aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/Object/ELF.cpp
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm14/lib/Object/ELF.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm14/lib/Object/ELF.cpp')
-rw-r--r--contrib/libs/llvm14/lib/Object/ELF.cpp679
1 files changed, 679 insertions, 0 deletions
diff --git a/contrib/libs/llvm14/lib/Object/ELF.cpp b/contrib/libs/llvm14/lib/Object/ELF.cpp
new file mode 100644
index 0000000000..56a4262117
--- /dev/null
+++ b/contrib/libs/llvm14/lib/Object/ELF.cpp
@@ -0,0 +1,679 @@
+//===- ELF.cpp - ELF object file implementation ---------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Object/ELF.h"
+#include "llvm/BinaryFormat/ELF.h"
+#include "llvm/Support/DataExtractor.h"
+
+using namespace llvm;
+using namespace object;
+
+#define STRINGIFY_ENUM_CASE(ns, name) \
+ case ns::name: \
+ return #name;
+
+#define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name)
+
+StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine,
+ uint32_t Type) {
+ switch (Machine) {
+ case ELF::EM_68K:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/M68k.def"
+ default:
+ break;
+ }
+ break;
+ case ELF::EM_X86_64:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
+ default:
+ break;
+ }
+ break;
+ case ELF::EM_386:
+ case ELF::EM_IAMCU:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/i386.def"
+ default:
+ break;
+ }
+ break;
+ case ELF::EM_MIPS:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/Mips.def"
+ default:
+ break;
+ }
+ break;
+ case ELF::EM_AARCH64:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
+ default:
+ break;
+ }
+ break;
+ case ELF::EM_ARM:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/ARM.def"
+ default:
+ break;
+ }
+ break;
+ case ELF::EM_ARC_COMPACT:
+ case ELF::EM_ARC_COMPACT2:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/ARC.def"
+ default:
+ break;
+ }
+ break;
+ case ELF::EM_AVR:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/AVR.def"
+ default:
+ break;
+ }
+ break;
+ case ELF::EM_HEXAGON:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/Hexagon.def"
+ default:
+ break;
+ }
+ break;
+ case ELF::EM_LANAI:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/Lanai.def"
+ default:
+ break;
+ }
+ break;
+ case ELF::EM_PPC:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/PowerPC.def"
+ default:
+ break;
+ }
+ break;
+ case ELF::EM_PPC64:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def"
+ default:
+ break;
+ }
+ break;
+ case ELF::EM_RISCV:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
+ default:
+ break;
+ }
+ break;
+ case ELF::EM_S390:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/SystemZ.def"
+ default:
+ break;
+ }
+ break;
+ case ELF::EM_SPARC:
+ case ELF::EM_SPARC32PLUS:
+ case ELF::EM_SPARCV9:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/Sparc.def"
+ default:
+ break;
+ }
+ break;
+ case ELF::EM_AMDGPU:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
+ default:
+ break;
+ }
+ break;
+ case ELF::EM_BPF:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/BPF.def"
+ default:
+ break;
+ }
+ break;
+ case ELF::EM_MSP430:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/MSP430.def"
+ default:
+ break;
+ }
+ break;
+ case ELF::EM_VE:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/VE.def"
+ default:
+ break;
+ }
+ break;
+ case ELF::EM_CSKY:
+ switch (Type) {
+#include "llvm/BinaryFormat/ELFRelocs/CSKY.def"
+ default:
+ break;
+ }
+ break;
+ default:
+ break;
+ }
+ return "Unknown";
+}
+
+#undef ELF_RELOC
+
+uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) {
+ switch (Machine) {
+ case ELF::EM_X86_64:
+ return ELF::R_X86_64_RELATIVE;
+ case ELF::EM_386:
+ case ELF::EM_IAMCU:
+ return ELF::R_386_RELATIVE;
+ case ELF::EM_MIPS:
+ break;
+ case ELF::EM_AARCH64:
+ return ELF::R_AARCH64_RELATIVE;
+ case ELF::EM_ARM:
+ return ELF::R_ARM_RELATIVE;
+ case ELF::EM_ARC_COMPACT:
+ case ELF::EM_ARC_COMPACT2:
+ return ELF::R_ARC_RELATIVE;
+ case ELF::EM_AVR:
+ break;
+ case ELF::EM_HEXAGON:
+ return ELF::R_HEX_RELATIVE;
+ case ELF::EM_LANAI:
+ break;
+ case ELF::EM_PPC:
+ break;
+ case ELF::EM_PPC64:
+ return ELF::R_PPC64_RELATIVE;
+ case ELF::EM_RISCV:
+ return ELF::R_RISCV_RELATIVE;
+ case ELF::EM_S390:
+ return ELF::R_390_RELATIVE;
+ case ELF::EM_SPARC:
+ case ELF::EM_SPARC32PLUS:
+ case ELF::EM_SPARCV9:
+ return ELF::R_SPARC_RELATIVE;
+ case ELF::EM_CSKY:
+ return ELF::R_CKCORE_RELATIVE;
+ case ELF::EM_VE:
+ return ELF::R_VE_RELATIVE;
+ case ELF::EM_AMDGPU:
+ break;
+ case ELF::EM_BPF:
+ break;
+ default:
+ break;
+ }
+ return 0;
+}
+
+StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) {
+ switch (Machine) {
+ case ELF::EM_ARM:
+ switch (Type) {
+ STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX);
+ STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
+ STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
+ STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
+ STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
+ }
+ break;
+ case ELF::EM_HEXAGON:
+ switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
+ break;
+ case ELF::EM_X86_64:
+ switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
+ break;
+ case ELF::EM_MIPS:
+ case ELF::EM_MIPS_RS3_LE:
+ switch (Type) {
+ STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
+ STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
+ STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF);
+ STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
+ }
+ break;
+ case ELF::EM_MSP430:
+ switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_MSP430_ATTRIBUTES); }
+ break;
+ case ELF::EM_RISCV:
+ switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_RISCV_ATTRIBUTES); }
+ break;
+ default:
+ break;
+ }
+
+ switch (Type) {
+ STRINGIFY_ENUM_CASE(ELF, SHT_NULL);
+ STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS);
+ STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB);
+ STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB);
+ STRINGIFY_ENUM_CASE(ELF, SHT_RELA);
+ STRINGIFY_ENUM_CASE(ELF, SHT_HASH);
+ STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC);
+ STRINGIFY_ENUM_CASE(ELF, SHT_NOTE);
+ STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS);
+ STRINGIFY_ENUM_CASE(ELF, SHT_REL);
+ STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB);
+ STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM);
+ STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY);
+ STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY);
+ STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY);
+ STRINGIFY_ENUM_CASE(ELF, SHT_GROUP);
+ STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX);
+ STRINGIFY_ENUM_CASE(ELF, SHT_RELR);
+ STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL);
+ STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA);
+ STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR);
+ STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB);
+ STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS);
+ STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE);
+ STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG);
+ STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES);
+ STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART);
+ STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_EHDR);
+ STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_PHDR);
+ STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_BB_ADDR_MAP);
+ STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES);
+ STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH);
+ STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef);
+ STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed);
+ STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym);
+ default:
+ return "Unknown";
+ }
+}
+
+template <class ELFT>
+std::vector<typename ELFT::Rel>
+ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const {
+ // This function decodes the contents of an SHT_RELR packed relocation
+ // section.
+ //
+ // Proposal for adding SHT_RELR sections to generic-abi is here:
+ // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
+ //
+ // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
+ // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
+ //
+ // i.e. start with an address, followed by any number of bitmaps. The address
+ // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
+ // relocations each, at subsequent offsets following the last address entry.
+ //
+ // The bitmap entries must have 1 in the least significant bit. The assumption
+ // here is that an address cannot have 1 in lsb. Odd addresses are not
+ // supported.
+ //
+ // Excluding the least significant bit in the bitmap, each non-zero bit in
+ // the bitmap represents a relocation to be applied to a corresponding machine
+ // word that follows the base address word. The second least significant bit
+ // represents the machine word immediately following the initial address, and
+ // each bit that follows represents the next word, in linear order. As such,
+ // a single bitmap can encode up to 31 relocations in a 32-bit object, and
+ // 63 relocations in a 64-bit object.
+ //
+ // This encoding has a couple of interesting properties:
+ // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
+ // even means address, odd means bitmap.
+ // 2. Just a simple list of addresses is a valid encoding.
+
+ Elf_Rel Rel;
+ Rel.r_info = 0;
+ Rel.setType(getRelativeRelocationType(), false);
+ std::vector<Elf_Rel> Relocs;
+
+ // Word type: uint32_t for Elf32, and uint64_t for Elf64.
+ using Addr = typename ELFT::uint;
+
+ Addr Base = 0;
+ for (Elf_Relr R : relrs) {
+ typename ELFT::uint Entry = R;
+ if ((Entry & 1) == 0) {
+ // Even entry: encodes the offset for next relocation.
+ Rel.r_offset = Entry;
+ Relocs.push_back(Rel);
+ // Set base offset for subsequent bitmap entries.
+ Base = Entry + sizeof(Addr);
+ } else {
+ // Odd entry: encodes bitmap for relocations starting at base.
+ for (Addr Offset = Base; (Entry >>= 1) != 0; Offset += sizeof(Addr))
+ if ((Entry & 1) != 0) {
+ Rel.r_offset = Offset;
+ Relocs.push_back(Rel);
+ }
+ Base += (CHAR_BIT * sizeof(Entry) - 1) * sizeof(Addr);
+ }
+ }
+
+ return Relocs;
+}
+
+template <class ELFT>
+Expected<std::vector<typename ELFT::Rela>>
+ELFFile<ELFT>::android_relas(const Elf_Shdr &Sec) const {
+ // This function reads relocations in Android's packed relocation format,
+ // which is based on SLEB128 and delta encoding.
+ Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
+ if (!ContentsOrErr)
+ return ContentsOrErr.takeError();
+ ArrayRef<uint8_t> Content = *ContentsOrErr;
+ if (Content.size() < 4 || Content[0] != 'A' || Content[1] != 'P' ||
+ Content[2] != 'S' || Content[3] != '2')
+ return createError("invalid packed relocation header");
+ DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4);
+ DataExtractor::Cursor Cur(/*Offset=*/4);
+
+ uint64_t NumRelocs = Data.getSLEB128(Cur);
+ uint64_t Offset = Data.getSLEB128(Cur);
+ uint64_t Addend = 0;
+
+ if (!Cur)
+ return std::move(Cur.takeError());
+
+ std::vector<Elf_Rela> Relocs;
+ Relocs.reserve(NumRelocs);
+ while (NumRelocs) {
+ uint64_t NumRelocsInGroup = Data.getSLEB128(Cur);
+ if (!Cur)
+ return std::move(Cur.takeError());
+ if (NumRelocsInGroup > NumRelocs)
+ return createError("relocation group unexpectedly large");
+ NumRelocs -= NumRelocsInGroup;
+
+ uint64_t GroupFlags = Data.getSLEB128(Cur);
+ bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG;
+ bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG;
+ bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG;
+ bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG;
+
+ uint64_t GroupOffsetDelta;
+ if (GroupedByOffsetDelta)
+ GroupOffsetDelta = Data.getSLEB128(Cur);
+
+ uint64_t GroupRInfo;
+ if (GroupedByInfo)
+ GroupRInfo = Data.getSLEB128(Cur);
+
+ if (GroupedByAddend && GroupHasAddend)
+ Addend += Data.getSLEB128(Cur);
+
+ if (!GroupHasAddend)
+ Addend = 0;
+
+ for (uint64_t I = 0; Cur && I != NumRelocsInGroup; ++I) {
+ Elf_Rela R;
+ Offset += GroupedByOffsetDelta ? GroupOffsetDelta : Data.getSLEB128(Cur);
+ R.r_offset = Offset;
+ R.r_info = GroupedByInfo ? GroupRInfo : Data.getSLEB128(Cur);
+ if (GroupHasAddend && !GroupedByAddend)
+ Addend += Data.getSLEB128(Cur);
+ R.r_addend = Addend;
+ Relocs.push_back(R);
+ }
+ if (!Cur)
+ return std::move(Cur.takeError());
+ }
+
+ return Relocs;
+}
+
+template <class ELFT>
+std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch,
+ uint64_t Type) const {
+#define DYNAMIC_STRINGIFY_ENUM(tag, value) \
+ case value: \
+ return #tag;
+
+#define DYNAMIC_TAG(n, v)
+ switch (Arch) {
+ case ELF::EM_AARCH64:
+ switch (Type) {
+#define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
+#include "llvm/BinaryFormat/DynamicTags.def"
+#undef AARCH64_DYNAMIC_TAG
+ }
+ break;
+
+ case ELF::EM_HEXAGON:
+ switch (Type) {
+#define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
+#include "llvm/BinaryFormat/DynamicTags.def"
+#undef HEXAGON_DYNAMIC_TAG
+ }
+ break;
+
+ case ELF::EM_MIPS:
+ switch (Type) {
+#define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
+#include "llvm/BinaryFormat/DynamicTags.def"
+#undef MIPS_DYNAMIC_TAG
+ }
+ break;
+
+ case ELF::EM_PPC:
+ switch (Type) {
+#define PPC_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
+#include "llvm/BinaryFormat/DynamicTags.def"
+#undef PPC_DYNAMIC_TAG
+ }
+ break;
+
+ case ELF::EM_PPC64:
+ switch (Type) {
+#define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
+#include "llvm/BinaryFormat/DynamicTags.def"
+#undef PPC64_DYNAMIC_TAG
+ }
+ break;
+
+ case ELF::EM_RISCV:
+ switch (Type) {
+#define RISCV_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
+#include "llvm/BinaryFormat/DynamicTags.def"
+#undef RISCV_DYNAMIC_TAG
+ }
+ break;
+ }
+#undef DYNAMIC_TAG
+ switch (Type) {
+// Now handle all dynamic tags except the architecture specific ones
+#define AARCH64_DYNAMIC_TAG(name, value)
+#define MIPS_DYNAMIC_TAG(name, value)
+#define HEXAGON_DYNAMIC_TAG(name, value)
+#define PPC_DYNAMIC_TAG(name, value)
+#define PPC64_DYNAMIC_TAG(name, value)
+#define RISCV_DYNAMIC_TAG(name, value)
+// Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
+#define DYNAMIC_TAG_MARKER(name, value)
+#define DYNAMIC_TAG(name, value) case value: return #name;
+#include "llvm/BinaryFormat/DynamicTags.def"
+#undef DYNAMIC_TAG
+#undef AARCH64_DYNAMIC_TAG
+#undef MIPS_DYNAMIC_TAG
+#undef HEXAGON_DYNAMIC_TAG
+#undef PPC_DYNAMIC_TAG
+#undef PPC64_DYNAMIC_TAG
+#undef RISCV_DYNAMIC_TAG
+#undef DYNAMIC_TAG_MARKER
+#undef DYNAMIC_STRINGIFY_ENUM
+ default:
+ return "<unknown:>0x" + utohexstr(Type, true);
+ }
+}
+
+template <class ELFT>
+std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const {
+ return getDynamicTagAsString(getHeader().e_machine, Type);
+}
+
+template <class ELFT>
+Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const {
+ ArrayRef<Elf_Dyn> Dyn;
+
+ auto ProgramHeadersOrError = program_headers();
+ if (!ProgramHeadersOrError)
+ return ProgramHeadersOrError.takeError();
+
+ for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) {
+ if (Phdr.p_type == ELF::PT_DYNAMIC) {
+ Dyn = makeArrayRef(
+ reinterpret_cast<const Elf_Dyn *>(base() + Phdr.p_offset),
+ Phdr.p_filesz / sizeof(Elf_Dyn));
+ break;
+ }
+ }
+
+ // If we can't find the dynamic section in the program headers, we just fall
+ // back on the sections.
+ if (Dyn.empty()) {
+ auto SectionsOrError = sections();
+ if (!SectionsOrError)
+ return SectionsOrError.takeError();
+
+ for (const Elf_Shdr &Sec : *SectionsOrError) {
+ if (Sec.sh_type == ELF::SHT_DYNAMIC) {
+ Expected<ArrayRef<Elf_Dyn>> DynOrError =
+ getSectionContentsAsArray<Elf_Dyn>(Sec);
+ if (!DynOrError)
+ return DynOrError.takeError();
+ Dyn = *DynOrError;
+ break;
+ }
+ }
+
+ if (!Dyn.data())
+ return ArrayRef<Elf_Dyn>();
+ }
+
+ if (Dyn.empty())
+ return createError("invalid empty dynamic section");
+
+ if (Dyn.back().d_tag != ELF::DT_NULL)
+ return createError("dynamic sections must be DT_NULL terminated");
+
+ return Dyn;
+}
+
+template <class ELFT>
+Expected<const uint8_t *>
+ELFFile<ELFT>::toMappedAddr(uint64_t VAddr, WarningHandler WarnHandler) const {
+ auto ProgramHeadersOrError = program_headers();
+ if (!ProgramHeadersOrError)
+ return ProgramHeadersOrError.takeError();
+
+ llvm::SmallVector<Elf_Phdr *, 4> LoadSegments;
+
+ for (const Elf_Phdr &Phdr : *ProgramHeadersOrError)
+ if (Phdr.p_type == ELF::PT_LOAD)
+ LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr));
+
+ auto SortPred = [](const Elf_Phdr_Impl<ELFT> *A,
+ const Elf_Phdr_Impl<ELFT> *B) {
+ return A->p_vaddr < B->p_vaddr;
+ };
+ if (!llvm::is_sorted(LoadSegments, SortPred)) {
+ if (Error E =
+ WarnHandler("loadable segments are unsorted by virtual address"))
+ return std::move(E);
+ llvm::stable_sort(LoadSegments, SortPred);
+ }
+
+ const Elf_Phdr *const *I = llvm::upper_bound(
+ LoadSegments, VAddr, [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
+ return VAddr < Phdr->p_vaddr;
+ });
+
+ if (I == LoadSegments.begin())
+ return createError("virtual address is not in any segment: 0x" +
+ Twine::utohexstr(VAddr));
+ --I;
+ const Elf_Phdr &Phdr = **I;
+ uint64_t Delta = VAddr - Phdr.p_vaddr;
+ if (Delta >= Phdr.p_filesz)
+ return createError("virtual address is not in any segment: 0x" +
+ Twine::utohexstr(VAddr));
+
+ uint64_t Offset = Phdr.p_offset + Delta;
+ if (Offset >= getBufSize())
+ return createError("can't map virtual address 0x" +
+ Twine::utohexstr(VAddr) + " to the segment with index " +
+ Twine(&Phdr - (*ProgramHeadersOrError).data() + 1) +
+ ": the segment ends at 0x" +
+ Twine::utohexstr(Phdr.p_offset + Phdr.p_filesz) +
+ ", which is greater than the file size (0x" +
+ Twine::utohexstr(getBufSize()) + ")");
+
+ return base() + Offset;
+}
+
+template <class ELFT>
+Expected<std::vector<BBAddrMap>>
+ELFFile<ELFT>::decodeBBAddrMap(const Elf_Shdr &Sec) const {
+ Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
+ if (!ContentsOrErr)
+ return ContentsOrErr.takeError();
+ ArrayRef<uint8_t> Content = *ContentsOrErr;
+ DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4);
+ std::vector<BBAddrMap> FunctionEntries;
+
+ DataExtractor::Cursor Cur(0);
+ Error ULEBSizeErr = Error::success();
+
+ // Helper to extract and decode the next ULEB128 value as uint32_t.
+ // Returns zero and sets ULEBSizeErr if the ULEB128 value exceeds the uint32_t
+ // limit.
+ // Also returns zero if ULEBSizeErr is already in an error state.
+ auto ReadULEB128AsUInt32 = [&Data, &Cur, &ULEBSizeErr]() -> uint32_t {
+ // Bail out and do not extract data if ULEBSizeErr is already set.
+ if (ULEBSizeErr)
+ return 0;
+ uint64_t Offset = Cur.tell();
+ uint64_t Value = Data.getULEB128(Cur);
+ if (Value > UINT32_MAX) {
+ ULEBSizeErr = createError(
+ "ULEB128 value at offset 0x" + Twine::utohexstr(Offset) +
+ " exceeds UINT32_MAX (0x" + Twine::utohexstr(Value) + ")");
+ return 0;
+ }
+ return static_cast<uint32_t>(Value);
+ };
+
+ while (!ULEBSizeErr && Cur && Cur.tell() < Content.size()) {
+ uintX_t Address = static_cast<uintX_t>(Data.getAddress(Cur));
+ uint32_t NumBlocks = ReadULEB128AsUInt32();
+ std::vector<BBAddrMap::BBEntry> BBEntries;
+ for (uint32_t BlockID = 0; !ULEBSizeErr && Cur && (BlockID < NumBlocks);
+ ++BlockID) {
+ uint32_t Offset = ReadULEB128AsUInt32();
+ uint32_t Size = ReadULEB128AsUInt32();
+ uint32_t Metadata = ReadULEB128AsUInt32();
+ BBEntries.push_back({Offset, Size, Metadata});
+ }
+ FunctionEntries.push_back({Address, BBEntries});
+ }
+ // Either Cur is in the error state, or ULEBSizeError is set (not both), but
+ // we join the two errors here to be safe.
+ if (!Cur || ULEBSizeErr)
+ return joinErrors(Cur.takeError(), std::move(ULEBSizeErr));
+ return FunctionEntries;
+}
+
+template class llvm::object::ELFFile<ELF32LE>;
+template class llvm::object::ELFFile<ELF32BE>;
+template class llvm::object::ELFFile<ELF64LE>;
+template class llvm::object::ELFFile<ELF64BE>;