt; + + auto getOperands = [&](unsigned OpNum) -> auto { + return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum)); + }; + + switch (Op1->getOpcode()) { + default: + break; + case Instruction::Add: + case Instruction::Sub: + if (Op1->getOperand(0) == Op2->getOperand(0)) + return getOperands(1); + if (Op1->getOperand(1) == Op2->getOperand(1)) + return getOperands(0); + break; + case Instruction::Mul: { + // invertible if A * B == (A * B) mod 2^N where A, and B are integers + // and N is the bitwdith. The nsw case is non-obvious, but proven by + // alive2: https://alive2.llvm.org/ce/z/Z6D5qK + auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); + auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); + if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && + (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) + break; + + // Assume operand order has been canonicalized + if (Op1->getOperand(1) == Op2->getOperand(1) && + isa<ConstantInt>(Op1->getOperand(1)) && + !cast<ConstantInt>(Op1->getOperand(1))->isZero()) + return getOperands(0); + break; + } + case Instruction::Shl: { + // Same as multiplies, with the difference that we don't need to check + // for a non-zero multiply. Shifts always multiply by non-zero. + auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); + auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); + if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && + (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) + break; + + if (Op1->getOperand(1) == Op2->getOperand(1)) + return getOperands(0); + break; + } + case Instruction::AShr: + case Instruction::LShr: { + auto *PEO1 = cast<PossiblyExactOperator>(Op1); + auto *PEO2 = cast<PossiblyExactOperator>(Op2); + if (!PEO1->isExact() || !PEO2->isExact()) + break; + + if (Op1->getOperand(1) == Op2->getOperand(1)) + return getOperands(0); + break; + } + case Instruction::SExt: + case Instruction::ZExt: + if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) + return getOperands(0); + break; + case Instruction::PHI: { + const PHINode *PN1 = cast<PHINode>(Op1); + const PHINode *PN2 = cast<PHINode>(Op2); + + // If PN1 and PN2 are both recurrences, can we prove the entire recurrences + // are a single invertible function of the start values? Note that repeated + // application of an invertible function is also invertible + BinaryOperator *BO1 = nullptr; + Value *Start1 = nullptr, *Step1 = nullptr; + BinaryOperator *BO2 = nullptr; + Value *Start2 = nullptr, *Step2 = nullptr; + if (PN1->getParent() != PN2->getParent() || + !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || + !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) + break; + + auto Values = getInvertibleOperands(cast<Operator>(BO1), + cast<Operator>(BO2)); + if (!Values) + break; + + // We have to be careful of mutually defined recurrences here. Ex: + // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V + // * X_i = Y_i = X_(i-1) OP Y_(i-1) + // The invertibility of these is complicated, and not worth reasoning + // about (yet?). + if (Values->first != PN1 || Values->second != PN2) + break; + + return std::make_pair(Start1, Start2); + } + } + return std::nullopt; +} + +/// Return true if V2 == V1 + X, where X is known non-zero. +static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, + const Query &Q) { + const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); + if (!BO || BO->getOpcode() != Instruction::Add) + return false; + Value *Op = nullptr; + if (V2 == BO->getOperand(0)) + Op = BO->getOperand(1); + else if (V2 == BO->getOperand(1)) + Op = BO->getOperand(0); + else + return false; + return isKnownNonZero(Op, Depth + 1, Q); +} + +/// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and +/// the multiplication is nuw or nsw. +static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, + const Query &Q) { + if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { + const APInt *C; + return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && + (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && + !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q); + } + return false; +} + +/// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and +/// the shift is nuw or nsw. +static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, + const Query &Q) { + if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { + const APInt *C; + return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && + (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && + !C->isZero() && isKnownNonZero(V1, Depth + 1, Q); + } + return false; +} + +static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, + unsigned Depth, const Query &Q) { + // Check two PHIs are in same block. + if (PN1->getParent() != PN2->getParent()) + return false; + + SmallPtrSet<const BasicBlock *, 8> VisitedBBs; + bool UsedFullRecursion = false; + for (const BasicBlock *IncomBB : PN1->blocks()) { + if (!VisitedBBs.insert(IncomBB).second) + continue; // Don't reprocess blocks that we have dealt with already. + const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); + const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); + const APInt *C1, *C2; + if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) + continue; + + // Only one pair of phi operands is allowed for full recursion. + if (UsedFullRecursion) + return false; + + Query RecQ = Q; + RecQ.CxtI = IncomBB->getTerminator(); + if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) + return false; + UsedFullRecursion = true; + } + return true; +} + +/// Return true if it is known that V1 != V2. +static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, + const Query &Q) { + if (V1 == V2) + return false; + if (V1->getType() != V2->getType()) + // We can't look through casts yet. + return false; + + if (Depth >= MaxAnalysisRecursionDepth) + return false; + + // See if we can recurse through (exactly one of) our operands. This + // requires our operation be 1-to-1 and map every input value to exactly + // one output value. Such an operation is invertible. + auto *O1 = dyn_cast<Operator>(V1); + auto *O2 = dyn_cast<Operator>(V2); + if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { + if (auto Values = getInvertibleOperands(O1, O2)) + return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q); + + if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { + const PHINode *PN2 = cast<PHINode>(V2); + // FIXME: This is missing a generalization to handle the case where one is + // a PHI and another one isn't. + if (isNonEqualPHIs(PN1, PN2, Depth, Q)) + return true; + }; + } + + if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) + return true; + + if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) + return true; + + if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) + return true; + + if (V1->getType()->isIntOrIntVectorTy()) { + // Are any known bits in V1 contradictory to known bits in V2? If V1 + // has a known zero where V2 has a known one, they must not be equal. + KnownBits Known1 = computeKnownBits(V1, Depth, Q); + KnownBits Known2 = computeKnownBits(V2, Depth, Q); + + if (Known1.Zero.intersects(Known2.One) || + Known2.Zero.intersects(Known1.One)) + return true; + } + return false; +} + +/// Return true if 'V & Mask' is known to be zero. We use this predicate to +/// simplify operations downstream. Mask is known to be zero for bits that V +/// cannot have. +/// +/// This function is defined on values with integer type, values with pointer +/// type, and vectors of integers. In the case +/// where V is a vector, the mask, known zero, and known one values are the +/// same width as the vector element, and the bit is set only if it is true +/// for all of the elements in the vector. +bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, + const Query &Q) { + KnownBits Known(Mask.getBitWidth()); + computeKnownBits(V, Known, Depth, Q); + return Mask.isSubsetOf(Known.Zero); +} + +// Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). +// Returns the input and lower/upper bounds. +static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, + const APInt *&CLow, const APInt *&CHigh) { + assert(isa<Operator>(Select) && + cast<Operator>(Select)->getOpcode() == Instruction::Select && + "Input should be a Select!"); + + const Value *LHS = nullptr, *RHS = nullptr; + SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; + if (SPF != SPF_SMAX && SPF != SPF_SMIN) + return false; + + if (!match(RHS, m_APInt(CLow))) + return false; + + const Value *LHS2 = nullptr, *RHS2 = nullptr; + SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; + if (getInverseMinMaxFlavor(SPF) != SPF2) + return false; + + if (!match(RHS2, m_APInt(CHigh))) + return false; + + if (SPF == SPF_SMIN) + std::swap(CLow, CHigh); + + In = LHS2; + return CLow->sle(*CHigh); +} + +static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, + const APInt *&CLow, + const APInt *&CHigh) { + assert((II->getIntrinsicID() == Intrinsic::smin || + II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax"); + + Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID()); + auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0)); + if (!InnerII || InnerII->getIntrinsicID() != InverseID || + !match(II->getArgOperand(1), m_APInt(CLow)) || + !match(InnerII->getArgOperand(1), m_APInt(CHigh))) + return false; + + if (II->getIntrinsicID() == Intrinsic::smin) + std::swap(CLow, CHigh); + return CLow->sle(*CHigh); +} + +/// For vector constants, loop over the elements and find the constant with the +/// minimum number of sign bits. Return 0 if the value is not a vector constant +/// or if any element was not analyzed; otherwise, return the count for the +/// element with the minimum number of sign bits. +static unsigned computeNumSignBitsVectorConstant(const Value *V, + const APInt &DemandedElts, + unsigned TyBits) { + const auto *CV = dyn_cast<Constant>(V); + if (!CV || !isa<FixedVectorType>(CV->getType())) + return 0; + + unsigned MinSignBits = TyBits; + unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); + for (unsigned i = 0; i != NumElts; ++i) { + if (!DemandedElts[i]) + continue; + // If we find a non-ConstantInt, bail out. + auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); + if (!Elt) + return 0; + + MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); + } + + return MinSignBits; +} + +static unsigned ComputeNumSignBitsImpl(const Value *V, + const APInt &DemandedElts, + unsigned Depth, const Query &Q); + +static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, + unsigned Depth, const Query &Q) { + unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); + assert(Result > 0 && "At least one sign bit needs to be present!"); + return Result; +} + +/// Return the number of times the sign bit of the register is replicated into +/// the other bits. We know that at least 1 bit is always equal to the sign bit +/// (itself), but other cases can give us information. For example, immediately +/// after an "ashr X, 2", we know that the top 3 bits are all equal to each +/// other, so we return 3. For vectors, return the number of sign bits for the +/// vector element with the minimum number of known sign bits of the demanded +/// elements in the vector specified by DemandedElts. +static unsigned ComputeNumSignBitsImpl(const Value *V, + const APInt &DemandedElts, + unsigned Depth, const Query &Q) { + Type *Ty = V->getType(); +#ifndef NDEBUG + assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); + + if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { + assert( + FVTy->getNumElements() == DemandedElts.getBitWidth() && + "DemandedElt width should equal the fixed vector number of elements"); + } else { + assert(DemandedElts == APInt(1, 1) && + "DemandedElt width should be 1 for scalars"); + } +#endif + + // We return the minimum number of sign bits that are guaranteed to be present + // in V, so for undef we have to conservatively return 1. We don't have the + // same behavior for poison though -- that's a FIXME today. + + Type *ScalarTy = Ty->getScalarType(); + unsigned TyBits = ScalarTy->isPointerTy() ? + Q.DL.getPointerTypeSizeInBits(ScalarTy) : + Q.DL.getTypeSizeInBits(ScalarTy); + + unsigned Tmp, Tmp2; + unsigned FirstAnswer = 1; + + // Note that ConstantInt is handled by the general computeKnownBits case + // below. + + if (Depth == MaxAnalysisRecursionDepth) + return 1; + + if (auto *U = dyn_cast<Operator>(V)) { + switch (Operator::getOpcode(V)) { + default: break; + case Instruction::SExt: + Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); + return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; + + case Instruction::SDiv: { + const APInt *Denominator; + // sdiv X, C -> adds log(C) sign bits. + if (match(U->getOperand(1), m_APInt(Denominator))) { + + // Ignore non-positive denominator. + if (!Denominator->isStrictlyPositive()) + break; + + // Calculate the incoming numerator bits. + unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + + // Add floor(log(C)) bits to the numerator bits. + return std::min(TyBits, NumBits + Denominator->logBase2()); + } + break; + } + + case Instruction::SRem: { + Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + + const APInt *Denominator; + // srem X, C -> we know that the result is within [-C+1,C) when C is a + // positive constant. This let us put a lower bound on the number of sign + // bits. + if (match(U->getOperand(1), m_APInt(Denominator))) { + + // Ignore non-positive denominator. + if (Denominator->isStrictlyPositive()) { + // Calculate the leading sign bit constraints by examining the + // denominator. Given that the denominator is positive, there are two + // cases: + // + // 1. The numerator is positive. The result range is [0,C) and + // [0,C) u< (1 << ceilLogBase2(C)). + // + // 2. The numerator is negative. Then the result range is (-C,0] and + // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). + // + // Thus a lower bound on the number of sign bits is `TyBits - + // ceilLogBase2(C)`. + + unsigned ResBits = TyBits - Denominator->ceilLogBase2(); + Tmp = std::max(Tmp, ResBits); + } + } + return Tmp; + } + + case Instruction::AShr: { + Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + // ashr X, C -> adds C sign bits. Vectors too. + const APInt *ShAmt; + if (match(U->getOperand(1), m_APInt(ShAmt))) { + if (ShAmt->uge(TyBits)) + break; // Bad shift. + unsigned ShAmtLimited = ShAmt->getZExtValue(); + Tmp += ShAmtLimited; + if (Tmp > TyBits) Tmp = TyBits; + } + return Tmp; + } + case Instruction::Shl: { + const APInt *ShAmt; + if (match(U->getOperand(1), m_APInt(ShAmt))) { + // shl destroys sign bits. + Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + if (ShAmt->uge(TyBits) || // Bad shift. + ShAmt->uge(Tmp)) break; // Shifted all sign bits out. + Tmp2 = ShAmt->getZExtValue(); + return Tmp - Tmp2; + } + break; + } + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: // NOT is handled here. + // Logical binary ops preserve the number of sign bits at the worst. + Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + if (Tmp != 1) { + Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); + FirstAnswer = std::min(Tmp, Tmp2); + // We computed what we know about the sign bits as our first + // answer. Now proceed to the generic code that uses + // computeKnownBits, and pick whichever answer is better. + } + break; + + case Instruction::Select: { + // If we have a clamp pattern, we know that the number of sign bits will + // be the minimum of the clamp min/max range. + const Value *X; + const APInt *CLow, *CHigh; + if (isSignedMinMaxClamp(U, X, CLow, CHigh)) + return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); + + Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); + if (Tmp == 1) break; + Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); + return std::min(Tmp, Tmp2); + } + + case Instruction::Add: + // Add can have at most one carry bit. Thus we know that the output + // is, at worst, one more bit than the inputs. + Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + if (Tmp == 1) break; + + // Special case decrementing a value (ADD X, -1): + if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) + if (CRHS->isAllOnesValue()) { + KnownBits Known(TyBits); + computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); + + // If the input is known to be 0 or 1, the output is 0/-1, which is + // all sign bits set. + if ((Known.Zero | 1).isAllOnes()) + return TyBits; + + // If we are subtracting one from a positive number, there is no carry + // out of the result. + if (Known.isNonNegative()) + return Tmp; + } + + Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); + if (Tmp2 == 1) break; + return std::min(Tmp, Tmp2) - 1; + + case Instruction::Sub: + Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); + if (Tmp2 == 1) break; + + // Handle NEG. + if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) + if (CLHS->isNullValue()) { + KnownBits Known(TyBits); + computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); + // If the input is known to be 0 or 1, the output is 0/-1, which is + // all sign bits set. + if ((Known.Zero | 1).isAllOnes()) + return TyBits; + + // If the input is known to be positive (the sign bit is known clear), + // the output of the NEG has the same number of sign bits as the + // input. + if (Known.isNonNegative()) + return Tmp2; + + // Otherwise, we treat this like a SUB. + } + + // Sub can have at most one carry bit. Thus we know that the output + // is, at worst, one more bit than the inputs. + Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + if (Tmp == 1) break; + return std::min(Tmp, Tmp2) - 1; + + case Instruction::Mul: { + // The output of the Mul can be at most twice the valid bits in the + // inputs. + unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + if (SignBitsOp0 == 1) break; + unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); + if (SignBitsOp1 == 1) break; + unsigned OutValidBits = + (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); + return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; + } + + case Instruction::PHI: { + const PHINode *PN = cast<PHINode>(U); + unsigned NumIncomingValues = PN->getNumIncomingValues(); + // Don't analyze large in-degree PHIs. + if (NumIncomingValues > 4) break; + // Unreachable blocks may have zero-operand PHI nodes. + if (NumIncomingValues == 0) break; + + // Take the minimum of all incoming values. This can't infinitely loop + // because of our depth threshold. + Query RecQ = Q; + Tmp = TyBits; + for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { + if (Tmp == 1) return Tmp; + RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); + Tmp = std::min( + Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); + } + return Tmp; + } + + case Instruction::Trunc: { + // If the input contained enough sign bits that some remain after the + // truncation, then we can make use of that. Otherwise we don't know + // anything. + Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits(); + if (Tmp > (OperandTyBits - TyBits)) + return Tmp - (OperandTyBits - TyBits); + + return 1; + } + + case Instruction::ExtractElement: + // Look through extract element. At the moment we keep this simple and + // skip tracking the specific element. But at least we might find + // information valid for all elements of the vector (for example if vector + // is sign extended, shifted, etc). + return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + + case Instruction::ShuffleVector: { + // Collect the minimum number of sign bits that are shared by every vector + // element referenced by the shuffle. + auto *Shuf = dyn_cast<ShuffleVectorInst>(U); + if (!Shuf) { + // FIXME: Add support for shufflevector constant expressions. + return 1; + } + APInt DemandedLHS, DemandedRHS; + // For undef elements, we don't know anything about the common state of + // the shuffle result. + if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) + return 1; + Tmp = std::numeric_limits<unsigned>::max(); + if (!!DemandedLHS) { + const Value *LHS = Shuf->getOperand(0); + Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); + } + // If we don't know anything, early out and try computeKnownBits + // fall-back. + if (Tmp == 1) + break; + if (!!DemandedRHS) { + const Value *RHS = Shuf->getOperand(1); + Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); + Tmp = std::min(Tmp, Tmp2); + } + // If we don't know anything, early out and try computeKnownBits + // fall-back. + if (Tmp == 1) + break; + assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); + return Tmp; + } + case Instruction::Call: { + if (const auto *II = dyn_cast<IntrinsicInst>(U)) { + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::abs: + Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + if (Tmp == 1) break; + + // Absolute value reduces number of sign bits by at most 1. + return Tmp - 1; + case Intrinsic::smin: + case Intrinsic::smax: { + const APInt *CLow, *CHigh; + if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh)) + return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); + } + } + } + } + } + } + + // Finally, if we can prove that the top bits of the result are 0's or 1's, + // use this information. + + // If we can examine all elements of a vector constant successfully, we're + // done (we can't do any better than that). If not, keep trying. + if (unsigned VecSignBits = + computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) + return VecSignBits; + + KnownBits Known(TyBits); + computeKnownBits(V, DemandedElts, Known, Depth, Q); + + // If we know that the sign bit is either zero or one, determine the number of + // identical bits in the top of the input value. + return std::max(FirstAnswer, Known.countMinSignBits()); +} + +Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, + const TargetLibraryInfo *TLI) { + const Function *F = CB.getCalledFunction(); + if (!F) + return Intrinsic::not_intrinsic; + + if (F->isIntrinsic()) + return F->getIntrinsicID(); + + // We are going to infer semantics of a library function based on mapping it + // to an LLVM intrinsic. Check that the library function is available from + // this callbase and in this environment. + LibFunc Func; + if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || + !CB.onlyReadsMemory()) + return Intrinsic::not_intrinsic; + + switch (Func) { + default: + break; + case LibFunc_sin: + case LibFunc_sinf: + case LibFunc_sinl: + return Intrinsic::sin; + case LibFunc_cos: + case LibFunc_cosf: + case LibFunc_cosl: + return Intrinsic::cos; + case LibFunc_exp: + case LibFunc_expf: + case LibFunc_expl: + return Intrinsic::exp; + case LibFunc_exp2: + case LibFunc_exp2f: + case LibFunc_exp2l: + return Intrinsic::exp2; + case LibFunc_log: + case LibFunc_logf: + case LibFunc_logl: + return Intrinsic::log; + case LibFunc_log10: + case LibFunc_log10f: + case LibFunc_log10l: + return Intrinsic::log10; + case LibFunc_log2: + case LibFunc_log2f: + case LibFunc_log2l: + return Intrinsic::log2; + case LibFunc_fabs: + case LibFunc_fabsf: + case LibFunc_fabsl: + return Intrinsic::fabs; + case LibFunc_fmin: + case LibFunc_fminf: + case LibFunc_fminl: + return Intrinsic::minnum; + case LibFunc_fmax: + case LibFunc_fmaxf: + case LibFunc_fmaxl: + return Intrinsic::maxnum; + case LibFunc_copysign: + case LibFunc_copysignf: + case LibFunc_copysignl: + return Intrinsic::copysign; + case LibFunc_floor: + case LibFunc_floorf: + case LibFunc_floorl: + return Intrinsic::floor; + case LibFunc_ceil: + case LibFunc_ceilf: + case LibFunc_ceill: + return Intrinsic::ceil; + case LibFunc_trunc: + case LibFunc_truncf: + case LibFunc_truncl: + return Intrinsic::trunc; + case LibFunc_rint: + case LibFunc_rintf: + case LibFunc_rintl: + return Intrinsic::rint; + case LibFunc_nearbyint: + case LibFunc_nearbyintf: + case LibFunc_nearbyintl: + return Intrinsic::nearbyint; + case LibFunc_round: + case LibFunc_roundf: + case LibFunc_roundl: + return Intrinsic::round; + case LibFunc_roundeven: + case LibFunc_roundevenf: + case LibFunc_roundevenl: + return Intrinsic::roundeven; + case LibFunc_pow: + case LibFunc_powf: + case LibFunc_powl: + return Intrinsic::pow; + case LibFunc_sqrt: + case LibFunc_sqrtf: + case LibFunc_sqrtl: + return Intrinsic::sqrt; + } + + return Intrinsic::not_intrinsic; +} + +/// Return true if we can prove that the specified FP value is never equal to +/// -0.0. +/// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee +/// that a value is not -0.0. It only guarantees that -0.0 may be treated +/// the same as +0.0 in floating-point ops. +bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, + unsigned Depth) { + if (auto *CFP = dyn_cast<ConstantFP>(V)) + return !CFP->getValueAPF().isNegZero(); + + if (Depth == MaxAnalysisRecursionDepth) + return false; + + auto *Op = dyn_cast<Operator>(V); + if (!Op) + return false; + + // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. + if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) + return true; + + // sitofp and uitofp turn into +0.0 for zero. + if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) + return true; + + if (auto *Call = dyn_cast<CallInst>(Op)) { + Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); + switch (IID) { + default: + break; + // sqrt(-0.0) = -0.0, no other negative results are possible. + case Intrinsic::sqrt: + case Intrinsic::canonicalize: + return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); + case Intrinsic::experimental_constrained_sqrt: { + // NOTE: This rounding mode restriction may be too strict. + const auto *CI = cast<ConstrainedFPIntrinsic>(Call); + if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven) + return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); + else + return false; + } + // fabs(x) != -0.0 + case Intrinsic::fabs: + return true; + // sitofp and uitofp turn into +0.0 for zero. + case Intrinsic::experimental_constrained_sitofp: + case Intrinsic::experimental_constrained_uitofp: + return true; + } + } + + return false; +} + +/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a +/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign +/// bit despite comparing equal. +static bool cannotBeOrderedLessThanZeroImpl(const Value *V, + const TargetLibraryInfo *TLI, + bool SignBitOnly, + unsigned Depth) { + // TODO: This function does not do the right thing when SignBitOnly is true + // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform + // which flips the sign bits of NaNs. See + // https://llvm.org/bugs/show_bug.cgi?id=31702. + + if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { + return !CFP->getValueAPF().isNegative() || + (!SignBitOnly && CFP->getValueAPF().isZero()); + } + + // Handle vector of constants. + if (auto *CV = dyn_cast<Constant>(V)) { + if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { + unsigned NumElts = CVFVTy->getNumElements(); + for (unsigned i = 0; i != NumElts; ++i) { + auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); + if (!CFP) + return false; + if (CFP->getValueAPF().isNegative() && + (SignBitOnly || !CFP->getValueAPF().isZero())) + return false; + } + + // All non-negative ConstantFPs. + return true; + } + } + + if (Depth == MaxAnalysisRecursionDepth) + return false; + + const Operator *I = dyn_cast<Operator>(V); + if (!I) + return false; + + switch (I->getOpcode()) { + default: + break; + // Unsigned integers are always nonnegative. + case Instruction::UIToFP: + return true; + case Instruction::FDiv: + // X / X is always exactly 1.0 or a NaN. + if (I->getOperand(0) == I->getOperand(1) && + (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) + return true; + + // Set SignBitOnly for RHS, because X / -0.0 is -Inf (or NaN). + return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, + Depth + 1) && + cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, + /*SignBitOnly*/ true, Depth + 1); + case Instruction::FMul: + // X * X is always non-negative or a NaN. + if (I->getOperand(0) == I->getOperand(1) && + (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) + return true; + + [[fallthrough]]; + case Instruction::FAdd: + case Instruction::FRem: + return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, + Depth + 1) && + cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, + Depth + 1); + case Instruction::Select: + return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, + Depth + 1) && + cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, + Depth + 1); + case Instruction::FPExt: + case Instruction::FPTrunc: + // Widening/narrowing never change sign. + return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, + Depth + 1); + case Instruction::ExtractElement: + // Look through extract element. At the moment we keep this simple and skip + // tracking the specific element. But at least we might find information + // valid for all elements of the vector. + return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, + Depth + 1); + case Instruction::Call: + const auto *CI = cast<CallInst>(I); + Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); + switch (IID) { + default: + break; + case Intrinsic::canonicalize: + case Intrinsic::arithmetic_fence: + case Intrinsic::floor: + case Intrinsic::ceil: + case Intrinsic::trunc: + case Intrinsic::rint: + case Intrinsic::nearbyint: + case Intrinsic::round: + case Intrinsic::roundeven: + case Intrinsic::fptrunc_round: + return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, Depth + 1); + case Intrinsic::maxnum: { + Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); + auto isPositiveNum = [&](Value *V) { + if (SignBitOnly) { + // With SignBitOnly, this is tricky because the result of + // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is + // a constant strictly greater than 0.0. + const APFloat *C; + return match(V, m_APFloat(C)) && + *C > APFloat::getZero(C->getSemantics()); + } + + // -0.0 compares equal to 0.0, so if this operand is at least -0.0, + // maxnum can't be ordered-less-than-zero. + return isKnownNeverNaN(V, TLI) && + cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); + }; + + // TODO: This could be improved. We could also check that neither operand + // has its sign bit set (and at least 1 is not-NAN?). + return isPositiveNum(V0) || isPositiveNum(V1); + } + + case Intrinsic::maximum: + return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, + Depth + 1) || + cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, + Depth + 1); + case Intrinsic::minnum: + case Intrinsic::minimum: + return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, + Depth + 1) && + cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, + Depth + 1); + case Intrinsic::exp: + case Intrinsic::exp2: + case Intrinsic::fabs: + return true; + case Intrinsic::copysign: + // Only the sign operand matters. + return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, true, + Depth + 1); + case Intrinsic::sqrt: + // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. + if (!SignBitOnly) + return true; + return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || + CannotBeNegativeZero(CI->getOperand(0), TLI)); + + case Intrinsic::powi: + if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { + // powi(x,n) is non-negative if n is even. + if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) + return true; + } + // TODO: This is not correct. Given that exp is an integer, here are the + // ways that pow can return a negative value: + // + // pow(x, exp) --> negative if exp is odd and x is negative. + // pow(-0, exp) --> -inf if exp is negative odd. + // pow(-0, exp) --> -0 if exp is positive odd. + // pow(-inf, exp) --> -0 if exp is negative odd. + // pow(-inf, exp) --> -inf if exp is positive odd. + // + // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, + // but we must return false if x == -0. Unfortunately we do not currently + // have a way of expressing this constraint. See details in + // https://llvm.org/bugs/show_bug.cgi?id=31702. + return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, + Depth + 1); + + case Intrinsic::fma: + case Intrinsic::fmuladd: + // x*x+y is non-negative if y is non-negative. + return I->getOperand(0) == I->getOperand(1) && + (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && + cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, + Depth + 1); + } + break; + } + return false; +} + +bool llvm::CannotBeOrderedLessThanZero(const Value *V, + const TargetLibraryInfo *TLI) { + return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); +} + +bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { + return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); +} + +bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, + unsigned Depth) { + assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); + + // If we're told that infinities won't happen, assume they won't. + if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) + if (FPMathOp->hasNoInfs()) + return true; + + // Handle scalar constants. + if (auto *CFP = dyn_cast<ConstantFP>(V)) + return !CFP->isInfinity(); + + if (Depth == MaxAnalysisRecursionDepth) + return false; + + if (auto *Inst = dyn_cast<Instruction>(V)) { + switch (Inst->getOpcode()) { + case Instruction::Select: { + return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && + isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); + } + case Instruction::SIToFP: + case Instruction::UIToFP: { + // Get width of largest magnitude integer (remove a bit if signed). + // This still works for a signed minimum value because the largest FP + // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). + int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); + if (Inst->getOpcode() == Instruction::SIToFP) + --IntSize; + + // If the exponent of the largest finite FP value can hold the largest + // integer, the result of the cast must be finite. + Type *FPTy = Inst->getType()->getScalarType(); + return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; + } + case Instruction::FNeg: + case Instruction::FPExt: { + // Peek through to source op. If it is not infinity, this is not infinity. + return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1); + } + case Instruction::FPTrunc: { + // Need a range check. + return false; + } + default: + break; + } + + if (const auto *II = dyn_cast<IntrinsicInst>(V)) { + switch (II->getIntrinsicID()) { + case Intrinsic::sin: + case Intrinsic::cos: + // Return NaN on infinite inputs. + return true; + case Intrinsic::fabs: + case Intrinsic::sqrt: + case Intrinsic::canonicalize: + case Intrinsic::copysign: + case Intrinsic::arithmetic_fence: + case Intrinsic::trunc: + return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1); + case Intrinsic::floor: + case Intrinsic::ceil: + case Intrinsic::rint: + case Intrinsic::nearbyint: + case Intrinsic::round: + case Intrinsic::roundeven: + // PPC_FP128 is a special case. + if (V->getType()->isMultiUnitFPType()) + return false; + return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1); + case Intrinsic::fptrunc_round: + // Requires knowing the value range. + return false; + case Intrinsic::minnum: + case Intrinsic::maxnum: + case Intrinsic::minimum: + case Intrinsic::maximum: + return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && + isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); + case Intrinsic::log: + case Intrinsic::log10: + case Intrinsic::log2: + // log(+inf) -> +inf + // log([+-]0.0) -> -inf + // log(-inf) -> nan + // log(-x) -> nan + // TODO: We lack API to check the == 0 case. + return false; + case Intrinsic::exp: + case Intrinsic::exp2: + case Intrinsic::pow: + case Intrinsic::powi: + case Intrinsic::fma: + case Intrinsic::fmuladd: + // These can return infinities on overflow cases, so it's hard to prove + // anything about it. + return false; + default: + break; + } + } + } + + // try to handle fixed width vector constants + auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); + if (VFVTy && isa<Constant>(V)) { + // For vectors, verify that each element is not infinity. + unsigned NumElts = VFVTy->getNumElements(); + for (unsigned i = 0; i != NumElts; ++i) { + Constant *Elt = cast<Constant>(V)->getAggregateElement(i); + if (!Elt) + return false; + if (isa<UndefValue>(Elt)) + continue; + auto *CElt = dyn_cast<ConstantFP>(Elt); + if (!CElt || CElt->isInfinity()) + return false; + } + // All elements were confirmed non-infinity or undefined. + return true; + } + + // was not able to prove that V never contains infinity + return false; +} + +bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, + unsigned Depth) { + assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); + + // If we're told that NaNs won't happen, assume they won't. + if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) + if (FPMathOp->hasNoNaNs()) + return true; + + // Handle scalar constants. + if (auto *CFP = dyn_cast<ConstantFP>(V)) + return !CFP->isNaN(); + + if (Depth == MaxAnalysisRecursionDepth) + return false; + + if (auto *Inst = dyn_cast<Instruction>(V)) { + switch (Inst->getOpcode()) { + case Instruction::FAdd: + case Instruction::FSub: + // Adding positive and negative infinity produces NaN. + return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && + isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && + (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || + isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); + + case Instruction::FMul: + // Zero multiplied with infinity produces NaN. + // FIXME: If neither side can be zero fmul never produces NaN. + return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && + isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && + isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && + isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); + + case Instruction::FDiv: + case Instruction::FRem: + // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. + return false; + + case Instruction::Select: { + return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && + isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); + } + case Instruction::SIToFP: + case Instruction::UIToFP: + return true; + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::FNeg: + return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); + default: + break; + } + } + + if (const auto *II = dyn_cast<IntrinsicInst>(V)) { + switch (II->getIntrinsicID()) { + case Intrinsic::canonicalize: + case Intrinsic::fabs: + case Intrinsic::copysign: + case Intrinsic::exp: + case Intrinsic::exp2: + case Intrinsic::floor: + case Intrinsic::ceil: + case Intrinsic::trunc: + case Intrinsic::rint: + case Intrinsic::nearbyint: + case Intrinsic::round: + case Intrinsic::roundeven: + case Intrinsic::arithmetic_fence: + return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); + case Intrinsic::sqrt: + return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && + CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); + case Intrinsic::minnum: + case Intrinsic::maxnum: + // If either operand is not NaN, the result is not NaN. + return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || + isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); + default: + return false; + } + } + + // Try to handle fixed width vector constants + auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); + if (VFVTy && isa<Constant>(V)) { + // For vectors, verify that each element is not NaN. + unsigned NumElts = VFVTy->getNumElements(); + for (unsigned i = 0; i != NumElts; ++i) { + Constant *Elt = cast<Constant>(V)->getAggregateElement(i); + if (!Elt) + return false; + if (isa<UndefValue>(Elt)) + continue; + auto *CElt = dyn_cast<ConstantFP>(Elt); + if (!CElt || CElt->isNaN()) + return false; + } + // All elements were confirmed not-NaN or undefined. + return true; + } + + // Was not able to prove that V never contains NaN + return false; +} + +Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { + + // All byte-wide stores are splatable, even of arbitrary variables. + if (V->getType()->isIntegerTy(8)) + return V; + + LLVMContext &Ctx = V->getContext(); + + // Undef don't care. + auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); + if (isa<UndefValue>(V)) + return UndefInt8; + + // Return Undef for zero-sized type. + if (!DL.getTypeStoreSize(V->getType()).isNonZero()) + return UndefInt8; + + Constant *C = dyn_cast<Constant>(V); + if (!C) { + // Conceptually, we could handle things like: + // %a = zext i8 %X to i16 + // %b = shl i16 %a, 8 + // %c = or i16 %a, %b + // but until there is an example that actually needs this, it doesn't seem + // worth worrying about. + return nullptr; + } + + // Handle 'null' ConstantArrayZero etc. + if (C->isNullValue()) + return Constant::getNullValue(Type::getInt8Ty(Ctx)); + + // Constant floating-point values can be handled as integer values if the + // corresponding integer value is "byteable". An important case is 0.0. + if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { + Type *Ty = nullptr; + if (CFP->getType()->isHalfTy()) + Ty = Type::getInt16Ty(Ctx); + else if (CFP->getType()->isFloatTy()) + Ty = Type::getInt32Ty(Ctx); + else if (CFP->getType()->isDoubleTy()) + Ty = Type::getInt64Ty(Ctx); + // Don't handle long double formats, which have strange constraints. + return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) + : nullptr; + } + + // We can handle constant integers that are multiple of 8 bits. + if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { + if (CI->getBitWidth() % 8 == 0) { + assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); + if (!CI->getValue().isSplat(8)) + return nullptr; + return ConstantInt::get(Ctx, CI->getValue().trunc(8)); + } + } + + if (auto *CE = dyn_cast<ConstantExpr>(C)) { + if (CE->getOpcode() == Instruction::IntToPtr) { + if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { + unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); + return isBytewiseValue( + ConstantExpr::getIntegerCast(CE->getOperand(0), + Type::getIntNTy(Ctx, BitWidth), false), + DL); + } + } + } + + auto Merge = [&](Value *LHS, Value *RHS) -> Value * { + if (LHS == RHS) + return LHS; + if (!LHS || !RHS) + return nullptr; + if (LHS == UndefInt8) + return RHS; + if (RHS == UndefInt8) + return LHS; + return nullptr; + }; + + if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { + Value *Val = UndefInt8; + for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) + if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) + return nullptr; + return Val; + } + + if (isa<ConstantAggregate>(C)) { + Value *Val = UndefInt8; + for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) + if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) + return nullptr; + return Val; + } + + // Don't try to handle the handful of other constants. + return nullptr; +} + +// This is the recursive version of BuildSubAggregate. It takes a few different +// arguments. Idxs is the index within the nested struct From that we are +// looking at now (which is of type IndexedType). IdxSkip is the number of +// indices from Idxs that should be left out when inserting into the resulting +// struct. To is the result struct built so far, new insertvalue instructions +// build on that. +static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, + SmallVectorImpl<unsigned> &Idxs, + unsigned IdxSkip, + Instruction *InsertBefore) { + StructType *STy = dyn_cast<StructType>(IndexedType); + if (STy) { + // Save the original To argument so we can modify it + Value *OrigTo = To; + // General case, the type indexed by Idxs is a struct + for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { + // Process each struct element recursively + Idxs.push_back(i); + Value *PrevTo = To; + To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, + InsertBefore); + Idxs.pop_back(); + if (!To) { + // Couldn't find any inserted value for this index? Cleanup + while (PrevTo != OrigTo) { + InsertValueInst* Del = cast<InsertValueInst>(PrevTo); + PrevTo = Del->getAggregateOperand(); + Del->eraseFromParent(); + } + // Stop processing elements + break; + } + } + // If we successfully found a value for each of our subaggregates + if (To) + return To; + } + // Base case, the type indexed by SourceIdxs is not a struct, or not all of + // the struct's elements had a value that was inserted directly. In the latter + // case, perhaps we can't determine each of the subelements individually, but + // we might be able to find the complete struct somewhere. + + // Find the value that is at that particular spot + Value *V = FindInsertedValue(From, Idxs); + + if (!V) + return nullptr; + + // Insert the value in the new (sub) aggregate + return InsertValueInst::Create(To, V, ArrayRef(Idxs).slice(IdxSkip), "tmp", + InsertBefore); +} + +// This helper takes a nested struct and extracts a part of it (which is again a +// struct) into a new value. For example, given the struct: +// { a, { b, { c, d }, e } } +// and the indices "1, 1" this returns +// { c, d }. +// +// It does this by inserting an insertvalue for each element in the resulting +// struct, as opposed to just inserting a single struct. This will only work if +// each of the elements of the substruct are known (ie, inserted into From by an +// insertvalue instruction somewhere). +// +// All inserted insertvalue instructions are inserted before InsertBefore +static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, + Instruction *InsertBefore) { + assert(InsertBefore && "Must have someplace to insert!"); + Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), + idx_range); + Value *To = PoisonValue::get(IndexedType); + SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); + unsigned IdxSkip = Idxs.size(); + + return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); +} + +/// Given an aggregate and a sequence of indices, see if the scalar value +/// indexed is already around as a register, for example if it was inserted +/// directly into the aggregate. +/// +/// If InsertBefore is not null, this function will duplicate (modified) +/// insertvalues when a part of a nested struct is extracted. +Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, + Instruction *InsertBefore) { + // Nothing to index? Just return V then (this is useful at the end of our + // recursion). + if (idx_range.empty()) + return V; + // We have indices, so V should have an indexable type. + assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && + "Not looking at a struct or array?"); + assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && + "Invalid indices for type?"); + + if (Constant *C = dyn_cast<Constant>(V)) { + C = C->getAggregateElement(idx_range[0]); + if (!C) return nullptr; + return FindInsertedValue(C, idx_range.slice(1), InsertBefore); + } + + if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { + // Loop the indices for the insertvalue instruction in parallel with the + // requested indices + const unsigned *req_idx = idx_range.begin(); + for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); + i != e; ++i, ++req_idx) { + if (req_idx == idx_range.end()) { + // We can't handle this without inserting insertvalues + if (!InsertBefore) + return nullptr; + + // The requested index identifies a part of a nested aggregate. Handle + // this specially. For example, + // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 + // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 + // %C = extractvalue {i32, { i32, i32 } } %B, 1 + // This can be changed into + // %A = insertvalue {i32, i32 } undef, i32 10, 0 + // %C = insertvalue {i32, i32 } %A, i32 11, 1 + // which allows the unused 0,0 element from the nested struct to be + // removed. + return BuildSubAggregate(V, ArrayRef(idx_range.begin(), req_idx), + InsertBefore); + } + + // This insert value inserts something else than what we are looking for. + // See if the (aggregate) value inserted into has the value we are + // looking for, then. + if (*req_idx != *i) + return FindInsertedValue(I->getAggregateOperand(), idx_range, + InsertBefore); + } + // If we end up here, the indices of the insertvalue match with those + // requested (though possibly only partially). Now we recursively look at + // the inserted value, passing any remaining indices. + return FindInsertedValue(I->getInsertedValueOperand(), + ArrayRef(req_idx, idx_range.end()), InsertBefore); + } + + if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { + // If we're extracting a value from an aggregate that was extracted from + // something else, we can extract from that something else directly instead. + // However, we will need to chain I's indices with the requested indices. + + // Calculate the number of indices required + unsigned size = I->getNumIndices() + idx_range.size(); + // Allocate some space to put the new indices in + SmallVector<unsigned, 5> Idxs; + Idxs.reserve(size); + // Add indices from the extract value instruction + Idxs.append(I->idx_begin(), I->idx_end()); + + // Add requested indices + Idxs.append(idx_range.begin(), idx_range.end()); + + assert(Idxs.size() == size + && "Number of indices added not correct?"); + + return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); + } + // Otherwise, we don't know (such as, extracting from a function return value + // or load instruction) + return nullptr; +} + +bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, + unsigned CharSize) { + // Make sure the GEP has exactly three arguments. + if (GEP->getNumOperands() != 3) + return false; + + // Make sure the index-ee is a pointer to array of \p CharSize integers. + // CharSize. + ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); + if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) + return false; + + // Check to make sure that the first operand of the GEP is an integer and + // has value 0 so that we are sure we're indexing into the initializer. + const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); + if (!FirstIdx || !FirstIdx->isZero()) + return false; + + return true; +} + +// If V refers to an initialized global constant, set Slice either to +// its initializer if the size of its elements equals ElementSize, or, +// for ElementSize == 8, to its representation as an array of unsiged +// char. Return true on success. +// Offset is in the unit "nr of ElementSize sized elements". +bool llvm::getConstantDataArrayInfo(const Value *V, + ConstantDataArraySlice &Slice, + unsigned ElementSize, uint64_t Offset) { + assert(V && "V should not be null."); + assert((ElementSize % 8) == 0 && + "ElementSize expected to be a multiple of the size of a byte."); + unsigned ElementSizeInBytes = ElementSize / 8; + + // Drill down into the pointer expression V, ignoring any intervening + // casts, and determine the identity of the object it references along + // with the cumulative byte offset into it. + const GlobalVariable *GV = + dyn_cast<GlobalVariable>(getUnderlyingObject(V)); + if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) + // Fail if V is not based on constant global object. + return false; + + const DataLayout &DL = GV->getParent()->getDataLayout(); + APInt Off(DL.getIndexTypeSizeInBits(V->getType()), 0); + + if (GV != V->stripAndAccumulateConstantOffsets(DL, Off, + /*AllowNonInbounds*/ true)) + // Fail if a constant offset could not be determined. + return false; + + uint64_t StartIdx = Off.getLimitedValue(); + if (StartIdx == UINT64_MAX) + // Fail if the constant offset is excessive. + return false; + + // Off/StartIdx is in the unit of bytes. So we need to convert to number of + // elements. Simply bail out if that isn't possible. + if ((StartIdx % ElementSizeInBytes) != 0) + return false; + + Offset += StartIdx / ElementSizeInBytes; + ConstantDataArray *Array = nullptr; + ArrayType *ArrayTy = nullptr; + + if (GV->getInitializer()->isNullValue()) { + Type *GVTy = GV->getValueType(); + uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedValue(); + uint64_t Length = SizeInBytes / ElementSizeInBytes; + + Slice.Array = nullptr; + Slice.Offset = 0; + // Return an empty Slice for undersized constants to let callers + // transform even undefined library calls into simpler, well-defined + // expressions. This is preferable to making the calls although it + // prevents sanitizers from detecting such calls. + Slice.Length = Length < Offset ? 0 : Length - Offset; + return true; + } + + auto *Init = const_cast<Constant *>(GV->getInitializer()); + if (auto *ArrayInit = dyn_cast<ConstantDataArray>(Init)) { + Type *InitElTy = ArrayInit->getElementType(); + if (InitElTy->isIntegerTy(ElementSize)) { + // If Init is an initializer for an array of the expected type + // and size, use it as is. + Array = ArrayInit; + ArrayTy = ArrayInit->getType(); + } + } + + if (!Array) { + if (ElementSize != 8) + // TODO: Handle conversions to larger integral types. + return false; + + // Otherwise extract the portion of the initializer starting + // at Offset as an array of bytes, and reset Offset. + Init = ReadByteArrayFromGlobal(GV, Offset); + if (!Init) + return false; + + Offset = 0; + Array = dyn_cast<ConstantDataArray>(Init); + ArrayTy = dyn_cast<ArrayType>(Init->getType()); + } + + uint64_t NumElts = ArrayTy->getArrayNumElements(); + if (Offset > NumElts) + return false; + + Slice.Array = Array; + Slice.Offset = Offset; + Slice.Length = NumElts - Offset; + return true; +} + +/// Extract bytes from the initializer of the constant array V, which need +/// not be a nul-terminated string. On success, store the bytes in Str and +/// return true. When TrimAtNul is set, Str will contain only the bytes up +/// to but not including the first nul. Return false on failure. +bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, + bool TrimAtNul) { + ConstantDataArraySlice Slice; + if (!getConstantDataArrayInfo(V, Slice, 8)) + return false; + + if (Slice.Array == nullptr) { + if (TrimAtNul) { + // Return a nul-terminated string even for an empty Slice. This is + // safe because all existing SimplifyLibcalls callers require string + // arguments and the behavior of the functions they fold is undefined + // otherwise. Folding the calls this way is preferable to making + // the undefined library calls, even though it prevents sanitizers + // from reporting such calls. + Str = StringRef(); + return true; + } + if (Slice.Length == 1) { + Str = StringRef("", 1); + return true; + } + // We cannot instantiate a StringRef as we do not have an appropriate string + // of 0s at hand. + return false; + } + + // Start out with the entire array in the StringRef. + Str = Slice.Array->getAsString(); + // Skip over 'offset' bytes. + Str = Str.substr(Slice.Offset); + + if (TrimAtNul) { + // Trim off the \0 and anything after it. If the array is not nul + // terminated, we just return the whole end of string. The client may know + // some other way that the string is length-bound. + Str = Str.substr(0, Str.find('\0')); + } + return true; +} + +// These next two are very similar to the above, but also look through PHI +// nodes. +// TODO: See if we can integrate these two together. + +/// If we can compute the length of the string pointed to by +/// the specified pointer, return 'len+1'. If we can't, return 0. +static uint64_t GetStringLengthH(const Value *V, + SmallPtrSetImpl<const PHINode*> &PHIs, + unsigned CharSize) { + // Look through noop bitcast instructions. + V = V->stripPointerCasts(); + + // If this is a PHI node, there are two cases: either we have already seen it + // or we haven't. + if (const PHINode *PN = dyn_cast<PHINode>(V)) { + if (!PHIs.insert(PN).second) + return ~0ULL; // already in the set. + + // If it was new, see if all the input strings are the same length. + uint64_t LenSoFar = ~0ULL; + for (Value *IncValue : PN->incoming_values()) { + uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); + if (Len == 0) return 0; // Unknown length -> unknown. + + if (Len == ~0ULL) continue; + + if (Len != LenSoFar && LenSoFar != ~0ULL) + return 0; // Disagree -> unknown. + LenSoFar = Len; + } + + // Success, all agree. + return LenSoFar; + } + + // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) + if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { + uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); + if (Len1 == 0) return 0; + uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); + if (Len2 == 0) return 0; + if (Len1 == ~0ULL) return Len2; + if (Len2 == ~0ULL) return Len1; + if (Len1 != Len2) return 0; + return Len1; + } + + // Otherwise, see if we can read the string. + ConstantDataArraySlice Slice; + if (!getConstantDataArrayInfo(V, Slice, CharSize)) + return 0; + + if (Slice.Array == nullptr) + // Zeroinitializer (including an empty one). + return 1; + + // Search for the first nul character. Return a conservative result even + // when there is no nul. This is safe since otherwise the string function + // being folded such as strlen is undefined, and can be preferable to + // making the undefined library call. + unsigned NullIndex = 0; + for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { + if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) + break; + } + + return NullIndex + 1; +} + +/// If we can compute the length of the string pointed to by +/// the specified pointer, return 'len+1'. If we can't, return 0. +uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { + if (!V->getType()->isPointerTy()) + return 0; + + SmallPtrSet<const PHINode*, 32> PHIs; + uint64_t Len = GetStringLengthH(V, PHIs, CharSize); + // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return + // an empty string as a length. + return Len == ~0ULL ? 1 : Len; +} + +const Value * +llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, + bool MustPreserveNullness) { + assert(Call && + "getArgumentAliasingToReturnedPointer only works on nonnull calls"); + if (const Value *RV = Call->getReturnedArgOperand()) + return RV; + // This can be used only as a aliasing property. + if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( + Call, MustPreserveNullness)) + return Call->getArgOperand(0); + return nullptr; +} + +bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( + const CallBase *Call, bool MustPreserveNullness) { + switch (Call->getIntrinsicID()) { + case Intrinsic::launder_invariant_group: + case Intrinsic::strip_invariant_group: + case Intrinsic::aarch64_irg: + case Intrinsic::aarch64_tagp: + return true; + case Intrinsic::ptrmask: + return !MustPreserveNullness; + default: + return false; + } +} + +/// \p PN defines a loop-variant pointer to an object. Check if the +/// previous iteration of the loop was referring to the same object as \p PN. +static bool isSameUnderlyingObjectInLoop(const PHINode *PN, + const LoopInfo *LI) { + // Find the loop-defined value. + Loop *L = LI->getLoopFor(PN->getParent()); + if (PN->getNumIncomingValues() != 2) + return true; + + // Find the value from previous iteration. + auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); + if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) + PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); + if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) + return true; + + // If a new pointer is loaded in the loop, the pointer references a different + // object in every iteration. E.g.: + // for (i) + // int *p = a[i]; + // ... + if (auto *Load = dyn_cast<LoadInst>(PrevValue)) + if (!L->isLoopInvariant(Load->getPointerOperand())) + return false; + return true; +} + +const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { + if (!V->getType()->isPointerTy()) + return V; + for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { + if (auto *GEP = dyn_cast<GEPOperator>(V)) { + V = GEP->getPointerOperand(); + } else if (Operator::getOpcode(V) == Instruction::BitCast || + Operator::getOpcode(V) == Instruction::AddrSpaceCast) { + V = cast<Operator>(V)->getOperand(0); + if (!V->getType()->isPointerTy()) + return V; + } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { + if (GA->isInterposable()) + return V; + V = GA->getAliasee(); + } else { + if (auto *PHI = dyn_cast<PHINode>(V)) { + // Look through single-arg phi nodes created by LCSSA. + if (PHI->getNumIncomingValues() == 1) { + V = PHI->getIncomingValue(0); + continue; + } + } else if (auto *Call = dyn_cast<CallBase>(V)) { + // CaptureTracking can know about special capturing properties of some + // intrinsics like launder.invariant.group, that can't be expressed with + // the attributes, but have properties like returning aliasing pointer. + // Because some analysis may assume that nocaptured pointer is not + // returned from some special intrinsic (because function would have to + // be marked with returns attribute), it is crucial to use this function + // because it should be in sync with CaptureTracking. Not using it may + // cause weird miscompilations where 2 aliasing pointers are assumed to + // noalias. + if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { + V = RP; + continue; + } + } + + return V; + } + assert(V->getType()->isPointerTy() && "Unexpected operand type!"); + } + return V; +} + +void llvm::getUnderlyingObjects(const Value *V, + SmallVectorImpl<const Value *> &Objects, + LoopInfo *LI, unsigned MaxLookup) { + SmallPtrSet<const Value *, 4> Visited; + SmallVector<const Value *, 4> Worklist; + Worklist.push_back(V); + do { + const Value *P = Worklist.pop_back_val(); + P = getUnderlyingObject(P, MaxLookup); + + if (!Visited.insert(P).second) + continue; + + if (auto *SI = dyn_cast<SelectInst>(P)) { + Worklist.push_back(SI->getTrueValue()); + Worklist.push_back(SI->getFalseValue()); + continue; + } + + if (auto *PN = dyn_cast<PHINode>(P)) { + // If this PHI changes the underlying object in every iteration of the + // loop, don't look through it. Consider: + // int **A; + // for (i) { + // Prev = Curr; // Prev = PHI (Prev_0, Curr) + // Curr = A[i]; + // *Prev, *Curr; + // + // Prev is tracking Curr one iteration behind so they refer to different + // underlying objects. + if (!LI || !LI->isLoopHeader(PN->getParent()) || + isSameUnderlyingObjectInLoop(PN, LI)) + append_range(Worklist, PN->incoming_values()); + continue; + } + + Objects.push_back(P); + } while (!Worklist.empty()); +} + +/// This is the function that does the work of looking through basic +/// ptrtoint+arithmetic+inttoptr sequences. +static const Value *getUnderlyingObjectFromInt(const Value *V) { + do { + if (const Operator *U = dyn_cast<Operator>(V)) { + // If we find a ptrtoint, we can transfer control back to the + // regular getUnderlyingObjectFromInt. + if (U->getOpcode() == Instruction::PtrToInt) + return U->getOperand(0); + // If we find an add of a constant, a multiplied value, or a phi, it's + // likely that the other operand will lead us to the base + // object. We don't have to worry about the case where the + // object address is somehow being computed by the multiply, + // because our callers only care when the result is an + // identifiable object. + if (U->getOpcode() != Instruction::Add || + (!isa<ConstantInt>(U->getOperand(1)) && + Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && + !isa<PHINode>(U->getOperand(1)))) + return V; + V = U->getOperand(0); + } else { + return V; + } + assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); + } while (true); +} + +/// This is a wrapper around getUnderlyingObjects and adds support for basic +/// ptrtoint+arithmetic+inttoptr sequences. +/// It returns false if unidentified object is found in getUnderlyingObjects. +bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, + SmallVectorImpl<Value *> &Objects) { + SmallPtrSet<const Value *, 16> Visited; + SmallVector<const Value *, 4> Working(1, V); + do { + V = Working.pop_back_val(); + + SmallVector<const Value *, 4> Objs; + getUnderlyingObjects(V, Objs); + + for (const Value *V : Objs) { + if (!Visited.insert(V).second) + continue; + if (Operator::getOpcode(V) == Instruction::IntToPtr) { + const Value *O = + getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); + if (O->getType()->isPointerTy()) { + Working.push_back(O); + continue; + } + } + // If getUnderlyingObjects fails to find an identifiable object, + // getUnderlyingObjectsForCodeGen also fails for safety. + if (!isIdentifiedObject(V)) { + Objects.clear(); + return false; + } + Objects.push_back(const_cast<Value *>(V)); + } + } while (!Working.empty()); + return true; +} + +AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { + AllocaInst *Result = nullptr; + SmallPtrSet<Value *, 4> Visited; + SmallVector<Value *, 4> Worklist; + + auto AddWork = [&](Value *V) { + if (Visited.insert(V).second) + Worklist.push_back(V); + }; + + AddWork(V); + do { + V = Worklist.pop_back_val(); + assert(Visited.count(V)); + + if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { + if (Result && Result != AI) + return nullptr; + Result = AI; + } else if (CastInst *CI = dyn_cast<CastInst>(V)) { + AddWork(CI->getOperand(0)); + } else if (PHINode *PN = dyn_cast<PHINode>(V)) { + for (Value *IncValue : PN->incoming_values()) + AddWork(IncValue); + } else if (auto *SI = dyn_cast<SelectInst>(V)) { + AddWork(SI->getTrueValue()); + AddWork(SI->getFalseValue()); + } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { + if (OffsetZero && !GEP->hasAllZeroIndices()) + return nullptr; + AddWork(GEP->getPointerOperand()); + } else if (CallBase *CB = dyn_cast<CallBase>(V)) { + Value *Returned = CB->getReturnedArgOperand(); + if (Returned) + AddWork(Returned); + else + return nullptr; + } else { + return nullptr; + } + } while (!Worklist.empty()); + + return Result; +} + +static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( + const Value *V, bool AllowLifetime, bool AllowDroppable) { + for (const User *U : V->users()) { + const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); + if (!II) + return false; + + if (AllowLifetime && II->isLifetimeStartOrEnd()) + continue; + + if (AllowDroppable && II->isDroppable()) + continue; + + return false; + } + return true; +} + +bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { + return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( + V, /* AllowLifetime */ true, /* AllowDroppable */ false); +} +bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { + return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( + V, /* AllowLifetime */ true, /* AllowDroppable */ true); +} + +bool llvm::mustSuppressSpeculation(const LoadInst &LI) { + if (!LI.isUnordered()) + return true; + const Function &F = *LI.getFunction(); + // Speculative load may create a race that did not exist in the source. + return F.hasFnAttribute(Attribute::SanitizeThread) || + // Speculative load may load data from dirty regions. + F.hasFnAttribute(Attribute::SanitizeAddress) || + F.hasFnAttribute(Attribute::SanitizeHWAddress); +} + +bool llvm::isSafeToSpeculativelyExecute(const Instruction *Inst, + const Instruction *CtxI, + AssumptionCache *AC, + const DominatorTree *DT, + const TargetLibraryInfo *TLI) { + return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI, + AC, DT, TLI); +} + +bool llvm::isSafeToSpeculativelyExecuteWithOpcode( + unsigned Opcode, const Instruction *Inst, const Instruction *CtxI, + AssumptionCache *AC, const DominatorTree *DT, + const TargetLibraryInfo *TLI) { +#ifndef NDEBUG + if (Inst->getOpcode() != Opcode) { + // Check that the operands are actually compatible with the Opcode override. + auto hasEqualReturnAndLeadingOperandTypes = + [](const Instruction *Inst, unsigned NumLeadingOperands) { + if (Inst->getNumOperands() < NumLeadingOperands) + return false; + const Type *ExpectedType = Inst->getType(); + for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp) + if (Inst->getOperand(ItOp)->getType() != ExpectedType) + return false; + return true; + }; + assert(!Instruction::isBinaryOp(Opcode) || + hasEqualReturnAndLeadingOperandTypes(Inst, 2)); + assert(!Instruction::isUnaryOp(Opcode) || + hasEqualReturnAndLeadingOperandTypes(Inst, 1)); + } +#endif + + switch (Opcode) { + default: + return true; + case Instruction::UDiv: + case Instruction::URem: { + // x / y is undefined if y == 0. + const APInt *V; + if (match(Inst->getOperand(1), m_APInt(V))) + return *V != 0; + return false; + } + case Instruction::SDiv: + case Instruction::SRem: { + // x / y is undefined if y == 0 or x == INT_MIN and y == -1 + const APInt *Numerator, *Denominator; + if (!match(Inst->getOperand(1), m_APInt(Denominator))) + return false; + // We cannot hoist this division if the denominator is 0. + if (*Denominator == 0) + return false; + // It's safe to hoist if the denominator is not 0 or -1. + if (!Denominator->isAllOnes()) + return true; + // At this point we know that the denominator is -1. It is safe to hoist as + // long we know that the numerator is not INT_MIN. + if (match(Inst->getOperand(0), m_APInt(Numerator))) + return !Numerator->isMinSignedValue(); + // The numerator *might* be MinSignedValue. + return false; + } + case Instruction::Load: { + const LoadInst *LI = dyn_cast<LoadInst>(Inst); + if (!LI) + return false; + if (mustSuppressSpeculation(*LI)) + return false; + const DataLayout &DL = LI->getModule()->getDataLayout(); + return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), + LI->getType(), LI->getAlign(), DL, + CtxI, AC, DT, TLI); + } + case Instruction::Call: { + auto *CI = dyn_cast<const CallInst>(Inst); + if (!CI) + return false; + const Function *Callee = CI->getCalledFunction(); + + // The called function could have undefined behavior or side-effects, even + // if marked readnone nounwind. + return Callee && Callee->isSpeculatable(); + } + case Instruction::VAArg: + case Instruction::Alloca: + case Instruction::Invoke: + case Instruction::CallBr: + case Instruction::PHI: + case Instruction::Store: + case Instruction::Ret: + case Instruction::Br: + case Instruction::IndirectBr: + case Instruction::Switch: + case Instruction::Unreachable: + case Instruction::Fence: + case Instruction::AtomicRMW: + case Instruction::AtomicCmpXchg: + case Instruction::LandingPad: + case Instruction::Resume: + case Instruction::CatchSwitch: + case Instruction::CatchPad: + case Instruction::CatchRet: + case Instruction::CleanupPad: + case Instruction::CleanupRet: + return false; // Misc instructions which have effects + } +} + +bool llvm::mayHaveNonDefUseDependency(const Instruction &I) { + if (I.mayReadOrWriteMemory()) + // Memory dependency possible + return true; + if (!isSafeToSpeculativelyExecute(&I)) + // Can't move above a maythrow call or infinite loop. Or if an + // inalloca alloca, above a stacksave call. + return true; + if (!isGuaranteedToTransferExecutionToSuccessor(&I)) + // 1) Can't reorder two inf-loop calls, even if readonly + // 2) Also can't reorder an inf-loop call below a instruction which isn't + // safe to speculative execute. (Inverse of above) + return true; + return false; +} + +/// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. +static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { + switch (OR) { + case ConstantRange::OverflowResult::MayOverflow: + return OverflowResult::MayOverflow; + case ConstantRange::OverflowResult::AlwaysOverflowsLow: + return OverflowResult::AlwaysOverflowsLow; + case ConstantRange::OverflowResult::AlwaysOverflowsHigh: + return OverflowResult::AlwaysOverflowsHigh; + case ConstantRange::OverflowResult::NeverOverflows: + return OverflowResult::NeverOverflows; + } + llvm_unreachable("Unknown OverflowResult"); +} + +/// Combine constant ranges from computeConstantRange() and computeKnownBits(). +static ConstantRange computeConstantRangeIncludingKnownBits( + const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, + OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { + KnownBits Known = computeKnownBits( + V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); + ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); + ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); + ConstantRange::PreferredRangeType RangeType = + ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; + return CR1.intersectWith(CR2, RangeType); +} + +OverflowResult llvm::computeOverflowForUnsignedMul( + const Value *LHS, const Value *RHS, const DataLayout &DL, + AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, + bool UseInstrInfo) { + KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, + nullptr, UseInstrInfo); + KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, + nullptr, UseInstrInfo); + ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); + ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); + return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); +} + +OverflowResult +llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, + const DataLayout &DL, AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT, bool UseInstrInfo) { + // Multiplying n * m significant bits yields a result of n + m significant + // bits. If the total number of significant bits does not exceed the + // result bit width (minus 1), there is no overflow. + // This means if we have enough leading sign bits in the operands + // we can guarantee that the result does not overflow. + // Ref: "Hacker's Delight" by Henry Warren + unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); + + // Note that underestimating the number of sign bits gives a more + // conservative answer. + unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + + ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); + + // First handle the easy case: if we have enough sign bits there's + // definitely no overflow. + if (SignBits > BitWidth + 1) + return OverflowResult::NeverOverflows; + + // There are two ambiguous cases where there can be no overflow: + // SignBits == BitWidth + 1 and + // SignBits == BitWidth + // The second case is difficult to check, therefore we only handle the + // first case. + if (SignBits == BitWidth + 1) { + // It overflows only when both arguments are negative and the true + // product is exactly the minimum negative number. + // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 + // For simplicity we just check if at least one side is not negative. + KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, + nullptr, UseInstrInfo); + KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, + nullptr, UseInstrInfo); + if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) + return OverflowResult::NeverOverflows; + } + return OverflowResult::MayOverflow; +} + +OverflowResult llvm::computeOverflowForUnsignedAdd( + const Value *LHS, const Value *RHS, const DataLayout &DL, + AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, + bool UseInstrInfo) { + ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( + LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, + nullptr, UseInstrInfo); + ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( + RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, + nullptr, UseInstrInfo); + return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); +} + +static OverflowResult computeOverflowForSignedAdd(const Value *LHS, + const Value *RHS, + const AddOperator *Add, + const DataLayout &DL, + AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + if (Add && Add->hasNoSignedWrap()) { + return OverflowResult::NeverOverflows; + } + + // If LHS and RHS each have at least two sign bits, the addition will look + // like + // + // XX..... + + // YY..... + // + // If the carry into the most significant position is 0, X and Y can't both + // be 1 and therefore the carry out of the addition is also 0. + // + // If the carry into the most significant position is 1, X and Y can't both + // be 0 and therefore the carry out of the addition is also 1. + // + // Since the carry into the most significant position is always equal to + // the carry out of the addition, there is no signed overflow. + if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && + ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) + return OverflowResult::NeverOverflows; + + ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( + LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); + ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( + RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); + OverflowResult OR = + mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); + if (OR != OverflowResult::MayOverflow) + return OR; + + // The remaining code needs Add to be available. Early returns if not so. + if (!Add) + return OverflowResult::MayOverflow; + + // If the sign of Add is the same as at least one of the operands, this add + // CANNOT overflow. If this can be determined from the known bits of the + // operands the above signedAddMayOverflow() check will have already done so. + // The only other way to improve on the known bits is from an assumption, so + // call computeKnownBitsFromAssume() directly. + bool LHSOrRHSKnownNonNegative = + (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); + bool LHSOrRHSKnownNegative = + (LHSRange.isAllNegative() || RHSRange.isAllNegative()); + if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { + KnownBits AddKnown(LHSRange.getBitWidth()); + computeKnownBitsFromAssume( + Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); + if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || + (AddKnown.isNegative() && LHSOrRHSKnownNegative)) + return OverflowResult::NeverOverflows; + } + + return OverflowResult::MayOverflow; +} + +OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, + const Value *RHS, + const DataLayout &DL, + AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + // X - (X % ?) + // The remainder of a value can't have greater magnitude than itself, + // so the subtraction can't overflow. + + // X - (X -nuw ?) + // In the minimal case, this would simplify to "?", so there's no subtract + // at all. But if this analysis is used to peek through casts, for example, + // then determining no-overflow may allow other transforms. + + // TODO: There are other patterns like this. + // See simplifyICmpWithBinOpOnLHS() for candidates. + if (match(RHS, m_URem(m_Specific(LHS), m_Value())) || + match(RHS, m_NUWSub(m_Specific(LHS), m_Value()))) + if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT)) + return OverflowResult::NeverOverflows; + + // Checking for conditions implied by dominating conditions may be expensive. + // Limit it to usub_with_overflow calls for now. + if (match(CxtI, + m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) + if (auto C = + isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { + if (*C) + return OverflowResult::NeverOverflows; + return OverflowResult::AlwaysOverflowsLow; + } + ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( + LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); + ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( + RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); + return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); +} + +OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, + const Value *RHS, + const DataLayout &DL, + AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + // X - (X % ?) + // The remainder of a value can't have greater magnitude than itself, + // so the subtraction can't overflow. + + // X - (X -nsw ?) + // In the minimal case, this would simplify to "?", so there's no subtract + // at all. But if this analysis is used to peek through casts, for example, + // then determining no-overflow may allow other transforms. + if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) || + match(RHS, m_NSWSub(m_Specific(LHS), m_Value()))) + if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT)) + return OverflowResult::NeverOverflows; + + // If LHS and RHS each have at least two sign bits, the subtraction + // cannot overflow. + if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && + ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) + return OverflowResult::NeverOverflows; + + ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( + LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); + ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( + RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); + return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); +} + +bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, + const DominatorTree &DT) { + SmallVector<const BranchInst *, 2> GuardingBranches; + SmallVector<const ExtractValueInst *, 2> Results; + + for (const User *U : WO->users()) { + if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { + assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); + + if (EVI->getIndices()[0] == 0) + Results.push_back(EVI); + else { + assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); + + for (const auto *U : EVI->users()) + if (const auto *B = dyn_cast<BranchInst>(U)) { + assert(B->isConditional() && "How else is it using an i1?"); + GuardingBranches.push_back(B); + } + } + } else { + // We are using the aggregate directly in a way we don't want to analyze + // here (storing it to a global, say). + return false; + } + } + + auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { + BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); + if (!NoWrapEdge.isSingleEdge()) + return false; + + // Check if all users of the add are provably no-wrap. + for (const auto *Result : Results) { + // If the extractvalue itself is not executed on overflow, the we don't + // need to check each use separately, since domination is transitive. + if (DT.dominates(NoWrapEdge, Result->getParent())) + continue; + + for (const auto &RU : Result->uses()) + if (!DT.dominates(NoWrapEdge, RU)) + return false; + } + + return true; + }; + + return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); +} + +/// Shifts return poison if shiftwidth is larger than the bitwidth. +static bool shiftAmountKnownInRange(const Value *ShiftAmount) { + auto *C = dyn_cast<Constant>(ShiftAmount); + if (!C) + return false; + + // Shifts return poison if shiftwidth is larger than the bitwidth. + SmallVector<const Constant *, 4> ShiftAmounts; + if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { + unsigned NumElts = FVTy->getNumElements(); + for (unsigned i = 0; i < NumElts; ++i) + ShiftAmounts.push_back(C->getAggregateElement(i)); + } else if (isa<ScalableVectorType>(C->getType())) + return false; // Can't tell, just return false to be safe + else + ShiftAmounts.push_back(C); + + bool Safe = llvm::all_of(ShiftAmounts, [](const Constant *C) { + auto *CI = dyn_cast_or_null<ConstantInt>(C); + return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); + }); + + return Safe; +} + +static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly, + bool ConsiderFlagsAndMetadata) { + + if (ConsiderFlagsAndMetadata && Op->hasPoisonGeneratingFlagsOrMetadata()) + return true; + + unsigned Opcode = Op->getOpcode(); + + // Check whether opcode is a poison/undef-generating operation + switch (Opcode) { + case Instruction::Shl: + case Instruction::AShr: + case Instruction::LShr: + return !shiftAmountKnownInRange(Op->getOperand(1)); + case Instruction::FPToSI: + case Instruction::FPToUI: + // fptosi/ui yields poison if the resulting value does not fit in the + // destination type. + return true; + case Instruction::Call: + if (auto *II = dyn_cast<IntrinsicInst>(Op)) { + switch (II->getIntrinsicID()) { + // TODO: Add more intrinsics. + case Intrinsic::ctlz: + case Intrinsic::cttz: + case Intrinsic::abs: + if (cast<ConstantInt>(II->getArgOperand(1))->isNullValue()) + return false; + break; + case Intrinsic::ctpop: + case Intrinsic::bswap: + case Intrinsic::bitreverse: + case Intrinsic::fshl: + case Intrinsic::fshr: + case Intrinsic::smax: + case Intrinsic::smin: + case Intrinsic::umax: + case Intrinsic::umin: + case Intrinsic::ptrmask: + case Intrinsic::fptoui_sat: + case Intrinsic::fptosi_sat: + case Intrinsic::sadd_with_overflow: + case Intrinsic::ssub_with_overflow: + case Intrinsic::smul_with_overflow: + case Intrinsic::uadd_with_overflow: + case Intrinsic::usub_with_overflow: + case Intrinsic::umul_with_overflow: + case Intrinsic::sadd_sat: + case Intrinsic::uadd_sat: + case Intrinsic::ssub_sat: + case Intrinsic::usub_sat: + return false; + case Intrinsic::sshl_sat: + case Intrinsic::ushl_sat: + return !shiftAmountKnownInRange(II->getArgOperand(1)); + case Intrinsic::fma: + case Intrinsic::fmuladd: + case Intrinsic::sqrt: + case Intrinsic::powi: + case Intrinsic::sin: + case Intrinsic::cos: + case Intrinsic::pow: + case Intrinsic::log: + case Intrinsic::log10: + case Intrinsic::log2: + case Intrinsic::exp: + case Intrinsic::exp2: + case Intrinsic::fabs: + case Intrinsic::copysign: + case Intrinsic::floor: + case Intrinsic::ceil: + case Intrinsic::trunc: + case Intrinsic::rint: + case Intrinsic::nearbyint: + case Intrinsic::round: + case Intrinsic::roundeven: + case Intrinsic::fptrunc_round: + case Intrinsic::canonicalize: + case Intrinsic::arithmetic_fence: + case Intrinsic::minnum: + case Intrinsic::maxnum: + case Intrinsic::minimum: + case Intrinsic::maximum: + case Intrinsic::is_fpclass: + return false; + case Intrinsic::lround: + case Intrinsic::llround: + case Intrinsic::lrint: + case Intrinsic::llrint: + // If the value doesn't fit an unspecified value is returned (but this + // is not poison). + return false; + } + } + [[fallthrough]]; + case Instruction::CallBr: + case Instruction::Invoke: { + const auto *CB = cast<CallBase>(Op); + return !CB->hasRetAttr(Attribute::NoUndef); + } + case Instruction::InsertElement: + case Instruction::ExtractElement: { + // If index exceeds the length of the vector, it returns poison + auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); + unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; + auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); + if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) + return true; + return false; + } + case Instruction::ShuffleVector: { + // shufflevector may return undef. + if (PoisonOnly) + return false; + ArrayRef<int> Mask = isa<ConstantExpr>(Op) + ? cast<ConstantExpr>(Op)->getShuffleMask() + : cast<ShuffleVectorInst>(Op)->getShuffleMask(); + return is_contained(Mask, UndefMaskElem); + } + case Instruction::FNeg: + case Instruction::PHI: + case Instruction::Select: + case Instruction::URem: + case Instruction::SRem: + case Instruction::ExtractValue: + case Instruction::InsertValue: + case Instruction::Freeze: + case Instruction::ICmp: + case Instruction::FCmp: + case Instruction::FAdd: + case Instruction::FSub: + case Instruction::FMul: + case Instruction::FDiv: + case Instruction::FRem: + return false; + case Instruction::GetElementPtr: + // inbounds is handled above + // TODO: what about inrange on constexpr? + return false; + default: { + const auto *CE = dyn_cast<ConstantExpr>(Op); + if (isa<CastInst>(Op) || (CE && CE->isCast())) + return false; + else if (Instruction::isBinaryOp(Opcode)) + return false; + // Be conservative and return true. + return true; + } + } +} + +bool llvm::canCreateUndefOrPoison(const Operator *Op, + bool ConsiderFlagsAndMetadata) { + return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, + ConsiderFlagsAndMetadata); +} + +bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata) { + return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, + ConsiderFlagsAndMetadata); +} + +static bool directlyImpliesPoison(const Value *ValAssumedPoison, + const Value *V, unsigned Depth) { + if (ValAssumedPoison == V) + return true; + + const unsigned MaxDepth = 2; + if (Depth >= MaxDepth) + return false; + + if (const auto *I = dyn_cast<Instruction>(V)) { + if (any_of(I->operands(), [=](const Use &Op) { + return propagatesPoison(Op) && + directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); + })) + return true; + + // V = extractvalue V0, idx + // V2 = extractvalue V0, idx2 + // V0's elements are all poison or not. (e.g., add_with_overflow) + const WithOverflowInst *II; + if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && + (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) || + llvm::is_contained(II->args(), ValAssumedPoison))) + return true; + } + return false; +} + +static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, + unsigned Depth) { + if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) + return true; + + if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) + return true; + + const unsigned MaxDepth = 2; + if (Depth >= MaxDepth) + return false; + + const auto *I = dyn_cast<Instruction>(ValAssumedPoison); + if (I && !canCreatePoison(cast<Operator>(I))) { + return all_of(I->operands(), [=](const Value *Op) { + return impliesPoison(Op, V, Depth + 1); + }); + } + return false; +} + +bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { + return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); +} + +static bool programUndefinedIfUndefOrPoison(const Value *V, + bool PoisonOnly); + +static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, + AssumptionCache *AC, + const Instruction *CtxI, + const DominatorTree *DT, + unsigned Depth, bool PoisonOnly) { + if (Depth >= MaxAnalysisRecursionDepth) + return false; + + if (isa<MetadataAsValue>(V)) + return false; + + if (const auto *A = dyn_cast<Argument>(V)) { + if (A->hasAttribute(Attribute::NoUndef)) + return true; + } + + if (auto *C = dyn_cast<Constant>(V)) { + if (isa<UndefValue>(C)) + return PoisonOnly && !isa<PoisonValue>(C); + + if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || + isa<ConstantPointerNull>(C) || isa<Function>(C)) + return true; + + if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) + return (PoisonOnly ? !C->containsPoisonElement() + : !C->containsUndefOrPoisonElement()) && + !C->containsConstantExpression(); + } + + // Strip cast operations from a pointer value. + // Note that stripPointerCastsSameRepresentation can strip off getelementptr + // inbounds with zero offset. To guarantee that the result isn't poison, the + // stripped pointer is checked as it has to be pointing into an allocated + // object or be null `null` to ensure `inbounds` getelement pointers with a + // zero offset could not produce poison. + // It can strip off addrspacecast that do not change bit representation as + // well. We believe that such addrspacecast is equivalent to no-op. + auto *StrippedV = V->stripPointerCastsSameRepresentation(); + if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || + isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) + return true; + + auto OpCheck = [&](const Value *V) { + return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, + PoisonOnly); + }; + + if (auto *Opr = dyn_cast<Operator>(V)) { + // If the value is a freeze instruction, then it can never + // be undef or poison. + if (isa<FreezeInst>(V)) + return true; + + if (const auto *CB = dyn_cast<CallBase>(V)) { + if (CB->hasRetAttr(Attribute::NoUndef)) + return true; + } + + if (const auto *PN = dyn_cast<PHINode>(V)) { + unsigned Num = PN->getNumIncomingValues(); + bool IsWellDefined = true; + for (unsigned i = 0; i < Num; ++i) { + auto *TI = PN->getIncomingBlock(i)->getTerminator(); + if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, + DT, Depth + 1, PoisonOnly)) { + IsWellDefined = false; + break; + } + } + if (IsWellDefined) + return true; + } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) + return true; + } + + if (auto *I = dyn_cast<LoadInst>(V)) + if (I->hasMetadata(LLVMContext::MD_noundef) || + I->hasMetadata(LLVMContext::MD_dereferenceable) || + I->hasMetadata(LLVMContext::MD_dereferenceable_or_null)) + return true; + + if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) + return true; + + // CxtI may be null or a cloned instruction. + if (!CtxI || !CtxI->getParent() || !DT) + return false; + + auto *DNode = DT->getNode(CtxI->getParent()); + if (!DNode) + // Unreachable block + return false; + + // If V is used as a branch condition before reaching CtxI, V cannot be + // undef or poison. + // br V, BB1, BB2 + // BB1: + // CtxI ; V cannot be undef or poison here + auto *Dominator = DNode->getIDom(); + while (Dominator) { + auto *TI = Dominator->getBlock()->getTerminator(); + + Value *Cond = nullptr; + if (auto BI = dyn_cast_or_null<BranchInst>(TI)) { + if (BI->isConditional()) + Cond = BI->getCondition(); + } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) { + Cond = SI->getCondition(); + } + + if (Cond) { + if (Cond == V) + return true; + else if (PoisonOnly && isa<Operator>(Cond)) { + // For poison, we can analyze further + auto *Opr = cast<Operator>(Cond); + if (any_of(Opr->operands(), + [V](const Use &U) { return V == U && propagatesPoison(U); })) + return true; + } + } + + Dominator = Dominator->getIDom(); + } + + if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC)) + return true; + + return false; +} + +bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, + const Instruction *CtxI, + const DominatorTree *DT, + unsigned Depth) { + return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); +} + +bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, + const Instruction *CtxI, + const DominatorTree *DT, unsigned Depth) { + return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); +} + +OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, + const DataLayout &DL, + AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), + Add, DL, AC, CxtI, DT); +} + +OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, + const Value *RHS, + const DataLayout &DL, + AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); +} + +bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { + // Note: An atomic operation isn't guaranteed to return in a reasonable amount + // of time because it's possible for another thread to interfere with it for an + // arbitrary length of time, but programs aren't allowed to rely on that. + + // If there is no successor, then execution can't transfer to it. + if (isa<ReturnInst>(I)) + return false; + if (isa<UnreachableInst>(I)) + return false; + + // Note: Do not add new checks here; instead, change Instruction::mayThrow or + // Instruction::willReturn. + // + // FIXME: Move this check into Instruction::willReturn. + if (isa<CatchPadInst>(I)) { + switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) { + default: + // A catchpad may invoke exception object constructors and such, which + // in some languages can be arbitrary code, so be conservative by default. + return false; + case EHPersonality::CoreCLR: + // For CoreCLR, it just involves a type test. + return true; + } + } + + // An instruction that returns without throwing must transfer control flow + // to a successor. + return !I->mayThrow() && I->willReturn(); +} + +bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { + // TODO: This is slightly conservative for invoke instruction since exiting + // via an exception *is* normal control for them. + for (const Instruction &I : *BB) + if (!isGuaranteedToTransferExecutionToSuccessor(&I)) + return false; + return true; +} + +bool llvm::isGuaranteedToTransferExecutionToSuccessor( + BasicBlock::const_iterator Begin, BasicBlock::const_iterator End, + unsigned ScanLimit) { + return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End), + ScanLimit); +} + +bool llvm::isGuaranteedToTransferExecutionToSuccessor( + iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) { + assert(ScanLimit && "scan limit must be non-zero"); + for (const Instruction &I : Range) { + if (isa<DbgInfoIntrinsic>(I)) + continue; + if (--ScanLimit == 0) + return false; + if (!isGuaranteedToTransferExecutionToSuccessor(&I)) + return false; + } + return true; +} + +bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, + const Loop *L) { + // The loop header is guaranteed to be executed for every iteration. + // + // FIXME: Relax this constraint to cover all basic blocks that are + // guaranteed to be executed at every iteration. + if (I->getParent() != L->getHeader()) return false; + + for (const Instruction &LI : *L->getHeader()) { + if (&LI == I) return true; + if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; + } + llvm_unreachable("Instruction not contained in its own parent basic block."); +} + +bool llvm::propagatesPoison(const Use &PoisonOp) { + const Operator *I = cast<Operator>(PoisonOp.getUser()); + switch (I->getOpcode()) { + case Instruction::Freeze: + case Instruction::PHI: + case Instruction::Invoke: + return false; + case Instruction::Select: + return PoisonOp.getOperandNo() == 0; + case Instruction::Call: + if (auto *II = dyn_cast<IntrinsicInst>(I)) { + switch (II->getIntrinsicID()) { + // TODO: Add more intrinsics. + case Intrinsic::sadd_with_overflow: + case Intrinsic::ssub_with_overflow: + case Intrinsic::smul_with_overflow: + case Intrinsic::uadd_with_overflow: + case Intrinsic::usub_with_overflow: + case Intrinsic::umul_with_overflow: + // If an input is a vector containing a poison element, the + // two output vectors (calculated results, overflow bits)' + // corresponding lanes are poison. + return true; + case Intrinsic::ctpop: + return true; + } + } + return false; + case Instruction::ICmp: + case Instruction::FCmp: + case Instruction::GetElementPtr: + return true; + default: + if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) + return true; + + // Be conservative and return false. + return false; + } +} + +void llvm::getGuaranteedWellDefinedOps( + const Instruction *I, SmallVectorImpl<const Value *> &Operands) { + switch (I->getOpcode()) { + case Instruction::Store: + Operands.push_back(cast<StoreInst>(I)->getPointerOperand()); + break; + + case Instruction::Load: + Operands.push_back(cast<LoadInst>(I)->getPointerOperand()); + break; + + // Since dereferenceable attribute imply noundef, atomic operations + // also implicitly have noundef pointers too + case Instruction::AtomicCmpXchg: + Operands.push_back(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); + break; + + case Instruction::AtomicRMW: + Operands.push_back(cast<AtomicRMWInst>(I)->getPointerOperand()); + break; + + case Instruction::Call: + case Instruction::Invoke: { + const CallBase *CB = cast<CallBase>(I); + if (CB->isIndirectCall()) + Operands.push_back(CB->getCalledOperand()); + for (unsigned i = 0; i < CB->arg_size(); ++i) { + if (CB->paramHasAttr(i, Attribute::NoUndef) || + CB->paramHasAttr(i, Attribute::Dereferenceable)) + Operands.push_back(CB->getArgOperand(i)); + } + break; + } + case Instruction::Ret: + if (I->getFunction()->hasRetAttribute(Attribute::NoUndef)) + Operands.push_back(I->getOperand(0)); + break; + case Instruction::Switch: + Operands.push_back(cast<SwitchInst>(I)->getCondition()); + break; + case Instruction::Br: { + auto *BR = cast<BranchInst>(I); + if (BR->isConditional()) + Operands.push_back(BR->getCondition()); + break; + } + default: + break; + } +} + +void llvm::getGuaranteedNonPoisonOps(const Instruction *I, + SmallVectorImpl<const Value *> &Operands) { + getGuaranteedWellDefinedOps(I, Operands); + switch (I->getOpcode()) { + // Divisors of these operations are allowed to be partially undef. + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::URem: + case Instruction::SRem: + Operands.push_back(I->getOperand(1)); + break; + default: + break; + } +} + +bool llvm::mustTriggerUB(const Instruction *I, + const SmallSet<const Value *, 16>& KnownPoison) { + SmallVector<const Value *, 4> NonPoisonOps; + getGuaranteedNonPoisonOps(I, NonPoisonOps); + + for (const auto *V : NonPoisonOps) + if (KnownPoison.count(V)) + return true; + + return false; +} + +static bool programUndefinedIfUndefOrPoison(const Value *V, + bool PoisonOnly) { + // We currently only look for uses of values within the same basic + // block, as that makes it easier to guarantee that the uses will be + // executed given that Inst is executed. + // + // FIXME: Expand this to consider uses beyond the same basic block. To do + // this, look out for the distinction between post-dominance and strong + // post-dominance. + const BasicBlock *BB = nullptr; + BasicBlock::const_iterator Begin; + if (const auto *Inst = dyn_cast<Instruction>(V)) { + BB = Inst->getParent(); + Begin = Inst->getIterator(); + Begin++; + } else if (const auto *Arg = dyn_cast<Argument>(V)) { + BB = &Arg->getParent()->getEntryBlock(); + Begin = BB->begin(); + } else { + return false; + } + + // Limit number of instructions we look at, to avoid scanning through large + // blocks. The current limit is chosen arbitrarily. + unsigned ScanLimit = 32; + BasicBlock::const_iterator End = BB->end(); + + if (!PoisonOnly) { + // Since undef does not propagate eagerly, be conservative & just check + // whether a value is directly passed to an instruction that must take + // well-defined operands. + + for (const auto &I : make_range(Begin, End)) { + if (isa<DbgInfoIntrinsic>(I)) + continue; + if (--ScanLimit == 0) + break; + + SmallVector<const Value *, 4> WellDefinedOps; + getGuaranteedWellDefinedOps(&I, WellDefinedOps); + if (is_contained(WellDefinedOps, V)) + return true; + + if (!isGuaranteedToTransferExecutionToSuccessor(&I)) + break; + } + return false; + } + + // Set of instructions that we have proved will yield poison if Inst + // does. + SmallSet<const Value *, 16> YieldsPoison; + SmallSet<const BasicBlock *, 4> Visited; + + YieldsPoison.insert(V); + Visited.insert(BB); + + while (true) { + for (const auto &I : make_range(Begin, End)) { + if (isa<DbgInfoIntrinsic>(I)) + continue; + if (--ScanLimit == 0) + return false; + if (mustTriggerUB(&I, YieldsPoison)) + return true; + if (!isGuaranteedToTransferExecutionToSuccessor(&I)) + return false; + + // If an operand is poison and propagates it, mark I as yielding poison. + for (const Use &Op : I.operands()) { + if (YieldsPoison.count(Op) && propagatesPoison(Op)) { + YieldsPoison.insert(&I); + break; + } + } + } + + BB = BB->getSingleSuccessor(); + if (!BB || !Visited.insert(BB).second) + break; + + Begin = BB->getFirstNonPHI()->getIterator(); + End = BB->end(); + } + return false; +} + +bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { + return ::programUndefinedIfUndefOrPoison(Inst, false); +} + +bool llvm::programUndefinedIfPoison(const Instruction *Inst) { + return ::programUndefinedIfUndefOrPoison(Inst, true); +} + +static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { + if (FMF.noNaNs()) + return true; + + if (auto *C = dyn_cast<ConstantFP>(V)) + return !C->isNaN(); + + if (auto *C = dyn_cast<ConstantDataVector>(V)) { + if (!C->getElementType()->isFloatingPointTy()) + return false; + for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { + if (C->getElementAsAPFloat(I).isNaN()) + return false; + } + return true; + } + + if (isa<ConstantAggregateZero>(V)) + return true; + + return false; +} + +static bool isKnownNonZero(const Value *V) { + if (auto *C = dyn_cast<ConstantFP>(V)) + return !C->isZero(); + + if (auto *C = dyn_cast<ConstantDataVector>(V)) { + if (!C->getElementType()->isFloatingPointTy()) + return false; + for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { + if (C->getElementAsAPFloat(I).isZero()) + return false; + } + return true; + } + + return false; +} + +/// Match clamp pattern for float types without care about NaNs or signed zeros. +/// Given non-min/max outer cmp/select from the clamp pattern this +/// function recognizes if it can be substitued by a "canonical" min/max +/// pattern. +static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, + Value *CmpLHS, Value *CmpRHS, + Value *TrueVal, Value *FalseVal, + Value *&LHS, Value *&RHS) { + // Try to match + // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) + // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) + // and return description of the outer Max/Min. + + // First, check if select has inverse order: + if (CmpRHS == FalseVal) { + std::swap(TrueVal, FalseVal); + Pred = CmpInst::getInversePredicate(Pred); + } + + // Assume success now. If there's no match, callers should not use these anyway. + LHS = TrueVal; + RHS = FalseVal; + + const APFloat *FC1; + if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) + return {SPF_UNKNOWN, SPNB_NA, false}; + + const APFloat *FC2; + switch (Pred) { + case CmpInst::FCMP_OLT: + case CmpInst::FCMP_OLE: + case CmpInst::FCMP_ULT: + case CmpInst::FCMP_ULE: + if (match(FalseVal, + m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), + m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && + *FC1 < *FC2) + return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; + break; + case CmpInst::FCMP_OGT: + case CmpInst::FCMP_OGE: + case CmpInst::FCMP_UGT: + case CmpInst::FCMP_UGE: + if (match(FalseVal, + m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), + m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && + *FC1 > *FC2) + return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; + break; + default: + break; + } + + return {SPF_UNKNOWN, SPNB_NA, false}; +} + +/// Recognize variations of: +/// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) +static SelectPatternResult matchClamp(CmpInst::Predicate Pred, + Value *CmpLHS, Value *CmpRHS, + Value *TrueVal, Value *FalseVal) { + // Swap the select operands and predicate to match the patterns below. + if (CmpRHS != TrueVal) { + Pred = ICmpInst::getSwappedPredicate(Pred); + std::swap(TrueVal, FalseVal); + } + const APInt *C1; + if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { + const APInt *C2; + // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) + if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && + C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) + return {SPF_SMAX, SPNB_NA, false}; + + // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) + if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && + C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) + return {SPF_SMIN, SPNB_NA, false}; + + // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) + if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && + C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) + return {SPF_UMAX, SPNB_NA, false}; + + // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) + if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && + C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) + return {SPF_UMIN, SPNB_NA, false}; + } + return {SPF_UNKNOWN, SPNB_NA, false}; +} + +/// Recognize variations of: +/// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) +static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, + Value *CmpLHS, Value *CmpRHS, + Value *TVal, Value *FVal, + unsigned Depth) { + // TODO: Allow FP min/max with nnan/nsz. + assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); + + Value *A = nullptr, *B = nullptr; + SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); + if (!SelectPatternResult::isMinOrMax(L.Flavor)) + return {SPF_UNKNOWN, SPNB_NA, false}; + + Value *C = nullptr, *D = nullptr; + SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); + if (L.Flavor != R.Flavor) + return {SPF_UNKNOWN, SPNB_NA, false}; + + // We have something like: x Pred y ? min(a, b) : min(c, d). + // Try to match the compare to the min/max operations of the select operands. + // First, make sure we have the right compare predicate. + switch (L.Flavor) { + case SPF_SMIN: + if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { + Pred = ICmpInst::getSwappedPredicate(Pred); + std::swap(CmpLHS, CmpRHS); + } + if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) + break; + return {SPF_UNKNOWN, SPNB_NA, false}; + case SPF_SMAX: + if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { + Pred = ICmpInst::getSwappedPredicate(Pred); + std::swap(CmpLHS, CmpRHS); + } + if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) + break; + return {SPF_UNKNOWN, SPNB_NA, false}; + case SPF_UMIN: + if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { + Pred = ICmpInst::getSwappedPredicate(Pred); + std::swap(CmpLHS, CmpRHS); + } + if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) + break; + return {SPF_UNKNOWN, SPNB_NA, false}; + case SPF_UMAX: + if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { + Pred = ICmpInst::getSwappedPredicate(Pred); + std::swap(CmpLHS, CmpRHS); + } + if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) + break; + return {SPF_UNKNOWN, SPNB_NA, false}; + default: + return {SPF_UNKNOWN, SPNB_NA, false}; + } + + // If there is a common operand in the already matched min/max and the other + // min/max operands match the compare operands (either directly or inverted), + // then this is min/max of the same flavor. + + // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) + // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) + if (D == B) { + if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && + match(A, m_Not(m_Specific(CmpRHS))))) + return {L.Flavor, SPNB_NA, false}; + } + // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) + // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) + if (C == B) { + if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && + match(A, m_Not(m_Specific(CmpRHS))))) + return {L.Flavor, SPNB_NA, false}; + } + // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) + // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) + if (D == A) { + if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && + match(B, m_Not(m_Specific(CmpRHS))))) + return {L.Flavor, SPNB_NA, false}; + } + // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) + // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) + if (C == A) { + if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && + match(B, m_Not(m_Specific(CmpRHS))))) + return {L.Flavor, SPNB_NA, false}; + } + + return {SPF_UNKNOWN, SPNB_NA, false}; +} + +/// If the input value is the result of a 'not' op, constant integer, or vector +/// splat of a constant integer, return the bitwise-not source value. +/// TODO: This could be extended to handle non-splat vector integer constants. +static Value *getNotValue(Value *V) { + Value *NotV; + if (match(V, m_Not(m_Value(NotV)))) + return NotV; + + const APInt *C; + if (match(V, m_APInt(C))) + return ConstantInt::get(V->getType(), ~(*C)); + + return nullptr; +} + +/// Match non-obvious integer minimum and maximum sequences. +static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, + Value *CmpLHS, Value *CmpRHS, + Value *TrueVal, Value *FalseVal, + Value *&LHS, Value *&RHS, + unsigned Depth) { + // Assume success. If there's no match, callers should not use these anyway. + LHS = TrueVal; + RHS = FalseVal; + + SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); + if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) + return SPR; + + SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); + if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) + return SPR; + + // Look through 'not' ops to find disguised min/max. + // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) + // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) + if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { + switch (Pred) { + case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; + case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; + case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; + case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; + default: break; + } + } + + // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) + // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) + if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { + switch (Pred) { + case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; + case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; + case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; + case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; + default: break; + } + } + + if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) + return {SPF_UNKNOWN, SPNB_NA, false}; + + const APInt *C1; + if (!match(CmpRHS, m_APInt(C1))) + return {SPF_UNKNOWN, SPNB_NA, false}; + + // An unsigned min/max can be written with a signed compare. + const APInt *C2; + if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || + (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { + // Is the sign bit set? + // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX + // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN + if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue()) + return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; + + // Is the sign bit clear? + // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX + // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN + if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue()) + return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; + } + + return {SPF_UNKNOWN, SPNB_NA, false}; +} + +bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { + assert(X && Y && "Invalid operand"); + + // X = sub (0, Y) || X = sub nsw (0, Y) + if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || + (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) + return true; + + // Y = sub (0, X) || Y = sub nsw (0, X) + if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || + (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) + return true; + + // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) + Value *A, *B; + return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && + match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || + (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && + match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); +} + +static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, + FastMathFlags FMF, + Value *CmpLHS, Value *CmpRHS, + Value *TrueVal, Value *FalseVal, + Value *&LHS, Value *&RHS, + unsigned Depth) { + bool HasMismatchedZeros = false; + if (CmpInst::isFPPredicate(Pred)) { + // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one + // 0.0 operand, set the compare's 0.0 operands to that same value for the + // purpose of identifying min/max. Disregard vector constants with undefined + // elements because those can not be back-propagated for analysis. + Value *OutputZeroVal = nullptr; + if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && + !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) + OutputZeroVal = TrueVal; + else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && + !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) + OutputZeroVal = FalseVal; + + if (OutputZeroVal) { + if (match(CmpLHS, m_AnyZeroFP()) && CmpLHS != OutputZeroVal) { + HasMismatchedZeros = true; + CmpLHS = OutputZeroVal; + } + if (match(CmpRHS, m_AnyZeroFP()) && CmpRHS != OutputZeroVal) { + HasMismatchedZeros = true; + CmpRHS = OutputZeroVal; + } + } + } + + LHS = CmpLHS; + RHS = CmpRHS; + + // Signed zero may return inconsistent results between implementations. + // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 + // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) + // Therefore, we behave conservatively and only proceed if at least one of the + // operands is known to not be zero or if we don't care about signed zero. + switch (Pred) { + default: break; + case CmpInst::FCMP_OGT: case CmpInst::FCMP_OLT: + case CmpInst::FCMP_UGT: case CmpInst::FCMP_ULT: + if (!HasMismatchedZeros) + break; + [[fallthrough]]; + case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: + case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: + if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && + !isKnownNonZero(CmpRHS)) + return {SPF_UNKNOWN, SPNB_NA, false}; + } + + SelectPatternNaNBehavior NaNBehavior = SPNB_NA; + bool Ordered = false; + + // When given one NaN and one non-NaN input: + // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. + // - A simple C99 (a < b ? a : b) construction will return 'b' (as the + // ordered comparison fails), which could be NaN or non-NaN. + // so here we discover exactly what NaN behavior is required/accepted. + if (CmpInst::isFPPredicate(Pred)) { + bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); + bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); + + if (LHSSafe && RHSSafe) { + // Both operands are known non-NaN. + NaNBehavior = SPNB_RETURNS_ANY; + } else if (CmpInst::isOrdered(Pred)) { + // An ordered comparison will return false when given a NaN, so it + // returns the RHS. + Ordered = true; + if (LHSSafe) + // LHS is non-NaN, so if RHS is NaN then NaN will be returned. + NaNBehavior = SPNB_RETURNS_NAN; + else if (RHSSafe) + NaNBehavior = SPNB_RETURNS_OTHER; + else + // Completely unsafe. + return {SPF_UNKNOWN, SPNB_NA, false}; + } else { + Ordered = false; + // An unordered comparison will return true when given a NaN, so it + // returns the LHS. + if (LHSSafe) + // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. + NaNBehavior = SPNB_RETURNS_OTHER; + else if (RHSSafe) + NaNBehavior = SPNB_RETURNS_NAN; + else + // Completely unsafe. + return {SPF_UNKNOWN, SPNB_NA, false}; + } + } + + if (TrueVal == CmpRHS && FalseVal == CmpLHS) { + std::swap(CmpLHS, CmpRHS); + Pred = CmpInst::getSwappedPredicate(Pred); + if (NaNBehavior == SPNB_RETURNS_NAN) + NaNBehavior = SPNB_RETURNS_OTHER; + else if (NaNBehavior == SPNB_RETURNS_OTHER) + NaNBehavior = SPNB_RETURNS_NAN; + Ordered = !Ordered; + } + + // ([if]cmp X, Y) ? X : Y + if (TrueVal == CmpLHS && FalseVal == CmpRHS) { + switch (Pred) { + default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. + case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; + case ICmpInst::ICMP_SGT: + case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; + case ICmpInst::ICMP_ULT: + case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; + case ICmpInst::ICMP_SLT: + case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; + case FCmpInst::FCMP_UGT: + case FCmpInst::FCMP_UGE: + case FCmpInst::FCMP_OGT: + case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; + case FCmpInst::FCMP_ULT: + case FCmpInst::FCMP_ULE: + case FCmpInst::FCMP_OLT: + case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; + } + } + + if (isKnownNegation(TrueVal, FalseVal)) { + // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can + // match against either LHS or sext(LHS). + auto MaybeSExtCmpLHS = + m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); + auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); + auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); + if (match(TrueVal, MaybeSExtCmpLHS)) { + // Set the return values. If the compare uses the negated value (-X >s 0), + // swap the return values because the negated value is always 'RHS'. + LHS = TrueVal; + RHS = FalseVal; + if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) + std::swap(LHS, RHS); + + // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) + // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) + if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) + return {SPF_ABS, SPNB_NA, false}; + + // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) + if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) + return {SPF_ABS, SPNB_NA, false}; + + // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) + // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) + if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) + return {SPF_NABS, SPNB_NA, false}; + } + else if (match(FalseVal, MaybeSExtCmpLHS)) { + // Set the return values. If the compare uses the negated value (-X >s 0), + // swap the return values because the negated value is always 'RHS'. + LHS = FalseVal; + RHS = TrueVal; + if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) + std::swap(LHS, RHS); + + // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) + // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) + if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) + return {SPF_NABS, SPNB_NA, false}; + + // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) + // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) + if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) + return {SPF_ABS, SPNB_NA, false}; + } + } + + if (CmpInst::isIntPredicate(Pred)) + return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); + + // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar + // may return either -0.0 or 0.0, so fcmp/select pair has stricter + // semantics than minNum. Be conservative in such case. + if (NaNBehavior != SPNB_RETURNS_ANY || + (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && + !isKnownNonZero(CmpRHS))) + return {SPF_UNKNOWN, SPNB_NA, false}; + + return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); +} + +/// Helps to match a select pattern in case of a type mismatch. +/// +/// The function processes the case when type of true and false values of a +/// select instruction differs from type of the cmp instruction operands because +/// of a cast instruction. The function checks if it is legal to move the cast +/// operation after "select". If yes, it returns the new second value of +/// "select" (with the assumption that cast is moved): +/// 1. As operand of cast instruction when both values of "select" are same cast +/// instructions. +/// 2. As restored constant (by applying reverse cast operation) when the first +/// value of the "select" is a cast operation and the second value is a +/// constant. +/// NOTE: We return only the new second value because the first value could be +/// accessed as operand of cast instruction. +static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, + Instruction::CastOps *CastOp) { + auto *Cast1 = dyn_cast<CastInst>(V1); + if (!Cast1) + return nullptr; + + *CastOp = Cast1->getOpcode(); + Type *SrcTy = Cast1->getSrcTy(); + if (auto *Cast2 = dyn_cast<CastInst>(V2)) { + // If V1 and V2 are both the same cast from the same type, look through V1. + if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) + return Cast2->getOperand(0); + return nullptr; + } + + auto *C = dyn_cast<Constant>(V2); + if (!C) + return nullptr; + + Constant *CastedTo = nullptr; + switch (*CastOp) { + case Instruction::ZExt: + if (CmpI->isUnsigned()) + CastedTo = ConstantExpr::getTrunc(C, SrcTy); + break; + case Instruction::SExt: + if (CmpI->isSigned()) + CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); + break; + case Instruction::Trunc: + Constant *CmpConst; + if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && + CmpConst->getType() == SrcTy) { + // Here we have the following case: + // + // %cond = cmp iN %x, CmpConst + // %tr = trunc iN %x to iK + // %narrowsel = select i1 %cond, iK %t, iK C + // + // We can always move trunc after select operation: + // + // %cond = cmp iN %x, CmpConst + // %widesel = select i1 %cond, iN %x, iN CmpConst + // %tr = trunc iN %widesel to iK + // + // Note that C could be extended in any way because we don't care about + // upper bits after truncation. It can't be abs pattern, because it would + // look like: + // + // select i1 %cond, x, -x. + // + // So only min/max pattern could be matched. Such match requires widened C + // == CmpConst. That is why set widened C = CmpConst, condition trunc + // CmpConst == C is checked below. + CastedTo = CmpConst; + } else { + CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); + } + break; + case Instruction::FPTrunc: + CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); + break; + case Instruction::FPExt: + CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); + break; + case Instruction::FPToUI: + CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); + break; + case Instruction::FPToSI: + CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); + break; + case Instruction::UIToFP: + CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); + break; + case Instruction::SIToFP: + CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); + break; + default: + break; + } + + if (!CastedTo) + return nullptr; + + // Make sure the cast doesn't lose any information. + Constant *CastedBack = + ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); + if (CastedBack != C) + return nullptr; + + return CastedTo; +} + +SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, + Instruction::CastOps *CastOp, + unsigned Depth) { + if (Depth >= MaxAnalysisRecursionDepth) + return {SPF_UNKNOWN, SPNB_NA, false}; + + SelectInst *SI = dyn_cast<SelectInst>(V); + if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; + + CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); + if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; + + Value *TrueVal = SI->getTrueValue(); + Value *FalseVal = SI->getFalseValue(); + + return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, + CastOp, Depth); +} + +SelectPatternResult llvm::matchDecomposedSelectPattern( + CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, + Instruction::CastOps *CastOp, unsigned Depth) { + CmpInst::Predicate Pred = CmpI->getPredicate(); + Value *CmpLHS = CmpI->getOperand(0); + Value *CmpRHS = CmpI->getOperand(1); + FastMathFlags FMF; + if (isa<FPMathOperator>(CmpI)) + FMF = CmpI->getFastMathFlags(); + + // Bail out early. + if (CmpI->isEquality()) + return {SPF_UNKNOWN, SPNB_NA, false}; + + // Deal with type mismatches. + if (CastOp && CmpLHS->getType() != TrueVal->getType()) { + if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { + // If this is a potential fmin/fmax with a cast to integer, then ignore + // -0.0 because there is no corresponding integer value. + if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) + FMF.setNoSignedZeros(); + return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, + cast<CastInst>(TrueVal)->getOperand(0), C, + LHS, RHS, Depth); + } + if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { + // If this is a potential fmin/fmax with a cast to integer, then ignore + // -0.0 because there is no corresponding integer value. + if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) + FMF.setNoSignedZeros(); + return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, + C, cast<CastInst>(FalseVal)->getOperand(0), + LHS, RHS, Depth); + } + } + return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, + LHS, RHS, Depth); +} + +CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { + if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; + if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; + if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; + if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; + if (SPF == SPF_FMINNUM) + return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; + if (SPF == SPF_FMAXNUM) + return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; + llvm_unreachable("unhandled!"); +} + +SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { + if (SPF == SPF_SMIN) return SPF_SMAX; + if (SPF == SPF_UMIN) return SPF_UMAX; + if (SPF == SPF_SMAX) return SPF_SMIN; + if (SPF == SPF_UMAX) return SPF_UMIN; + llvm_unreachable("unhandled!"); +} + +Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { + switch (MinMaxID) { + case Intrinsic::smax: return Intrinsic::smin; + case Intrinsic::smin: return Intrinsic::smax; + case Intrinsic::umax: return Intrinsic::umin; + case Intrinsic::umin: return Intrinsic::umax; + default: llvm_unreachable("Unexpected intrinsic"); + } +} + +APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) { + switch (SPF) { + case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth); + case SPF_SMIN: return APInt::getSignedMinValue(BitWidth); + case SPF_UMAX: return APInt::getMaxValue(BitWidth); + case SPF_UMIN: return APInt::getMinValue(BitWidth); + default: llvm_unreachable("Unexpected flavor"); + } +} + +std::pair<Intrinsic::ID, bool> +llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { + // Check if VL contains select instructions that can be folded into a min/max + // vector intrinsic and return the intrinsic if it is possible. + // TODO: Support floating point min/max. + bool AllCmpSingleUse = true; + SelectPatternResult SelectPattern; + SelectPattern.Flavor = SPF_UNKNOWN; + if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { + Value *LHS, *RHS; + auto CurrentPattern = matchSelectPattern(I, LHS, RHS); + if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || + CurrentPattern.Flavor == SPF_FMINNUM || + CurrentPattern.Flavor == SPF_FMAXNUM || + !I->getType()->isIntOrIntVectorTy()) + return false; + if (SelectPattern.Flavor != SPF_UNKNOWN && + SelectPattern.Flavor != CurrentPattern.Flavor) + return false; + SelectPattern = CurrentPattern; + AllCmpSingleUse &= + match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); + return true; + })) { + switch (SelectPattern.Flavor) { + case SPF_SMIN: + return {Intrinsic::smin, AllCmpSingleUse}; + case SPF_UMIN: + return {Intrinsic::umin, AllCmpSingleUse}; + case SPF_SMAX: + return {Intrinsic::smax, AllCmpSingleUse}; + case SPF_UMAX: + return {Intrinsic::umax, AllCmpSingleUse}; + default: + llvm_unreachable("unexpected select pattern flavor"); + } + } + return {Intrinsic::not_intrinsic, false}; +} + +bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, + Value *&Start, Value *&Step) { + // Handle the case of a simple two-predecessor recurrence PHI. + // There's a lot more that could theoretically be done here, but + // this is sufficient to catch some interesting cases. + if (P->getNumIncomingValues() != 2) + return false; + + for (unsigned i = 0; i != 2; ++i) { + Value *L = P->getIncomingValue(i); + Value *R = P->getIncomingValue(!i); + Operator *LU = dyn_cast<Operator>(L); + if (!LU) + continue; + unsigned Opcode = LU->getOpcode(); + + switch (Opcode) { + default: + continue; + // TODO: Expand list -- xor, div, gep, uaddo, etc.. + case Instruction::LShr: + case Instruction::AShr: + case Instruction::Shl: + case Instruction::Add: + case Instruction::Sub: + case Instruction::And: + case Instruction::Or: + case Instruction::Mul: + case Instruction::FMul: { + Value *LL = LU->getOperand(0); + Value *LR = LU->getOperand(1); + // Find a recurrence. + if (LL == P) + L = LR; + else if (LR == P) + L = LL; + else + continue; // Check for recurrence with L and R flipped. + + break; // Match! + } + }; + + // We have matched a recurrence of the form: + // %iv = [R, %entry], [%iv.next, %backedge] + // %iv.next = binop %iv, L + // OR + // %iv = [R, %entry], [%iv.next, %backedge] + // %iv.next = binop L, %iv + BO = cast<BinaryOperator>(LU); + Start = R; + Step = L; + return true; + } + return false; +} + +bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, + Value *&Start, Value *&Step) { + BinaryOperator *BO = nullptr; + P = dyn_cast<PHINode>(I->getOperand(0)); + if (!P) + P = dyn_cast<PHINode>(I->getOperand(1)); + return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; +} + +/// Return true if "icmp Pred LHS RHS" is always true. +static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, + const Value *RHS, const DataLayout &DL, + unsigned Depth) { + if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) + return true; + + switch (Pred) { + default: + return false; + + case CmpInst::ICMP_SLE: { + const APInt *C; + + // LHS s<= LHS +_{nsw} C if C >= 0 + if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) + return !C->isNegative(); + return false; + } + + case CmpInst::ICMP_ULE: { + const APInt *C; + + // LHS u<= LHS +_{nuw} C for any C + if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) + return true; + + // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) + auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, + const Value *&X, + const APInt *&CA, const APInt *&CB) { + if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && + match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) + return true; + + // If X & C == 0 then (X | C) == X +_{nuw} C + if (match(A, m_Or(m_Value(X), m_APInt(CA))) && + match(B, m_Or(m_Specific(X), m_APInt(CB)))) { + KnownBits Known(CA->getBitWidth()); + computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, + /*CxtI*/ nullptr, /*DT*/ nullptr); + if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) + return true; + } + + return false; + }; + + const Value *X; + const APInt *CLHS, *CRHS; + if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) + return CLHS->ule(*CRHS); + + return false; + } + } +} + +/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred +/// ALHS ARHS" is true. Otherwise, return std::nullopt. +static std::optional<bool> +isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, + const Value *ARHS, const Value *BLHS, const Value *BRHS, + const DataLayout &DL, unsigned Depth) { + switch (Pred) { + default: + return std::nullopt; + + case CmpInst::ICMP_SLT: + case CmpInst::ICMP_SLE: + if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && + isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) + return true; + return std::nullopt; + + case CmpInst::ICMP_ULT: + case CmpInst::ICMP_ULE: + if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && + isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) + return true; + return std::nullopt; + } +} + +/// Return true if the operands of two compares (expanded as "L0 pred L1" and +/// "R0 pred R1") match. IsSwappedOps is true when the operands match, but are +/// swapped. +static bool areMatchingOperands(const Value *L0, const Value *L1, const Value *R0, + const Value *R1, bool &AreSwappedOps) { + bool AreMatchingOps = (L0 == R0 && L1 == R1); + AreSwappedOps = (L0 == R1 && L1 == R0); + return AreMatchingOps || AreSwappedOps; +} + +/// Return true if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is true. +/// Return false if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is false. +/// Otherwise, return std::nullopt if we can't infer anything. +static std::optional<bool> +isImpliedCondMatchingOperands(CmpInst::Predicate LPred, + CmpInst::Predicate RPred, bool AreSwappedOps) { + // Canonicalize the predicate as if the operands were not commuted. + if (AreSwappedOps) + RPred = ICmpInst::getSwappedPredicate(RPred); + + if (CmpInst::isImpliedTrueByMatchingCmp(LPred, RPred)) + return true; + if (CmpInst::isImpliedFalseByMatchingCmp(LPred, RPred)) + return false; + + return std::nullopt; +} + +/// Return true if "icmp LPred X, LC" implies "icmp RPred X, RC" is true. +/// Return false if "icmp LPred X, LC" implies "icmp RPred X, RC" is false. +/// Otherwise, return std::nullopt if we can't infer anything. +static std::optional<bool> isImpliedCondCommonOperandWithConstants( + CmpInst::Predicate LPred, const APInt &LC, CmpInst::Predicate RPred, + const APInt &RC) { + ConstantRange DomCR = ConstantRange::makeExactICmpRegion(LPred, LC); + ConstantRange CR = ConstantRange::makeExactICmpRegion(RPred, RC); + ConstantRange Intersection = DomCR.intersectWith(CR); + ConstantRange Difference = DomCR.difference(CR); + if (Intersection.isEmptySet()) + return false; + if (Difference.isEmptySet()) + return true; + return std::nullopt; +} + +/// Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") +/// is true. Return false if LHS implies RHS is false. Otherwise, return +/// std::nullopt if we can't infer anything. +static std::optional<bool> isImpliedCondICmps(const ICmpInst *LHS, + CmpInst::Predicate RPred, + const Value *R0, const Value *R1, + const DataLayout &DL, + bool LHSIsTrue, unsigned Depth) { + Value *L0 = LHS->getOperand(0); + Value *L1 = LHS->getOperand(1); + + // The rest of the logic assumes the LHS condition is true. If that's not the + // case, invert the predicate to make it so. + CmpInst::Predicate LPred = + LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); + + // Can we infer anything when the two compares have matching operands? + bool AreSwappedOps; + if (areMatchingOperands(L0, L1, R0, R1, AreSwappedOps)) + return isImpliedCondMatchingOperands(LPred, RPred, AreSwappedOps); + + // Can we infer anything when the 0-operands match and the 1-operands are + // constants (not necessarily matching)? + const APInt *LC, *RC; + if (L0 == R0 && match(L1, m_APInt(LC)) && match(R1, m_APInt(RC))) + return isImpliedCondCommonOperandWithConstants(LPred, *LC, RPred, *RC); + + if (LPred == RPred) + return isImpliedCondOperands(LPred, L0, L1, R0, R1, DL, Depth); + + return std::nullopt; +} + +/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is +/// false. Otherwise, return std::nullopt if we can't infer anything. We +/// expect the RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' +/// instruction. +static std::optional<bool> +isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, + const Value *RHSOp0, const Value *RHSOp1, + const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { + // The LHS must be an 'or', 'and', or a 'select' instruction. + assert((LHS->getOpcode() == Instruction::And || + LHS->getOpcode() == Instruction::Or || + LHS->getOpcode() == Instruction::Select) && + "Expected LHS to be 'and', 'or', or 'select'."); + + assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); + + // If the result of an 'or' is false, then we know both legs of the 'or' are + // false. Similarly, if the result of an 'and' is true, then we know both + // legs of the 'and' are true. + const Value *ALHS, *ARHS; + if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || + (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { + // FIXME: Make this non-recursion. + if (std::optional<bool> Implication = isImpliedCondition( + ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) + return Implication; + if (std::optional<bool> Implication = isImpliedCondition( + ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) + return Implication; + return std::nullopt; + } + return std::nullopt; +} + +std::optional<bool> +llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, + const Value *RHSOp0, const Value *RHSOp1, + const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { + // Bail out when we hit the limit. + if (Depth == MaxAnalysisRecursionDepth) + return std::nullopt; + + // A mismatch occurs when we compare a scalar cmp to a vector cmp, for + // example. + if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) + return std::nullopt; + + assert(LHS->getType()->isIntOrIntVectorTy(1) && + "Expected integer type only!"); + + // Both LHS and RHS are icmps. + const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); + if (LHSCmp) + return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, + Depth); + + /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect + /// the RHS to be an icmp. + /// FIXME: Add support for and/or/select on the RHS. + if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { + if ((LHSI->getOpcode() == Instruction::And || + LHSI->getOpcode() == Instruction::Or || + LHSI->getOpcode() == Instruction::Select)) + return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, + Depth); + } + return std::nullopt; +} + +std::optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, + const DataLayout &DL, + bool LHSIsTrue, unsigned Depth) { + // LHS ==> RHS by definition + if (LHS == RHS) + return LHSIsTrue; + + if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS)) + return isImpliedCondition(LHS, RHSCmp->getPredicate(), + RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, + LHSIsTrue, Depth); + + if (Depth == MaxAnalysisRecursionDepth) + return std::nullopt; + + // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2 + // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2 + const Value *RHS1, *RHS2; + if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) { + if (std::optional<bool> Imp = + isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1)) + if (*Imp == true) + return true; + if (std::optional<bool> Imp = + isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1)) + if (*Imp == true) + return true; + } + if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) { + if (std::optional<bool> Imp = + isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1)) + if (*Imp == false) + return false; + if (std::optional<bool> Imp = + isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1)) + if (*Imp == false) + return false; + } + + return std::nullopt; +} + +// Returns a pair (Condition, ConditionIsTrue), where Condition is a branch +// condition dominating ContextI or nullptr, if no condition is found. +static std::pair<Value *, bool> +getDomPredecessorCondition(const Instruction *ContextI) { + if (!ContextI || !ContextI->getParent()) + return {nullptr, false}; + + // TODO: This is a poor/cheap way to determine dominance. Should we use a + // dominator tree (eg, from a SimplifyQuery) instead? + const BasicBlock *ContextBB = ContextI->getParent(); + const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); + if (!PredBB) + return {nullptr, false}; + + // We need a conditional branch in the predecessor. + Value *PredCond; + BasicBlock *TrueBB, *FalseBB; + if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) + return {nullptr, false}; + + // The branch should get simplified. Don't bother simplifying this condition. + if (TrueBB == FalseBB) + return {nullptr, false}; + + assert((TrueBB == ContextBB || FalseBB == ContextBB) && + "Predecessor block does not point to successor?"); + + // Is this condition implied by the predecessor condition? + return {PredCond, TrueBB == ContextBB}; +} + +std::optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, + const Instruction *ContextI, + const DataLayout &DL) { + assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); + auto PredCond = getDomPredecessorCondition(ContextI); + if (PredCond.first) + return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); + return std::nullopt; +} + +std::optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, + const Value *LHS, + const Value *RHS, + const Instruction *ContextI, + const DataLayout &DL) { + auto PredCond = getDomPredecessorCondition(ContextI); + if (PredCond.first) + return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, + PredCond.second); + return std::nullopt; +} + +static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, + APInt &Upper, const InstrInfoQuery &IIQ, + bool PreferSignedRange) { + unsigned Width = Lower.getBitWidth(); + const APInt *C; + switch (BO.getOpcode()) { + case Instruction::Add: + if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { + bool HasNSW = IIQ.hasNoSignedWrap(&BO); + bool HasNUW = IIQ.hasNoUnsignedWrap(&BO); + + // If the caller expects a signed compare, then try to use a signed range. + // Otherwise if both no-wraps are set, use the unsigned range because it + // is never larger than the signed range. Example: + // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125]. + if (PreferSignedRange && HasNSW && HasNUW) + HasNUW = false; + + if (HasNUW) { + // 'add nuw x, C' produces [C, UINT_MAX]. + Lower = *C; + } else if (HasNSW) { + if (C->isNegative()) { + // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. + Lower = APInt::getSignedMinValue(Width); + Upper = APInt::getSignedMaxValue(Width) + *C + 1; + } else { + // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. + Lower = APInt::getSignedMinValue(Width) + *C; + Upper = APInt::getSignedMaxValue(Width) + 1; + } + } + } + break; + + case Instruction::And: + if (match(BO.getOperand(1), m_APInt(C))) + // 'and x, C' produces [0, C]. + Upper = *C + 1; + break; + + case Instruction::Or: + if (match(BO.getOperand(1), m_APInt(C))) + // 'or x, C' produces [C, UINT_MAX]. + Lower = *C; + break; + + case Instruction::AShr: + if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { + // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. + Lower = APInt::getSignedMinValue(Width).ashr(*C); + Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; + } else if (match(BO.getOperand(0), m_APInt(C))) { + unsigned ShiftAmount = Width - 1; + if (!C->isZero() && IIQ.isExact(&BO)) + ShiftAmount = C->countTrailingZeros(); + if (C->isNegative()) { + // 'ashr C, x' produces [C, C >> (Width-1)] + Lower = *C; + Upper = C->ashr(ShiftAmount) + 1; + } else { + // 'ashr C, x' produces [C >> (Width-1), C] + Lower = C->ashr(ShiftAmount); + Upper = *C + 1; + } + } + break; + + case Instruction::LShr: + if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { + // 'lshr x, C' produces [0, UINT_MAX >> C]. + Upper = APInt::getAllOnes(Width).lshr(*C) + 1; + } else if (match(BO.getOperand(0), m_APInt(C))) { + // 'lshr C, x' produces [C >> (Width-1), C]. + unsigned ShiftAmount = Width - 1; + if (!C->isZero() && IIQ.isExact(&BO)) + ShiftAmount = C->countTrailingZeros(); + Lower = C->lshr(ShiftAmount); + Upper = *C + 1; + } + break; + + case Instruction::Shl: + if (match(BO.getOperand(0), m_APInt(C))) { + if (IIQ.hasNoUnsignedWrap(&BO)) { + // 'shl nuw C, x' produces [C, C << CLZ(C)] + Lower = *C; + Upper = Lower.shl(Lower.countLeadingZeros()) + 1; + } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? + if (C->isNegative()) { + // 'shl nsw C, x' produces [C << CLO(C)-1, C] + unsigned ShiftAmount = C->countLeadingOnes() - 1; + Lower = C->shl(ShiftAmount); + Upper = *C + 1; + } else { + // 'shl nsw C, x' produces [C, C << CLZ(C)-1] + unsigned ShiftAmount = C->countLeadingZeros() - 1; + Lower = *C; + Upper = C->shl(ShiftAmount) + 1; + } + } + } + break; + + case Instruction::SDiv: + if (match(BO.getOperand(1), m_APInt(C))) { + APInt IntMin = APInt::getSignedMinValue(Width); + APInt IntMax = APInt::getSignedMaxValue(Width); + if (C->isAllOnes()) { + // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] + // where C != -1 and C != 0 and C != 1 + Lower = IntMin + 1; + Upper = IntMax + 1; + } else if (C->countLeadingZeros() < Width - 1) { + // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] + // where C != -1 and C != 0 and C != 1 + Lower = IntMin.sdiv(*C); + Upper = IntMax.sdiv(*C); + if (Lower.sgt(Upper)) + std::swap(Lower, Upper); + Upper = Upper + 1; + assert(Upper != Lower && "Upper part of range has wrapped!"); + } + } else if (match(BO.getOperand(0), m_APInt(C))) { + if (C->isMinSignedValue()) { + // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. + Lower = *C; + Upper = Lower.lshr(1) + 1; + } else { + // 'sdiv C, x' produces [-|C|, |C|]. + Upper = C->abs() + 1; + Lower = (-Upper) + 1; + } + } + break; + + case Instruction::UDiv: + if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { + // 'udiv x, C' produces [0, UINT_MAX / C]. + Upper = APInt::getMaxValue(Width).udiv(*C) + 1; + } else if (match(BO.getOperand(0), m_APInt(C))) { + // 'udiv C, x' produces [0, C]. + Upper = *C + 1; + } + break; + + case Instruction::SRem: + if (match(BO.getOperand(1), m_APInt(C))) { + // 'srem x, C' produces (-|C|, |C|). + Upper = C->abs(); + Lower = (-Upper) + 1; + } + break; + + case Instruction::URem: + if (match(BO.getOperand(1), m_APInt(C))) + // 'urem x, C' produces [0, C). + Upper = *C; + break; + + default: + break; + } +} + +static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, + APInt &Upper) { + unsigned Width = Lower.getBitWidth(); + const APInt *C; + switch (II.getIntrinsicID()) { + case Intrinsic::ctpop: + case Intrinsic::ctlz: + case Intrinsic::cttz: + // Maximum of set/clear bits is the bit width. + assert(Lower == 0 && "Expected lower bound to be zero"); + Upper = Width + 1; + break; + case Intrinsic::uadd_sat: + // uadd.sat(x, C) produces [C, UINT_MAX]. + if (match(II.getOperand(0), m_APInt(C)) || + match(II.getOperand(1), m_APInt(C))) + Lower = *C; + break; + case Intrinsic::sadd_sat: + if (match(II.getOperand(0), m_APInt(C)) || + match(II.getOperand(1), m_APInt(C))) { + if (C->isNegative()) { + // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. + Lower = APInt::getSignedMinValue(Width); + Upper = APInt::getSignedMaxValue(Width) + *C + 1; + } else { + // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. + Lower = APInt::getSignedMinValue(Width) + *C; + Upper = APInt::getSignedMaxValue(Width) + 1; + } + } + break; + case Intrinsic::usub_sat: + // usub.sat(C, x) produces [0, C]. + if (match(II.getOperand(0), m_APInt(C))) + Upper = *C + 1; + // usub.sat(x, C) produces [0, UINT_MAX - C]. + else if (match(II.getOperand(1), m_APInt(C))) + Upper = APInt::getMaxValue(Width) - *C + 1; + break; + case Intrinsic::ssub_sat: + if (match(II.getOperand(0), m_APInt(C))) { + if (C->isNegative()) { + // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. + Lower = APInt::getSignedMinValue(Width); + Upper = *C - APInt::getSignedMinValue(Width) + 1; + } else { + // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. + Lower = *C - APInt::getSignedMaxValue(Width); + Upper = APInt::getSignedMaxValue(Width) + 1; + } + } else if (match(II.getOperand(1), m_APInt(C))) { + if (C->isNegative()) { + // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: + Lower = APInt::getSignedMinValue(Width) - *C; + Upper = APInt::getSignedMaxValue(Width) + 1; + } else { + // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. + Lower = APInt::getSignedMinValue(Width); + Upper = APInt::getSignedMaxValue(Width) - *C + 1; + } + } + break; + case Intrinsic::umin: + case Intrinsic::umax: + case Intrinsic::smin: + case Intrinsic::smax: + if (!match(II.getOperand(0), m_APInt(C)) && + !match(II.getOperand(1), m_APInt(C))) + break; + + switch (II.getIntrinsicID()) { + case Intrinsic::umin: + Upper = *C + 1; + break; + case Intrinsic::umax: + Lower = *C; + break; + case Intrinsic::smin: + Lower = APInt::getSignedMinValue(Width); + Upper = *C + 1; + break; + case Intrinsic::smax: + Lower = *C; + Upper = APInt::getSignedMaxValue(Width) + 1; + break; + default: + llvm_unreachable("Must be min/max intrinsic"); + } + break; + case Intrinsic::abs: + // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], + // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. + if (match(II.getOperand(1), m_One())) + Upper = APInt::getSignedMaxValue(Width) + 1; + else + Upper = APInt::getSignedMinValue(Width) + 1; + break; + default: + break; + } +} + +static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, + APInt &Upper, const InstrInfoQuery &IIQ) { + const Value *LHS = nullptr, *RHS = nullptr; + SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); + if (R.Flavor == SPF_UNKNOWN) + return; + + unsigned BitWidth = SI.getType()->getScalarSizeInBits(); + + if (R.Flavor == SelectPatternFlavor::SPF_ABS) { + // If the negation part of the abs (in RHS) has the NSW flag, + // then the result of abs(X) is [0..SIGNED_MAX], + // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. + Lower = APInt::getZero(BitWidth); + if (match(RHS, m_Neg(m_Specific(LHS))) && + IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) + Upper = APInt::getSignedMaxValue(BitWidth) + 1; + else + Upper = APInt::getSignedMinValue(BitWidth) + 1; + return; + } + + if (R.Flavor == SelectPatternFlavor::SPF_NABS) { + // The result of -abs(X) is <= 0. + Lower = APInt::getSignedMinValue(BitWidth); + Upper = APInt(BitWidth, 1); + return; + } + + const APInt *C; + if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) + return; + + switch (R.Flavor) { + case SPF_UMIN: + Upper = *C + 1; + break; + case SPF_UMAX: + Lower = *C; + break; + case SPF_SMIN: + Lower = APInt::getSignedMinValue(BitWidth); + Upper = *C + 1; + break; + case SPF_SMAX: + Lower = *C; + Upper = APInt::getSignedMaxValue(BitWidth) + 1; + break; + default: + break; + } +} + +static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) { + // The maximum representable value of a half is 65504. For floats the maximum + // value is 3.4e38 which requires roughly 129 bits. + unsigned BitWidth = I->getType()->getScalarSizeInBits(); + if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy()) + return; + if (isa<FPToSIInst>(I) && BitWidth >= 17) { + Lower = APInt(BitWidth, -65504); + Upper = APInt(BitWidth, 65505); + } + + if (isa<FPToUIInst>(I) && BitWidth >= 16) { + // For a fptoui the lower limit is left as 0. + Upper = APInt(BitWidth, 65505); + } +} + +ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned, + bool UseInstrInfo, AssumptionCache *AC, + const Instruction *CtxI, + const DominatorTree *DT, + unsigned Depth) { + assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); + + if (Depth == MaxAnalysisRecursionDepth) + return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); + + const APInt *C; + if (match(V, m_APInt(C))) + return ConstantRange(*C); + + InstrInfoQuery IIQ(UseInstrInfo); + unsigned BitWidth = V->getType()->getScalarSizeInBits(); + APInt Lower = APInt(BitWidth, 0); + APInt Upper = APInt(BitWidth, 0); + if (auto *BO = dyn_cast<BinaryOperator>(V)) + setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned); + else if (auto *II = dyn_cast<IntrinsicInst>(V)) + setLimitsForIntrinsic(*II, Lower, Upper); + else if (auto *SI = dyn_cast<SelectInst>(V)) + setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); + else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V)) + setLimitForFPToI(cast<Instruction>(V), Lower, Upper); + + ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); + + if (auto *I = dyn_cast<Instruction>(V)) + if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) + CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); + + if (CtxI && AC) { + // Try to restrict the range based on information from assumptions. + for (auto &AssumeVH : AC->assumptionsFor(V)) { + if (!AssumeVH) + continue; + IntrinsicInst *I = cast<IntrinsicInst>(AssumeVH); + assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && + "Got assumption for the wrong function!"); + + if (!isValidAssumeForContext(I, CtxI, DT)) + continue; + Value *Arg = I->getArgOperand(0); + ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); + // Currently we just use information from comparisons. + if (!Cmp || Cmp->getOperand(0) != V) + continue; + // TODO: Set "ForSigned" parameter via Cmp->isSigned()? + ConstantRange RHS = + computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false, + UseInstrInfo, AC, I, DT, Depth + 1); + CR = CR.intersectWith( + ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS)); + } + } + + return CR; +} + +static std::optional<int64_t> +getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { + // Skip over the first indices. + gep_type_iterator GTI = gep_type_begin(GEP); + for (unsigned i = 1; i != Idx; ++i, ++GTI) + /*skip along*/; + + // Compute the offset implied by the rest of the indices. + int64_t Offset = 0; + for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { + ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); + if (!OpC) + return std::nullopt; + if (OpC->isZero()) + continue; // No offset. + + // Handle struct indices, which add their field offset to the pointer. + if (StructType *STy = GTI.getStructTypeOrNull()) { + Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); + continue; + } + + // Otherwise, we have a sequential type like an array or fixed-length + // vector. Multiply the index by the ElementSize. + TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); + if (Size.isScalable()) + return std::nullopt; + Offset += Size.getFixedValue() * OpC->getSExtValue(); + } + + return Offset; +} + +std::optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, + const Value *Ptr2, + const DataLayout &DL) { + APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0); + APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0); + Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true); + Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true); + + // Handle the trivial case first. + if (Ptr1 == Ptr2) + return Offset2.getSExtValue() - Offset1.getSExtValue(); + + const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); + const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); + + // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical + // base. After that base, they may have some number of common (and + // potentially variable) indices. After that they handle some constant + // offset, which determines their offset from each other. At this point, we + // handle no other case. + if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) || + GEP1->getSourceElementType() != GEP2->getSourceElementType()) + return std::nullopt; + + // Skip any common indices and track the GEP types. + unsigned Idx = 1; + for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) + if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) + break; + + auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL); + auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL); + if (!IOffset1 || !IOffset2) + return std::nullopt; + return *IOffset2 - *IOffset1 + Offset2.getSExtValue() - + Offset1.getSExtValue(); +} |
