diff options
author | thegeorg <thegeorg@yandex-team.com> | 2024-03-13 13:58:24 +0300 |
---|---|---|
committer | thegeorg <thegeorg@yandex-team.com> | 2024-03-13 14:11:53 +0300 |
commit | 11a895b7e15d1c5a1f52706396b82e3f9db953cb (patch) | |
tree | fabc6d883b0f946151f61ae7865cee9f529a1fdd /contrib/libs/llvm16/include | |
parent | 9685917341315774aad5733b1793b1e533a88bbb (diff) | |
download | ydb-11a895b7e15d1c5a1f52706396b82e3f9db953cb.tar.gz |
Export clang-format16 via ydblib project
6e6be3a95868fde888d801b7590af4044049563f
Diffstat (limited to 'contrib/libs/llvm16/include')
-rw-r--r-- | contrib/libs/llvm16/include/llvm/ADT/ImmutableList.h | 257 | ||||
-rw-r--r-- | contrib/libs/llvm16/include/llvm/ADT/ImmutableMap.h | 341 | ||||
-rw-r--r-- | contrib/libs/llvm16/include/llvm/ADT/ImmutableSet.h | 1182 | ||||
-rw-r--r-- | contrib/libs/llvm16/include/llvm/IR/FixedPointBuilder.h | 478 | ||||
-rw-r--r-- | contrib/libs/llvm16/include/llvm/Support/LoongArchTargetParser.h | 26 |
5 files changed, 2284 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/include/llvm/ADT/ImmutableList.h b/contrib/libs/llvm16/include/llvm/ADT/ImmutableList.h new file mode 100644 index 0000000000..182670e455 --- /dev/null +++ b/contrib/libs/llvm16/include/llvm/ADT/ImmutableList.h @@ -0,0 +1,257 @@ +#pragma once + +#ifdef __GNUC__ +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wunused-parameter" +#endif + +//==--- ImmutableList.h - Immutable (functional) list interface --*- C++ -*-==// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// +/// \file +/// This file defines the ImmutableList class. +/// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ADT_IMMUTABLELIST_H +#define LLVM_ADT_IMMUTABLELIST_H + +#include "llvm/ADT/FoldingSet.h" +#include "llvm/Support/Allocator.h" +#include <cassert> +#include <cstdint> +#include <new> + +namespace llvm { + +template <typename T> class ImmutableListFactory; + +template <typename T> +class ImmutableListImpl : public FoldingSetNode { + friend class ImmutableListFactory<T>; + + T Head; + const ImmutableListImpl* Tail; + + template <typename ElemT> + ImmutableListImpl(ElemT &&head, const ImmutableListImpl *tail = nullptr) + : Head(std::forward<ElemT>(head)), Tail(tail) {} + +public: + ImmutableListImpl(const ImmutableListImpl &) = delete; + ImmutableListImpl &operator=(const ImmutableListImpl &) = delete; + + const T& getHead() const { return Head; } + const ImmutableListImpl* getTail() const { return Tail; } + + static inline void Profile(FoldingSetNodeID& ID, const T& H, + const ImmutableListImpl* L){ + ID.AddPointer(L); + ID.Add(H); + } + + void Profile(FoldingSetNodeID& ID) { + Profile(ID, Head, Tail); + } +}; + +/// ImmutableList - This class represents an immutable (functional) list. +/// It is implemented as a smart pointer (wraps ImmutableListImpl), so it +/// it is intended to always be copied by value as if it were a pointer. +/// This interface matches ImmutableSet and ImmutableMap. ImmutableList +/// objects should almost never be created directly, and instead should +/// be created by ImmutableListFactory objects that manage the lifetime +/// of a group of lists. When the factory object is reclaimed, all lists +/// created by that factory are released as well. +template <typename T> +class ImmutableList { +public: + using value_type = T; + using Factory = ImmutableListFactory<T>; + + static_assert(std::is_trivially_destructible<T>::value, + "T must be trivially destructible!"); + +private: + const ImmutableListImpl<T>* X; + +public: + // This constructor should normally only be called by ImmutableListFactory<T>. + // There may be cases, however, when one needs to extract the internal pointer + // and reconstruct a list object from that pointer. + ImmutableList(const ImmutableListImpl<T>* x = nullptr) : X(x) {} + + const ImmutableListImpl<T>* getInternalPointer() const { + return X; + } + + class iterator { + const ImmutableListImpl<T>* L = nullptr; + + public: + iterator() = default; + iterator(ImmutableList l) : L(l.getInternalPointer()) {} + + iterator& operator++() { L = L->getTail(); return *this; } + bool operator==(const iterator& I) const { return L == I.L; } + bool operator!=(const iterator& I) const { return L != I.L; } + const value_type& operator*() const { return L->getHead(); } + const std::remove_reference_t<value_type> *operator->() const { + return &L->getHead(); + } + + ImmutableList getList() const { return L; } + }; + + /// begin - Returns an iterator referring to the head of the list, or + /// an iterator denoting the end of the list if the list is empty. + iterator begin() const { return iterator(X); } + + /// end - Returns an iterator denoting the end of the list. This iterator + /// does not refer to a valid list element. + iterator end() const { return iterator(); } + + /// isEmpty - Returns true if the list is empty. + bool isEmpty() const { return !X; } + + bool contains(const T& V) const { + for (iterator I = begin(), E = end(); I != E; ++I) { + if (*I == V) + return true; + } + return false; + } + + /// isEqual - Returns true if two lists are equal. Because all lists created + /// from the same ImmutableListFactory are uniqued, this has O(1) complexity + /// because it the contents of the list do not need to be compared. Note + /// that you should only compare two lists created from the same + /// ImmutableListFactory. + bool isEqual(const ImmutableList& L) const { return X == L.X; } + + bool operator==(const ImmutableList& L) const { return isEqual(L); } + + /// getHead - Returns the head of the list. + const T& getHead() const { + assert(!isEmpty() && "Cannot get the head of an empty list."); + return X->getHead(); + } + + /// getTail - Returns the tail of the list, which is another (possibly empty) + /// ImmutableList. + ImmutableList getTail() const { + return X ? X->getTail() : nullptr; + } + + void Profile(FoldingSetNodeID& ID) const { + ID.AddPointer(X); + } +}; + +template <typename T> +class ImmutableListFactory { + using ListTy = ImmutableListImpl<T>; + using CacheTy = FoldingSet<ListTy>; + + CacheTy Cache; + uintptr_t Allocator; + + bool ownsAllocator() const { + return (Allocator & 0x1) == 0; + } + + BumpPtrAllocator& getAllocator() const { + return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1); + } + +public: + ImmutableListFactory() + : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {} + + ImmutableListFactory(BumpPtrAllocator& Alloc) + : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {} + + ~ImmutableListFactory() { + if (ownsAllocator()) delete &getAllocator(); + } + + template <typename ElemT> + [[nodiscard]] ImmutableList<T> concat(ElemT &&Head, ImmutableList<T> Tail) { + // Profile the new list to see if it already exists in our cache. + FoldingSetNodeID ID; + void* InsertPos; + + const ListTy* TailImpl = Tail.getInternalPointer(); + ListTy::Profile(ID, Head, TailImpl); + ListTy* L = Cache.FindNodeOrInsertPos(ID, InsertPos); + + if (!L) { + // The list does not exist in our cache. Create it. + BumpPtrAllocator& A = getAllocator(); + L = (ListTy*) A.Allocate<ListTy>(); + new (L) ListTy(std::forward<ElemT>(Head), TailImpl); + + // Insert the new list into the cache. + Cache.InsertNode(L, InsertPos); + } + + return L; + } + + template <typename ElemT> + [[nodiscard]] ImmutableList<T> add(ElemT &&Data, ImmutableList<T> L) { + return concat(std::forward<ElemT>(Data), L); + } + + template <typename... CtorArgs> + [[nodiscard]] ImmutableList<T> emplace(ImmutableList<T> Tail, + CtorArgs &&...Args) { + return concat(T(std::forward<CtorArgs>(Args)...), Tail); + } + + ImmutableList<T> getEmptyList() const { + return ImmutableList<T>(nullptr); + } + + template <typename ElemT> + ImmutableList<T> create(ElemT &&Data) { + return concat(std::forward<ElemT>(Data), getEmptyList()); + } +}; + +//===----------------------------------------------------------------------===// +// Partially-specialized Traits. +//===----------------------------------------------------------------------===// + +template <typename T> struct DenseMapInfo<ImmutableList<T>, void> { + static inline ImmutableList<T> getEmptyKey() { + return reinterpret_cast<ImmutableListImpl<T>*>(-1); + } + + static inline ImmutableList<T> getTombstoneKey() { + return reinterpret_cast<ImmutableListImpl<T>*>(-2); + } + + static unsigned getHashValue(ImmutableList<T> X) { + uintptr_t PtrVal = reinterpret_cast<uintptr_t>(X.getInternalPointer()); + return (unsigned((uintptr_t)PtrVal) >> 4) ^ + (unsigned((uintptr_t)PtrVal) >> 9); + } + + static bool isEqual(ImmutableList<T> X1, ImmutableList<T> X2) { + return X1 == X2; + } +}; + +} // end namespace llvm + +#endif // LLVM_ADT_IMMUTABLELIST_H + +#ifdef __GNUC__ +#pragma GCC diagnostic pop +#endif diff --git a/contrib/libs/llvm16/include/llvm/ADT/ImmutableMap.h b/contrib/libs/llvm16/include/llvm/ADT/ImmutableMap.h new file mode 100644 index 0000000000..50396cdeb0 --- /dev/null +++ b/contrib/libs/llvm16/include/llvm/ADT/ImmutableMap.h @@ -0,0 +1,341 @@ +#pragma once + +#ifdef __GNUC__ +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wunused-parameter" +#endif + +//===--- ImmutableMap.h - Immutable (functional) map interface --*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// +/// \file +/// This file defines the ImmutableMap class. +/// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ADT_IMMUTABLEMAP_H +#define LLVM_ADT_IMMUTABLEMAP_H + +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/ImmutableSet.h" +#include "llvm/Support/Allocator.h" +#include <utility> + +namespace llvm { + +/// ImutKeyValueInfo -Traits class used by ImmutableMap. While both the first +/// and second elements in a pair are used to generate profile information, +/// only the first element (the key) is used by isEqual and isLess. +template <typename T, typename S> +struct ImutKeyValueInfo { + using value_type = const std::pair<T,S>; + using value_type_ref = const value_type&; + using key_type = const T; + using key_type_ref = const T&; + using data_type = const S; + using data_type_ref = const S&; + + static inline key_type_ref KeyOfValue(value_type_ref V) { + return V.first; + } + + static inline data_type_ref DataOfValue(value_type_ref V) { + return V.second; + } + + static inline bool isEqual(key_type_ref L, key_type_ref R) { + return ImutContainerInfo<T>::isEqual(L,R); + } + static inline bool isLess(key_type_ref L, key_type_ref R) { + return ImutContainerInfo<T>::isLess(L,R); + } + + static inline bool isDataEqual(data_type_ref L, data_type_ref R) { + return ImutContainerInfo<S>::isEqual(L,R); + } + + static inline void Profile(FoldingSetNodeID& ID, value_type_ref V) { + ImutContainerInfo<T>::Profile(ID, V.first); + ImutContainerInfo<S>::Profile(ID, V.second); + } +}; + +template <typename KeyT, typename ValT, + typename ValInfo = ImutKeyValueInfo<KeyT,ValT>> +class ImmutableMap { +public: + using value_type = typename ValInfo::value_type; + using value_type_ref = typename ValInfo::value_type_ref; + using key_type = typename ValInfo::key_type; + using key_type_ref = typename ValInfo::key_type_ref; + using data_type = typename ValInfo::data_type; + using data_type_ref = typename ValInfo::data_type_ref; + using TreeTy = ImutAVLTree<ValInfo>; + +protected: + IntrusiveRefCntPtr<TreeTy> Root; + +public: + /// Constructs a map from a pointer to a tree root. In general one + /// should use a Factory object to create maps instead of directly + /// invoking the constructor, but there are cases where make this + /// constructor public is useful. + explicit ImmutableMap(const TreeTy *R) : Root(const_cast<TreeTy *>(R)) {} + + class Factory { + typename TreeTy::Factory F; + const bool Canonicalize; + + public: + Factory(bool canonicalize = true) : Canonicalize(canonicalize) {} + + Factory(BumpPtrAllocator &Alloc, bool canonicalize = true) + : F(Alloc), Canonicalize(canonicalize) {} + + Factory(const Factory &) = delete; + Factory &operator=(const Factory &) = delete; + + ImmutableMap getEmptyMap() { return ImmutableMap(F.getEmptyTree()); } + + [[nodiscard]] ImmutableMap add(ImmutableMap Old, key_type_ref K, + data_type_ref D) { + TreeTy *T = F.add(Old.Root.get(), std::pair<key_type, data_type>(K, D)); + return ImmutableMap(Canonicalize ? F.getCanonicalTree(T): T); + } + + [[nodiscard]] ImmutableMap remove(ImmutableMap Old, key_type_ref K) { + TreeTy *T = F.remove(Old.Root.get(), K); + return ImmutableMap(Canonicalize ? F.getCanonicalTree(T): T); + } + + typename TreeTy::Factory *getTreeFactory() const { + return const_cast<typename TreeTy::Factory *>(&F); + } + }; + + bool contains(key_type_ref K) const { + return Root ? Root->contains(K) : false; + } + + bool operator==(const ImmutableMap &RHS) const { + return Root && RHS.Root ? Root->isEqual(*RHS.Root.get()) : Root == RHS.Root; + } + + bool operator!=(const ImmutableMap &RHS) const { + return Root && RHS.Root ? Root->isNotEqual(*RHS.Root.get()) + : Root != RHS.Root; + } + + TreeTy *getRoot() const { + if (Root) { Root->retain(); } + return Root.get(); + } + + TreeTy *getRootWithoutRetain() const { return Root.get(); } + + void manualRetain() { + if (Root) Root->retain(); + } + + void manualRelease() { + if (Root) Root->release(); + } + + bool isEmpty() const { return !Root; } + +public: + //===--------------------------------------------------===// + // For testing. + //===--------------------------------------------------===// + + void verify() const { if (Root) Root->verify(); } + + //===--------------------------------------------------===// + // Iterators. + //===--------------------------------------------------===// + + class iterator : public ImutAVLValueIterator<ImmutableMap> { + friend class ImmutableMap; + + iterator() = default; + explicit iterator(TreeTy *Tree) : iterator::ImutAVLValueIterator(Tree) {} + + public: + key_type_ref getKey() const { return (*this)->first; } + data_type_ref getData() const { return (*this)->second; } + }; + + iterator begin() const { return iterator(Root.get()); } + iterator end() const { return iterator(); } + + data_type* lookup(key_type_ref K) const { + if (Root) { + TreeTy* T = Root->find(K); + if (T) return &T->getValue().second; + } + + return nullptr; + } + + /// getMaxElement - Returns the <key,value> pair in the ImmutableMap for + /// which key is the highest in the ordering of keys in the map. This + /// method returns NULL if the map is empty. + value_type* getMaxElement() const { + return Root ? &(Root->getMaxElement()->getValue()) : nullptr; + } + + //===--------------------------------------------------===// + // Utility methods. + //===--------------------------------------------------===// + + unsigned getHeight() const { return Root ? Root->getHeight() : 0; } + + static inline void Profile(FoldingSetNodeID& ID, const ImmutableMap& M) { + ID.AddPointer(M.Root.get()); + } + + inline void Profile(FoldingSetNodeID& ID) const { + return Profile(ID,*this); + } +}; + +// NOTE: This will possibly become the new implementation of ImmutableMap some day. +template <typename KeyT, typename ValT, +typename ValInfo = ImutKeyValueInfo<KeyT,ValT>> +class ImmutableMapRef { +public: + using value_type = typename ValInfo::value_type; + using value_type_ref = typename ValInfo::value_type_ref; + using key_type = typename ValInfo::key_type; + using key_type_ref = typename ValInfo::key_type_ref; + using data_type = typename ValInfo::data_type; + using data_type_ref = typename ValInfo::data_type_ref; + using TreeTy = ImutAVLTree<ValInfo>; + using FactoryTy = typename TreeTy::Factory; + +protected: + IntrusiveRefCntPtr<TreeTy> Root; + FactoryTy *Factory; + +public: + /// Constructs a map from a pointer to a tree root. In general one + /// should use a Factory object to create maps instead of directly + /// invoking the constructor, but there are cases where make this + /// constructor public is useful. + ImmutableMapRef(const TreeTy *R, FactoryTy *F) + : Root(const_cast<TreeTy *>(R)), Factory(F) {} + + ImmutableMapRef(const ImmutableMap<KeyT, ValT> &X, + typename ImmutableMap<KeyT, ValT>::Factory &F) + : Root(X.getRootWithoutRetain()), Factory(F.getTreeFactory()) {} + + static inline ImmutableMapRef getEmptyMap(FactoryTy *F) { + return ImmutableMapRef(nullptr, F); + } + + void manualRetain() { + if (Root) Root->retain(); + } + + void manualRelease() { + if (Root) Root->release(); + } + + ImmutableMapRef add(key_type_ref K, data_type_ref D) const { + TreeTy *NewT = + Factory->add(Root.get(), std::pair<key_type, data_type>(K, D)); + return ImmutableMapRef(NewT, Factory); + } + + ImmutableMapRef remove(key_type_ref K) const { + TreeTy *NewT = Factory->remove(Root.get(), K); + return ImmutableMapRef(NewT, Factory); + } + + bool contains(key_type_ref K) const { + return Root ? Root->contains(K) : false; + } + + ImmutableMap<KeyT, ValT> asImmutableMap() const { + return ImmutableMap<KeyT, ValT>(Factory->getCanonicalTree(Root.get())); + } + + bool operator==(const ImmutableMapRef &RHS) const { + return Root && RHS.Root ? Root->isEqual(*RHS.Root.get()) : Root == RHS.Root; + } + + bool operator!=(const ImmutableMapRef &RHS) const { + return Root && RHS.Root ? Root->isNotEqual(*RHS.Root.get()) + : Root != RHS.Root; + } + + bool isEmpty() const { return !Root; } + + //===--------------------------------------------------===// + // For testing. + //===--------------------------------------------------===// + + void verify() const { + if (Root) + Root->verify(); + } + + //===--------------------------------------------------===// + // Iterators. + //===--------------------------------------------------===// + + class iterator : public ImutAVLValueIterator<ImmutableMapRef> { + friend class ImmutableMapRef; + + iterator() = default; + explicit iterator(TreeTy *Tree) : iterator::ImutAVLValueIterator(Tree) {} + + public: + key_type_ref getKey() const { return (*this)->first; } + data_type_ref getData() const { return (*this)->second; } + }; + + iterator begin() const { return iterator(Root.get()); } + iterator end() const { return iterator(); } + + data_type *lookup(key_type_ref K) const { + if (Root) { + TreeTy* T = Root->find(K); + if (T) return &T->getValue().second; + } + + return nullptr; + } + + /// getMaxElement - Returns the <key,value> pair in the ImmutableMap for + /// which key is the highest in the ordering of keys in the map. This + /// method returns NULL if the map is empty. + value_type* getMaxElement() const { + return Root ? &(Root->getMaxElement()->getValue()) : nullptr; + } + + //===--------------------------------------------------===// + // Utility methods. + //===--------------------------------------------------===// + + unsigned getHeight() const { return Root ? Root->getHeight() : 0; } + + static inline void Profile(FoldingSetNodeID &ID, const ImmutableMapRef &M) { + ID.AddPointer(M.Root.get()); + } + + inline void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); } +}; + +} // end namespace llvm + +#endif // LLVM_ADT_IMMUTABLEMAP_H + +#ifdef __GNUC__ +#pragma GCC diagnostic pop +#endif diff --git a/contrib/libs/llvm16/include/llvm/ADT/ImmutableSet.h b/contrib/libs/llvm16/include/llvm/ADT/ImmutableSet.h new file mode 100644 index 0000000000..be64a514a9 --- /dev/null +++ b/contrib/libs/llvm16/include/llvm/ADT/ImmutableSet.h @@ -0,0 +1,1182 @@ +#pragma once + +#ifdef __GNUC__ +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wunused-parameter" +#endif + +//===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// +/// \file +/// This file defines the ImutAVLTree and ImmutableSet classes. +/// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ADT_IMMUTABLESET_H +#define LLVM_ADT_IMMUTABLESET_H + +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/IntrusiveRefCntPtr.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/iterator.h" +#include "llvm/Support/Allocator.h" +#include "llvm/Support/ErrorHandling.h" +#include <cassert> +#include <cstdint> +#include <functional> +#include <iterator> +#include <new> +#include <vector> + +namespace llvm { + +//===----------------------------------------------------------------------===// +// Immutable AVL-Tree Definition. +//===----------------------------------------------------------------------===// + +template <typename ImutInfo> class ImutAVLFactory; +template <typename ImutInfo> class ImutIntervalAVLFactory; +template <typename ImutInfo> class ImutAVLTreeInOrderIterator; +template <typename ImutInfo> class ImutAVLTreeGenericIterator; + +template <typename ImutInfo > +class ImutAVLTree { +public: + using key_type_ref = typename ImutInfo::key_type_ref; + using value_type = typename ImutInfo::value_type; + using value_type_ref = typename ImutInfo::value_type_ref; + using Factory = ImutAVLFactory<ImutInfo>; + using iterator = ImutAVLTreeInOrderIterator<ImutInfo>; + + friend class ImutAVLFactory<ImutInfo>; + friend class ImutIntervalAVLFactory<ImutInfo>; + friend class ImutAVLTreeGenericIterator<ImutInfo>; + + //===----------------------------------------------------===// + // Public Interface. + //===----------------------------------------------------===// + + /// Return a pointer to the left subtree. This value + /// is NULL if there is no left subtree. + ImutAVLTree *getLeft() const { return left; } + + /// Return a pointer to the right subtree. This value is + /// NULL if there is no right subtree. + ImutAVLTree *getRight() const { return right; } + + /// getHeight - Returns the height of the tree. A tree with no subtrees + /// has a height of 1. + unsigned getHeight() const { return height; } + + /// getValue - Returns the data value associated with the tree node. + const value_type& getValue() const { return value; } + + /// find - Finds the subtree associated with the specified key value. + /// This method returns NULL if no matching subtree is found. + ImutAVLTree* find(key_type_ref K) { + ImutAVLTree *T = this; + while (T) { + key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue()); + if (ImutInfo::isEqual(K,CurrentKey)) + return T; + else if (ImutInfo::isLess(K,CurrentKey)) + T = T->getLeft(); + else + T = T->getRight(); + } + return nullptr; + } + + /// getMaxElement - Find the subtree associated with the highest ranged + /// key value. + ImutAVLTree* getMaxElement() { + ImutAVLTree *T = this; + ImutAVLTree *Right = T->getRight(); + while (Right) { T = Right; Right = T->getRight(); } + return T; + } + + /// size - Returns the number of nodes in the tree, which includes + /// both leaves and non-leaf nodes. + unsigned size() const { + unsigned n = 1; + if (const ImutAVLTree* L = getLeft()) + n += L->size(); + if (const ImutAVLTree* R = getRight()) + n += R->size(); + return n; + } + + /// begin - Returns an iterator that iterates over the nodes of the tree + /// in an inorder traversal. The returned iterator thus refers to the + /// the tree node with the minimum data element. + iterator begin() const { return iterator(this); } + + /// end - Returns an iterator for the tree that denotes the end of an + /// inorder traversal. + iterator end() const { return iterator(); } + + bool isElementEqual(value_type_ref V) const { + // Compare the keys. + if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()), + ImutInfo::KeyOfValue(V))) + return false; + + // Also compare the data values. + if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()), + ImutInfo::DataOfValue(V))) + return false; + + return true; + } + + bool isElementEqual(const ImutAVLTree* RHS) const { + return isElementEqual(RHS->getValue()); + } + + /// isEqual - Compares two trees for structural equality and returns true + /// if they are equal. This worst case performance of this operation is + // linear in the sizes of the trees. + bool isEqual(const ImutAVLTree& RHS) const { + if (&RHS == this) + return true; + + iterator LItr = begin(), LEnd = end(); + iterator RItr = RHS.begin(), REnd = RHS.end(); + + while (LItr != LEnd && RItr != REnd) { + if (&*LItr == &*RItr) { + LItr.skipSubTree(); + RItr.skipSubTree(); + continue; + } + + if (!LItr->isElementEqual(&*RItr)) + return false; + + ++LItr; + ++RItr; + } + + return LItr == LEnd && RItr == REnd; + } + + /// isNotEqual - Compares two trees for structural inequality. Performance + /// is the same is isEqual. + bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); } + + /// contains - Returns true if this tree contains a subtree (node) that + /// has an data element that matches the specified key. Complexity + /// is logarithmic in the size of the tree. + bool contains(key_type_ref K) { return (bool) find(K); } + + /// validateTree - A utility method that checks that the balancing and + /// ordering invariants of the tree are satisfied. It is a recursive + /// method that returns the height of the tree, which is then consumed + /// by the enclosing validateTree call. External callers should ignore the + /// return value. An invalid tree will cause an assertion to fire in + /// a debug build. + unsigned validateTree() const { + unsigned HL = getLeft() ? getLeft()->validateTree() : 0; + unsigned HR = getRight() ? getRight()->validateTree() : 0; + (void) HL; + (void) HR; + + assert(getHeight() == ( HL > HR ? HL : HR ) + 1 + && "Height calculation wrong"); + + assert((HL > HR ? HL-HR : HR-HL) <= 2 + && "Balancing invariant violated"); + + assert((!getLeft() || + ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()), + ImutInfo::KeyOfValue(getValue()))) && + "Value in left child is not less that current value"); + + assert((!getRight() || + ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()), + ImutInfo::KeyOfValue(getRight()->getValue()))) && + "Current value is not less that value of right child"); + + return getHeight(); + } + + //===----------------------------------------------------===// + // Internal values. + //===----------------------------------------------------===// + +private: + Factory *factory; + ImutAVLTree *left; + ImutAVLTree *right; + ImutAVLTree *prev = nullptr; + ImutAVLTree *next = nullptr; + + unsigned height : 28; + bool IsMutable : 1; + bool IsDigestCached : 1; + bool IsCanonicalized : 1; + + value_type value; + uint32_t digest = 0; + uint32_t refCount = 0; + + //===----------------------------------------------------===// + // Internal methods (node manipulation; used by Factory). + //===----------------------------------------------------===// + +private: + /// ImutAVLTree - Internal constructor that is only called by + /// ImutAVLFactory. + ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v, + unsigned height) + : factory(f), left(l), right(r), height(height), IsMutable(true), + IsDigestCached(false), IsCanonicalized(false), value(v) + { + if (left) left->retain(); + if (right) right->retain(); + } + + /// isMutable - Returns true if the left and right subtree references + /// (as well as height) can be changed. If this method returns false, + /// the tree is truly immutable. Trees returned from an ImutAVLFactory + /// object should always have this method return true. Further, if this + /// method returns false for an instance of ImutAVLTree, all subtrees + /// will also have this method return false. The converse is not true. + bool isMutable() const { return IsMutable; } + + /// hasCachedDigest - Returns true if the digest for this tree is cached. + /// This can only be true if the tree is immutable. + bool hasCachedDigest() const { return IsDigestCached; } + + //===----------------------------------------------------===// + // Mutating operations. A tree root can be manipulated as + // long as its reference has not "escaped" from internal + // methods of a factory object (see below). When a tree + // pointer is externally viewable by client code, the + // internal "mutable bit" is cleared to mark the tree + // immutable. Note that a tree that still has its mutable + // bit set may have children (subtrees) that are themselves + // immutable. + //===----------------------------------------------------===// + + /// markImmutable - Clears the mutable flag for a tree. After this happens, + /// it is an error to call setLeft(), setRight(), and setHeight(). + void markImmutable() { + assert(isMutable() && "Mutable flag already removed."); + IsMutable = false; + } + + /// markedCachedDigest - Clears the NoCachedDigest flag for a tree. + void markedCachedDigest() { + assert(!hasCachedDigest() && "NoCachedDigest flag already removed."); + IsDigestCached = true; + } + + /// setHeight - Changes the height of the tree. Used internally by + /// ImutAVLFactory. + void setHeight(unsigned h) { + assert(isMutable() && "Only a mutable tree can have its height changed."); + height = h; + } + + static uint32_t computeDigest(ImutAVLTree *L, ImutAVLTree *R, + value_type_ref V) { + uint32_t digest = 0; + + if (L) + digest += L->computeDigest(); + + // Compute digest of stored data. + FoldingSetNodeID ID; + ImutInfo::Profile(ID,V); + digest += ID.ComputeHash(); + + if (R) + digest += R->computeDigest(); + + return digest; + } + + uint32_t computeDigest() { + // Check the lowest bit to determine if digest has actually been + // pre-computed. + if (hasCachedDigest()) + return digest; + + uint32_t X = computeDigest(getLeft(), getRight(), getValue()); + digest = X; + markedCachedDigest(); + return X; + } + + //===----------------------------------------------------===// + // Reference count operations. + //===----------------------------------------------------===// + +public: + void retain() { ++refCount; } + + void release() { + assert(refCount > 0); + if (--refCount == 0) + destroy(); + } + + void destroy() { + if (left) + left->release(); + if (right) + right->release(); + if (IsCanonicalized) { + if (next) + next->prev = prev; + + if (prev) + prev->next = next; + else + factory->Cache[factory->maskCacheIndex(computeDigest())] = next; + } + + // We need to clear the mutability bit in case we are + // destroying the node as part of a sweep in ImutAVLFactory::recoverNodes(). + IsMutable = false; + factory->freeNodes.push_back(this); + } +}; + +template <typename ImutInfo> +struct IntrusiveRefCntPtrInfo<ImutAVLTree<ImutInfo>> { + static void retain(ImutAVLTree<ImutInfo> *Tree) { Tree->retain(); } + static void release(ImutAVLTree<ImutInfo> *Tree) { Tree->release(); } +}; + +//===----------------------------------------------------------------------===// +// Immutable AVL-Tree Factory class. +//===----------------------------------------------------------------------===// + +template <typename ImutInfo > +class ImutAVLFactory { + friend class ImutAVLTree<ImutInfo>; + + using TreeTy = ImutAVLTree<ImutInfo>; + using value_type_ref = typename TreeTy::value_type_ref; + using key_type_ref = typename TreeTy::key_type_ref; + using CacheTy = DenseMap<unsigned, TreeTy*>; + + CacheTy Cache; + uintptr_t Allocator; + std::vector<TreeTy*> createdNodes; + std::vector<TreeTy*> freeNodes; + + bool ownsAllocator() const { + return (Allocator & 0x1) == 0; + } + + BumpPtrAllocator& getAllocator() const { + return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1); + } + + //===--------------------------------------------------===// + // Public interface. + //===--------------------------------------------------===// + +public: + ImutAVLFactory() + : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {} + + ImutAVLFactory(BumpPtrAllocator& Alloc) + : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {} + + ~ImutAVLFactory() { + if (ownsAllocator()) delete &getAllocator(); + } + + TreeTy* add(TreeTy* T, value_type_ref V) { + T = add_internal(V,T); + markImmutable(T); + recoverNodes(); + return T; + } + + TreeTy* remove(TreeTy* T, key_type_ref V) { + T = remove_internal(V,T); + markImmutable(T); + recoverNodes(); + return T; + } + + TreeTy* getEmptyTree() const { return nullptr; } + +protected: + //===--------------------------------------------------===// + // A bunch of quick helper functions used for reasoning + // about the properties of trees and their children. + // These have succinct names so that the balancing code + // is as terse (and readable) as possible. + //===--------------------------------------------------===// + + bool isEmpty(TreeTy* T) const { return !T; } + unsigned getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; } + TreeTy* getLeft(TreeTy* T) const { return T->getLeft(); } + TreeTy* getRight(TreeTy* T) const { return T->getRight(); } + value_type_ref getValue(TreeTy* T) const { return T->value; } + + // Make sure the index is not the Tombstone or Entry key of the DenseMap. + static unsigned maskCacheIndex(unsigned I) { return (I & ~0x02); } + + unsigned incrementHeight(TreeTy* L, TreeTy* R) const { + unsigned hl = getHeight(L); + unsigned hr = getHeight(R); + return (hl > hr ? hl : hr) + 1; + } + + static bool compareTreeWithSection(TreeTy* T, + typename TreeTy::iterator& TI, + typename TreeTy::iterator& TE) { + typename TreeTy::iterator I = T->begin(), E = T->end(); + for ( ; I!=E ; ++I, ++TI) { + if (TI == TE || !I->isElementEqual(&*TI)) + return false; + } + return true; + } + + //===--------------------------------------------------===// + // "createNode" is used to generate new tree roots that link + // to other trees. The function may also simply move links + // in an existing root if that root is still marked mutable. + // This is necessary because otherwise our balancing code + // would leak memory as it would create nodes that are + // then discarded later before the finished tree is + // returned to the caller. + //===--------------------------------------------------===// + + TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) { + BumpPtrAllocator& A = getAllocator(); + TreeTy* T; + if (!freeNodes.empty()) { + T = freeNodes.back(); + freeNodes.pop_back(); + assert(T != L); + assert(T != R); + } else { + T = (TreeTy*) A.Allocate<TreeTy>(); + } + new (T) TreeTy(this, L, R, V, incrementHeight(L,R)); + createdNodes.push_back(T); + return T; + } + + TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) { + return createNode(newLeft, getValue(oldTree), newRight); + } + + void recoverNodes() { + for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) { + TreeTy *N = createdNodes[i]; + if (N->isMutable() && N->refCount == 0) + N->destroy(); + } + createdNodes.clear(); + } + + /// balanceTree - Used by add_internal and remove_internal to + /// balance a newly created tree. + TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) { + unsigned hl = getHeight(L); + unsigned hr = getHeight(R); + + if (hl > hr + 2) { + assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2"); + + TreeTy *LL = getLeft(L); + TreeTy *LR = getRight(L); + + if (getHeight(LL) >= getHeight(LR)) + return createNode(LL, L, createNode(LR,V,R)); + + assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1"); + + TreeTy *LRL = getLeft(LR); + TreeTy *LRR = getRight(LR); + + return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R)); + } + + if (hr > hl + 2) { + assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2"); + + TreeTy *RL = getLeft(R); + TreeTy *RR = getRight(R); + + if (getHeight(RR) >= getHeight(RL)) + return createNode(createNode(L,V,RL), R, RR); + + assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1"); + + TreeTy *RLL = getLeft(RL); + TreeTy *RLR = getRight(RL); + + return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR)); + } + + return createNode(L,V,R); + } + + /// add_internal - Creates a new tree that includes the specified + /// data and the data from the original tree. If the original tree + /// already contained the data item, the original tree is returned. + TreeTy* add_internal(value_type_ref V, TreeTy* T) { + if (isEmpty(T)) + return createNode(T, V, T); + assert(!T->isMutable()); + + key_type_ref K = ImutInfo::KeyOfValue(V); + key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T)); + + if (ImutInfo::isEqual(K,KCurrent)) + return createNode(getLeft(T), V, getRight(T)); + else if (ImutInfo::isLess(K,KCurrent)) + return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T)); + else + return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T))); + } + + /// remove_internal - Creates a new tree that includes all the data + /// from the original tree except the specified data. If the + /// specified data did not exist in the original tree, the original + /// tree is returned. + TreeTy* remove_internal(key_type_ref K, TreeTy* T) { + if (isEmpty(T)) + return T; + + assert(!T->isMutable()); + + key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T)); + + if (ImutInfo::isEqual(K,KCurrent)) { + return combineTrees(getLeft(T), getRight(T)); + } else if (ImutInfo::isLess(K,KCurrent)) { + return balanceTree(remove_internal(K, getLeft(T)), + getValue(T), getRight(T)); + } else { + return balanceTree(getLeft(T), getValue(T), + remove_internal(K, getRight(T))); + } + } + + TreeTy* combineTrees(TreeTy* L, TreeTy* R) { + if (isEmpty(L)) + return R; + if (isEmpty(R)) + return L; + TreeTy* OldNode; + TreeTy* newRight = removeMinBinding(R,OldNode); + return balanceTree(L, getValue(OldNode), newRight); + } + + TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) { + assert(!isEmpty(T)); + if (isEmpty(getLeft(T))) { + Noderemoved = T; + return getRight(T); + } + return balanceTree(removeMinBinding(getLeft(T), Noderemoved), + getValue(T), getRight(T)); + } + + /// markImmutable - Clears the mutable bits of a root and all of its + /// descendants. + void markImmutable(TreeTy* T) { + if (!T || !T->isMutable()) + return; + T->markImmutable(); + markImmutable(getLeft(T)); + markImmutable(getRight(T)); + } + +public: + TreeTy *getCanonicalTree(TreeTy *TNew) { + if (!TNew) + return nullptr; + + if (TNew->IsCanonicalized) + return TNew; + + // Search the hashtable for another tree with the same digest, and + // if find a collision compare those trees by their contents. + unsigned digest = TNew->computeDigest(); + TreeTy *&entry = Cache[maskCacheIndex(digest)]; + do { + if (!entry) + break; + for (TreeTy *T = entry ; T != nullptr; T = T->next) { + // Compare the Contents('T') with Contents('TNew') + typename TreeTy::iterator TI = T->begin(), TE = T->end(); + if (!compareTreeWithSection(TNew, TI, TE)) + continue; + if (TI != TE) + continue; // T has more contents than TNew. + // Trees did match! Return 'T'. + if (TNew->refCount == 0) + TNew->destroy(); + return T; + } + entry->prev = TNew; + TNew->next = entry; + } + while (false); + + entry = TNew; + TNew->IsCanonicalized = true; + return TNew; + } +}; + +//===----------------------------------------------------------------------===// +// Immutable AVL-Tree Iterators. +//===----------------------------------------------------------------------===// + +template <typename ImutInfo> class ImutAVLTreeGenericIterator { + SmallVector<uintptr_t,20> stack; + +public: + using iterator_category = std::bidirectional_iterator_tag; + using value_type = ImutAVLTree<ImutInfo>; + using difference_type = std::ptrdiff_t; + using pointer = value_type *; + using reference = value_type &; + + enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3, + Flags=0x3 }; + + using TreeTy = ImutAVLTree<ImutInfo>; + + ImutAVLTreeGenericIterator() = default; + ImutAVLTreeGenericIterator(const TreeTy *Root) { + if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root)); + } + + TreeTy &operator*() const { + assert(!stack.empty()); + return *reinterpret_cast<TreeTy *>(stack.back() & ~Flags); + } + TreeTy *operator->() const { return &*this; } + + uintptr_t getVisitState() const { + assert(!stack.empty()); + return stack.back() & Flags; + } + + bool atEnd() const { return stack.empty(); } + + bool atBeginning() const { + return stack.size() == 1 && getVisitState() == VisitedNone; + } + + void skipToParent() { + assert(!stack.empty()); + stack.pop_back(); + if (stack.empty()) + return; + switch (getVisitState()) { + case VisitedNone: + stack.back() |= VisitedLeft; + break; + case VisitedLeft: + stack.back() |= VisitedRight; + break; + default: + llvm_unreachable("Unreachable."); + } + } + + bool operator==(const ImutAVLTreeGenericIterator &x) const { + return stack == x.stack; + } + + bool operator!=(const ImutAVLTreeGenericIterator &x) const { + return !(*this == x); + } + + ImutAVLTreeGenericIterator &operator++() { + assert(!stack.empty()); + TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags); + assert(Current); + switch (getVisitState()) { + case VisitedNone: + if (TreeTy* L = Current->getLeft()) + stack.push_back(reinterpret_cast<uintptr_t>(L)); + else + stack.back() |= VisitedLeft; + break; + case VisitedLeft: + if (TreeTy* R = Current->getRight()) + stack.push_back(reinterpret_cast<uintptr_t>(R)); + else + stack.back() |= VisitedRight; + break; + case VisitedRight: + skipToParent(); + break; + default: + llvm_unreachable("Unreachable."); + } + return *this; + } + + ImutAVLTreeGenericIterator &operator--() { + assert(!stack.empty()); + TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags); + assert(Current); + switch (getVisitState()) { + case VisitedNone: + stack.pop_back(); + break; + case VisitedLeft: + stack.back() &= ~Flags; // Set state to "VisitedNone." + if (TreeTy* L = Current->getLeft()) + stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight); + break; + case VisitedRight: + stack.back() &= ~Flags; + stack.back() |= VisitedLeft; + if (TreeTy* R = Current->getRight()) + stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight); + break; + default: + llvm_unreachable("Unreachable."); + } + return *this; + } +}; + +template <typename ImutInfo> class ImutAVLTreeInOrderIterator { + using InternalIteratorTy = ImutAVLTreeGenericIterator<ImutInfo>; + + InternalIteratorTy InternalItr; + +public: + using iterator_category = std::bidirectional_iterator_tag; + using value_type = ImutAVLTree<ImutInfo>; + using difference_type = std::ptrdiff_t; + using pointer = value_type *; + using reference = value_type &; + + using TreeTy = ImutAVLTree<ImutInfo>; + + ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) { + if (Root) + ++*this; // Advance to first element. + } + + ImutAVLTreeInOrderIterator() : InternalItr() {} + + bool operator==(const ImutAVLTreeInOrderIterator &x) const { + return InternalItr == x.InternalItr; + } + + bool operator!=(const ImutAVLTreeInOrderIterator &x) const { + return !(*this == x); + } + + TreeTy &operator*() const { return *InternalItr; } + TreeTy *operator->() const { return &*InternalItr; } + + ImutAVLTreeInOrderIterator &operator++() { + do ++InternalItr; + while (!InternalItr.atEnd() && + InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft); + + return *this; + } + + ImutAVLTreeInOrderIterator &operator--() { + do --InternalItr; + while (!InternalItr.atBeginning() && + InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft); + + return *this; + } + + void skipSubTree() { + InternalItr.skipToParent(); + + while (!InternalItr.atEnd() && + InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft) + ++InternalItr; + } +}; + +/// Generic iterator that wraps a T::TreeTy::iterator and exposes +/// iterator::getValue() on dereference. +template <typename T> +struct ImutAVLValueIterator + : iterator_adaptor_base< + ImutAVLValueIterator<T>, typename T::TreeTy::iterator, + typename std::iterator_traits< + typename T::TreeTy::iterator>::iterator_category, + const typename T::value_type> { + ImutAVLValueIterator() = default; + explicit ImutAVLValueIterator(typename T::TreeTy *Tree) + : ImutAVLValueIterator::iterator_adaptor_base(Tree) {} + + typename ImutAVLValueIterator::reference operator*() const { + return this->I->getValue(); + } +}; + +//===----------------------------------------------------------------------===// +// Trait classes for Profile information. +//===----------------------------------------------------------------------===// + +/// Generic profile template. The default behavior is to invoke the +/// profile method of an object. Specializations for primitive integers +/// and generic handling of pointers is done below. +template <typename T> +struct ImutProfileInfo { + using value_type = const T; + using value_type_ref = const T&; + + static void Profile(FoldingSetNodeID &ID, value_type_ref X) { + FoldingSetTrait<T>::Profile(X,ID); + } +}; + +/// Profile traits for integers. +template <typename T> +struct ImutProfileInteger { + using value_type = const T; + using value_type_ref = const T&; + + static void Profile(FoldingSetNodeID &ID, value_type_ref X) { + ID.AddInteger(X); + } +}; + +#define PROFILE_INTEGER_INFO(X)\ +template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {}; + +PROFILE_INTEGER_INFO(char) +PROFILE_INTEGER_INFO(unsigned char) +PROFILE_INTEGER_INFO(short) +PROFILE_INTEGER_INFO(unsigned short) +PROFILE_INTEGER_INFO(unsigned) +PROFILE_INTEGER_INFO(signed) +PROFILE_INTEGER_INFO(long) +PROFILE_INTEGER_INFO(unsigned long) +PROFILE_INTEGER_INFO(long long) +PROFILE_INTEGER_INFO(unsigned long long) + +#undef PROFILE_INTEGER_INFO + +/// Profile traits for booleans. +template <> +struct ImutProfileInfo<bool> { + using value_type = const bool; + using value_type_ref = const bool&; + + static void Profile(FoldingSetNodeID &ID, value_type_ref X) { + ID.AddBoolean(X); + } +}; + +/// Generic profile trait for pointer types. We treat pointers as +/// references to unique objects. +template <typename T> +struct ImutProfileInfo<T*> { + using value_type = const T*; + using value_type_ref = value_type; + + static void Profile(FoldingSetNodeID &ID, value_type_ref X) { + ID.AddPointer(X); + } +}; + +//===----------------------------------------------------------------------===// +// Trait classes that contain element comparison operators and type +// definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap. These +// inherit from the profile traits (ImutProfileInfo) to include operations +// for element profiling. +//===----------------------------------------------------------------------===// + +/// ImutContainerInfo - Generic definition of comparison operations for +/// elements of immutable containers that defaults to using +/// std::equal_to<> and std::less<> to perform comparison of elements. +template <typename T> +struct ImutContainerInfo : public ImutProfileInfo<T> { + using value_type = typename ImutProfileInfo<T>::value_type; + using value_type_ref = typename ImutProfileInfo<T>::value_type_ref; + using key_type = value_type; + using key_type_ref = value_type_ref; + using data_type = bool; + using data_type_ref = bool; + + static key_type_ref KeyOfValue(value_type_ref D) { return D; } + static data_type_ref DataOfValue(value_type_ref) { return true; } + + static bool isEqual(key_type_ref LHS, key_type_ref RHS) { + return std::equal_to<key_type>()(LHS,RHS); + } + + static bool isLess(key_type_ref LHS, key_type_ref RHS) { + return std::less<key_type>()(LHS,RHS); + } + + static bool isDataEqual(data_type_ref, data_type_ref) { return true; } +}; + +/// ImutContainerInfo - Specialization for pointer values to treat pointers +/// as references to unique objects. Pointers are thus compared by +/// their addresses. +template <typename T> +struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> { + using value_type = typename ImutProfileInfo<T*>::value_type; + using value_type_ref = typename ImutProfileInfo<T*>::value_type_ref; + using key_type = value_type; + using key_type_ref = value_type_ref; + using data_type = bool; + using data_type_ref = bool; + + static key_type_ref KeyOfValue(value_type_ref D) { return D; } + static data_type_ref DataOfValue(value_type_ref) { return true; } + + static bool isEqual(key_type_ref LHS, key_type_ref RHS) { return LHS == RHS; } + + static bool isLess(key_type_ref LHS, key_type_ref RHS) { return LHS < RHS; } + + static bool isDataEqual(data_type_ref, data_type_ref) { return true; } +}; + +//===----------------------------------------------------------------------===// +// Immutable Set +//===----------------------------------------------------------------------===// + +template <typename ValT, typename ValInfo = ImutContainerInfo<ValT>> +class ImmutableSet { +public: + using value_type = typename ValInfo::value_type; + using value_type_ref = typename ValInfo::value_type_ref; + using TreeTy = ImutAVLTree<ValInfo>; + +private: + IntrusiveRefCntPtr<TreeTy> Root; + +public: + /// Constructs a set from a pointer to a tree root. In general one + /// should use a Factory object to create sets instead of directly + /// invoking the constructor, but there are cases where make this + /// constructor public is useful. + explicit ImmutableSet(TreeTy *R) : Root(R) {} + + class Factory { + typename TreeTy::Factory F; + const bool Canonicalize; + + public: + Factory(bool canonicalize = true) + : Canonicalize(canonicalize) {} + + Factory(BumpPtrAllocator& Alloc, bool canonicalize = true) + : F(Alloc), Canonicalize(canonicalize) {} + + Factory(const Factory& RHS) = delete; + void operator=(const Factory& RHS) = delete; + + /// getEmptySet - Returns an immutable set that contains no elements. + ImmutableSet getEmptySet() { + return ImmutableSet(F.getEmptyTree()); + } + + /// add - Creates a new immutable set that contains all of the values + /// of the original set with the addition of the specified value. If + /// the original set already included the value, then the original set is + /// returned and no memory is allocated. The time and space complexity + /// of this operation is logarithmic in the size of the original set. + /// The memory allocated to represent the set is released when the + /// factory object that created the set is destroyed. + [[nodiscard]] ImmutableSet add(ImmutableSet Old, value_type_ref V) { + TreeTy *NewT = F.add(Old.Root.get(), V); + return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT); + } + + /// remove - Creates a new immutable set that contains all of the values + /// of the original set with the exception of the specified value. If + /// the original set did not contain the value, the original set is + /// returned and no memory is allocated. The time and space complexity + /// of this operation is logarithmic in the size of the original set. + /// The memory allocated to represent the set is released when the + /// factory object that created the set is destroyed. + [[nodiscard]] ImmutableSet remove(ImmutableSet Old, value_type_ref V) { + TreeTy *NewT = F.remove(Old.Root.get(), V); + return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT); + } + + BumpPtrAllocator& getAllocator() { return F.getAllocator(); } + + typename TreeTy::Factory *getTreeFactory() const { + return const_cast<typename TreeTy::Factory *>(&F); + } + }; + + friend class Factory; + + /// Returns true if the set contains the specified value. + bool contains(value_type_ref V) const { + return Root ? Root->contains(V) : false; + } + + bool operator==(const ImmutableSet &RHS) const { + return Root && RHS.Root ? Root->isEqual(*RHS.Root.get()) : Root == RHS.Root; + } + + bool operator!=(const ImmutableSet &RHS) const { + return Root && RHS.Root ? Root->isNotEqual(*RHS.Root.get()) + : Root != RHS.Root; + } + + TreeTy *getRoot() { + if (Root) { Root->retain(); } + return Root.get(); + } + + TreeTy *getRootWithoutRetain() const { return Root.get(); } + + /// isEmpty - Return true if the set contains no elements. + bool isEmpty() const { return !Root; } + + /// isSingleton - Return true if the set contains exactly one element. + /// This method runs in constant time. + bool isSingleton() const { return getHeight() == 1; } + + //===--------------------------------------------------===// + // Iterators. + //===--------------------------------------------------===// + + using iterator = ImutAVLValueIterator<ImmutableSet>; + + iterator begin() const { return iterator(Root.get()); } + iterator end() const { return iterator(); } + + //===--------------------------------------------------===// + // Utility methods. + //===--------------------------------------------------===// + + unsigned getHeight() const { return Root ? Root->getHeight() : 0; } + + static void Profile(FoldingSetNodeID &ID, const ImmutableSet &S) { + ID.AddPointer(S.Root.get()); + } + + void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); } + + //===--------------------------------------------------===// + // For testing. + //===--------------------------------------------------===// + + void validateTree() const { if (Root) Root->validateTree(); } +}; + +// NOTE: This may some day replace the current ImmutableSet. +template <typename ValT, typename ValInfo = ImutContainerInfo<ValT>> +class ImmutableSetRef { +public: + using value_type = typename ValInfo::value_type; + using value_type_ref = typename ValInfo::value_type_ref; + using TreeTy = ImutAVLTree<ValInfo>; + using FactoryTy = typename TreeTy::Factory; + +private: + IntrusiveRefCntPtr<TreeTy> Root; + FactoryTy *Factory; + +public: + /// Constructs a set from a pointer to a tree root. In general one + /// should use a Factory object to create sets instead of directly + /// invoking the constructor, but there are cases where make this + /// constructor public is useful. + ImmutableSetRef(TreeTy *R, FactoryTy *F) : Root(R), Factory(F) {} + + static ImmutableSetRef getEmptySet(FactoryTy *F) { + return ImmutableSetRef(0, F); + } + + ImmutableSetRef add(value_type_ref V) { + return ImmutableSetRef(Factory->add(Root.get(), V), Factory); + } + + ImmutableSetRef remove(value_type_ref V) { + return ImmutableSetRef(Factory->remove(Root.get(), V), Factory); + } + + /// Returns true if the set contains the specified value. + bool contains(value_type_ref V) const { + return Root ? Root->contains(V) : false; + } + + ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const { + return ImmutableSet<ValT>( + canonicalize ? Factory->getCanonicalTree(Root.get()) : Root.get()); + } + + TreeTy *getRootWithoutRetain() const { return Root.get(); } + + bool operator==(const ImmutableSetRef &RHS) const { + return Root && RHS.Root ? Root->isEqual(*RHS.Root.get()) : Root == RHS.Root; + } + + bool operator!=(const ImmutableSetRef &RHS) const { + return Root && RHS.Root ? Root->isNotEqual(*RHS.Root.get()) + : Root != RHS.Root; + } + + /// isEmpty - Return true if the set contains no elements. + bool isEmpty() const { return !Root; } + + /// isSingleton - Return true if the set contains exactly one element. + /// This method runs in constant time. + bool isSingleton() const { return getHeight() == 1; } + + //===--------------------------------------------------===// + // Iterators. + //===--------------------------------------------------===// + + using iterator = ImutAVLValueIterator<ImmutableSetRef>; + + iterator begin() const { return iterator(Root.get()); } + iterator end() const { return iterator(); } + + //===--------------------------------------------------===// + // Utility methods. + //===--------------------------------------------------===// + + unsigned getHeight() const { return Root ? Root->getHeight() : 0; } + + static void Profile(FoldingSetNodeID &ID, const ImmutableSetRef &S) { + ID.AddPointer(S.Root.get()); + } + + void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); } + + //===--------------------------------------------------===// + // For testing. + //===--------------------------------------------------===// + + void validateTree() const { if (Root) Root->validateTree(); } +}; + +} // end namespace llvm + +#endif // LLVM_ADT_IMMUTABLESET_H + +#ifdef __GNUC__ +#pragma GCC diagnostic pop +#endif diff --git a/contrib/libs/llvm16/include/llvm/IR/FixedPointBuilder.h b/contrib/libs/llvm16/include/llvm/IR/FixedPointBuilder.h new file mode 100644 index 0000000000..07a68ad4a6 --- /dev/null +++ b/contrib/libs/llvm16/include/llvm/IR/FixedPointBuilder.h @@ -0,0 +1,478 @@ +#pragma once + +#ifdef __GNUC__ +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wunused-parameter" +#endif + +//===- llvm/FixedPointBuilder.h - Builder for fixed-point ops ---*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the FixedPointBuilder class, which is used as a convenient +// way to lower fixed-point arithmetic operations to LLVM IR. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_IR_FIXEDPOINTBUILDER_H +#define LLVM_IR_FIXEDPOINTBUILDER_H + +#include "llvm/ADT/APFixedPoint.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" + +#include <cmath> + +namespace llvm { + +template <class IRBuilderTy> class FixedPointBuilder { + IRBuilderTy &B; + + Value *Convert(Value *Src, const FixedPointSemantics &SrcSema, + const FixedPointSemantics &DstSema, bool DstIsInteger) { + unsigned SrcWidth = SrcSema.getWidth(); + unsigned DstWidth = DstSema.getWidth(); + unsigned SrcScale = SrcSema.getScale(); + unsigned DstScale = DstSema.getScale(); + bool SrcIsSigned = SrcSema.isSigned(); + bool DstIsSigned = DstSema.isSigned(); + + Type *DstIntTy = B.getIntNTy(DstWidth); + + Value *Result = Src; + unsigned ResultWidth = SrcWidth; + + // Downscale. + if (DstScale < SrcScale) { + // When converting to integers, we round towards zero. For negative + // numbers, right shifting rounds towards negative infinity. In this case, + // we can just round up before shifting. + if (DstIsInteger && SrcIsSigned) { + Value *Zero = Constant::getNullValue(Result->getType()); + Value *IsNegative = B.CreateICmpSLT(Result, Zero); + Value *LowBits = ConstantInt::get( + B.getContext(), APInt::getLowBitsSet(ResultWidth, SrcScale)); + Value *Rounded = B.CreateAdd(Result, LowBits); + Result = B.CreateSelect(IsNegative, Rounded, Result); + } + + Result = SrcIsSigned + ? B.CreateAShr(Result, SrcScale - DstScale, "downscale") + : B.CreateLShr(Result, SrcScale - DstScale, "downscale"); + } + + if (!DstSema.isSaturated()) { + // Resize. + Result = B.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); + + // Upscale. + if (DstScale > SrcScale) + Result = B.CreateShl(Result, DstScale - SrcScale, "upscale"); + } else { + // Adjust the number of fractional bits. + if (DstScale > SrcScale) { + // Compare to DstWidth to prevent resizing twice. + ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth); + Type *UpscaledTy = B.getIntNTy(ResultWidth); + Result = B.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); + Result = B.CreateShl(Result, DstScale - SrcScale, "upscale"); + } + + // Handle saturation. + bool LessIntBits = DstSema.getIntegralBits() < SrcSema.getIntegralBits(); + if (LessIntBits) { + Value *Max = ConstantInt::get( + B.getContext(), + APFixedPoint::getMax(DstSema).getValue().extOrTrunc(ResultWidth)); + Value *TooHigh = SrcIsSigned ? B.CreateICmpSGT(Result, Max) + : B.CreateICmpUGT(Result, Max); + Result = B.CreateSelect(TooHigh, Max, Result, "satmax"); + } + // Cannot overflow min to dest type if src is unsigned since all fixed + // point types can cover the unsigned min of 0. + if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { + Value *Min = ConstantInt::get( + B.getContext(), + APFixedPoint::getMin(DstSema).getValue().extOrTrunc(ResultWidth)); + Value *TooLow = B.CreateICmpSLT(Result, Min); + Result = B.CreateSelect(TooLow, Min, Result, "satmin"); + } + + // Resize the integer part to get the final destination size. + if (ResultWidth != DstWidth) + Result = B.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); + } + return Result; + } + + /// Get the common semantic for two semantics, with the added imposition that + /// saturated padded types retain the padding bit. + FixedPointSemantics + getCommonBinopSemantic(const FixedPointSemantics &LHSSema, + const FixedPointSemantics &RHSSema) { + auto C = LHSSema.getCommonSemantics(RHSSema); + bool BothPadded = + LHSSema.hasUnsignedPadding() && RHSSema.hasUnsignedPadding(); + return FixedPointSemantics( + C.getWidth() + (unsigned)(BothPadded && C.isSaturated()), C.getScale(), + C.isSigned(), C.isSaturated(), BothPadded); + } + + /// Given a floating point type and a fixed-point semantic, return a floating + /// point type which can accommodate the fixed-point semantic. This is either + /// \p Ty, or a floating point type with a larger exponent than Ty. + Type *getAccommodatingFloatType(Type *Ty, const FixedPointSemantics &Sema) { + const fltSemantics *FloatSema = &Ty->getFltSemantics(); + while (!Sema.fitsInFloatSemantics(*FloatSema)) + FloatSema = APFixedPoint::promoteFloatSemantics(FloatSema); + return Type::getFloatingPointTy(Ty->getContext(), *FloatSema); + } + +public: + FixedPointBuilder(IRBuilderTy &Builder) : B(Builder) {} + + /// Convert an integer value representing a fixed-point number from one + /// fixed-point semantic to another fixed-point semantic. + /// \p Src - The source value + /// \p SrcSema - The fixed-point semantic of the source value + /// \p DstSema - The resulting fixed-point semantic + Value *CreateFixedToFixed(Value *Src, const FixedPointSemantics &SrcSema, + const FixedPointSemantics &DstSema) { + return Convert(Src, SrcSema, DstSema, false); + } + + /// Convert an integer value representing a fixed-point number to an integer + /// with the given bit width and signedness. + /// \p Src - The source value + /// \p SrcSema - The fixed-point semantic of the source value + /// \p DstWidth - The bit width of the result value + /// \p DstIsSigned - The signedness of the result value + Value *CreateFixedToInteger(Value *Src, const FixedPointSemantics &SrcSema, + unsigned DstWidth, bool DstIsSigned) { + return Convert( + Src, SrcSema, + FixedPointSemantics::GetIntegerSemantics(DstWidth, DstIsSigned), true); + } + + /// Convert an integer value with the given signedness to an integer value + /// representing the given fixed-point semantic. + /// \p Src - The source value + /// \p SrcIsSigned - The signedness of the source value + /// \p DstSema - The resulting fixed-point semantic + Value *CreateIntegerToFixed(Value *Src, unsigned SrcIsSigned, + const FixedPointSemantics &DstSema) { + return Convert(Src, + FixedPointSemantics::GetIntegerSemantics( + Src->getType()->getScalarSizeInBits(), SrcIsSigned), + DstSema, false); + } + + Value *CreateFixedToFloating(Value *Src, const FixedPointSemantics &SrcSema, + Type *DstTy) { + Value *Result; + Type *OpTy = getAccommodatingFloatType(DstTy, SrcSema); + // Convert the raw fixed-point value directly to floating point. If the + // value is too large to fit, it will be rounded, not truncated. + Result = SrcSema.isSigned() ? B.CreateSIToFP(Src, OpTy) + : B.CreateUIToFP(Src, OpTy); + // Rescale the integral-in-floating point by the scaling factor. This is + // lossless, except for overflow to infinity which is unlikely. + Result = B.CreateFMul(Result, + ConstantFP::get(OpTy, std::pow(2, -(int)SrcSema.getScale()))); + if (OpTy != DstTy) + Result = B.CreateFPTrunc(Result, DstTy); + return Result; + } + + Value *CreateFloatingToFixed(Value *Src, const FixedPointSemantics &DstSema) { + bool UseSigned = DstSema.isSigned() || DstSema.hasUnsignedPadding(); + Value *Result = Src; + Type *OpTy = getAccommodatingFloatType(Src->getType(), DstSema); + if (OpTy != Src->getType()) + Result = B.CreateFPExt(Result, OpTy); + // Rescale the floating point value so that its significant bits (for the + // purposes of the conversion) are in the integral range. + Result = B.CreateFMul(Result, + ConstantFP::get(OpTy, std::pow(2, DstSema.getScale()))); + + Type *ResultTy = B.getIntNTy(DstSema.getWidth()); + if (DstSema.isSaturated()) { + Intrinsic::ID IID = + UseSigned ? Intrinsic::fptosi_sat : Intrinsic::fptoui_sat; + Result = B.CreateIntrinsic(IID, {ResultTy, OpTy}, {Result}); + } else { + Result = UseSigned ? B.CreateFPToSI(Result, ResultTy) + : B.CreateFPToUI(Result, ResultTy); + } + + // When saturating unsigned-with-padding using signed operations, we may + // get negative values. Emit an extra clamp to zero. + if (DstSema.isSaturated() && DstSema.hasUnsignedPadding()) { + Constant *Zero = Constant::getNullValue(Result->getType()); + Result = + B.CreateSelect(B.CreateICmpSLT(Result, Zero), Zero, Result, "satmin"); + } + + return Result; + } + + /// Add two fixed-point values and return the result in their common semantic. + /// \p LHS - The left hand side + /// \p LHSSema - The semantic of the left hand side + /// \p RHS - The right hand side + /// \p RHSSema - The semantic of the right hand side + Value *CreateAdd(Value *LHS, const FixedPointSemantics &LHSSema, + Value *RHS, const FixedPointSemantics &RHSSema) { + auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema); + bool UseSigned = CommonSema.isSigned() || CommonSema.hasUnsignedPadding(); + + Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema); + Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema); + + Value *Result; + if (CommonSema.isSaturated()) { + Intrinsic::ID IID = UseSigned ? Intrinsic::sadd_sat : Intrinsic::uadd_sat; + Result = B.CreateBinaryIntrinsic(IID, WideLHS, WideRHS); + } else { + Result = B.CreateAdd(WideLHS, WideRHS); + } + + return CreateFixedToFixed(Result, CommonSema, + LHSSema.getCommonSemantics(RHSSema)); + } + + /// Subtract two fixed-point values and return the result in their common + /// semantic. + /// \p LHS - The left hand side + /// \p LHSSema - The semantic of the left hand side + /// \p RHS - The right hand side + /// \p RHSSema - The semantic of the right hand side + Value *CreateSub(Value *LHS, const FixedPointSemantics &LHSSema, + Value *RHS, const FixedPointSemantics &RHSSema) { + auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema); + bool UseSigned = CommonSema.isSigned() || CommonSema.hasUnsignedPadding(); + + Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema); + Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema); + + Value *Result; + if (CommonSema.isSaturated()) { + Intrinsic::ID IID = UseSigned ? Intrinsic::ssub_sat : Intrinsic::usub_sat; + Result = B.CreateBinaryIntrinsic(IID, WideLHS, WideRHS); + } else { + Result = B.CreateSub(WideLHS, WideRHS); + } + + // Subtraction can end up below 0 for padded unsigned operations, so emit + // an extra clamp in that case. + if (CommonSema.isSaturated() && CommonSema.hasUnsignedPadding()) { + Constant *Zero = Constant::getNullValue(Result->getType()); + Result = + B.CreateSelect(B.CreateICmpSLT(Result, Zero), Zero, Result, "satmin"); + } + + return CreateFixedToFixed(Result, CommonSema, + LHSSema.getCommonSemantics(RHSSema)); + } + + /// Multiply two fixed-point values and return the result in their common + /// semantic. + /// \p LHS - The left hand side + /// \p LHSSema - The semantic of the left hand side + /// \p RHS - The right hand side + /// \p RHSSema - The semantic of the right hand side + Value *CreateMul(Value *LHS, const FixedPointSemantics &LHSSema, + Value *RHS, const FixedPointSemantics &RHSSema) { + auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema); + bool UseSigned = CommonSema.isSigned() || CommonSema.hasUnsignedPadding(); + + Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema); + Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema); + + Intrinsic::ID IID; + if (CommonSema.isSaturated()) { + IID = UseSigned ? Intrinsic::smul_fix_sat : Intrinsic::umul_fix_sat; + } else { + IID = UseSigned ? Intrinsic::smul_fix : Intrinsic::umul_fix; + } + Value *Result = B.CreateIntrinsic( + IID, {WideLHS->getType()}, + {WideLHS, WideRHS, B.getInt32(CommonSema.getScale())}); + + return CreateFixedToFixed(Result, CommonSema, + LHSSema.getCommonSemantics(RHSSema)); + } + + /// Divide two fixed-point values and return the result in their common + /// semantic. + /// \p LHS - The left hand side + /// \p LHSSema - The semantic of the left hand side + /// \p RHS - The right hand side + /// \p RHSSema - The semantic of the right hand side + Value *CreateDiv(Value *LHS, const FixedPointSemantics &LHSSema, + Value *RHS, const FixedPointSemantics &RHSSema) { + auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema); + bool UseSigned = CommonSema.isSigned() || CommonSema.hasUnsignedPadding(); + + Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema); + Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema); + + Intrinsic::ID IID; + if (CommonSema.isSaturated()) { + IID = UseSigned ? Intrinsic::sdiv_fix_sat : Intrinsic::udiv_fix_sat; + } else { + IID = UseSigned ? Intrinsic::sdiv_fix : Intrinsic::udiv_fix; + } + Value *Result = B.CreateIntrinsic( + IID, {WideLHS->getType()}, + {WideLHS, WideRHS, B.getInt32(CommonSema.getScale())}); + + return CreateFixedToFixed(Result, CommonSema, + LHSSema.getCommonSemantics(RHSSema)); + } + + /// Left shift a fixed-point value by an unsigned integer value. The integer + /// value can be any bit width. + /// \p LHS - The left hand side + /// \p LHSSema - The semantic of the left hand side + /// \p RHS - The right hand side + Value *CreateShl(Value *LHS, const FixedPointSemantics &LHSSema, Value *RHS) { + bool UseSigned = LHSSema.isSigned() || LHSSema.hasUnsignedPadding(); + + RHS = B.CreateIntCast(RHS, LHS->getType(), /*IsSigned=*/false); + + Value *Result; + if (LHSSema.isSaturated()) { + Intrinsic::ID IID = UseSigned ? Intrinsic::sshl_sat : Intrinsic::ushl_sat; + Result = B.CreateBinaryIntrinsic(IID, LHS, RHS); + } else { + Result = B.CreateShl(LHS, RHS); + } + + return Result; + } + + /// Right shift a fixed-point value by an unsigned integer value. The integer + /// value can be any bit width. + /// \p LHS - The left hand side + /// \p LHSSema - The semantic of the left hand side + /// \p RHS - The right hand side + Value *CreateShr(Value *LHS, const FixedPointSemantics &LHSSema, Value *RHS) { + RHS = B.CreateIntCast(RHS, LHS->getType(), false); + + return LHSSema.isSigned() ? B.CreateAShr(LHS, RHS) : B.CreateLShr(LHS, RHS); + } + + /// Compare two fixed-point values for equality. + /// \p LHS - The left hand side + /// \p LHSSema - The semantic of the left hand side + /// \p RHS - The right hand side + /// \p RHSSema - The semantic of the right hand side + Value *CreateEQ(Value *LHS, const FixedPointSemantics &LHSSema, + Value *RHS, const FixedPointSemantics &RHSSema) { + auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema); + + Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema); + Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema); + + return B.CreateICmpEQ(WideLHS, WideRHS); + } + + /// Compare two fixed-point values for inequality. + /// \p LHS - The left hand side + /// \p LHSSema - The semantic of the left hand side + /// \p RHS - The right hand side + /// \p RHSSema - The semantic of the right hand side + Value *CreateNE(Value *LHS, const FixedPointSemantics &LHSSema, + Value *RHS, const FixedPointSemantics &RHSSema) { + auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema); + + Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema); + Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema); + + return B.CreateICmpNE(WideLHS, WideRHS); + } + + /// Compare two fixed-point values as LHS < RHS. + /// \p LHS - The left hand side + /// \p LHSSema - The semantic of the left hand side + /// \p RHS - The right hand side + /// \p RHSSema - The semantic of the right hand side + Value *CreateLT(Value *LHS, const FixedPointSemantics &LHSSema, + Value *RHS, const FixedPointSemantics &RHSSema) { + auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema); + + Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema); + Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema); + + return CommonSema.isSigned() ? B.CreateICmpSLT(WideLHS, WideRHS) + : B.CreateICmpULT(WideLHS, WideRHS); + } + + /// Compare two fixed-point values as LHS <= RHS. + /// \p LHS - The left hand side + /// \p LHSSema - The semantic of the left hand side + /// \p RHS - The right hand side + /// \p RHSSema - The semantic of the right hand side + Value *CreateLE(Value *LHS, const FixedPointSemantics &LHSSema, + Value *RHS, const FixedPointSemantics &RHSSema) { + auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema); + + Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema); + Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema); + + return CommonSema.isSigned() ? B.CreateICmpSLE(WideLHS, WideRHS) + : B.CreateICmpULE(WideLHS, WideRHS); + } + + /// Compare two fixed-point values as LHS > RHS. + /// \p LHS - The left hand side + /// \p LHSSema - The semantic of the left hand side + /// \p RHS - The right hand side + /// \p RHSSema - The semantic of the right hand side + Value *CreateGT(Value *LHS, const FixedPointSemantics &LHSSema, + Value *RHS, const FixedPointSemantics &RHSSema) { + auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema); + + Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema); + Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema); + + return CommonSema.isSigned() ? B.CreateICmpSGT(WideLHS, WideRHS) + : B.CreateICmpUGT(WideLHS, WideRHS); + } + + /// Compare two fixed-point values as LHS >= RHS. + /// \p LHS - The left hand side + /// \p LHSSema - The semantic of the left hand side + /// \p RHS - The right hand side + /// \p RHSSema - The semantic of the right hand side + Value *CreateGE(Value *LHS, const FixedPointSemantics &LHSSema, + Value *RHS, const FixedPointSemantics &RHSSema) { + auto CommonSema = getCommonBinopSemantic(LHSSema, RHSSema); + + Value *WideLHS = CreateFixedToFixed(LHS, LHSSema, CommonSema); + Value *WideRHS = CreateFixedToFixed(RHS, RHSSema, CommonSema); + + return CommonSema.isSigned() ? B.CreateICmpSGE(WideLHS, WideRHS) + : B.CreateICmpUGE(WideLHS, WideRHS); + } +}; + +} // end namespace llvm + +#endif // LLVM_IR_FIXEDPOINTBUILDER_H + +#ifdef __GNUC__ +#pragma GCC diagnostic pop +#endif diff --git a/contrib/libs/llvm16/include/llvm/Support/LoongArchTargetParser.h b/contrib/libs/llvm16/include/llvm/Support/LoongArchTargetParser.h new file mode 100644 index 0000000000..3e3cd8c18f --- /dev/null +++ b/contrib/libs/llvm16/include/llvm/Support/LoongArchTargetParser.h @@ -0,0 +1,26 @@ +#pragma once + +#ifdef __GNUC__ +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wunused-parameter" +#endif + +//===-- llvm/Support/LoongArchTargetParser.h --------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// +/// \file +/// This header is deprecated in favour of +/// `llvm/TargetParser/LoongArchTargetParser.h`. +/// +//===----------------------------------------------------------------------===// + +#include "llvm/TargetParser/LoongArchTargetParser.h" + +#ifdef __GNUC__ +#pragma GCC diagnostic pop +#endif |