summaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Analysis/ValueTracking.cpp
diff options
context:
space:
mode:
authorvitalyisaev <[email protected]>2023-06-29 10:00:50 +0300
committervitalyisaev <[email protected]>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm16/lib/Analysis/ValueTracking.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm16/lib/Analysis/ValueTracking.cpp')
-rw-r--r--contrib/libs/llvm16/lib/Analysis/ValueTracking.cpp7535
1 files changed, 7535 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Analysis/ValueTracking.cpp b/contrib/libs/llvm16/lib/Analysis/ValueTracking.cpp
new file mode 100644
index 00000000000..a13bdade320
--- /dev/null
+++ b/contrib/libs/llvm16/lib/Analysis/ValueTracking.cpp
@@ -0,0 +1,7535 @@
+//===- ValueTracking.cpp - Walk computations to compute properties --------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains routines that help analyze properties that chains of
+// computations have.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumeBundleQueries.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/EHPersonalities.h"
+#include "llvm/Analysis/GuardUtils.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/IntrinsicsAArch64.h"
+#include "llvm/IR/IntrinsicsRISCV.h"
+#include "llvm/IR/IntrinsicsX86.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <optional>
+#include <utility>
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+// Controls the number of uses of the value searched for possible
+// dominating comparisons.
+static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
+ cl::Hidden, cl::init(20));
+
+
+/// Returns the bitwidth of the given scalar or pointer type. For vector types,
+/// returns the element type's bitwidth.
+static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
+ if (unsigned BitWidth = Ty->getScalarSizeInBits())
+ return BitWidth;
+
+ return DL.getPointerTypeSizeInBits(Ty);
+}
+
+namespace {
+
+// Simplifying using an assume can only be done in a particular control-flow
+// context (the context instruction provides that context). If an assume and
+// the context instruction are not in the same block then the DT helps in
+// figuring out if we can use it.
+struct Query {
+ const DataLayout &DL;
+ AssumptionCache *AC;
+ const Instruction *CxtI;
+ const DominatorTree *DT;
+
+ // Unlike the other analyses, this may be a nullptr because not all clients
+ // provide it currently.
+ OptimizationRemarkEmitter *ORE;
+
+ /// If true, it is safe to use metadata during simplification.
+ InstrInfoQuery IIQ;
+
+ Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT, bool UseInstrInfo,
+ OptimizationRemarkEmitter *ORE = nullptr)
+ : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
+};
+
+} // end anonymous namespace
+
+// Given the provided Value and, potentially, a context instruction, return
+// the preferred context instruction (if any).
+static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
+ // If we've been provided with a context instruction, then use that (provided
+ // it has been inserted).
+ if (CxtI && CxtI->getParent())
+ return CxtI;
+
+ // If the value is really an already-inserted instruction, then use that.
+ CxtI = dyn_cast<Instruction>(V);
+ if (CxtI && CxtI->getParent())
+ return CxtI;
+
+ return nullptr;
+}
+
+static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
+ // If we've been provided with a context instruction, then use that (provided
+ // it has been inserted).
+ if (CxtI && CxtI->getParent())
+ return CxtI;
+
+ // If the value is really an already-inserted instruction, then use that.
+ CxtI = dyn_cast<Instruction>(V1);
+ if (CxtI && CxtI->getParent())
+ return CxtI;
+
+ CxtI = dyn_cast<Instruction>(V2);
+ if (CxtI && CxtI->getParent())
+ return CxtI;
+
+ return nullptr;
+}
+
+static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
+ const APInt &DemandedElts,
+ APInt &DemandedLHS, APInt &DemandedRHS) {
+ if (isa<ScalableVectorType>(Shuf->getType())) {
+ assert(DemandedElts == APInt(1,1));
+ DemandedLHS = DemandedRHS = DemandedElts;
+ return true;
+ }
+
+ int NumElts =
+ cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
+ return llvm::getShuffleDemandedElts(NumElts, Shuf->getShuffleMask(),
+ DemandedElts, DemandedLHS, DemandedRHS);
+}
+
+static void computeKnownBits(const Value *V, const APInt &DemandedElts,
+ KnownBits &Known, unsigned Depth, const Query &Q);
+
+static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
+ const Query &Q) {
+ // Since the number of lanes in a scalable vector is unknown at compile time,
+ // we track one bit which is implicitly broadcast to all lanes. This means
+ // that all lanes in a scalable vector are considered demanded.
+ auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
+ APInt DemandedElts =
+ FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
+ computeKnownBits(V, DemandedElts, Known, Depth, Q);
+}
+
+void llvm::computeKnownBits(const Value *V, KnownBits &Known,
+ const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT,
+ OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
+ ::computeKnownBits(V, Known, Depth,
+ Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
+}
+
+void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
+ KnownBits &Known, const DataLayout &DL,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI, const DominatorTree *DT,
+ OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
+ ::computeKnownBits(V, DemandedElts, Known, Depth,
+ Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
+}
+
+static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
+ unsigned Depth, const Query &Q);
+
+static KnownBits computeKnownBits(const Value *V, unsigned Depth,
+ const Query &Q);
+
+KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT,
+ OptimizationRemarkEmitter *ORE,
+ bool UseInstrInfo) {
+ return ::computeKnownBits(
+ V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
+}
+
+KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
+ const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT,
+ OptimizationRemarkEmitter *ORE,
+ bool UseInstrInfo) {
+ return ::computeKnownBits(
+ V, DemandedElts, Depth,
+ Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
+}
+
+bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
+ const DataLayout &DL, AssumptionCache *AC,
+ const Instruction *CxtI, const DominatorTree *DT,
+ bool UseInstrInfo) {
+ assert(LHS->getType() == RHS->getType() &&
+ "LHS and RHS should have the same type");
+ assert(LHS->getType()->isIntOrIntVectorTy() &&
+ "LHS and RHS should be integers");
+ // Look for an inverted mask: (X & ~M) op (Y & M).
+ {
+ Value *M;
+ if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
+ match(RHS, m_c_And(m_Specific(M), m_Value())))
+ return true;
+ if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
+ match(LHS, m_c_And(m_Specific(M), m_Value())))
+ return true;
+ }
+
+ // X op (Y & ~X)
+ if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) ||
+ match(LHS, m_c_And(m_Not(m_Specific(RHS)), m_Value())))
+ return true;
+
+ // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern
+ // for constant Y.
+ Value *Y;
+ if (match(RHS,
+ m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) ||
+ match(LHS, m_c_Xor(m_c_And(m_Specific(RHS), m_Value(Y)), m_Deferred(Y))))
+ return true;
+
+ // Peek through extends to find a 'not' of the other side:
+ // (ext Y) op ext(~Y)
+ // (ext ~Y) op ext(Y)
+ if ((match(LHS, m_ZExtOrSExt(m_Value(Y))) &&
+ match(RHS, m_ZExtOrSExt(m_Not(m_Specific(Y))))) ||
+ (match(RHS, m_ZExtOrSExt(m_Value(Y))) &&
+ match(LHS, m_ZExtOrSExt(m_Not(m_Specific(Y))))))
+ return true;
+
+ // Look for: (A & B) op ~(A | B)
+ {
+ Value *A, *B;
+ if (match(LHS, m_And(m_Value(A), m_Value(B))) &&
+ match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
+ return true;
+ if (match(RHS, m_And(m_Value(A), m_Value(B))) &&
+ match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
+ return true;
+ }
+ IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
+ KnownBits LHSKnown(IT->getBitWidth());
+ KnownBits RHSKnown(IT->getBitWidth());
+ computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
+ computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
+ return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown);
+}
+
+bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) {
+ return !I->user_empty() && all_of(I->users(), [](const User *U) {
+ ICmpInst::Predicate P;
+ return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
+ });
+}
+
+static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
+ const Query &Q);
+
+bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
+ bool OrZero, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT, bool UseInstrInfo) {
+ return ::isKnownToBeAPowerOfTwo(
+ V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
+}
+
+static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
+ unsigned Depth, const Query &Q);
+
+static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
+
+bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT, bool UseInstrInfo) {
+ return ::isKnownNonZero(V, Depth,
+ Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
+}
+
+bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI, const DominatorTree *DT,
+ bool UseInstrInfo) {
+ KnownBits Known =
+ computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
+ return Known.isNonNegative();
+}
+
+bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT, bool UseInstrInfo) {
+ if (auto *CI = dyn_cast<ConstantInt>(V))
+ return CI->getValue().isStrictlyPositive();
+
+ // TODO: We'd doing two recursive queries here. We should factor this such
+ // that only a single query is needed.
+ return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
+ isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
+}
+
+bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT, bool UseInstrInfo) {
+ KnownBits Known =
+ computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
+ return Known.isNegative();
+}
+
+static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
+ const Query &Q);
+
+bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
+ const DataLayout &DL, AssumptionCache *AC,
+ const Instruction *CxtI, const DominatorTree *DT,
+ bool UseInstrInfo) {
+ return ::isKnownNonEqual(V1, V2, 0,
+ Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
+ UseInstrInfo, /*ORE=*/nullptr));
+}
+
+static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
+ const Query &Q);
+
+bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
+ const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT, bool UseInstrInfo) {
+ return ::MaskedValueIsZero(
+ V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
+}
+
+static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
+ unsigned Depth, const Query &Q);
+
+static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
+ const Query &Q) {
+ auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
+ APInt DemandedElts =
+ FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
+ return ComputeNumSignBits(V, DemandedElts, Depth, Q);
+}
+
+unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT, bool UseInstrInfo) {
+ return ::ComputeNumSignBits(
+ V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
+}
+
+unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT);
+ return V->getType()->getScalarSizeInBits() - SignBits + 1;
+}
+
+static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
+ bool NSW, const APInt &DemandedElts,
+ KnownBits &KnownOut, KnownBits &Known2,
+ unsigned Depth, const Query &Q) {
+ computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
+
+ // If one operand is unknown and we have no nowrap information,
+ // the result will be unknown independently of the second operand.
+ if (KnownOut.isUnknown() && !NSW)
+ return;
+
+ computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
+ KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
+}
+
+static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
+ const APInt &DemandedElts, KnownBits &Known,
+ KnownBits &Known2, unsigned Depth,
+ const Query &Q) {
+ computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
+ computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
+
+ bool isKnownNegative = false;
+ bool isKnownNonNegative = false;
+ // If the multiplication is known not to overflow, compute the sign bit.
+ if (NSW) {
+ if (Op0 == Op1) {
+ // The product of a number with itself is non-negative.
+ isKnownNonNegative = true;
+ } else {
+ bool isKnownNonNegativeOp1 = Known.isNonNegative();
+ bool isKnownNonNegativeOp0 = Known2.isNonNegative();
+ bool isKnownNegativeOp1 = Known.isNegative();
+ bool isKnownNegativeOp0 = Known2.isNegative();
+ // The product of two numbers with the same sign is non-negative.
+ isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
+ (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
+ // The product of a negative number and a non-negative number is either
+ // negative or zero.
+ if (!isKnownNonNegative)
+ isKnownNegative =
+ (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
+ Known2.isNonZero()) ||
+ (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
+ }
+ }
+
+ bool SelfMultiply = Op0 == Op1;
+ // TODO: SelfMultiply can be poison, but not undef.
+ if (SelfMultiply)
+ SelfMultiply &=
+ isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1);
+ Known = KnownBits::mul(Known, Known2, SelfMultiply);
+
+ // Only make use of no-wrap flags if we failed to compute the sign bit
+ // directly. This matters if the multiplication always overflows, in
+ // which case we prefer to follow the result of the direct computation,
+ // though as the program is invoking undefined behaviour we can choose
+ // whatever we like here.
+ if (isKnownNonNegative && !Known.isNegative())
+ Known.makeNonNegative();
+ else if (isKnownNegative && !Known.isNonNegative())
+ Known.makeNegative();
+}
+
+void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
+ KnownBits &Known) {
+ unsigned BitWidth = Known.getBitWidth();
+ unsigned NumRanges = Ranges.getNumOperands() / 2;
+ assert(NumRanges >= 1);
+
+ Known.Zero.setAllBits();
+ Known.One.setAllBits();
+
+ for (unsigned i = 0; i < NumRanges; ++i) {
+ ConstantInt *Lower =
+ mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
+ ConstantInt *Upper =
+ mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
+ ConstantRange Range(Lower->getValue(), Upper->getValue());
+
+ // The first CommonPrefixBits of all values in Range are equal.
+ unsigned CommonPrefixBits =
+ (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
+ APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
+ APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
+ Known.One &= UnsignedMax & Mask;
+ Known.Zero &= ~UnsignedMax & Mask;
+ }
+}
+
+static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
+ SmallVector<const Value *, 16> WorkSet(1, I);
+ SmallPtrSet<const Value *, 32> Visited;
+ SmallPtrSet<const Value *, 16> EphValues;
+
+ // The instruction defining an assumption's condition itself is always
+ // considered ephemeral to that assumption (even if it has other
+ // non-ephemeral users). See r246696's test case for an example.
+ if (is_contained(I->operands(), E))
+ return true;
+
+ while (!WorkSet.empty()) {
+ const Value *V = WorkSet.pop_back_val();
+ if (!Visited.insert(V).second)
+ continue;
+
+ // If all uses of this value are ephemeral, then so is this value.
+ if (llvm::all_of(V->users(), [&](const User *U) {
+ return EphValues.count(U);
+ })) {
+ if (V == E)
+ return true;
+
+ if (V == I || (isa<Instruction>(V) &&
+ !cast<Instruction>(V)->mayHaveSideEffects() &&
+ !cast<Instruction>(V)->isTerminator())) {
+ EphValues.insert(V);
+ if (const User *U = dyn_cast<User>(V))
+ append_range(WorkSet, U->operands());
+ }
+ }
+ }
+
+ return false;
+}
+
+// Is this an intrinsic that cannot be speculated but also cannot trap?
+bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
+ if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
+ return CI->isAssumeLikeIntrinsic();
+
+ return false;
+}
+
+bool llvm::isValidAssumeForContext(const Instruction *Inv,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ // There are two restrictions on the use of an assume:
+ // 1. The assume must dominate the context (or the control flow must
+ // reach the assume whenever it reaches the context).
+ // 2. The context must not be in the assume's set of ephemeral values
+ // (otherwise we will use the assume to prove that the condition
+ // feeding the assume is trivially true, thus causing the removal of
+ // the assume).
+
+ if (Inv->getParent() == CxtI->getParent()) {
+ // If Inv and CtxI are in the same block, check if the assume (Inv) is first
+ // in the BB.
+ if (Inv->comesBefore(CxtI))
+ return true;
+
+ // Don't let an assume affect itself - this would cause the problems
+ // `isEphemeralValueOf` is trying to prevent, and it would also make
+ // the loop below go out of bounds.
+ if (Inv == CxtI)
+ return false;
+
+ // The context comes first, but they're both in the same block.
+ // Make sure there is nothing in between that might interrupt
+ // the control flow, not even CxtI itself.
+ // We limit the scan distance between the assume and its context instruction
+ // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
+ // it can be adjusted if needed (could be turned into a cl::opt).
+ auto Range = make_range(CxtI->getIterator(), Inv->getIterator());
+ if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15))
+ return false;
+
+ return !isEphemeralValueOf(Inv, CxtI);
+ }
+
+ // Inv and CxtI are in different blocks.
+ if (DT) {
+ if (DT->dominates(Inv, CxtI))
+ return true;
+ } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
+ // We don't have a DT, but this trivially dominates.
+ return true;
+ }
+
+ return false;
+}
+
+static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
+ // v u> y implies v != 0.
+ if (Pred == ICmpInst::ICMP_UGT)
+ return true;
+
+ // Special-case v != 0 to also handle v != null.
+ if (Pred == ICmpInst::ICMP_NE)
+ return match(RHS, m_Zero());
+
+ // All other predicates - rely on generic ConstantRange handling.
+ const APInt *C;
+ if (!match(RHS, m_APInt(C)))
+ return false;
+
+ ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
+ return !TrueValues.contains(APInt::getZero(C->getBitWidth()));
+}
+
+static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
+ // Use of assumptions is context-sensitive. If we don't have a context, we
+ // cannot use them!
+ if (!Q.AC || !Q.CxtI)
+ return false;
+
+ if (Q.CxtI && V->getType()->isPointerTy()) {
+ SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
+ if (!NullPointerIsDefined(Q.CxtI->getFunction(),
+ V->getType()->getPointerAddressSpace()))
+ AttrKinds.push_back(Attribute::Dereferenceable);
+
+ if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
+ return true;
+ }
+
+ for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
+ if (!AssumeVH)
+ continue;
+ CondGuardInst *I = cast<CondGuardInst>(AssumeVH);
+ assert(I->getFunction() == Q.CxtI->getFunction() &&
+ "Got assumption for the wrong function!");
+
+ // Warning: This loop can end up being somewhat performance sensitive.
+ // We're running this loop for once for each value queried resulting in a
+ // runtime of ~O(#assumes * #values).
+
+ Value *RHS;
+ CmpInst::Predicate Pred;
+ auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
+ if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
+ return false;
+
+ if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
+ return true;
+ }
+
+ return false;
+}
+
+static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
+ unsigned Depth, const Query &Q) {
+ // Use of assumptions is context-sensitive. If we don't have a context, we
+ // cannot use them!
+ if (!Q.AC || !Q.CxtI)
+ return;
+
+ unsigned BitWidth = Known.getBitWidth();
+
+ // Refine Known set if the pointer alignment is set by assume bundles.
+ if (V->getType()->isPointerTy()) {
+ if (RetainedKnowledge RK = getKnowledgeValidInContext(
+ V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
+ if (isPowerOf2_64(RK.ArgValue))
+ Known.Zero.setLowBits(Log2_64(RK.ArgValue));
+ }
+ }
+
+ // Note that the patterns below need to be kept in sync with the code
+ // in AssumptionCache::updateAffectedValues.
+
+ for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
+ if (!AssumeVH)
+ continue;
+ CondGuardInst *I = cast<CondGuardInst>(AssumeVH);
+ assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
+ "Got assumption for the wrong function!");
+
+ // Warning: This loop can end up being somewhat performance sensitive.
+ // We're running this loop for once for each value queried resulting in a
+ // runtime of ~O(#assumes * #values).
+
+ Value *Arg = I->getArgOperand(0);
+
+ if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ assert(BitWidth == 1 && "assume operand is not i1?");
+ Known.setAllOnes();
+ return;
+ }
+ if (match(Arg, m_Not(m_Specific(V))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ assert(BitWidth == 1 && "assume operand is not i1?");
+ Known.setAllZero();
+ return;
+ }
+
+ // The remaining tests are all recursive, so bail out if we hit the limit.
+ if (Depth == MaxAnalysisRecursionDepth)
+ continue;
+
+ ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
+ if (!Cmp)
+ continue;
+
+ // We are attempting to compute known bits for the operands of an assume.
+ // Do not try to use other assumptions for those recursive calls because
+ // that can lead to mutual recursion and a compile-time explosion.
+ // An example of the mutual recursion: computeKnownBits can call
+ // isKnownNonZero which calls computeKnownBitsFromAssume (this function)
+ // and so on.
+ Query QueryNoAC = Q;
+ QueryNoAC.AC = nullptr;
+
+ // Note that ptrtoint may change the bitwidth.
+ Value *A, *B;
+ auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
+
+ CmpInst::Predicate Pred;
+ uint64_t C;
+ switch (Cmp->getPredicate()) {
+ default:
+ break;
+ case ICmpInst::ICMP_EQ:
+ // assume(v = a)
+ if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown =
+ computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+ Known.Zero |= RHSKnown.Zero;
+ Known.One |= RHSKnown.One;
+ // assume(v & b = a)
+ } else if (match(Cmp,
+ m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown =
+ computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+ KnownBits MaskKnown =
+ computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+
+ // For those bits in the mask that are known to be one, we can propagate
+ // known bits from the RHS to V.
+ Known.Zero |= RHSKnown.Zero & MaskKnown.One;
+ Known.One |= RHSKnown.One & MaskKnown.One;
+ // assume(~(v & b) = a)
+ } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
+ m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown =
+ computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+ KnownBits MaskKnown =
+ computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+
+ // For those bits in the mask that are known to be one, we can propagate
+ // inverted known bits from the RHS to V.
+ Known.Zero |= RHSKnown.One & MaskKnown.One;
+ Known.One |= RHSKnown.Zero & MaskKnown.One;
+ // assume(v | b = a)
+ } else if (match(Cmp,
+ m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown =
+ computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+ KnownBits BKnown =
+ computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+
+ // For those bits in B that are known to be zero, we can propagate known
+ // bits from the RHS to V.
+ Known.Zero |= RHSKnown.Zero & BKnown.Zero;
+ Known.One |= RHSKnown.One & BKnown.Zero;
+ // assume(~(v | b) = a)
+ } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
+ m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown =
+ computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+ KnownBits BKnown =
+ computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+
+ // For those bits in B that are known to be zero, we can propagate
+ // inverted known bits from the RHS to V.
+ Known.Zero |= RHSKnown.One & BKnown.Zero;
+ Known.One |= RHSKnown.Zero & BKnown.Zero;
+ // assume(v ^ b = a)
+ } else if (match(Cmp,
+ m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown =
+ computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+ KnownBits BKnown =
+ computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+
+ // For those bits in B that are known to be zero, we can propagate known
+ // bits from the RHS to V. For those bits in B that are known to be one,
+ // we can propagate inverted known bits from the RHS to V.
+ Known.Zero |= RHSKnown.Zero & BKnown.Zero;
+ Known.One |= RHSKnown.One & BKnown.Zero;
+ Known.Zero |= RHSKnown.One & BKnown.One;
+ Known.One |= RHSKnown.Zero & BKnown.One;
+ // assume(~(v ^ b) = a)
+ } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
+ m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown =
+ computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+ KnownBits BKnown =
+ computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+
+ // For those bits in B that are known to be zero, we can propagate
+ // inverted known bits from the RHS to V. For those bits in B that are
+ // known to be one, we can propagate known bits from the RHS to V.
+ Known.Zero |= RHSKnown.One & BKnown.Zero;
+ Known.One |= RHSKnown.Zero & BKnown.Zero;
+ Known.Zero |= RHSKnown.Zero & BKnown.One;
+ Known.One |= RHSKnown.One & BKnown.One;
+ // assume(v << c = a)
+ } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
+ m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
+ KnownBits RHSKnown =
+ computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+
+ // For those bits in RHS that are known, we can propagate them to known
+ // bits in V shifted to the right by C.
+ RHSKnown.Zero.lshrInPlace(C);
+ Known.Zero |= RHSKnown.Zero;
+ RHSKnown.One.lshrInPlace(C);
+ Known.One |= RHSKnown.One;
+ // assume(~(v << c) = a)
+ } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
+ m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
+ KnownBits RHSKnown =
+ computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+ // For those bits in RHS that are known, we can propagate them inverted
+ // to known bits in V shifted to the right by C.
+ RHSKnown.One.lshrInPlace(C);
+ Known.Zero |= RHSKnown.One;
+ RHSKnown.Zero.lshrInPlace(C);
+ Known.One |= RHSKnown.Zero;
+ // assume(v >> c = a)
+ } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
+ m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
+ KnownBits RHSKnown =
+ computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+ // For those bits in RHS that are known, we can propagate them to known
+ // bits in V shifted to the right by C.
+ Known.Zero |= RHSKnown.Zero << C;
+ Known.One |= RHSKnown.One << C;
+ // assume(~(v >> c) = a)
+ } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
+ m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
+ KnownBits RHSKnown =
+ computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+ // For those bits in RHS that are known, we can propagate them inverted
+ // to known bits in V shifted to the right by C.
+ Known.Zero |= RHSKnown.One << C;
+ Known.One |= RHSKnown.Zero << C;
+ }
+ break;
+ case ICmpInst::ICMP_SGE:
+ // assume(v >=_s c) where c is non-negative
+ if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown =
+ computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
+
+ if (RHSKnown.isNonNegative()) {
+ // We know that the sign bit is zero.
+ Known.makeNonNegative();
+ }
+ }
+ break;
+ case ICmpInst::ICMP_SGT:
+ // assume(v >_s c) where c is at least -1.
+ if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown =
+ computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
+
+ if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
+ // We know that the sign bit is zero.
+ Known.makeNonNegative();
+ }
+ }
+ break;
+ case ICmpInst::ICMP_SLE:
+ // assume(v <=_s c) where c is negative
+ if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown =
+ computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
+
+ if (RHSKnown.isNegative()) {
+ // We know that the sign bit is one.
+ Known.makeNegative();
+ }
+ }
+ break;
+ case ICmpInst::ICMP_SLT:
+ // assume(v <_s c) where c is non-positive
+ if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown =
+ computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+
+ if (RHSKnown.isZero() || RHSKnown.isNegative()) {
+ // We know that the sign bit is one.
+ Known.makeNegative();
+ }
+ }
+ break;
+ case ICmpInst::ICMP_ULE:
+ // assume(v <=_u c)
+ if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown =
+ computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+
+ // Whatever high bits in c are zero are known to be zero.
+ Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
+ }
+ break;
+ case ICmpInst::ICMP_ULT:
+ // assume(v <_u c)
+ if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown =
+ computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
+
+ // If the RHS is known zero, then this assumption must be wrong (nothing
+ // is unsigned less than zero). Signal a conflict and get out of here.
+ if (RHSKnown.isZero()) {
+ Known.Zero.setAllBits();
+ Known.One.setAllBits();
+ break;
+ }
+
+ // Whatever high bits in c are zero are known to be zero (if c is a power
+ // of 2, then one more).
+ if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC))
+ Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
+ else
+ Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
+ }
+ break;
+ case ICmpInst::ICMP_NE: {
+ // assume (v & b != 0) where b is a power of 2
+ const APInt *BPow2;
+ if (match(Cmp, m_ICmp(Pred, m_c_And(m_V, m_Power2(BPow2)), m_Zero())) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ Known.One |= BPow2->zextOrTrunc(BitWidth);
+ }
+ } break;
+ }
+ }
+
+ // If assumptions conflict with each other or previous known bits, then we
+ // have a logical fallacy. It's possible that the assumption is not reachable,
+ // so this isn't a real bug. On the other hand, the program may have undefined
+ // behavior, or we might have a bug in the compiler. We can't assert/crash, so
+ // clear out the known bits, try to warn the user, and hope for the best.
+ if (Known.Zero.intersects(Known.One)) {
+ Known.resetAll();
+
+ if (Q.ORE)
+ Q.ORE->emit([&]() {
+ auto *CxtI = const_cast<Instruction *>(Q.CxtI);
+ return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
+ CxtI)
+ << "Detected conflicting code assumptions. Program may "
+ "have undefined behavior, or compiler may have "
+ "internal error.";
+ });
+ }
+}
+
+/// Compute known bits from a shift operator, including those with a
+/// non-constant shift amount. Known is the output of this function. Known2 is a
+/// pre-allocated temporary with the same bit width as Known and on return
+/// contains the known bit of the shift value source. KF is an
+/// operator-specific function that, given the known-bits and a shift amount,
+/// compute the implied known-bits of the shift operator's result respectively
+/// for that shift amount. The results from calling KF are conservatively
+/// combined for all permitted shift amounts.
+static void computeKnownBitsFromShiftOperator(
+ const Operator *I, const APInt &DemandedElts, KnownBits &Known,
+ KnownBits &Known2, unsigned Depth, const Query &Q,
+ function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
+ unsigned BitWidth = Known.getBitWidth();
+ computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
+
+ // Note: We cannot use Known.Zero.getLimitedValue() here, because if
+ // BitWidth > 64 and any upper bits are known, we'll end up returning the
+ // limit value (which implies all bits are known).
+ uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
+ uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
+ bool ShiftAmtIsConstant = Known.isConstant();
+ bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
+
+ if (ShiftAmtIsConstant) {
+ Known = KF(Known2, Known);
+
+ // If the known bits conflict, this must be an overflowing left shift, so
+ // the shift result is poison. We can return anything we want. Choose 0 for
+ // the best folding opportunity.
+ if (Known.hasConflict())
+ Known.setAllZero();
+
+ return;
+ }
+
+ // If the shift amount could be greater than or equal to the bit-width of the
+ // LHS, the value could be poison, but bail out because the check below is
+ // expensive.
+ // TODO: Should we just carry on?
+ if (MaxShiftAmtIsOutOfRange) {
+ Known.resetAll();
+ return;
+ }
+
+ // It would be more-clearly correct to use the two temporaries for this
+ // calculation. Reusing the APInts here to prevent unnecessary allocations.
+ Known.resetAll();
+
+ // If we know the shifter operand is nonzero, we can sometimes infer more
+ // known bits. However this is expensive to compute, so be lazy about it and
+ // only compute it when absolutely necessary.
+ std::optional<bool> ShifterOperandIsNonZero;
+
+ // Early exit if we can't constrain any well-defined shift amount.
+ if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
+ !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
+ ShifterOperandIsNonZero =
+ isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
+ if (!*ShifterOperandIsNonZero)
+ return;
+ }
+
+ Known.Zero.setAllBits();
+ Known.One.setAllBits();
+ for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
+ // Combine the shifted known input bits only for those shift amounts
+ // compatible with its known constraints.
+ if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
+ continue;
+ if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
+ continue;
+ // If we know the shifter is nonzero, we may be able to infer more known
+ // bits. This check is sunk down as far as possible to avoid the expensive
+ // call to isKnownNonZero if the cheaper checks above fail.
+ if (ShiftAmt == 0) {
+ if (!ShifterOperandIsNonZero)
+ ShifterOperandIsNonZero =
+ isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
+ if (*ShifterOperandIsNonZero)
+ continue;
+ }
+
+ Known = KnownBits::commonBits(
+ Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
+ }
+
+ // If the known bits conflict, the result is poison. Return a 0 and hope the
+ // caller can further optimize that.
+ if (Known.hasConflict())
+ Known.setAllZero();
+}
+
+static void computeKnownBitsFromOperator(const Operator *I,
+ const APInt &DemandedElts,
+ KnownBits &Known, unsigned Depth,
+ const Query &Q) {
+ unsigned BitWidth = Known.getBitWidth();
+
+ KnownBits Known2(BitWidth);
+ switch (I->getOpcode()) {
+ default: break;
+ case Instruction::Load:
+ if (MDNode *MD =
+ Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
+ computeKnownBitsFromRangeMetadata(*MD, Known);
+ break;
+ case Instruction::And: {
+ // If either the LHS or the RHS are Zero, the result is zero.
+ computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
+
+ Known &= Known2;
+
+ // and(x, add (x, -1)) is a common idiom that always clears the low bit;
+ // here we handle the more general case of adding any odd number by
+ // matching the form add(x, add(x, y)) where y is odd.
+ // TODO: This could be generalized to clearing any bit set in y where the
+ // following bit is known to be unset in y.
+ Value *X = nullptr, *Y = nullptr;
+ if (!Known.Zero[0] && !Known.One[0] &&
+ match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
+ Known2.resetAll();
+ computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
+ if (Known2.countMinTrailingOnes() > 0)
+ Known.Zero.setBit(0);
+ }
+ break;
+ }
+ case Instruction::Or:
+ computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
+
+ Known |= Known2;
+ break;
+ case Instruction::Xor:
+ computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
+
+ Known ^= Known2;
+ break;
+ case Instruction::Mul: {
+ bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
+ computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
+ Known, Known2, Depth, Q);
+ break;
+ }
+ case Instruction::UDiv: {
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
+ Known = KnownBits::udiv(Known, Known2);
+ break;
+ }
+ case Instruction::Select: {
+ const Value *LHS = nullptr, *RHS = nullptr;
+ SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
+ if (SelectPatternResult::isMinOrMax(SPF)) {
+ computeKnownBits(RHS, Known, Depth + 1, Q);
+ computeKnownBits(LHS, Known2, Depth + 1, Q);
+ switch (SPF) {
+ default:
+ llvm_unreachable("Unhandled select pattern flavor!");
+ case SPF_SMAX:
+ Known = KnownBits::smax(Known, Known2);
+ break;
+ case SPF_SMIN:
+ Known = KnownBits::smin(Known, Known2);
+ break;
+ case SPF_UMAX:
+ Known = KnownBits::umax(Known, Known2);
+ break;
+ case SPF_UMIN:
+ Known = KnownBits::umin(Known, Known2);
+ break;
+ }
+ break;
+ }
+
+ computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
+
+ // Only known if known in both the LHS and RHS.
+ Known = KnownBits::commonBits(Known, Known2);
+
+ if (SPF == SPF_ABS) {
+ // RHS from matchSelectPattern returns the negation part of abs pattern.
+ // If the negate has an NSW flag we can assume the sign bit of the result
+ // will be 0 because that makes abs(INT_MIN) undefined.
+ if (match(RHS, m_Neg(m_Specific(LHS))) &&
+ Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS)))
+ Known.Zero.setSignBit();
+ }
+
+ break;
+ }
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ break; // Can't work with floating point.
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ // Fall through and handle them the same as zext/trunc.
+ [[fallthrough]];
+ case Instruction::ZExt:
+ case Instruction::Trunc: {
+ Type *SrcTy = I->getOperand(0)->getType();
+
+ unsigned SrcBitWidth;
+ // Note that we handle pointer operands here because of inttoptr/ptrtoint
+ // which fall through here.
+ Type *ScalarTy = SrcTy->getScalarType();
+ SrcBitWidth = ScalarTy->isPointerTy() ?
+ Q.DL.getPointerTypeSizeInBits(ScalarTy) :
+ Q.DL.getTypeSizeInBits(ScalarTy);
+
+ assert(SrcBitWidth && "SrcBitWidth can't be zero");
+ Known = Known.anyextOrTrunc(SrcBitWidth);
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ Known = Known.zextOrTrunc(BitWidth);
+ break;
+ }
+ case Instruction::BitCast: {
+ Type *SrcTy = I->getOperand(0)->getType();
+ if (SrcTy->isIntOrPtrTy() &&
+ // TODO: For now, not handling conversions like:
+ // (bitcast i64 %x to <2 x i32>)
+ !I->getType()->isVectorTy()) {
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ break;
+ }
+
+ // Handle cast from vector integer type to scalar or vector integer.
+ auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy);
+ if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
+ !I->getType()->isIntOrIntVectorTy() ||
+ isa<ScalableVectorType>(I->getType()))
+ break;
+
+ // Look through a cast from narrow vector elements to wider type.
+ // Examples: v4i32 -> v2i64, v3i8 -> v24
+ unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
+ if (BitWidth % SubBitWidth == 0) {
+ // Known bits are automatically intersected across demanded elements of a
+ // vector. So for example, if a bit is computed as known zero, it must be
+ // zero across all demanded elements of the vector.
+ //
+ // For this bitcast, each demanded element of the output is sub-divided
+ // across a set of smaller vector elements in the source vector. To get
+ // the known bits for an entire element of the output, compute the known
+ // bits for each sub-element sequentially. This is done by shifting the
+ // one-set-bit demanded elements parameter across the sub-elements for
+ // consecutive calls to computeKnownBits. We are using the demanded
+ // elements parameter as a mask operator.
+ //
+ // The known bits of each sub-element are then inserted into place
+ // (dependent on endian) to form the full result of known bits.
+ unsigned NumElts = DemandedElts.getBitWidth();
+ unsigned SubScale = BitWidth / SubBitWidth;
+ APInt SubDemandedElts = APInt::getZero(NumElts * SubScale);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (DemandedElts[i])
+ SubDemandedElts.setBit(i * SubScale);
+ }
+
+ KnownBits KnownSrc(SubBitWidth);
+ for (unsigned i = 0; i != SubScale; ++i) {
+ computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc,
+ Depth + 1, Q);
+ unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i;
+ Known.insertBits(KnownSrc, ShiftElt * SubBitWidth);
+ }
+ }
+ break;
+ }
+ case Instruction::SExt: {
+ // Compute the bits in the result that are not present in the input.
+ unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
+
+ Known = Known.trunc(SrcBitWidth);
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ // If the sign bit of the input is known set or clear, then we know the
+ // top bits of the result.
+ Known = Known.sext(BitWidth);
+ break;
+ }
+ case Instruction::Shl: {
+ bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
+ auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
+ KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
+ // If this shift has "nsw" keyword, then the result is either a poison
+ // value or has the same sign bit as the first operand.
+ if (NSW) {
+ if (KnownVal.Zero.isSignBitSet())
+ Result.Zero.setSignBit();
+ if (KnownVal.One.isSignBitSet())
+ Result.One.setSignBit();
+ }
+ return Result;
+ };
+ computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
+ KF);
+ // Trailing zeros of a right-shifted constant never decrease.
+ const APInt *C;
+ if (match(I->getOperand(0), m_APInt(C)))
+ Known.Zero.setLowBits(C->countTrailingZeros());
+ break;
+ }
+ case Instruction::LShr: {
+ auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
+ return KnownBits::lshr(KnownVal, KnownAmt);
+ };
+ computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
+ KF);
+ // Leading zeros of a left-shifted constant never decrease.
+ const APInt *C;
+ if (match(I->getOperand(0), m_APInt(C)))
+ Known.Zero.setHighBits(C->countLeadingZeros());
+ break;
+ }
+ case Instruction::AShr: {
+ auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
+ return KnownBits::ashr(KnownVal, KnownAmt);
+ };
+ computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
+ KF);
+ break;
+ }
+ case Instruction::Sub: {
+ bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
+ computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
+ DemandedElts, Known, Known2, Depth, Q);
+ break;
+ }
+ case Instruction::Add: {
+ bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
+ computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
+ DemandedElts, Known, Known2, Depth, Q);
+ break;
+ }
+ case Instruction::SRem:
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
+ Known = KnownBits::srem(Known, Known2);
+ break;
+
+ case Instruction::URem:
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
+ Known = KnownBits::urem(Known, Known2);
+ break;
+ case Instruction::Alloca:
+ Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
+ break;
+ case Instruction::GetElementPtr: {
+ // Analyze all of the subscripts of this getelementptr instruction
+ // to determine if we can prove known low zero bits.
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ // Accumulate the constant indices in a separate variable
+ // to minimize the number of calls to computeForAddSub.
+ APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
+
+ gep_type_iterator GTI = gep_type_begin(I);
+ for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
+ // TrailZ can only become smaller, short-circuit if we hit zero.
+ if (Known.isUnknown())
+ break;
+
+ Value *Index = I->getOperand(i);
+
+ // Handle case when index is zero.
+ Constant *CIndex = dyn_cast<Constant>(Index);
+ if (CIndex && CIndex->isZeroValue())
+ continue;
+
+ if (StructType *STy = GTI.getStructTypeOrNull()) {
+ // Handle struct member offset arithmetic.
+
+ assert(CIndex &&
+ "Access to structure field must be known at compile time");
+
+ if (CIndex->getType()->isVectorTy())
+ Index = CIndex->getSplatValue();
+
+ unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
+ const StructLayout *SL = Q.DL.getStructLayout(STy);
+ uint64_t Offset = SL->getElementOffset(Idx);
+ AccConstIndices += Offset;
+ continue;
+ }
+
+ // Handle array index arithmetic.
+ Type *IndexedTy = GTI.getIndexedType();
+ if (!IndexedTy->isSized()) {
+ Known.resetAll();
+ break;
+ }
+
+ unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
+ KnownBits IndexBits(IndexBitWidth);
+ computeKnownBits(Index, IndexBits, Depth + 1, Q);
+ TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
+ uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinValue();
+ KnownBits ScalingFactor(IndexBitWidth);
+ // Multiply by current sizeof type.
+ // &A[i] == A + i * sizeof(*A[i]).
+ if (IndexTypeSize.isScalable()) {
+ // For scalable types the only thing we know about sizeof is
+ // that this is a multiple of the minimum size.
+ ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
+ } else if (IndexBits.isConstant()) {
+ APInt IndexConst = IndexBits.getConstant();
+ APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
+ IndexConst *= ScalingFactor;
+ AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
+ continue;
+ } else {
+ ScalingFactor =
+ KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
+ }
+ IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
+
+ // If the offsets have a different width from the pointer, according
+ // to the language reference we need to sign-extend or truncate them
+ // to the width of the pointer.
+ IndexBits = IndexBits.sextOrTrunc(BitWidth);
+
+ // Note that inbounds does *not* guarantee nsw for the addition, as only
+ // the offset is signed, while the base address is unsigned.
+ Known = KnownBits::computeForAddSub(
+ /*Add=*/true, /*NSW=*/false, Known, IndexBits);
+ }
+ if (!Known.isUnknown() && !AccConstIndices.isZero()) {
+ KnownBits Index = KnownBits::makeConstant(AccConstIndices);
+ Known = KnownBits::computeForAddSub(
+ /*Add=*/true, /*NSW=*/false, Known, Index);
+ }
+ break;
+ }
+ case Instruction::PHI: {
+ const PHINode *P = cast<PHINode>(I);
+ BinaryOperator *BO = nullptr;
+ Value *R = nullptr, *L = nullptr;
+ if (matchSimpleRecurrence(P, BO, R, L)) {
+ // Handle the case of a simple two-predecessor recurrence PHI.
+ // There's a lot more that could theoretically be done here, but
+ // this is sufficient to catch some interesting cases.
+ unsigned Opcode = BO->getOpcode();
+
+ // If this is a shift recurrence, we know the bits being shifted in.
+ // We can combine that with information about the start value of the
+ // recurrence to conclude facts about the result.
+ if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
+ Opcode == Instruction::Shl) &&
+ BO->getOperand(0) == I) {
+
+ // We have matched a recurrence of the form:
+ // %iv = [R, %entry], [%iv.next, %backedge]
+ // %iv.next = shift_op %iv, L
+
+ // Recurse with the phi context to avoid concern about whether facts
+ // inferred hold at original context instruction. TODO: It may be
+ // correct to use the original context. IF warranted, explore and
+ // add sufficient tests to cover.
+ Query RecQ = Q;
+ RecQ.CxtI = P;
+ computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
+ switch (Opcode) {
+ case Instruction::Shl:
+ // A shl recurrence will only increase the tailing zeros
+ Known.Zero.setLowBits(Known2.countMinTrailingZeros());
+ break;
+ case Instruction::LShr:
+ // A lshr recurrence will preserve the leading zeros of the
+ // start value
+ Known.Zero.setHighBits(Known2.countMinLeadingZeros());
+ break;
+ case Instruction::AShr:
+ // An ashr recurrence will extend the initial sign bit
+ Known.Zero.setHighBits(Known2.countMinLeadingZeros());
+ Known.One.setHighBits(Known2.countMinLeadingOnes());
+ break;
+ };
+ }
+
+ // Check for operations that have the property that if
+ // both their operands have low zero bits, the result
+ // will have low zero bits.
+ if (Opcode == Instruction::Add ||
+ Opcode == Instruction::Sub ||
+ Opcode == Instruction::And ||
+ Opcode == Instruction::Or ||
+ Opcode == Instruction::Mul) {
+ // Change the context instruction to the "edge" that flows into the
+ // phi. This is important because that is where the value is actually
+ // "evaluated" even though it is used later somewhere else. (see also
+ // D69571).
+ Query RecQ = Q;
+
+ unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
+ Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
+ Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
+
+ // Ok, we have a PHI of the form L op= R. Check for low
+ // zero bits.
+ RecQ.CxtI = RInst;
+ computeKnownBits(R, Known2, Depth + 1, RecQ);
+
+ // We need to take the minimum number of known bits
+ KnownBits Known3(BitWidth);
+ RecQ.CxtI = LInst;
+ computeKnownBits(L, Known3, Depth + 1, RecQ);
+
+ Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
+ Known3.countMinTrailingZeros()));
+
+ auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
+ if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
+ // If initial value of recurrence is nonnegative, and we are adding
+ // a nonnegative number with nsw, the result can only be nonnegative
+ // or poison value regardless of the number of times we execute the
+ // add in phi recurrence. If initial value is negative and we are
+ // adding a negative number with nsw, the result can only be
+ // negative or poison value. Similar arguments apply to sub and mul.
+ //
+ // (add non-negative, non-negative) --> non-negative
+ // (add negative, negative) --> negative
+ if (Opcode == Instruction::Add) {
+ if (Known2.isNonNegative() && Known3.isNonNegative())
+ Known.makeNonNegative();
+ else if (Known2.isNegative() && Known3.isNegative())
+ Known.makeNegative();
+ }
+
+ // (sub nsw non-negative, negative) --> non-negative
+ // (sub nsw negative, non-negative) --> negative
+ else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
+ if (Known2.isNonNegative() && Known3.isNegative())
+ Known.makeNonNegative();
+ else if (Known2.isNegative() && Known3.isNonNegative())
+ Known.makeNegative();
+ }
+
+ // (mul nsw non-negative, non-negative) --> non-negative
+ else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
+ Known3.isNonNegative())
+ Known.makeNonNegative();
+ }
+
+ break;
+ }
+ }
+
+ // Unreachable blocks may have zero-operand PHI nodes.
+ if (P->getNumIncomingValues() == 0)
+ break;
+
+ // Otherwise take the unions of the known bit sets of the operands,
+ // taking conservative care to avoid excessive recursion.
+ if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
+ // Skip if every incoming value references to ourself.
+ if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
+ break;
+
+ Known.Zero.setAllBits();
+ Known.One.setAllBits();
+ for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
+ Value *IncValue = P->getIncomingValue(u);
+ // Skip direct self references.
+ if (IncValue == P) continue;
+
+ // Change the context instruction to the "edge" that flows into the
+ // phi. This is important because that is where the value is actually
+ // "evaluated" even though it is used later somewhere else. (see also
+ // D69571).
+ Query RecQ = Q;
+ RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
+
+ Known2 = KnownBits(BitWidth);
+
+ // Recurse, but cap the recursion to one level, because we don't
+ // want to waste time spinning around in loops.
+ computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
+
+ // If this failed, see if we can use a conditional branch into the phi
+ // to help us determine the range of the value.
+ if (Known2.isUnknown()) {
+ ICmpInst::Predicate Pred;
+ const APInt *RHSC;
+ BasicBlock *TrueSucc, *FalseSucc;
+ // TODO: Use RHS Value and compute range from its known bits.
+ if (match(RecQ.CxtI,
+ m_Br(m_c_ICmp(Pred, m_Specific(IncValue), m_APInt(RHSC)),
+ m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
+ // Check for cases of duplicate successors.
+ if ((TrueSucc == P->getParent()) != (FalseSucc == P->getParent())) {
+ // If we're using the false successor, invert the predicate.
+ if (FalseSucc == P->getParent())
+ Pred = CmpInst::getInversePredicate(Pred);
+
+ switch (Pred) {
+ case CmpInst::Predicate::ICMP_EQ:
+ Known2 = KnownBits::makeConstant(*RHSC);
+ break;
+ case CmpInst::Predicate::ICMP_ULE:
+ Known2.Zero.setHighBits(RHSC->countLeadingZeros());
+ break;
+ case CmpInst::Predicate::ICMP_ULT:
+ Known2.Zero.setHighBits((*RHSC - 1).countLeadingZeros());
+ break;
+ default:
+ // TODO - add additional integer predicate handling.
+ break;
+ }
+ }
+ }
+ }
+
+ Known = KnownBits::commonBits(Known, Known2);
+ // If all bits have been ruled out, there's no need to check
+ // more operands.
+ if (Known.isUnknown())
+ break;
+ }
+ }
+ break;
+ }
+ case Instruction::Call:
+ case Instruction::Invoke:
+ // If range metadata is attached to this call, set known bits from that,
+ // and then intersect with known bits based on other properties of the
+ // function.
+ if (MDNode *MD =
+ Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
+ computeKnownBitsFromRangeMetadata(*MD, Known);
+ if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
+ computeKnownBits(RV, Known2, Depth + 1, Q);
+ Known.Zero |= Known2.Zero;
+ Known.One |= Known2.One;
+ }
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::abs: {
+ computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
+ bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
+ Known = Known2.abs(IntMinIsPoison);
+ break;
+ }
+ case Intrinsic::bitreverse:
+ computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
+ Known.Zero |= Known2.Zero.reverseBits();
+ Known.One |= Known2.One.reverseBits();
+ break;
+ case Intrinsic::bswap:
+ computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
+ Known.Zero |= Known2.Zero.byteSwap();
+ Known.One |= Known2.One.byteSwap();
+ break;
+ case Intrinsic::ctlz: {
+ computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
+ // If we have a known 1, its position is our upper bound.
+ unsigned PossibleLZ = Known2.countMaxLeadingZeros();
+ // If this call is poison for 0 input, the result will be less than 2^n.
+ if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
+ PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
+ unsigned LowBits = llvm::bit_width(PossibleLZ);
+ Known.Zero.setBitsFrom(LowBits);
+ break;
+ }
+ case Intrinsic::cttz: {
+ computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
+ // If we have a known 1, its position is our upper bound.
+ unsigned PossibleTZ = Known2.countMaxTrailingZeros();
+ // If this call is poison for 0 input, the result will be less than 2^n.
+ if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
+ PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
+ unsigned LowBits = llvm::bit_width(PossibleTZ);
+ Known.Zero.setBitsFrom(LowBits);
+ break;
+ }
+ case Intrinsic::ctpop: {
+ computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
+ // We can bound the space the count needs. Also, bits known to be zero
+ // can't contribute to the population.
+ unsigned BitsPossiblySet = Known2.countMaxPopulation();
+ unsigned LowBits = llvm::bit_width(BitsPossiblySet);
+ Known.Zero.setBitsFrom(LowBits);
+ // TODO: we could bound KnownOne using the lower bound on the number
+ // of bits which might be set provided by popcnt KnownOne2.
+ break;
+ }
+ case Intrinsic::fshr:
+ case Intrinsic::fshl: {
+ const APInt *SA;
+ if (!match(I->getOperand(2), m_APInt(SA)))
+ break;
+
+ // Normalize to funnel shift left.
+ uint64_t ShiftAmt = SA->urem(BitWidth);
+ if (II->getIntrinsicID() == Intrinsic::fshr)
+ ShiftAmt = BitWidth - ShiftAmt;
+
+ KnownBits Known3(BitWidth);
+ computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
+
+ Known.Zero =
+ Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
+ Known.One =
+ Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
+ break;
+ }
+ case Intrinsic::uadd_sat:
+ case Intrinsic::usub_sat: {
+ bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
+
+ // Add: Leading ones of either operand are preserved.
+ // Sub: Leading zeros of LHS and leading ones of RHS are preserved
+ // as leading zeros in the result.
+ unsigned LeadingKnown;
+ if (IsAdd)
+ LeadingKnown = std::max(Known.countMinLeadingOnes(),
+ Known2.countMinLeadingOnes());
+ else
+ LeadingKnown = std::max(Known.countMinLeadingZeros(),
+ Known2.countMinLeadingOnes());
+
+ Known = KnownBits::computeForAddSub(
+ IsAdd, /* NSW */ false, Known, Known2);
+
+ // We select between the operation result and all-ones/zero
+ // respectively, so we can preserve known ones/zeros.
+ if (IsAdd) {
+ Known.One.setHighBits(LeadingKnown);
+ Known.Zero.clearAllBits();
+ } else {
+ Known.Zero.setHighBits(LeadingKnown);
+ Known.One.clearAllBits();
+ }
+ break;
+ }
+ case Intrinsic::umin:
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
+ Known = KnownBits::umin(Known, Known2);
+ break;
+ case Intrinsic::umax:
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
+ Known = KnownBits::umax(Known, Known2);
+ break;
+ case Intrinsic::smin:
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
+ Known = KnownBits::smin(Known, Known2);
+ break;
+ case Intrinsic::smax:
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
+ Known = KnownBits::smax(Known, Known2);
+ break;
+ case Intrinsic::x86_sse42_crc32_64_64:
+ Known.Zero.setBitsFrom(32);
+ break;
+ case Intrinsic::riscv_vsetvli:
+ case Intrinsic::riscv_vsetvlimax:
+ // Assume that VL output is positive and would fit in an int32_t.
+ // TODO: VLEN might be capped at 16 bits in a future V spec update.
+ if (BitWidth >= 32)
+ Known.Zero.setBitsFrom(31);
+ break;
+ case Intrinsic::vscale: {
+ if (!II->getParent() || !II->getFunction() ||
+ !II->getFunction()->hasFnAttribute(Attribute::VScaleRange))
+ break;
+
+ auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange);
+ std::optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
+
+ if (!VScaleMax)
+ break;
+
+ unsigned VScaleMin = Attr.getVScaleRangeMin();
+
+ // If vscale min = max then we know the exact value at compile time
+ // and hence we know the exact bits.
+ if (VScaleMin == VScaleMax) {
+ Known.One = VScaleMin;
+ Known.Zero = VScaleMin;
+ Known.Zero.flipAllBits();
+ break;
+ }
+
+ unsigned FirstZeroHighBit = llvm::bit_width(*VScaleMax);
+ if (FirstZeroHighBit < BitWidth)
+ Known.Zero.setBitsFrom(FirstZeroHighBit);
+
+ break;
+ }
+ }
+ }
+ break;
+ case Instruction::ShuffleVector: {
+ auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
+ // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
+ if (!Shuf) {
+ Known.resetAll();
+ return;
+ }
+ // For undef elements, we don't know anything about the common state of
+ // the shuffle result.
+ APInt DemandedLHS, DemandedRHS;
+ if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
+ Known.resetAll();
+ return;
+ }
+ Known.One.setAllBits();
+ Known.Zero.setAllBits();
+ if (!!DemandedLHS) {
+ const Value *LHS = Shuf->getOperand(0);
+ computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
+ // If we don't know any bits, early out.
+ if (Known.isUnknown())
+ break;
+ }
+ if (!!DemandedRHS) {
+ const Value *RHS = Shuf->getOperand(1);
+ computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
+ Known = KnownBits::commonBits(Known, Known2);
+ }
+ break;
+ }
+ case Instruction::InsertElement: {
+ if (isa<ScalableVectorType>(I->getType())) {
+ Known.resetAll();
+ return;
+ }
+ const Value *Vec = I->getOperand(0);
+ const Value *Elt = I->getOperand(1);
+ auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
+ // Early out if the index is non-constant or out-of-range.
+ unsigned NumElts = DemandedElts.getBitWidth();
+ if (!CIdx || CIdx->getValue().uge(NumElts)) {
+ Known.resetAll();
+ return;
+ }
+ Known.One.setAllBits();
+ Known.Zero.setAllBits();
+ unsigned EltIdx = CIdx->getZExtValue();
+ // Do we demand the inserted element?
+ if (DemandedElts[EltIdx]) {
+ computeKnownBits(Elt, Known, Depth + 1, Q);
+ // If we don't know any bits, early out.
+ if (Known.isUnknown())
+ break;
+ }
+ // We don't need the base vector element that has been inserted.
+ APInt DemandedVecElts = DemandedElts;
+ DemandedVecElts.clearBit(EltIdx);
+ if (!!DemandedVecElts) {
+ computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
+ Known = KnownBits::commonBits(Known, Known2);
+ }
+ break;
+ }
+ case Instruction::ExtractElement: {
+ // Look through extract element. If the index is non-constant or
+ // out-of-range demand all elements, otherwise just the extracted element.
+ const Value *Vec = I->getOperand(0);
+ const Value *Idx = I->getOperand(1);
+ auto *CIdx = dyn_cast<ConstantInt>(Idx);
+ if (isa<ScalableVectorType>(Vec->getType())) {
+ // FIXME: there's probably *something* we can do with scalable vectors
+ Known.resetAll();
+ break;
+ }
+ unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
+ APInt DemandedVecElts = APInt::getAllOnes(NumElts);
+ if (CIdx && CIdx->getValue().ult(NumElts))
+ DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
+ computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
+ break;
+ }
+ case Instruction::ExtractValue:
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
+ const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
+ if (EVI->getNumIndices() != 1) break;
+ if (EVI->getIndices()[0] == 0) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::sadd_with_overflow:
+ computeKnownBitsAddSub(true, II->getArgOperand(0),
+ II->getArgOperand(1), false, DemandedElts,
+ Known, Known2, Depth, Q);
+ break;
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ computeKnownBitsAddSub(false, II->getArgOperand(0),
+ II->getArgOperand(1), false, DemandedElts,
+ Known, Known2, Depth, Q);
+ break;
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
+ DemandedElts, Known, Known2, Depth, Q);
+ break;
+ }
+ }
+ }
+ break;
+ case Instruction::Freeze:
+ if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
+ Depth + 1))
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ break;
+ }
+}
+
+/// Determine which bits of V are known to be either zero or one and return
+/// them.
+KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
+ unsigned Depth, const Query &Q) {
+ KnownBits Known(getBitWidth(V->getType(), Q.DL));
+ computeKnownBits(V, DemandedElts, Known, Depth, Q);
+ return Known;
+}
+
+/// Determine which bits of V are known to be either zero or one and return
+/// them.
+KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
+ KnownBits Known(getBitWidth(V->getType(), Q.DL));
+ computeKnownBits(V, Known, Depth, Q);
+ return Known;
+}
+
+/// Determine which bits of V are known to be either zero or one and return
+/// them in the Known bit set.
+///
+/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
+/// we cannot optimize based on the assumption that it is zero without changing
+/// it to be an explicit zero. If we don't change it to zero, other code could
+/// optimized based on the contradictory assumption that it is non-zero.
+/// Because instcombine aggressively folds operations with undef args anyway,
+/// this won't lose us code quality.
+///
+/// This function is defined on values with integer type, values with pointer
+/// type, and vectors of integers. In the case
+/// where V is a vector, known zero, and known one values are the
+/// same width as the vector element, and the bit is set only if it is true
+/// for all of the demanded elements in the vector specified by DemandedElts.
+void computeKnownBits(const Value *V, const APInt &DemandedElts,
+ KnownBits &Known, unsigned Depth, const Query &Q) {
+ if (!DemandedElts) {
+ // No demanded elts, better to assume we don't know anything.
+ Known.resetAll();
+ return;
+ }
+
+ assert(V && "No Value?");
+ assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
+
+#ifndef NDEBUG
+ Type *Ty = V->getType();
+ unsigned BitWidth = Known.getBitWidth();
+
+ assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
+ "Not integer or pointer type!");
+
+ if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
+ assert(
+ FVTy->getNumElements() == DemandedElts.getBitWidth() &&
+ "DemandedElt width should equal the fixed vector number of elements");
+ } else {
+ assert(DemandedElts == APInt(1, 1) &&
+ "DemandedElt width should be 1 for scalars or scalable vectors");
+ }
+
+ Type *ScalarTy = Ty->getScalarType();
+ if (ScalarTy->isPointerTy()) {
+ assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
+ "V and Known should have same BitWidth");
+ } else {
+ assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
+ "V and Known should have same BitWidth");
+ }
+#endif
+
+ const APInt *C;
+ if (match(V, m_APInt(C))) {
+ // We know all of the bits for a scalar constant or a splat vector constant!
+ Known = KnownBits::makeConstant(*C);
+ return;
+ }
+ // Null and aggregate-zero are all-zeros.
+ if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
+ Known.setAllZero();
+ return;
+ }
+ // Handle a constant vector by taking the intersection of the known bits of
+ // each element.
+ if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
+ assert(!isa<ScalableVectorType>(V->getType()));
+ // We know that CDV must be a vector of integers. Take the intersection of
+ // each element.
+ Known.Zero.setAllBits(); Known.One.setAllBits();
+ for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
+ if (!DemandedElts[i])
+ continue;
+ APInt Elt = CDV->getElementAsAPInt(i);
+ Known.Zero &= ~Elt;
+ Known.One &= Elt;
+ }
+ return;
+ }
+
+ if (const auto *CV = dyn_cast<ConstantVector>(V)) {
+ assert(!isa<ScalableVectorType>(V->getType()));
+ // We know that CV must be a vector of integers. Take the intersection of
+ // each element.
+ Known.Zero.setAllBits(); Known.One.setAllBits();
+ for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
+ if (!DemandedElts[i])
+ continue;
+ Constant *Element = CV->getAggregateElement(i);
+ auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
+ if (!ElementCI) {
+ Known.resetAll();
+ return;
+ }
+ const APInt &Elt = ElementCI->getValue();
+ Known.Zero &= ~Elt;
+ Known.One &= Elt;
+ }
+ return;
+ }
+
+ // Start out not knowing anything.
+ Known.resetAll();
+
+ // We can't imply anything about undefs.
+ if (isa<UndefValue>(V))
+ return;
+
+ // There's no point in looking through other users of ConstantData for
+ // assumptions. Confirm that we've handled them all.
+ assert(!isa<ConstantData>(V) && "Unhandled constant data!");
+
+ // All recursive calls that increase depth must come after this.
+ if (Depth == MaxAnalysisRecursionDepth)
+ return;
+
+ // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
+ // the bits of its aliasee.
+ if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ if (!GA->isInterposable())
+ computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
+ return;
+ }
+
+ if (const Operator *I = dyn_cast<Operator>(V))
+ computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
+
+ // Aligned pointers have trailing zeros - refine Known.Zero set
+ if (isa<PointerType>(V->getType())) {
+ Align Alignment = V->getPointerAlignment(Q.DL);
+ Known.Zero.setLowBits(Log2(Alignment));
+ }
+
+ // computeKnownBitsFromAssume strictly refines Known.
+ // Therefore, we run them after computeKnownBitsFromOperator.
+
+ // Check whether a nearby assume intrinsic can determine some known bits.
+ computeKnownBitsFromAssume(V, Known, Depth, Q);
+
+ assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
+}
+
+/// Try to detect a recurrence that the value of the induction variable is
+/// always a power of two (or zero).
+static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero,
+ unsigned Depth, Query &Q) {
+ BinaryOperator *BO = nullptr;
+ Value *Start = nullptr, *Step = nullptr;
+ if (!matchSimpleRecurrence(PN, BO, Start, Step))
+ return false;
+
+ // Initial value must be a power of two.
+ for (const Use &U : PN->operands()) {
+ if (U.get() == Start) {
+ // Initial value comes from a different BB, need to adjust context
+ // instruction for analysis.
+ Q.CxtI = PN->getIncomingBlock(U)->getTerminator();
+ if (!isKnownToBeAPowerOfTwo(Start, OrZero, Depth, Q))
+ return false;
+ }
+ }
+
+ // Except for Mul, the induction variable must be on the left side of the
+ // increment expression, otherwise its value can be arbitrary.
+ if (BO->getOpcode() != Instruction::Mul && BO->getOperand(1) != Step)
+ return false;
+
+ Q.CxtI = BO->getParent()->getTerminator();
+ switch (BO->getOpcode()) {
+ case Instruction::Mul:
+ // Power of two is closed under multiplication.
+ return (OrZero || Q.IIQ.hasNoUnsignedWrap(BO) ||
+ Q.IIQ.hasNoSignedWrap(BO)) &&
+ isKnownToBeAPowerOfTwo(Step, OrZero, Depth, Q);
+ case Instruction::SDiv:
+ // Start value must not be signmask for signed division, so simply being a
+ // power of two is not sufficient, and it has to be a constant.
+ if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
+ return false;
+ [[fallthrough]];
+ case Instruction::UDiv:
+ // Divisor must be a power of two.
+ // If OrZero is false, cannot guarantee induction variable is non-zero after
+ // division, same for Shr, unless it is exact division.
+ return (OrZero || Q.IIQ.isExact(BO)) &&
+ isKnownToBeAPowerOfTwo(Step, false, Depth, Q);
+ case Instruction::Shl:
+ return OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO);
+ case Instruction::AShr:
+ if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
+ return false;
+ [[fallthrough]];
+ case Instruction::LShr:
+ return OrZero || Q.IIQ.isExact(BO);
+ default:
+ return false;
+ }
+}
+
+/// Return true if the given value is known to have exactly one
+/// bit set when defined. For vectors return true if every element is known to
+/// be a power of two when defined. Supports values with integer or pointer
+/// types and vectors of integers.
+bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
+ const Query &Q) {
+ assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
+
+ // Attempt to match against constants.
+ if (OrZero && match(V, m_Power2OrZero()))
+ return true;
+ if (match(V, m_Power2()))
+ return true;
+
+ // 1 << X is clearly a power of two if the one is not shifted off the end. If
+ // it is shifted off the end then the result is undefined.
+ if (match(V, m_Shl(m_One(), m_Value())))
+ return true;
+
+ // (signmask) >>l X is clearly a power of two if the one is not shifted off
+ // the bottom. If it is shifted off the bottom then the result is undefined.
+ if (match(V, m_LShr(m_SignMask(), m_Value())))
+ return true;
+
+ // The remaining tests are all recursive, so bail out if we hit the limit.
+ if (Depth++ == MaxAnalysisRecursionDepth)
+ return false;
+
+ Value *X = nullptr, *Y = nullptr;
+ // A shift left or a logical shift right of a power of two is a power of two
+ // or zero.
+ if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
+ match(V, m_LShr(m_Value(X), m_Value()))))
+ return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
+
+ if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
+ return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
+
+ if (const SelectInst *SI = dyn_cast<SelectInst>(V))
+ return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
+ isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
+
+ // Peek through min/max.
+ if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
+ return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
+ isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
+ }
+
+ if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
+ // A power of two and'd with anything is a power of two or zero.
+ if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
+ isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
+ return true;
+ // X & (-X) is always a power of two or zero.
+ if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
+ return true;
+ return false;
+ }
+
+ // Adding a power-of-two or zero to the same power-of-two or zero yields
+ // either the original power-of-two, a larger power-of-two or zero.
+ if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
+ const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
+ if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
+ Q.IIQ.hasNoSignedWrap(VOBO)) {
+ if (match(X, m_And(m_Specific(Y), m_Value())) ||
+ match(X, m_And(m_Value(), m_Specific(Y))))
+ if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
+ return true;
+ if (match(Y, m_And(m_Specific(X), m_Value())) ||
+ match(Y, m_And(m_Value(), m_Specific(X))))
+ if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
+ return true;
+
+ unsigned BitWidth = V->getType()->getScalarSizeInBits();
+ KnownBits LHSBits(BitWidth);
+ computeKnownBits(X, LHSBits, Depth, Q);
+
+ KnownBits RHSBits(BitWidth);
+ computeKnownBits(Y, RHSBits, Depth, Q);
+ // If i8 V is a power of two or zero:
+ // ZeroBits: 1 1 1 0 1 1 1 1
+ // ~ZeroBits: 0 0 0 1 0 0 0 0
+ if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
+ // If OrZero isn't set, we cannot give back a zero result.
+ // Make sure either the LHS or RHS has a bit set.
+ if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
+ return true;
+ }
+ }
+
+ // A PHI node is power of two if all incoming values are power of two, or if
+ // it is an induction variable where in each step its value is a power of two.
+ if (const PHINode *PN = dyn_cast<PHINode>(V)) {
+ Query RecQ = Q;
+
+ // Check if it is an induction variable and always power of two.
+ if (isPowerOfTwoRecurrence(PN, OrZero, Depth, RecQ))
+ return true;
+
+ // Recursively check all incoming values. Limit recursion to 2 levels, so
+ // that search complexity is limited to number of operands^2.
+ unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
+ return llvm::all_of(PN->operands(), [&](const Use &U) {
+ // Value is power of 2 if it is coming from PHI node itself by induction.
+ if (U.get() == PN)
+ return true;
+
+ // Change the context instruction to the incoming block where it is
+ // evaluated.
+ RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
+ return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ);
+ });
+ }
+
+ // An exact divide or right shift can only shift off zero bits, so the result
+ // is a power of two only if the first operand is a power of two and not
+ // copying a sign bit (sdiv int_min, 2).
+ if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
+ match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
+ return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
+ Depth, Q);
+ }
+
+ return false;
+}
+
+/// Test whether a GEP's result is known to be non-null.
+///
+/// Uses properties inherent in a GEP to try to determine whether it is known
+/// to be non-null.
+///
+/// Currently this routine does not support vector GEPs.
+static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
+ const Query &Q) {
+ const Function *F = nullptr;
+ if (const Instruction *I = dyn_cast<Instruction>(GEP))
+ F = I->getFunction();
+
+ if (!GEP->isInBounds() ||
+ NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
+ return false;
+
+ // FIXME: Support vector-GEPs.
+ assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
+
+ // If the base pointer is non-null, we cannot walk to a null address with an
+ // inbounds GEP in address space zero.
+ if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
+ return true;
+
+ // Walk the GEP operands and see if any operand introduces a non-zero offset.
+ // If so, then the GEP cannot produce a null pointer, as doing so would
+ // inherently violate the inbounds contract within address space zero.
+ for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
+ GTI != GTE; ++GTI) {
+ // Struct types are easy -- they must always be indexed by a constant.
+ if (StructType *STy = GTI.getStructTypeOrNull()) {
+ ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
+ unsigned ElementIdx = OpC->getZExtValue();
+ const StructLayout *SL = Q.DL.getStructLayout(STy);
+ uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
+ if (ElementOffset > 0)
+ return true;
+ continue;
+ }
+
+ // If we have a zero-sized type, the index doesn't matter. Keep looping.
+ if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).isZero())
+ continue;
+
+ // Fast path the constant operand case both for efficiency and so we don't
+ // increment Depth when just zipping down an all-constant GEP.
+ if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
+ if (!OpC->isZero())
+ return true;
+ continue;
+ }
+
+ // We post-increment Depth here because while isKnownNonZero increments it
+ // as well, when we pop back up that increment won't persist. We don't want
+ // to recurse 10k times just because we have 10k GEP operands. We don't
+ // bail completely out because we want to handle constant GEPs regardless
+ // of depth.
+ if (Depth++ >= MaxAnalysisRecursionDepth)
+ continue;
+
+ if (isKnownNonZero(GTI.getOperand(), Depth, Q))
+ return true;
+ }
+
+ return false;
+}
+
+static bool isKnownNonNullFromDominatingCondition(const Value *V,
+ const Instruction *CtxI,
+ const DominatorTree *DT) {
+ if (isa<Constant>(V))
+ return false;
+
+ if (!CtxI || !DT)
+ return false;
+
+ unsigned NumUsesExplored = 0;
+ for (const auto *U : V->users()) {
+ // Avoid massive lists
+ if (NumUsesExplored >= DomConditionsMaxUses)
+ break;
+ NumUsesExplored++;
+
+ // If the value is used as an argument to a call or invoke, then argument
+ // attributes may provide an answer about null-ness.
+ if (const auto *CB = dyn_cast<CallBase>(U))
+ if (auto *CalledFunc = CB->getCalledFunction())
+ for (const Argument &Arg : CalledFunc->args())
+ if (CB->getArgOperand(Arg.getArgNo()) == V &&
+ Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
+ DT->dominates(CB, CtxI))
+ return true;
+
+ // If the value is used as a load/store, then the pointer must be non null.
+ if (V == getLoadStorePointerOperand(U)) {
+ const Instruction *I = cast<Instruction>(U);
+ if (!NullPointerIsDefined(I->getFunction(),
+ V->getType()->getPointerAddressSpace()) &&
+ DT->dominates(I, CtxI))
+ return true;
+ }
+
+ // Consider only compare instructions uniquely controlling a branch
+ Value *RHS;
+ CmpInst::Predicate Pred;
+ if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
+ continue;
+
+ bool NonNullIfTrue;
+ if (cmpExcludesZero(Pred, RHS))
+ NonNullIfTrue = true;
+ else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
+ NonNullIfTrue = false;
+ else
+ continue;
+
+ SmallVector<const User *, 4> WorkList;
+ SmallPtrSet<const User *, 4> Visited;
+ for (const auto *CmpU : U->users()) {
+ assert(WorkList.empty() && "Should be!");
+ if (Visited.insert(CmpU).second)
+ WorkList.push_back(CmpU);
+
+ while (!WorkList.empty()) {
+ auto *Curr = WorkList.pop_back_val();
+
+ // If a user is an AND, add all its users to the work list. We only
+ // propagate "pred != null" condition through AND because it is only
+ // correct to assume that all conditions of AND are met in true branch.
+ // TODO: Support similar logic of OR and EQ predicate?
+ if (NonNullIfTrue)
+ if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
+ for (const auto *CurrU : Curr->users())
+ if (Visited.insert(CurrU).second)
+ WorkList.push_back(CurrU);
+ continue;
+ }
+
+ if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
+ assert(BI->isConditional() && "uses a comparison!");
+
+ BasicBlock *NonNullSuccessor =
+ BI->getSuccessor(NonNullIfTrue ? 0 : 1);
+ BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
+ if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
+ return true;
+ } else if (NonNullIfTrue && isGuard(Curr) &&
+ DT->dominates(cast<Instruction>(Curr), CtxI)) {
+ return true;
+ }
+ }
+ }
+ }
+
+ return false;
+}
+
+/// Does the 'Range' metadata (which must be a valid MD_range operand list)
+/// ensure that the value it's attached to is never Value? 'RangeType' is
+/// is the type of the value described by the range.
+static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
+ const unsigned NumRanges = Ranges->getNumOperands() / 2;
+ assert(NumRanges >= 1);
+ for (unsigned i = 0; i < NumRanges; ++i) {
+ ConstantInt *Lower =
+ mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
+ ConstantInt *Upper =
+ mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
+ ConstantRange Range(Lower->getValue(), Upper->getValue());
+ if (Range.contains(Value))
+ return false;
+ }
+ return true;
+}
+
+/// Try to detect a recurrence that monotonically increases/decreases from a
+/// non-zero starting value. These are common as induction variables.
+static bool isNonZeroRecurrence(const PHINode *PN) {
+ BinaryOperator *BO = nullptr;
+ Value *Start = nullptr, *Step = nullptr;
+ const APInt *StartC, *StepC;
+ if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
+ !match(Start, m_APInt(StartC)) || StartC->isZero())
+ return false;
+
+ switch (BO->getOpcode()) {
+ case Instruction::Add:
+ // Starting from non-zero and stepping away from zero can never wrap back
+ // to zero.
+ return BO->hasNoUnsignedWrap() ||
+ (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
+ StartC->isNegative() == StepC->isNegative());
+ case Instruction::Mul:
+ return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
+ match(Step, m_APInt(StepC)) && !StepC->isZero();
+ case Instruction::Shl:
+ return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
+ case Instruction::AShr:
+ case Instruction::LShr:
+ return BO->isExact();
+ default:
+ return false;
+ }
+}
+
+/// Return true if the given value is known to be non-zero when defined. For
+/// vectors, return true if every demanded element is known to be non-zero when
+/// defined. For pointers, if the context instruction and dominator tree are
+/// specified, perform context-sensitive analysis and return true if the
+/// pointer couldn't possibly be null at the specified instruction.
+/// Supports values with integer or pointer type and vectors of integers.
+bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
+ const Query &Q) {
+
+#ifndef NDEBUG
+ Type *Ty = V->getType();
+ assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
+
+ if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
+ assert(
+ FVTy->getNumElements() == DemandedElts.getBitWidth() &&
+ "DemandedElt width should equal the fixed vector number of elements");
+ } else {
+ assert(DemandedElts == APInt(1, 1) &&
+ "DemandedElt width should be 1 for scalars");
+ }
+#endif
+
+ if (auto *C = dyn_cast<Constant>(V)) {
+ if (C->isNullValue())
+ return false;
+ if (isa<ConstantInt>(C))
+ // Must be non-zero due to null test above.
+ return true;
+
+ // For constant vectors, check that all elements are undefined or known
+ // non-zero to determine that the whole vector is known non-zero.
+ if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
+ for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
+ if (!DemandedElts[i])
+ continue;
+ Constant *Elt = C->getAggregateElement(i);
+ if (!Elt || Elt->isNullValue())
+ return false;
+ if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
+ return false;
+ }
+ return true;
+ }
+
+ // A global variable in address space 0 is non null unless extern weak
+ // or an absolute symbol reference. Other address spaces may have null as a
+ // valid address for a global, so we can't assume anything.
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
+ GV->getType()->getAddressSpace() == 0)
+ return true;
+ }
+
+ // For constant expressions, fall through to the Operator code below.
+ if (!isa<ConstantExpr>(V))
+ return false;
+ }
+
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
+ // If the possible ranges don't contain zero, then the value is
+ // definitely non-zero.
+ if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
+ const APInt ZeroValue(Ty->getBitWidth(), 0);
+ if (rangeMetadataExcludesValue(Ranges, ZeroValue))
+ return true;
+ }
+ }
+ }
+
+ if (!isa<Constant>(V) && isKnownNonZeroFromAssume(V, Q))
+ return true;
+
+ // Some of the tests below are recursive, so bail out if we hit the limit.
+ if (Depth++ >= MaxAnalysisRecursionDepth)
+ return false;
+
+ // Check for pointer simplifications.
+
+ if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
+ // Alloca never returns null, malloc might.
+ if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
+ return true;
+
+ // A byval, inalloca may not be null in a non-default addres space. A
+ // nonnull argument is assumed never 0.
+ if (const Argument *A = dyn_cast<Argument>(V)) {
+ if (((A->hasPassPointeeByValueCopyAttr() &&
+ !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
+ A->hasNonNullAttr()))
+ return true;
+ }
+
+ // A Load tagged with nonnull metadata is never null.
+ if (const LoadInst *LI = dyn_cast<LoadInst>(V))
+ if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
+ return true;
+
+ if (const auto *Call = dyn_cast<CallBase>(V)) {
+ if (Call->isReturnNonNull())
+ return true;
+ if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
+ return isKnownNonZero(RP, Depth, Q);
+ }
+ }
+
+ if (!isa<Constant>(V) &&
+ isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
+ return true;
+
+ const Operator *I = dyn_cast<Operator>(V);
+ if (!I)
+ return false;
+
+ unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
+ switch (I->getOpcode()) {
+ case Instruction::GetElementPtr:
+ if (I->getType()->isPointerTy())
+ return isGEPKnownNonNull(cast<GEPOperator>(I), Depth, Q);
+ break;
+ case Instruction::BitCast:
+ if (I->getType()->isPointerTy())
+ return isKnownNonZero(I->getOperand(0), Depth, Q);
+ break;
+ case Instruction::IntToPtr:
+ // Note that we have to take special care to avoid looking through
+ // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
+ // as casts that can alter the value, e.g., AddrSpaceCasts.
+ if (!isa<ScalableVectorType>(I->getType()) &&
+ Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <=
+ Q.DL.getTypeSizeInBits(I->getType()).getFixedValue())
+ return isKnownNonZero(I->getOperand(0), Depth, Q);
+ break;
+ case Instruction::PtrToInt:
+ // Similar to int2ptr above, we can look through ptr2int here if the cast
+ // is a no-op or an extend and not a truncate.
+ if (!isa<ScalableVectorType>(I->getType()) &&
+ Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <=
+ Q.DL.getTypeSizeInBits(I->getType()).getFixedValue())
+ return isKnownNonZero(I->getOperand(0), Depth, Q);
+ break;
+ case Instruction::Or:
+ // X | Y != 0 if X != 0 or Y != 0.
+ return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q) ||
+ isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q);
+ case Instruction::SExt:
+ case Instruction::ZExt:
+ // ext X != 0 if X != 0.
+ return isKnownNonZero(I->getOperand(0), Depth, Q);
+
+ case Instruction::Shl: {
+ // shl nuw can't remove any non-zero bits.
+ const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
+ if (Q.IIQ.hasNoUnsignedWrap(BO))
+ return isKnownNonZero(I->getOperand(0), Depth, Q);
+
+ // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
+ // if the lowest bit is shifted off the end.
+ KnownBits Known(BitWidth);
+ computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth, Q);
+ if (Known.One[0])
+ return true;
+ break;
+ }
+ case Instruction::LShr:
+ case Instruction::AShr: {
+ // shr exact can only shift out zero bits.
+ const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
+ if (BO->isExact())
+ return isKnownNonZero(I->getOperand(0), Depth, Q);
+
+ // shr X, Y != 0 if X is negative. Note that the value of the shift is not
+ // defined if the sign bit is shifted off the end.
+ KnownBits Known =
+ computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q);
+ if (Known.isNegative())
+ return true;
+
+ // If the shifter operand is a constant, and all of the bits shifted
+ // out are known to be zero, and X is known non-zero then at least one
+ // non-zero bit must remain.
+ if (ConstantInt *Shift = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
+ // Is there a known one in the portion not shifted out?
+ if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
+ return true;
+ // Are all the bits to be shifted out known zero?
+ if (Known.countMinTrailingZeros() >= ShiftVal)
+ return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q);
+ }
+ break;
+ }
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ // div exact can only produce a zero if the dividend is zero.
+ if (cast<PossiblyExactOperator>(I)->isExact())
+ return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q);
+ break;
+ case Instruction::Add: {
+ // X + Y.
+ KnownBits XKnown =
+ computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q);
+ KnownBits YKnown =
+ computeKnownBits(I->getOperand(1), DemandedElts, Depth, Q);
+
+ // If X and Y are both non-negative (as signed values) then their sum is not
+ // zero unless both X and Y are zero.
+ if (XKnown.isNonNegative() && YKnown.isNonNegative())
+ if (isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q) ||
+ isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q))
+ return true;
+
+ // If X and Y are both negative (as signed values) then their sum is not
+ // zero unless both X and Y equal INT_MIN.
+ if (XKnown.isNegative() && YKnown.isNegative()) {
+ APInt Mask = APInt::getSignedMaxValue(BitWidth);
+ // The sign bit of X is set. If some other bit is set then X is not equal
+ // to INT_MIN.
+ if (XKnown.One.intersects(Mask))
+ return true;
+ // The sign bit of Y is set. If some other bit is set then Y is not equal
+ // to INT_MIN.
+ if (YKnown.One.intersects(Mask))
+ return true;
+ }
+
+ // The sum of a non-negative number and a power of two is not zero.
+ if (XKnown.isNonNegative() &&
+ isKnownToBeAPowerOfTwo(I->getOperand(1), /*OrZero*/ false, Depth, Q))
+ return true;
+ if (YKnown.isNonNegative() &&
+ isKnownToBeAPowerOfTwo(I->getOperand(0), /*OrZero*/ false, Depth, Q))
+ return true;
+ break;
+ }
+ case Instruction::Mul: {
+ // If X and Y are non-zero then so is X * Y as long as the multiplication
+ // does not overflow.
+ const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
+ if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
+ isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q) &&
+ isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q))
+ return true;
+ break;
+ }
+ case Instruction::Select:
+ // (C ? X : Y) != 0 if X != 0 and Y != 0.
+ if (isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q) &&
+ isKnownNonZero(I->getOperand(2), DemandedElts, Depth, Q))
+ return true;
+ break;
+ case Instruction::PHI: {
+ auto *PN = cast<PHINode>(I);
+ if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
+ return true;
+
+ // Check if all incoming values are non-zero using recursion.
+ Query RecQ = Q;
+ unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
+ return llvm::all_of(PN->operands(), [&](const Use &U) {
+ if (U.get() == PN)
+ return true;
+ RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
+ return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
+ });
+ }
+ case Instruction::ExtractElement:
+ if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
+ const Value *Vec = EEI->getVectorOperand();
+ const Value *Idx = EEI->getIndexOperand();
+ auto *CIdx = dyn_cast<ConstantInt>(Idx);
+ if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
+ unsigned NumElts = VecTy->getNumElements();
+ APInt DemandedVecElts = APInt::getAllOnes(NumElts);
+ if (CIdx && CIdx->getValue().ult(NumElts))
+ DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
+ return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
+ }
+ }
+ break;
+ case Instruction::Freeze:
+ return isKnownNonZero(I->getOperand(0), Depth, Q) &&
+ isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
+ Depth);
+ case Instruction::Call:
+ if (cast<CallInst>(I)->getIntrinsicID() == Intrinsic::vscale)
+ return true;
+ break;
+ }
+
+ KnownBits Known(BitWidth);
+ computeKnownBits(V, DemandedElts, Known, Depth, Q);
+ return Known.One != 0;
+}
+
+bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
+ auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
+ APInt DemandedElts =
+ FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
+ return isKnownNonZero(V, DemandedElts, Depth, Q);
+}
+
+/// If the pair of operators are the same invertible function, return the
+/// the operands of the function corresponding to each input. Otherwise,
+/// return std::nullopt. An invertible function is one that is 1-to-1 and maps
+/// every input value to exactly one output value. This is equivalent to
+/// saying that Op1 and Op2 are equal exactly when the specified pair of
+/// operands are equal, (except that Op1 and Op2 may be poison more often.)
+static std::optional<std::pair<Value*, Value*>>
+getInvertibleOperands(const Operator *Op1,
+ const Operator *Op2) {
+ if (Op1->getOpcode() != Op2->getOpcode())
+ return std::nullopt;
+
+ auto getOperands = [&](unsigned OpNum) -> auto {
+ return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum));
+ };
+
+ switch (Op1->getOpcode()) {
+ default:
+ break;
+ case Instruction::Add:
+ case Instruction::Sub:
+ if (Op1->getOperand(0) == Op2->getOperand(0))
+ return getOperands(1);
+ if (Op1->getOperand(1) == Op2->getOperand(1))
+ return getOperands(0);
+ break;
+ case Instruction::Mul: {
+ // invertible if A * B == (A * B) mod 2^N where A, and B are integers
+ // and N is the bitwdith. The nsw case is non-obvious, but proven by
+ // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
+ auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
+ auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
+ if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
+ (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
+ break;
+
+ // Assume operand order has been canonicalized
+ if (Op1->getOperand(1) == Op2->getOperand(1) &&
+ isa<ConstantInt>(Op1->getOperand(1)) &&
+ !cast<ConstantInt>(Op1->getOperand(1))->isZero())
+ return getOperands(0);
+ break;
+ }
+ case Instruction::Shl: {
+ // Same as multiplies, with the difference that we don't need to check
+ // for a non-zero multiply. Shifts always multiply by non-zero.
+ auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
+ auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
+ if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
+ (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
+ break;
+
+ if (Op1->getOperand(1) == Op2->getOperand(1))
+ return getOperands(0);
+ break;
+ }
+ case Instruction::AShr:
+ case Instruction::LShr: {
+ auto *PEO1 = cast<PossiblyExactOperator>(Op1);
+ auto *PEO2 = cast<PossiblyExactOperator>(Op2);
+ if (!PEO1->isExact() || !PEO2->isExact())
+ break;
+
+ if (Op1->getOperand(1) == Op2->getOperand(1))
+ return getOperands(0);
+ break;
+ }
+ case Instruction::SExt:
+ case Instruction::ZExt:
+ if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
+ return getOperands(0);
+ break;
+ case Instruction::PHI: {
+ const PHINode *PN1 = cast<PHINode>(Op1);
+ const PHINode *PN2 = cast<PHINode>(Op2);
+
+ // If PN1 and PN2 are both recurrences, can we prove the entire recurrences
+ // are a single invertible function of the start values? Note that repeated
+ // application of an invertible function is also invertible
+ BinaryOperator *BO1 = nullptr;
+ Value *Start1 = nullptr, *Step1 = nullptr;
+ BinaryOperator *BO2 = nullptr;
+ Value *Start2 = nullptr, *Step2 = nullptr;
+ if (PN1->getParent() != PN2->getParent() ||
+ !matchSimpleRecurrence(PN1, BO1, Start1, Step1) ||
+ !matchSimpleRecurrence(PN2, BO2, Start2, Step2))
+ break;
+
+ auto Values = getInvertibleOperands(cast<Operator>(BO1),
+ cast<Operator>(BO2));
+ if (!Values)
+ break;
+
+ // We have to be careful of mutually defined recurrences here. Ex:
+ // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V
+ // * X_i = Y_i = X_(i-1) OP Y_(i-1)
+ // The invertibility of these is complicated, and not worth reasoning
+ // about (yet?).
+ if (Values->first != PN1 || Values->second != PN2)
+ break;
+
+ return std::make_pair(Start1, Start2);
+ }
+ }
+ return std::nullopt;
+}
+
+/// Return true if V2 == V1 + X, where X is known non-zero.
+static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
+ const Query &Q) {
+ const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
+ if (!BO || BO->getOpcode() != Instruction::Add)
+ return false;
+ Value *Op = nullptr;
+ if (V2 == BO->getOperand(0))
+ Op = BO->getOperand(1);
+ else if (V2 == BO->getOperand(1))
+ Op = BO->getOperand(0);
+ else
+ return false;
+ return isKnownNonZero(Op, Depth + 1, Q);
+}
+
+/// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
+/// the multiplication is nuw or nsw.
+static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
+ const Query &Q) {
+ if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
+ const APInt *C;
+ return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
+ (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
+ !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q);
+ }
+ return false;
+}
+
+/// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
+/// the shift is nuw or nsw.
+static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
+ const Query &Q) {
+ if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
+ const APInt *C;
+ return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
+ (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
+ !C->isZero() && isKnownNonZero(V1, Depth + 1, Q);
+ }
+ return false;
+}
+
+static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
+ unsigned Depth, const Query &Q) {
+ // Check two PHIs are in same block.
+ if (PN1->getParent() != PN2->getParent())
+ return false;
+
+ SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
+ bool UsedFullRecursion = false;
+ for (const BasicBlock *IncomBB : PN1->blocks()) {
+ if (!VisitedBBs.insert(IncomBB).second)
+ continue; // Don't reprocess blocks that we have dealt with already.
+ const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
+ const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
+ const APInt *C1, *C2;
+ if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
+ continue;
+
+ // Only one pair of phi operands is allowed for full recursion.
+ if (UsedFullRecursion)
+ return false;
+
+ Query RecQ = Q;
+ RecQ.CxtI = IncomBB->getTerminator();
+ if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
+ return false;
+ UsedFullRecursion = true;
+ }
+ return true;
+}
+
+/// Return true if it is known that V1 != V2.
+static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
+ const Query &Q) {
+ if (V1 == V2)
+ return false;
+ if (V1->getType() != V2->getType())
+ // We can't look through casts yet.
+ return false;
+
+ if (Depth >= MaxAnalysisRecursionDepth)
+ return false;
+
+ // See if we can recurse through (exactly one of) our operands. This
+ // requires our operation be 1-to-1 and map every input value to exactly
+ // one output value. Such an operation is invertible.
+ auto *O1 = dyn_cast<Operator>(V1);
+ auto *O2 = dyn_cast<Operator>(V2);
+ if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
+ if (auto Values = getInvertibleOperands(O1, O2))
+ return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q);
+
+ if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
+ const PHINode *PN2 = cast<PHINode>(V2);
+ // FIXME: This is missing a generalization to handle the case where one is
+ // a PHI and another one isn't.
+ if (isNonEqualPHIs(PN1, PN2, Depth, Q))
+ return true;
+ };
+ }
+
+ if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
+ return true;
+
+ if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
+ return true;
+
+ if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
+ return true;
+
+ if (V1->getType()->isIntOrIntVectorTy()) {
+ // Are any known bits in V1 contradictory to known bits in V2? If V1
+ // has a known zero where V2 has a known one, they must not be equal.
+ KnownBits Known1 = computeKnownBits(V1, Depth, Q);
+ KnownBits Known2 = computeKnownBits(V2, Depth, Q);
+
+ if (Known1.Zero.intersects(Known2.One) ||
+ Known2.Zero.intersects(Known1.One))
+ return true;
+ }
+ return false;
+}
+
+/// Return true if 'V & Mask' is known to be zero. We use this predicate to
+/// simplify operations downstream. Mask is known to be zero for bits that V
+/// cannot have.
+///
+/// This function is defined on values with integer type, values with pointer
+/// type, and vectors of integers. In the case
+/// where V is a vector, the mask, known zero, and known one values are the
+/// same width as the vector element, and the bit is set only if it is true
+/// for all of the elements in the vector.
+bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
+ const Query &Q) {
+ KnownBits Known(Mask.getBitWidth());
+ computeKnownBits(V, Known, Depth, Q);
+ return Mask.isSubsetOf(Known.Zero);
+}
+
+// Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
+// Returns the input and lower/upper bounds.
+static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
+ const APInt *&CLow, const APInt *&CHigh) {
+ assert(isa<Operator>(Select) &&
+ cast<Operator>(Select)->getOpcode() == Instruction::Select &&
+ "Input should be a Select!");
+
+ const Value *LHS = nullptr, *RHS = nullptr;
+ SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
+ if (SPF != SPF_SMAX && SPF != SPF_SMIN)
+ return false;
+
+ if (!match(RHS, m_APInt(CLow)))
+ return false;
+
+ const Value *LHS2 = nullptr, *RHS2 = nullptr;
+ SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
+ if (getInverseMinMaxFlavor(SPF) != SPF2)
+ return false;
+
+ if (!match(RHS2, m_APInt(CHigh)))
+ return false;
+
+ if (SPF == SPF_SMIN)
+ std::swap(CLow, CHigh);
+
+ In = LHS2;
+ return CLow->sle(*CHigh);
+}
+
+static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II,
+ const APInt *&CLow,
+ const APInt *&CHigh) {
+ assert((II->getIntrinsicID() == Intrinsic::smin ||
+ II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax");
+
+ Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
+ auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
+ if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
+ !match(II->getArgOperand(1), m_APInt(CLow)) ||
+ !match(InnerII->getArgOperand(1), m_APInt(CHigh)))
+ return false;
+
+ if (II->getIntrinsicID() == Intrinsic::smin)
+ std::swap(CLow, CHigh);
+ return CLow->sle(*CHigh);
+}
+
+/// For vector constants, loop over the elements and find the constant with the
+/// minimum number of sign bits. Return 0 if the value is not a vector constant
+/// or if any element was not analyzed; otherwise, return the count for the
+/// element with the minimum number of sign bits.
+static unsigned computeNumSignBitsVectorConstant(const Value *V,
+ const APInt &DemandedElts,
+ unsigned TyBits) {
+ const auto *CV = dyn_cast<Constant>(V);
+ if (!CV || !isa<FixedVectorType>(CV->getType()))
+ return 0;
+
+ unsigned MinSignBits = TyBits;
+ unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (!DemandedElts[i])
+ continue;
+ // If we find a non-ConstantInt, bail out.
+ auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
+ if (!Elt)
+ return 0;
+
+ MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
+ }
+
+ return MinSignBits;
+}
+
+static unsigned ComputeNumSignBitsImpl(const Value *V,
+ const APInt &DemandedElts,
+ unsigned Depth, const Query &Q);
+
+static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
+ unsigned Depth, const Query &Q) {
+ unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
+ assert(Result > 0 && "At least one sign bit needs to be present!");
+ return Result;
+}
+
+/// Return the number of times the sign bit of the register is replicated into
+/// the other bits. We know that at least 1 bit is always equal to the sign bit
+/// (itself), but other cases can give us information. For example, immediately
+/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
+/// other, so we return 3. For vectors, return the number of sign bits for the
+/// vector element with the minimum number of known sign bits of the demanded
+/// elements in the vector specified by DemandedElts.
+static unsigned ComputeNumSignBitsImpl(const Value *V,
+ const APInt &DemandedElts,
+ unsigned Depth, const Query &Q) {
+ Type *Ty = V->getType();
+#ifndef NDEBUG
+ assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
+
+ if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
+ assert(
+ FVTy->getNumElements() == DemandedElts.getBitWidth() &&
+ "DemandedElt width should equal the fixed vector number of elements");
+ } else {
+ assert(DemandedElts == APInt(1, 1) &&
+ "DemandedElt width should be 1 for scalars");
+ }
+#endif
+
+ // We return the minimum number of sign bits that are guaranteed to be present
+ // in V, so for undef we have to conservatively return 1. We don't have the
+ // same behavior for poison though -- that's a FIXME today.
+
+ Type *ScalarTy = Ty->getScalarType();
+ unsigned TyBits = ScalarTy->isPointerTy() ?
+ Q.DL.getPointerTypeSizeInBits(ScalarTy) :
+ Q.DL.getTypeSizeInBits(ScalarTy);
+
+ unsigned Tmp, Tmp2;
+ unsigned FirstAnswer = 1;
+
+ // Note that ConstantInt is handled by the general computeKnownBits case
+ // below.
+
+ if (Depth == MaxAnalysisRecursionDepth)
+ return 1;
+
+ if (auto *U = dyn_cast<Operator>(V)) {
+ switch (Operator::getOpcode(V)) {
+ default: break;
+ case Instruction::SExt:
+ Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
+ return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
+
+ case Instruction::SDiv: {
+ const APInt *Denominator;
+ // sdiv X, C -> adds log(C) sign bits.
+ if (match(U->getOperand(1), m_APInt(Denominator))) {
+
+ // Ignore non-positive denominator.
+ if (!Denominator->isStrictlyPositive())
+ break;
+
+ // Calculate the incoming numerator bits.
+ unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+
+ // Add floor(log(C)) bits to the numerator bits.
+ return std::min(TyBits, NumBits + Denominator->logBase2());
+ }
+ break;
+ }
+
+ case Instruction::SRem: {
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+
+ const APInt *Denominator;
+ // srem X, C -> we know that the result is within [-C+1,C) when C is a
+ // positive constant. This let us put a lower bound on the number of sign
+ // bits.
+ if (match(U->getOperand(1), m_APInt(Denominator))) {
+
+ // Ignore non-positive denominator.
+ if (Denominator->isStrictlyPositive()) {
+ // Calculate the leading sign bit constraints by examining the
+ // denominator. Given that the denominator is positive, there are two
+ // cases:
+ //
+ // 1. The numerator is positive. The result range is [0,C) and
+ // [0,C) u< (1 << ceilLogBase2(C)).
+ //
+ // 2. The numerator is negative. Then the result range is (-C,0] and
+ // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
+ //
+ // Thus a lower bound on the number of sign bits is `TyBits -
+ // ceilLogBase2(C)`.
+
+ unsigned ResBits = TyBits - Denominator->ceilLogBase2();
+ Tmp = std::max(Tmp, ResBits);
+ }
+ }
+ return Tmp;
+ }
+
+ case Instruction::AShr: {
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+ // ashr X, C -> adds C sign bits. Vectors too.
+ const APInt *ShAmt;
+ if (match(U->getOperand(1), m_APInt(ShAmt))) {
+ if (ShAmt->uge(TyBits))
+ break; // Bad shift.
+ unsigned ShAmtLimited = ShAmt->getZExtValue();
+ Tmp += ShAmtLimited;
+ if (Tmp > TyBits) Tmp = TyBits;
+ }
+ return Tmp;
+ }
+ case Instruction::Shl: {
+ const APInt *ShAmt;
+ if (match(U->getOperand(1), m_APInt(ShAmt))) {
+ // shl destroys sign bits.
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+ if (ShAmt->uge(TyBits) || // Bad shift.
+ ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
+ Tmp2 = ShAmt->getZExtValue();
+ return Tmp - Tmp2;
+ }
+ break;
+ }
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: // NOT is handled here.
+ // Logical binary ops preserve the number of sign bits at the worst.
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+ if (Tmp != 1) {
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
+ FirstAnswer = std::min(Tmp, Tmp2);
+ // We computed what we know about the sign bits as our first
+ // answer. Now proceed to the generic code that uses
+ // computeKnownBits, and pick whichever answer is better.
+ }
+ break;
+
+ case Instruction::Select: {
+ // If we have a clamp pattern, we know that the number of sign bits will
+ // be the minimum of the clamp min/max range.
+ const Value *X;
+ const APInt *CLow, *CHigh;
+ if (isSignedMinMaxClamp(U, X, CLow, CHigh))
+ return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
+
+ Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
+ if (Tmp == 1) break;
+ Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
+ return std::min(Tmp, Tmp2);
+ }
+
+ case Instruction::Add:
+ // Add can have at most one carry bit. Thus we know that the output
+ // is, at worst, one more bit than the inputs.
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+ if (Tmp == 1) break;
+
+ // Special case decrementing a value (ADD X, -1):
+ if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
+ if (CRHS->isAllOnesValue()) {
+ KnownBits Known(TyBits);
+ computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
+
+ // If the input is known to be 0 or 1, the output is 0/-1, which is
+ // all sign bits set.
+ if ((Known.Zero | 1).isAllOnes())
+ return TyBits;
+
+ // If we are subtracting one from a positive number, there is no carry
+ // out of the result.
+ if (Known.isNonNegative())
+ return Tmp;
+ }
+
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
+ if (Tmp2 == 1) break;
+ return std::min(Tmp, Tmp2) - 1;
+
+ case Instruction::Sub:
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
+ if (Tmp2 == 1) break;
+
+ // Handle NEG.
+ if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
+ if (CLHS->isNullValue()) {
+ KnownBits Known(TyBits);
+ computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
+ // If the input is known to be 0 or 1, the output is 0/-1, which is
+ // all sign bits set.
+ if ((Known.Zero | 1).isAllOnes())
+ return TyBits;
+
+ // If the input is known to be positive (the sign bit is known clear),
+ // the output of the NEG has the same number of sign bits as the
+ // input.
+ if (Known.isNonNegative())
+ return Tmp2;
+
+ // Otherwise, we treat this like a SUB.
+ }
+
+ // Sub can have at most one carry bit. Thus we know that the output
+ // is, at worst, one more bit than the inputs.
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+ if (Tmp == 1) break;
+ return std::min(Tmp, Tmp2) - 1;
+
+ case Instruction::Mul: {
+ // The output of the Mul can be at most twice the valid bits in the
+ // inputs.
+ unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+ if (SignBitsOp0 == 1) break;
+ unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
+ if (SignBitsOp1 == 1) break;
+ unsigned OutValidBits =
+ (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
+ return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
+ }
+
+ case Instruction::PHI: {
+ const PHINode *PN = cast<PHINode>(U);
+ unsigned NumIncomingValues = PN->getNumIncomingValues();
+ // Don't analyze large in-degree PHIs.
+ if (NumIncomingValues > 4) break;
+ // Unreachable blocks may have zero-operand PHI nodes.
+ if (NumIncomingValues == 0) break;
+
+ // Take the minimum of all incoming values. This can't infinitely loop
+ // because of our depth threshold.
+ Query RecQ = Q;
+ Tmp = TyBits;
+ for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
+ if (Tmp == 1) return Tmp;
+ RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
+ Tmp = std::min(
+ Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
+ }
+ return Tmp;
+ }
+
+ case Instruction::Trunc: {
+ // If the input contained enough sign bits that some remain after the
+ // truncation, then we can make use of that. Otherwise we don't know
+ // anything.
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+ unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits();
+ if (Tmp > (OperandTyBits - TyBits))
+ return Tmp - (OperandTyBits - TyBits);
+
+ return 1;
+ }
+
+ case Instruction::ExtractElement:
+ // Look through extract element. At the moment we keep this simple and
+ // skip tracking the specific element. But at least we might find
+ // information valid for all elements of the vector (for example if vector
+ // is sign extended, shifted, etc).
+ return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+
+ case Instruction::ShuffleVector: {
+ // Collect the minimum number of sign bits that are shared by every vector
+ // element referenced by the shuffle.
+ auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
+ if (!Shuf) {
+ // FIXME: Add support for shufflevector constant expressions.
+ return 1;
+ }
+ APInt DemandedLHS, DemandedRHS;
+ // For undef elements, we don't know anything about the common state of
+ // the shuffle result.
+ if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
+ return 1;
+ Tmp = std::numeric_limits<unsigned>::max();
+ if (!!DemandedLHS) {
+ const Value *LHS = Shuf->getOperand(0);
+ Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
+ }
+ // If we don't know anything, early out and try computeKnownBits
+ // fall-back.
+ if (Tmp == 1)
+ break;
+ if (!!DemandedRHS) {
+ const Value *RHS = Shuf->getOperand(1);
+ Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
+ Tmp = std::min(Tmp, Tmp2);
+ }
+ // If we don't know anything, early out and try computeKnownBits
+ // fall-back.
+ if (Tmp == 1)
+ break;
+ assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
+ return Tmp;
+ }
+ case Instruction::Call: {
+ if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::abs:
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+ if (Tmp == 1) break;
+
+ // Absolute value reduces number of sign bits by at most 1.
+ return Tmp - 1;
+ case Intrinsic::smin:
+ case Intrinsic::smax: {
+ const APInt *CLow, *CHigh;
+ if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh))
+ return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // Finally, if we can prove that the top bits of the result are 0's or 1's,
+ // use this information.
+
+ // If we can examine all elements of a vector constant successfully, we're
+ // done (we can't do any better than that). If not, keep trying.
+ if (unsigned VecSignBits =
+ computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
+ return VecSignBits;
+
+ KnownBits Known(TyBits);
+ computeKnownBits(V, DemandedElts, Known, Depth, Q);
+
+ // If we know that the sign bit is either zero or one, determine the number of
+ // identical bits in the top of the input value.
+ return std::max(FirstAnswer, Known.countMinSignBits());
+}
+
+Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
+ const TargetLibraryInfo *TLI) {
+ const Function *F = CB.getCalledFunction();
+ if (!F)
+ return Intrinsic::not_intrinsic;
+
+ if (F->isIntrinsic())
+ return F->getIntrinsicID();
+
+ // We are going to infer semantics of a library function based on mapping it
+ // to an LLVM intrinsic. Check that the library function is available from
+ // this callbase and in this environment.
+ LibFunc Func;
+ if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
+ !CB.onlyReadsMemory())
+ return Intrinsic::not_intrinsic;
+
+ switch (Func) {
+ default:
+ break;
+ case LibFunc_sin:
+ case LibFunc_sinf:
+ case LibFunc_sinl:
+ return Intrinsic::sin;
+ case LibFunc_cos:
+ case LibFunc_cosf:
+ case LibFunc_cosl:
+ return Intrinsic::cos;
+ case LibFunc_exp:
+ case LibFunc_expf:
+ case LibFunc_expl:
+ return Intrinsic::exp;
+ case LibFunc_exp2:
+ case LibFunc_exp2f:
+ case LibFunc_exp2l:
+ return Intrinsic::exp2;
+ case LibFunc_log:
+ case LibFunc_logf:
+ case LibFunc_logl:
+ return Intrinsic::log;
+ case LibFunc_log10:
+ case LibFunc_log10f:
+ case LibFunc_log10l:
+ return Intrinsic::log10;
+ case LibFunc_log2:
+ case LibFunc_log2f:
+ case LibFunc_log2l:
+ return Intrinsic::log2;
+ case LibFunc_fabs:
+ case LibFunc_fabsf:
+ case LibFunc_fabsl:
+ return Intrinsic::fabs;
+ case LibFunc_fmin:
+ case LibFunc_fminf:
+ case LibFunc_fminl:
+ return Intrinsic::minnum;
+ case LibFunc_fmax:
+ case LibFunc_fmaxf:
+ case LibFunc_fmaxl:
+ return Intrinsic::maxnum;
+ case LibFunc_copysign:
+ case LibFunc_copysignf:
+ case LibFunc_copysignl:
+ return Intrinsic::copysign;
+ case LibFunc_floor:
+ case LibFunc_floorf:
+ case LibFunc_floorl:
+ return Intrinsic::floor;
+ case LibFunc_ceil:
+ case LibFunc_ceilf:
+ case LibFunc_ceill:
+ return Intrinsic::ceil;
+ case LibFunc_trunc:
+ case LibFunc_truncf:
+ case LibFunc_truncl:
+ return Intrinsic::trunc;
+ case LibFunc_rint:
+ case LibFunc_rintf:
+ case LibFunc_rintl:
+ return Intrinsic::rint;
+ case LibFunc_nearbyint:
+ case LibFunc_nearbyintf:
+ case LibFunc_nearbyintl:
+ return Intrinsic::nearbyint;
+ case LibFunc_round:
+ case LibFunc_roundf:
+ case LibFunc_roundl:
+ return Intrinsic::round;
+ case LibFunc_roundeven:
+ case LibFunc_roundevenf:
+ case LibFunc_roundevenl:
+ return Intrinsic::roundeven;
+ case LibFunc_pow:
+ case LibFunc_powf:
+ case LibFunc_powl:
+ return Intrinsic::pow;
+ case LibFunc_sqrt:
+ case LibFunc_sqrtf:
+ case LibFunc_sqrtl:
+ return Intrinsic::sqrt;
+ }
+
+ return Intrinsic::not_intrinsic;
+}
+
+/// Return true if we can prove that the specified FP value is never equal to
+/// -0.0.
+/// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
+/// that a value is not -0.0. It only guarantees that -0.0 may be treated
+/// the same as +0.0 in floating-point ops.
+bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
+ unsigned Depth) {
+ if (auto *CFP = dyn_cast<ConstantFP>(V))
+ return !CFP->getValueAPF().isNegZero();
+
+ if (Depth == MaxAnalysisRecursionDepth)
+ return false;
+
+ auto *Op = dyn_cast<Operator>(V);
+ if (!Op)
+ return false;
+
+ // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
+ if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
+ return true;
+
+ // sitofp and uitofp turn into +0.0 for zero.
+ if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
+ return true;
+
+ if (auto *Call = dyn_cast<CallInst>(Op)) {
+ Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
+ switch (IID) {
+ default:
+ break;
+ // sqrt(-0.0) = -0.0, no other negative results are possible.
+ case Intrinsic::sqrt:
+ case Intrinsic::canonicalize:
+ return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
+ case Intrinsic::experimental_constrained_sqrt: {
+ // NOTE: This rounding mode restriction may be too strict.
+ const auto *CI = cast<ConstrainedFPIntrinsic>(Call);
+ if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven)
+ return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
+ else
+ return false;
+ }
+ // fabs(x) != -0.0
+ case Intrinsic::fabs:
+ return true;
+ // sitofp and uitofp turn into +0.0 for zero.
+ case Intrinsic::experimental_constrained_sitofp:
+ case Intrinsic::experimental_constrained_uitofp:
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
+/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
+/// bit despite comparing equal.
+static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
+ const TargetLibraryInfo *TLI,
+ bool SignBitOnly,
+ unsigned Depth) {
+ // TODO: This function does not do the right thing when SignBitOnly is true
+ // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
+ // which flips the sign bits of NaNs. See
+ // https://llvm.org/bugs/show_bug.cgi?id=31702.
+
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
+ return !CFP->getValueAPF().isNegative() ||
+ (!SignBitOnly && CFP->getValueAPF().isZero());
+ }
+
+ // Handle vector of constants.
+ if (auto *CV = dyn_cast<Constant>(V)) {
+ if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
+ unsigned NumElts = CVFVTy->getNumElements();
+ for (unsigned i = 0; i != NumElts; ++i) {
+ auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
+ if (!CFP)
+ return false;
+ if (CFP->getValueAPF().isNegative() &&
+ (SignBitOnly || !CFP->getValueAPF().isZero()))
+ return false;
+ }
+
+ // All non-negative ConstantFPs.
+ return true;
+ }
+ }
+
+ if (Depth == MaxAnalysisRecursionDepth)
+ return false;
+
+ const Operator *I = dyn_cast<Operator>(V);
+ if (!I)
+ return false;
+
+ switch (I->getOpcode()) {
+ default:
+ break;
+ // Unsigned integers are always nonnegative.
+ case Instruction::UIToFP:
+ return true;
+ case Instruction::FDiv:
+ // X / X is always exactly 1.0 or a NaN.
+ if (I->getOperand(0) == I->getOperand(1) &&
+ (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
+ return true;
+
+ // Set SignBitOnly for RHS, because X / -0.0 is -Inf (or NaN).
+ return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
+ Depth + 1) &&
+ cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
+ /*SignBitOnly*/ true, Depth + 1);
+ case Instruction::FMul:
+ // X * X is always non-negative or a NaN.
+ if (I->getOperand(0) == I->getOperand(1) &&
+ (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
+ return true;
+
+ [[fallthrough]];
+ case Instruction::FAdd:
+ case Instruction::FRem:
+ return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
+ Depth + 1) &&
+ cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
+ Depth + 1);
+ case Instruction::Select:
+ return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
+ Depth + 1) &&
+ cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
+ Depth + 1);
+ case Instruction::FPExt:
+ case Instruction::FPTrunc:
+ // Widening/narrowing never change sign.
+ return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
+ Depth + 1);
+ case Instruction::ExtractElement:
+ // Look through extract element. At the moment we keep this simple and skip
+ // tracking the specific element. But at least we might find information
+ // valid for all elements of the vector.
+ return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
+ Depth + 1);
+ case Instruction::Call:
+ const auto *CI = cast<CallInst>(I);
+ Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
+ switch (IID) {
+ default:
+ break;
+ case Intrinsic::canonicalize:
+ case Intrinsic::arithmetic_fence:
+ case Intrinsic::floor:
+ case Intrinsic::ceil:
+ case Intrinsic::trunc:
+ case Intrinsic::rint:
+ case Intrinsic::nearbyint:
+ case Intrinsic::round:
+ case Intrinsic::roundeven:
+ case Intrinsic::fptrunc_round:
+ return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, Depth + 1);
+ case Intrinsic::maxnum: {
+ Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
+ auto isPositiveNum = [&](Value *V) {
+ if (SignBitOnly) {
+ // With SignBitOnly, this is tricky because the result of
+ // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
+ // a constant strictly greater than 0.0.
+ const APFloat *C;
+ return match(V, m_APFloat(C)) &&
+ *C > APFloat::getZero(C->getSemantics());
+ }
+
+ // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
+ // maxnum can't be ordered-less-than-zero.
+ return isKnownNeverNaN(V, TLI) &&
+ cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
+ };
+
+ // TODO: This could be improved. We could also check that neither operand
+ // has its sign bit set (and at least 1 is not-NAN?).
+ return isPositiveNum(V0) || isPositiveNum(V1);
+ }
+
+ case Intrinsic::maximum:
+ return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
+ Depth + 1) ||
+ cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
+ Depth + 1);
+ case Intrinsic::minnum:
+ case Intrinsic::minimum:
+ return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
+ Depth + 1) &&
+ cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
+ Depth + 1);
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::fabs:
+ return true;
+ case Intrinsic::copysign:
+ // Only the sign operand matters.
+ return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, true,
+ Depth + 1);
+ case Intrinsic::sqrt:
+ // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
+ if (!SignBitOnly)
+ return true;
+ return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
+ CannotBeNegativeZero(CI->getOperand(0), TLI));
+
+ case Intrinsic::powi:
+ if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ // powi(x,n) is non-negative if n is even.
+ if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
+ return true;
+ }
+ // TODO: This is not correct. Given that exp is an integer, here are the
+ // ways that pow can return a negative value:
+ //
+ // pow(x, exp) --> negative if exp is odd and x is negative.
+ // pow(-0, exp) --> -inf if exp is negative odd.
+ // pow(-0, exp) --> -0 if exp is positive odd.
+ // pow(-inf, exp) --> -0 if exp is negative odd.
+ // pow(-inf, exp) --> -inf if exp is positive odd.
+ //
+ // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
+ // but we must return false if x == -0. Unfortunately we do not currently
+ // have a way of expressing this constraint. See details in
+ // https://llvm.org/bugs/show_bug.cgi?id=31702.
+ return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
+ Depth + 1);
+
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd:
+ // x*x+y is non-negative if y is non-negative.
+ return I->getOperand(0) == I->getOperand(1) &&
+ (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
+ cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
+ Depth + 1);
+ }
+ break;
+ }
+ return false;
+}
+
+bool llvm::CannotBeOrderedLessThanZero(const Value *V,
+ const TargetLibraryInfo *TLI) {
+ return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
+}
+
+bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
+ return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
+}
+
+bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
+ unsigned Depth) {
+ assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
+
+ // If we're told that infinities won't happen, assume they won't.
+ if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
+ if (FPMathOp->hasNoInfs())
+ return true;
+
+ // Handle scalar constants.
+ if (auto *CFP = dyn_cast<ConstantFP>(V))
+ return !CFP->isInfinity();
+
+ if (Depth == MaxAnalysisRecursionDepth)
+ return false;
+
+ if (auto *Inst = dyn_cast<Instruction>(V)) {
+ switch (Inst->getOpcode()) {
+ case Instruction::Select: {
+ return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
+ isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
+ }
+ case Instruction::SIToFP:
+ case Instruction::UIToFP: {
+ // Get width of largest magnitude integer (remove a bit if signed).
+ // This still works for a signed minimum value because the largest FP
+ // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
+ int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
+ if (Inst->getOpcode() == Instruction::SIToFP)
+ --IntSize;
+
+ // If the exponent of the largest finite FP value can hold the largest
+ // integer, the result of the cast must be finite.
+ Type *FPTy = Inst->getType()->getScalarType();
+ return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
+ }
+ case Instruction::FNeg:
+ case Instruction::FPExt: {
+ // Peek through to source op. If it is not infinity, this is not infinity.
+ return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1);
+ }
+ case Instruction::FPTrunc: {
+ // Need a range check.
+ return false;
+ }
+ default:
+ break;
+ }
+
+ if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::sin:
+ case Intrinsic::cos:
+ // Return NaN on infinite inputs.
+ return true;
+ case Intrinsic::fabs:
+ case Intrinsic::sqrt:
+ case Intrinsic::canonicalize:
+ case Intrinsic::copysign:
+ case Intrinsic::arithmetic_fence:
+ case Intrinsic::trunc:
+ return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1);
+ case Intrinsic::floor:
+ case Intrinsic::ceil:
+ case Intrinsic::rint:
+ case Intrinsic::nearbyint:
+ case Intrinsic::round:
+ case Intrinsic::roundeven:
+ // PPC_FP128 is a special case.
+ if (V->getType()->isMultiUnitFPType())
+ return false;
+ return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1);
+ case Intrinsic::fptrunc_round:
+ // Requires knowing the value range.
+ return false;
+ case Intrinsic::minnum:
+ case Intrinsic::maxnum:
+ case Intrinsic::minimum:
+ case Intrinsic::maximum:
+ return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
+ isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
+ case Intrinsic::log:
+ case Intrinsic::log10:
+ case Intrinsic::log2:
+ // log(+inf) -> +inf
+ // log([+-]0.0) -> -inf
+ // log(-inf) -> nan
+ // log(-x) -> nan
+ // TODO: We lack API to check the == 0 case.
+ return false;
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::pow:
+ case Intrinsic::powi:
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd:
+ // These can return infinities on overflow cases, so it's hard to prove
+ // anything about it.
+ return false;
+ default:
+ break;
+ }
+ }
+ }
+
+ // try to handle fixed width vector constants
+ auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
+ if (VFVTy && isa<Constant>(V)) {
+ // For vectors, verify that each element is not infinity.
+ unsigned NumElts = VFVTy->getNumElements();
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
+ if (!Elt)
+ return false;
+ if (isa<UndefValue>(Elt))
+ continue;
+ auto *CElt = dyn_cast<ConstantFP>(Elt);
+ if (!CElt || CElt->isInfinity())
+ return false;
+ }
+ // All elements were confirmed non-infinity or undefined.
+ return true;
+ }
+
+ // was not able to prove that V never contains infinity
+ return false;
+}
+
+bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
+ unsigned Depth) {
+ assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
+
+ // If we're told that NaNs won't happen, assume they won't.
+ if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
+ if (FPMathOp->hasNoNaNs())
+ return true;
+
+ // Handle scalar constants.
+ if (auto *CFP = dyn_cast<ConstantFP>(V))
+ return !CFP->isNaN();
+
+ if (Depth == MaxAnalysisRecursionDepth)
+ return false;
+
+ if (auto *Inst = dyn_cast<Instruction>(V)) {
+ switch (Inst->getOpcode()) {
+ case Instruction::FAdd:
+ case Instruction::FSub:
+ // Adding positive and negative infinity produces NaN.
+ return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
+ isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
+ (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
+ isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
+
+ case Instruction::FMul:
+ // Zero multiplied with infinity produces NaN.
+ // FIXME: If neither side can be zero fmul never produces NaN.
+ return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
+ isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
+ isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
+ isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
+
+ case Instruction::FDiv:
+ case Instruction::FRem:
+ // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
+ return false;
+
+ case Instruction::Select: {
+ return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
+ isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
+ }
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ return true;
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::FNeg:
+ return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
+ default:
+ break;
+ }
+ }
+
+ if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::canonicalize:
+ case Intrinsic::fabs:
+ case Intrinsic::copysign:
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::floor:
+ case Intrinsic::ceil:
+ case Intrinsic::trunc:
+ case Intrinsic::rint:
+ case Intrinsic::nearbyint:
+ case Intrinsic::round:
+ case Intrinsic::roundeven:
+ case Intrinsic::arithmetic_fence:
+ return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
+ case Intrinsic::sqrt:
+ return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
+ CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
+ case Intrinsic::minnum:
+ case Intrinsic::maxnum:
+ // If either operand is not NaN, the result is not NaN.
+ return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
+ isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
+ default:
+ return false;
+ }
+ }
+
+ // Try to handle fixed width vector constants
+ auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
+ if (VFVTy && isa<Constant>(V)) {
+ // For vectors, verify that each element is not NaN.
+ unsigned NumElts = VFVTy->getNumElements();
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
+ if (!Elt)
+ return false;
+ if (isa<UndefValue>(Elt))
+ continue;
+ auto *CElt = dyn_cast<ConstantFP>(Elt);
+ if (!CElt || CElt->isNaN())
+ return false;
+ }
+ // All elements were confirmed not-NaN or undefined.
+ return true;
+ }
+
+ // Was not able to prove that V never contains NaN
+ return false;
+}
+
+Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
+
+ // All byte-wide stores are splatable, even of arbitrary variables.
+ if (V->getType()->isIntegerTy(8))
+ return V;
+
+ LLVMContext &Ctx = V->getContext();
+
+ // Undef don't care.
+ auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
+ if (isa<UndefValue>(V))
+ return UndefInt8;
+
+ // Return Undef for zero-sized type.
+ if (!DL.getTypeStoreSize(V->getType()).isNonZero())
+ return UndefInt8;
+
+ Constant *C = dyn_cast<Constant>(V);
+ if (!C) {
+ // Conceptually, we could handle things like:
+ // %a = zext i8 %X to i16
+ // %b = shl i16 %a, 8
+ // %c = or i16 %a, %b
+ // but until there is an example that actually needs this, it doesn't seem
+ // worth worrying about.
+ return nullptr;
+ }
+
+ // Handle 'null' ConstantArrayZero etc.
+ if (C->isNullValue())
+ return Constant::getNullValue(Type::getInt8Ty(Ctx));
+
+ // Constant floating-point values can be handled as integer values if the
+ // corresponding integer value is "byteable". An important case is 0.0.
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+ Type *Ty = nullptr;
+ if (CFP->getType()->isHalfTy())
+ Ty = Type::getInt16Ty(Ctx);
+ else if (CFP->getType()->isFloatTy())
+ Ty = Type::getInt32Ty(Ctx);
+ else if (CFP->getType()->isDoubleTy())
+ Ty = Type::getInt64Ty(Ctx);
+ // Don't handle long double formats, which have strange constraints.
+ return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
+ : nullptr;
+ }
+
+ // We can handle constant integers that are multiple of 8 bits.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
+ if (CI->getBitWidth() % 8 == 0) {
+ assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
+ if (!CI->getValue().isSplat(8))
+ return nullptr;
+ return ConstantInt::get(Ctx, CI->getValue().trunc(8));
+ }
+ }
+
+ if (auto *CE = dyn_cast<ConstantExpr>(C)) {
+ if (CE->getOpcode() == Instruction::IntToPtr) {
+ if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
+ unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
+ return isBytewiseValue(
+ ConstantExpr::getIntegerCast(CE->getOperand(0),
+ Type::getIntNTy(Ctx, BitWidth), false),
+ DL);
+ }
+ }
+ }
+
+ auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
+ if (LHS == RHS)
+ return LHS;
+ if (!LHS || !RHS)
+ return nullptr;
+ if (LHS == UndefInt8)
+ return RHS;
+ if (RHS == UndefInt8)
+ return LHS;
+ return nullptr;
+ };
+
+ if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
+ Value *Val = UndefInt8;
+ for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
+ if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
+ return nullptr;
+ return Val;
+ }
+
+ if (isa<ConstantAggregate>(C)) {
+ Value *Val = UndefInt8;
+ for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
+ if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
+ return nullptr;
+ return Val;
+ }
+
+ // Don't try to handle the handful of other constants.
+ return nullptr;
+}
+
+// This is the recursive version of BuildSubAggregate. It takes a few different
+// arguments. Idxs is the index within the nested struct From that we are
+// looking at now (which is of type IndexedType). IdxSkip is the number of
+// indices from Idxs that should be left out when inserting into the resulting
+// struct. To is the result struct built so far, new insertvalue instructions
+// build on that.
+static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
+ SmallVectorImpl<unsigned> &Idxs,
+ unsigned IdxSkip,
+ Instruction *InsertBefore) {
+ StructType *STy = dyn_cast<StructType>(IndexedType);
+ if (STy) {
+ // Save the original To argument so we can modify it
+ Value *OrigTo = To;
+ // General case, the type indexed by Idxs is a struct
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ // Process each struct element recursively
+ Idxs.push_back(i);
+ Value *PrevTo = To;
+ To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
+ InsertBefore);
+ Idxs.pop_back();
+ if (!To) {
+ // Couldn't find any inserted value for this index? Cleanup
+ while (PrevTo != OrigTo) {
+ InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
+ PrevTo = Del->getAggregateOperand();
+ Del->eraseFromParent();
+ }
+ // Stop processing elements
+ break;
+ }
+ }
+ // If we successfully found a value for each of our subaggregates
+ if (To)
+ return To;
+ }
+ // Base case, the type indexed by SourceIdxs is not a struct, or not all of
+ // the struct's elements had a value that was inserted directly. In the latter
+ // case, perhaps we can't determine each of the subelements individually, but
+ // we might be able to find the complete struct somewhere.
+
+ // Find the value that is at that particular spot
+ Value *V = FindInsertedValue(From, Idxs);
+
+ if (!V)
+ return nullptr;
+
+ // Insert the value in the new (sub) aggregate
+ return InsertValueInst::Create(To, V, ArrayRef(Idxs).slice(IdxSkip), "tmp",
+ InsertBefore);
+}
+
+// This helper takes a nested struct and extracts a part of it (which is again a
+// struct) into a new value. For example, given the struct:
+// { a, { b, { c, d }, e } }
+// and the indices "1, 1" this returns
+// { c, d }.
+//
+// It does this by inserting an insertvalue for each element in the resulting
+// struct, as opposed to just inserting a single struct. This will only work if
+// each of the elements of the substruct are known (ie, inserted into From by an
+// insertvalue instruction somewhere).
+//
+// All inserted insertvalue instructions are inserted before InsertBefore
+static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
+ Instruction *InsertBefore) {
+ assert(InsertBefore && "Must have someplace to insert!");
+ Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
+ idx_range);
+ Value *To = PoisonValue::get(IndexedType);
+ SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
+ unsigned IdxSkip = Idxs.size();
+
+ return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
+}
+
+/// Given an aggregate and a sequence of indices, see if the scalar value
+/// indexed is already around as a register, for example if it was inserted
+/// directly into the aggregate.
+///
+/// If InsertBefore is not null, this function will duplicate (modified)
+/// insertvalues when a part of a nested struct is extracted.
+Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
+ Instruction *InsertBefore) {
+ // Nothing to index? Just return V then (this is useful at the end of our
+ // recursion).
+ if (idx_range.empty())
+ return V;
+ // We have indices, so V should have an indexable type.
+ assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
+ "Not looking at a struct or array?");
+ assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
+ "Invalid indices for type?");
+
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ C = C->getAggregateElement(idx_range[0]);
+ if (!C) return nullptr;
+ return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
+ }
+
+ if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
+ // Loop the indices for the insertvalue instruction in parallel with the
+ // requested indices
+ const unsigned *req_idx = idx_range.begin();
+ for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
+ i != e; ++i, ++req_idx) {
+ if (req_idx == idx_range.end()) {
+ // We can't handle this without inserting insertvalues
+ if (!InsertBefore)
+ return nullptr;
+
+ // The requested index identifies a part of a nested aggregate. Handle
+ // this specially. For example,
+ // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
+ // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
+ // %C = extractvalue {i32, { i32, i32 } } %B, 1
+ // This can be changed into
+ // %A = insertvalue {i32, i32 } undef, i32 10, 0
+ // %C = insertvalue {i32, i32 } %A, i32 11, 1
+ // which allows the unused 0,0 element from the nested struct to be
+ // removed.
+ return BuildSubAggregate(V, ArrayRef(idx_range.begin(), req_idx),
+ InsertBefore);
+ }
+
+ // This insert value inserts something else than what we are looking for.
+ // See if the (aggregate) value inserted into has the value we are
+ // looking for, then.
+ if (*req_idx != *i)
+ return FindInsertedValue(I->getAggregateOperand(), idx_range,
+ InsertBefore);
+ }
+ // If we end up here, the indices of the insertvalue match with those
+ // requested (though possibly only partially). Now we recursively look at
+ // the inserted value, passing any remaining indices.
+ return FindInsertedValue(I->getInsertedValueOperand(),
+ ArrayRef(req_idx, idx_range.end()), InsertBefore);
+ }
+
+ if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
+ // If we're extracting a value from an aggregate that was extracted from
+ // something else, we can extract from that something else directly instead.
+ // However, we will need to chain I's indices with the requested indices.
+
+ // Calculate the number of indices required
+ unsigned size = I->getNumIndices() + idx_range.size();
+ // Allocate some space to put the new indices in
+ SmallVector<unsigned, 5> Idxs;
+ Idxs.reserve(size);
+ // Add indices from the extract value instruction
+ Idxs.append(I->idx_begin(), I->idx_end());
+
+ // Add requested indices
+ Idxs.append(idx_range.begin(), idx_range.end());
+
+ assert(Idxs.size() == size
+ && "Number of indices added not correct?");
+
+ return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
+ }
+ // Otherwise, we don't know (such as, extracting from a function return value
+ // or load instruction)
+ return nullptr;
+}
+
+bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
+ unsigned CharSize) {
+ // Make sure the GEP has exactly three arguments.
+ if (GEP->getNumOperands() != 3)
+ return false;
+
+ // Make sure the index-ee is a pointer to array of \p CharSize integers.
+ // CharSize.
+ ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
+ if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
+ return false;
+
+ // Check to make sure that the first operand of the GEP is an integer and
+ // has value 0 so that we are sure we're indexing into the initializer.
+ const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
+ if (!FirstIdx || !FirstIdx->isZero())
+ return false;
+
+ return true;
+}
+
+// If V refers to an initialized global constant, set Slice either to
+// its initializer if the size of its elements equals ElementSize, or,
+// for ElementSize == 8, to its representation as an array of unsiged
+// char. Return true on success.
+// Offset is in the unit "nr of ElementSize sized elements".
+bool llvm::getConstantDataArrayInfo(const Value *V,
+ ConstantDataArraySlice &Slice,
+ unsigned ElementSize, uint64_t Offset) {
+ assert(V && "V should not be null.");
+ assert((ElementSize % 8) == 0 &&
+ "ElementSize expected to be a multiple of the size of a byte.");
+ unsigned ElementSizeInBytes = ElementSize / 8;
+
+ // Drill down into the pointer expression V, ignoring any intervening
+ // casts, and determine the identity of the object it references along
+ // with the cumulative byte offset into it.
+ const GlobalVariable *GV =
+ dyn_cast<GlobalVariable>(getUnderlyingObject(V));
+ if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
+ // Fail if V is not based on constant global object.
+ return false;
+
+ const DataLayout &DL = GV->getParent()->getDataLayout();
+ APInt Off(DL.getIndexTypeSizeInBits(V->getType()), 0);
+
+ if (GV != V->stripAndAccumulateConstantOffsets(DL, Off,
+ /*AllowNonInbounds*/ true))
+ // Fail if a constant offset could not be determined.
+ return false;
+
+ uint64_t StartIdx = Off.getLimitedValue();
+ if (StartIdx == UINT64_MAX)
+ // Fail if the constant offset is excessive.
+ return false;
+
+ // Off/StartIdx is in the unit of bytes. So we need to convert to number of
+ // elements. Simply bail out if that isn't possible.
+ if ((StartIdx % ElementSizeInBytes) != 0)
+ return false;
+
+ Offset += StartIdx / ElementSizeInBytes;
+ ConstantDataArray *Array = nullptr;
+ ArrayType *ArrayTy = nullptr;
+
+ if (GV->getInitializer()->isNullValue()) {
+ Type *GVTy = GV->getValueType();
+ uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedValue();
+ uint64_t Length = SizeInBytes / ElementSizeInBytes;
+
+ Slice.Array = nullptr;
+ Slice.Offset = 0;
+ // Return an empty Slice for undersized constants to let callers
+ // transform even undefined library calls into simpler, well-defined
+ // expressions. This is preferable to making the calls although it
+ // prevents sanitizers from detecting such calls.
+ Slice.Length = Length < Offset ? 0 : Length - Offset;
+ return true;
+ }
+
+ auto *Init = const_cast<Constant *>(GV->getInitializer());
+ if (auto *ArrayInit = dyn_cast<ConstantDataArray>(Init)) {
+ Type *InitElTy = ArrayInit->getElementType();
+ if (InitElTy->isIntegerTy(ElementSize)) {
+ // If Init is an initializer for an array of the expected type
+ // and size, use it as is.
+ Array = ArrayInit;
+ ArrayTy = ArrayInit->getType();
+ }
+ }
+
+ if (!Array) {
+ if (ElementSize != 8)
+ // TODO: Handle conversions to larger integral types.
+ return false;
+
+ // Otherwise extract the portion of the initializer starting
+ // at Offset as an array of bytes, and reset Offset.
+ Init = ReadByteArrayFromGlobal(GV, Offset);
+ if (!Init)
+ return false;
+
+ Offset = 0;
+ Array = dyn_cast<ConstantDataArray>(Init);
+ ArrayTy = dyn_cast<ArrayType>(Init->getType());
+ }
+
+ uint64_t NumElts = ArrayTy->getArrayNumElements();
+ if (Offset > NumElts)
+ return false;
+
+ Slice.Array = Array;
+ Slice.Offset = Offset;
+ Slice.Length = NumElts - Offset;
+ return true;
+}
+
+/// Extract bytes from the initializer of the constant array V, which need
+/// not be a nul-terminated string. On success, store the bytes in Str and
+/// return true. When TrimAtNul is set, Str will contain only the bytes up
+/// to but not including the first nul. Return false on failure.
+bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
+ bool TrimAtNul) {
+ ConstantDataArraySlice Slice;
+ if (!getConstantDataArrayInfo(V, Slice, 8))
+ return false;
+
+ if (Slice.Array == nullptr) {
+ if (TrimAtNul) {
+ // Return a nul-terminated string even for an empty Slice. This is
+ // safe because all existing SimplifyLibcalls callers require string
+ // arguments and the behavior of the functions they fold is undefined
+ // otherwise. Folding the calls this way is preferable to making
+ // the undefined library calls, even though it prevents sanitizers
+ // from reporting such calls.
+ Str = StringRef();
+ return true;
+ }
+ if (Slice.Length == 1) {
+ Str = StringRef("", 1);
+ return true;
+ }
+ // We cannot instantiate a StringRef as we do not have an appropriate string
+ // of 0s at hand.
+ return false;
+ }
+
+ // Start out with the entire array in the StringRef.
+ Str = Slice.Array->getAsString();
+ // Skip over 'offset' bytes.
+ Str = Str.substr(Slice.Offset);
+
+ if (TrimAtNul) {
+ // Trim off the \0 and anything after it. If the array is not nul
+ // terminated, we just return the whole end of string. The client may know
+ // some other way that the string is length-bound.
+ Str = Str.substr(0, Str.find('\0'));
+ }
+ return true;
+}
+
+// These next two are very similar to the above, but also look through PHI
+// nodes.
+// TODO: See if we can integrate these two together.
+
+/// If we can compute the length of the string pointed to by
+/// the specified pointer, return 'len+1'. If we can't, return 0.
+static uint64_t GetStringLengthH(const Value *V,
+ SmallPtrSetImpl<const PHINode*> &PHIs,
+ unsigned CharSize) {
+ // Look through noop bitcast instructions.
+ V = V->stripPointerCasts();
+
+ // If this is a PHI node, there are two cases: either we have already seen it
+ // or we haven't.
+ if (const PHINode *PN = dyn_cast<PHINode>(V)) {
+ if (!PHIs.insert(PN).second)
+ return ~0ULL; // already in the set.
+
+ // If it was new, see if all the input strings are the same length.
+ uint64_t LenSoFar = ~0ULL;
+ for (Value *IncValue : PN->incoming_values()) {
+ uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
+ if (Len == 0) return 0; // Unknown length -> unknown.
+
+ if (Len == ~0ULL) continue;
+
+ if (Len != LenSoFar && LenSoFar != ~0ULL)
+ return 0; // Disagree -> unknown.
+ LenSoFar = Len;
+ }
+
+ // Success, all agree.
+ return LenSoFar;
+ }
+
+ // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
+ if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
+ uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
+ if (Len1 == 0) return 0;
+ uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
+ if (Len2 == 0) return 0;
+ if (Len1 == ~0ULL) return Len2;
+ if (Len2 == ~0ULL) return Len1;
+ if (Len1 != Len2) return 0;
+ return Len1;
+ }
+
+ // Otherwise, see if we can read the string.
+ ConstantDataArraySlice Slice;
+ if (!getConstantDataArrayInfo(V, Slice, CharSize))
+ return 0;
+
+ if (Slice.Array == nullptr)
+ // Zeroinitializer (including an empty one).
+ return 1;
+
+ // Search for the first nul character. Return a conservative result even
+ // when there is no nul. This is safe since otherwise the string function
+ // being folded such as strlen is undefined, and can be preferable to
+ // making the undefined library call.
+ unsigned NullIndex = 0;
+ for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
+ if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
+ break;
+ }
+
+ return NullIndex + 1;
+}
+
+/// If we can compute the length of the string pointed to by
+/// the specified pointer, return 'len+1'. If we can't, return 0.
+uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
+ if (!V->getType()->isPointerTy())
+ return 0;
+
+ SmallPtrSet<const PHINode*, 32> PHIs;
+ uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
+ // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
+ // an empty string as a length.
+ return Len == ~0ULL ? 1 : Len;
+}
+
+const Value *
+llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
+ bool MustPreserveNullness) {
+ assert(Call &&
+ "getArgumentAliasingToReturnedPointer only works on nonnull calls");
+ if (const Value *RV = Call->getReturnedArgOperand())
+ return RV;
+ // This can be used only as a aliasing property.
+ if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
+ Call, MustPreserveNullness))
+ return Call->getArgOperand(0);
+ return nullptr;
+}
+
+bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
+ const CallBase *Call, bool MustPreserveNullness) {
+ switch (Call->getIntrinsicID()) {
+ case Intrinsic::launder_invariant_group:
+ case Intrinsic::strip_invariant_group:
+ case Intrinsic::aarch64_irg:
+ case Intrinsic::aarch64_tagp:
+ return true;
+ case Intrinsic::ptrmask:
+ return !MustPreserveNullness;
+ default:
+ return false;
+ }
+}
+
+/// \p PN defines a loop-variant pointer to an object. Check if the
+/// previous iteration of the loop was referring to the same object as \p PN.
+static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
+ const LoopInfo *LI) {
+ // Find the loop-defined value.
+ Loop *L = LI->getLoopFor(PN->getParent());
+ if (PN->getNumIncomingValues() != 2)
+ return true;
+
+ // Find the value from previous iteration.
+ auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
+ if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
+ PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
+ if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
+ return true;
+
+ // If a new pointer is loaded in the loop, the pointer references a different
+ // object in every iteration. E.g.:
+ // for (i)
+ // int *p = a[i];
+ // ...
+ if (auto *Load = dyn_cast<LoadInst>(PrevValue))
+ if (!L->isLoopInvariant(Load->getPointerOperand()))
+ return false;
+ return true;
+}
+
+const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
+ if (!V->getType()->isPointerTy())
+ return V;
+ for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
+ if (auto *GEP = dyn_cast<GEPOperator>(V)) {
+ V = GEP->getPointerOperand();
+ } else if (Operator::getOpcode(V) == Instruction::BitCast ||
+ Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
+ V = cast<Operator>(V)->getOperand(0);
+ if (!V->getType()->isPointerTy())
+ return V;
+ } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
+ if (GA->isInterposable())
+ return V;
+ V = GA->getAliasee();
+ } else {
+ if (auto *PHI = dyn_cast<PHINode>(V)) {
+ // Look through single-arg phi nodes created by LCSSA.
+ if (PHI->getNumIncomingValues() == 1) {
+ V = PHI->getIncomingValue(0);
+ continue;
+ }
+ } else if (auto *Call = dyn_cast<CallBase>(V)) {
+ // CaptureTracking can know about special capturing properties of some
+ // intrinsics like launder.invariant.group, that can't be expressed with
+ // the attributes, but have properties like returning aliasing pointer.
+ // Because some analysis may assume that nocaptured pointer is not
+ // returned from some special intrinsic (because function would have to
+ // be marked with returns attribute), it is crucial to use this function
+ // because it should be in sync with CaptureTracking. Not using it may
+ // cause weird miscompilations where 2 aliasing pointers are assumed to
+ // noalias.
+ if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
+ V = RP;
+ continue;
+ }
+ }
+
+ return V;
+ }
+ assert(V->getType()->isPointerTy() && "Unexpected operand type!");
+ }
+ return V;
+}
+
+void llvm::getUnderlyingObjects(const Value *V,
+ SmallVectorImpl<const Value *> &Objects,
+ LoopInfo *LI, unsigned MaxLookup) {
+ SmallPtrSet<const Value *, 4> Visited;
+ SmallVector<const Value *, 4> Worklist;
+ Worklist.push_back(V);
+ do {
+ const Value *P = Worklist.pop_back_val();
+ P = getUnderlyingObject(P, MaxLookup);
+
+ if (!Visited.insert(P).second)
+ continue;
+
+ if (auto *SI = dyn_cast<SelectInst>(P)) {
+ Worklist.push_back(SI->getTrueValue());
+ Worklist.push_back(SI->getFalseValue());
+ continue;
+ }
+
+ if (auto *PN = dyn_cast<PHINode>(P)) {
+ // If this PHI changes the underlying object in every iteration of the
+ // loop, don't look through it. Consider:
+ // int **A;
+ // for (i) {
+ // Prev = Curr; // Prev = PHI (Prev_0, Curr)
+ // Curr = A[i];
+ // *Prev, *Curr;
+ //
+ // Prev is tracking Curr one iteration behind so they refer to different
+ // underlying objects.
+ if (!LI || !LI->isLoopHeader(PN->getParent()) ||
+ isSameUnderlyingObjectInLoop(PN, LI))
+ append_range(Worklist, PN->incoming_values());
+ continue;
+ }
+
+ Objects.push_back(P);
+ } while (!Worklist.empty());
+}
+
+/// This is the function that does the work of looking through basic
+/// ptrtoint+arithmetic+inttoptr sequences.
+static const Value *getUnderlyingObjectFromInt(const Value *V) {
+ do {
+ if (const Operator *U = dyn_cast<Operator>(V)) {
+ // If we find a ptrtoint, we can transfer control back to the
+ // regular getUnderlyingObjectFromInt.
+ if (U->getOpcode() == Instruction::PtrToInt)
+ return U->getOperand(0);
+ // If we find an add of a constant, a multiplied value, or a phi, it's
+ // likely that the other operand will lead us to the base
+ // object. We don't have to worry about the case where the
+ // object address is somehow being computed by the multiply,
+ // because our callers only care when the result is an
+ // identifiable object.
+ if (U->getOpcode() != Instruction::Add ||
+ (!isa<ConstantInt>(U->getOperand(1)) &&
+ Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
+ !isa<PHINode>(U->getOperand(1))))
+ return V;
+ V = U->getOperand(0);
+ } else {
+ return V;
+ }
+ assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
+ } while (true);
+}
+
+/// This is a wrapper around getUnderlyingObjects and adds support for basic
+/// ptrtoint+arithmetic+inttoptr sequences.
+/// It returns false if unidentified object is found in getUnderlyingObjects.
+bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
+ SmallVectorImpl<Value *> &Objects) {
+ SmallPtrSet<const Value *, 16> Visited;
+ SmallVector<const Value *, 4> Working(1, V);
+ do {
+ V = Working.pop_back_val();
+
+ SmallVector<const Value *, 4> Objs;
+ getUnderlyingObjects(V, Objs);
+
+ for (const Value *V : Objs) {
+ if (!Visited.insert(V).second)
+ continue;
+ if (Operator::getOpcode(V) == Instruction::IntToPtr) {
+ const Value *O =
+ getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
+ if (O->getType()->isPointerTy()) {
+ Working.push_back(O);
+ continue;
+ }
+ }
+ // If getUnderlyingObjects fails to find an identifiable object,
+ // getUnderlyingObjectsForCodeGen also fails for safety.
+ if (!isIdentifiedObject(V)) {
+ Objects.clear();
+ return false;
+ }
+ Objects.push_back(const_cast<Value *>(V));
+ }
+ } while (!Working.empty());
+ return true;
+}
+
+AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
+ AllocaInst *Result = nullptr;
+ SmallPtrSet<Value *, 4> Visited;
+ SmallVector<Value *, 4> Worklist;
+
+ auto AddWork = [&](Value *V) {
+ if (Visited.insert(V).second)
+ Worklist.push_back(V);
+ };
+
+ AddWork(V);
+ do {
+ V = Worklist.pop_back_val();
+ assert(Visited.count(V));
+
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+ if (Result && Result != AI)
+ return nullptr;
+ Result = AI;
+ } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
+ AddWork(CI->getOperand(0));
+ } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
+ for (Value *IncValue : PN->incoming_values())
+ AddWork(IncValue);
+ } else if (auto *SI = dyn_cast<SelectInst>(V)) {
+ AddWork(SI->getTrueValue());
+ AddWork(SI->getFalseValue());
+ } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
+ if (OffsetZero && !GEP->hasAllZeroIndices())
+ return nullptr;
+ AddWork(GEP->getPointerOperand());
+ } else if (CallBase *CB = dyn_cast<CallBase>(V)) {
+ Value *Returned = CB->getReturnedArgOperand();
+ if (Returned)
+ AddWork(Returned);
+ else
+ return nullptr;
+ } else {
+ return nullptr;
+ }
+ } while (!Worklist.empty());
+
+ return Result;
+}
+
+static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
+ const Value *V, bool AllowLifetime, bool AllowDroppable) {
+ for (const User *U : V->users()) {
+ const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
+ if (!II)
+ return false;
+
+ if (AllowLifetime && II->isLifetimeStartOrEnd())
+ continue;
+
+ if (AllowDroppable && II->isDroppable())
+ continue;
+
+ return false;
+ }
+ return true;
+}
+
+bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
+ return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
+ V, /* AllowLifetime */ true, /* AllowDroppable */ false);
+}
+bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
+ return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
+ V, /* AllowLifetime */ true, /* AllowDroppable */ true);
+}
+
+bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
+ if (!LI.isUnordered())
+ return true;
+ const Function &F = *LI.getFunction();
+ // Speculative load may create a race that did not exist in the source.
+ return F.hasFnAttribute(Attribute::SanitizeThread) ||
+ // Speculative load may load data from dirty regions.
+ F.hasFnAttribute(Attribute::SanitizeAddress) ||
+ F.hasFnAttribute(Attribute::SanitizeHWAddress);
+}
+
+bool llvm::isSafeToSpeculativelyExecute(const Instruction *Inst,
+ const Instruction *CtxI,
+ AssumptionCache *AC,
+ const DominatorTree *DT,
+ const TargetLibraryInfo *TLI) {
+ return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI,
+ AC, DT, TLI);
+}
+
+bool llvm::isSafeToSpeculativelyExecuteWithOpcode(
+ unsigned Opcode, const Instruction *Inst, const Instruction *CtxI,
+ AssumptionCache *AC, const DominatorTree *DT,
+ const TargetLibraryInfo *TLI) {
+#ifndef NDEBUG
+ if (Inst->getOpcode() != Opcode) {
+ // Check that the operands are actually compatible with the Opcode override.
+ auto hasEqualReturnAndLeadingOperandTypes =
+ [](const Instruction *Inst, unsigned NumLeadingOperands) {
+ if (Inst->getNumOperands() < NumLeadingOperands)
+ return false;
+ const Type *ExpectedType = Inst->getType();
+ for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
+ if (Inst->getOperand(ItOp)->getType() != ExpectedType)
+ return false;
+ return true;
+ };
+ assert(!Instruction::isBinaryOp(Opcode) ||
+ hasEqualReturnAndLeadingOperandTypes(Inst, 2));
+ assert(!Instruction::isUnaryOp(Opcode) ||
+ hasEqualReturnAndLeadingOperandTypes(Inst, 1));
+ }
+#endif
+
+ switch (Opcode) {
+ default:
+ return true;
+ case Instruction::UDiv:
+ case Instruction::URem: {
+ // x / y is undefined if y == 0.
+ const APInt *V;
+ if (match(Inst->getOperand(1), m_APInt(V)))
+ return *V != 0;
+ return false;
+ }
+ case Instruction::SDiv:
+ case Instruction::SRem: {
+ // x / y is undefined if y == 0 or x == INT_MIN and y == -1
+ const APInt *Numerator, *Denominator;
+ if (!match(Inst->getOperand(1), m_APInt(Denominator)))
+ return false;
+ // We cannot hoist this division if the denominator is 0.
+ if (*Denominator == 0)
+ return false;
+ // It's safe to hoist if the denominator is not 0 or -1.
+ if (!Denominator->isAllOnes())
+ return true;
+ // At this point we know that the denominator is -1. It is safe to hoist as
+ // long we know that the numerator is not INT_MIN.
+ if (match(Inst->getOperand(0), m_APInt(Numerator)))
+ return !Numerator->isMinSignedValue();
+ // The numerator *might* be MinSignedValue.
+ return false;
+ }
+ case Instruction::Load: {
+ const LoadInst *LI = dyn_cast<LoadInst>(Inst);
+ if (!LI)
+ return false;
+ if (mustSuppressSpeculation(*LI))
+ return false;
+ const DataLayout &DL = LI->getModule()->getDataLayout();
+ return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
+ LI->getType(), LI->getAlign(), DL,
+ CtxI, AC, DT, TLI);
+ }
+ case Instruction::Call: {
+ auto *CI = dyn_cast<const CallInst>(Inst);
+ if (!CI)
+ return false;
+ const Function *Callee = CI->getCalledFunction();
+
+ // The called function could have undefined behavior or side-effects, even
+ // if marked readnone nounwind.
+ return Callee && Callee->isSpeculatable();
+ }
+ case Instruction::VAArg:
+ case Instruction::Alloca:
+ case Instruction::Invoke:
+ case Instruction::CallBr:
+ case Instruction::PHI:
+ case Instruction::Store:
+ case Instruction::Ret:
+ case Instruction::Br:
+ case Instruction::IndirectBr:
+ case Instruction::Switch:
+ case Instruction::Unreachable:
+ case Instruction::Fence:
+ case Instruction::AtomicRMW:
+ case Instruction::AtomicCmpXchg:
+ case Instruction::LandingPad:
+ case Instruction::Resume:
+ case Instruction::CatchSwitch:
+ case Instruction::CatchPad:
+ case Instruction::CatchRet:
+ case Instruction::CleanupPad:
+ case Instruction::CleanupRet:
+ return false; // Misc instructions which have effects
+ }
+}
+
+bool llvm::mayHaveNonDefUseDependency(const Instruction &I) {
+ if (I.mayReadOrWriteMemory())
+ // Memory dependency possible
+ return true;
+ if (!isSafeToSpeculativelyExecute(&I))
+ // Can't move above a maythrow call or infinite loop. Or if an
+ // inalloca alloca, above a stacksave call.
+ return true;
+ if (!isGuaranteedToTransferExecutionToSuccessor(&I))
+ // 1) Can't reorder two inf-loop calls, even if readonly
+ // 2) Also can't reorder an inf-loop call below a instruction which isn't
+ // safe to speculative execute. (Inverse of above)
+ return true;
+ return false;
+}
+
+/// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
+static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
+ switch (OR) {
+ case ConstantRange::OverflowResult::MayOverflow:
+ return OverflowResult::MayOverflow;
+ case ConstantRange::OverflowResult::AlwaysOverflowsLow:
+ return OverflowResult::AlwaysOverflowsLow;
+ case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
+ return OverflowResult::AlwaysOverflowsHigh;
+ case ConstantRange::OverflowResult::NeverOverflows:
+ return OverflowResult::NeverOverflows;
+ }
+ llvm_unreachable("Unknown OverflowResult");
+}
+
+/// Combine constant ranges from computeConstantRange() and computeKnownBits().
+static ConstantRange computeConstantRangeIncludingKnownBits(
+ const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
+ OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
+ KnownBits Known = computeKnownBits(
+ V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
+ ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
+ ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
+ ConstantRange::PreferredRangeType RangeType =
+ ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
+ return CR1.intersectWith(CR2, RangeType);
+}
+
+OverflowResult llvm::computeOverflowForUnsignedMul(
+ const Value *LHS, const Value *RHS, const DataLayout &DL,
+ AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
+ bool UseInstrInfo) {
+ KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
+ nullptr, UseInstrInfo);
+ KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
+ nullptr, UseInstrInfo);
+ ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
+ ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
+ return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
+}
+
+OverflowResult
+llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
+ const DataLayout &DL, AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT, bool UseInstrInfo) {
+ // Multiplying n * m significant bits yields a result of n + m significant
+ // bits. If the total number of significant bits does not exceed the
+ // result bit width (minus 1), there is no overflow.
+ // This means if we have enough leading sign bits in the operands
+ // we can guarantee that the result does not overflow.
+ // Ref: "Hacker's Delight" by Henry Warren
+ unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
+
+ // Note that underestimating the number of sign bits gives a more
+ // conservative answer.
+ unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
+ ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
+
+ // First handle the easy case: if we have enough sign bits there's
+ // definitely no overflow.
+ if (SignBits > BitWidth + 1)
+ return OverflowResult::NeverOverflows;
+
+ // There are two ambiguous cases where there can be no overflow:
+ // SignBits == BitWidth + 1 and
+ // SignBits == BitWidth
+ // The second case is difficult to check, therefore we only handle the
+ // first case.
+ if (SignBits == BitWidth + 1) {
+ // It overflows only when both arguments are negative and the true
+ // product is exactly the minimum negative number.
+ // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
+ // For simplicity we just check if at least one side is not negative.
+ KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
+ nullptr, UseInstrInfo);
+ KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
+ nullptr, UseInstrInfo);
+ if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
+ return OverflowResult::NeverOverflows;
+ }
+ return OverflowResult::MayOverflow;
+}
+
+OverflowResult llvm::computeOverflowForUnsignedAdd(
+ const Value *LHS, const Value *RHS, const DataLayout &DL,
+ AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
+ bool UseInstrInfo) {
+ ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
+ LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
+ nullptr, UseInstrInfo);
+ ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
+ RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
+ nullptr, UseInstrInfo);
+ return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
+}
+
+static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
+ const Value *RHS,
+ const AddOperator *Add,
+ const DataLayout &DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ if (Add && Add->hasNoSignedWrap()) {
+ return OverflowResult::NeverOverflows;
+ }
+
+ // If LHS and RHS each have at least two sign bits, the addition will look
+ // like
+ //
+ // XX..... +
+ // YY.....
+ //
+ // If the carry into the most significant position is 0, X and Y can't both
+ // be 1 and therefore the carry out of the addition is also 0.
+ //
+ // If the carry into the most significant position is 1, X and Y can't both
+ // be 0 and therefore the carry out of the addition is also 1.
+ //
+ // Since the carry into the most significant position is always equal to
+ // the carry out of the addition, there is no signed overflow.
+ if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
+ ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
+ return OverflowResult::NeverOverflows;
+
+ ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
+ LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
+ ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
+ RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
+ OverflowResult OR =
+ mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
+ if (OR != OverflowResult::MayOverflow)
+ return OR;
+
+ // The remaining code needs Add to be available. Early returns if not so.
+ if (!Add)
+ return OverflowResult::MayOverflow;
+
+ // If the sign of Add is the same as at least one of the operands, this add
+ // CANNOT overflow. If this can be determined from the known bits of the
+ // operands the above signedAddMayOverflow() check will have already done so.
+ // The only other way to improve on the known bits is from an assumption, so
+ // call computeKnownBitsFromAssume() directly.
+ bool LHSOrRHSKnownNonNegative =
+ (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
+ bool LHSOrRHSKnownNegative =
+ (LHSRange.isAllNegative() || RHSRange.isAllNegative());
+ if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
+ KnownBits AddKnown(LHSRange.getBitWidth());
+ computeKnownBitsFromAssume(
+ Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
+ if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
+ (AddKnown.isNegative() && LHSOrRHSKnownNegative))
+ return OverflowResult::NeverOverflows;
+ }
+
+ return OverflowResult::MayOverflow;
+}
+
+OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
+ const Value *RHS,
+ const DataLayout &DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ // X - (X % ?)
+ // The remainder of a value can't have greater magnitude than itself,
+ // so the subtraction can't overflow.
+
+ // X - (X -nuw ?)
+ // In the minimal case, this would simplify to "?", so there's no subtract
+ // at all. But if this analysis is used to peek through casts, for example,
+ // then determining no-overflow may allow other transforms.
+
+ // TODO: There are other patterns like this.
+ // See simplifyICmpWithBinOpOnLHS() for candidates.
+ if (match(RHS, m_URem(m_Specific(LHS), m_Value())) ||
+ match(RHS, m_NUWSub(m_Specific(LHS), m_Value())))
+ if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
+ return OverflowResult::NeverOverflows;
+
+ // Checking for conditions implied by dominating conditions may be expensive.
+ // Limit it to usub_with_overflow calls for now.
+ if (match(CxtI,
+ m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
+ if (auto C =
+ isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
+ if (*C)
+ return OverflowResult::NeverOverflows;
+ return OverflowResult::AlwaysOverflowsLow;
+ }
+ ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
+ LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
+ ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
+ RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
+ return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
+}
+
+OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
+ const Value *RHS,
+ const DataLayout &DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ // X - (X % ?)
+ // The remainder of a value can't have greater magnitude than itself,
+ // so the subtraction can't overflow.
+
+ // X - (X -nsw ?)
+ // In the minimal case, this would simplify to "?", so there's no subtract
+ // at all. But if this analysis is used to peek through casts, for example,
+ // then determining no-overflow may allow other transforms.
+ if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) ||
+ match(RHS, m_NSWSub(m_Specific(LHS), m_Value())))
+ if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
+ return OverflowResult::NeverOverflows;
+
+ // If LHS and RHS each have at least two sign bits, the subtraction
+ // cannot overflow.
+ if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
+ ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
+ return OverflowResult::NeverOverflows;
+
+ ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
+ LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
+ ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
+ RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
+ return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
+}
+
+bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
+ const DominatorTree &DT) {
+ SmallVector<const BranchInst *, 2> GuardingBranches;
+ SmallVector<const ExtractValueInst *, 2> Results;
+
+ for (const User *U : WO->users()) {
+ if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
+ assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
+
+ if (EVI->getIndices()[0] == 0)
+ Results.push_back(EVI);
+ else {
+ assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
+
+ for (const auto *U : EVI->users())
+ if (const auto *B = dyn_cast<BranchInst>(U)) {
+ assert(B->isConditional() && "How else is it using an i1?");
+ GuardingBranches.push_back(B);
+ }
+ }
+ } else {
+ // We are using the aggregate directly in a way we don't want to analyze
+ // here (storing it to a global, say).
+ return false;
+ }
+ }
+
+ auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
+ BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
+ if (!NoWrapEdge.isSingleEdge())
+ return false;
+
+ // Check if all users of the add are provably no-wrap.
+ for (const auto *Result : Results) {
+ // If the extractvalue itself is not executed on overflow, the we don't
+ // need to check each use separately, since domination is transitive.
+ if (DT.dominates(NoWrapEdge, Result->getParent()))
+ continue;
+
+ for (const auto &RU : Result->uses())
+ if (!DT.dominates(NoWrapEdge, RU))
+ return false;
+ }
+
+ return true;
+ };
+
+ return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
+}
+
+/// Shifts return poison if shiftwidth is larger than the bitwidth.
+static bool shiftAmountKnownInRange(const Value *ShiftAmount) {
+ auto *C = dyn_cast<Constant>(ShiftAmount);
+ if (!C)
+ return false;
+
+ // Shifts return poison if shiftwidth is larger than the bitwidth.
+ SmallVector<const Constant *, 4> ShiftAmounts;
+ if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
+ unsigned NumElts = FVTy->getNumElements();
+ for (unsigned i = 0; i < NumElts; ++i)
+ ShiftAmounts.push_back(C->getAggregateElement(i));
+ } else if (isa<ScalableVectorType>(C->getType()))
+ return false; // Can't tell, just return false to be safe
+ else
+ ShiftAmounts.push_back(C);
+
+ bool Safe = llvm::all_of(ShiftAmounts, [](const Constant *C) {
+ auto *CI = dyn_cast_or_null<ConstantInt>(C);
+ return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
+ });
+
+ return Safe;
+}
+
+static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly,
+ bool ConsiderFlagsAndMetadata) {
+
+ if (ConsiderFlagsAndMetadata && Op->hasPoisonGeneratingFlagsOrMetadata())
+ return true;
+
+ unsigned Opcode = Op->getOpcode();
+
+ // Check whether opcode is a poison/undef-generating operation
+ switch (Opcode) {
+ case Instruction::Shl:
+ case Instruction::AShr:
+ case Instruction::LShr:
+ return !shiftAmountKnownInRange(Op->getOperand(1));
+ case Instruction::FPToSI:
+ case Instruction::FPToUI:
+ // fptosi/ui yields poison if the resulting value does not fit in the
+ // destination type.
+ return true;
+ case Instruction::Call:
+ if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
+ switch (II->getIntrinsicID()) {
+ // TODO: Add more intrinsics.
+ case Intrinsic::ctlz:
+ case Intrinsic::cttz:
+ case Intrinsic::abs:
+ if (cast<ConstantInt>(II->getArgOperand(1))->isNullValue())
+ return false;
+ break;
+ case Intrinsic::ctpop:
+ case Intrinsic::bswap:
+ case Intrinsic::bitreverse:
+ case Intrinsic::fshl:
+ case Intrinsic::fshr:
+ case Intrinsic::smax:
+ case Intrinsic::smin:
+ case Intrinsic::umax:
+ case Intrinsic::umin:
+ case Intrinsic::ptrmask:
+ case Intrinsic::fptoui_sat:
+ case Intrinsic::fptosi_sat:
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::sadd_sat:
+ case Intrinsic::uadd_sat:
+ case Intrinsic::ssub_sat:
+ case Intrinsic::usub_sat:
+ return false;
+ case Intrinsic::sshl_sat:
+ case Intrinsic::ushl_sat:
+ return !shiftAmountKnownInRange(II->getArgOperand(1));
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd:
+ case Intrinsic::sqrt:
+ case Intrinsic::powi:
+ case Intrinsic::sin:
+ case Intrinsic::cos:
+ case Intrinsic::pow:
+ case Intrinsic::log:
+ case Intrinsic::log10:
+ case Intrinsic::log2:
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::fabs:
+ case Intrinsic::copysign:
+ case Intrinsic::floor:
+ case Intrinsic::ceil:
+ case Intrinsic::trunc:
+ case Intrinsic::rint:
+ case Intrinsic::nearbyint:
+ case Intrinsic::round:
+ case Intrinsic::roundeven:
+ case Intrinsic::fptrunc_round:
+ case Intrinsic::canonicalize:
+ case Intrinsic::arithmetic_fence:
+ case Intrinsic::minnum:
+ case Intrinsic::maxnum:
+ case Intrinsic::minimum:
+ case Intrinsic::maximum:
+ case Intrinsic::is_fpclass:
+ return false;
+ case Intrinsic::lround:
+ case Intrinsic::llround:
+ case Intrinsic::lrint:
+ case Intrinsic::llrint:
+ // If the value doesn't fit an unspecified value is returned (but this
+ // is not poison).
+ return false;
+ }
+ }
+ [[fallthrough]];
+ case Instruction::CallBr:
+ case Instruction::Invoke: {
+ const auto *CB = cast<CallBase>(Op);
+ return !CB->hasRetAttr(Attribute::NoUndef);
+ }
+ case Instruction::InsertElement:
+ case Instruction::ExtractElement: {
+ // If index exceeds the length of the vector, it returns poison
+ auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
+ unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
+ auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
+ if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
+ return true;
+ return false;
+ }
+ case Instruction::ShuffleVector: {
+ // shufflevector may return undef.
+ if (PoisonOnly)
+ return false;
+ ArrayRef<int> Mask = isa<ConstantExpr>(Op)
+ ? cast<ConstantExpr>(Op)->getShuffleMask()
+ : cast<ShuffleVectorInst>(Op)->getShuffleMask();
+ return is_contained(Mask, UndefMaskElem);
+ }
+ case Instruction::FNeg:
+ case Instruction::PHI:
+ case Instruction::Select:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::ExtractValue:
+ case Instruction::InsertValue:
+ case Instruction::Freeze:
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ case Instruction::FAdd:
+ case Instruction::FSub:
+ case Instruction::FMul:
+ case Instruction::FDiv:
+ case Instruction::FRem:
+ return false;
+ case Instruction::GetElementPtr:
+ // inbounds is handled above
+ // TODO: what about inrange on constexpr?
+ return false;
+ default: {
+ const auto *CE = dyn_cast<ConstantExpr>(Op);
+ if (isa<CastInst>(Op) || (CE && CE->isCast()))
+ return false;
+ else if (Instruction::isBinaryOp(Opcode))
+ return false;
+ // Be conservative and return true.
+ return true;
+ }
+ }
+}
+
+bool llvm::canCreateUndefOrPoison(const Operator *Op,
+ bool ConsiderFlagsAndMetadata) {
+ return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false,
+ ConsiderFlagsAndMetadata);
+}
+
+bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata) {
+ return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true,
+ ConsiderFlagsAndMetadata);
+}
+
+static bool directlyImpliesPoison(const Value *ValAssumedPoison,
+ const Value *V, unsigned Depth) {
+ if (ValAssumedPoison == V)
+ return true;
+
+ const unsigned MaxDepth = 2;
+ if (Depth >= MaxDepth)
+ return false;
+
+ if (const auto *I = dyn_cast<Instruction>(V)) {
+ if (any_of(I->operands(), [=](const Use &Op) {
+ return propagatesPoison(Op) &&
+ directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
+ }))
+ return true;
+
+ // V = extractvalue V0, idx
+ // V2 = extractvalue V0, idx2
+ // V0's elements are all poison or not. (e.g., add_with_overflow)
+ const WithOverflowInst *II;
+ if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
+ (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) ||
+ llvm::is_contained(II->args(), ValAssumedPoison)))
+ return true;
+ }
+ return false;
+}
+
+static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
+ unsigned Depth) {
+ if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison))
+ return true;
+
+ if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
+ return true;
+
+ const unsigned MaxDepth = 2;
+ if (Depth >= MaxDepth)
+ return false;
+
+ const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
+ if (I && !canCreatePoison(cast<Operator>(I))) {
+ return all_of(I->operands(), [=](const Value *Op) {
+ return impliesPoison(Op, V, Depth + 1);
+ });
+ }
+ return false;
+}
+
+bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
+ return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
+}
+
+static bool programUndefinedIfUndefOrPoison(const Value *V,
+ bool PoisonOnly);
+
+static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
+ AssumptionCache *AC,
+ const Instruction *CtxI,
+ const DominatorTree *DT,
+ unsigned Depth, bool PoisonOnly) {
+ if (Depth >= MaxAnalysisRecursionDepth)
+ return false;
+
+ if (isa<MetadataAsValue>(V))
+ return false;
+
+ if (const auto *A = dyn_cast<Argument>(V)) {
+ if (A->hasAttribute(Attribute::NoUndef))
+ return true;
+ }
+
+ if (auto *C = dyn_cast<Constant>(V)) {
+ if (isa<UndefValue>(C))
+ return PoisonOnly && !isa<PoisonValue>(C);
+
+ if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
+ isa<ConstantPointerNull>(C) || isa<Function>(C))
+ return true;
+
+ if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
+ return (PoisonOnly ? !C->containsPoisonElement()
+ : !C->containsUndefOrPoisonElement()) &&
+ !C->containsConstantExpression();
+ }
+
+ // Strip cast operations from a pointer value.
+ // Note that stripPointerCastsSameRepresentation can strip off getelementptr
+ // inbounds with zero offset. To guarantee that the result isn't poison, the
+ // stripped pointer is checked as it has to be pointing into an allocated
+ // object or be null `null` to ensure `inbounds` getelement pointers with a
+ // zero offset could not produce poison.
+ // It can strip off addrspacecast that do not change bit representation as
+ // well. We believe that such addrspacecast is equivalent to no-op.
+ auto *StrippedV = V->stripPointerCastsSameRepresentation();
+ if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
+ isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
+ return true;
+
+ auto OpCheck = [&](const Value *V) {
+ return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
+ PoisonOnly);
+ };
+
+ if (auto *Opr = dyn_cast<Operator>(V)) {
+ // If the value is a freeze instruction, then it can never
+ // be undef or poison.
+ if (isa<FreezeInst>(V))
+ return true;
+
+ if (const auto *CB = dyn_cast<CallBase>(V)) {
+ if (CB->hasRetAttr(Attribute::NoUndef))
+ return true;
+ }
+
+ if (const auto *PN = dyn_cast<PHINode>(V)) {
+ unsigned Num = PN->getNumIncomingValues();
+ bool IsWellDefined = true;
+ for (unsigned i = 0; i < Num; ++i) {
+ auto *TI = PN->getIncomingBlock(i)->getTerminator();
+ if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
+ DT, Depth + 1, PoisonOnly)) {
+ IsWellDefined = false;
+ break;
+ }
+ }
+ if (IsWellDefined)
+ return true;
+ } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
+ return true;
+ }
+
+ if (auto *I = dyn_cast<LoadInst>(V))
+ if (I->hasMetadata(LLVMContext::MD_noundef) ||
+ I->hasMetadata(LLVMContext::MD_dereferenceable) ||
+ I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
+ return true;
+
+ if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
+ return true;
+
+ // CxtI may be null or a cloned instruction.
+ if (!CtxI || !CtxI->getParent() || !DT)
+ return false;
+
+ auto *DNode = DT->getNode(CtxI->getParent());
+ if (!DNode)
+ // Unreachable block
+ return false;
+
+ // If V is used as a branch condition before reaching CtxI, V cannot be
+ // undef or poison.
+ // br V, BB1, BB2
+ // BB1:
+ // CtxI ; V cannot be undef or poison here
+ auto *Dominator = DNode->getIDom();
+ while (Dominator) {
+ auto *TI = Dominator->getBlock()->getTerminator();
+
+ Value *Cond = nullptr;
+ if (auto BI = dyn_cast_or_null<BranchInst>(TI)) {
+ if (BI->isConditional())
+ Cond = BI->getCondition();
+ } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) {
+ Cond = SI->getCondition();
+ }
+
+ if (Cond) {
+ if (Cond == V)
+ return true;
+ else if (PoisonOnly && isa<Operator>(Cond)) {
+ // For poison, we can analyze further
+ auto *Opr = cast<Operator>(Cond);
+ if (any_of(Opr->operands(),
+ [V](const Use &U) { return V == U && propagatesPoison(U); }))
+ return true;
+ }
+ }
+
+ Dominator = Dominator->getIDom();
+ }
+
+ if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC))
+ return true;
+
+ return false;
+}
+
+bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
+ const Instruction *CtxI,
+ const DominatorTree *DT,
+ unsigned Depth) {
+ return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
+}
+
+bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
+ const Instruction *CtxI,
+ const DominatorTree *DT, unsigned Depth) {
+ return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
+}
+
+OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
+ const DataLayout &DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
+ Add, DL, AC, CxtI, DT);
+}
+
+OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
+ const Value *RHS,
+ const DataLayout &DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
+}
+
+bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
+ // Note: An atomic operation isn't guaranteed to return in a reasonable amount
+ // of time because it's possible for another thread to interfere with it for an
+ // arbitrary length of time, but programs aren't allowed to rely on that.
+
+ // If there is no successor, then execution can't transfer to it.
+ if (isa<ReturnInst>(I))
+ return false;
+ if (isa<UnreachableInst>(I))
+ return false;
+
+ // Note: Do not add new checks here; instead, change Instruction::mayThrow or
+ // Instruction::willReturn.
+ //
+ // FIXME: Move this check into Instruction::willReturn.
+ if (isa<CatchPadInst>(I)) {
+ switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) {
+ default:
+ // A catchpad may invoke exception object constructors and such, which
+ // in some languages can be arbitrary code, so be conservative by default.
+ return false;
+ case EHPersonality::CoreCLR:
+ // For CoreCLR, it just involves a type test.
+ return true;
+ }
+ }
+
+ // An instruction that returns without throwing must transfer control flow
+ // to a successor.
+ return !I->mayThrow() && I->willReturn();
+}
+
+bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
+ // TODO: This is slightly conservative for invoke instruction since exiting
+ // via an exception *is* normal control for them.
+ for (const Instruction &I : *BB)
+ if (!isGuaranteedToTransferExecutionToSuccessor(&I))
+ return false;
+ return true;
+}
+
+bool llvm::isGuaranteedToTransferExecutionToSuccessor(
+ BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
+ unsigned ScanLimit) {
+ return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End),
+ ScanLimit);
+}
+
+bool llvm::isGuaranteedToTransferExecutionToSuccessor(
+ iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) {
+ assert(ScanLimit && "scan limit must be non-zero");
+ for (const Instruction &I : Range) {
+ if (isa<DbgInfoIntrinsic>(I))
+ continue;
+ if (--ScanLimit == 0)
+ return false;
+ if (!isGuaranteedToTransferExecutionToSuccessor(&I))
+ return false;
+ }
+ return true;
+}
+
+bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
+ const Loop *L) {
+ // The loop header is guaranteed to be executed for every iteration.
+ //
+ // FIXME: Relax this constraint to cover all basic blocks that are
+ // guaranteed to be executed at every iteration.
+ if (I->getParent() != L->getHeader()) return false;
+
+ for (const Instruction &LI : *L->getHeader()) {
+ if (&LI == I) return true;
+ if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
+ }
+ llvm_unreachable("Instruction not contained in its own parent basic block.");
+}
+
+bool llvm::propagatesPoison(const Use &PoisonOp) {
+ const Operator *I = cast<Operator>(PoisonOp.getUser());
+ switch (I->getOpcode()) {
+ case Instruction::Freeze:
+ case Instruction::PHI:
+ case Instruction::Invoke:
+ return false;
+ case Instruction::Select:
+ return PoisonOp.getOperandNo() == 0;
+ case Instruction::Call:
+ if (auto *II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ // TODO: Add more intrinsics.
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ // If an input is a vector containing a poison element, the
+ // two output vectors (calculated results, overflow bits)'
+ // corresponding lanes are poison.
+ return true;
+ case Intrinsic::ctpop:
+ return true;
+ }
+ }
+ return false;
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ case Instruction::GetElementPtr:
+ return true;
+ default:
+ if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
+ return true;
+
+ // Be conservative and return false.
+ return false;
+ }
+}
+
+void llvm::getGuaranteedWellDefinedOps(
+ const Instruction *I, SmallVectorImpl<const Value *> &Operands) {
+ switch (I->getOpcode()) {
+ case Instruction::Store:
+ Operands.push_back(cast<StoreInst>(I)->getPointerOperand());
+ break;
+
+ case Instruction::Load:
+ Operands.push_back(cast<LoadInst>(I)->getPointerOperand());
+ break;
+
+ // Since dereferenceable attribute imply noundef, atomic operations
+ // also implicitly have noundef pointers too
+ case Instruction::AtomicCmpXchg:
+ Operands.push_back(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
+ break;
+
+ case Instruction::AtomicRMW:
+ Operands.push_back(cast<AtomicRMWInst>(I)->getPointerOperand());
+ break;
+
+ case Instruction::Call:
+ case Instruction::Invoke: {
+ const CallBase *CB = cast<CallBase>(I);
+ if (CB->isIndirectCall())
+ Operands.push_back(CB->getCalledOperand());
+ for (unsigned i = 0; i < CB->arg_size(); ++i) {
+ if (CB->paramHasAttr(i, Attribute::NoUndef) ||
+ CB->paramHasAttr(i, Attribute::Dereferenceable))
+ Operands.push_back(CB->getArgOperand(i));
+ }
+ break;
+ }
+ case Instruction::Ret:
+ if (I->getFunction()->hasRetAttribute(Attribute::NoUndef))
+ Operands.push_back(I->getOperand(0));
+ break;
+ case Instruction::Switch:
+ Operands.push_back(cast<SwitchInst>(I)->getCondition());
+ break;
+ case Instruction::Br: {
+ auto *BR = cast<BranchInst>(I);
+ if (BR->isConditional())
+ Operands.push_back(BR->getCondition());
+ break;
+ }
+ default:
+ break;
+ }
+}
+
+void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
+ SmallVectorImpl<const Value *> &Operands) {
+ getGuaranteedWellDefinedOps(I, Operands);
+ switch (I->getOpcode()) {
+ // Divisors of these operations are allowed to be partially undef.
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ Operands.push_back(I->getOperand(1));
+ break;
+ default:
+ break;
+ }
+}
+
+bool llvm::mustTriggerUB(const Instruction *I,
+ const SmallSet<const Value *, 16>& KnownPoison) {
+ SmallVector<const Value *, 4> NonPoisonOps;
+ getGuaranteedNonPoisonOps(I, NonPoisonOps);
+
+ for (const auto *V : NonPoisonOps)
+ if (KnownPoison.count(V))
+ return true;
+
+ return false;
+}
+
+static bool programUndefinedIfUndefOrPoison(const Value *V,
+ bool PoisonOnly) {
+ // We currently only look for uses of values within the same basic
+ // block, as that makes it easier to guarantee that the uses will be
+ // executed given that Inst is executed.
+ //
+ // FIXME: Expand this to consider uses beyond the same basic block. To do
+ // this, look out for the distinction between post-dominance and strong
+ // post-dominance.
+ const BasicBlock *BB = nullptr;
+ BasicBlock::const_iterator Begin;
+ if (const auto *Inst = dyn_cast<Instruction>(V)) {
+ BB = Inst->getParent();
+ Begin = Inst->getIterator();
+ Begin++;
+ } else if (const auto *Arg = dyn_cast<Argument>(V)) {
+ BB = &Arg->getParent()->getEntryBlock();
+ Begin = BB->begin();
+ } else {
+ return false;
+ }
+
+ // Limit number of instructions we look at, to avoid scanning through large
+ // blocks. The current limit is chosen arbitrarily.
+ unsigned ScanLimit = 32;
+ BasicBlock::const_iterator End = BB->end();
+
+ if (!PoisonOnly) {
+ // Since undef does not propagate eagerly, be conservative & just check
+ // whether a value is directly passed to an instruction that must take
+ // well-defined operands.
+
+ for (const auto &I : make_range(Begin, End)) {
+ if (isa<DbgInfoIntrinsic>(I))
+ continue;
+ if (--ScanLimit == 0)
+ break;
+
+ SmallVector<const Value *, 4> WellDefinedOps;
+ getGuaranteedWellDefinedOps(&I, WellDefinedOps);
+ if (is_contained(WellDefinedOps, V))
+ return true;
+
+ if (!isGuaranteedToTransferExecutionToSuccessor(&I))
+ break;
+ }
+ return false;
+ }
+
+ // Set of instructions that we have proved will yield poison if Inst
+ // does.
+ SmallSet<const Value *, 16> YieldsPoison;
+ SmallSet<const BasicBlock *, 4> Visited;
+
+ YieldsPoison.insert(V);
+ Visited.insert(BB);
+
+ while (true) {
+ for (const auto &I : make_range(Begin, End)) {
+ if (isa<DbgInfoIntrinsic>(I))
+ continue;
+ if (--ScanLimit == 0)
+ return false;
+ if (mustTriggerUB(&I, YieldsPoison))
+ return true;
+ if (!isGuaranteedToTransferExecutionToSuccessor(&I))
+ return false;
+
+ // If an operand is poison and propagates it, mark I as yielding poison.
+ for (const Use &Op : I.operands()) {
+ if (YieldsPoison.count(Op) && propagatesPoison(Op)) {
+ YieldsPoison.insert(&I);
+ break;
+ }
+ }
+ }
+
+ BB = BB->getSingleSuccessor();
+ if (!BB || !Visited.insert(BB).second)
+ break;
+
+ Begin = BB->getFirstNonPHI()->getIterator();
+ End = BB->end();
+ }
+ return false;
+}
+
+bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
+ return ::programUndefinedIfUndefOrPoison(Inst, false);
+}
+
+bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
+ return ::programUndefinedIfUndefOrPoison(Inst, true);
+}
+
+static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
+ if (FMF.noNaNs())
+ return true;
+
+ if (auto *C = dyn_cast<ConstantFP>(V))
+ return !C->isNaN();
+
+ if (auto *C = dyn_cast<ConstantDataVector>(V)) {
+ if (!C->getElementType()->isFloatingPointTy())
+ return false;
+ for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
+ if (C->getElementAsAPFloat(I).isNaN())
+ return false;
+ }
+ return true;
+ }
+
+ if (isa<ConstantAggregateZero>(V))
+ return true;
+
+ return false;
+}
+
+static bool isKnownNonZero(const Value *V) {
+ if (auto *C = dyn_cast<ConstantFP>(V))
+ return !C->isZero();
+
+ if (auto *C = dyn_cast<ConstantDataVector>(V)) {
+ if (!C->getElementType()->isFloatingPointTy())
+ return false;
+ for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
+ if (C->getElementAsAPFloat(I).isZero())
+ return false;
+ }
+ return true;
+ }
+
+ return false;
+}
+
+/// Match clamp pattern for float types without care about NaNs or signed zeros.
+/// Given non-min/max outer cmp/select from the clamp pattern this
+/// function recognizes if it can be substitued by a "canonical" min/max
+/// pattern.
+static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
+ Value *CmpLHS, Value *CmpRHS,
+ Value *TrueVal, Value *FalseVal,
+ Value *&LHS, Value *&RHS) {
+ // Try to match
+ // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
+ // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
+ // and return description of the outer Max/Min.
+
+ // First, check if select has inverse order:
+ if (CmpRHS == FalseVal) {
+ std::swap(TrueVal, FalseVal);
+ Pred = CmpInst::getInversePredicate(Pred);
+ }
+
+ // Assume success now. If there's no match, callers should not use these anyway.
+ LHS = TrueVal;
+ RHS = FalseVal;
+
+ const APFloat *FC1;
+ if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
+ return {SPF_UNKNOWN, SPNB_NA, false};
+
+ const APFloat *FC2;
+ switch (Pred) {
+ case CmpInst::FCMP_OLT:
+ case CmpInst::FCMP_OLE:
+ case CmpInst::FCMP_ULT:
+ case CmpInst::FCMP_ULE:
+ if (match(FalseVal,
+ m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
+ m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
+ *FC1 < *FC2)
+ return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
+ break;
+ case CmpInst::FCMP_OGT:
+ case CmpInst::FCMP_OGE:
+ case CmpInst::FCMP_UGT:
+ case CmpInst::FCMP_UGE:
+ if (match(FalseVal,
+ m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
+ m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
+ *FC1 > *FC2)
+ return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
+ break;
+ default:
+ break;
+ }
+
+ return {SPF_UNKNOWN, SPNB_NA, false};
+}
+
+/// Recognize variations of:
+/// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
+static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
+ Value *CmpLHS, Value *CmpRHS,
+ Value *TrueVal, Value *FalseVal) {
+ // Swap the select operands and predicate to match the patterns below.
+ if (CmpRHS != TrueVal) {
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ std::swap(TrueVal, FalseVal);
+ }
+ const APInt *C1;
+ if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
+ const APInt *C2;
+ // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
+ if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
+ C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
+ return {SPF_SMAX, SPNB_NA, false};
+
+ // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
+ if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
+ C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
+ return {SPF_SMIN, SPNB_NA, false};
+
+ // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
+ if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
+ C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
+ return {SPF_UMAX, SPNB_NA, false};
+
+ // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
+ if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
+ C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
+ return {SPF_UMIN, SPNB_NA, false};
+ }
+ return {SPF_UNKNOWN, SPNB_NA, false};
+}
+
+/// Recognize variations of:
+/// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
+static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
+ Value *CmpLHS, Value *CmpRHS,
+ Value *TVal, Value *FVal,
+ unsigned Depth) {
+ // TODO: Allow FP min/max with nnan/nsz.
+ assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
+
+ Value *A = nullptr, *B = nullptr;
+ SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
+ if (!SelectPatternResult::isMinOrMax(L.Flavor))
+ return {SPF_UNKNOWN, SPNB_NA, false};
+
+ Value *C = nullptr, *D = nullptr;
+ SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
+ if (L.Flavor != R.Flavor)
+ return {SPF_UNKNOWN, SPNB_NA, false};
+
+ // We have something like: x Pred y ? min(a, b) : min(c, d).
+ // Try to match the compare to the min/max operations of the select operands.
+ // First, make sure we have the right compare predicate.
+ switch (L.Flavor) {
+ case SPF_SMIN:
+ if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ std::swap(CmpLHS, CmpRHS);
+ }
+ if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
+ break;
+ return {SPF_UNKNOWN, SPNB_NA, false};
+ case SPF_SMAX:
+ if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ std::swap(CmpLHS, CmpRHS);
+ }
+ if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
+ break;
+ return {SPF_UNKNOWN, SPNB_NA, false};
+ case SPF_UMIN:
+ if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ std::swap(CmpLHS, CmpRHS);
+ }
+ if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
+ break;
+ return {SPF_UNKNOWN, SPNB_NA, false};
+ case SPF_UMAX:
+ if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ std::swap(CmpLHS, CmpRHS);
+ }
+ if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
+ break;
+ return {SPF_UNKNOWN, SPNB_NA, false};
+ default:
+ return {SPF_UNKNOWN, SPNB_NA, false};
+ }
+
+ // If there is a common operand in the already matched min/max and the other
+ // min/max operands match the compare operands (either directly or inverted),
+ // then this is min/max of the same flavor.
+
+ // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
+ // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
+ if (D == B) {
+ if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
+ match(A, m_Not(m_Specific(CmpRHS)))))
+ return {L.Flavor, SPNB_NA, false};
+ }
+ // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
+ // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
+ if (C == B) {
+ if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
+ match(A, m_Not(m_Specific(CmpRHS)))))
+ return {L.Flavor, SPNB_NA, false};
+ }
+ // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
+ // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
+ if (D == A) {
+ if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
+ match(B, m_Not(m_Specific(CmpRHS)))))
+ return {L.Flavor, SPNB_NA, false};
+ }
+ // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
+ // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
+ if (C == A) {
+ if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
+ match(B, m_Not(m_Specific(CmpRHS)))))
+ return {L.Flavor, SPNB_NA, false};
+ }
+
+ return {SPF_UNKNOWN, SPNB_NA, false};
+}
+
+/// If the input value is the result of a 'not' op, constant integer, or vector
+/// splat of a constant integer, return the bitwise-not source value.
+/// TODO: This could be extended to handle non-splat vector integer constants.
+static Value *getNotValue(Value *V) {
+ Value *NotV;
+ if (match(V, m_Not(m_Value(NotV))))
+ return NotV;
+
+ const APInt *C;
+ if (match(V, m_APInt(C)))
+ return ConstantInt::get(V->getType(), ~(*C));
+
+ return nullptr;
+}
+
+/// Match non-obvious integer minimum and maximum sequences.
+static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
+ Value *CmpLHS, Value *CmpRHS,
+ Value *TrueVal, Value *FalseVal,
+ Value *&LHS, Value *&RHS,
+ unsigned Depth) {
+ // Assume success. If there's no match, callers should not use these anyway.
+ LHS = TrueVal;
+ RHS = FalseVal;
+
+ SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
+ if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
+ return SPR;
+
+ SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
+ if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
+ return SPR;
+
+ // Look through 'not' ops to find disguised min/max.
+ // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
+ // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
+ if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
+ switch (Pred) {
+ case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
+ case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
+ case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
+ case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
+ default: break;
+ }
+ }
+
+ // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
+ // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
+ if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
+ switch (Pred) {
+ case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
+ case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
+ case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
+ case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
+ default: break;
+ }
+ }
+
+ if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
+ return {SPF_UNKNOWN, SPNB_NA, false};
+
+ const APInt *C1;
+ if (!match(CmpRHS, m_APInt(C1)))
+ return {SPF_UNKNOWN, SPNB_NA, false};
+
+ // An unsigned min/max can be written with a signed compare.
+ const APInt *C2;
+ if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
+ (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
+ // Is the sign bit set?
+ // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
+ // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
+ if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue())
+ return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
+
+ // Is the sign bit clear?
+ // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
+ // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
+ if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue())
+ return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
+ }
+
+ return {SPF_UNKNOWN, SPNB_NA, false};
+}
+
+bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
+ assert(X && Y && "Invalid operand");
+
+ // X = sub (0, Y) || X = sub nsw (0, Y)
+ if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
+ (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
+ return true;
+
+ // Y = sub (0, X) || Y = sub nsw (0, X)
+ if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
+ (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
+ return true;
+
+ // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
+ Value *A, *B;
+ return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
+ match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
+ (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
+ match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
+}
+
+static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
+ FastMathFlags FMF,
+ Value *CmpLHS, Value *CmpRHS,
+ Value *TrueVal, Value *FalseVal,
+ Value *&LHS, Value *&RHS,
+ unsigned Depth) {
+ bool HasMismatchedZeros = false;
+ if (CmpInst::isFPPredicate(Pred)) {
+ // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
+ // 0.0 operand, set the compare's 0.0 operands to that same value for the
+ // purpose of identifying min/max. Disregard vector constants with undefined
+ // elements because those can not be back-propagated for analysis.
+ Value *OutputZeroVal = nullptr;
+ if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
+ !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
+ OutputZeroVal = TrueVal;
+ else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
+ !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
+ OutputZeroVal = FalseVal;
+
+ if (OutputZeroVal) {
+ if (match(CmpLHS, m_AnyZeroFP()) && CmpLHS != OutputZeroVal) {
+ HasMismatchedZeros = true;
+ CmpLHS = OutputZeroVal;
+ }
+ if (match(CmpRHS, m_AnyZeroFP()) && CmpRHS != OutputZeroVal) {
+ HasMismatchedZeros = true;
+ CmpRHS = OutputZeroVal;
+ }
+ }
+ }
+
+ LHS = CmpLHS;
+ RHS = CmpRHS;
+
+ // Signed zero may return inconsistent results between implementations.
+ // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
+ // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
+ // Therefore, we behave conservatively and only proceed if at least one of the
+ // operands is known to not be zero or if we don't care about signed zero.
+ switch (Pred) {
+ default: break;
+ case CmpInst::FCMP_OGT: case CmpInst::FCMP_OLT:
+ case CmpInst::FCMP_UGT: case CmpInst::FCMP_ULT:
+ if (!HasMismatchedZeros)
+ break;
+ [[fallthrough]];
+ case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
+ case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
+ if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
+ !isKnownNonZero(CmpRHS))
+ return {SPF_UNKNOWN, SPNB_NA, false};
+ }
+
+ SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
+ bool Ordered = false;
+
+ // When given one NaN and one non-NaN input:
+ // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
+ // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
+ // ordered comparison fails), which could be NaN or non-NaN.
+ // so here we discover exactly what NaN behavior is required/accepted.
+ if (CmpInst::isFPPredicate(Pred)) {
+ bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
+ bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
+
+ if (LHSSafe && RHSSafe) {
+ // Both operands are known non-NaN.
+ NaNBehavior = SPNB_RETURNS_ANY;
+ } else if (CmpInst::isOrdered(Pred)) {
+ // An ordered comparison will return false when given a NaN, so it
+ // returns the RHS.
+ Ordered = true;
+ if (LHSSafe)
+ // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
+ NaNBehavior = SPNB_RETURNS_NAN;
+ else if (RHSSafe)
+ NaNBehavior = SPNB_RETURNS_OTHER;
+ else
+ // Completely unsafe.
+ return {SPF_UNKNOWN, SPNB_NA, false};
+ } else {
+ Ordered = false;
+ // An unordered comparison will return true when given a NaN, so it
+ // returns the LHS.
+ if (LHSSafe)
+ // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
+ NaNBehavior = SPNB_RETURNS_OTHER;
+ else if (RHSSafe)
+ NaNBehavior = SPNB_RETURNS_NAN;
+ else
+ // Completely unsafe.
+ return {SPF_UNKNOWN, SPNB_NA, false};
+ }
+ }
+
+ if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
+ std::swap(CmpLHS, CmpRHS);
+ Pred = CmpInst::getSwappedPredicate(Pred);
+ if (NaNBehavior == SPNB_RETURNS_NAN)
+ NaNBehavior = SPNB_RETURNS_OTHER;
+ else if (NaNBehavior == SPNB_RETURNS_OTHER)
+ NaNBehavior = SPNB_RETURNS_NAN;
+ Ordered = !Ordered;
+ }
+
+ // ([if]cmp X, Y) ? X : Y
+ if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
+ switch (Pred) {
+ default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
+ case FCmpInst::FCMP_UGT:
+ case FCmpInst::FCMP_UGE:
+ case FCmpInst::FCMP_OGT:
+ case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
+ case FCmpInst::FCMP_ULT:
+ case FCmpInst::FCMP_ULE:
+ case FCmpInst::FCMP_OLT:
+ case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
+ }
+ }
+
+ if (isKnownNegation(TrueVal, FalseVal)) {
+ // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
+ // match against either LHS or sext(LHS).
+ auto MaybeSExtCmpLHS =
+ m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
+ auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
+ auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
+ if (match(TrueVal, MaybeSExtCmpLHS)) {
+ // Set the return values. If the compare uses the negated value (-X >s 0),
+ // swap the return values because the negated value is always 'RHS'.
+ LHS = TrueVal;
+ RHS = FalseVal;
+ if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
+ std::swap(LHS, RHS);
+
+ // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
+ // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
+ if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
+ return {SPF_ABS, SPNB_NA, false};
+
+ // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
+ if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
+ return {SPF_ABS, SPNB_NA, false};
+
+ // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
+ // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
+ if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
+ return {SPF_NABS, SPNB_NA, false};
+ }
+ else if (match(FalseVal, MaybeSExtCmpLHS)) {
+ // Set the return values. If the compare uses the negated value (-X >s 0),
+ // swap the return values because the negated value is always 'RHS'.
+ LHS = FalseVal;
+ RHS = TrueVal;
+ if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
+ std::swap(LHS, RHS);
+
+ // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
+ // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
+ if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
+ return {SPF_NABS, SPNB_NA, false};
+
+ // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
+ // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
+ if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
+ return {SPF_ABS, SPNB_NA, false};
+ }
+ }
+
+ if (CmpInst::isIntPredicate(Pred))
+ return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
+
+ // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
+ // may return either -0.0 or 0.0, so fcmp/select pair has stricter
+ // semantics than minNum. Be conservative in such case.
+ if (NaNBehavior != SPNB_RETURNS_ANY ||
+ (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
+ !isKnownNonZero(CmpRHS)))
+ return {SPF_UNKNOWN, SPNB_NA, false};
+
+ return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
+}
+
+/// Helps to match a select pattern in case of a type mismatch.
+///
+/// The function processes the case when type of true and false values of a
+/// select instruction differs from type of the cmp instruction operands because
+/// of a cast instruction. The function checks if it is legal to move the cast
+/// operation after "select". If yes, it returns the new second value of
+/// "select" (with the assumption that cast is moved):
+/// 1. As operand of cast instruction when both values of "select" are same cast
+/// instructions.
+/// 2. As restored constant (by applying reverse cast operation) when the first
+/// value of the "select" is a cast operation and the second value is a
+/// constant.
+/// NOTE: We return only the new second value because the first value could be
+/// accessed as operand of cast instruction.
+static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
+ Instruction::CastOps *CastOp) {
+ auto *Cast1 = dyn_cast<CastInst>(V1);
+ if (!Cast1)
+ return nullptr;
+
+ *CastOp = Cast1->getOpcode();
+ Type *SrcTy = Cast1->getSrcTy();
+ if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
+ // If V1 and V2 are both the same cast from the same type, look through V1.
+ if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
+ return Cast2->getOperand(0);
+ return nullptr;
+ }
+
+ auto *C = dyn_cast<Constant>(V2);
+ if (!C)
+ return nullptr;
+
+ Constant *CastedTo = nullptr;
+ switch (*CastOp) {
+ case Instruction::ZExt:
+ if (CmpI->isUnsigned())
+ CastedTo = ConstantExpr::getTrunc(C, SrcTy);
+ break;
+ case Instruction::SExt:
+ if (CmpI->isSigned())
+ CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
+ break;
+ case Instruction::Trunc:
+ Constant *CmpConst;
+ if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
+ CmpConst->getType() == SrcTy) {
+ // Here we have the following case:
+ //
+ // %cond = cmp iN %x, CmpConst
+ // %tr = trunc iN %x to iK
+ // %narrowsel = select i1 %cond, iK %t, iK C
+ //
+ // We can always move trunc after select operation:
+ //
+ // %cond = cmp iN %x, CmpConst
+ // %widesel = select i1 %cond, iN %x, iN CmpConst
+ // %tr = trunc iN %widesel to iK
+ //
+ // Note that C could be extended in any way because we don't care about
+ // upper bits after truncation. It can't be abs pattern, because it would
+ // look like:
+ //
+ // select i1 %cond, x, -x.
+ //
+ // So only min/max pattern could be matched. Such match requires widened C
+ // == CmpConst. That is why set widened C = CmpConst, condition trunc
+ // CmpConst == C is checked below.
+ CastedTo = CmpConst;
+ } else {
+ CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
+ }
+ break;
+ case Instruction::FPTrunc:
+ CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
+ break;
+ case Instruction::FPExt:
+ CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
+ break;
+ case Instruction::FPToUI:
+ CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
+ break;
+ case Instruction::FPToSI:
+ CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
+ break;
+ case Instruction::UIToFP:
+ CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
+ break;
+ case Instruction::SIToFP:
+ CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
+ break;
+ default:
+ break;
+ }
+
+ if (!CastedTo)
+ return nullptr;
+
+ // Make sure the cast doesn't lose any information.
+ Constant *CastedBack =
+ ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
+ if (CastedBack != C)
+ return nullptr;
+
+ return CastedTo;
+}
+
+SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
+ Instruction::CastOps *CastOp,
+ unsigned Depth) {
+ if (Depth >= MaxAnalysisRecursionDepth)
+ return {SPF_UNKNOWN, SPNB_NA, false};
+
+ SelectInst *SI = dyn_cast<SelectInst>(V);
+ if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
+
+ CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
+ if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
+
+ Value *TrueVal = SI->getTrueValue();
+ Value *FalseVal = SI->getFalseValue();
+
+ return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
+ CastOp, Depth);
+}
+
+SelectPatternResult llvm::matchDecomposedSelectPattern(
+ CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
+ Instruction::CastOps *CastOp, unsigned Depth) {
+ CmpInst::Predicate Pred = CmpI->getPredicate();
+ Value *CmpLHS = CmpI->getOperand(0);
+ Value *CmpRHS = CmpI->getOperand(1);
+ FastMathFlags FMF;
+ if (isa<FPMathOperator>(CmpI))
+ FMF = CmpI->getFastMathFlags();
+
+ // Bail out early.
+ if (CmpI->isEquality())
+ return {SPF_UNKNOWN, SPNB_NA, false};
+
+ // Deal with type mismatches.
+ if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
+ if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
+ // If this is a potential fmin/fmax with a cast to integer, then ignore
+ // -0.0 because there is no corresponding integer value.
+ if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
+ FMF.setNoSignedZeros();
+ return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
+ cast<CastInst>(TrueVal)->getOperand(0), C,
+ LHS, RHS, Depth);
+ }
+ if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
+ // If this is a potential fmin/fmax with a cast to integer, then ignore
+ // -0.0 because there is no corresponding integer value.
+ if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
+ FMF.setNoSignedZeros();
+ return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
+ C, cast<CastInst>(FalseVal)->getOperand(0),
+ LHS, RHS, Depth);
+ }
+ }
+ return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
+ LHS, RHS, Depth);
+}
+
+CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
+ if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
+ if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
+ if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
+ if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
+ if (SPF == SPF_FMINNUM)
+ return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
+ if (SPF == SPF_FMAXNUM)
+ return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
+ llvm_unreachable("unhandled!");
+}
+
+SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
+ if (SPF == SPF_SMIN) return SPF_SMAX;
+ if (SPF == SPF_UMIN) return SPF_UMAX;
+ if (SPF == SPF_SMAX) return SPF_SMIN;
+ if (SPF == SPF_UMAX) return SPF_UMIN;
+ llvm_unreachable("unhandled!");
+}
+
+Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
+ switch (MinMaxID) {
+ case Intrinsic::smax: return Intrinsic::smin;
+ case Intrinsic::smin: return Intrinsic::smax;
+ case Intrinsic::umax: return Intrinsic::umin;
+ case Intrinsic::umin: return Intrinsic::umax;
+ default: llvm_unreachable("Unexpected intrinsic");
+ }
+}
+
+APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) {
+ switch (SPF) {
+ case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth);
+ case SPF_SMIN: return APInt::getSignedMinValue(BitWidth);
+ case SPF_UMAX: return APInt::getMaxValue(BitWidth);
+ case SPF_UMIN: return APInt::getMinValue(BitWidth);
+ default: llvm_unreachable("Unexpected flavor");
+ }
+}
+
+std::pair<Intrinsic::ID, bool>
+llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
+ // Check if VL contains select instructions that can be folded into a min/max
+ // vector intrinsic and return the intrinsic if it is possible.
+ // TODO: Support floating point min/max.
+ bool AllCmpSingleUse = true;
+ SelectPatternResult SelectPattern;
+ SelectPattern.Flavor = SPF_UNKNOWN;
+ if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
+ Value *LHS, *RHS;
+ auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
+ if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
+ CurrentPattern.Flavor == SPF_FMINNUM ||
+ CurrentPattern.Flavor == SPF_FMAXNUM ||
+ !I->getType()->isIntOrIntVectorTy())
+ return false;
+ if (SelectPattern.Flavor != SPF_UNKNOWN &&
+ SelectPattern.Flavor != CurrentPattern.Flavor)
+ return false;
+ SelectPattern = CurrentPattern;
+ AllCmpSingleUse &=
+ match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
+ return true;
+ })) {
+ switch (SelectPattern.Flavor) {
+ case SPF_SMIN:
+ return {Intrinsic::smin, AllCmpSingleUse};
+ case SPF_UMIN:
+ return {Intrinsic::umin, AllCmpSingleUse};
+ case SPF_SMAX:
+ return {Intrinsic::smax, AllCmpSingleUse};
+ case SPF_UMAX:
+ return {Intrinsic::umax, AllCmpSingleUse};
+ default:
+ llvm_unreachable("unexpected select pattern flavor");
+ }
+ }
+ return {Intrinsic::not_intrinsic, false};
+}
+
+bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
+ Value *&Start, Value *&Step) {
+ // Handle the case of a simple two-predecessor recurrence PHI.
+ // There's a lot more that could theoretically be done here, but
+ // this is sufficient to catch some interesting cases.
+ if (P->getNumIncomingValues() != 2)
+ return false;
+
+ for (unsigned i = 0; i != 2; ++i) {
+ Value *L = P->getIncomingValue(i);
+ Value *R = P->getIncomingValue(!i);
+ Operator *LU = dyn_cast<Operator>(L);
+ if (!LU)
+ continue;
+ unsigned Opcode = LU->getOpcode();
+
+ switch (Opcode) {
+ default:
+ continue;
+ // TODO: Expand list -- xor, div, gep, uaddo, etc..
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::Shl:
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Mul:
+ case Instruction::FMul: {
+ Value *LL = LU->getOperand(0);
+ Value *LR = LU->getOperand(1);
+ // Find a recurrence.
+ if (LL == P)
+ L = LR;
+ else if (LR == P)
+ L = LL;
+ else
+ continue; // Check for recurrence with L and R flipped.
+
+ break; // Match!
+ }
+ };
+
+ // We have matched a recurrence of the form:
+ // %iv = [R, %entry], [%iv.next, %backedge]
+ // %iv.next = binop %iv, L
+ // OR
+ // %iv = [R, %entry], [%iv.next, %backedge]
+ // %iv.next = binop L, %iv
+ BO = cast<BinaryOperator>(LU);
+ Start = R;
+ Step = L;
+ return true;
+ }
+ return false;
+}
+
+bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
+ Value *&Start, Value *&Step) {
+ BinaryOperator *BO = nullptr;
+ P = dyn_cast<PHINode>(I->getOperand(0));
+ if (!P)
+ P = dyn_cast<PHINode>(I->getOperand(1));
+ return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
+}
+
+/// Return true if "icmp Pred LHS RHS" is always true.
+static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
+ const Value *RHS, const DataLayout &DL,
+ unsigned Depth) {
+ if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
+ return true;
+
+ switch (Pred) {
+ default:
+ return false;
+
+ case CmpInst::ICMP_SLE: {
+ const APInt *C;
+
+ // LHS s<= LHS +_{nsw} C if C >= 0
+ if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
+ return !C->isNegative();
+ return false;
+ }
+
+ case CmpInst::ICMP_ULE: {
+ const APInt *C;
+
+ // LHS u<= LHS +_{nuw} C for any C
+ if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
+ return true;
+
+ // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
+ auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
+ const Value *&X,
+ const APInt *&CA, const APInt *&CB) {
+ if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
+ match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
+ return true;
+
+ // If X & C == 0 then (X | C) == X +_{nuw} C
+ if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
+ match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
+ KnownBits Known(CA->getBitWidth());
+ computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
+ /*CxtI*/ nullptr, /*DT*/ nullptr);
+ if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
+ return true;
+ }
+
+ return false;
+ };
+
+ const Value *X;
+ const APInt *CLHS, *CRHS;
+ if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
+ return CLHS->ule(*CRHS);
+
+ return false;
+ }
+ }
+}
+
+/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
+/// ALHS ARHS" is true. Otherwise, return std::nullopt.
+static std::optional<bool>
+isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
+ const Value *ARHS, const Value *BLHS, const Value *BRHS,
+ const DataLayout &DL, unsigned Depth) {
+ switch (Pred) {
+ default:
+ return std::nullopt;
+
+ case CmpInst::ICMP_SLT:
+ case CmpInst::ICMP_SLE:
+ if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
+ isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
+ return true;
+ return std::nullopt;
+
+ case CmpInst::ICMP_ULT:
+ case CmpInst::ICMP_ULE:
+ if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
+ isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
+ return true;
+ return std::nullopt;
+ }
+}
+
+/// Return true if the operands of two compares (expanded as "L0 pred L1" and
+/// "R0 pred R1") match. IsSwappedOps is true when the operands match, but are
+/// swapped.
+static bool areMatchingOperands(const Value *L0, const Value *L1, const Value *R0,
+ const Value *R1, bool &AreSwappedOps) {
+ bool AreMatchingOps = (L0 == R0 && L1 == R1);
+ AreSwappedOps = (L0 == R1 && L1 == R0);
+ return AreMatchingOps || AreSwappedOps;
+}
+
+/// Return true if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is true.
+/// Return false if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is false.
+/// Otherwise, return std::nullopt if we can't infer anything.
+static std::optional<bool>
+isImpliedCondMatchingOperands(CmpInst::Predicate LPred,
+ CmpInst::Predicate RPred, bool AreSwappedOps) {
+ // Canonicalize the predicate as if the operands were not commuted.
+ if (AreSwappedOps)
+ RPred = ICmpInst::getSwappedPredicate(RPred);
+
+ if (CmpInst::isImpliedTrueByMatchingCmp(LPred, RPred))
+ return true;
+ if (CmpInst::isImpliedFalseByMatchingCmp(LPred, RPred))
+ return false;
+
+ return std::nullopt;
+}
+
+/// Return true if "icmp LPred X, LC" implies "icmp RPred X, RC" is true.
+/// Return false if "icmp LPred X, LC" implies "icmp RPred X, RC" is false.
+/// Otherwise, return std::nullopt if we can't infer anything.
+static std::optional<bool> isImpliedCondCommonOperandWithConstants(
+ CmpInst::Predicate LPred, const APInt &LC, CmpInst::Predicate RPred,
+ const APInt &RC) {
+ ConstantRange DomCR = ConstantRange::makeExactICmpRegion(LPred, LC);
+ ConstantRange CR = ConstantRange::makeExactICmpRegion(RPred, RC);
+ ConstantRange Intersection = DomCR.intersectWith(CR);
+ ConstantRange Difference = DomCR.difference(CR);
+ if (Intersection.isEmptySet())
+ return false;
+ if (Difference.isEmptySet())
+ return true;
+ return std::nullopt;
+}
+
+/// Return true if LHS implies RHS (expanded to its components as "R0 RPred R1")
+/// is true. Return false if LHS implies RHS is false. Otherwise, return
+/// std::nullopt if we can't infer anything.
+static std::optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
+ CmpInst::Predicate RPred,
+ const Value *R0, const Value *R1,
+ const DataLayout &DL,
+ bool LHSIsTrue, unsigned Depth) {
+ Value *L0 = LHS->getOperand(0);
+ Value *L1 = LHS->getOperand(1);
+
+ // The rest of the logic assumes the LHS condition is true. If that's not the
+ // case, invert the predicate to make it so.
+ CmpInst::Predicate LPred =
+ LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
+
+ // Can we infer anything when the two compares have matching operands?
+ bool AreSwappedOps;
+ if (areMatchingOperands(L0, L1, R0, R1, AreSwappedOps))
+ return isImpliedCondMatchingOperands(LPred, RPred, AreSwappedOps);
+
+ // Can we infer anything when the 0-operands match and the 1-operands are
+ // constants (not necessarily matching)?
+ const APInt *LC, *RC;
+ if (L0 == R0 && match(L1, m_APInt(LC)) && match(R1, m_APInt(RC)))
+ return isImpliedCondCommonOperandWithConstants(LPred, *LC, RPred, *RC);
+
+ if (LPred == RPred)
+ return isImpliedCondOperands(LPred, L0, L1, R0, R1, DL, Depth);
+
+ return std::nullopt;
+}
+
+/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
+/// false. Otherwise, return std::nullopt if we can't infer anything. We
+/// expect the RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select'
+/// instruction.
+static std::optional<bool>
+isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
+ const Value *RHSOp0, const Value *RHSOp1,
+ const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
+ // The LHS must be an 'or', 'and', or a 'select' instruction.
+ assert((LHS->getOpcode() == Instruction::And ||
+ LHS->getOpcode() == Instruction::Or ||
+ LHS->getOpcode() == Instruction::Select) &&
+ "Expected LHS to be 'and', 'or', or 'select'.");
+
+ assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
+
+ // If the result of an 'or' is false, then we know both legs of the 'or' are
+ // false. Similarly, if the result of an 'and' is true, then we know both
+ // legs of the 'and' are true.
+ const Value *ALHS, *ARHS;
+ if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
+ (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
+ // FIXME: Make this non-recursion.
+ if (std::optional<bool> Implication = isImpliedCondition(
+ ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
+ return Implication;
+ if (std::optional<bool> Implication = isImpliedCondition(
+ ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
+ return Implication;
+ return std::nullopt;
+ }
+ return std::nullopt;
+}
+
+std::optional<bool>
+llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
+ const Value *RHSOp0, const Value *RHSOp1,
+ const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
+ // Bail out when we hit the limit.
+ if (Depth == MaxAnalysisRecursionDepth)
+ return std::nullopt;
+
+ // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
+ // example.
+ if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
+ return std::nullopt;
+
+ assert(LHS->getType()->isIntOrIntVectorTy(1) &&
+ "Expected integer type only!");
+
+ // Both LHS and RHS are icmps.
+ const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
+ if (LHSCmp)
+ return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
+ Depth);
+
+ /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect
+ /// the RHS to be an icmp.
+ /// FIXME: Add support for and/or/select on the RHS.
+ if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
+ if ((LHSI->getOpcode() == Instruction::And ||
+ LHSI->getOpcode() == Instruction::Or ||
+ LHSI->getOpcode() == Instruction::Select))
+ return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
+ Depth);
+ }
+ return std::nullopt;
+}
+
+std::optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
+ const DataLayout &DL,
+ bool LHSIsTrue, unsigned Depth) {
+ // LHS ==> RHS by definition
+ if (LHS == RHS)
+ return LHSIsTrue;
+
+ if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS))
+ return isImpliedCondition(LHS, RHSCmp->getPredicate(),
+ RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
+ LHSIsTrue, Depth);
+
+ if (Depth == MaxAnalysisRecursionDepth)
+ return std::nullopt;
+
+ // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2
+ // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2
+ const Value *RHS1, *RHS2;
+ if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) {
+ if (std::optional<bool> Imp =
+ isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
+ if (*Imp == true)
+ return true;
+ if (std::optional<bool> Imp =
+ isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
+ if (*Imp == true)
+ return true;
+ }
+ if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) {
+ if (std::optional<bool> Imp =
+ isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
+ if (*Imp == false)
+ return false;
+ if (std::optional<bool> Imp =
+ isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
+ if (*Imp == false)
+ return false;
+ }
+
+ return std::nullopt;
+}
+
+// Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
+// condition dominating ContextI or nullptr, if no condition is found.
+static std::pair<Value *, bool>
+getDomPredecessorCondition(const Instruction *ContextI) {
+ if (!ContextI || !ContextI->getParent())
+ return {nullptr, false};
+
+ // TODO: This is a poor/cheap way to determine dominance. Should we use a
+ // dominator tree (eg, from a SimplifyQuery) instead?
+ const BasicBlock *ContextBB = ContextI->getParent();
+ const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
+ if (!PredBB)
+ return {nullptr, false};
+
+ // We need a conditional branch in the predecessor.
+ Value *PredCond;
+ BasicBlock *TrueBB, *FalseBB;
+ if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
+ return {nullptr, false};
+
+ // The branch should get simplified. Don't bother simplifying this condition.
+ if (TrueBB == FalseBB)
+ return {nullptr, false};
+
+ assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
+ "Predecessor block does not point to successor?");
+
+ // Is this condition implied by the predecessor condition?
+ return {PredCond, TrueBB == ContextBB};
+}
+
+std::optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
+ const Instruction *ContextI,
+ const DataLayout &DL) {
+ assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
+ auto PredCond = getDomPredecessorCondition(ContextI);
+ if (PredCond.first)
+ return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
+ return std::nullopt;
+}
+
+std::optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
+ const Value *LHS,
+ const Value *RHS,
+ const Instruction *ContextI,
+ const DataLayout &DL) {
+ auto PredCond = getDomPredecessorCondition(ContextI);
+ if (PredCond.first)
+ return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
+ PredCond.second);
+ return std::nullopt;
+}
+
+static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
+ APInt &Upper, const InstrInfoQuery &IIQ,
+ bool PreferSignedRange) {
+ unsigned Width = Lower.getBitWidth();
+ const APInt *C;
+ switch (BO.getOpcode()) {
+ case Instruction::Add:
+ if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
+ bool HasNSW = IIQ.hasNoSignedWrap(&BO);
+ bool HasNUW = IIQ.hasNoUnsignedWrap(&BO);
+
+ // If the caller expects a signed compare, then try to use a signed range.
+ // Otherwise if both no-wraps are set, use the unsigned range because it
+ // is never larger than the signed range. Example:
+ // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125].
+ if (PreferSignedRange && HasNSW && HasNUW)
+ HasNUW = false;
+
+ if (HasNUW) {
+ // 'add nuw x, C' produces [C, UINT_MAX].
+ Lower = *C;
+ } else if (HasNSW) {
+ if (C->isNegative()) {
+ // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
+ Lower = APInt::getSignedMinValue(Width);
+ Upper = APInt::getSignedMaxValue(Width) + *C + 1;
+ } else {
+ // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
+ Lower = APInt::getSignedMinValue(Width) + *C;
+ Upper = APInt::getSignedMaxValue(Width) + 1;
+ }
+ }
+ }
+ break;
+
+ case Instruction::And:
+ if (match(BO.getOperand(1), m_APInt(C)))
+ // 'and x, C' produces [0, C].
+ Upper = *C + 1;
+ break;
+
+ case Instruction::Or:
+ if (match(BO.getOperand(1), m_APInt(C)))
+ // 'or x, C' produces [C, UINT_MAX].
+ Lower = *C;
+ break;
+
+ case Instruction::AShr:
+ if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
+ // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
+ Lower = APInt::getSignedMinValue(Width).ashr(*C);
+ Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
+ } else if (match(BO.getOperand(0), m_APInt(C))) {
+ unsigned ShiftAmount = Width - 1;
+ if (!C->isZero() && IIQ.isExact(&BO))
+ ShiftAmount = C->countTrailingZeros();
+ if (C->isNegative()) {
+ // 'ashr C, x' produces [C, C >> (Width-1)]
+ Lower = *C;
+ Upper = C->ashr(ShiftAmount) + 1;
+ } else {
+ // 'ashr C, x' produces [C >> (Width-1), C]
+ Lower = C->ashr(ShiftAmount);
+ Upper = *C + 1;
+ }
+ }
+ break;
+
+ case Instruction::LShr:
+ if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
+ // 'lshr x, C' produces [0, UINT_MAX >> C].
+ Upper = APInt::getAllOnes(Width).lshr(*C) + 1;
+ } else if (match(BO.getOperand(0), m_APInt(C))) {
+ // 'lshr C, x' produces [C >> (Width-1), C].
+ unsigned ShiftAmount = Width - 1;
+ if (!C->isZero() && IIQ.isExact(&BO))
+ ShiftAmount = C->countTrailingZeros();
+ Lower = C->lshr(ShiftAmount);
+ Upper = *C + 1;
+ }
+ break;
+
+ case Instruction::Shl:
+ if (match(BO.getOperand(0), m_APInt(C))) {
+ if (IIQ.hasNoUnsignedWrap(&BO)) {
+ // 'shl nuw C, x' produces [C, C << CLZ(C)]
+ Lower = *C;
+ Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
+ } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
+ if (C->isNegative()) {
+ // 'shl nsw C, x' produces [C << CLO(C)-1, C]
+ unsigned ShiftAmount = C->countLeadingOnes() - 1;
+ Lower = C->shl(ShiftAmount);
+ Upper = *C + 1;
+ } else {
+ // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
+ unsigned ShiftAmount = C->countLeadingZeros() - 1;
+ Lower = *C;
+ Upper = C->shl(ShiftAmount) + 1;
+ }
+ }
+ }
+ break;
+
+ case Instruction::SDiv:
+ if (match(BO.getOperand(1), m_APInt(C))) {
+ APInt IntMin = APInt::getSignedMinValue(Width);
+ APInt IntMax = APInt::getSignedMaxValue(Width);
+ if (C->isAllOnes()) {
+ // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
+ // where C != -1 and C != 0 and C != 1
+ Lower = IntMin + 1;
+ Upper = IntMax + 1;
+ } else if (C->countLeadingZeros() < Width - 1) {
+ // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
+ // where C != -1 and C != 0 and C != 1
+ Lower = IntMin.sdiv(*C);
+ Upper = IntMax.sdiv(*C);
+ if (Lower.sgt(Upper))
+ std::swap(Lower, Upper);
+ Upper = Upper + 1;
+ assert(Upper != Lower && "Upper part of range has wrapped!");
+ }
+ } else if (match(BO.getOperand(0), m_APInt(C))) {
+ if (C->isMinSignedValue()) {
+ // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
+ Lower = *C;
+ Upper = Lower.lshr(1) + 1;
+ } else {
+ // 'sdiv C, x' produces [-|C|, |C|].
+ Upper = C->abs() + 1;
+ Lower = (-Upper) + 1;
+ }
+ }
+ break;
+
+ case Instruction::UDiv:
+ if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
+ // 'udiv x, C' produces [0, UINT_MAX / C].
+ Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
+ } else if (match(BO.getOperand(0), m_APInt(C))) {
+ // 'udiv C, x' produces [0, C].
+ Upper = *C + 1;
+ }
+ break;
+
+ case Instruction::SRem:
+ if (match(BO.getOperand(1), m_APInt(C))) {
+ // 'srem x, C' produces (-|C|, |C|).
+ Upper = C->abs();
+ Lower = (-Upper) + 1;
+ }
+ break;
+
+ case Instruction::URem:
+ if (match(BO.getOperand(1), m_APInt(C)))
+ // 'urem x, C' produces [0, C).
+ Upper = *C;
+ break;
+
+ default:
+ break;
+ }
+}
+
+static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
+ APInt &Upper) {
+ unsigned Width = Lower.getBitWidth();
+ const APInt *C;
+ switch (II.getIntrinsicID()) {
+ case Intrinsic::ctpop:
+ case Intrinsic::ctlz:
+ case Intrinsic::cttz:
+ // Maximum of set/clear bits is the bit width.
+ assert(Lower == 0 && "Expected lower bound to be zero");
+ Upper = Width + 1;
+ break;
+ case Intrinsic::uadd_sat:
+ // uadd.sat(x, C) produces [C, UINT_MAX].
+ if (match(II.getOperand(0), m_APInt(C)) ||
+ match(II.getOperand(1), m_APInt(C)))
+ Lower = *C;
+ break;
+ case Intrinsic::sadd_sat:
+ if (match(II.getOperand(0), m_APInt(C)) ||
+ match(II.getOperand(1), m_APInt(C))) {
+ if (C->isNegative()) {
+ // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
+ Lower = APInt::getSignedMinValue(Width);
+ Upper = APInt::getSignedMaxValue(Width) + *C + 1;
+ } else {
+ // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
+ Lower = APInt::getSignedMinValue(Width) + *C;
+ Upper = APInt::getSignedMaxValue(Width) + 1;
+ }
+ }
+ break;
+ case Intrinsic::usub_sat:
+ // usub.sat(C, x) produces [0, C].
+ if (match(II.getOperand(0), m_APInt(C)))
+ Upper = *C + 1;
+ // usub.sat(x, C) produces [0, UINT_MAX - C].
+ else if (match(II.getOperand(1), m_APInt(C)))
+ Upper = APInt::getMaxValue(Width) - *C + 1;
+ break;
+ case Intrinsic::ssub_sat:
+ if (match(II.getOperand(0), m_APInt(C))) {
+ if (C->isNegative()) {
+ // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
+ Lower = APInt::getSignedMinValue(Width);
+ Upper = *C - APInt::getSignedMinValue(Width) + 1;
+ } else {
+ // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
+ Lower = *C - APInt::getSignedMaxValue(Width);
+ Upper = APInt::getSignedMaxValue(Width) + 1;
+ }
+ } else if (match(II.getOperand(1), m_APInt(C))) {
+ if (C->isNegative()) {
+ // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
+ Lower = APInt::getSignedMinValue(Width) - *C;
+ Upper = APInt::getSignedMaxValue(Width) + 1;
+ } else {
+ // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
+ Lower = APInt::getSignedMinValue(Width);
+ Upper = APInt::getSignedMaxValue(Width) - *C + 1;
+ }
+ }
+ break;
+ case Intrinsic::umin:
+ case Intrinsic::umax:
+ case Intrinsic::smin:
+ case Intrinsic::smax:
+ if (!match(II.getOperand(0), m_APInt(C)) &&
+ !match(II.getOperand(1), m_APInt(C)))
+ break;
+
+ switch (II.getIntrinsicID()) {
+ case Intrinsic::umin:
+ Upper = *C + 1;
+ break;
+ case Intrinsic::umax:
+ Lower = *C;
+ break;
+ case Intrinsic::smin:
+ Lower = APInt::getSignedMinValue(Width);
+ Upper = *C + 1;
+ break;
+ case Intrinsic::smax:
+ Lower = *C;
+ Upper = APInt::getSignedMaxValue(Width) + 1;
+ break;
+ default:
+ llvm_unreachable("Must be min/max intrinsic");
+ }
+ break;
+ case Intrinsic::abs:
+ // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
+ // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
+ if (match(II.getOperand(1), m_One()))
+ Upper = APInt::getSignedMaxValue(Width) + 1;
+ else
+ Upper = APInt::getSignedMinValue(Width) + 1;
+ break;
+ default:
+ break;
+ }
+}
+
+static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
+ APInt &Upper, const InstrInfoQuery &IIQ) {
+ const Value *LHS = nullptr, *RHS = nullptr;
+ SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
+ if (R.Flavor == SPF_UNKNOWN)
+ return;
+
+ unsigned BitWidth = SI.getType()->getScalarSizeInBits();
+
+ if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
+ // If the negation part of the abs (in RHS) has the NSW flag,
+ // then the result of abs(X) is [0..SIGNED_MAX],
+ // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
+ Lower = APInt::getZero(BitWidth);
+ if (match(RHS, m_Neg(m_Specific(LHS))) &&
+ IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
+ Upper = APInt::getSignedMaxValue(BitWidth) + 1;
+ else
+ Upper = APInt::getSignedMinValue(BitWidth) + 1;
+ return;
+ }
+
+ if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
+ // The result of -abs(X) is <= 0.
+ Lower = APInt::getSignedMinValue(BitWidth);
+ Upper = APInt(BitWidth, 1);
+ return;
+ }
+
+ const APInt *C;
+ if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
+ return;
+
+ switch (R.Flavor) {
+ case SPF_UMIN:
+ Upper = *C + 1;
+ break;
+ case SPF_UMAX:
+ Lower = *C;
+ break;
+ case SPF_SMIN:
+ Lower = APInt::getSignedMinValue(BitWidth);
+ Upper = *C + 1;
+ break;
+ case SPF_SMAX:
+ Lower = *C;
+ Upper = APInt::getSignedMaxValue(BitWidth) + 1;
+ break;
+ default:
+ break;
+ }
+}
+
+static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) {
+ // The maximum representable value of a half is 65504. For floats the maximum
+ // value is 3.4e38 which requires roughly 129 bits.
+ unsigned BitWidth = I->getType()->getScalarSizeInBits();
+ if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy())
+ return;
+ if (isa<FPToSIInst>(I) && BitWidth >= 17) {
+ Lower = APInt(BitWidth, -65504);
+ Upper = APInt(BitWidth, 65505);
+ }
+
+ if (isa<FPToUIInst>(I) && BitWidth >= 16) {
+ // For a fptoui the lower limit is left as 0.
+ Upper = APInt(BitWidth, 65505);
+ }
+}
+
+ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned,
+ bool UseInstrInfo, AssumptionCache *AC,
+ const Instruction *CtxI,
+ const DominatorTree *DT,
+ unsigned Depth) {
+ assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
+
+ if (Depth == MaxAnalysisRecursionDepth)
+ return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
+
+ const APInt *C;
+ if (match(V, m_APInt(C)))
+ return ConstantRange(*C);
+
+ InstrInfoQuery IIQ(UseInstrInfo);
+ unsigned BitWidth = V->getType()->getScalarSizeInBits();
+ APInt Lower = APInt(BitWidth, 0);
+ APInt Upper = APInt(BitWidth, 0);
+ if (auto *BO = dyn_cast<BinaryOperator>(V))
+ setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned);
+ else if (auto *II = dyn_cast<IntrinsicInst>(V))
+ setLimitsForIntrinsic(*II, Lower, Upper);
+ else if (auto *SI = dyn_cast<SelectInst>(V))
+ setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
+ else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V))
+ setLimitForFPToI(cast<Instruction>(V), Lower, Upper);
+
+ ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
+
+ if (auto *I = dyn_cast<Instruction>(V))
+ if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
+ CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
+
+ if (CtxI && AC) {
+ // Try to restrict the range based on information from assumptions.
+ for (auto &AssumeVH : AC->assumptionsFor(V)) {
+ if (!AssumeVH)
+ continue;
+ IntrinsicInst *I = cast<IntrinsicInst>(AssumeVH);
+ assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
+ "Got assumption for the wrong function!");
+
+ if (!isValidAssumeForContext(I, CtxI, DT))
+ continue;
+ Value *Arg = I->getArgOperand(0);
+ ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
+ // Currently we just use information from comparisons.
+ if (!Cmp || Cmp->getOperand(0) != V)
+ continue;
+ // TODO: Set "ForSigned" parameter via Cmp->isSigned()?
+ ConstantRange RHS =
+ computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false,
+ UseInstrInfo, AC, I, DT, Depth + 1);
+ CR = CR.intersectWith(
+ ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS));
+ }
+ }
+
+ return CR;
+}
+
+static std::optional<int64_t>
+getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
+ // Skip over the first indices.
+ gep_type_iterator GTI = gep_type_begin(GEP);
+ for (unsigned i = 1; i != Idx; ++i, ++GTI)
+ /*skip along*/;
+
+ // Compute the offset implied by the rest of the indices.
+ int64_t Offset = 0;
+ for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
+ ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
+ if (!OpC)
+ return std::nullopt;
+ if (OpC->isZero())
+ continue; // No offset.
+
+ // Handle struct indices, which add their field offset to the pointer.
+ if (StructType *STy = GTI.getStructTypeOrNull()) {
+ Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
+ continue;
+ }
+
+ // Otherwise, we have a sequential type like an array or fixed-length
+ // vector. Multiply the index by the ElementSize.
+ TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
+ if (Size.isScalable())
+ return std::nullopt;
+ Offset += Size.getFixedValue() * OpC->getSExtValue();
+ }
+
+ return Offset;
+}
+
+std::optional<int64_t> llvm::isPointerOffset(const Value *Ptr1,
+ const Value *Ptr2,
+ const DataLayout &DL) {
+ APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0);
+ APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0);
+ Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true);
+ Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true);
+
+ // Handle the trivial case first.
+ if (Ptr1 == Ptr2)
+ return Offset2.getSExtValue() - Offset1.getSExtValue();
+
+ const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
+ const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
+
+ // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
+ // base. After that base, they may have some number of common (and
+ // potentially variable) indices. After that they handle some constant
+ // offset, which determines their offset from each other. At this point, we
+ // handle no other case.
+ if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) ||
+ GEP1->getSourceElementType() != GEP2->getSourceElementType())
+ return std::nullopt;
+
+ // Skip any common indices and track the GEP types.
+ unsigned Idx = 1;
+ for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
+ if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
+ break;
+
+ auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL);
+ auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL);
+ if (!IOffset1 || !IOffset2)
+ return std::nullopt;
+ return *IOffset2 - *IOffset1 + Offset2.getSExtValue() -
+ Offset1.getSExtValue();
+}