aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/IR/Instructions.cpp
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm14/lib/IR/Instructions.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm14/lib/IR/Instructions.cpp')
-rw-r--r--contrib/libs/llvm14/lib/IR/Instructions.cpp4813
1 files changed, 4813 insertions, 0 deletions
diff --git a/contrib/libs/llvm14/lib/IR/Instructions.cpp b/contrib/libs/llvm14/lib/IR/Instructions.cpp
new file mode 100644
index 0000000000..7798af3b19
--- /dev/null
+++ b/contrib/libs/llvm14/lib/IR/Instructions.cpp
@@ -0,0 +1,4813 @@
+//===- Instructions.cpp - Implement the LLVM instructions -----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements all of the non-inline methods for the LLVM instruction
+// classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/IR/Instructions.h"
+#include "LLVMContextImpl.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/AtomicOrdering.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/TypeSize.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <vector>
+
+using namespace llvm;
+
+static cl::opt<bool> DisableI2pP2iOpt(
+ "disable-i2p-p2i-opt", cl::init(false),
+ cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"));
+
+//===----------------------------------------------------------------------===//
+// AllocaInst Class
+//===----------------------------------------------------------------------===//
+
+Optional<TypeSize>
+AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
+ TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType());
+ if (isArrayAllocation()) {
+ auto *C = dyn_cast<ConstantInt>(getArraySize());
+ if (!C)
+ return None;
+ assert(!Size.isScalable() && "Array elements cannot have a scalable size");
+ Size *= C->getZExtValue();
+ }
+ return Size;
+}
+
+//===----------------------------------------------------------------------===//
+// SelectInst Class
+//===----------------------------------------------------------------------===//
+
+/// areInvalidOperands - Return a string if the specified operands are invalid
+/// for a select operation, otherwise return null.
+const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
+ if (Op1->getType() != Op2->getType())
+ return "both values to select must have same type";
+
+ if (Op1->getType()->isTokenTy())
+ return "select values cannot have token type";
+
+ if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
+ // Vector select.
+ if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
+ return "vector select condition element type must be i1";
+ VectorType *ET = dyn_cast<VectorType>(Op1->getType());
+ if (!ET)
+ return "selected values for vector select must be vectors";
+ if (ET->getElementCount() != VT->getElementCount())
+ return "vector select requires selected vectors to have "
+ "the same vector length as select condition";
+ } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
+ return "select condition must be i1 or <n x i1>";
+ }
+ return nullptr;
+}
+
+//===----------------------------------------------------------------------===//
+// PHINode Class
+//===----------------------------------------------------------------------===//
+
+PHINode::PHINode(const PHINode &PN)
+ : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
+ ReservedSpace(PN.getNumOperands()) {
+ allocHungoffUses(PN.getNumOperands());
+ std::copy(PN.op_begin(), PN.op_end(), op_begin());
+ std::copy(PN.block_begin(), PN.block_end(), block_begin());
+ SubclassOptionalData = PN.SubclassOptionalData;
+}
+
+// removeIncomingValue - Remove an incoming value. This is useful if a
+// predecessor basic block is deleted.
+Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
+ Value *Removed = getIncomingValue(Idx);
+
+ // Move everything after this operand down.
+ //
+ // FIXME: we could just swap with the end of the list, then erase. However,
+ // clients might not expect this to happen. The code as it is thrashes the
+ // use/def lists, which is kinda lame.
+ std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
+ std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
+
+ // Nuke the last value.
+ Op<-1>().set(nullptr);
+ setNumHungOffUseOperands(getNumOperands() - 1);
+
+ // If the PHI node is dead, because it has zero entries, nuke it now.
+ if (getNumOperands() == 0 && DeletePHIIfEmpty) {
+ // If anyone is using this PHI, make them use a dummy value instead...
+ replaceAllUsesWith(UndefValue::get(getType()));
+ eraseFromParent();
+ }
+ return Removed;
+}
+
+/// growOperands - grow operands - This grows the operand list in response
+/// to a push_back style of operation. This grows the number of ops by 1.5
+/// times.
+///
+void PHINode::growOperands() {
+ unsigned e = getNumOperands();
+ unsigned NumOps = e + e / 2;
+ if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
+
+ ReservedSpace = NumOps;
+ growHungoffUses(ReservedSpace, /* IsPhi */ true);
+}
+
+/// hasConstantValue - If the specified PHI node always merges together the same
+/// value, return the value, otherwise return null.
+Value *PHINode::hasConstantValue() const {
+ // Exploit the fact that phi nodes always have at least one entry.
+ Value *ConstantValue = getIncomingValue(0);
+ for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
+ if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
+ if (ConstantValue != this)
+ return nullptr; // Incoming values not all the same.
+ // The case where the first value is this PHI.
+ ConstantValue = getIncomingValue(i);
+ }
+ if (ConstantValue == this)
+ return UndefValue::get(getType());
+ return ConstantValue;
+}
+
+/// hasConstantOrUndefValue - Whether the specified PHI node always merges
+/// together the same value, assuming that undefs result in the same value as
+/// non-undefs.
+/// Unlike \ref hasConstantValue, this does not return a value because the
+/// unique non-undef incoming value need not dominate the PHI node.
+bool PHINode::hasConstantOrUndefValue() const {
+ Value *ConstantValue = nullptr;
+ for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
+ Value *Incoming = getIncomingValue(i);
+ if (Incoming != this && !isa<UndefValue>(Incoming)) {
+ if (ConstantValue && ConstantValue != Incoming)
+ return false;
+ ConstantValue = Incoming;
+ }
+ }
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// LandingPadInst Implementation
+//===----------------------------------------------------------------------===//
+
+LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
+ const Twine &NameStr, Instruction *InsertBefore)
+ : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
+ init(NumReservedValues, NameStr);
+}
+
+LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
+ const Twine &NameStr, BasicBlock *InsertAtEnd)
+ : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
+ init(NumReservedValues, NameStr);
+}
+
+LandingPadInst::LandingPadInst(const LandingPadInst &LP)
+ : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
+ LP.getNumOperands()),
+ ReservedSpace(LP.getNumOperands()) {
+ allocHungoffUses(LP.getNumOperands());
+ Use *OL = getOperandList();
+ const Use *InOL = LP.getOperandList();
+ for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
+ OL[I] = InOL[I];
+
+ setCleanup(LP.isCleanup());
+}
+
+LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
+ const Twine &NameStr,
+ Instruction *InsertBefore) {
+ return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
+}
+
+LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
+ const Twine &NameStr,
+ BasicBlock *InsertAtEnd) {
+ return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
+}
+
+void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
+ ReservedSpace = NumReservedValues;
+ setNumHungOffUseOperands(0);
+ allocHungoffUses(ReservedSpace);
+ setName(NameStr);
+ setCleanup(false);
+}
+
+/// growOperands - grow operands - This grows the operand list in response to a
+/// push_back style of operation. This grows the number of ops by 2 times.
+void LandingPadInst::growOperands(unsigned Size) {
+ unsigned e = getNumOperands();
+ if (ReservedSpace >= e + Size) return;
+ ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
+ growHungoffUses(ReservedSpace);
+}
+
+void LandingPadInst::addClause(Constant *Val) {
+ unsigned OpNo = getNumOperands();
+ growOperands(1);
+ assert(OpNo < ReservedSpace && "Growing didn't work!");
+ setNumHungOffUseOperands(getNumOperands() + 1);
+ getOperandList()[OpNo] = Val;
+}
+
+//===----------------------------------------------------------------------===//
+// CallBase Implementation
+//===----------------------------------------------------------------------===//
+
+CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
+ Instruction *InsertPt) {
+ switch (CB->getOpcode()) {
+ case Instruction::Call:
+ return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
+ case Instruction::Invoke:
+ return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
+ case Instruction::CallBr:
+ return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
+ default:
+ llvm_unreachable("Unknown CallBase sub-class!");
+ }
+}
+
+CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB,
+ Instruction *InsertPt) {
+ SmallVector<OperandBundleDef, 2> OpDefs;
+ for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
+ auto ChildOB = CI->getOperandBundleAt(i);
+ if (ChildOB.getTagName() != OpB.getTag())
+ OpDefs.emplace_back(ChildOB);
+ }
+ OpDefs.emplace_back(OpB);
+ return CallBase::Create(CI, OpDefs, InsertPt);
+}
+
+
+Function *CallBase::getCaller() { return getParent()->getParent(); }
+
+unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
+ assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
+ return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
+}
+
+bool CallBase::isIndirectCall() const {
+ const Value *V = getCalledOperand();
+ if (isa<Function>(V) || isa<Constant>(V))
+ return false;
+ return !isInlineAsm();
+}
+
+/// Tests if this call site must be tail call optimized. Only a CallInst can
+/// be tail call optimized.
+bool CallBase::isMustTailCall() const {
+ if (auto *CI = dyn_cast<CallInst>(this))
+ return CI->isMustTailCall();
+ return false;
+}
+
+/// Tests if this call site is marked as a tail call.
+bool CallBase::isTailCall() const {
+ if (auto *CI = dyn_cast<CallInst>(this))
+ return CI->isTailCall();
+ return false;
+}
+
+Intrinsic::ID CallBase::getIntrinsicID() const {
+ if (auto *F = getCalledFunction())
+ return F->getIntrinsicID();
+ return Intrinsic::not_intrinsic;
+}
+
+bool CallBase::isReturnNonNull() const {
+ if (hasRetAttr(Attribute::NonNull))
+ return true;
+
+ if (getRetDereferenceableBytes() > 0 &&
+ !NullPointerIsDefined(getCaller(), getType()->getPointerAddressSpace()))
+ return true;
+
+ return false;
+}
+
+Value *CallBase::getReturnedArgOperand() const {
+ unsigned Index;
+
+ if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index))
+ return getArgOperand(Index - AttributeList::FirstArgIndex);
+ if (const Function *F = getCalledFunction())
+ if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index))
+ return getArgOperand(Index - AttributeList::FirstArgIndex);
+
+ return nullptr;
+}
+
+/// Determine whether the argument or parameter has the given attribute.
+bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
+ assert(ArgNo < arg_size() && "Param index out of bounds!");
+
+ if (Attrs.hasParamAttr(ArgNo, Kind))
+ return true;
+ if (const Function *F = getCalledFunction())
+ return F->getAttributes().hasParamAttr(ArgNo, Kind);
+ return false;
+}
+
+bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
+ Value *V = getCalledOperand();
+ if (auto *CE = dyn_cast<ConstantExpr>(V))
+ if (CE->getOpcode() == BitCast)
+ V = CE->getOperand(0);
+
+ if (auto *F = dyn_cast<Function>(V))
+ return F->getAttributes().hasFnAttr(Kind);
+
+ return false;
+}
+
+bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
+ Value *V = getCalledOperand();
+ if (auto *CE = dyn_cast<ConstantExpr>(V))
+ if (CE->getOpcode() == BitCast)
+ V = CE->getOperand(0);
+
+ if (auto *F = dyn_cast<Function>(V))
+ return F->getAttributes().hasFnAttr(Kind);
+
+ return false;
+}
+
+void CallBase::getOperandBundlesAsDefs(
+ SmallVectorImpl<OperandBundleDef> &Defs) const {
+ for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
+ Defs.emplace_back(getOperandBundleAt(i));
+}
+
+CallBase::op_iterator
+CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
+ const unsigned BeginIndex) {
+ auto It = op_begin() + BeginIndex;
+ for (auto &B : Bundles)
+ It = std::copy(B.input_begin(), B.input_end(), It);
+
+ auto *ContextImpl = getContext().pImpl;
+ auto BI = Bundles.begin();
+ unsigned CurrentIndex = BeginIndex;
+
+ for (auto &BOI : bundle_op_infos()) {
+ assert(BI != Bundles.end() && "Incorrect allocation?");
+
+ BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
+ BOI.Begin = CurrentIndex;
+ BOI.End = CurrentIndex + BI->input_size();
+ CurrentIndex = BOI.End;
+ BI++;
+ }
+
+ assert(BI == Bundles.end() && "Incorrect allocation?");
+
+ return It;
+}
+
+CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
+ /// When there isn't many bundles, we do a simple linear search.
+ /// Else fallback to a binary-search that use the fact that bundles usually
+ /// have similar number of argument to get faster convergence.
+ if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
+ for (auto &BOI : bundle_op_infos())
+ if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
+ return BOI;
+
+ llvm_unreachable("Did not find operand bundle for operand!");
+ }
+
+ assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
+ assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&
+ OpIdx < std::prev(bundle_op_info_end())->End &&
+ "The Idx isn't in the operand bundle");
+
+ /// We need a decimal number below and to prevent using floating point numbers
+ /// we use an intergal value multiplied by this constant.
+ constexpr unsigned NumberScaling = 1024;
+
+ bundle_op_iterator Begin = bundle_op_info_begin();
+ bundle_op_iterator End = bundle_op_info_end();
+ bundle_op_iterator Current = Begin;
+
+ while (Begin != End) {
+ unsigned ScaledOperandPerBundle =
+ NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
+ Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
+ ScaledOperandPerBundle);
+ if (Current >= End)
+ Current = std::prev(End);
+ assert(Current < End && Current >= Begin &&
+ "the operand bundle doesn't cover every value in the range");
+ if (OpIdx >= Current->Begin && OpIdx < Current->End)
+ break;
+ if (OpIdx >= Current->End)
+ Begin = Current + 1;
+ else
+ End = Current;
+ }
+
+ assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
+ "the operand bundle doesn't cover every value in the range");
+ return *Current;
+}
+
+CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID,
+ OperandBundleDef OB,
+ Instruction *InsertPt) {
+ if (CB->getOperandBundle(ID))
+ return CB;
+
+ SmallVector<OperandBundleDef, 1> Bundles;
+ CB->getOperandBundlesAsDefs(Bundles);
+ Bundles.push_back(OB);
+ return Create(CB, Bundles, InsertPt);
+}
+
+CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID,
+ Instruction *InsertPt) {
+ SmallVector<OperandBundleDef, 1> Bundles;
+ bool CreateNew = false;
+
+ for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
+ auto Bundle = CB->getOperandBundleAt(I);
+ if (Bundle.getTagID() == ID) {
+ CreateNew = true;
+ continue;
+ }
+ Bundles.emplace_back(Bundle);
+ }
+
+ return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
+}
+
+bool CallBase::hasReadingOperandBundles() const {
+ // Implementation note: this is a conservative implementation of operand
+ // bundle semantics, where *any* non-assume operand bundle forces a callsite
+ // to be at least readonly.
+ return hasOperandBundles() && getIntrinsicID() != Intrinsic::assume;
+}
+
+//===----------------------------------------------------------------------===//
+// CallInst Implementation
+//===----------------------------------------------------------------------===//
+
+void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
+ ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
+ this->FTy = FTy;
+ assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
+ "NumOperands not set up?");
+
+#ifndef NDEBUG
+ assert((Args.size() == FTy->getNumParams() ||
+ (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
+ "Calling a function with bad signature!");
+
+ for (unsigned i = 0; i != Args.size(); ++i)
+ assert((i >= FTy->getNumParams() ||
+ FTy->getParamType(i) == Args[i]->getType()) &&
+ "Calling a function with a bad signature!");
+#endif
+
+ // Set operands in order of their index to match use-list-order
+ // prediction.
+ llvm::copy(Args, op_begin());
+ setCalledOperand(Func);
+
+ auto It = populateBundleOperandInfos(Bundles, Args.size());
+ (void)It;
+ assert(It + 1 == op_end() && "Should add up!");
+
+ setName(NameStr);
+}
+
+void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
+ this->FTy = FTy;
+ assert(getNumOperands() == 1 && "NumOperands not set up?");
+ setCalledOperand(Func);
+
+ assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
+
+ setName(NameStr);
+}
+
+CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
+ Instruction *InsertBefore)
+ : CallBase(Ty->getReturnType(), Instruction::Call,
+ OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
+ init(Ty, Func, Name);
+}
+
+CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
+ BasicBlock *InsertAtEnd)
+ : CallBase(Ty->getReturnType(), Instruction::Call,
+ OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
+ init(Ty, Func, Name);
+}
+
+CallInst::CallInst(const CallInst &CI)
+ : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
+ OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
+ CI.getNumOperands()) {
+ setTailCallKind(CI.getTailCallKind());
+ setCallingConv(CI.getCallingConv());
+
+ std::copy(CI.op_begin(), CI.op_end(), op_begin());
+ std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
+ bundle_op_info_begin());
+ SubclassOptionalData = CI.SubclassOptionalData;
+}
+
+CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
+ Instruction *InsertPt) {
+ std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
+
+ auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
+ Args, OpB, CI->getName(), InsertPt);
+ NewCI->setTailCallKind(CI->getTailCallKind());
+ NewCI->setCallingConv(CI->getCallingConv());
+ NewCI->SubclassOptionalData = CI->SubclassOptionalData;
+ NewCI->setAttributes(CI->getAttributes());
+ NewCI->setDebugLoc(CI->getDebugLoc());
+ return NewCI;
+}
+
+// Update profile weight for call instruction by scaling it using the ratio
+// of S/T. The meaning of "branch_weights" meta data for call instruction is
+// transfered to represent call count.
+void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
+ auto *ProfileData = getMetadata(LLVMContext::MD_prof);
+ if (ProfileData == nullptr)
+ return;
+
+ auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
+ if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
+ !ProfDataName->getString().equals("VP")))
+ return;
+
+ if (T == 0) {
+ LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
+ "div by 0. Ignoring. Likely the function "
+ << getParent()->getParent()->getName()
+ << " has 0 entry count, and contains call instructions "
+ "with non-zero prof info.");
+ return;
+ }
+
+ MDBuilder MDB(getContext());
+ SmallVector<Metadata *, 3> Vals;
+ Vals.push_back(ProfileData->getOperand(0));
+ APInt APS(128, S), APT(128, T);
+ if (ProfDataName->getString().equals("branch_weights") &&
+ ProfileData->getNumOperands() > 0) {
+ // Using APInt::div may be expensive, but most cases should fit 64 bits.
+ APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
+ ->getValue()
+ .getZExtValue());
+ Val *= APS;
+ Vals.push_back(MDB.createConstant(
+ ConstantInt::get(Type::getInt32Ty(getContext()),
+ Val.udiv(APT).getLimitedValue(UINT32_MAX))));
+ } else if (ProfDataName->getString().equals("VP"))
+ for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
+ // The first value is the key of the value profile, which will not change.
+ Vals.push_back(ProfileData->getOperand(i));
+ uint64_t Count =
+ mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
+ ->getValue()
+ .getZExtValue();
+ // Don't scale the magic number.
+ if (Count == NOMORE_ICP_MAGICNUM) {
+ Vals.push_back(ProfileData->getOperand(i + 1));
+ continue;
+ }
+ // Using APInt::div may be expensive, but most cases should fit 64 bits.
+ APInt Val(128, Count);
+ Val *= APS;
+ Vals.push_back(MDB.createConstant(
+ ConstantInt::get(Type::getInt64Ty(getContext()),
+ Val.udiv(APT).getLimitedValue())));
+ }
+ setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
+}
+
+/// IsConstantOne - Return true only if val is constant int 1
+static bool IsConstantOne(Value *val) {
+ assert(val && "IsConstantOne does not work with nullptr val");
+ const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
+ return CVal && CVal->isOne();
+}
+
+static Instruction *createMalloc(Instruction *InsertBefore,
+ BasicBlock *InsertAtEnd, Type *IntPtrTy,
+ Type *AllocTy, Value *AllocSize,
+ Value *ArraySize,
+ ArrayRef<OperandBundleDef> OpB,
+ Function *MallocF, const Twine &Name) {
+ assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
+ "createMalloc needs either InsertBefore or InsertAtEnd");
+
+ // malloc(type) becomes:
+ // bitcast (i8* malloc(typeSize)) to type*
+ // malloc(type, arraySize) becomes:
+ // bitcast (i8* malloc(typeSize*arraySize)) to type*
+ if (!ArraySize)
+ ArraySize = ConstantInt::get(IntPtrTy, 1);
+ else if (ArraySize->getType() != IntPtrTy) {
+ if (InsertBefore)
+ ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
+ "", InsertBefore);
+ else
+ ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
+ "", InsertAtEnd);
+ }
+
+ if (!IsConstantOne(ArraySize)) {
+ if (IsConstantOne(AllocSize)) {
+ AllocSize = ArraySize; // Operand * 1 = Operand
+ } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
+ Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
+ false /*ZExt*/);
+ // Malloc arg is constant product of type size and array size
+ AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
+ } else {
+ // Multiply type size by the array size...
+ if (InsertBefore)
+ AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
+ "mallocsize", InsertBefore);
+ else
+ AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
+ "mallocsize", InsertAtEnd);
+ }
+ }
+
+ assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
+ // Create the call to Malloc.
+ BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
+ Module *M = BB->getParent()->getParent();
+ Type *BPTy = Type::getInt8PtrTy(BB->getContext());
+ FunctionCallee MallocFunc = MallocF;
+ if (!MallocFunc)
+ // prototype malloc as "void *malloc(size_t)"
+ MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
+ PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
+ CallInst *MCall = nullptr;
+ Instruction *Result = nullptr;
+ if (InsertBefore) {
+ MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
+ InsertBefore);
+ Result = MCall;
+ if (Result->getType() != AllocPtrType)
+ // Create a cast instruction to convert to the right type...
+ Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
+ } else {
+ MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
+ Result = MCall;
+ if (Result->getType() != AllocPtrType) {
+ InsertAtEnd->getInstList().push_back(MCall);
+ // Create a cast instruction to convert to the right type...
+ Result = new BitCastInst(MCall, AllocPtrType, Name);
+ }
+ }
+ MCall->setTailCall();
+ if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
+ MCall->setCallingConv(F->getCallingConv());
+ if (!F->returnDoesNotAlias())
+ F->setReturnDoesNotAlias();
+ }
+ assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
+
+ return Result;
+}
+
+/// CreateMalloc - Generate the IR for a call to malloc:
+/// 1. Compute the malloc call's argument as the specified type's size,
+/// possibly multiplied by the array size if the array size is not
+/// constant 1.
+/// 2. Call malloc with that argument.
+/// 3. Bitcast the result of the malloc call to the specified type.
+Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
+ Type *IntPtrTy, Type *AllocTy,
+ Value *AllocSize, Value *ArraySize,
+ Function *MallocF,
+ const Twine &Name) {
+ return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
+ ArraySize, None, MallocF, Name);
+}
+Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
+ Type *IntPtrTy, Type *AllocTy,
+ Value *AllocSize, Value *ArraySize,
+ ArrayRef<OperandBundleDef> OpB,
+ Function *MallocF,
+ const Twine &Name) {
+ return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
+ ArraySize, OpB, MallocF, Name);
+}
+
+/// CreateMalloc - Generate the IR for a call to malloc:
+/// 1. Compute the malloc call's argument as the specified type's size,
+/// possibly multiplied by the array size if the array size is not
+/// constant 1.
+/// 2. Call malloc with that argument.
+/// 3. Bitcast the result of the malloc call to the specified type.
+/// Note: This function does not add the bitcast to the basic block, that is the
+/// responsibility of the caller.
+Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
+ Type *IntPtrTy, Type *AllocTy,
+ Value *AllocSize, Value *ArraySize,
+ Function *MallocF, const Twine &Name) {
+ return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
+ ArraySize, None, MallocF, Name);
+}
+Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
+ Type *IntPtrTy, Type *AllocTy,
+ Value *AllocSize, Value *ArraySize,
+ ArrayRef<OperandBundleDef> OpB,
+ Function *MallocF, const Twine &Name) {
+ return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
+ ArraySize, OpB, MallocF, Name);
+}
+
+static Instruction *createFree(Value *Source,
+ ArrayRef<OperandBundleDef> Bundles,
+ Instruction *InsertBefore,
+ BasicBlock *InsertAtEnd) {
+ assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
+ "createFree needs either InsertBefore or InsertAtEnd");
+ assert(Source->getType()->isPointerTy() &&
+ "Can not free something of nonpointer type!");
+
+ BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
+ Module *M = BB->getParent()->getParent();
+
+ Type *VoidTy = Type::getVoidTy(M->getContext());
+ Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
+ // prototype free as "void free(void*)"
+ FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
+ CallInst *Result = nullptr;
+ Value *PtrCast = Source;
+ if (InsertBefore) {
+ if (Source->getType() != IntPtrTy)
+ PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
+ Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
+ } else {
+ if (Source->getType() != IntPtrTy)
+ PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
+ Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
+ }
+ Result->setTailCall();
+ if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
+ Result->setCallingConv(F->getCallingConv());
+
+ return Result;
+}
+
+/// CreateFree - Generate the IR for a call to the builtin free function.
+Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
+ return createFree(Source, None, InsertBefore, nullptr);
+}
+Instruction *CallInst::CreateFree(Value *Source,
+ ArrayRef<OperandBundleDef> Bundles,
+ Instruction *InsertBefore) {
+ return createFree(Source, Bundles, InsertBefore, nullptr);
+}
+
+/// CreateFree - Generate the IR for a call to the builtin free function.
+/// Note: This function does not add the call to the basic block, that is the
+/// responsibility of the caller.
+Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
+ Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
+ assert(FreeCall && "CreateFree did not create a CallInst");
+ return FreeCall;
+}
+Instruction *CallInst::CreateFree(Value *Source,
+ ArrayRef<OperandBundleDef> Bundles,
+ BasicBlock *InsertAtEnd) {
+ Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
+ assert(FreeCall && "CreateFree did not create a CallInst");
+ return FreeCall;
+}
+
+//===----------------------------------------------------------------------===//
+// InvokeInst Implementation
+//===----------------------------------------------------------------------===//
+
+void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
+ BasicBlock *IfException, ArrayRef<Value *> Args,
+ ArrayRef<OperandBundleDef> Bundles,
+ const Twine &NameStr) {
+ this->FTy = FTy;
+
+ assert((int)getNumOperands() ==
+ ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
+ "NumOperands not set up?");
+
+#ifndef NDEBUG
+ assert(((Args.size() == FTy->getNumParams()) ||
+ (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
+ "Invoking a function with bad signature");
+
+ for (unsigned i = 0, e = Args.size(); i != e; i++)
+ assert((i >= FTy->getNumParams() ||
+ FTy->getParamType(i) == Args[i]->getType()) &&
+ "Invoking a function with a bad signature!");
+#endif
+
+ // Set operands in order of their index to match use-list-order
+ // prediction.
+ llvm::copy(Args, op_begin());
+ setNormalDest(IfNormal);
+ setUnwindDest(IfException);
+ setCalledOperand(Fn);
+
+ auto It = populateBundleOperandInfos(Bundles, Args.size());
+ (void)It;
+ assert(It + 3 == op_end() && "Should add up!");
+
+ setName(NameStr);
+}
+
+InvokeInst::InvokeInst(const InvokeInst &II)
+ : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
+ OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
+ II.getNumOperands()) {
+ setCallingConv(II.getCallingConv());
+ std::copy(II.op_begin(), II.op_end(), op_begin());
+ std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
+ bundle_op_info_begin());
+ SubclassOptionalData = II.SubclassOptionalData;
+}
+
+InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
+ Instruction *InsertPt) {
+ std::vector<Value *> Args(II->arg_begin(), II->arg_end());
+
+ auto *NewII = InvokeInst::Create(
+ II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
+ II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
+ NewII->setCallingConv(II->getCallingConv());
+ NewII->SubclassOptionalData = II->SubclassOptionalData;
+ NewII->setAttributes(II->getAttributes());
+ NewII->setDebugLoc(II->getDebugLoc());
+ return NewII;
+}
+
+LandingPadInst *InvokeInst::getLandingPadInst() const {
+ return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
+}
+
+//===----------------------------------------------------------------------===//
+// CallBrInst Implementation
+//===----------------------------------------------------------------------===//
+
+void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
+ ArrayRef<BasicBlock *> IndirectDests,
+ ArrayRef<Value *> Args,
+ ArrayRef<OperandBundleDef> Bundles,
+ const Twine &NameStr) {
+ this->FTy = FTy;
+
+ assert((int)getNumOperands() ==
+ ComputeNumOperands(Args.size(), IndirectDests.size(),
+ CountBundleInputs(Bundles)) &&
+ "NumOperands not set up?");
+
+#ifndef NDEBUG
+ assert(((Args.size() == FTy->getNumParams()) ||
+ (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
+ "Calling a function with bad signature");
+
+ for (unsigned i = 0, e = Args.size(); i != e; i++)
+ assert((i >= FTy->getNumParams() ||
+ FTy->getParamType(i) == Args[i]->getType()) &&
+ "Calling a function with a bad signature!");
+#endif
+
+ // Set operands in order of their index to match use-list-order
+ // prediction.
+ std::copy(Args.begin(), Args.end(), op_begin());
+ NumIndirectDests = IndirectDests.size();
+ setDefaultDest(Fallthrough);
+ for (unsigned i = 0; i != NumIndirectDests; ++i)
+ setIndirectDest(i, IndirectDests[i]);
+ setCalledOperand(Fn);
+
+ auto It = populateBundleOperandInfos(Bundles, Args.size());
+ (void)It;
+ assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
+
+ setName(NameStr);
+}
+
+void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
+ assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr");
+ if (BasicBlock *OldBB = getIndirectDest(i)) {
+ BlockAddress *Old = BlockAddress::get(OldBB);
+ BlockAddress *New = BlockAddress::get(B);
+ for (unsigned ArgNo = 0, e = arg_size(); ArgNo != e; ++ArgNo)
+ if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
+ setArgOperand(ArgNo, New);
+ }
+}
+
+CallBrInst::CallBrInst(const CallBrInst &CBI)
+ : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
+ OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
+ CBI.getNumOperands()) {
+ setCallingConv(CBI.getCallingConv());
+ std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
+ std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
+ bundle_op_info_begin());
+ SubclassOptionalData = CBI.SubclassOptionalData;
+ NumIndirectDests = CBI.NumIndirectDests;
+}
+
+CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
+ Instruction *InsertPt) {
+ std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
+
+ auto *NewCBI = CallBrInst::Create(
+ CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
+ CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
+ NewCBI->setCallingConv(CBI->getCallingConv());
+ NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
+ NewCBI->setAttributes(CBI->getAttributes());
+ NewCBI->setDebugLoc(CBI->getDebugLoc());
+ NewCBI->NumIndirectDests = CBI->NumIndirectDests;
+ return NewCBI;
+}
+
+//===----------------------------------------------------------------------===//
+// ReturnInst Implementation
+//===----------------------------------------------------------------------===//
+
+ReturnInst::ReturnInst(const ReturnInst &RI)
+ : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
+ OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
+ RI.getNumOperands()) {
+ if (RI.getNumOperands())
+ Op<0>() = RI.Op<0>();
+ SubclassOptionalData = RI.SubclassOptionalData;
+}
+
+ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
+ : Instruction(Type::getVoidTy(C), Instruction::Ret,
+ OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
+ InsertBefore) {
+ if (retVal)
+ Op<0>() = retVal;
+}
+
+ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
+ : Instruction(Type::getVoidTy(C), Instruction::Ret,
+ OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
+ InsertAtEnd) {
+ if (retVal)
+ Op<0>() = retVal;
+}
+
+ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
+ : Instruction(Type::getVoidTy(Context), Instruction::Ret,
+ OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
+
+//===----------------------------------------------------------------------===//
+// ResumeInst Implementation
+//===----------------------------------------------------------------------===//
+
+ResumeInst::ResumeInst(const ResumeInst &RI)
+ : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
+ OperandTraits<ResumeInst>::op_begin(this), 1) {
+ Op<0>() = RI.Op<0>();
+}
+
+ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
+ : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
+ OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
+ Op<0>() = Exn;
+}
+
+ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
+ : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
+ OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
+ Op<0>() = Exn;
+}
+
+//===----------------------------------------------------------------------===//
+// CleanupReturnInst Implementation
+//===----------------------------------------------------------------------===//
+
+CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
+ : Instruction(CRI.getType(), Instruction::CleanupRet,
+ OperandTraits<CleanupReturnInst>::op_end(this) -
+ CRI.getNumOperands(),
+ CRI.getNumOperands()) {
+ setSubclassData<Instruction::OpaqueField>(
+ CRI.getSubclassData<Instruction::OpaqueField>());
+ Op<0>() = CRI.Op<0>();
+ if (CRI.hasUnwindDest())
+ Op<1>() = CRI.Op<1>();
+}
+
+void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
+ if (UnwindBB)
+ setSubclassData<UnwindDestField>(true);
+
+ Op<0>() = CleanupPad;
+ if (UnwindBB)
+ Op<1>() = UnwindBB;
+}
+
+CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
+ unsigned Values, Instruction *InsertBefore)
+ : Instruction(Type::getVoidTy(CleanupPad->getContext()),
+ Instruction::CleanupRet,
+ OperandTraits<CleanupReturnInst>::op_end(this) - Values,
+ Values, InsertBefore) {
+ init(CleanupPad, UnwindBB);
+}
+
+CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
+ unsigned Values, BasicBlock *InsertAtEnd)
+ : Instruction(Type::getVoidTy(CleanupPad->getContext()),
+ Instruction::CleanupRet,
+ OperandTraits<CleanupReturnInst>::op_end(this) - Values,
+ Values, InsertAtEnd) {
+ init(CleanupPad, UnwindBB);
+}
+
+//===----------------------------------------------------------------------===//
+// CatchReturnInst Implementation
+//===----------------------------------------------------------------------===//
+void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
+ Op<0>() = CatchPad;
+ Op<1>() = BB;
+}
+
+CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
+ : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
+ OperandTraits<CatchReturnInst>::op_begin(this), 2) {
+ Op<0>() = CRI.Op<0>();
+ Op<1>() = CRI.Op<1>();
+}
+
+CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
+ Instruction *InsertBefore)
+ : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
+ OperandTraits<CatchReturnInst>::op_begin(this), 2,
+ InsertBefore) {
+ init(CatchPad, BB);
+}
+
+CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
+ BasicBlock *InsertAtEnd)
+ : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
+ OperandTraits<CatchReturnInst>::op_begin(this), 2,
+ InsertAtEnd) {
+ init(CatchPad, BB);
+}
+
+//===----------------------------------------------------------------------===//
+// CatchSwitchInst Implementation
+//===----------------------------------------------------------------------===//
+
+CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
+ unsigned NumReservedValues,
+ const Twine &NameStr,
+ Instruction *InsertBefore)
+ : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
+ InsertBefore) {
+ if (UnwindDest)
+ ++NumReservedValues;
+ init(ParentPad, UnwindDest, NumReservedValues + 1);
+ setName(NameStr);
+}
+
+CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
+ unsigned NumReservedValues,
+ const Twine &NameStr, BasicBlock *InsertAtEnd)
+ : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
+ InsertAtEnd) {
+ if (UnwindDest)
+ ++NumReservedValues;
+ init(ParentPad, UnwindDest, NumReservedValues + 1);
+ setName(NameStr);
+}
+
+CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
+ : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
+ CSI.getNumOperands()) {
+ init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
+ setNumHungOffUseOperands(ReservedSpace);
+ Use *OL = getOperandList();
+ const Use *InOL = CSI.getOperandList();
+ for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
+ OL[I] = InOL[I];
+}
+
+void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
+ unsigned NumReservedValues) {
+ assert(ParentPad && NumReservedValues);
+
+ ReservedSpace = NumReservedValues;
+ setNumHungOffUseOperands(UnwindDest ? 2 : 1);
+ allocHungoffUses(ReservedSpace);
+
+ Op<0>() = ParentPad;
+ if (UnwindDest) {
+ setSubclassData<UnwindDestField>(true);
+ setUnwindDest(UnwindDest);
+ }
+}
+
+/// growOperands - grow operands - This grows the operand list in response to a
+/// push_back style of operation. This grows the number of ops by 2 times.
+void CatchSwitchInst::growOperands(unsigned Size) {
+ unsigned NumOperands = getNumOperands();
+ assert(NumOperands >= 1);
+ if (ReservedSpace >= NumOperands + Size)
+ return;
+ ReservedSpace = (NumOperands + Size / 2) * 2;
+ growHungoffUses(ReservedSpace);
+}
+
+void CatchSwitchInst::addHandler(BasicBlock *Handler) {
+ unsigned OpNo = getNumOperands();
+ growOperands(1);
+ assert(OpNo < ReservedSpace && "Growing didn't work!");
+ setNumHungOffUseOperands(getNumOperands() + 1);
+ getOperandList()[OpNo] = Handler;
+}
+
+void CatchSwitchInst::removeHandler(handler_iterator HI) {
+ // Move all subsequent handlers up one.
+ Use *EndDst = op_end() - 1;
+ for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
+ *CurDst = *(CurDst + 1);
+ // Null out the last handler use.
+ *EndDst = nullptr;
+
+ setNumHungOffUseOperands(getNumOperands() - 1);
+}
+
+//===----------------------------------------------------------------------===//
+// FuncletPadInst Implementation
+//===----------------------------------------------------------------------===//
+void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
+ const Twine &NameStr) {
+ assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
+ llvm::copy(Args, op_begin());
+ setParentPad(ParentPad);
+ setName(NameStr);
+}
+
+FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
+ : Instruction(FPI.getType(), FPI.getOpcode(),
+ OperandTraits<FuncletPadInst>::op_end(this) -
+ FPI.getNumOperands(),
+ FPI.getNumOperands()) {
+ std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
+ setParentPad(FPI.getParentPad());
+}
+
+FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
+ ArrayRef<Value *> Args, unsigned Values,
+ const Twine &NameStr, Instruction *InsertBefore)
+ : Instruction(ParentPad->getType(), Op,
+ OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
+ InsertBefore) {
+ init(ParentPad, Args, NameStr);
+}
+
+FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
+ ArrayRef<Value *> Args, unsigned Values,
+ const Twine &NameStr, BasicBlock *InsertAtEnd)
+ : Instruction(ParentPad->getType(), Op,
+ OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
+ InsertAtEnd) {
+ init(ParentPad, Args, NameStr);
+}
+
+//===----------------------------------------------------------------------===//
+// UnreachableInst Implementation
+//===----------------------------------------------------------------------===//
+
+UnreachableInst::UnreachableInst(LLVMContext &Context,
+ Instruction *InsertBefore)
+ : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
+ 0, InsertBefore) {}
+UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
+ : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
+ 0, InsertAtEnd) {}
+
+//===----------------------------------------------------------------------===//
+// BranchInst Implementation
+//===----------------------------------------------------------------------===//
+
+void BranchInst::AssertOK() {
+ if (isConditional())
+ assert(getCondition()->getType()->isIntegerTy(1) &&
+ "May only branch on boolean predicates!");
+}
+
+BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
+ : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
+ OperandTraits<BranchInst>::op_end(this) - 1, 1,
+ InsertBefore) {
+ assert(IfTrue && "Branch destination may not be null!");
+ Op<-1>() = IfTrue;
+}
+
+BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
+ Instruction *InsertBefore)
+ : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
+ OperandTraits<BranchInst>::op_end(this) - 3, 3,
+ InsertBefore) {
+ // Assign in order of operand index to make use-list order predictable.
+ Op<-3>() = Cond;
+ Op<-2>() = IfFalse;
+ Op<-1>() = IfTrue;
+#ifndef NDEBUG
+ AssertOK();
+#endif
+}
+
+BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
+ : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
+ OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
+ assert(IfTrue && "Branch destination may not be null!");
+ Op<-1>() = IfTrue;
+}
+
+BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
+ BasicBlock *InsertAtEnd)
+ : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
+ OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
+ // Assign in order of operand index to make use-list order predictable.
+ Op<-3>() = Cond;
+ Op<-2>() = IfFalse;
+ Op<-1>() = IfTrue;
+#ifndef NDEBUG
+ AssertOK();
+#endif
+}
+
+BranchInst::BranchInst(const BranchInst &BI)
+ : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
+ OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
+ BI.getNumOperands()) {
+ // Assign in order of operand index to make use-list order predictable.
+ if (BI.getNumOperands() != 1) {
+ assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
+ Op<-3>() = BI.Op<-3>();
+ Op<-2>() = BI.Op<-2>();
+ }
+ Op<-1>() = BI.Op<-1>();
+ SubclassOptionalData = BI.SubclassOptionalData;
+}
+
+void BranchInst::swapSuccessors() {
+ assert(isConditional() &&
+ "Cannot swap successors of an unconditional branch");
+ Op<-1>().swap(Op<-2>());
+
+ // Update profile metadata if present and it matches our structural
+ // expectations.
+ swapProfMetadata();
+}
+
+//===----------------------------------------------------------------------===//
+// AllocaInst Implementation
+//===----------------------------------------------------------------------===//
+
+static Value *getAISize(LLVMContext &Context, Value *Amt) {
+ if (!Amt)
+ Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
+ else {
+ assert(!isa<BasicBlock>(Amt) &&
+ "Passed basic block into allocation size parameter! Use other ctor");
+ assert(Amt->getType()->isIntegerTy() &&
+ "Allocation array size is not an integer!");
+ }
+ return Amt;
+}
+
+static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) {
+ assert(BB && "Insertion BB cannot be null when alignment not provided!");
+ assert(BB->getParent() &&
+ "BB must be in a Function when alignment not provided!");
+ const DataLayout &DL = BB->getModule()->getDataLayout();
+ return DL.getPrefTypeAlign(Ty);
+}
+
+static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) {
+ assert(I && "Insertion position cannot be null when alignment not provided!");
+ return computeAllocaDefaultAlign(Ty, I->getParent());
+}
+
+AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
+ Instruction *InsertBefore)
+ : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
+
+AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
+ BasicBlock *InsertAtEnd)
+ : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
+
+AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
+ const Twine &Name, Instruction *InsertBefore)
+ : AllocaInst(Ty, AddrSpace, ArraySize,
+ computeAllocaDefaultAlign(Ty, InsertBefore), Name,
+ InsertBefore) {}
+
+AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
+ const Twine &Name, BasicBlock *InsertAtEnd)
+ : AllocaInst(Ty, AddrSpace, ArraySize,
+ computeAllocaDefaultAlign(Ty, InsertAtEnd), Name,
+ InsertAtEnd) {}
+
+AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
+ Align Align, const Twine &Name,
+ Instruction *InsertBefore)
+ : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
+ getAISize(Ty->getContext(), ArraySize), InsertBefore),
+ AllocatedType(Ty) {
+ setAlignment(Align);
+ assert(!Ty->isVoidTy() && "Cannot allocate void!");
+ setName(Name);
+}
+
+AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
+ Align Align, const Twine &Name, BasicBlock *InsertAtEnd)
+ : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
+ getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
+ AllocatedType(Ty) {
+ setAlignment(Align);
+ assert(!Ty->isVoidTy() && "Cannot allocate void!");
+ setName(Name);
+}
+
+
+bool AllocaInst::isArrayAllocation() const {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
+ return !CI->isOne();
+ return true;
+}
+
+/// isStaticAlloca - Return true if this alloca is in the entry block of the
+/// function and is a constant size. If so, the code generator will fold it
+/// into the prolog/epilog code, so it is basically free.
+bool AllocaInst::isStaticAlloca() const {
+ // Must be constant size.
+ if (!isa<ConstantInt>(getArraySize())) return false;
+
+ // Must be in the entry block.
+ const BasicBlock *Parent = getParent();
+ return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
+}
+
+//===----------------------------------------------------------------------===//
+// LoadInst Implementation
+//===----------------------------------------------------------------------===//
+
+void LoadInst::AssertOK() {
+ assert(getOperand(0)->getType()->isPointerTy() &&
+ "Ptr must have pointer type.");
+}
+
+static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) {
+ assert(BB && "Insertion BB cannot be null when alignment not provided!");
+ assert(BB->getParent() &&
+ "BB must be in a Function when alignment not provided!");
+ const DataLayout &DL = BB->getModule()->getDataLayout();
+ return DL.getABITypeAlign(Ty);
+}
+
+static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) {
+ assert(I && "Insertion position cannot be null when alignment not provided!");
+ return computeLoadStoreDefaultAlign(Ty, I->getParent());
+}
+
+LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
+ Instruction *InsertBef)
+ : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
+
+LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
+ BasicBlock *InsertAE)
+ : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
+
+LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
+ Instruction *InsertBef)
+ : LoadInst(Ty, Ptr, Name, isVolatile,
+ computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
+
+LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
+ BasicBlock *InsertAE)
+ : LoadInst(Ty, Ptr, Name, isVolatile,
+ computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {}
+
+LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
+ Align Align, Instruction *InsertBef)
+ : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
+ SyncScope::System, InsertBef) {}
+
+LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
+ Align Align, BasicBlock *InsertAE)
+ : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
+ SyncScope::System, InsertAE) {}
+
+LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
+ Align Align, AtomicOrdering Order, SyncScope::ID SSID,
+ Instruction *InsertBef)
+ : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
+ assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
+ setVolatile(isVolatile);
+ setAlignment(Align);
+ setAtomic(Order, SSID);
+ AssertOK();
+ setName(Name);
+}
+
+LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
+ Align Align, AtomicOrdering Order, SyncScope::ID SSID,
+ BasicBlock *InsertAE)
+ : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
+ assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
+ setVolatile(isVolatile);
+ setAlignment(Align);
+ setAtomic(Order, SSID);
+ AssertOK();
+ setName(Name);
+}
+
+//===----------------------------------------------------------------------===//
+// StoreInst Implementation
+//===----------------------------------------------------------------------===//
+
+void StoreInst::AssertOK() {
+ assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
+ assert(getOperand(1)->getType()->isPointerTy() &&
+ "Ptr must have pointer type!");
+ assert(cast<PointerType>(getOperand(1)->getType())
+ ->isOpaqueOrPointeeTypeMatches(getOperand(0)->getType()) &&
+ "Ptr must be a pointer to Val type!");
+}
+
+StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
+ : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
+
+StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
+ : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
+
+StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
+ Instruction *InsertBefore)
+ : StoreInst(val, addr, isVolatile,
+ computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
+ InsertBefore) {}
+
+StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
+ BasicBlock *InsertAtEnd)
+ : StoreInst(val, addr, isVolatile,
+ computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd),
+ InsertAtEnd) {}
+
+StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
+ Instruction *InsertBefore)
+ : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
+ SyncScope::System, InsertBefore) {}
+
+StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
+ BasicBlock *InsertAtEnd)
+ : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
+ SyncScope::System, InsertAtEnd) {}
+
+StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
+ AtomicOrdering Order, SyncScope::ID SSID,
+ Instruction *InsertBefore)
+ : Instruction(Type::getVoidTy(val->getContext()), Store,
+ OperandTraits<StoreInst>::op_begin(this),
+ OperandTraits<StoreInst>::operands(this), InsertBefore) {
+ Op<0>() = val;
+ Op<1>() = addr;
+ setVolatile(isVolatile);
+ setAlignment(Align);
+ setAtomic(Order, SSID);
+ AssertOK();
+}
+
+StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
+ AtomicOrdering Order, SyncScope::ID SSID,
+ BasicBlock *InsertAtEnd)
+ : Instruction(Type::getVoidTy(val->getContext()), Store,
+ OperandTraits<StoreInst>::op_begin(this),
+ OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
+ Op<0>() = val;
+ Op<1>() = addr;
+ setVolatile(isVolatile);
+ setAlignment(Align);
+ setAtomic(Order, SSID);
+ AssertOK();
+}
+
+
+//===----------------------------------------------------------------------===//
+// AtomicCmpXchgInst Implementation
+//===----------------------------------------------------------------------===//
+
+void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
+ Align Alignment, AtomicOrdering SuccessOrdering,
+ AtomicOrdering FailureOrdering,
+ SyncScope::ID SSID) {
+ Op<0>() = Ptr;
+ Op<1>() = Cmp;
+ Op<2>() = NewVal;
+ setSuccessOrdering(SuccessOrdering);
+ setFailureOrdering(FailureOrdering);
+ setSyncScopeID(SSID);
+ setAlignment(Alignment);
+
+ assert(getOperand(0) && getOperand(1) && getOperand(2) &&
+ "All operands must be non-null!");
+ assert(getOperand(0)->getType()->isPointerTy() &&
+ "Ptr must have pointer type!");
+ assert(cast<PointerType>(getOperand(0)->getType())
+ ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
+ "Ptr must be a pointer to Cmp type!");
+ assert(cast<PointerType>(getOperand(0)->getType())
+ ->isOpaqueOrPointeeTypeMatches(getOperand(2)->getType()) &&
+ "Ptr must be a pointer to NewVal type!");
+ assert(getOperand(1)->getType() == getOperand(2)->getType() &&
+ "Cmp type and NewVal type must be same!");
+}
+
+AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
+ Align Alignment,
+ AtomicOrdering SuccessOrdering,
+ AtomicOrdering FailureOrdering,
+ SyncScope::ID SSID,
+ Instruction *InsertBefore)
+ : Instruction(
+ StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
+ AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
+ OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
+ Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
+}
+
+AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
+ Align Alignment,
+ AtomicOrdering SuccessOrdering,
+ AtomicOrdering FailureOrdering,
+ SyncScope::ID SSID,
+ BasicBlock *InsertAtEnd)
+ : Instruction(
+ StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
+ AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
+ OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
+ Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
+}
+
+//===----------------------------------------------------------------------===//
+// AtomicRMWInst Implementation
+//===----------------------------------------------------------------------===//
+
+void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
+ Align Alignment, AtomicOrdering Ordering,
+ SyncScope::ID SSID) {
+ Op<0>() = Ptr;
+ Op<1>() = Val;
+ setOperation(Operation);
+ setOrdering(Ordering);
+ setSyncScopeID(SSID);
+ setAlignment(Alignment);
+
+ assert(getOperand(0) && getOperand(1) &&
+ "All operands must be non-null!");
+ assert(getOperand(0)->getType()->isPointerTy() &&
+ "Ptr must have pointer type!");
+ assert(cast<PointerType>(getOperand(0)->getType())
+ ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
+ "Ptr must be a pointer to Val type!");
+ assert(Ordering != AtomicOrdering::NotAtomic &&
+ "AtomicRMW instructions must be atomic!");
+}
+
+AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
+ Align Alignment, AtomicOrdering Ordering,
+ SyncScope::ID SSID, Instruction *InsertBefore)
+ : Instruction(Val->getType(), AtomicRMW,
+ OperandTraits<AtomicRMWInst>::op_begin(this),
+ OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
+ Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
+}
+
+AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
+ Align Alignment, AtomicOrdering Ordering,
+ SyncScope::ID SSID, BasicBlock *InsertAtEnd)
+ : Instruction(Val->getType(), AtomicRMW,
+ OperandTraits<AtomicRMWInst>::op_begin(this),
+ OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) {
+ Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
+}
+
+StringRef AtomicRMWInst::getOperationName(BinOp Op) {
+ switch (Op) {
+ case AtomicRMWInst::Xchg:
+ return "xchg";
+ case AtomicRMWInst::Add:
+ return "add";
+ case AtomicRMWInst::Sub:
+ return "sub";
+ case AtomicRMWInst::And:
+ return "and";
+ case AtomicRMWInst::Nand:
+ return "nand";
+ case AtomicRMWInst::Or:
+ return "or";
+ case AtomicRMWInst::Xor:
+ return "xor";
+ case AtomicRMWInst::Max:
+ return "max";
+ case AtomicRMWInst::Min:
+ return "min";
+ case AtomicRMWInst::UMax:
+ return "umax";
+ case AtomicRMWInst::UMin:
+ return "umin";
+ case AtomicRMWInst::FAdd:
+ return "fadd";
+ case AtomicRMWInst::FSub:
+ return "fsub";
+ case AtomicRMWInst::BAD_BINOP:
+ return "<invalid operation>";
+ }
+
+ llvm_unreachable("invalid atomicrmw operation");
+}
+
+//===----------------------------------------------------------------------===//
+// FenceInst Implementation
+//===----------------------------------------------------------------------===//
+
+FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
+ SyncScope::ID SSID,
+ Instruction *InsertBefore)
+ : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
+ setOrdering(Ordering);
+ setSyncScopeID(SSID);
+}
+
+FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
+ SyncScope::ID SSID,
+ BasicBlock *InsertAtEnd)
+ : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
+ setOrdering(Ordering);
+ setSyncScopeID(SSID);
+}
+
+//===----------------------------------------------------------------------===//
+// GetElementPtrInst Implementation
+//===----------------------------------------------------------------------===//
+
+void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
+ const Twine &Name) {
+ assert(getNumOperands() == 1 + IdxList.size() &&
+ "NumOperands not initialized?");
+ Op<0>() = Ptr;
+ llvm::copy(IdxList, op_begin() + 1);
+ setName(Name);
+}
+
+GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
+ : Instruction(GEPI.getType(), GetElementPtr,
+ OperandTraits<GetElementPtrInst>::op_end(this) -
+ GEPI.getNumOperands(),
+ GEPI.getNumOperands()),
+ SourceElementType(GEPI.SourceElementType),
+ ResultElementType(GEPI.ResultElementType) {
+ std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
+ SubclassOptionalData = GEPI.SubclassOptionalData;
+}
+
+Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
+ if (auto *Struct = dyn_cast<StructType>(Ty)) {
+ if (!Struct->indexValid(Idx))
+ return nullptr;
+ return Struct->getTypeAtIndex(Idx);
+ }
+ if (!Idx->getType()->isIntOrIntVectorTy())
+ return nullptr;
+ if (auto *Array = dyn_cast<ArrayType>(Ty))
+ return Array->getElementType();
+ if (auto *Vector = dyn_cast<VectorType>(Ty))
+ return Vector->getElementType();
+ return nullptr;
+}
+
+Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
+ if (auto *Struct = dyn_cast<StructType>(Ty)) {
+ if (Idx >= Struct->getNumElements())
+ return nullptr;
+ return Struct->getElementType(Idx);
+ }
+ if (auto *Array = dyn_cast<ArrayType>(Ty))
+ return Array->getElementType();
+ if (auto *Vector = dyn_cast<VectorType>(Ty))
+ return Vector->getElementType();
+ return nullptr;
+}
+
+template <typename IndexTy>
+static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
+ if (IdxList.empty())
+ return Ty;
+ for (IndexTy V : IdxList.slice(1)) {
+ Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
+ if (!Ty)
+ return Ty;
+ }
+ return Ty;
+}
+
+Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
+ return getIndexedTypeInternal(Ty, IdxList);
+}
+
+Type *GetElementPtrInst::getIndexedType(Type *Ty,
+ ArrayRef<Constant *> IdxList) {
+ return getIndexedTypeInternal(Ty, IdxList);
+}
+
+Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
+ return getIndexedTypeInternal(Ty, IdxList);
+}
+
+/// hasAllZeroIndices - Return true if all of the indices of this GEP are
+/// zeros. If so, the result pointer and the first operand have the same
+/// value, just potentially different types.
+bool GetElementPtrInst::hasAllZeroIndices() const {
+ for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
+ if (!CI->isZero()) return false;
+ } else {
+ return false;
+ }
+ }
+ return true;
+}
+
+/// hasAllConstantIndices - Return true if all of the indices of this GEP are
+/// constant integers. If so, the result pointer and the first operand have
+/// a constant offset between them.
+bool GetElementPtrInst::hasAllConstantIndices() const {
+ for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
+ if (!isa<ConstantInt>(getOperand(i)))
+ return false;
+ }
+ return true;
+}
+
+void GetElementPtrInst::setIsInBounds(bool B) {
+ cast<GEPOperator>(this)->setIsInBounds(B);
+}
+
+bool GetElementPtrInst::isInBounds() const {
+ return cast<GEPOperator>(this)->isInBounds();
+}
+
+bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
+ APInt &Offset) const {
+ // Delegate to the generic GEPOperator implementation.
+ return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
+}
+
+bool GetElementPtrInst::collectOffset(
+ const DataLayout &DL, unsigned BitWidth,
+ MapVector<Value *, APInt> &VariableOffsets,
+ APInt &ConstantOffset) const {
+ // Delegate to the generic GEPOperator implementation.
+ return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets,
+ ConstantOffset);
+}
+
+//===----------------------------------------------------------------------===//
+// ExtractElementInst Implementation
+//===----------------------------------------------------------------------===//
+
+ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
+ const Twine &Name,
+ Instruction *InsertBef)
+ : Instruction(cast<VectorType>(Val->getType())->getElementType(),
+ ExtractElement,
+ OperandTraits<ExtractElementInst>::op_begin(this),
+ 2, InsertBef) {
+ assert(isValidOperands(Val, Index) &&
+ "Invalid extractelement instruction operands!");
+ Op<0>() = Val;
+ Op<1>() = Index;
+ setName(Name);
+}
+
+ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
+ const Twine &Name,
+ BasicBlock *InsertAE)
+ : Instruction(cast<VectorType>(Val->getType())->getElementType(),
+ ExtractElement,
+ OperandTraits<ExtractElementInst>::op_begin(this),
+ 2, InsertAE) {
+ assert(isValidOperands(Val, Index) &&
+ "Invalid extractelement instruction operands!");
+
+ Op<0>() = Val;
+ Op<1>() = Index;
+ setName(Name);
+}
+
+bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
+ if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
+ return false;
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// InsertElementInst Implementation
+//===----------------------------------------------------------------------===//
+
+InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
+ const Twine &Name,
+ Instruction *InsertBef)
+ : Instruction(Vec->getType(), InsertElement,
+ OperandTraits<InsertElementInst>::op_begin(this),
+ 3, InsertBef) {
+ assert(isValidOperands(Vec, Elt, Index) &&
+ "Invalid insertelement instruction operands!");
+ Op<0>() = Vec;
+ Op<1>() = Elt;
+ Op<2>() = Index;
+ setName(Name);
+}
+
+InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
+ const Twine &Name,
+ BasicBlock *InsertAE)
+ : Instruction(Vec->getType(), InsertElement,
+ OperandTraits<InsertElementInst>::op_begin(this),
+ 3, InsertAE) {
+ assert(isValidOperands(Vec, Elt, Index) &&
+ "Invalid insertelement instruction operands!");
+
+ Op<0>() = Vec;
+ Op<1>() = Elt;
+ Op<2>() = Index;
+ setName(Name);
+}
+
+bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
+ const Value *Index) {
+ if (!Vec->getType()->isVectorTy())
+ return false; // First operand of insertelement must be vector type.
+
+ if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
+ return false;// Second operand of insertelement must be vector element type.
+
+ if (!Index->getType()->isIntegerTy())
+ return false; // Third operand of insertelement must be i32.
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// ShuffleVectorInst Implementation
+//===----------------------------------------------------------------------===//
+
+static Value *createPlaceholderForShuffleVector(Value *V) {
+ assert(V && "Cannot create placeholder of nullptr V");
+ return PoisonValue::get(V->getType());
+}
+
+ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name,
+ Instruction *InsertBefore)
+ : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
+ InsertBefore) {}
+
+ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name,
+ BasicBlock *InsertAtEnd)
+ : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
+ InsertAtEnd) {}
+
+ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask,
+ const Twine &Name,
+ Instruction *InsertBefore)
+ : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
+ InsertBefore) {}
+
+ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask,
+ const Twine &Name, BasicBlock *InsertAtEnd)
+ : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
+ InsertAtEnd) {}
+
+ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
+ const Twine &Name,
+ Instruction *InsertBefore)
+ : Instruction(
+ VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
+ cast<VectorType>(Mask->getType())->getElementCount()),
+ ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
+ OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
+ assert(isValidOperands(V1, V2, Mask) &&
+ "Invalid shuffle vector instruction operands!");
+
+ Op<0>() = V1;
+ Op<1>() = V2;
+ SmallVector<int, 16> MaskArr;
+ getShuffleMask(cast<Constant>(Mask), MaskArr);
+ setShuffleMask(MaskArr);
+ setName(Name);
+}
+
+ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
+ const Twine &Name, BasicBlock *InsertAtEnd)
+ : Instruction(
+ VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
+ cast<VectorType>(Mask->getType())->getElementCount()),
+ ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
+ OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
+ assert(isValidOperands(V1, V2, Mask) &&
+ "Invalid shuffle vector instruction operands!");
+
+ Op<0>() = V1;
+ Op<1>() = V2;
+ SmallVector<int, 16> MaskArr;
+ getShuffleMask(cast<Constant>(Mask), MaskArr);
+ setShuffleMask(MaskArr);
+ setName(Name);
+}
+
+ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
+ const Twine &Name,
+ Instruction *InsertBefore)
+ : Instruction(
+ VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
+ Mask.size(), isa<ScalableVectorType>(V1->getType())),
+ ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
+ OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
+ assert(isValidOperands(V1, V2, Mask) &&
+ "Invalid shuffle vector instruction operands!");
+ Op<0>() = V1;
+ Op<1>() = V2;
+ setShuffleMask(Mask);
+ setName(Name);
+}
+
+ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
+ const Twine &Name, BasicBlock *InsertAtEnd)
+ : Instruction(
+ VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
+ Mask.size(), isa<ScalableVectorType>(V1->getType())),
+ ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
+ OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
+ assert(isValidOperands(V1, V2, Mask) &&
+ "Invalid shuffle vector instruction operands!");
+
+ Op<0>() = V1;
+ Op<1>() = V2;
+ setShuffleMask(Mask);
+ setName(Name);
+}
+
+void ShuffleVectorInst::commute() {
+ int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
+ int NumMaskElts = ShuffleMask.size();
+ SmallVector<int, 16> NewMask(NumMaskElts);
+ for (int i = 0; i != NumMaskElts; ++i) {
+ int MaskElt = getMaskValue(i);
+ if (MaskElt == UndefMaskElem) {
+ NewMask[i] = UndefMaskElem;
+ continue;
+ }
+ assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
+ MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
+ NewMask[i] = MaskElt;
+ }
+ setShuffleMask(NewMask);
+ Op<0>().swap(Op<1>());
+}
+
+bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
+ ArrayRef<int> Mask) {
+ // V1 and V2 must be vectors of the same type.
+ if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
+ return false;
+
+ // Make sure the mask elements make sense.
+ int V1Size =
+ cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
+ for (int Elem : Mask)
+ if (Elem != UndefMaskElem && Elem >= V1Size * 2)
+ return false;
+
+ if (isa<ScalableVectorType>(V1->getType()))
+ if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask))
+ return false;
+
+ return true;
+}
+
+bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
+ const Value *Mask) {
+ // V1 and V2 must be vectors of the same type.
+ if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
+ return false;
+
+ // Mask must be vector of i32, and must be the same kind of vector as the
+ // input vectors
+ auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
+ if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
+ isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
+ return false;
+
+ // Check to see if Mask is valid.
+ if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
+ return true;
+
+ if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
+ unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
+ for (Value *Op : MV->operands()) {
+ if (auto *CI = dyn_cast<ConstantInt>(Op)) {
+ if (CI->uge(V1Size*2))
+ return false;
+ } else if (!isa<UndefValue>(Op)) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
+ unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
+ for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
+ i != e; ++i)
+ if (CDS->getElementAsInteger(i) >= V1Size*2)
+ return false;
+ return true;
+ }
+
+ return false;
+}
+
+void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
+ SmallVectorImpl<int> &Result) {
+ ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
+
+ if (isa<ConstantAggregateZero>(Mask)) {
+ Result.resize(EC.getKnownMinValue(), 0);
+ return;
+ }
+
+ Result.reserve(EC.getKnownMinValue());
+
+ if (EC.isScalable()) {
+ assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
+ "Scalable vector shuffle mask must be undef or zeroinitializer");
+ int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
+ for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
+ Result.emplace_back(MaskVal);
+ return;
+ }
+
+ unsigned NumElts = EC.getKnownMinValue();
+
+ if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
+ for (unsigned i = 0; i != NumElts; ++i)
+ Result.push_back(CDS->getElementAsInteger(i));
+ return;
+ }
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *C = Mask->getAggregateElement(i);
+ Result.push_back(isa<UndefValue>(C) ? -1 :
+ cast<ConstantInt>(C)->getZExtValue());
+ }
+}
+
+void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
+ ShuffleMask.assign(Mask.begin(), Mask.end());
+ ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
+}
+
+Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
+ Type *ResultTy) {
+ Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
+ if (isa<ScalableVectorType>(ResultTy)) {
+ assert(is_splat(Mask) && "Unexpected shuffle");
+ Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
+ if (Mask[0] == 0)
+ return Constant::getNullValue(VecTy);
+ return UndefValue::get(VecTy);
+ }
+ SmallVector<Constant *, 16> MaskConst;
+ for (int Elem : Mask) {
+ if (Elem == UndefMaskElem)
+ MaskConst.push_back(UndefValue::get(Int32Ty));
+ else
+ MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
+ }
+ return ConstantVector::get(MaskConst);
+}
+
+static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
+ assert(!Mask.empty() && "Shuffle mask must contain elements");
+ bool UsesLHS = false;
+ bool UsesRHS = false;
+ for (int I : Mask) {
+ if (I == -1)
+ continue;
+ assert(I >= 0 && I < (NumOpElts * 2) &&
+ "Out-of-bounds shuffle mask element");
+ UsesLHS |= (I < NumOpElts);
+ UsesRHS |= (I >= NumOpElts);
+ if (UsesLHS && UsesRHS)
+ return false;
+ }
+ // Allow for degenerate case: completely undef mask means neither source is used.
+ return UsesLHS || UsesRHS;
+}
+
+bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
+ // We don't have vector operand size information, so assume operands are the
+ // same size as the mask.
+ return isSingleSourceMaskImpl(Mask, Mask.size());
+}
+
+static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
+ if (!isSingleSourceMaskImpl(Mask, NumOpElts))
+ return false;
+ for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
+ if (Mask[i] == -1)
+ continue;
+ if (Mask[i] != i && Mask[i] != (NumOpElts + i))
+ return false;
+ }
+ return true;
+}
+
+bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
+ // We don't have vector operand size information, so assume operands are the
+ // same size as the mask.
+ return isIdentityMaskImpl(Mask, Mask.size());
+}
+
+bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
+ if (!isSingleSourceMask(Mask))
+ return false;
+ for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
+ if (Mask[i] == -1)
+ continue;
+ if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
+ return false;
+ }
+ return true;
+}
+
+bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
+ if (!isSingleSourceMask(Mask))
+ return false;
+ for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
+ if (Mask[i] == -1)
+ continue;
+ if (Mask[i] != 0 && Mask[i] != NumElts)
+ return false;
+ }
+ return true;
+}
+
+bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
+ // Select is differentiated from identity. It requires using both sources.
+ if (isSingleSourceMask(Mask))
+ return false;
+ for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
+ if (Mask[i] == -1)
+ continue;
+ if (Mask[i] != i && Mask[i] != (NumElts + i))
+ return false;
+ }
+ return true;
+}
+
+bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
+ // Example masks that will return true:
+ // v1 = <a, b, c, d>
+ // v2 = <e, f, g, h>
+ // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
+ // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
+
+ // 1. The number of elements in the mask must be a power-of-2 and at least 2.
+ int NumElts = Mask.size();
+ if (NumElts < 2 || !isPowerOf2_32(NumElts))
+ return false;
+
+ // 2. The first element of the mask must be either a 0 or a 1.
+ if (Mask[0] != 0 && Mask[0] != 1)
+ return false;
+
+ // 3. The difference between the first 2 elements must be equal to the
+ // number of elements in the mask.
+ if ((Mask[1] - Mask[0]) != NumElts)
+ return false;
+
+ // 4. The difference between consecutive even-numbered and odd-numbered
+ // elements must be equal to 2.
+ for (int i = 2; i < NumElts; ++i) {
+ int MaskEltVal = Mask[i];
+ if (MaskEltVal == -1)
+ return false;
+ int MaskEltPrevVal = Mask[i - 2];
+ if (MaskEltVal - MaskEltPrevVal != 2)
+ return false;
+ }
+ return true;
+}
+
+bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
+ int NumSrcElts, int &Index) {
+ // Must extract from a single source.
+ if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
+ return false;
+
+ // Must be smaller (else this is an Identity shuffle).
+ if (NumSrcElts <= (int)Mask.size())
+ return false;
+
+ // Find start of extraction, accounting that we may start with an UNDEF.
+ int SubIndex = -1;
+ for (int i = 0, e = Mask.size(); i != e; ++i) {
+ int M = Mask[i];
+ if (M < 0)
+ continue;
+ int Offset = (M % NumSrcElts) - i;
+ if (0 <= SubIndex && SubIndex != Offset)
+ return false;
+ SubIndex = Offset;
+ }
+
+ if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
+ Index = SubIndex;
+ return true;
+ }
+ return false;
+}
+
+bool ShuffleVectorInst::isInsertSubvectorMask(ArrayRef<int> Mask,
+ int NumSrcElts, int &NumSubElts,
+ int &Index) {
+ int NumMaskElts = Mask.size();
+
+ // Don't try to match if we're shuffling to a smaller size.
+ if (NumMaskElts < NumSrcElts)
+ return false;
+
+ // TODO: We don't recognize self-insertion/widening.
+ if (isSingleSourceMaskImpl(Mask, NumSrcElts))
+ return false;
+
+ // Determine which mask elements are attributed to which source.
+ APInt UndefElts = APInt::getZero(NumMaskElts);
+ APInt Src0Elts = APInt::getZero(NumMaskElts);
+ APInt Src1Elts = APInt::getZero(NumMaskElts);
+ bool Src0Identity = true;
+ bool Src1Identity = true;
+
+ for (int i = 0; i != NumMaskElts; ++i) {
+ int M = Mask[i];
+ if (M < 0) {
+ UndefElts.setBit(i);
+ continue;
+ }
+ if (M < NumSrcElts) {
+ Src0Elts.setBit(i);
+ Src0Identity &= (M == i);
+ continue;
+ }
+ Src1Elts.setBit(i);
+ Src1Identity &= (M == (i + NumSrcElts));
+ }
+ assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() &&
+ "unknown shuffle elements");
+ assert(!Src0Elts.isZero() && !Src1Elts.isZero() &&
+ "2-source shuffle not found");
+
+ // Determine lo/hi span ranges.
+ // TODO: How should we handle undefs at the start of subvector insertions?
+ int Src0Lo = Src0Elts.countTrailingZeros();
+ int Src1Lo = Src1Elts.countTrailingZeros();
+ int Src0Hi = NumMaskElts - Src0Elts.countLeadingZeros();
+ int Src1Hi = NumMaskElts - Src1Elts.countLeadingZeros();
+
+ // If src0 is in place, see if the src1 elements is inplace within its own
+ // span.
+ if (Src0Identity) {
+ int NumSub1Elts = Src1Hi - Src1Lo;
+ ArrayRef<int> Sub1Mask = Mask.slice(Src1Lo, NumSub1Elts);
+ if (isIdentityMaskImpl(Sub1Mask, NumSrcElts)) {
+ NumSubElts = NumSub1Elts;
+ Index = Src1Lo;
+ return true;
+ }
+ }
+
+ // If src1 is in place, see if the src0 elements is inplace within its own
+ // span.
+ if (Src1Identity) {
+ int NumSub0Elts = Src0Hi - Src0Lo;
+ ArrayRef<int> Sub0Mask = Mask.slice(Src0Lo, NumSub0Elts);
+ if (isIdentityMaskImpl(Sub0Mask, NumSrcElts)) {
+ NumSubElts = NumSub0Elts;
+ Index = Src0Lo;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool ShuffleVectorInst::isIdentityWithPadding() const {
+ if (isa<UndefValue>(Op<2>()))
+ return false;
+
+ // FIXME: Not currently possible to express a shuffle mask for a scalable
+ // vector for this case.
+ if (isa<ScalableVectorType>(getType()))
+ return false;
+
+ int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
+ int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
+ if (NumMaskElts <= NumOpElts)
+ return false;
+
+ // The first part of the mask must choose elements from exactly 1 source op.
+ ArrayRef<int> Mask = getShuffleMask();
+ if (!isIdentityMaskImpl(Mask, NumOpElts))
+ return false;
+
+ // All extending must be with undef elements.
+ for (int i = NumOpElts; i < NumMaskElts; ++i)
+ if (Mask[i] != -1)
+ return false;
+
+ return true;
+}
+
+bool ShuffleVectorInst::isIdentityWithExtract() const {
+ if (isa<UndefValue>(Op<2>()))
+ return false;
+
+ // FIXME: Not currently possible to express a shuffle mask for a scalable
+ // vector for this case.
+ if (isa<ScalableVectorType>(getType()))
+ return false;
+
+ int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
+ int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
+ if (NumMaskElts >= NumOpElts)
+ return false;
+
+ return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
+}
+
+bool ShuffleVectorInst::isConcat() const {
+ // Vector concatenation is differentiated from identity with padding.
+ if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) ||
+ isa<UndefValue>(Op<2>()))
+ return false;
+
+ // FIXME: Not currently possible to express a shuffle mask for a scalable
+ // vector for this case.
+ if (isa<ScalableVectorType>(getType()))
+ return false;
+
+ int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
+ int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
+ if (NumMaskElts != NumOpElts * 2)
+ return false;
+
+ // Use the mask length rather than the operands' vector lengths here. We
+ // already know that the shuffle returns a vector twice as long as the inputs,
+ // and neither of the inputs are undef vectors. If the mask picks consecutive
+ // elements from both inputs, then this is a concatenation of the inputs.
+ return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
+}
+
+static bool isReplicationMaskWithParams(ArrayRef<int> Mask,
+ int ReplicationFactor, int VF) {
+ assert(Mask.size() == (unsigned)ReplicationFactor * VF &&
+ "Unexpected mask size.");
+
+ for (int CurrElt : seq(0, VF)) {
+ ArrayRef<int> CurrSubMask = Mask.take_front(ReplicationFactor);
+ assert(CurrSubMask.size() == (unsigned)ReplicationFactor &&
+ "Run out of mask?");
+ Mask = Mask.drop_front(ReplicationFactor);
+ if (!all_of(CurrSubMask, [CurrElt](int MaskElt) {
+ return MaskElt == UndefMaskElem || MaskElt == CurrElt;
+ }))
+ return false;
+ }
+ assert(Mask.empty() && "Did not consume the whole mask?");
+
+ return true;
+}
+
+bool ShuffleVectorInst::isReplicationMask(ArrayRef<int> Mask,
+ int &ReplicationFactor, int &VF) {
+ // undef-less case is trivial.
+ if (none_of(Mask, [](int MaskElt) { return MaskElt == UndefMaskElem; })) {
+ ReplicationFactor =
+ Mask.take_while([](int MaskElt) { return MaskElt == 0; }).size();
+ if (ReplicationFactor == 0 || Mask.size() % ReplicationFactor != 0)
+ return false;
+ VF = Mask.size() / ReplicationFactor;
+ return isReplicationMaskWithParams(Mask, ReplicationFactor, VF);
+ }
+
+ // However, if the mask contains undef's, we have to enumerate possible tuples
+ // and pick one. There are bounds on replication factor: [1, mask size]
+ // (where RF=1 is an identity shuffle, RF=mask size is a broadcast shuffle)
+ // Additionally, mask size is a replication factor multiplied by vector size,
+ // which further significantly reduces the search space.
+
+ // Before doing that, let's perform basic correctness checking first.
+ int Largest = -1;
+ for (int MaskElt : Mask) {
+ if (MaskElt == UndefMaskElem)
+ continue;
+ // Elements must be in non-decreasing order.
+ if (MaskElt < Largest)
+ return false;
+ Largest = std::max(Largest, MaskElt);
+ }
+
+ // Prefer larger replication factor if all else equal.
+ for (int PossibleReplicationFactor :
+ reverse(seq_inclusive<unsigned>(1, Mask.size()))) {
+ if (Mask.size() % PossibleReplicationFactor != 0)
+ continue;
+ int PossibleVF = Mask.size() / PossibleReplicationFactor;
+ if (!isReplicationMaskWithParams(Mask, PossibleReplicationFactor,
+ PossibleVF))
+ continue;
+ ReplicationFactor = PossibleReplicationFactor;
+ VF = PossibleVF;
+ return true;
+ }
+
+ return false;
+}
+
+bool ShuffleVectorInst::isReplicationMask(int &ReplicationFactor,
+ int &VF) const {
+ // Not possible to express a shuffle mask for a scalable vector for this
+ // case.
+ if (isa<ScalableVectorType>(getType()))
+ return false;
+
+ VF = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
+ if (ShuffleMask.size() % VF != 0)
+ return false;
+ ReplicationFactor = ShuffleMask.size() / VF;
+
+ return isReplicationMaskWithParams(ShuffleMask, ReplicationFactor, VF);
+}
+
+//===----------------------------------------------------------------------===//
+// InsertValueInst Class
+//===----------------------------------------------------------------------===//
+
+void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
+ const Twine &Name) {
+ assert(getNumOperands() == 2 && "NumOperands not initialized?");
+
+ // There's no fundamental reason why we require at least one index
+ // (other than weirdness with &*IdxBegin being invalid; see
+ // getelementptr's init routine for example). But there's no
+ // present need to support it.
+ assert(!Idxs.empty() && "InsertValueInst must have at least one index");
+
+ assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
+ Val->getType() && "Inserted value must match indexed type!");
+ Op<0>() = Agg;
+ Op<1>() = Val;
+
+ Indices.append(Idxs.begin(), Idxs.end());
+ setName(Name);
+}
+
+InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
+ : Instruction(IVI.getType(), InsertValue,
+ OperandTraits<InsertValueInst>::op_begin(this), 2),
+ Indices(IVI.Indices) {
+ Op<0>() = IVI.getOperand(0);
+ Op<1>() = IVI.getOperand(1);
+ SubclassOptionalData = IVI.SubclassOptionalData;
+}
+
+//===----------------------------------------------------------------------===//
+// ExtractValueInst Class
+//===----------------------------------------------------------------------===//
+
+void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
+ assert(getNumOperands() == 1 && "NumOperands not initialized?");
+
+ // There's no fundamental reason why we require at least one index.
+ // But there's no present need to support it.
+ assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
+
+ Indices.append(Idxs.begin(), Idxs.end());
+ setName(Name);
+}
+
+ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
+ : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
+ Indices(EVI.Indices) {
+ SubclassOptionalData = EVI.SubclassOptionalData;
+}
+
+// getIndexedType - Returns the type of the element that would be extracted
+// with an extractvalue instruction with the specified parameters.
+//
+// A null type is returned if the indices are invalid for the specified
+// pointer type.
+//
+Type *ExtractValueInst::getIndexedType(Type *Agg,
+ ArrayRef<unsigned> Idxs) {
+ for (unsigned Index : Idxs) {
+ // We can't use CompositeType::indexValid(Index) here.
+ // indexValid() always returns true for arrays because getelementptr allows
+ // out-of-bounds indices. Since we don't allow those for extractvalue and
+ // insertvalue we need to check array indexing manually.
+ // Since the only other types we can index into are struct types it's just
+ // as easy to check those manually as well.
+ if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
+ if (Index >= AT->getNumElements())
+ return nullptr;
+ Agg = AT->getElementType();
+ } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
+ if (Index >= ST->getNumElements())
+ return nullptr;
+ Agg = ST->getElementType(Index);
+ } else {
+ // Not a valid type to index into.
+ return nullptr;
+ }
+ }
+ return const_cast<Type*>(Agg);
+}
+
+//===----------------------------------------------------------------------===//
+// UnaryOperator Class
+//===----------------------------------------------------------------------===//
+
+UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
+ Type *Ty, const Twine &Name,
+ Instruction *InsertBefore)
+ : UnaryInstruction(Ty, iType, S, InsertBefore) {
+ Op<0>() = S;
+ setName(Name);
+ AssertOK();
+}
+
+UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
+ Type *Ty, const Twine &Name,
+ BasicBlock *InsertAtEnd)
+ : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
+ Op<0>() = S;
+ setName(Name);
+ AssertOK();
+}
+
+UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
+ const Twine &Name,
+ Instruction *InsertBefore) {
+ return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
+}
+
+UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
+ const Twine &Name,
+ BasicBlock *InsertAtEnd) {
+ UnaryOperator *Res = Create(Op, S, Name);
+ InsertAtEnd->getInstList().push_back(Res);
+ return Res;
+}
+
+void UnaryOperator::AssertOK() {
+ Value *LHS = getOperand(0);
+ (void)LHS; // Silence warnings.
+#ifndef NDEBUG
+ switch (getOpcode()) {
+ case FNeg:
+ assert(getType() == LHS->getType() &&
+ "Unary operation should return same type as operand!");
+ assert(getType()->isFPOrFPVectorTy() &&
+ "Tried to create a floating-point operation on a "
+ "non-floating-point type!");
+ break;
+ default: llvm_unreachable("Invalid opcode provided");
+ }
+#endif
+}
+
+//===----------------------------------------------------------------------===//
+// BinaryOperator Class
+//===----------------------------------------------------------------------===//
+
+BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
+ Type *Ty, const Twine &Name,
+ Instruction *InsertBefore)
+ : Instruction(Ty, iType,
+ OperandTraits<BinaryOperator>::op_begin(this),
+ OperandTraits<BinaryOperator>::operands(this),
+ InsertBefore) {
+ Op<0>() = S1;
+ Op<1>() = S2;
+ setName(Name);
+ AssertOK();
+}
+
+BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
+ Type *Ty, const Twine &Name,
+ BasicBlock *InsertAtEnd)
+ : Instruction(Ty, iType,
+ OperandTraits<BinaryOperator>::op_begin(this),
+ OperandTraits<BinaryOperator>::operands(this),
+ InsertAtEnd) {
+ Op<0>() = S1;
+ Op<1>() = S2;
+ setName(Name);
+ AssertOK();
+}
+
+void BinaryOperator::AssertOK() {
+ Value *LHS = getOperand(0), *RHS = getOperand(1);
+ (void)LHS; (void)RHS; // Silence warnings.
+ assert(LHS->getType() == RHS->getType() &&
+ "Binary operator operand types must match!");
+#ifndef NDEBUG
+ switch (getOpcode()) {
+ case Add: case Sub:
+ case Mul:
+ assert(getType() == LHS->getType() &&
+ "Arithmetic operation should return same type as operands!");
+ assert(getType()->isIntOrIntVectorTy() &&
+ "Tried to create an integer operation on a non-integer type!");
+ break;
+ case FAdd: case FSub:
+ case FMul:
+ assert(getType() == LHS->getType() &&
+ "Arithmetic operation should return same type as operands!");
+ assert(getType()->isFPOrFPVectorTy() &&
+ "Tried to create a floating-point operation on a "
+ "non-floating-point type!");
+ break;
+ case UDiv:
+ case SDiv:
+ assert(getType() == LHS->getType() &&
+ "Arithmetic operation should return same type as operands!");
+ assert(getType()->isIntOrIntVectorTy() &&
+ "Incorrect operand type (not integer) for S/UDIV");
+ break;
+ case FDiv:
+ assert(getType() == LHS->getType() &&
+ "Arithmetic operation should return same type as operands!");
+ assert(getType()->isFPOrFPVectorTy() &&
+ "Incorrect operand type (not floating point) for FDIV");
+ break;
+ case URem:
+ case SRem:
+ assert(getType() == LHS->getType() &&
+ "Arithmetic operation should return same type as operands!");
+ assert(getType()->isIntOrIntVectorTy() &&
+ "Incorrect operand type (not integer) for S/UREM");
+ break;
+ case FRem:
+ assert(getType() == LHS->getType() &&
+ "Arithmetic operation should return same type as operands!");
+ assert(getType()->isFPOrFPVectorTy() &&
+ "Incorrect operand type (not floating point) for FREM");
+ break;
+ case Shl:
+ case LShr:
+ case AShr:
+ assert(getType() == LHS->getType() &&
+ "Shift operation should return same type as operands!");
+ assert(getType()->isIntOrIntVectorTy() &&
+ "Tried to create a shift operation on a non-integral type!");
+ break;
+ case And: case Or:
+ case Xor:
+ assert(getType() == LHS->getType() &&
+ "Logical operation should return same type as operands!");
+ assert(getType()->isIntOrIntVectorTy() &&
+ "Tried to create a logical operation on a non-integral type!");
+ break;
+ default: llvm_unreachable("Invalid opcode provided");
+ }
+#endif
+}
+
+BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
+ const Twine &Name,
+ Instruction *InsertBefore) {
+ assert(S1->getType() == S2->getType() &&
+ "Cannot create binary operator with two operands of differing type!");
+ return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
+}
+
+BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
+ const Twine &Name,
+ BasicBlock *InsertAtEnd) {
+ BinaryOperator *Res = Create(Op, S1, S2, Name);
+ InsertAtEnd->getInstList().push_back(Res);
+ return Res;
+}
+
+BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
+ Instruction *InsertBefore) {
+ Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
+ return new BinaryOperator(Instruction::Sub,
+ zero, Op,
+ Op->getType(), Name, InsertBefore);
+}
+
+BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
+ BasicBlock *InsertAtEnd) {
+ Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
+ return new BinaryOperator(Instruction::Sub,
+ zero, Op,
+ Op->getType(), Name, InsertAtEnd);
+}
+
+BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
+ Instruction *InsertBefore) {
+ Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
+ return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
+}
+
+BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
+ BasicBlock *InsertAtEnd) {
+ Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
+ return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
+}
+
+BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
+ Instruction *InsertBefore) {
+ Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
+ return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
+}
+
+BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
+ BasicBlock *InsertAtEnd) {
+ Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
+ return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
+}
+
+BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
+ Instruction *InsertBefore) {
+ Constant *C = Constant::getAllOnesValue(Op->getType());
+ return new BinaryOperator(Instruction::Xor, Op, C,
+ Op->getType(), Name, InsertBefore);
+}
+
+BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
+ BasicBlock *InsertAtEnd) {
+ Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
+ return new BinaryOperator(Instruction::Xor, Op, AllOnes,
+ Op->getType(), Name, InsertAtEnd);
+}
+
+// Exchange the two operands to this instruction. This instruction is safe to
+// use on any binary instruction and does not modify the semantics of the
+// instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
+// is changed.
+bool BinaryOperator::swapOperands() {
+ if (!isCommutative())
+ return true; // Can't commute operands
+ Op<0>().swap(Op<1>());
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// FPMathOperator Class
+//===----------------------------------------------------------------------===//
+
+float FPMathOperator::getFPAccuracy() const {
+ const MDNode *MD =
+ cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
+ if (!MD)
+ return 0.0;
+ ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
+ return Accuracy->getValueAPF().convertToFloat();
+}
+
+//===----------------------------------------------------------------------===//
+// CastInst Class
+//===----------------------------------------------------------------------===//
+
+// Just determine if this cast only deals with integral->integral conversion.
+bool CastInst::isIntegerCast() const {
+ switch (getOpcode()) {
+ default: return false;
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::Trunc:
+ return true;
+ case Instruction::BitCast:
+ return getOperand(0)->getType()->isIntegerTy() &&
+ getType()->isIntegerTy();
+ }
+}
+
+bool CastInst::isLosslessCast() const {
+ // Only BitCast can be lossless, exit fast if we're not BitCast
+ if (getOpcode() != Instruction::BitCast)
+ return false;
+
+ // Identity cast is always lossless
+ Type *SrcTy = getOperand(0)->getType();
+ Type *DstTy = getType();
+ if (SrcTy == DstTy)
+ return true;
+
+ // Pointer to pointer is always lossless.
+ if (SrcTy->isPointerTy())
+ return DstTy->isPointerTy();
+ return false; // Other types have no identity values
+}
+
+/// This function determines if the CastInst does not require any bits to be
+/// changed in order to effect the cast. Essentially, it identifies cases where
+/// no code gen is necessary for the cast, hence the name no-op cast. For
+/// example, the following are all no-op casts:
+/// # bitcast i32* %x to i8*
+/// # bitcast <2 x i32> %x to <4 x i16>
+/// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
+/// Determine if the described cast is a no-op.
+bool CastInst::isNoopCast(Instruction::CastOps Opcode,
+ Type *SrcTy,
+ Type *DestTy,
+ const DataLayout &DL) {
+ assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
+ switch (Opcode) {
+ default: llvm_unreachable("Invalid CastOp");
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::AddrSpaceCast:
+ // TODO: Target informations may give a more accurate answer here.
+ return false;
+ case Instruction::BitCast:
+ return true; // BitCast never modifies bits.
+ case Instruction::PtrToInt:
+ return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
+ DestTy->getScalarSizeInBits();
+ case Instruction::IntToPtr:
+ return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
+ SrcTy->getScalarSizeInBits();
+ }
+}
+
+bool CastInst::isNoopCast(const DataLayout &DL) const {
+ return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
+}
+
+/// This function determines if a pair of casts can be eliminated and what
+/// opcode should be used in the elimination. This assumes that there are two
+/// instructions like this:
+/// * %F = firstOpcode SrcTy %x to MidTy
+/// * %S = secondOpcode MidTy %F to DstTy
+/// The function returns a resultOpcode so these two casts can be replaced with:
+/// * %Replacement = resultOpcode %SrcTy %x to DstTy
+/// If no such cast is permitted, the function returns 0.
+unsigned CastInst::isEliminableCastPair(
+ Instruction::CastOps firstOp, Instruction::CastOps secondOp,
+ Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
+ Type *DstIntPtrTy) {
+ // Define the 144 possibilities for these two cast instructions. The values
+ // in this matrix determine what to do in a given situation and select the
+ // case in the switch below. The rows correspond to firstOp, the columns
+ // correspond to secondOp. In looking at the table below, keep in mind
+ // the following cast properties:
+ //
+ // Size Compare Source Destination
+ // Operator Src ? Size Type Sign Type Sign
+ // -------- ------------ ------------------- ---------------------
+ // TRUNC > Integer Any Integral Any
+ // ZEXT < Integral Unsigned Integer Any
+ // SEXT < Integral Signed Integer Any
+ // FPTOUI n/a FloatPt n/a Integral Unsigned
+ // FPTOSI n/a FloatPt n/a Integral Signed
+ // UITOFP n/a Integral Unsigned FloatPt n/a
+ // SITOFP n/a Integral Signed FloatPt n/a
+ // FPTRUNC > FloatPt n/a FloatPt n/a
+ // FPEXT < FloatPt n/a FloatPt n/a
+ // PTRTOINT n/a Pointer n/a Integral Unsigned
+ // INTTOPTR n/a Integral Unsigned Pointer n/a
+ // BITCAST = FirstClass n/a FirstClass n/a
+ // ADDRSPCST n/a Pointer n/a Pointer n/a
+ //
+ // NOTE: some transforms are safe, but we consider them to be non-profitable.
+ // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
+ // into "fptoui double to i64", but this loses information about the range
+ // of the produced value (we no longer know the top-part is all zeros).
+ // Further this conversion is often much more expensive for typical hardware,
+ // and causes issues when building libgcc. We disallow fptosi+sext for the
+ // same reason.
+ const unsigned numCastOps =
+ Instruction::CastOpsEnd - Instruction::CastOpsBegin;
+ static const uint8_t CastResults[numCastOps][numCastOps] = {
+ // T F F U S F F P I B A -+
+ // R Z S P P I I T P 2 N T S |
+ // U E E 2 2 2 2 R E I T C C +- secondOp
+ // N X X U S F F N X N 2 V V |
+ // C T T I I P P C T T P T T -+
+ { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
+ { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
+ { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
+ { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
+ { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
+ { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
+ { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
+ { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
+ { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
+ { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
+ { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
+ { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
+ };
+
+ // TODO: This logic could be encoded into the table above and handled in the
+ // switch below.
+ // If either of the casts are a bitcast from scalar to vector, disallow the
+ // merging. However, any pair of bitcasts are allowed.
+ bool IsFirstBitcast = (firstOp == Instruction::BitCast);
+ bool IsSecondBitcast = (secondOp == Instruction::BitCast);
+ bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
+
+ // Check if any of the casts convert scalars <-> vectors.
+ if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
+ (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
+ if (!AreBothBitcasts)
+ return 0;
+
+ int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
+ [secondOp-Instruction::CastOpsBegin];
+ switch (ElimCase) {
+ case 0:
+ // Categorically disallowed.
+ return 0;
+ case 1:
+ // Allowed, use first cast's opcode.
+ return firstOp;
+ case 2:
+ // Allowed, use second cast's opcode.
+ return secondOp;
+ case 3:
+ // No-op cast in second op implies firstOp as long as the DestTy
+ // is integer and we are not converting between a vector and a
+ // non-vector type.
+ if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
+ return firstOp;
+ return 0;
+ case 4:
+ // No-op cast in second op implies firstOp as long as the DestTy
+ // is floating point.
+ if (DstTy->isFloatingPointTy())
+ return firstOp;
+ return 0;
+ case 5:
+ // No-op cast in first op implies secondOp as long as the SrcTy
+ // is an integer.
+ if (SrcTy->isIntegerTy())
+ return secondOp;
+ return 0;
+ case 6:
+ // No-op cast in first op implies secondOp as long as the SrcTy
+ // is a floating point.
+ if (SrcTy->isFloatingPointTy())
+ return secondOp;
+ return 0;
+ case 7: {
+ // Disable inttoptr/ptrtoint optimization if enabled.
+ if (DisableI2pP2iOpt)
+ return 0;
+
+ // Cannot simplify if address spaces are different!
+ if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
+ return 0;
+
+ unsigned MidSize = MidTy->getScalarSizeInBits();
+ // We can still fold this without knowing the actual sizes as long we
+ // know that the intermediate pointer is the largest possible
+ // pointer size.
+ // FIXME: Is this always true?
+ if (MidSize == 64)
+ return Instruction::BitCast;
+
+ // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
+ if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
+ return 0;
+ unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
+ if (MidSize >= PtrSize)
+ return Instruction::BitCast;
+ return 0;
+ }
+ case 8: {
+ // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
+ // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
+ // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
+ unsigned SrcSize = SrcTy->getScalarSizeInBits();
+ unsigned DstSize = DstTy->getScalarSizeInBits();
+ if (SrcSize == DstSize)
+ return Instruction::BitCast;
+ else if (SrcSize < DstSize)
+ return firstOp;
+ return secondOp;
+ }
+ case 9:
+ // zext, sext -> zext, because sext can't sign extend after zext
+ return Instruction::ZExt;
+ case 11: {
+ // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
+ if (!MidIntPtrTy)
+ return 0;
+ unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
+ unsigned SrcSize = SrcTy->getScalarSizeInBits();
+ unsigned DstSize = DstTy->getScalarSizeInBits();
+ if (SrcSize <= PtrSize && SrcSize == DstSize)
+ return Instruction::BitCast;
+ return 0;
+ }
+ case 12:
+ // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
+ // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
+ if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
+ return Instruction::AddrSpaceCast;
+ return Instruction::BitCast;
+ case 13:
+ // FIXME: this state can be merged with (1), but the following assert
+ // is useful to check the correcteness of the sequence due to semantic
+ // change of bitcast.
+ assert(
+ SrcTy->isPtrOrPtrVectorTy() &&
+ MidTy->isPtrOrPtrVectorTy() &&
+ DstTy->isPtrOrPtrVectorTy() &&
+ SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
+ MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
+ "Illegal addrspacecast, bitcast sequence!");
+ // Allowed, use first cast's opcode
+ return firstOp;
+ case 14: {
+ // bitcast, addrspacecast -> addrspacecast if the element type of
+ // bitcast's source is the same as that of addrspacecast's destination.
+ PointerType *SrcPtrTy = cast<PointerType>(SrcTy->getScalarType());
+ PointerType *DstPtrTy = cast<PointerType>(DstTy->getScalarType());
+ if (SrcPtrTy->hasSameElementTypeAs(DstPtrTy))
+ return Instruction::AddrSpaceCast;
+ return 0;
+ }
+ case 15:
+ // FIXME: this state can be merged with (1), but the following assert
+ // is useful to check the correcteness of the sequence due to semantic
+ // change of bitcast.
+ assert(
+ SrcTy->isIntOrIntVectorTy() &&
+ MidTy->isPtrOrPtrVectorTy() &&
+ DstTy->isPtrOrPtrVectorTy() &&
+ MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
+ "Illegal inttoptr, bitcast sequence!");
+ // Allowed, use first cast's opcode
+ return firstOp;
+ case 16:
+ // FIXME: this state can be merged with (2), but the following assert
+ // is useful to check the correcteness of the sequence due to semantic
+ // change of bitcast.
+ assert(
+ SrcTy->isPtrOrPtrVectorTy() &&
+ MidTy->isPtrOrPtrVectorTy() &&
+ DstTy->isIntOrIntVectorTy() &&
+ SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
+ "Illegal bitcast, ptrtoint sequence!");
+ // Allowed, use second cast's opcode
+ return secondOp;
+ case 17:
+ // (sitofp (zext x)) -> (uitofp x)
+ return Instruction::UIToFP;
+ case 99:
+ // Cast combination can't happen (error in input). This is for all cases
+ // where the MidTy is not the same for the two cast instructions.
+ llvm_unreachable("Invalid Cast Combination");
+ default:
+ llvm_unreachable("Error in CastResults table!!!");
+ }
+}
+
+CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
+ const Twine &Name, Instruction *InsertBefore) {
+ assert(castIsValid(op, S, Ty) && "Invalid cast!");
+ // Construct and return the appropriate CastInst subclass
+ switch (op) {
+ case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
+ case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
+ case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
+ case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
+ case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
+ case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
+ case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
+ case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
+ case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
+ case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
+ case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
+ case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
+ case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
+ default: llvm_unreachable("Invalid opcode provided");
+ }
+}
+
+CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
+ const Twine &Name, BasicBlock *InsertAtEnd) {
+ assert(castIsValid(op, S, Ty) && "Invalid cast!");
+ // Construct and return the appropriate CastInst subclass
+ switch (op) {
+ case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
+ case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
+ case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
+ case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
+ case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
+ case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
+ case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
+ case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
+ case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
+ case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
+ case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
+ case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
+ case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
+ default: llvm_unreachable("Invalid opcode provided");
+ }
+}
+
+CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
+ const Twine &Name,
+ Instruction *InsertBefore) {
+ if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
+ return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
+ return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
+ const Twine &Name,
+ BasicBlock *InsertAtEnd) {
+ if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
+ return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
+ return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
+}
+
+CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
+ const Twine &Name,
+ Instruction *InsertBefore) {
+ if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
+ return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
+ return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
+ const Twine &Name,
+ BasicBlock *InsertAtEnd) {
+ if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
+ return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
+ return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
+}
+
+CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
+ const Twine &Name,
+ Instruction *InsertBefore) {
+ if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
+ return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
+ return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
+ const Twine &Name,
+ BasicBlock *InsertAtEnd) {
+ if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
+ return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
+ return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
+}
+
+CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
+ const Twine &Name,
+ BasicBlock *InsertAtEnd) {
+ assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
+ assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
+ "Invalid cast");
+ assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
+ assert((!Ty->isVectorTy() ||
+ cast<VectorType>(Ty)->getElementCount() ==
+ cast<VectorType>(S->getType())->getElementCount()) &&
+ "Invalid cast");
+
+ if (Ty->isIntOrIntVectorTy())
+ return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
+
+ return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
+}
+
+/// Create a BitCast or a PtrToInt cast instruction
+CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
+ const Twine &Name,
+ Instruction *InsertBefore) {
+ assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
+ assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
+ "Invalid cast");
+ assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
+ assert((!Ty->isVectorTy() ||
+ cast<VectorType>(Ty)->getElementCount() ==
+ cast<VectorType>(S->getType())->getElementCount()) &&
+ "Invalid cast");
+
+ if (Ty->isIntOrIntVectorTy())
+ return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
+
+ return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
+ Value *S, Type *Ty,
+ const Twine &Name,
+ BasicBlock *InsertAtEnd) {
+ assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
+ assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
+
+ if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
+ return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
+
+ return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
+}
+
+CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
+ Value *S, Type *Ty,
+ const Twine &Name,
+ Instruction *InsertBefore) {
+ assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
+ assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
+
+ if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
+ return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
+
+ return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
+ const Twine &Name,
+ Instruction *InsertBefore) {
+ if (S->getType()->isPointerTy() && Ty->isIntegerTy())
+ return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
+ if (S->getType()->isIntegerTy() && Ty->isPointerTy())
+ return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
+
+ return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
+ bool isSigned, const Twine &Name,
+ Instruction *InsertBefore) {
+ assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
+ "Invalid integer cast");
+ unsigned SrcBits = C->getType()->getScalarSizeInBits();
+ unsigned DstBits = Ty->getScalarSizeInBits();
+ Instruction::CastOps opcode =
+ (SrcBits == DstBits ? Instruction::BitCast :
+ (SrcBits > DstBits ? Instruction::Trunc :
+ (isSigned ? Instruction::SExt : Instruction::ZExt)));
+ return Create(opcode, C, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
+ bool isSigned, const Twine &Name,
+ BasicBlock *InsertAtEnd) {
+ assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
+ "Invalid cast");
+ unsigned SrcBits = C->getType()->getScalarSizeInBits();
+ unsigned DstBits = Ty->getScalarSizeInBits();
+ Instruction::CastOps opcode =
+ (SrcBits == DstBits ? Instruction::BitCast :
+ (SrcBits > DstBits ? Instruction::Trunc :
+ (isSigned ? Instruction::SExt : Instruction::ZExt)));
+ return Create(opcode, C, Ty, Name, InsertAtEnd);
+}
+
+CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
+ const Twine &Name,
+ Instruction *InsertBefore) {
+ assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
+ "Invalid cast");
+ unsigned SrcBits = C->getType()->getScalarSizeInBits();
+ unsigned DstBits = Ty->getScalarSizeInBits();
+ Instruction::CastOps opcode =
+ (SrcBits == DstBits ? Instruction::BitCast :
+ (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
+ return Create(opcode, C, Ty, Name, InsertBefore);
+}
+
+CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
+ const Twine &Name,
+ BasicBlock *InsertAtEnd) {
+ assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
+ "Invalid cast");
+ unsigned SrcBits = C->getType()->getScalarSizeInBits();
+ unsigned DstBits = Ty->getScalarSizeInBits();
+ Instruction::CastOps opcode =
+ (SrcBits == DstBits ? Instruction::BitCast :
+ (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
+ return Create(opcode, C, Ty, Name, InsertAtEnd);
+}
+
+bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
+ if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
+ return false;
+
+ if (SrcTy == DestTy)
+ return true;
+
+ if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
+ if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
+ if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
+ // An element by element cast. Valid if casting the elements is valid.
+ SrcTy = SrcVecTy->getElementType();
+ DestTy = DestVecTy->getElementType();
+ }
+ }
+ }
+
+ if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
+ if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
+ return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
+ }
+ }
+
+ TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
+ TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
+
+ // Could still have vectors of pointers if the number of elements doesn't
+ // match
+ if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
+ return false;
+
+ if (SrcBits != DestBits)
+ return false;
+
+ if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
+ return false;
+
+ return true;
+}
+
+bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
+ const DataLayout &DL) {
+ // ptrtoint and inttoptr are not allowed on non-integral pointers
+ if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
+ if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
+ return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
+ !DL.isNonIntegralPointerType(PtrTy));
+ if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
+ if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
+ return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
+ !DL.isNonIntegralPointerType(PtrTy));
+
+ return isBitCastable(SrcTy, DestTy);
+}
+
+// Provide a way to get a "cast" where the cast opcode is inferred from the
+// types and size of the operand. This, basically, is a parallel of the
+// logic in the castIsValid function below. This axiom should hold:
+// castIsValid( getCastOpcode(Val, Ty), Val, Ty)
+// should not assert in castIsValid. In other words, this produces a "correct"
+// casting opcode for the arguments passed to it.
+Instruction::CastOps
+CastInst::getCastOpcode(
+ const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
+ Type *SrcTy = Src->getType();
+
+ assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
+ "Only first class types are castable!");
+
+ if (SrcTy == DestTy)
+ return BitCast;
+
+ // FIXME: Check address space sizes here
+ if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
+ if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
+ if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
+ // An element by element cast. Find the appropriate opcode based on the
+ // element types.
+ SrcTy = SrcVecTy->getElementType();
+ DestTy = DestVecTy->getElementType();
+ }
+
+ // Get the bit sizes, we'll need these
+ unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
+ unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
+
+ // Run through the possibilities ...
+ if (DestTy->isIntegerTy()) { // Casting to integral
+ if (SrcTy->isIntegerTy()) { // Casting from integral
+ if (DestBits < SrcBits)
+ return Trunc; // int -> smaller int
+ else if (DestBits > SrcBits) { // its an extension
+ if (SrcIsSigned)
+ return SExt; // signed -> SEXT
+ else
+ return ZExt; // unsigned -> ZEXT
+ } else {
+ return BitCast; // Same size, No-op cast
+ }
+ } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
+ if (DestIsSigned)
+ return FPToSI; // FP -> sint
+ else
+ return FPToUI; // FP -> uint
+ } else if (SrcTy->isVectorTy()) {
+ assert(DestBits == SrcBits &&
+ "Casting vector to integer of different width");
+ return BitCast; // Same size, no-op cast
+ } else {
+ assert(SrcTy->isPointerTy() &&
+ "Casting from a value that is not first-class type");
+ return PtrToInt; // ptr -> int
+ }
+ } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
+ if (SrcTy->isIntegerTy()) { // Casting from integral
+ if (SrcIsSigned)
+ return SIToFP; // sint -> FP
+ else
+ return UIToFP; // uint -> FP
+ } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
+ if (DestBits < SrcBits) {
+ return FPTrunc; // FP -> smaller FP
+ } else if (DestBits > SrcBits) {
+ return FPExt; // FP -> larger FP
+ } else {
+ return BitCast; // same size, no-op cast
+ }
+ } else if (SrcTy->isVectorTy()) {
+ assert(DestBits == SrcBits &&
+ "Casting vector to floating point of different width");
+ return BitCast; // same size, no-op cast
+ }
+ llvm_unreachable("Casting pointer or non-first class to float");
+ } else if (DestTy->isVectorTy()) {
+ assert(DestBits == SrcBits &&
+ "Illegal cast to vector (wrong type or size)");
+ return BitCast;
+ } else if (DestTy->isPointerTy()) {
+ if (SrcTy->isPointerTy()) {
+ if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
+ return AddrSpaceCast;
+ return BitCast; // ptr -> ptr
+ } else if (SrcTy->isIntegerTy()) {
+ return IntToPtr; // int -> ptr
+ }
+ llvm_unreachable("Casting pointer to other than pointer or int");
+ } else if (DestTy->isX86_MMXTy()) {
+ if (SrcTy->isVectorTy()) {
+ assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
+ return BitCast; // 64-bit vector to MMX
+ }
+ llvm_unreachable("Illegal cast to X86_MMX");
+ }
+ llvm_unreachable("Casting to type that is not first-class");
+}
+
+//===----------------------------------------------------------------------===//
+// CastInst SubClass Constructors
+//===----------------------------------------------------------------------===//
+
+/// Check that the construction parameters for a CastInst are correct. This
+/// could be broken out into the separate constructors but it is useful to have
+/// it in one place and to eliminate the redundant code for getting the sizes
+/// of the types involved.
+bool
+CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) {
+ if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
+ SrcTy->isAggregateType() || DstTy->isAggregateType())
+ return false;
+
+ // Get the size of the types in bits, and whether we are dealing
+ // with vector types, we'll need this later.
+ bool SrcIsVec = isa<VectorType>(SrcTy);
+ bool DstIsVec = isa<VectorType>(DstTy);
+ unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
+ unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
+
+ // If these are vector types, get the lengths of the vectors (using zero for
+ // scalar types means that checking that vector lengths match also checks that
+ // scalars are not being converted to vectors or vectors to scalars).
+ ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
+ : ElementCount::getFixed(0);
+ ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
+ : ElementCount::getFixed(0);
+
+ // Switch on the opcode provided
+ switch (op) {
+ default: return false; // This is an input error
+ case Instruction::Trunc:
+ return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
+ SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
+ case Instruction::ZExt:
+ return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
+ SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
+ case Instruction::SExt:
+ return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
+ SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
+ case Instruction::FPTrunc:
+ return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
+ SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
+ case Instruction::FPExt:
+ return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
+ SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
+ SrcEC == DstEC;
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
+ SrcEC == DstEC;
+ case Instruction::PtrToInt:
+ if (SrcEC != DstEC)
+ return false;
+ return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
+ case Instruction::IntToPtr:
+ if (SrcEC != DstEC)
+ return false;
+ return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
+ case Instruction::BitCast: {
+ PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
+ PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
+
+ // BitCast implies a no-op cast of type only. No bits change.
+ // However, you can't cast pointers to anything but pointers.
+ if (!SrcPtrTy != !DstPtrTy)
+ return false;
+
+ // For non-pointer cases, the cast is okay if the source and destination bit
+ // widths are identical.
+ if (!SrcPtrTy)
+ return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
+
+ // If both are pointers then the address spaces must match.
+ if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
+ return false;
+
+ // A vector of pointers must have the same number of elements.
+ if (SrcIsVec && DstIsVec)
+ return SrcEC == DstEC;
+ if (SrcIsVec)
+ return SrcEC == ElementCount::getFixed(1);
+ if (DstIsVec)
+ return DstEC == ElementCount::getFixed(1);
+
+ return true;
+ }
+ case Instruction::AddrSpaceCast: {
+ PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
+ if (!SrcPtrTy)
+ return false;
+
+ PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
+ if (!DstPtrTy)
+ return false;
+
+ if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
+ return false;
+
+ return SrcEC == DstEC;
+ }
+ }
+}
+
+TruncInst::TruncInst(
+ Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
+}
+
+TruncInst::TruncInst(
+ Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
+}
+
+ZExtInst::ZExtInst(
+ Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
+}
+
+ZExtInst::ZExtInst(
+ Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
+}
+SExtInst::SExtInst(
+ Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, SExt, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
+}
+
+SExtInst::SExtInst(
+ Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
+}
+
+FPTruncInst::FPTruncInst(
+ Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
+}
+
+FPTruncInst::FPTruncInst(
+ Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
+}
+
+FPExtInst::FPExtInst(
+ Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
+}
+
+FPExtInst::FPExtInst(
+ Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
+}
+
+UIToFPInst::UIToFPInst(
+ Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
+}
+
+UIToFPInst::UIToFPInst(
+ Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
+}
+
+SIToFPInst::SIToFPInst(
+ Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
+}
+
+SIToFPInst::SIToFPInst(
+ Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
+}
+
+FPToUIInst::FPToUIInst(
+ Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
+}
+
+FPToUIInst::FPToUIInst(
+ Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
+}
+
+FPToSIInst::FPToSIInst(
+ Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
+}
+
+FPToSIInst::FPToSIInst(
+ Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
+}
+
+PtrToIntInst::PtrToIntInst(
+ Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
+}
+
+PtrToIntInst::PtrToIntInst(
+ Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
+}
+
+IntToPtrInst::IntToPtrInst(
+ Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
+}
+
+IntToPtrInst::IntToPtrInst(
+ Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
+}
+
+BitCastInst::BitCastInst(
+ Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
+}
+
+BitCastInst::BitCastInst(
+ Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
+}
+
+AddrSpaceCastInst::AddrSpaceCastInst(
+ Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
+) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
+}
+
+AddrSpaceCastInst::AddrSpaceCastInst(
+ Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
+ assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
+}
+
+//===----------------------------------------------------------------------===//
+// CmpInst Classes
+//===----------------------------------------------------------------------===//
+
+CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
+ Value *RHS, const Twine &Name, Instruction *InsertBefore,
+ Instruction *FlagsSource)
+ : Instruction(ty, op,
+ OperandTraits<CmpInst>::op_begin(this),
+ OperandTraits<CmpInst>::operands(this),
+ InsertBefore) {
+ Op<0>() = LHS;
+ Op<1>() = RHS;
+ setPredicate((Predicate)predicate);
+ setName(Name);
+ if (FlagsSource)
+ copyIRFlags(FlagsSource);
+}
+
+CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
+ Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
+ : Instruction(ty, op,
+ OperandTraits<CmpInst>::op_begin(this),
+ OperandTraits<CmpInst>::operands(this),
+ InsertAtEnd) {
+ Op<0>() = LHS;
+ Op<1>() = RHS;
+ setPredicate((Predicate)predicate);
+ setName(Name);
+}
+
+CmpInst *
+CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
+ const Twine &Name, Instruction *InsertBefore) {
+ if (Op == Instruction::ICmp) {
+ if (InsertBefore)
+ return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
+ S1, S2, Name);
+ else
+ return new ICmpInst(CmpInst::Predicate(predicate),
+ S1, S2, Name);
+ }
+
+ if (InsertBefore)
+ return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
+ S1, S2, Name);
+ else
+ return new FCmpInst(CmpInst::Predicate(predicate),
+ S1, S2, Name);
+}
+
+CmpInst *
+CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
+ const Twine &Name, BasicBlock *InsertAtEnd) {
+ if (Op == Instruction::ICmp) {
+ return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
+ S1, S2, Name);
+ }
+ return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
+ S1, S2, Name);
+}
+
+void CmpInst::swapOperands() {
+ if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
+ IC->swapOperands();
+ else
+ cast<FCmpInst>(this)->swapOperands();
+}
+
+bool CmpInst::isCommutative() const {
+ if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
+ return IC->isCommutative();
+ return cast<FCmpInst>(this)->isCommutative();
+}
+
+bool CmpInst::isEquality(Predicate P) {
+ if (ICmpInst::isIntPredicate(P))
+ return ICmpInst::isEquality(P);
+ if (FCmpInst::isFPPredicate(P))
+ return FCmpInst::isEquality(P);
+ llvm_unreachable("Unsupported predicate kind");
+}
+
+CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
+ switch (pred) {
+ default: llvm_unreachable("Unknown cmp predicate!");
+ case ICMP_EQ: return ICMP_NE;
+ case ICMP_NE: return ICMP_EQ;
+ case ICMP_UGT: return ICMP_ULE;
+ case ICMP_ULT: return ICMP_UGE;
+ case ICMP_UGE: return ICMP_ULT;
+ case ICMP_ULE: return ICMP_UGT;
+ case ICMP_SGT: return ICMP_SLE;
+ case ICMP_SLT: return ICMP_SGE;
+ case ICMP_SGE: return ICMP_SLT;
+ case ICMP_SLE: return ICMP_SGT;
+
+ case FCMP_OEQ: return FCMP_UNE;
+ case FCMP_ONE: return FCMP_UEQ;
+ case FCMP_OGT: return FCMP_ULE;
+ case FCMP_OLT: return FCMP_UGE;
+ case FCMP_OGE: return FCMP_ULT;
+ case FCMP_OLE: return FCMP_UGT;
+ case FCMP_UEQ: return FCMP_ONE;
+ case FCMP_UNE: return FCMP_OEQ;
+ case FCMP_UGT: return FCMP_OLE;
+ case FCMP_ULT: return FCMP_OGE;
+ case FCMP_UGE: return FCMP_OLT;
+ case FCMP_ULE: return FCMP_OGT;
+ case FCMP_ORD: return FCMP_UNO;
+ case FCMP_UNO: return FCMP_ORD;
+ case FCMP_TRUE: return FCMP_FALSE;
+ case FCMP_FALSE: return FCMP_TRUE;
+ }
+}
+
+StringRef CmpInst::getPredicateName(Predicate Pred) {
+ switch (Pred) {
+ default: return "unknown";
+ case FCmpInst::FCMP_FALSE: return "false";
+ case FCmpInst::FCMP_OEQ: return "oeq";
+ case FCmpInst::FCMP_OGT: return "ogt";
+ case FCmpInst::FCMP_OGE: return "oge";
+ case FCmpInst::FCMP_OLT: return "olt";
+ case FCmpInst::FCMP_OLE: return "ole";
+ case FCmpInst::FCMP_ONE: return "one";
+ case FCmpInst::FCMP_ORD: return "ord";
+ case FCmpInst::FCMP_UNO: return "uno";
+ case FCmpInst::FCMP_UEQ: return "ueq";
+ case FCmpInst::FCMP_UGT: return "ugt";
+ case FCmpInst::FCMP_UGE: return "uge";
+ case FCmpInst::FCMP_ULT: return "ult";
+ case FCmpInst::FCMP_ULE: return "ule";
+ case FCmpInst::FCMP_UNE: return "une";
+ case FCmpInst::FCMP_TRUE: return "true";
+ case ICmpInst::ICMP_EQ: return "eq";
+ case ICmpInst::ICMP_NE: return "ne";
+ case ICmpInst::ICMP_SGT: return "sgt";
+ case ICmpInst::ICMP_SGE: return "sge";
+ case ICmpInst::ICMP_SLT: return "slt";
+ case ICmpInst::ICMP_SLE: return "sle";
+ case ICmpInst::ICMP_UGT: return "ugt";
+ case ICmpInst::ICMP_UGE: return "uge";
+ case ICmpInst::ICMP_ULT: return "ult";
+ case ICmpInst::ICMP_ULE: return "ule";
+ }
+}
+
+ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
+ switch (pred) {
+ default: llvm_unreachable("Unknown icmp predicate!");
+ case ICMP_EQ: case ICMP_NE:
+ case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
+ return pred;
+ case ICMP_UGT: return ICMP_SGT;
+ case ICMP_ULT: return ICMP_SLT;
+ case ICMP_UGE: return ICMP_SGE;
+ case ICMP_ULE: return ICMP_SLE;
+ }
+}
+
+ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
+ switch (pred) {
+ default: llvm_unreachable("Unknown icmp predicate!");
+ case ICMP_EQ: case ICMP_NE:
+ case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
+ return pred;
+ case ICMP_SGT: return ICMP_UGT;
+ case ICMP_SLT: return ICMP_ULT;
+ case ICMP_SGE: return ICMP_UGE;
+ case ICMP_SLE: return ICMP_ULE;
+ }
+}
+
+CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
+ switch (pred) {
+ default: llvm_unreachable("Unknown cmp predicate!");
+ case ICMP_EQ: case ICMP_NE:
+ return pred;
+ case ICMP_SGT: return ICMP_SLT;
+ case ICMP_SLT: return ICMP_SGT;
+ case ICMP_SGE: return ICMP_SLE;
+ case ICMP_SLE: return ICMP_SGE;
+ case ICMP_UGT: return ICMP_ULT;
+ case ICMP_ULT: return ICMP_UGT;
+ case ICMP_UGE: return ICMP_ULE;
+ case ICMP_ULE: return ICMP_UGE;
+
+ case FCMP_FALSE: case FCMP_TRUE:
+ case FCMP_OEQ: case FCMP_ONE:
+ case FCMP_UEQ: case FCMP_UNE:
+ case FCMP_ORD: case FCMP_UNO:
+ return pred;
+ case FCMP_OGT: return FCMP_OLT;
+ case FCMP_OLT: return FCMP_OGT;
+ case FCMP_OGE: return FCMP_OLE;
+ case FCMP_OLE: return FCMP_OGE;
+ case FCMP_UGT: return FCMP_ULT;
+ case FCMP_ULT: return FCMP_UGT;
+ case FCMP_UGE: return FCMP_ULE;
+ case FCMP_ULE: return FCMP_UGE;
+ }
+}
+
+bool CmpInst::isNonStrictPredicate(Predicate pred) {
+ switch (pred) {
+ case ICMP_SGE:
+ case ICMP_SLE:
+ case ICMP_UGE:
+ case ICMP_ULE:
+ case FCMP_OGE:
+ case FCMP_OLE:
+ case FCMP_UGE:
+ case FCMP_ULE:
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool CmpInst::isStrictPredicate(Predicate pred) {
+ switch (pred) {
+ case ICMP_SGT:
+ case ICMP_SLT:
+ case ICMP_UGT:
+ case ICMP_ULT:
+ case FCMP_OGT:
+ case FCMP_OLT:
+ case FCMP_UGT:
+ case FCMP_ULT:
+ return true;
+ default:
+ return false;
+ }
+}
+
+CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) {
+ switch (pred) {
+ case ICMP_SGE:
+ return ICMP_SGT;
+ case ICMP_SLE:
+ return ICMP_SLT;
+ case ICMP_UGE:
+ return ICMP_UGT;
+ case ICMP_ULE:
+ return ICMP_ULT;
+ case FCMP_OGE:
+ return FCMP_OGT;
+ case FCMP_OLE:
+ return FCMP_OLT;
+ case FCMP_UGE:
+ return FCMP_UGT;
+ case FCMP_ULE:
+ return FCMP_ULT;
+ default:
+ return pred;
+ }
+}
+
+CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
+ switch (pred) {
+ case ICMP_SGT:
+ return ICMP_SGE;
+ case ICMP_SLT:
+ return ICMP_SLE;
+ case ICMP_UGT:
+ return ICMP_UGE;
+ case ICMP_ULT:
+ return ICMP_ULE;
+ case FCMP_OGT:
+ return FCMP_OGE;
+ case FCMP_OLT:
+ return FCMP_OLE;
+ case FCMP_UGT:
+ return FCMP_UGE;
+ case FCMP_ULT:
+ return FCMP_ULE;
+ default:
+ return pred;
+ }
+}
+
+CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
+ assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
+
+ if (isStrictPredicate(pred))
+ return getNonStrictPredicate(pred);
+ if (isNonStrictPredicate(pred))
+ return getStrictPredicate(pred);
+
+ llvm_unreachable("Unknown predicate!");
+}
+
+CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
+ assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!");
+
+ switch (pred) {
+ default:
+ llvm_unreachable("Unknown predicate!");
+ case CmpInst::ICMP_ULT:
+ return CmpInst::ICMP_SLT;
+ case CmpInst::ICMP_ULE:
+ return CmpInst::ICMP_SLE;
+ case CmpInst::ICMP_UGT:
+ return CmpInst::ICMP_SGT;
+ case CmpInst::ICMP_UGE:
+ return CmpInst::ICMP_SGE;
+ }
+}
+
+CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) {
+ assert(CmpInst::isSigned(pred) && "Call only with signed predicates!");
+
+ switch (pred) {
+ default:
+ llvm_unreachable("Unknown predicate!");
+ case CmpInst::ICMP_SLT:
+ return CmpInst::ICMP_ULT;
+ case CmpInst::ICMP_SLE:
+ return CmpInst::ICMP_ULE;
+ case CmpInst::ICMP_SGT:
+ return CmpInst::ICMP_UGT;
+ case CmpInst::ICMP_SGE:
+ return CmpInst::ICMP_UGE;
+ }
+}
+
+bool CmpInst::isUnsigned(Predicate predicate) {
+ switch (predicate) {
+ default: return false;
+ case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE: return true;
+ }
+}
+
+bool CmpInst::isSigned(Predicate predicate) {
+ switch (predicate) {
+ default: return false;
+ case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE: return true;
+ }
+}
+
+bool ICmpInst::compare(const APInt &LHS, const APInt &RHS,
+ ICmpInst::Predicate Pred) {
+ assert(ICmpInst::isIntPredicate(Pred) && "Only for integer predicates!");
+ switch (Pred) {
+ case ICmpInst::Predicate::ICMP_EQ:
+ return LHS.eq(RHS);
+ case ICmpInst::Predicate::ICMP_NE:
+ return LHS.ne(RHS);
+ case ICmpInst::Predicate::ICMP_UGT:
+ return LHS.ugt(RHS);
+ case ICmpInst::Predicate::ICMP_UGE:
+ return LHS.uge(RHS);
+ case ICmpInst::Predicate::ICMP_ULT:
+ return LHS.ult(RHS);
+ case ICmpInst::Predicate::ICMP_ULE:
+ return LHS.ule(RHS);
+ case ICmpInst::Predicate::ICMP_SGT:
+ return LHS.sgt(RHS);
+ case ICmpInst::Predicate::ICMP_SGE:
+ return LHS.sge(RHS);
+ case ICmpInst::Predicate::ICMP_SLT:
+ return LHS.slt(RHS);
+ case ICmpInst::Predicate::ICMP_SLE:
+ return LHS.sle(RHS);
+ default:
+ llvm_unreachable("Unexpected non-integer predicate.");
+ };
+}
+
+bool FCmpInst::compare(const APFloat &LHS, const APFloat &RHS,
+ FCmpInst::Predicate Pred) {
+ APFloat::cmpResult R = LHS.compare(RHS);
+ switch (Pred) {
+ default:
+ llvm_unreachable("Invalid FCmp Predicate");
+ case FCmpInst::FCMP_FALSE:
+ return false;
+ case FCmpInst::FCMP_TRUE:
+ return true;
+ case FCmpInst::FCMP_UNO:
+ return R == APFloat::cmpUnordered;
+ case FCmpInst::FCMP_ORD:
+ return R != APFloat::cmpUnordered;
+ case FCmpInst::FCMP_UEQ:
+ return R == APFloat::cmpUnordered || R == APFloat::cmpEqual;
+ case FCmpInst::FCMP_OEQ:
+ return R == APFloat::cmpEqual;
+ case FCmpInst::FCMP_UNE:
+ return R != APFloat::cmpEqual;
+ case FCmpInst::FCMP_ONE:
+ return R == APFloat::cmpLessThan || R == APFloat::cmpGreaterThan;
+ case FCmpInst::FCMP_ULT:
+ return R == APFloat::cmpUnordered || R == APFloat::cmpLessThan;
+ case FCmpInst::FCMP_OLT:
+ return R == APFloat::cmpLessThan;
+ case FCmpInst::FCMP_UGT:
+ return R == APFloat::cmpUnordered || R == APFloat::cmpGreaterThan;
+ case FCmpInst::FCMP_OGT:
+ return R == APFloat::cmpGreaterThan;
+ case FCmpInst::FCMP_ULE:
+ return R != APFloat::cmpGreaterThan;
+ case FCmpInst::FCMP_OLE:
+ return R == APFloat::cmpLessThan || R == APFloat::cmpEqual;
+ case FCmpInst::FCMP_UGE:
+ return R != APFloat::cmpLessThan;
+ case FCmpInst::FCMP_OGE:
+ return R == APFloat::cmpGreaterThan || R == APFloat::cmpEqual;
+ }
+}
+
+CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) {
+ assert(CmpInst::isRelational(pred) &&
+ "Call only with non-equality predicates!");
+
+ if (isSigned(pred))
+ return getUnsignedPredicate(pred);
+ if (isUnsigned(pred))
+ return getSignedPredicate(pred);
+
+ llvm_unreachable("Unknown predicate!");
+}
+
+bool CmpInst::isOrdered(Predicate predicate) {
+ switch (predicate) {
+ default: return false;
+ case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
+ case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
+ case FCmpInst::FCMP_ORD: return true;
+ }
+}
+
+bool CmpInst::isUnordered(Predicate predicate) {
+ switch (predicate) {
+ default: return false;
+ case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
+ case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
+ case FCmpInst::FCMP_UNO: return true;
+ }
+}
+
+bool CmpInst::isTrueWhenEqual(Predicate predicate) {
+ switch(predicate) {
+ default: return false;
+ case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
+ case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
+ }
+}
+
+bool CmpInst::isFalseWhenEqual(Predicate predicate) {
+ switch(predicate) {
+ case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
+ case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
+ default: return false;
+ }
+}
+
+bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
+ // If the predicates match, then we know the first condition implies the
+ // second is true.
+ if (Pred1 == Pred2)
+ return true;
+
+ switch (Pred1) {
+ default:
+ break;
+ case ICMP_EQ:
+ // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
+ return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
+ Pred2 == ICMP_SLE;
+ case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
+ return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
+ case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
+ return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
+ case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
+ return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
+ case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
+ return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
+ }
+ return false;
+}
+
+bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
+ return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
+}
+
+//===----------------------------------------------------------------------===//
+// SwitchInst Implementation
+//===----------------------------------------------------------------------===//
+
+void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
+ assert(Value && Default && NumReserved);
+ ReservedSpace = NumReserved;
+ setNumHungOffUseOperands(2);
+ allocHungoffUses(ReservedSpace);
+
+ Op<0>() = Value;
+ Op<1>() = Default;
+}
+
+/// SwitchInst ctor - Create a new switch instruction, specifying a value to
+/// switch on and a default destination. The number of additional cases can
+/// be specified here to make memory allocation more efficient. This
+/// constructor can also autoinsert before another instruction.
+SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
+ Instruction *InsertBefore)
+ : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
+ nullptr, 0, InsertBefore) {
+ init(Value, Default, 2+NumCases*2);
+}
+
+/// SwitchInst ctor - Create a new switch instruction, specifying a value to
+/// switch on and a default destination. The number of additional cases can
+/// be specified here to make memory allocation more efficient. This
+/// constructor also autoinserts at the end of the specified BasicBlock.
+SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
+ BasicBlock *InsertAtEnd)
+ : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
+ nullptr, 0, InsertAtEnd) {
+ init(Value, Default, 2+NumCases*2);
+}
+
+SwitchInst::SwitchInst(const SwitchInst &SI)
+ : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
+ init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
+ setNumHungOffUseOperands(SI.getNumOperands());
+ Use *OL = getOperandList();
+ const Use *InOL = SI.getOperandList();
+ for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
+ OL[i] = InOL[i];
+ OL[i+1] = InOL[i+1];
+ }
+ SubclassOptionalData = SI.SubclassOptionalData;
+}
+
+/// addCase - Add an entry to the switch instruction...
+///
+void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
+ unsigned NewCaseIdx = getNumCases();
+ unsigned OpNo = getNumOperands();
+ if (OpNo+2 > ReservedSpace)
+ growOperands(); // Get more space!
+ // Initialize some new operands.
+ assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
+ setNumHungOffUseOperands(OpNo+2);
+ CaseHandle Case(this, NewCaseIdx);
+ Case.setValue(OnVal);
+ Case.setSuccessor(Dest);
+}
+
+/// removeCase - This method removes the specified case and its successor
+/// from the switch instruction.
+SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
+ unsigned idx = I->getCaseIndex();
+
+ assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
+
+ unsigned NumOps = getNumOperands();
+ Use *OL = getOperandList();
+
+ // Overwrite this case with the end of the list.
+ if (2 + (idx + 1) * 2 != NumOps) {
+ OL[2 + idx * 2] = OL[NumOps - 2];
+ OL[2 + idx * 2 + 1] = OL[NumOps - 1];
+ }
+
+ // Nuke the last value.
+ OL[NumOps-2].set(nullptr);
+ OL[NumOps-2+1].set(nullptr);
+ setNumHungOffUseOperands(NumOps-2);
+
+ return CaseIt(this, idx);
+}
+
+/// growOperands - grow operands - This grows the operand list in response
+/// to a push_back style of operation. This grows the number of ops by 3 times.
+///
+void SwitchInst::growOperands() {
+ unsigned e = getNumOperands();
+ unsigned NumOps = e*3;
+
+ ReservedSpace = NumOps;
+ growHungoffUses(ReservedSpace);
+}
+
+MDNode *
+SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
+ if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
+ if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
+ if (MDName->getString() == "branch_weights")
+ return ProfileData;
+ return nullptr;
+}
+
+MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
+ assert(Changed && "called only if metadata has changed");
+
+ if (!Weights)
+ return nullptr;
+
+ assert(SI.getNumSuccessors() == Weights->size() &&
+ "num of prof branch_weights must accord with num of successors");
+
+ bool AllZeroes =
+ all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
+
+ if (AllZeroes || Weights.getValue().size() < 2)
+ return nullptr;
+
+ return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
+}
+
+void SwitchInstProfUpdateWrapper::init() {
+ MDNode *ProfileData = getProfBranchWeightsMD(SI);
+ if (!ProfileData)
+ return;
+
+ if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
+ llvm_unreachable("number of prof branch_weights metadata operands does "
+ "not correspond to number of succesors");
+ }
+
+ SmallVector<uint32_t, 8> Weights;
+ for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
+ ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
+ uint32_t CW = C->getValue().getZExtValue();
+ Weights.push_back(CW);
+ }
+ this->Weights = std::move(Weights);
+}
+
+SwitchInst::CaseIt
+SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
+ if (Weights) {
+ assert(SI.getNumSuccessors() == Weights->size() &&
+ "num of prof branch_weights must accord with num of successors");
+ Changed = true;
+ // Copy the last case to the place of the removed one and shrink.
+ // This is tightly coupled with the way SwitchInst::removeCase() removes
+ // the cases in SwitchInst::removeCase(CaseIt).
+ Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
+ Weights.getValue().pop_back();
+ }
+ return SI.removeCase(I);
+}
+
+void SwitchInstProfUpdateWrapper::addCase(
+ ConstantInt *OnVal, BasicBlock *Dest,
+ SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
+ SI.addCase(OnVal, Dest);
+
+ if (!Weights && W && *W) {
+ Changed = true;
+ Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
+ Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
+ } else if (Weights) {
+ Changed = true;
+ Weights.getValue().push_back(W.getValueOr(0));
+ }
+ if (Weights)
+ assert(SI.getNumSuccessors() == Weights->size() &&
+ "num of prof branch_weights must accord with num of successors");
+}
+
+SymbolTableList<Instruction>::iterator
+SwitchInstProfUpdateWrapper::eraseFromParent() {
+ // Instruction is erased. Mark as unchanged to not touch it in the destructor.
+ Changed = false;
+ if (Weights)
+ Weights->resize(0);
+ return SI.eraseFromParent();
+}
+
+SwitchInstProfUpdateWrapper::CaseWeightOpt
+SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
+ if (!Weights)
+ return None;
+ return Weights.getValue()[idx];
+}
+
+void SwitchInstProfUpdateWrapper::setSuccessorWeight(
+ unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
+ if (!W)
+ return;
+
+ if (!Weights && *W)
+ Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
+
+ if (Weights) {
+ auto &OldW = Weights.getValue()[idx];
+ if (*W != OldW) {
+ Changed = true;
+ OldW = *W;
+ }
+ }
+}
+
+SwitchInstProfUpdateWrapper::CaseWeightOpt
+SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
+ unsigned idx) {
+ if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
+ if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
+ return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
+ ->getValue()
+ .getZExtValue();
+
+ return None;
+}
+
+//===----------------------------------------------------------------------===//
+// IndirectBrInst Implementation
+//===----------------------------------------------------------------------===//
+
+void IndirectBrInst::init(Value *Address, unsigned NumDests) {
+ assert(Address && Address->getType()->isPointerTy() &&
+ "Address of indirectbr must be a pointer");
+ ReservedSpace = 1+NumDests;
+ setNumHungOffUseOperands(1);
+ allocHungoffUses(ReservedSpace);
+
+ Op<0>() = Address;
+}
+
+
+/// growOperands - grow operands - This grows the operand list in response
+/// to a push_back style of operation. This grows the number of ops by 2 times.
+///
+void IndirectBrInst::growOperands() {
+ unsigned e = getNumOperands();
+ unsigned NumOps = e*2;
+
+ ReservedSpace = NumOps;
+ growHungoffUses(ReservedSpace);
+}
+
+IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
+ Instruction *InsertBefore)
+ : Instruction(Type::getVoidTy(Address->getContext()),
+ Instruction::IndirectBr, nullptr, 0, InsertBefore) {
+ init(Address, NumCases);
+}
+
+IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
+ BasicBlock *InsertAtEnd)
+ : Instruction(Type::getVoidTy(Address->getContext()),
+ Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
+ init(Address, NumCases);
+}
+
+IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
+ : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
+ nullptr, IBI.getNumOperands()) {
+ allocHungoffUses(IBI.getNumOperands());
+ Use *OL = getOperandList();
+ const Use *InOL = IBI.getOperandList();
+ for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
+ OL[i] = InOL[i];
+ SubclassOptionalData = IBI.SubclassOptionalData;
+}
+
+/// addDestination - Add a destination.
+///
+void IndirectBrInst::addDestination(BasicBlock *DestBB) {
+ unsigned OpNo = getNumOperands();
+ if (OpNo+1 > ReservedSpace)
+ growOperands(); // Get more space!
+ // Initialize some new operands.
+ assert(OpNo < ReservedSpace && "Growing didn't work!");
+ setNumHungOffUseOperands(OpNo+1);
+ getOperandList()[OpNo] = DestBB;
+}
+
+/// removeDestination - This method removes the specified successor from the
+/// indirectbr instruction.
+void IndirectBrInst::removeDestination(unsigned idx) {
+ assert(idx < getNumOperands()-1 && "Successor index out of range!");
+
+ unsigned NumOps = getNumOperands();
+ Use *OL = getOperandList();
+
+ // Replace this value with the last one.
+ OL[idx+1] = OL[NumOps-1];
+
+ // Nuke the last value.
+ OL[NumOps-1].set(nullptr);
+ setNumHungOffUseOperands(NumOps-1);
+}
+
+//===----------------------------------------------------------------------===//
+// FreezeInst Implementation
+//===----------------------------------------------------------------------===//
+
+FreezeInst::FreezeInst(Value *S,
+ const Twine &Name, Instruction *InsertBefore)
+ : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
+ setName(Name);
+}
+
+FreezeInst::FreezeInst(Value *S,
+ const Twine &Name, BasicBlock *InsertAtEnd)
+ : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
+ setName(Name);
+}
+
+//===----------------------------------------------------------------------===//
+// cloneImpl() implementations
+//===----------------------------------------------------------------------===//
+
+// Define these methods here so vtables don't get emitted into every translation
+// unit that uses these classes.
+
+GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
+ return new (getNumOperands()) GetElementPtrInst(*this);
+}
+
+UnaryOperator *UnaryOperator::cloneImpl() const {
+ return Create(getOpcode(), Op<0>());
+}
+
+BinaryOperator *BinaryOperator::cloneImpl() const {
+ return Create(getOpcode(), Op<0>(), Op<1>());
+}
+
+FCmpInst *FCmpInst::cloneImpl() const {
+ return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
+}
+
+ICmpInst *ICmpInst::cloneImpl() const {
+ return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
+}
+
+ExtractValueInst *ExtractValueInst::cloneImpl() const {
+ return new ExtractValueInst(*this);
+}
+
+InsertValueInst *InsertValueInst::cloneImpl() const {
+ return new InsertValueInst(*this);
+}
+
+AllocaInst *AllocaInst::cloneImpl() const {
+ AllocaInst *Result =
+ new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
+ getOperand(0), getAlign());
+ Result->setUsedWithInAlloca(isUsedWithInAlloca());
+ Result->setSwiftError(isSwiftError());
+ return Result;
+}
+
+LoadInst *LoadInst::cloneImpl() const {
+ return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
+ getAlign(), getOrdering(), getSyncScopeID());
+}
+
+StoreInst *StoreInst::cloneImpl() const {
+ return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
+ getOrdering(), getSyncScopeID());
+}
+
+AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
+ AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
+ getOperand(0), getOperand(1), getOperand(2), getAlign(),
+ getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
+ Result->setVolatile(isVolatile());
+ Result->setWeak(isWeak());
+ return Result;
+}
+
+AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
+ AtomicRMWInst *Result =
+ new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
+ getAlign(), getOrdering(), getSyncScopeID());
+ Result->setVolatile(isVolatile());
+ return Result;
+}
+
+FenceInst *FenceInst::cloneImpl() const {
+ return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
+}
+
+TruncInst *TruncInst::cloneImpl() const {
+ return new TruncInst(getOperand(0), getType());
+}
+
+ZExtInst *ZExtInst::cloneImpl() const {
+ return new ZExtInst(getOperand(0), getType());
+}
+
+SExtInst *SExtInst::cloneImpl() const {
+ return new SExtInst(getOperand(0), getType());
+}
+
+FPTruncInst *FPTruncInst::cloneImpl() const {
+ return new FPTruncInst(getOperand(0), getType());
+}
+
+FPExtInst *FPExtInst::cloneImpl() const {
+ return new FPExtInst(getOperand(0), getType());
+}
+
+UIToFPInst *UIToFPInst::cloneImpl() const {
+ return new UIToFPInst(getOperand(0), getType());
+}
+
+SIToFPInst *SIToFPInst::cloneImpl() const {
+ return new SIToFPInst(getOperand(0), getType());
+}
+
+FPToUIInst *FPToUIInst::cloneImpl() const {
+ return new FPToUIInst(getOperand(0), getType());
+}
+
+FPToSIInst *FPToSIInst::cloneImpl() const {
+ return new FPToSIInst(getOperand(0), getType());
+}
+
+PtrToIntInst *PtrToIntInst::cloneImpl() const {
+ return new PtrToIntInst(getOperand(0), getType());
+}
+
+IntToPtrInst *IntToPtrInst::cloneImpl() const {
+ return new IntToPtrInst(getOperand(0), getType());
+}
+
+BitCastInst *BitCastInst::cloneImpl() const {
+ return new BitCastInst(getOperand(0), getType());
+}
+
+AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
+ return new AddrSpaceCastInst(getOperand(0), getType());
+}
+
+CallInst *CallInst::cloneImpl() const {
+ if (hasOperandBundles()) {
+ unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
+ return new(getNumOperands(), DescriptorBytes) CallInst(*this);
+ }
+ return new(getNumOperands()) CallInst(*this);
+}
+
+SelectInst *SelectInst::cloneImpl() const {
+ return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
+}
+
+VAArgInst *VAArgInst::cloneImpl() const {
+ return new VAArgInst(getOperand(0), getType());
+}
+
+ExtractElementInst *ExtractElementInst::cloneImpl() const {
+ return ExtractElementInst::Create(getOperand(0), getOperand(1));
+}
+
+InsertElementInst *InsertElementInst::cloneImpl() const {
+ return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
+}
+
+ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
+ return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
+}
+
+PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
+
+LandingPadInst *LandingPadInst::cloneImpl() const {
+ return new LandingPadInst(*this);
+}
+
+ReturnInst *ReturnInst::cloneImpl() const {
+ return new(getNumOperands()) ReturnInst(*this);
+}
+
+BranchInst *BranchInst::cloneImpl() const {
+ return new(getNumOperands()) BranchInst(*this);
+}
+
+SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
+
+IndirectBrInst *IndirectBrInst::cloneImpl() const {
+ return new IndirectBrInst(*this);
+}
+
+InvokeInst *InvokeInst::cloneImpl() const {
+ if (hasOperandBundles()) {
+ unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
+ return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
+ }
+ return new(getNumOperands()) InvokeInst(*this);
+}
+
+CallBrInst *CallBrInst::cloneImpl() const {
+ if (hasOperandBundles()) {
+ unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
+ return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
+ }
+ return new (getNumOperands()) CallBrInst(*this);
+}
+
+ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
+
+CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
+ return new (getNumOperands()) CleanupReturnInst(*this);
+}
+
+CatchReturnInst *CatchReturnInst::cloneImpl() const {
+ return new (getNumOperands()) CatchReturnInst(*this);
+}
+
+CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
+ return new CatchSwitchInst(*this);
+}
+
+FuncletPadInst *FuncletPadInst::cloneImpl() const {
+ return new (getNumOperands()) FuncletPadInst(*this);
+}
+
+UnreachableInst *UnreachableInst::cloneImpl() const {
+ LLVMContext &Context = getContext();
+ return new UnreachableInst(Context);
+}
+
+FreezeInst *FreezeInst::cloneImpl() const {
+ return new FreezeInst(getOperand(0));
+}