diff options
author | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
---|---|---|
committer | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
commit | 6ffe9e53658409f212834330e13564e4952558f6 (patch) | |
tree | 85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm16/lib/Analysis/BranchProbabilityInfo.cpp | |
parent | 726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff) | |
download | ydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz |
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm16/lib/Analysis/BranchProbabilityInfo.cpp')
-rw-r--r-- | contrib/libs/llvm16/lib/Analysis/BranchProbabilityInfo.cpp | 1321 |
1 files changed, 1321 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Analysis/BranchProbabilityInfo.cpp b/contrib/libs/llvm16/lib/Analysis/BranchProbabilityInfo.cpp new file mode 100644 index 0000000000..7931001d0a --- /dev/null +++ b/contrib/libs/llvm16/lib/Analysis/BranchProbabilityInfo.cpp @@ -0,0 +1,1321 @@ +//===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Loops should be simplified before this analysis. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/SCCIterator.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/PostDominators.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/ProfDataUtils.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/Support/BranchProbability.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> +#include <cstdint> +#include <iterator> +#include <map> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "branch-prob" + +static cl::opt<bool> PrintBranchProb( + "print-bpi", cl::init(false), cl::Hidden, + cl::desc("Print the branch probability info.")); + +cl::opt<std::string> PrintBranchProbFuncName( + "print-bpi-func-name", cl::Hidden, + cl::desc("The option to specify the name of the function " + "whose branch probability info is printed.")); + +INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob", + "Branch Probability Analysis", false, true) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) +INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob", + "Branch Probability Analysis", false, true) + +BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass() + : FunctionPass(ID) { + initializeBranchProbabilityInfoWrapperPassPass( + *PassRegistry::getPassRegistry()); +} + +char BranchProbabilityInfoWrapperPass::ID = 0; + +// Weights are for internal use only. They are used by heuristics to help to +// estimate edges' probability. Example: +// +// Using "Loop Branch Heuristics" we predict weights of edges for the +// block BB2. +// ... +// | +// V +// BB1<-+ +// | | +// | | (Weight = 124) +// V | +// BB2--+ +// | +// | (Weight = 4) +// V +// BB3 +// +// Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875 +// Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125 +static const uint32_t LBH_TAKEN_WEIGHT = 124; +static const uint32_t LBH_NONTAKEN_WEIGHT = 4; + +/// Unreachable-terminating branch taken probability. +/// +/// This is the probability for a branch being taken to a block that terminates +/// (eventually) in unreachable. These are predicted as unlikely as possible. +/// All reachable probability will proportionally share the remaining part. +static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1); + +/// Heuristics and lookup tables for non-loop branches: +/// Pointer Heuristics (PH) +static const uint32_t PH_TAKEN_WEIGHT = 20; +static const uint32_t PH_NONTAKEN_WEIGHT = 12; +static const BranchProbability + PtrTakenProb(PH_TAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT); +static const BranchProbability + PtrUntakenProb(PH_NONTAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT); + +using ProbabilityList = SmallVector<BranchProbability>; +using ProbabilityTable = std::map<CmpInst::Predicate, ProbabilityList>; + +/// Pointer comparisons: +static const ProbabilityTable PointerTable{ + {ICmpInst::ICMP_NE, {PtrTakenProb, PtrUntakenProb}}, /// p != q -> Likely + {ICmpInst::ICMP_EQ, {PtrUntakenProb, PtrTakenProb}}, /// p == q -> Unlikely +}; + +/// Zero Heuristics (ZH) +static const uint32_t ZH_TAKEN_WEIGHT = 20; +static const uint32_t ZH_NONTAKEN_WEIGHT = 12; +static const BranchProbability + ZeroTakenProb(ZH_TAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT); +static const BranchProbability + ZeroUntakenProb(ZH_NONTAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT); + +/// Integer compares with 0: +static const ProbabilityTable ICmpWithZeroTable{ + {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, /// X == 0 -> Unlikely + {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, /// X != 0 -> Likely + {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X < 0 -> Unlikely + {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X > 0 -> Likely +}; + +/// Integer compares with -1: +static const ProbabilityTable ICmpWithMinusOneTable{ + {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, /// X == -1 -> Unlikely + {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, /// X != -1 -> Likely + // InstCombine canonicalizes X >= 0 into X > -1 + {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X >= 0 -> Likely +}; + +/// Integer compares with 1: +static const ProbabilityTable ICmpWithOneTable{ + // InstCombine canonicalizes X <= 0 into X < 1 + {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X <= 0 -> Unlikely +}; + +/// strcmp and similar functions return zero, negative, or positive, if the +/// first string is equal, less, or greater than the second. We consider it +/// likely that the strings are not equal, so a comparison with zero is +/// probably false, but also a comparison with any other number is also +/// probably false given that what exactly is returned for nonzero values is +/// not specified. Any kind of comparison other than equality we know +/// nothing about. +static const ProbabilityTable ICmpWithLibCallTable{ + {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, + {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, +}; + +// Floating-Point Heuristics (FPH) +static const uint32_t FPH_TAKEN_WEIGHT = 20; +static const uint32_t FPH_NONTAKEN_WEIGHT = 12; + +/// This is the probability for an ordered floating point comparison. +static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1; +/// This is the probability for an unordered floating point comparison, it means +/// one or two of the operands are NaN. Usually it is used to test for an +/// exceptional case, so the result is unlikely. +static const uint32_t FPH_UNO_WEIGHT = 1; + +static const BranchProbability FPOrdTakenProb(FPH_ORD_WEIGHT, + FPH_ORD_WEIGHT + FPH_UNO_WEIGHT); +static const BranchProbability + FPOrdUntakenProb(FPH_UNO_WEIGHT, FPH_ORD_WEIGHT + FPH_UNO_WEIGHT); +static const BranchProbability + FPTakenProb(FPH_TAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT); +static const BranchProbability + FPUntakenProb(FPH_NONTAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT); + +/// Floating-Point compares: +static const ProbabilityTable FCmpTable{ + {FCmpInst::FCMP_ORD, {FPOrdTakenProb, FPOrdUntakenProb}}, /// !isnan -> Likely + {FCmpInst::FCMP_UNO, {FPOrdUntakenProb, FPOrdTakenProb}}, /// isnan -> Unlikely +}; + +/// Set of dedicated "absolute" execution weights for a block. These weights are +/// meaningful relative to each other and their derivatives only. +enum class BlockExecWeight : std::uint32_t { + /// Special weight used for cases with exact zero probability. + ZERO = 0x0, + /// Minimal possible non zero weight. + LOWEST_NON_ZERO = 0x1, + /// Weight to an 'unreachable' block. + UNREACHABLE = ZERO, + /// Weight to a block containing non returning call. + NORETURN = LOWEST_NON_ZERO, + /// Weight to 'unwind' block of an invoke instruction. + UNWIND = LOWEST_NON_ZERO, + /// Weight to a 'cold' block. Cold blocks are the ones containing calls marked + /// with attribute 'cold'. + COLD = 0xffff, + /// Default weight is used in cases when there is no dedicated execution + /// weight set. It is not propagated through the domination line either. + DEFAULT = 0xfffff +}; + +BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) { + // Record SCC numbers of blocks in the CFG to identify irreducible loops. + // FIXME: We could only calculate this if the CFG is known to be irreducible + // (perhaps cache this info in LoopInfo if we can easily calculate it there?). + int SccNum = 0; + for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd(); + ++It, ++SccNum) { + // Ignore single-block SCCs since they either aren't loops or LoopInfo will + // catch them. + const std::vector<const BasicBlock *> &Scc = *It; + if (Scc.size() == 1) + continue; + + LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":"); + for (const auto *BB : Scc) { + LLVM_DEBUG(dbgs() << " " << BB->getName()); + SccNums[BB] = SccNum; + calculateSccBlockType(BB, SccNum); + } + LLVM_DEBUG(dbgs() << "\n"); + } +} + +int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const { + auto SccIt = SccNums.find(BB); + if (SccIt == SccNums.end()) + return -1; + return SccIt->second; +} + +void BranchProbabilityInfo::SccInfo::getSccEnterBlocks( + int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const { + + for (auto MapIt : SccBlocks[SccNum]) { + const auto *BB = MapIt.first; + if (isSCCHeader(BB, SccNum)) + for (const auto *Pred : predecessors(BB)) + if (getSCCNum(Pred) != SccNum) + Enters.push_back(const_cast<BasicBlock *>(BB)); + } +} + +void BranchProbabilityInfo::SccInfo::getSccExitBlocks( + int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const { + for (auto MapIt : SccBlocks[SccNum]) { + const auto *BB = MapIt.first; + if (isSCCExitingBlock(BB, SccNum)) + for (const auto *Succ : successors(BB)) + if (getSCCNum(Succ) != SccNum) + Exits.push_back(const_cast<BasicBlock *>(Succ)); + } +} + +uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB, + int SccNum) const { + assert(getSCCNum(BB) == SccNum); + + assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC"); + const auto &SccBlockTypes = SccBlocks[SccNum]; + + auto It = SccBlockTypes.find(BB); + if (It != SccBlockTypes.end()) { + return It->second; + } + return Inner; +} + +void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB, + int SccNum) { + assert(getSCCNum(BB) == SccNum); + uint32_t BlockType = Inner; + + if (llvm::any_of(predecessors(BB), [&](const BasicBlock *Pred) { + // Consider any block that is an entry point to the SCC as + // a header. + return getSCCNum(Pred) != SccNum; + })) + BlockType |= Header; + + if (llvm::any_of(successors(BB), [&](const BasicBlock *Succ) { + return getSCCNum(Succ) != SccNum; + })) + BlockType |= Exiting; + + // Lazily compute the set of headers for a given SCC and cache the results + // in the SccHeaderMap. + if (SccBlocks.size() <= static_cast<unsigned>(SccNum)) + SccBlocks.resize(SccNum + 1); + auto &SccBlockTypes = SccBlocks[SccNum]; + + if (BlockType != Inner) { + bool IsInserted; + std::tie(std::ignore, IsInserted) = + SccBlockTypes.insert(std::make_pair(BB, BlockType)); + assert(IsInserted && "Duplicated block in SCC"); + } +} + +BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB, + const LoopInfo &LI, + const SccInfo &SccI) + : BB(BB) { + LD.first = LI.getLoopFor(BB); + if (!LD.first) { + LD.second = SccI.getSCCNum(BB); + } +} + +bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const { + const auto &SrcBlock = Edge.first; + const auto &DstBlock = Edge.second; + return (DstBlock.getLoop() && + !DstBlock.getLoop()->contains(SrcBlock.getLoop())) || + // Assume that SCCs can't be nested. + (DstBlock.getSccNum() != -1 && + SrcBlock.getSccNum() != DstBlock.getSccNum()); +} + +bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const { + return isLoopEnteringEdge({Edge.second, Edge.first}); +} + +bool BranchProbabilityInfo::isLoopEnteringExitingEdge( + const LoopEdge &Edge) const { + return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge); +} + +bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const { + const auto &SrcBlock = Edge.first; + const auto &DstBlock = Edge.second; + return SrcBlock.belongsToSameLoop(DstBlock) && + ((DstBlock.getLoop() && + DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) || + (DstBlock.getSccNum() != -1 && + SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum()))); +} + +void BranchProbabilityInfo::getLoopEnterBlocks( + const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const { + if (LB.getLoop()) { + auto *Header = LB.getLoop()->getHeader(); + Enters.append(pred_begin(Header), pred_end(Header)); + } else { + assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?"); + SccI->getSccEnterBlocks(LB.getSccNum(), Enters); + } +} + +void BranchProbabilityInfo::getLoopExitBlocks( + const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const { + if (LB.getLoop()) { + LB.getLoop()->getExitBlocks(Exits); + } else { + assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?"); + SccI->getSccExitBlocks(LB.getSccNum(), Exits); + } +} + +// Propagate existing explicit probabilities from either profile data or +// 'expect' intrinsic processing. Examine metadata against unreachable +// heuristic. The probability of the edge coming to unreachable block is +// set to min of metadata and unreachable heuristic. +bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) { + const Instruction *TI = BB->getTerminator(); + assert(TI->getNumSuccessors() > 1 && "expected more than one successor!"); + if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) || + isa<InvokeInst>(TI) || isa<CallBrInst>(TI))) + return false; + + MDNode *WeightsNode = getValidBranchWeightMDNode(*TI); + if (!WeightsNode) + return false; + + // Check that the number of successors is manageable. + assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors"); + + // Build up the final weights that will be used in a temporary buffer. + // Compute the sum of all weights to later decide whether they need to + // be scaled to fit in 32 bits. + uint64_t WeightSum = 0; + SmallVector<uint32_t, 2> Weights; + SmallVector<unsigned, 2> UnreachableIdxs; + SmallVector<unsigned, 2> ReachableIdxs; + + extractBranchWeights(WeightsNode, Weights); + for (unsigned I = 0, E = Weights.size(); I != E; ++I) { + WeightSum += Weights[I]; + const LoopBlock SrcLoopBB = getLoopBlock(BB); + const LoopBlock DstLoopBB = getLoopBlock(TI->getSuccessor(I)); + auto EstimatedWeight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB}); + if (EstimatedWeight && + *EstimatedWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE)) + UnreachableIdxs.push_back(I); + else + ReachableIdxs.push_back(I); + } + assert(Weights.size() == TI->getNumSuccessors() && "Checked above"); + + // If the sum of weights does not fit in 32 bits, scale every weight down + // accordingly. + uint64_t ScalingFactor = + (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1; + + if (ScalingFactor > 1) { + WeightSum = 0; + for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { + Weights[I] /= ScalingFactor; + WeightSum += Weights[I]; + } + } + assert(WeightSum <= UINT32_MAX && + "Expected weights to scale down to 32 bits"); + + if (WeightSum == 0 || ReachableIdxs.size() == 0) { + for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) + Weights[I] = 1; + WeightSum = TI->getNumSuccessors(); + } + + // Set the probability. + SmallVector<BranchProbability, 2> BP; + for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) + BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) }); + + // Examine the metadata against unreachable heuristic. + // If the unreachable heuristic is more strong then we use it for this edge. + if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) { + setEdgeProbability(BB, BP); + return true; + } + + auto UnreachableProb = UR_TAKEN_PROB; + for (auto I : UnreachableIdxs) + if (UnreachableProb < BP[I]) { + BP[I] = UnreachableProb; + } + + // Sum of all edge probabilities must be 1.0. If we modified the probability + // of some edges then we must distribute the introduced difference over the + // reachable blocks. + // + // Proportional distribution: the relation between probabilities of the + // reachable edges is kept unchanged. That is for any reachable edges i and j: + // newBP[i] / newBP[j] == oldBP[i] / oldBP[j] => + // newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K + // Where K is independent of i,j. + // newBP[i] == oldBP[i] * K + // We need to find K. + // Make sum of all reachables of the left and right parts: + // sum_of_reachable(newBP) == K * sum_of_reachable(oldBP) + // Sum of newBP must be equal to 1.0: + // sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 => + // sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP) + // Where sum_of_unreachable(newBP) is what has been just changed. + // Finally: + // K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) => + // K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP) + BranchProbability NewUnreachableSum = BranchProbability::getZero(); + for (auto I : UnreachableIdxs) + NewUnreachableSum += BP[I]; + + BranchProbability NewReachableSum = + BranchProbability::getOne() - NewUnreachableSum; + + BranchProbability OldReachableSum = BranchProbability::getZero(); + for (auto I : ReachableIdxs) + OldReachableSum += BP[I]; + + if (OldReachableSum != NewReachableSum) { // Anything to dsitribute? + if (OldReachableSum.isZero()) { + // If all oldBP[i] are zeroes then the proportional distribution results + // in all zero probabilities and the error stays big. In this case we + // evenly spread NewReachableSum over the reachable edges. + BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size(); + for (auto I : ReachableIdxs) + BP[I] = PerEdge; + } else { + for (auto I : ReachableIdxs) { + // We use uint64_t to avoid double rounding error of the following + // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum + // The formula is taken from the private constructor + // BranchProbability(uint32_t Numerator, uint32_t Denominator) + uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) * + BP[I].getNumerator(); + uint32_t Div = static_cast<uint32_t>( + divideNearest(Mul, OldReachableSum.getNumerator())); + BP[I] = BranchProbability::getRaw(Div); + } + } + } + + setEdgeProbability(BB, BP); + + return true; +} + +// Calculate Edge Weights using "Pointer Heuristics". Predict a comparison +// between two pointer or pointer and NULL will fail. +bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) { + const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); + if (!BI || !BI->isConditional()) + return false; + + Value *Cond = BI->getCondition(); + ICmpInst *CI = dyn_cast<ICmpInst>(Cond); + if (!CI || !CI->isEquality()) + return false; + + Value *LHS = CI->getOperand(0); + + if (!LHS->getType()->isPointerTy()) + return false; + + assert(CI->getOperand(1)->getType()->isPointerTy()); + + auto Search = PointerTable.find(CI->getPredicate()); + if (Search == PointerTable.end()) + return false; + setEdgeProbability(BB, Search->second); + return true; +} + +// Compute the unlikely successors to the block BB in the loop L, specifically +// those that are unlikely because this is a loop, and add them to the +// UnlikelyBlocks set. +static void +computeUnlikelySuccessors(const BasicBlock *BB, Loop *L, + SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) { + // Sometimes in a loop we have a branch whose condition is made false by + // taking it. This is typically something like + // int n = 0; + // while (...) { + // if (++n >= MAX) { + // n = 0; + // } + // } + // In this sort of situation taking the branch means that at the very least it + // won't be taken again in the next iteration of the loop, so we should + // consider it less likely than a typical branch. + // + // We detect this by looking back through the graph of PHI nodes that sets the + // value that the condition depends on, and seeing if we can reach a successor + // block which can be determined to make the condition false. + // + // FIXME: We currently consider unlikely blocks to be half as likely as other + // blocks, but if we consider the example above the likelyhood is actually + // 1/MAX. We could therefore be more precise in how unlikely we consider + // blocks to be, but it would require more careful examination of the form + // of the comparison expression. + const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); + if (!BI || !BI->isConditional()) + return; + + // Check if the branch is based on an instruction compared with a constant + CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); + if (!CI || !isa<Instruction>(CI->getOperand(0)) || + !isa<Constant>(CI->getOperand(1))) + return; + + // Either the instruction must be a PHI, or a chain of operations involving + // constants that ends in a PHI which we can then collapse into a single value + // if the PHI value is known. + Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0)); + PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS); + Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1)); + // Collect the instructions until we hit a PHI + SmallVector<BinaryOperator *, 1> InstChain; + while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) && + isa<Constant>(CmpLHS->getOperand(1))) { + // Stop if the chain extends outside of the loop + if (!L->contains(CmpLHS)) + return; + InstChain.push_back(cast<BinaryOperator>(CmpLHS)); + CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0)); + if (CmpLHS) + CmpPHI = dyn_cast<PHINode>(CmpLHS); + } + if (!CmpPHI || !L->contains(CmpPHI)) + return; + + // Trace the phi node to find all values that come from successors of BB + SmallPtrSet<PHINode*, 8> VisitedInsts; + SmallVector<PHINode*, 8> WorkList; + WorkList.push_back(CmpPHI); + VisitedInsts.insert(CmpPHI); + while (!WorkList.empty()) { + PHINode *P = WorkList.pop_back_val(); + for (BasicBlock *B : P->blocks()) { + // Skip blocks that aren't part of the loop + if (!L->contains(B)) + continue; + Value *V = P->getIncomingValueForBlock(B); + // If the source is a PHI add it to the work list if we haven't + // already visited it. + if (PHINode *PN = dyn_cast<PHINode>(V)) { + if (VisitedInsts.insert(PN).second) + WorkList.push_back(PN); + continue; + } + // If this incoming value is a constant and B is a successor of BB, then + // we can constant-evaluate the compare to see if it makes the branch be + // taken or not. + Constant *CmpLHSConst = dyn_cast<Constant>(V); + if (!CmpLHSConst || !llvm::is_contained(successors(BB), B)) + continue; + // First collapse InstChain + const DataLayout &DL = BB->getModule()->getDataLayout(); + for (Instruction *I : llvm::reverse(InstChain)) { + CmpLHSConst = ConstantFoldBinaryOpOperands( + I->getOpcode(), CmpLHSConst, cast<Constant>(I->getOperand(1)), DL); + if (!CmpLHSConst) + break; + } + if (!CmpLHSConst) + continue; + // Now constant-evaluate the compare + Constant *Result = ConstantExpr::getCompare(CI->getPredicate(), + CmpLHSConst, CmpConst, true); + // If the result means we don't branch to the block then that block is + // unlikely. + if (Result && + ((Result->isZeroValue() && B == BI->getSuccessor(0)) || + (Result->isOneValue() && B == BI->getSuccessor(1)))) + UnlikelyBlocks.insert(B); + } + } +} + +std::optional<uint32_t> +BranchProbabilityInfo::getEstimatedBlockWeight(const BasicBlock *BB) const { + auto WeightIt = EstimatedBlockWeight.find(BB); + if (WeightIt == EstimatedBlockWeight.end()) + return std::nullopt; + return WeightIt->second; +} + +std::optional<uint32_t> +BranchProbabilityInfo::getEstimatedLoopWeight(const LoopData &L) const { + auto WeightIt = EstimatedLoopWeight.find(L); + if (WeightIt == EstimatedLoopWeight.end()) + return std::nullopt; + return WeightIt->second; +} + +std::optional<uint32_t> +BranchProbabilityInfo::getEstimatedEdgeWeight(const LoopEdge &Edge) const { + // For edges entering a loop take weight of a loop rather than an individual + // block in the loop. + return isLoopEnteringEdge(Edge) + ? getEstimatedLoopWeight(Edge.second.getLoopData()) + : getEstimatedBlockWeight(Edge.second.getBlock()); +} + +template <class IterT> +std::optional<uint32_t> BranchProbabilityInfo::getMaxEstimatedEdgeWeight( + const LoopBlock &SrcLoopBB, iterator_range<IterT> Successors) const { + SmallVector<uint32_t, 4> Weights; + std::optional<uint32_t> MaxWeight; + for (const BasicBlock *DstBB : Successors) { + const LoopBlock DstLoopBB = getLoopBlock(DstBB); + auto Weight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB}); + + if (!Weight) + return std::nullopt; + + if (!MaxWeight || *MaxWeight < *Weight) + MaxWeight = Weight; + } + + return MaxWeight; +} + +// Updates \p LoopBB's weight and returns true. If \p LoopBB has already +// an associated weight it is unchanged and false is returned. +// +// Please note by the algorithm the weight is not expected to change once set +// thus 'false' status is used to track visited blocks. +bool BranchProbabilityInfo::updateEstimatedBlockWeight( + LoopBlock &LoopBB, uint32_t BBWeight, + SmallVectorImpl<BasicBlock *> &BlockWorkList, + SmallVectorImpl<LoopBlock> &LoopWorkList) { + BasicBlock *BB = LoopBB.getBlock(); + + // In general, weight is assigned to a block when it has final value and + // can't/shouldn't be changed. However, there are cases when a block + // inherently has several (possibly "contradicting") weights. For example, + // "unwind" block may also contain "cold" call. In that case the first + // set weight is favored and all consequent weights are ignored. + if (!EstimatedBlockWeight.insert({BB, BBWeight}).second) + return false; + + for (BasicBlock *PredBlock : predecessors(BB)) { + LoopBlock PredLoop = getLoopBlock(PredBlock); + // Add affected block/loop to a working list. + if (isLoopExitingEdge({PredLoop, LoopBB})) { + if (!EstimatedLoopWeight.count(PredLoop.getLoopData())) + LoopWorkList.push_back(PredLoop); + } else if (!EstimatedBlockWeight.count(PredBlock)) + BlockWorkList.push_back(PredBlock); + } + return true; +} + +// Starting from \p BB traverse through dominator blocks and assign \p BBWeight +// to all such blocks that are post dominated by \BB. In other words to all +// blocks that the one is executed if and only if another one is executed. +// Importantly, we skip loops here for two reasons. First weights of blocks in +// a loop should be scaled by trip count (yet possibly unknown). Second there is +// no any value in doing that because that doesn't give any additional +// information regarding distribution of probabilities inside the loop. +// Exception is loop 'enter' and 'exit' edges that are handled in a special way +// at calcEstimatedHeuristics. +// +// In addition, \p WorkList is populated with basic blocks if at leas one +// successor has updated estimated weight. +void BranchProbabilityInfo::propagateEstimatedBlockWeight( + const LoopBlock &LoopBB, DominatorTree *DT, PostDominatorTree *PDT, + uint32_t BBWeight, SmallVectorImpl<BasicBlock *> &BlockWorkList, + SmallVectorImpl<LoopBlock> &LoopWorkList) { + const BasicBlock *BB = LoopBB.getBlock(); + const auto *DTStartNode = DT->getNode(BB); + const auto *PDTStartNode = PDT->getNode(BB); + + // TODO: Consider propagating weight down the domination line as well. + for (const auto *DTNode = DTStartNode; DTNode != nullptr; + DTNode = DTNode->getIDom()) { + auto *DomBB = DTNode->getBlock(); + // Consider blocks which lie on one 'line'. + if (!PDT->dominates(PDTStartNode, PDT->getNode(DomBB))) + // If BB doesn't post dominate DomBB it will not post dominate dominators + // of DomBB as well. + break; + + LoopBlock DomLoopBB = getLoopBlock(DomBB); + const LoopEdge Edge{DomLoopBB, LoopBB}; + // Don't propagate weight to blocks belonging to different loops. + if (!isLoopEnteringExitingEdge(Edge)) { + if (!updateEstimatedBlockWeight(DomLoopBB, BBWeight, BlockWorkList, + LoopWorkList)) + // If DomBB has weight set then all it's predecessors are already + // processed (since we propagate weight up to the top of IR each time). + break; + } else if (isLoopExitingEdge(Edge)) { + LoopWorkList.push_back(DomLoopBB); + } + } +} + +std::optional<uint32_t> +BranchProbabilityInfo::getInitialEstimatedBlockWeight(const BasicBlock *BB) { + // Returns true if \p BB has call marked with "NoReturn" attribute. + auto hasNoReturn = [&](const BasicBlock *BB) { + for (const auto &I : reverse(*BB)) + if (const CallInst *CI = dyn_cast<CallInst>(&I)) + if (CI->hasFnAttr(Attribute::NoReturn)) + return true; + + return false; + }; + + // Important note regarding the order of checks. They are ordered by weight + // from lowest to highest. Doing that allows to avoid "unstable" results + // when several conditions heuristics can be applied simultaneously. + if (isa<UnreachableInst>(BB->getTerminator()) || + // If this block is terminated by a call to + // @llvm.experimental.deoptimize then treat it like an unreachable + // since it is expected to practically never execute. + // TODO: Should we actually treat as never returning call? + BB->getTerminatingDeoptimizeCall()) + return hasNoReturn(BB) + ? static_cast<uint32_t>(BlockExecWeight::NORETURN) + : static_cast<uint32_t>(BlockExecWeight::UNREACHABLE); + + // Check if the block is 'unwind' handler of some invoke instruction. + for (const auto *Pred : predecessors(BB)) + if (Pred) + if (const auto *II = dyn_cast<InvokeInst>(Pred->getTerminator())) + if (II->getUnwindDest() == BB) + return static_cast<uint32_t>(BlockExecWeight::UNWIND); + + // Check if the block contains 'cold' call. + for (const auto &I : *BB) + if (const CallInst *CI = dyn_cast<CallInst>(&I)) + if (CI->hasFnAttr(Attribute::Cold)) + return static_cast<uint32_t>(BlockExecWeight::COLD); + + return std::nullopt; +} + +// Does RPO traversal over all blocks in \p F and assigns weights to +// 'unreachable', 'noreturn', 'cold', 'unwind' blocks. In addition it does its +// best to propagate the weight to up/down the IR. +void BranchProbabilityInfo::computeEestimateBlockWeight( + const Function &F, DominatorTree *DT, PostDominatorTree *PDT) { + SmallVector<BasicBlock *, 8> BlockWorkList; + SmallVector<LoopBlock, 8> LoopWorkList; + + // By doing RPO we make sure that all predecessors already have weights + // calculated before visiting theirs successors. + ReversePostOrderTraversal<const Function *> RPOT(&F); + for (const auto *BB : RPOT) + if (auto BBWeight = getInitialEstimatedBlockWeight(BB)) + // If we were able to find estimated weight for the block set it to this + // block and propagate up the IR. + propagateEstimatedBlockWeight(getLoopBlock(BB), DT, PDT, *BBWeight, + BlockWorkList, LoopWorkList); + + // BlockWorklist/LoopWorkList contains blocks/loops with at least one + // successor/exit having estimated weight. Try to propagate weight to such + // blocks/loops from successors/exits. + // Process loops and blocks. Order is not important. + do { + while (!LoopWorkList.empty()) { + const LoopBlock LoopBB = LoopWorkList.pop_back_val(); + + if (EstimatedLoopWeight.count(LoopBB.getLoopData())) + continue; + + SmallVector<BasicBlock *, 4> Exits; + getLoopExitBlocks(LoopBB, Exits); + auto LoopWeight = getMaxEstimatedEdgeWeight( + LoopBB, make_range(Exits.begin(), Exits.end())); + + if (LoopWeight) { + // If we never exit the loop then we can enter it once at maximum. + if (LoopWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE)) + LoopWeight = static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO); + + EstimatedLoopWeight.insert({LoopBB.getLoopData(), *LoopWeight}); + // Add all blocks entering the loop into working list. + getLoopEnterBlocks(LoopBB, BlockWorkList); + } + } + + while (!BlockWorkList.empty()) { + // We can reach here only if BlockWorkList is not empty. + const BasicBlock *BB = BlockWorkList.pop_back_val(); + if (EstimatedBlockWeight.count(BB)) + continue; + + // We take maximum over all weights of successors. In other words we take + // weight of "hot" path. In theory we can probably find a better function + // which gives higher accuracy results (comparing to "maximum") but I + // can't + // think of any right now. And I doubt it will make any difference in + // practice. + const LoopBlock LoopBB = getLoopBlock(BB); + auto MaxWeight = getMaxEstimatedEdgeWeight(LoopBB, successors(BB)); + + if (MaxWeight) + propagateEstimatedBlockWeight(LoopBB, DT, PDT, *MaxWeight, + BlockWorkList, LoopWorkList); + } + } while (!BlockWorkList.empty() || !LoopWorkList.empty()); +} + +// Calculate edge probabilities based on block's estimated weight. +// Note that gathered weights were not scaled for loops. Thus edges entering +// and exiting loops requires special processing. +bool BranchProbabilityInfo::calcEstimatedHeuristics(const BasicBlock *BB) { + assert(BB->getTerminator()->getNumSuccessors() > 1 && + "expected more than one successor!"); + + const LoopBlock LoopBB = getLoopBlock(BB); + + SmallPtrSet<const BasicBlock *, 8> UnlikelyBlocks; + uint32_t TC = LBH_TAKEN_WEIGHT / LBH_NONTAKEN_WEIGHT; + if (LoopBB.getLoop()) + computeUnlikelySuccessors(BB, LoopBB.getLoop(), UnlikelyBlocks); + + // Changed to 'true' if at least one successor has estimated weight. + bool FoundEstimatedWeight = false; + SmallVector<uint32_t, 4> SuccWeights; + uint64_t TotalWeight = 0; + // Go over all successors of BB and put their weights into SuccWeights. + for (const BasicBlock *SuccBB : successors(BB)) { + std::optional<uint32_t> Weight; + const LoopBlock SuccLoopBB = getLoopBlock(SuccBB); + const LoopEdge Edge{LoopBB, SuccLoopBB}; + + Weight = getEstimatedEdgeWeight(Edge); + + if (isLoopExitingEdge(Edge) && + // Avoid adjustment of ZERO weight since it should remain unchanged. + Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) { + // Scale down loop exiting weight by trip count. + Weight = std::max( + static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO), + Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) / + TC); + } + bool IsUnlikelyEdge = LoopBB.getLoop() && UnlikelyBlocks.contains(SuccBB); + if (IsUnlikelyEdge && + // Avoid adjustment of ZERO weight since it should remain unchanged. + Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) { + // 'Unlikely' blocks have twice lower weight. + Weight = std::max( + static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO), + Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) / 2); + } + + if (Weight) + FoundEstimatedWeight = true; + + auto WeightVal = + Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)); + TotalWeight += WeightVal; + SuccWeights.push_back(WeightVal); + } + + // If non of blocks have estimated weight bail out. + // If TotalWeight is 0 that means weight of each successor is 0 as well and + // equally likely. Bail out early to not deal with devision by zero. + if (!FoundEstimatedWeight || TotalWeight == 0) + return false; + + assert(SuccWeights.size() == succ_size(BB) && "Missed successor?"); + const unsigned SuccCount = SuccWeights.size(); + + // If the sum of weights does not fit in 32 bits, scale every weight down + // accordingly. + if (TotalWeight > UINT32_MAX) { + uint64_t ScalingFactor = TotalWeight / UINT32_MAX + 1; + TotalWeight = 0; + for (unsigned Idx = 0; Idx < SuccCount; ++Idx) { + SuccWeights[Idx] /= ScalingFactor; + if (SuccWeights[Idx] == static_cast<uint32_t>(BlockExecWeight::ZERO)) + SuccWeights[Idx] = + static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO); + TotalWeight += SuccWeights[Idx]; + } + assert(TotalWeight <= UINT32_MAX && "Total weight overflows"); + } + + // Finally set probabilities to edges according to estimated block weights. + SmallVector<BranchProbability, 4> EdgeProbabilities( + SuccCount, BranchProbability::getUnknown()); + + for (unsigned Idx = 0; Idx < SuccCount; ++Idx) { + EdgeProbabilities[Idx] = + BranchProbability(SuccWeights[Idx], (uint32_t)TotalWeight); + } + setEdgeProbability(BB, EdgeProbabilities); + return true; +} + +bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB, + const TargetLibraryInfo *TLI) { + const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); + if (!BI || !BI->isConditional()) + return false; + + Value *Cond = BI->getCondition(); + ICmpInst *CI = dyn_cast<ICmpInst>(Cond); + if (!CI) + return false; + + auto GetConstantInt = [](Value *V) { + if (auto *I = dyn_cast<BitCastInst>(V)) + return dyn_cast<ConstantInt>(I->getOperand(0)); + return dyn_cast<ConstantInt>(V); + }; + + Value *RHS = CI->getOperand(1); + ConstantInt *CV = GetConstantInt(RHS); + if (!CV) + return false; + + // If the LHS is the result of AND'ing a value with a single bit bitmask, + // we don't have information about probabilities. + if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0))) + if (LHS->getOpcode() == Instruction::And) + if (ConstantInt *AndRHS = GetConstantInt(LHS->getOperand(1))) + if (AndRHS->getValue().isPowerOf2()) + return false; + + // Check if the LHS is the return value of a library function + LibFunc Func = NumLibFuncs; + if (TLI) + if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0))) + if (Function *CalledFn = Call->getCalledFunction()) + TLI->getLibFunc(*CalledFn, Func); + + ProbabilityTable::const_iterator Search; + if (Func == LibFunc_strcasecmp || + Func == LibFunc_strcmp || + Func == LibFunc_strncasecmp || + Func == LibFunc_strncmp || + Func == LibFunc_memcmp || + Func == LibFunc_bcmp) { + Search = ICmpWithLibCallTable.find(CI->getPredicate()); + if (Search == ICmpWithLibCallTable.end()) + return false; + } else if (CV->isZero()) { + Search = ICmpWithZeroTable.find(CI->getPredicate()); + if (Search == ICmpWithZeroTable.end()) + return false; + } else if (CV->isOne()) { + Search = ICmpWithOneTable.find(CI->getPredicate()); + if (Search == ICmpWithOneTable.end()) + return false; + } else if (CV->isMinusOne()) { + Search = ICmpWithMinusOneTable.find(CI->getPredicate()); + if (Search == ICmpWithMinusOneTable.end()) + return false; + } else { + return false; + } + + setEdgeProbability(BB, Search->second); + return true; +} + +bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) { + const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); + if (!BI || !BI->isConditional()) + return false; + + Value *Cond = BI->getCondition(); + FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond); + if (!FCmp) + return false; + + ProbabilityList ProbList; + if (FCmp->isEquality()) { + ProbList = !FCmp->isTrueWhenEqual() ? + // f1 == f2 -> Unlikely + ProbabilityList({FPTakenProb, FPUntakenProb}) : + // f1 != f2 -> Likely + ProbabilityList({FPUntakenProb, FPTakenProb}); + } else { + auto Search = FCmpTable.find(FCmp->getPredicate()); + if (Search == FCmpTable.end()) + return false; + ProbList = Search->second; + } + + setEdgeProbability(BB, ProbList); + return true; +} + +void BranchProbabilityInfo::releaseMemory() { + Probs.clear(); + Handles.clear(); +} + +bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA, + FunctionAnalysisManager::Invalidator &) { + // Check whether the analysis, all analyses on functions, or the function's + // CFG have been preserved. + auto PAC = PA.getChecker<BranchProbabilityAnalysis>(); + return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || + PAC.preservedSet<CFGAnalyses>()); +} + +void BranchProbabilityInfo::print(raw_ostream &OS) const { + OS << "---- Branch Probabilities ----\n"; + // We print the probabilities from the last function the analysis ran over, + // or the function it is currently running over. + assert(LastF && "Cannot print prior to running over a function"); + for (const auto &BI : *LastF) { + for (const BasicBlock *Succ : successors(&BI)) + printEdgeProbability(OS << " ", &BI, Succ); + } +} + +bool BranchProbabilityInfo:: +isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const { + // Hot probability is at least 4/5 = 80% + // FIXME: Compare against a static "hot" BranchProbability. + return getEdgeProbability(Src, Dst) > BranchProbability(4, 5); +} + +/// Get the raw edge probability for the edge. If can't find it, return a +/// default probability 1/N where N is the number of successors. Here an edge is +/// specified using PredBlock and an +/// index to the successors. +BranchProbability +BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, + unsigned IndexInSuccessors) const { + auto I = Probs.find(std::make_pair(Src, IndexInSuccessors)); + assert((Probs.end() == Probs.find(std::make_pair(Src, 0))) == + (Probs.end() == I) && + "Probability for I-th successor must always be defined along with the " + "probability for the first successor"); + + if (I != Probs.end()) + return I->second; + + return {1, static_cast<uint32_t>(succ_size(Src))}; +} + +BranchProbability +BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, + const_succ_iterator Dst) const { + return getEdgeProbability(Src, Dst.getSuccessorIndex()); +} + +/// Get the raw edge probability calculated for the block pair. This returns the +/// sum of all raw edge probabilities from Src to Dst. +BranchProbability +BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, + const BasicBlock *Dst) const { + if (!Probs.count(std::make_pair(Src, 0))) + return BranchProbability(llvm::count(successors(Src), Dst), succ_size(Src)); + + auto Prob = BranchProbability::getZero(); + for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I) + if (*I == Dst) + Prob += Probs.find(std::make_pair(Src, I.getSuccessorIndex()))->second; + + return Prob; +} + +/// Set the edge probability for all edges at once. +void BranchProbabilityInfo::setEdgeProbability( + const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) { + assert(Src->getTerminator()->getNumSuccessors() == Probs.size()); + eraseBlock(Src); // Erase stale data if any. + if (Probs.size() == 0) + return; // Nothing to set. + + Handles.insert(BasicBlockCallbackVH(Src, this)); + uint64_t TotalNumerator = 0; + for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) { + this->Probs[std::make_pair(Src, SuccIdx)] = Probs[SuccIdx]; + LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << SuccIdx + << " successor probability to " << Probs[SuccIdx] + << "\n"); + TotalNumerator += Probs[SuccIdx].getNumerator(); + } + + // Because of rounding errors the total probability cannot be checked to be + // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator. + // Instead, every single probability in Probs must be as accurate as possible. + // This results in error 1/denominator at most, thus the total absolute error + // should be within Probs.size / BranchProbability::getDenominator. + assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size()); + assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size()); + (void)TotalNumerator; +} + +void BranchProbabilityInfo::copyEdgeProbabilities(BasicBlock *Src, + BasicBlock *Dst) { + eraseBlock(Dst); // Erase stale data if any. + unsigned NumSuccessors = Src->getTerminator()->getNumSuccessors(); + assert(NumSuccessors == Dst->getTerminator()->getNumSuccessors()); + if (NumSuccessors == 0) + return; // Nothing to set. + if (this->Probs.find(std::make_pair(Src, 0)) == this->Probs.end()) + return; // No probability is set for edges from Src. Keep the same for Dst. + + Handles.insert(BasicBlockCallbackVH(Dst, this)); + for (unsigned SuccIdx = 0; SuccIdx < NumSuccessors; ++SuccIdx) { + auto Prob = this->Probs[std::make_pair(Src, SuccIdx)]; + this->Probs[std::make_pair(Dst, SuccIdx)] = Prob; + LLVM_DEBUG(dbgs() << "set edge " << Dst->getName() << " -> " << SuccIdx + << " successor probability to " << Prob << "\n"); + } +} + +raw_ostream & +BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS, + const BasicBlock *Src, + const BasicBlock *Dst) const { + const BranchProbability Prob = getEdgeProbability(Src, Dst); + OS << "edge " << Src->getName() << " -> " << Dst->getName() + << " probability is " << Prob + << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n"); + + return OS; +} + +void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) { + LLVM_DEBUG(dbgs() << "eraseBlock " << BB->getName() << "\n"); + + // Note that we cannot use successors of BB because the terminator of BB may + // have changed when eraseBlock is called as a BasicBlockCallbackVH callback. + // Instead we remove prob data for the block by iterating successors by their + // indices from 0 till the last which exists. There could not be prob data for + // a pair (BB, N) if there is no data for (BB, N-1) because the data is always + // set for all successors from 0 to M at once by the method + // setEdgeProbability(). + Handles.erase(BasicBlockCallbackVH(BB, this)); + for (unsigned I = 0;; ++I) { + auto MapI = Probs.find(std::make_pair(BB, I)); + if (MapI == Probs.end()) { + assert(Probs.count(std::make_pair(BB, I + 1)) == 0 && + "Must be no more successors"); + return; + } + Probs.erase(MapI); + } +} + +void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LoopI, + const TargetLibraryInfo *TLI, + DominatorTree *DT, + PostDominatorTree *PDT) { + LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName() + << " ----\n\n"); + LastF = &F; // Store the last function we ran on for printing. + LI = &LoopI; + + SccI = std::make_unique<SccInfo>(F); + + assert(EstimatedBlockWeight.empty()); + assert(EstimatedLoopWeight.empty()); + + std::unique_ptr<DominatorTree> DTPtr; + std::unique_ptr<PostDominatorTree> PDTPtr; + + if (!DT) { + DTPtr = std::make_unique<DominatorTree>(const_cast<Function &>(F)); + DT = DTPtr.get(); + } + + if (!PDT) { + PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F)); + PDT = PDTPtr.get(); + } + + computeEestimateBlockWeight(F, DT, PDT); + + // Walk the basic blocks in post-order so that we can build up state about + // the successors of a block iteratively. + for (const auto *BB : post_order(&F.getEntryBlock())) { + LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName() + << "\n"); + // If there is no at least two successors, no sense to set probability. + if (BB->getTerminator()->getNumSuccessors() < 2) + continue; + if (calcMetadataWeights(BB)) + continue; + if (calcEstimatedHeuristics(BB)) + continue; + if (calcPointerHeuristics(BB)) + continue; + if (calcZeroHeuristics(BB, TLI)) + continue; + if (calcFloatingPointHeuristics(BB)) + continue; + } + + EstimatedLoopWeight.clear(); + EstimatedBlockWeight.clear(); + SccI.reset(); + + if (PrintBranchProb && + (PrintBranchProbFuncName.empty() || + F.getName().equals(PrintBranchProbFuncName))) { + print(dbgs()); + } +} + +void BranchProbabilityInfoWrapperPass::getAnalysisUsage( + AnalysisUsage &AU) const { + // We require DT so it's available when LI is available. The LI updating code + // asserts that DT is also present so if we don't make sure that we have DT + // here, that assert will trigger. + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<LoopInfoWrapperPass>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<PostDominatorTreeWrapperPass>(); + AU.setPreservesAll(); +} + +bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) { + const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + const TargetLibraryInfo &TLI = + getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); + DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + PostDominatorTree &PDT = + getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); + BPI.calculate(F, LI, &TLI, &DT, &PDT); + return false; +} + +void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); } + +void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS, + const Module *) const { + BPI.print(OS); +} + +AnalysisKey BranchProbabilityAnalysis::Key; +BranchProbabilityInfo +BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) { + BranchProbabilityInfo BPI; + BPI.calculate(F, AM.getResult<LoopAnalysis>(F), + &AM.getResult<TargetLibraryAnalysis>(F), + &AM.getResult<DominatorTreeAnalysis>(F), + &AM.getResult<PostDominatorTreeAnalysis>(F)); + return BPI; +} + +PreservedAnalyses +BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { + OS << "Printing analysis results of BPI for function " + << "'" << F.getName() << "':" + << "\n"; + AM.getResult<BranchProbabilityAnalysis>(F).print(OS); + return PreservedAnalyses::all(); +} |