aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Analysis/BranchProbabilityInfo.cpp
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm16/lib/Analysis/BranchProbabilityInfo.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm16/lib/Analysis/BranchProbabilityInfo.cpp')
-rw-r--r--contrib/libs/llvm16/lib/Analysis/BranchProbabilityInfo.cpp1321
1 files changed, 1321 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Analysis/BranchProbabilityInfo.cpp b/contrib/libs/llvm16/lib/Analysis/BranchProbabilityInfo.cpp
new file mode 100644
index 0000000000..7931001d0a
--- /dev/null
+++ b/contrib/libs/llvm16/lib/Analysis/BranchProbabilityInfo.cpp
@@ -0,0 +1,1321 @@
+//===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Loops should be simplified before this analysis.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SCCIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/PostDominators.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/ProfDataUtils.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <map>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "branch-prob"
+
+static cl::opt<bool> PrintBranchProb(
+ "print-bpi", cl::init(false), cl::Hidden,
+ cl::desc("Print the branch probability info."));
+
+cl::opt<std::string> PrintBranchProbFuncName(
+ "print-bpi-func-name", cl::Hidden,
+ cl::desc("The option to specify the name of the function "
+ "whose branch probability info is printed."));
+
+INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
+ "Branch Probability Analysis", false, true)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
+INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
+ "Branch Probability Analysis", false, true)
+
+BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass()
+ : FunctionPass(ID) {
+ initializeBranchProbabilityInfoWrapperPassPass(
+ *PassRegistry::getPassRegistry());
+}
+
+char BranchProbabilityInfoWrapperPass::ID = 0;
+
+// Weights are for internal use only. They are used by heuristics to help to
+// estimate edges' probability. Example:
+//
+// Using "Loop Branch Heuristics" we predict weights of edges for the
+// block BB2.
+// ...
+// |
+// V
+// BB1<-+
+// | |
+// | | (Weight = 124)
+// V |
+// BB2--+
+// |
+// | (Weight = 4)
+// V
+// BB3
+//
+// Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
+// Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
+static const uint32_t LBH_TAKEN_WEIGHT = 124;
+static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
+
+/// Unreachable-terminating branch taken probability.
+///
+/// This is the probability for a branch being taken to a block that terminates
+/// (eventually) in unreachable. These are predicted as unlikely as possible.
+/// All reachable probability will proportionally share the remaining part.
+static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
+
+/// Heuristics and lookup tables for non-loop branches:
+/// Pointer Heuristics (PH)
+static const uint32_t PH_TAKEN_WEIGHT = 20;
+static const uint32_t PH_NONTAKEN_WEIGHT = 12;
+static const BranchProbability
+ PtrTakenProb(PH_TAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
+static const BranchProbability
+ PtrUntakenProb(PH_NONTAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
+
+using ProbabilityList = SmallVector<BranchProbability>;
+using ProbabilityTable = std::map<CmpInst::Predicate, ProbabilityList>;
+
+/// Pointer comparisons:
+static const ProbabilityTable PointerTable{
+ {ICmpInst::ICMP_NE, {PtrTakenProb, PtrUntakenProb}}, /// p != q -> Likely
+ {ICmpInst::ICMP_EQ, {PtrUntakenProb, PtrTakenProb}}, /// p == q -> Unlikely
+};
+
+/// Zero Heuristics (ZH)
+static const uint32_t ZH_TAKEN_WEIGHT = 20;
+static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
+static const BranchProbability
+ ZeroTakenProb(ZH_TAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
+static const BranchProbability
+ ZeroUntakenProb(ZH_NONTAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
+
+/// Integer compares with 0:
+static const ProbabilityTable ICmpWithZeroTable{
+ {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, /// X == 0 -> Unlikely
+ {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, /// X != 0 -> Likely
+ {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X < 0 -> Unlikely
+ {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X > 0 -> Likely
+};
+
+/// Integer compares with -1:
+static const ProbabilityTable ICmpWithMinusOneTable{
+ {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, /// X == -1 -> Unlikely
+ {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, /// X != -1 -> Likely
+ // InstCombine canonicalizes X >= 0 into X > -1
+ {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X >= 0 -> Likely
+};
+
+/// Integer compares with 1:
+static const ProbabilityTable ICmpWithOneTable{
+ // InstCombine canonicalizes X <= 0 into X < 1
+ {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X <= 0 -> Unlikely
+};
+
+/// strcmp and similar functions return zero, negative, or positive, if the
+/// first string is equal, less, or greater than the second. We consider it
+/// likely that the strings are not equal, so a comparison with zero is
+/// probably false, but also a comparison with any other number is also
+/// probably false given that what exactly is returned for nonzero values is
+/// not specified. Any kind of comparison other than equality we know
+/// nothing about.
+static const ProbabilityTable ICmpWithLibCallTable{
+ {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},
+ {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},
+};
+
+// Floating-Point Heuristics (FPH)
+static const uint32_t FPH_TAKEN_WEIGHT = 20;
+static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
+
+/// This is the probability for an ordered floating point comparison.
+static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
+/// This is the probability for an unordered floating point comparison, it means
+/// one or two of the operands are NaN. Usually it is used to test for an
+/// exceptional case, so the result is unlikely.
+static const uint32_t FPH_UNO_WEIGHT = 1;
+
+static const BranchProbability FPOrdTakenProb(FPH_ORD_WEIGHT,
+ FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
+static const BranchProbability
+ FPOrdUntakenProb(FPH_UNO_WEIGHT, FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
+static const BranchProbability
+ FPTakenProb(FPH_TAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
+static const BranchProbability
+ FPUntakenProb(FPH_NONTAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
+
+/// Floating-Point compares:
+static const ProbabilityTable FCmpTable{
+ {FCmpInst::FCMP_ORD, {FPOrdTakenProb, FPOrdUntakenProb}}, /// !isnan -> Likely
+ {FCmpInst::FCMP_UNO, {FPOrdUntakenProb, FPOrdTakenProb}}, /// isnan -> Unlikely
+};
+
+/// Set of dedicated "absolute" execution weights for a block. These weights are
+/// meaningful relative to each other and their derivatives only.
+enum class BlockExecWeight : std::uint32_t {
+ /// Special weight used for cases with exact zero probability.
+ ZERO = 0x0,
+ /// Minimal possible non zero weight.
+ LOWEST_NON_ZERO = 0x1,
+ /// Weight to an 'unreachable' block.
+ UNREACHABLE = ZERO,
+ /// Weight to a block containing non returning call.
+ NORETURN = LOWEST_NON_ZERO,
+ /// Weight to 'unwind' block of an invoke instruction.
+ UNWIND = LOWEST_NON_ZERO,
+ /// Weight to a 'cold' block. Cold blocks are the ones containing calls marked
+ /// with attribute 'cold'.
+ COLD = 0xffff,
+ /// Default weight is used in cases when there is no dedicated execution
+ /// weight set. It is not propagated through the domination line either.
+ DEFAULT = 0xfffff
+};
+
+BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) {
+ // Record SCC numbers of blocks in the CFG to identify irreducible loops.
+ // FIXME: We could only calculate this if the CFG is known to be irreducible
+ // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
+ int SccNum = 0;
+ for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
+ ++It, ++SccNum) {
+ // Ignore single-block SCCs since they either aren't loops or LoopInfo will
+ // catch them.
+ const std::vector<const BasicBlock *> &Scc = *It;
+ if (Scc.size() == 1)
+ continue;
+
+ LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
+ for (const auto *BB : Scc) {
+ LLVM_DEBUG(dbgs() << " " << BB->getName());
+ SccNums[BB] = SccNum;
+ calculateSccBlockType(BB, SccNum);
+ }
+ LLVM_DEBUG(dbgs() << "\n");
+ }
+}
+
+int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const {
+ auto SccIt = SccNums.find(BB);
+ if (SccIt == SccNums.end())
+ return -1;
+ return SccIt->second;
+}
+
+void BranchProbabilityInfo::SccInfo::getSccEnterBlocks(
+ int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const {
+
+ for (auto MapIt : SccBlocks[SccNum]) {
+ const auto *BB = MapIt.first;
+ if (isSCCHeader(BB, SccNum))
+ for (const auto *Pred : predecessors(BB))
+ if (getSCCNum(Pred) != SccNum)
+ Enters.push_back(const_cast<BasicBlock *>(BB));
+ }
+}
+
+void BranchProbabilityInfo::SccInfo::getSccExitBlocks(
+ int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const {
+ for (auto MapIt : SccBlocks[SccNum]) {
+ const auto *BB = MapIt.first;
+ if (isSCCExitingBlock(BB, SccNum))
+ for (const auto *Succ : successors(BB))
+ if (getSCCNum(Succ) != SccNum)
+ Exits.push_back(const_cast<BasicBlock *>(Succ));
+ }
+}
+
+uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB,
+ int SccNum) const {
+ assert(getSCCNum(BB) == SccNum);
+
+ assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC");
+ const auto &SccBlockTypes = SccBlocks[SccNum];
+
+ auto It = SccBlockTypes.find(BB);
+ if (It != SccBlockTypes.end()) {
+ return It->second;
+ }
+ return Inner;
+}
+
+void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB,
+ int SccNum) {
+ assert(getSCCNum(BB) == SccNum);
+ uint32_t BlockType = Inner;
+
+ if (llvm::any_of(predecessors(BB), [&](const BasicBlock *Pred) {
+ // Consider any block that is an entry point to the SCC as
+ // a header.
+ return getSCCNum(Pred) != SccNum;
+ }))
+ BlockType |= Header;
+
+ if (llvm::any_of(successors(BB), [&](const BasicBlock *Succ) {
+ return getSCCNum(Succ) != SccNum;
+ }))
+ BlockType |= Exiting;
+
+ // Lazily compute the set of headers for a given SCC and cache the results
+ // in the SccHeaderMap.
+ if (SccBlocks.size() <= static_cast<unsigned>(SccNum))
+ SccBlocks.resize(SccNum + 1);
+ auto &SccBlockTypes = SccBlocks[SccNum];
+
+ if (BlockType != Inner) {
+ bool IsInserted;
+ std::tie(std::ignore, IsInserted) =
+ SccBlockTypes.insert(std::make_pair(BB, BlockType));
+ assert(IsInserted && "Duplicated block in SCC");
+ }
+}
+
+BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB,
+ const LoopInfo &LI,
+ const SccInfo &SccI)
+ : BB(BB) {
+ LD.first = LI.getLoopFor(BB);
+ if (!LD.first) {
+ LD.second = SccI.getSCCNum(BB);
+ }
+}
+
+bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const {
+ const auto &SrcBlock = Edge.first;
+ const auto &DstBlock = Edge.second;
+ return (DstBlock.getLoop() &&
+ !DstBlock.getLoop()->contains(SrcBlock.getLoop())) ||
+ // Assume that SCCs can't be nested.
+ (DstBlock.getSccNum() != -1 &&
+ SrcBlock.getSccNum() != DstBlock.getSccNum());
+}
+
+bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const {
+ return isLoopEnteringEdge({Edge.second, Edge.first});
+}
+
+bool BranchProbabilityInfo::isLoopEnteringExitingEdge(
+ const LoopEdge &Edge) const {
+ return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge);
+}
+
+bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const {
+ const auto &SrcBlock = Edge.first;
+ const auto &DstBlock = Edge.second;
+ return SrcBlock.belongsToSameLoop(DstBlock) &&
+ ((DstBlock.getLoop() &&
+ DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) ||
+ (DstBlock.getSccNum() != -1 &&
+ SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum())));
+}
+
+void BranchProbabilityInfo::getLoopEnterBlocks(
+ const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const {
+ if (LB.getLoop()) {
+ auto *Header = LB.getLoop()->getHeader();
+ Enters.append(pred_begin(Header), pred_end(Header));
+ } else {
+ assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
+ SccI->getSccEnterBlocks(LB.getSccNum(), Enters);
+ }
+}
+
+void BranchProbabilityInfo::getLoopExitBlocks(
+ const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const {
+ if (LB.getLoop()) {
+ LB.getLoop()->getExitBlocks(Exits);
+ } else {
+ assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
+ SccI->getSccExitBlocks(LB.getSccNum(), Exits);
+ }
+}
+
+// Propagate existing explicit probabilities from either profile data or
+// 'expect' intrinsic processing. Examine metadata against unreachable
+// heuristic. The probability of the edge coming to unreachable block is
+// set to min of metadata and unreachable heuristic.
+bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
+ const Instruction *TI = BB->getTerminator();
+ assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
+ if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) ||
+ isa<InvokeInst>(TI) || isa<CallBrInst>(TI)))
+ return false;
+
+ MDNode *WeightsNode = getValidBranchWeightMDNode(*TI);
+ if (!WeightsNode)
+ return false;
+
+ // Check that the number of successors is manageable.
+ assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
+
+ // Build up the final weights that will be used in a temporary buffer.
+ // Compute the sum of all weights to later decide whether they need to
+ // be scaled to fit in 32 bits.
+ uint64_t WeightSum = 0;
+ SmallVector<uint32_t, 2> Weights;
+ SmallVector<unsigned, 2> UnreachableIdxs;
+ SmallVector<unsigned, 2> ReachableIdxs;
+
+ extractBranchWeights(WeightsNode, Weights);
+ for (unsigned I = 0, E = Weights.size(); I != E; ++I) {
+ WeightSum += Weights[I];
+ const LoopBlock SrcLoopBB = getLoopBlock(BB);
+ const LoopBlock DstLoopBB = getLoopBlock(TI->getSuccessor(I));
+ auto EstimatedWeight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
+ if (EstimatedWeight &&
+ *EstimatedWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
+ UnreachableIdxs.push_back(I);
+ else
+ ReachableIdxs.push_back(I);
+ }
+ assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
+
+ // If the sum of weights does not fit in 32 bits, scale every weight down
+ // accordingly.
+ uint64_t ScalingFactor =
+ (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
+
+ if (ScalingFactor > 1) {
+ WeightSum = 0;
+ for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
+ Weights[I] /= ScalingFactor;
+ WeightSum += Weights[I];
+ }
+ }
+ assert(WeightSum <= UINT32_MAX &&
+ "Expected weights to scale down to 32 bits");
+
+ if (WeightSum == 0 || ReachableIdxs.size() == 0) {
+ for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
+ Weights[I] = 1;
+ WeightSum = TI->getNumSuccessors();
+ }
+
+ // Set the probability.
+ SmallVector<BranchProbability, 2> BP;
+ for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
+ BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) });
+
+ // Examine the metadata against unreachable heuristic.
+ // If the unreachable heuristic is more strong then we use it for this edge.
+ if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) {
+ setEdgeProbability(BB, BP);
+ return true;
+ }
+
+ auto UnreachableProb = UR_TAKEN_PROB;
+ for (auto I : UnreachableIdxs)
+ if (UnreachableProb < BP[I]) {
+ BP[I] = UnreachableProb;
+ }
+
+ // Sum of all edge probabilities must be 1.0. If we modified the probability
+ // of some edges then we must distribute the introduced difference over the
+ // reachable blocks.
+ //
+ // Proportional distribution: the relation between probabilities of the
+ // reachable edges is kept unchanged. That is for any reachable edges i and j:
+ // newBP[i] / newBP[j] == oldBP[i] / oldBP[j] =>
+ // newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K
+ // Where K is independent of i,j.
+ // newBP[i] == oldBP[i] * K
+ // We need to find K.
+ // Make sum of all reachables of the left and right parts:
+ // sum_of_reachable(newBP) == K * sum_of_reachable(oldBP)
+ // Sum of newBP must be equal to 1.0:
+ // sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 =>
+ // sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP)
+ // Where sum_of_unreachable(newBP) is what has been just changed.
+ // Finally:
+ // K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) =>
+ // K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP)
+ BranchProbability NewUnreachableSum = BranchProbability::getZero();
+ for (auto I : UnreachableIdxs)
+ NewUnreachableSum += BP[I];
+
+ BranchProbability NewReachableSum =
+ BranchProbability::getOne() - NewUnreachableSum;
+
+ BranchProbability OldReachableSum = BranchProbability::getZero();
+ for (auto I : ReachableIdxs)
+ OldReachableSum += BP[I];
+
+ if (OldReachableSum != NewReachableSum) { // Anything to dsitribute?
+ if (OldReachableSum.isZero()) {
+ // If all oldBP[i] are zeroes then the proportional distribution results
+ // in all zero probabilities and the error stays big. In this case we
+ // evenly spread NewReachableSum over the reachable edges.
+ BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size();
+ for (auto I : ReachableIdxs)
+ BP[I] = PerEdge;
+ } else {
+ for (auto I : ReachableIdxs) {
+ // We use uint64_t to avoid double rounding error of the following
+ // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum
+ // The formula is taken from the private constructor
+ // BranchProbability(uint32_t Numerator, uint32_t Denominator)
+ uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) *
+ BP[I].getNumerator();
+ uint32_t Div = static_cast<uint32_t>(
+ divideNearest(Mul, OldReachableSum.getNumerator()));
+ BP[I] = BranchProbability::getRaw(Div);
+ }
+ }
+ }
+
+ setEdgeProbability(BB, BP);
+
+ return true;
+}
+
+// Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
+// between two pointer or pointer and NULL will fail.
+bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
+ const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!BI || !BI->isConditional())
+ return false;
+
+ Value *Cond = BI->getCondition();
+ ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
+ if (!CI || !CI->isEquality())
+ return false;
+
+ Value *LHS = CI->getOperand(0);
+
+ if (!LHS->getType()->isPointerTy())
+ return false;
+
+ assert(CI->getOperand(1)->getType()->isPointerTy());
+
+ auto Search = PointerTable.find(CI->getPredicate());
+ if (Search == PointerTable.end())
+ return false;
+ setEdgeProbability(BB, Search->second);
+ return true;
+}
+
+// Compute the unlikely successors to the block BB in the loop L, specifically
+// those that are unlikely because this is a loop, and add them to the
+// UnlikelyBlocks set.
+static void
+computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
+ SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
+ // Sometimes in a loop we have a branch whose condition is made false by
+ // taking it. This is typically something like
+ // int n = 0;
+ // while (...) {
+ // if (++n >= MAX) {
+ // n = 0;
+ // }
+ // }
+ // In this sort of situation taking the branch means that at the very least it
+ // won't be taken again in the next iteration of the loop, so we should
+ // consider it less likely than a typical branch.
+ //
+ // We detect this by looking back through the graph of PHI nodes that sets the
+ // value that the condition depends on, and seeing if we can reach a successor
+ // block which can be determined to make the condition false.
+ //
+ // FIXME: We currently consider unlikely blocks to be half as likely as other
+ // blocks, but if we consider the example above the likelyhood is actually
+ // 1/MAX. We could therefore be more precise in how unlikely we consider
+ // blocks to be, but it would require more careful examination of the form
+ // of the comparison expression.
+ const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!BI || !BI->isConditional())
+ return;
+
+ // Check if the branch is based on an instruction compared with a constant
+ CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
+ if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
+ !isa<Constant>(CI->getOperand(1)))
+ return;
+
+ // Either the instruction must be a PHI, or a chain of operations involving
+ // constants that ends in a PHI which we can then collapse into a single value
+ // if the PHI value is known.
+ Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
+ PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
+ Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
+ // Collect the instructions until we hit a PHI
+ SmallVector<BinaryOperator *, 1> InstChain;
+ while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
+ isa<Constant>(CmpLHS->getOperand(1))) {
+ // Stop if the chain extends outside of the loop
+ if (!L->contains(CmpLHS))
+ return;
+ InstChain.push_back(cast<BinaryOperator>(CmpLHS));
+ CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
+ if (CmpLHS)
+ CmpPHI = dyn_cast<PHINode>(CmpLHS);
+ }
+ if (!CmpPHI || !L->contains(CmpPHI))
+ return;
+
+ // Trace the phi node to find all values that come from successors of BB
+ SmallPtrSet<PHINode*, 8> VisitedInsts;
+ SmallVector<PHINode*, 8> WorkList;
+ WorkList.push_back(CmpPHI);
+ VisitedInsts.insert(CmpPHI);
+ while (!WorkList.empty()) {
+ PHINode *P = WorkList.pop_back_val();
+ for (BasicBlock *B : P->blocks()) {
+ // Skip blocks that aren't part of the loop
+ if (!L->contains(B))
+ continue;
+ Value *V = P->getIncomingValueForBlock(B);
+ // If the source is a PHI add it to the work list if we haven't
+ // already visited it.
+ if (PHINode *PN = dyn_cast<PHINode>(V)) {
+ if (VisitedInsts.insert(PN).second)
+ WorkList.push_back(PN);
+ continue;
+ }
+ // If this incoming value is a constant and B is a successor of BB, then
+ // we can constant-evaluate the compare to see if it makes the branch be
+ // taken or not.
+ Constant *CmpLHSConst = dyn_cast<Constant>(V);
+ if (!CmpLHSConst || !llvm::is_contained(successors(BB), B))
+ continue;
+ // First collapse InstChain
+ const DataLayout &DL = BB->getModule()->getDataLayout();
+ for (Instruction *I : llvm::reverse(InstChain)) {
+ CmpLHSConst = ConstantFoldBinaryOpOperands(
+ I->getOpcode(), CmpLHSConst, cast<Constant>(I->getOperand(1)), DL);
+ if (!CmpLHSConst)
+ break;
+ }
+ if (!CmpLHSConst)
+ continue;
+ // Now constant-evaluate the compare
+ Constant *Result = ConstantExpr::getCompare(CI->getPredicate(),
+ CmpLHSConst, CmpConst, true);
+ // If the result means we don't branch to the block then that block is
+ // unlikely.
+ if (Result &&
+ ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
+ (Result->isOneValue() && B == BI->getSuccessor(1))))
+ UnlikelyBlocks.insert(B);
+ }
+ }
+}
+
+std::optional<uint32_t>
+BranchProbabilityInfo::getEstimatedBlockWeight(const BasicBlock *BB) const {
+ auto WeightIt = EstimatedBlockWeight.find(BB);
+ if (WeightIt == EstimatedBlockWeight.end())
+ return std::nullopt;
+ return WeightIt->second;
+}
+
+std::optional<uint32_t>
+BranchProbabilityInfo::getEstimatedLoopWeight(const LoopData &L) const {
+ auto WeightIt = EstimatedLoopWeight.find(L);
+ if (WeightIt == EstimatedLoopWeight.end())
+ return std::nullopt;
+ return WeightIt->second;
+}
+
+std::optional<uint32_t>
+BranchProbabilityInfo::getEstimatedEdgeWeight(const LoopEdge &Edge) const {
+ // For edges entering a loop take weight of a loop rather than an individual
+ // block in the loop.
+ return isLoopEnteringEdge(Edge)
+ ? getEstimatedLoopWeight(Edge.second.getLoopData())
+ : getEstimatedBlockWeight(Edge.second.getBlock());
+}
+
+template <class IterT>
+std::optional<uint32_t> BranchProbabilityInfo::getMaxEstimatedEdgeWeight(
+ const LoopBlock &SrcLoopBB, iterator_range<IterT> Successors) const {
+ SmallVector<uint32_t, 4> Weights;
+ std::optional<uint32_t> MaxWeight;
+ for (const BasicBlock *DstBB : Successors) {
+ const LoopBlock DstLoopBB = getLoopBlock(DstBB);
+ auto Weight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
+
+ if (!Weight)
+ return std::nullopt;
+
+ if (!MaxWeight || *MaxWeight < *Weight)
+ MaxWeight = Weight;
+ }
+
+ return MaxWeight;
+}
+
+// Updates \p LoopBB's weight and returns true. If \p LoopBB has already
+// an associated weight it is unchanged and false is returned.
+//
+// Please note by the algorithm the weight is not expected to change once set
+// thus 'false' status is used to track visited blocks.
+bool BranchProbabilityInfo::updateEstimatedBlockWeight(
+ LoopBlock &LoopBB, uint32_t BBWeight,
+ SmallVectorImpl<BasicBlock *> &BlockWorkList,
+ SmallVectorImpl<LoopBlock> &LoopWorkList) {
+ BasicBlock *BB = LoopBB.getBlock();
+
+ // In general, weight is assigned to a block when it has final value and
+ // can't/shouldn't be changed. However, there are cases when a block
+ // inherently has several (possibly "contradicting") weights. For example,
+ // "unwind" block may also contain "cold" call. In that case the first
+ // set weight is favored and all consequent weights are ignored.
+ if (!EstimatedBlockWeight.insert({BB, BBWeight}).second)
+ return false;
+
+ for (BasicBlock *PredBlock : predecessors(BB)) {
+ LoopBlock PredLoop = getLoopBlock(PredBlock);
+ // Add affected block/loop to a working list.
+ if (isLoopExitingEdge({PredLoop, LoopBB})) {
+ if (!EstimatedLoopWeight.count(PredLoop.getLoopData()))
+ LoopWorkList.push_back(PredLoop);
+ } else if (!EstimatedBlockWeight.count(PredBlock))
+ BlockWorkList.push_back(PredBlock);
+ }
+ return true;
+}
+
+// Starting from \p BB traverse through dominator blocks and assign \p BBWeight
+// to all such blocks that are post dominated by \BB. In other words to all
+// blocks that the one is executed if and only if another one is executed.
+// Importantly, we skip loops here for two reasons. First weights of blocks in
+// a loop should be scaled by trip count (yet possibly unknown). Second there is
+// no any value in doing that because that doesn't give any additional
+// information regarding distribution of probabilities inside the loop.
+// Exception is loop 'enter' and 'exit' edges that are handled in a special way
+// at calcEstimatedHeuristics.
+//
+// In addition, \p WorkList is populated with basic blocks if at leas one
+// successor has updated estimated weight.
+void BranchProbabilityInfo::propagateEstimatedBlockWeight(
+ const LoopBlock &LoopBB, DominatorTree *DT, PostDominatorTree *PDT,
+ uint32_t BBWeight, SmallVectorImpl<BasicBlock *> &BlockWorkList,
+ SmallVectorImpl<LoopBlock> &LoopWorkList) {
+ const BasicBlock *BB = LoopBB.getBlock();
+ const auto *DTStartNode = DT->getNode(BB);
+ const auto *PDTStartNode = PDT->getNode(BB);
+
+ // TODO: Consider propagating weight down the domination line as well.
+ for (const auto *DTNode = DTStartNode; DTNode != nullptr;
+ DTNode = DTNode->getIDom()) {
+ auto *DomBB = DTNode->getBlock();
+ // Consider blocks which lie on one 'line'.
+ if (!PDT->dominates(PDTStartNode, PDT->getNode(DomBB)))
+ // If BB doesn't post dominate DomBB it will not post dominate dominators
+ // of DomBB as well.
+ break;
+
+ LoopBlock DomLoopBB = getLoopBlock(DomBB);
+ const LoopEdge Edge{DomLoopBB, LoopBB};
+ // Don't propagate weight to blocks belonging to different loops.
+ if (!isLoopEnteringExitingEdge(Edge)) {
+ if (!updateEstimatedBlockWeight(DomLoopBB, BBWeight, BlockWorkList,
+ LoopWorkList))
+ // If DomBB has weight set then all it's predecessors are already
+ // processed (since we propagate weight up to the top of IR each time).
+ break;
+ } else if (isLoopExitingEdge(Edge)) {
+ LoopWorkList.push_back(DomLoopBB);
+ }
+ }
+}
+
+std::optional<uint32_t>
+BranchProbabilityInfo::getInitialEstimatedBlockWeight(const BasicBlock *BB) {
+ // Returns true if \p BB has call marked with "NoReturn" attribute.
+ auto hasNoReturn = [&](const BasicBlock *BB) {
+ for (const auto &I : reverse(*BB))
+ if (const CallInst *CI = dyn_cast<CallInst>(&I))
+ if (CI->hasFnAttr(Attribute::NoReturn))
+ return true;
+
+ return false;
+ };
+
+ // Important note regarding the order of checks. They are ordered by weight
+ // from lowest to highest. Doing that allows to avoid "unstable" results
+ // when several conditions heuristics can be applied simultaneously.
+ if (isa<UnreachableInst>(BB->getTerminator()) ||
+ // If this block is terminated by a call to
+ // @llvm.experimental.deoptimize then treat it like an unreachable
+ // since it is expected to practically never execute.
+ // TODO: Should we actually treat as never returning call?
+ BB->getTerminatingDeoptimizeCall())
+ return hasNoReturn(BB)
+ ? static_cast<uint32_t>(BlockExecWeight::NORETURN)
+ : static_cast<uint32_t>(BlockExecWeight::UNREACHABLE);
+
+ // Check if the block is 'unwind' handler of some invoke instruction.
+ for (const auto *Pred : predecessors(BB))
+ if (Pred)
+ if (const auto *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
+ if (II->getUnwindDest() == BB)
+ return static_cast<uint32_t>(BlockExecWeight::UNWIND);
+
+ // Check if the block contains 'cold' call.
+ for (const auto &I : *BB)
+ if (const CallInst *CI = dyn_cast<CallInst>(&I))
+ if (CI->hasFnAttr(Attribute::Cold))
+ return static_cast<uint32_t>(BlockExecWeight::COLD);
+
+ return std::nullopt;
+}
+
+// Does RPO traversal over all blocks in \p F and assigns weights to
+// 'unreachable', 'noreturn', 'cold', 'unwind' blocks. In addition it does its
+// best to propagate the weight to up/down the IR.
+void BranchProbabilityInfo::computeEestimateBlockWeight(
+ const Function &F, DominatorTree *DT, PostDominatorTree *PDT) {
+ SmallVector<BasicBlock *, 8> BlockWorkList;
+ SmallVector<LoopBlock, 8> LoopWorkList;
+
+ // By doing RPO we make sure that all predecessors already have weights
+ // calculated before visiting theirs successors.
+ ReversePostOrderTraversal<const Function *> RPOT(&F);
+ for (const auto *BB : RPOT)
+ if (auto BBWeight = getInitialEstimatedBlockWeight(BB))
+ // If we were able to find estimated weight for the block set it to this
+ // block and propagate up the IR.
+ propagateEstimatedBlockWeight(getLoopBlock(BB), DT, PDT, *BBWeight,
+ BlockWorkList, LoopWorkList);
+
+ // BlockWorklist/LoopWorkList contains blocks/loops with at least one
+ // successor/exit having estimated weight. Try to propagate weight to such
+ // blocks/loops from successors/exits.
+ // Process loops and blocks. Order is not important.
+ do {
+ while (!LoopWorkList.empty()) {
+ const LoopBlock LoopBB = LoopWorkList.pop_back_val();
+
+ if (EstimatedLoopWeight.count(LoopBB.getLoopData()))
+ continue;
+
+ SmallVector<BasicBlock *, 4> Exits;
+ getLoopExitBlocks(LoopBB, Exits);
+ auto LoopWeight = getMaxEstimatedEdgeWeight(
+ LoopBB, make_range(Exits.begin(), Exits.end()));
+
+ if (LoopWeight) {
+ // If we never exit the loop then we can enter it once at maximum.
+ if (LoopWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
+ LoopWeight = static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
+
+ EstimatedLoopWeight.insert({LoopBB.getLoopData(), *LoopWeight});
+ // Add all blocks entering the loop into working list.
+ getLoopEnterBlocks(LoopBB, BlockWorkList);
+ }
+ }
+
+ while (!BlockWorkList.empty()) {
+ // We can reach here only if BlockWorkList is not empty.
+ const BasicBlock *BB = BlockWorkList.pop_back_val();
+ if (EstimatedBlockWeight.count(BB))
+ continue;
+
+ // We take maximum over all weights of successors. In other words we take
+ // weight of "hot" path. In theory we can probably find a better function
+ // which gives higher accuracy results (comparing to "maximum") but I
+ // can't
+ // think of any right now. And I doubt it will make any difference in
+ // practice.
+ const LoopBlock LoopBB = getLoopBlock(BB);
+ auto MaxWeight = getMaxEstimatedEdgeWeight(LoopBB, successors(BB));
+
+ if (MaxWeight)
+ propagateEstimatedBlockWeight(LoopBB, DT, PDT, *MaxWeight,
+ BlockWorkList, LoopWorkList);
+ }
+ } while (!BlockWorkList.empty() || !LoopWorkList.empty());
+}
+
+// Calculate edge probabilities based on block's estimated weight.
+// Note that gathered weights were not scaled for loops. Thus edges entering
+// and exiting loops requires special processing.
+bool BranchProbabilityInfo::calcEstimatedHeuristics(const BasicBlock *BB) {
+ assert(BB->getTerminator()->getNumSuccessors() > 1 &&
+ "expected more than one successor!");
+
+ const LoopBlock LoopBB = getLoopBlock(BB);
+
+ SmallPtrSet<const BasicBlock *, 8> UnlikelyBlocks;
+ uint32_t TC = LBH_TAKEN_WEIGHT / LBH_NONTAKEN_WEIGHT;
+ if (LoopBB.getLoop())
+ computeUnlikelySuccessors(BB, LoopBB.getLoop(), UnlikelyBlocks);
+
+ // Changed to 'true' if at least one successor has estimated weight.
+ bool FoundEstimatedWeight = false;
+ SmallVector<uint32_t, 4> SuccWeights;
+ uint64_t TotalWeight = 0;
+ // Go over all successors of BB and put their weights into SuccWeights.
+ for (const BasicBlock *SuccBB : successors(BB)) {
+ std::optional<uint32_t> Weight;
+ const LoopBlock SuccLoopBB = getLoopBlock(SuccBB);
+ const LoopEdge Edge{LoopBB, SuccLoopBB};
+
+ Weight = getEstimatedEdgeWeight(Edge);
+
+ if (isLoopExitingEdge(Edge) &&
+ // Avoid adjustment of ZERO weight since it should remain unchanged.
+ Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
+ // Scale down loop exiting weight by trip count.
+ Weight = std::max(
+ static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
+ Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
+ TC);
+ }
+ bool IsUnlikelyEdge = LoopBB.getLoop() && UnlikelyBlocks.contains(SuccBB);
+ if (IsUnlikelyEdge &&
+ // Avoid adjustment of ZERO weight since it should remain unchanged.
+ Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
+ // 'Unlikely' blocks have twice lower weight.
+ Weight = std::max(
+ static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
+ Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) / 2);
+ }
+
+ if (Weight)
+ FoundEstimatedWeight = true;
+
+ auto WeightVal =
+ Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT));
+ TotalWeight += WeightVal;
+ SuccWeights.push_back(WeightVal);
+ }
+
+ // If non of blocks have estimated weight bail out.
+ // If TotalWeight is 0 that means weight of each successor is 0 as well and
+ // equally likely. Bail out early to not deal with devision by zero.
+ if (!FoundEstimatedWeight || TotalWeight == 0)
+ return false;
+
+ assert(SuccWeights.size() == succ_size(BB) && "Missed successor?");
+ const unsigned SuccCount = SuccWeights.size();
+
+ // If the sum of weights does not fit in 32 bits, scale every weight down
+ // accordingly.
+ if (TotalWeight > UINT32_MAX) {
+ uint64_t ScalingFactor = TotalWeight / UINT32_MAX + 1;
+ TotalWeight = 0;
+ for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
+ SuccWeights[Idx] /= ScalingFactor;
+ if (SuccWeights[Idx] == static_cast<uint32_t>(BlockExecWeight::ZERO))
+ SuccWeights[Idx] =
+ static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
+ TotalWeight += SuccWeights[Idx];
+ }
+ assert(TotalWeight <= UINT32_MAX && "Total weight overflows");
+ }
+
+ // Finally set probabilities to edges according to estimated block weights.
+ SmallVector<BranchProbability, 4> EdgeProbabilities(
+ SuccCount, BranchProbability::getUnknown());
+
+ for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
+ EdgeProbabilities[Idx] =
+ BranchProbability(SuccWeights[Idx], (uint32_t)TotalWeight);
+ }
+ setEdgeProbability(BB, EdgeProbabilities);
+ return true;
+}
+
+bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
+ const TargetLibraryInfo *TLI) {
+ const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!BI || !BI->isConditional())
+ return false;
+
+ Value *Cond = BI->getCondition();
+ ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
+ if (!CI)
+ return false;
+
+ auto GetConstantInt = [](Value *V) {
+ if (auto *I = dyn_cast<BitCastInst>(V))
+ return dyn_cast<ConstantInt>(I->getOperand(0));
+ return dyn_cast<ConstantInt>(V);
+ };
+
+ Value *RHS = CI->getOperand(1);
+ ConstantInt *CV = GetConstantInt(RHS);
+ if (!CV)
+ return false;
+
+ // If the LHS is the result of AND'ing a value with a single bit bitmask,
+ // we don't have information about probabilities.
+ if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
+ if (LHS->getOpcode() == Instruction::And)
+ if (ConstantInt *AndRHS = GetConstantInt(LHS->getOperand(1)))
+ if (AndRHS->getValue().isPowerOf2())
+ return false;
+
+ // Check if the LHS is the return value of a library function
+ LibFunc Func = NumLibFuncs;
+ if (TLI)
+ if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
+ if (Function *CalledFn = Call->getCalledFunction())
+ TLI->getLibFunc(*CalledFn, Func);
+
+ ProbabilityTable::const_iterator Search;
+ if (Func == LibFunc_strcasecmp ||
+ Func == LibFunc_strcmp ||
+ Func == LibFunc_strncasecmp ||
+ Func == LibFunc_strncmp ||
+ Func == LibFunc_memcmp ||
+ Func == LibFunc_bcmp) {
+ Search = ICmpWithLibCallTable.find(CI->getPredicate());
+ if (Search == ICmpWithLibCallTable.end())
+ return false;
+ } else if (CV->isZero()) {
+ Search = ICmpWithZeroTable.find(CI->getPredicate());
+ if (Search == ICmpWithZeroTable.end())
+ return false;
+ } else if (CV->isOne()) {
+ Search = ICmpWithOneTable.find(CI->getPredicate());
+ if (Search == ICmpWithOneTable.end())
+ return false;
+ } else if (CV->isMinusOne()) {
+ Search = ICmpWithMinusOneTable.find(CI->getPredicate());
+ if (Search == ICmpWithMinusOneTable.end())
+ return false;
+ } else {
+ return false;
+ }
+
+ setEdgeProbability(BB, Search->second);
+ return true;
+}
+
+bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
+ const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!BI || !BI->isConditional())
+ return false;
+
+ Value *Cond = BI->getCondition();
+ FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
+ if (!FCmp)
+ return false;
+
+ ProbabilityList ProbList;
+ if (FCmp->isEquality()) {
+ ProbList = !FCmp->isTrueWhenEqual() ?
+ // f1 == f2 -> Unlikely
+ ProbabilityList({FPTakenProb, FPUntakenProb}) :
+ // f1 != f2 -> Likely
+ ProbabilityList({FPUntakenProb, FPTakenProb});
+ } else {
+ auto Search = FCmpTable.find(FCmp->getPredicate());
+ if (Search == FCmpTable.end())
+ return false;
+ ProbList = Search->second;
+ }
+
+ setEdgeProbability(BB, ProbList);
+ return true;
+}
+
+void BranchProbabilityInfo::releaseMemory() {
+ Probs.clear();
+ Handles.clear();
+}
+
+bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA,
+ FunctionAnalysisManager::Invalidator &) {
+ // Check whether the analysis, all analyses on functions, or the function's
+ // CFG have been preserved.
+ auto PAC = PA.getChecker<BranchProbabilityAnalysis>();
+ return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
+ PAC.preservedSet<CFGAnalyses>());
+}
+
+void BranchProbabilityInfo::print(raw_ostream &OS) const {
+ OS << "---- Branch Probabilities ----\n";
+ // We print the probabilities from the last function the analysis ran over,
+ // or the function it is currently running over.
+ assert(LastF && "Cannot print prior to running over a function");
+ for (const auto &BI : *LastF) {
+ for (const BasicBlock *Succ : successors(&BI))
+ printEdgeProbability(OS << " ", &BI, Succ);
+ }
+}
+
+bool BranchProbabilityInfo::
+isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
+ // Hot probability is at least 4/5 = 80%
+ // FIXME: Compare against a static "hot" BranchProbability.
+ return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
+}
+
+/// Get the raw edge probability for the edge. If can't find it, return a
+/// default probability 1/N where N is the number of successors. Here an edge is
+/// specified using PredBlock and an
+/// index to the successors.
+BranchProbability
+BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
+ unsigned IndexInSuccessors) const {
+ auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
+ assert((Probs.end() == Probs.find(std::make_pair(Src, 0))) ==
+ (Probs.end() == I) &&
+ "Probability for I-th successor must always be defined along with the "
+ "probability for the first successor");
+
+ if (I != Probs.end())
+ return I->second;
+
+ return {1, static_cast<uint32_t>(succ_size(Src))};
+}
+
+BranchProbability
+BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
+ const_succ_iterator Dst) const {
+ return getEdgeProbability(Src, Dst.getSuccessorIndex());
+}
+
+/// Get the raw edge probability calculated for the block pair. This returns the
+/// sum of all raw edge probabilities from Src to Dst.
+BranchProbability
+BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
+ const BasicBlock *Dst) const {
+ if (!Probs.count(std::make_pair(Src, 0)))
+ return BranchProbability(llvm::count(successors(Src), Dst), succ_size(Src));
+
+ auto Prob = BranchProbability::getZero();
+ for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
+ if (*I == Dst)
+ Prob += Probs.find(std::make_pair(Src, I.getSuccessorIndex()))->second;
+
+ return Prob;
+}
+
+/// Set the edge probability for all edges at once.
+void BranchProbabilityInfo::setEdgeProbability(
+ const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) {
+ assert(Src->getTerminator()->getNumSuccessors() == Probs.size());
+ eraseBlock(Src); // Erase stale data if any.
+ if (Probs.size() == 0)
+ return; // Nothing to set.
+
+ Handles.insert(BasicBlockCallbackVH(Src, this));
+ uint64_t TotalNumerator = 0;
+ for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) {
+ this->Probs[std::make_pair(Src, SuccIdx)] = Probs[SuccIdx];
+ LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << SuccIdx
+ << " successor probability to " << Probs[SuccIdx]
+ << "\n");
+ TotalNumerator += Probs[SuccIdx].getNumerator();
+ }
+
+ // Because of rounding errors the total probability cannot be checked to be
+ // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator.
+ // Instead, every single probability in Probs must be as accurate as possible.
+ // This results in error 1/denominator at most, thus the total absolute error
+ // should be within Probs.size / BranchProbability::getDenominator.
+ assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size());
+ assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size());
+ (void)TotalNumerator;
+}
+
+void BranchProbabilityInfo::copyEdgeProbabilities(BasicBlock *Src,
+ BasicBlock *Dst) {
+ eraseBlock(Dst); // Erase stale data if any.
+ unsigned NumSuccessors = Src->getTerminator()->getNumSuccessors();
+ assert(NumSuccessors == Dst->getTerminator()->getNumSuccessors());
+ if (NumSuccessors == 0)
+ return; // Nothing to set.
+ if (this->Probs.find(std::make_pair(Src, 0)) == this->Probs.end())
+ return; // No probability is set for edges from Src. Keep the same for Dst.
+
+ Handles.insert(BasicBlockCallbackVH(Dst, this));
+ for (unsigned SuccIdx = 0; SuccIdx < NumSuccessors; ++SuccIdx) {
+ auto Prob = this->Probs[std::make_pair(Src, SuccIdx)];
+ this->Probs[std::make_pair(Dst, SuccIdx)] = Prob;
+ LLVM_DEBUG(dbgs() << "set edge " << Dst->getName() << " -> " << SuccIdx
+ << " successor probability to " << Prob << "\n");
+ }
+}
+
+raw_ostream &
+BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
+ const BasicBlock *Src,
+ const BasicBlock *Dst) const {
+ const BranchProbability Prob = getEdgeProbability(Src, Dst);
+ OS << "edge " << Src->getName() << " -> " << Dst->getName()
+ << " probability is " << Prob
+ << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
+
+ return OS;
+}
+
+void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
+ LLVM_DEBUG(dbgs() << "eraseBlock " << BB->getName() << "\n");
+
+ // Note that we cannot use successors of BB because the terminator of BB may
+ // have changed when eraseBlock is called as a BasicBlockCallbackVH callback.
+ // Instead we remove prob data for the block by iterating successors by their
+ // indices from 0 till the last which exists. There could not be prob data for
+ // a pair (BB, N) if there is no data for (BB, N-1) because the data is always
+ // set for all successors from 0 to M at once by the method
+ // setEdgeProbability().
+ Handles.erase(BasicBlockCallbackVH(BB, this));
+ for (unsigned I = 0;; ++I) {
+ auto MapI = Probs.find(std::make_pair(BB, I));
+ if (MapI == Probs.end()) {
+ assert(Probs.count(std::make_pair(BB, I + 1)) == 0 &&
+ "Must be no more successors");
+ return;
+ }
+ Probs.erase(MapI);
+ }
+}
+
+void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LoopI,
+ const TargetLibraryInfo *TLI,
+ DominatorTree *DT,
+ PostDominatorTree *PDT) {
+ LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
+ << " ----\n\n");
+ LastF = &F; // Store the last function we ran on for printing.
+ LI = &LoopI;
+
+ SccI = std::make_unique<SccInfo>(F);
+
+ assert(EstimatedBlockWeight.empty());
+ assert(EstimatedLoopWeight.empty());
+
+ std::unique_ptr<DominatorTree> DTPtr;
+ std::unique_ptr<PostDominatorTree> PDTPtr;
+
+ if (!DT) {
+ DTPtr = std::make_unique<DominatorTree>(const_cast<Function &>(F));
+ DT = DTPtr.get();
+ }
+
+ if (!PDT) {
+ PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F));
+ PDT = PDTPtr.get();
+ }
+
+ computeEestimateBlockWeight(F, DT, PDT);
+
+ // Walk the basic blocks in post-order so that we can build up state about
+ // the successors of a block iteratively.
+ for (const auto *BB : post_order(&F.getEntryBlock())) {
+ LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
+ << "\n");
+ // If there is no at least two successors, no sense to set probability.
+ if (BB->getTerminator()->getNumSuccessors() < 2)
+ continue;
+ if (calcMetadataWeights(BB))
+ continue;
+ if (calcEstimatedHeuristics(BB))
+ continue;
+ if (calcPointerHeuristics(BB))
+ continue;
+ if (calcZeroHeuristics(BB, TLI))
+ continue;
+ if (calcFloatingPointHeuristics(BB))
+ continue;
+ }
+
+ EstimatedLoopWeight.clear();
+ EstimatedBlockWeight.clear();
+ SccI.reset();
+
+ if (PrintBranchProb &&
+ (PrintBranchProbFuncName.empty() ||
+ F.getName().equals(PrintBranchProbFuncName))) {
+ print(dbgs());
+ }
+}
+
+void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
+ AnalysisUsage &AU) const {
+ // We require DT so it's available when LI is available. The LI updating code
+ // asserts that DT is also present so if we don't make sure that we have DT
+ // here, that assert will trigger.
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<PostDominatorTreeWrapperPass>();
+ AU.setPreservesAll();
+}
+
+bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
+ const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ const TargetLibraryInfo &TLI =
+ getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
+ DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ PostDominatorTree &PDT =
+ getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
+ BPI.calculate(F, LI, &TLI, &DT, &PDT);
+ return false;
+}
+
+void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
+
+void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
+ const Module *) const {
+ BPI.print(OS);
+}
+
+AnalysisKey BranchProbabilityAnalysis::Key;
+BranchProbabilityInfo
+BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
+ BranchProbabilityInfo BPI;
+ BPI.calculate(F, AM.getResult<LoopAnalysis>(F),
+ &AM.getResult<TargetLibraryAnalysis>(F),
+ &AM.getResult<DominatorTreeAnalysis>(F),
+ &AM.getResult<PostDominatorTreeAnalysis>(F));
+ return BPI;
+}
+
+PreservedAnalyses
+BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
+ OS << "Printing analysis results of BPI for function "
+ << "'" << F.getName() << "':"
+ << "\n";
+ AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
+ return PreservedAnalyses::all();
+}