aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/IR/DataLayout.cpp
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm14/lib/IR/DataLayout.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm14/lib/IR/DataLayout.cpp')
-rw-r--r--contrib/libs/llvm14/lib/IR/DataLayout.cpp1012
1 files changed, 1012 insertions, 0 deletions
diff --git a/contrib/libs/llvm14/lib/IR/DataLayout.cpp b/contrib/libs/llvm14/lib/IR/DataLayout.cpp
new file mode 100644
index 0000000000..96f55cf14d
--- /dev/null
+++ b/contrib/libs/llvm14/lib/IR/DataLayout.cpp
@@ -0,0 +1,1012 @@
+//===- DataLayout.cpp - Data size & alignment routines ---------------------==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines layout properties related to datatype size/offset/alignment
+// information.
+//
+// This structure should be created once, filled in if the defaults are not
+// correct and then passed around by const&. None of the members functions
+// require modification to the object.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/IR/DataLayout.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Error.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/MemAlloc.h"
+#include "llvm/Support/TypeSize.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <cstdlib>
+#include <new>
+#include <utility>
+
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Support for StructLayout
+//===----------------------------------------------------------------------===//
+
+StructLayout::StructLayout(StructType *ST, const DataLayout &DL) {
+ assert(!ST->isOpaque() && "Cannot get layout of opaque structs");
+ StructSize = 0;
+ IsPadded = false;
+ NumElements = ST->getNumElements();
+
+ // Loop over each of the elements, placing them in memory.
+ for (unsigned i = 0, e = NumElements; i != e; ++i) {
+ Type *Ty = ST->getElementType(i);
+ const Align TyAlign = ST->isPacked() ? Align(1) : DL.getABITypeAlign(Ty);
+
+ // Add padding if necessary to align the data element properly.
+ if (!isAligned(TyAlign, StructSize)) {
+ IsPadded = true;
+ StructSize = alignTo(StructSize, TyAlign);
+ }
+
+ // Keep track of maximum alignment constraint.
+ StructAlignment = std::max(TyAlign, StructAlignment);
+
+ getMemberOffsets()[i] = StructSize;
+ // Consume space for this data item
+ StructSize += DL.getTypeAllocSize(Ty).getFixedValue();
+ }
+
+ // Add padding to the end of the struct so that it could be put in an array
+ // and all array elements would be aligned correctly.
+ if (!isAligned(StructAlignment, StructSize)) {
+ IsPadded = true;
+ StructSize = alignTo(StructSize, StructAlignment);
+ }
+}
+
+/// getElementContainingOffset - Given a valid offset into the structure,
+/// return the structure index that contains it.
+unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
+ ArrayRef<uint64_t> MemberOffsets = getMemberOffsets();
+ auto SI = llvm::upper_bound(MemberOffsets, Offset);
+ assert(SI != MemberOffsets.begin() && "Offset not in structure type!");
+ --SI;
+ assert(*SI <= Offset && "upper_bound didn't work");
+ assert((SI == MemberOffsets.begin() || *(SI - 1) <= Offset) &&
+ (SI + 1 == MemberOffsets.end() || *(SI + 1) > Offset) &&
+ "Upper bound didn't work!");
+
+ // Multiple fields can have the same offset if any of them are zero sized.
+ // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
+ // at the i32 element, because it is the last element at that offset. This is
+ // the right one to return, because anything after it will have a higher
+ // offset, implying that this element is non-empty.
+ return SI - MemberOffsets.begin();
+}
+
+//===----------------------------------------------------------------------===//
+// LayoutAlignElem, LayoutAlign support
+//===----------------------------------------------------------------------===//
+
+LayoutAlignElem LayoutAlignElem::get(AlignTypeEnum align_type, Align abi_align,
+ Align pref_align, uint32_t bit_width) {
+ assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
+ LayoutAlignElem retval;
+ retval.AlignType = align_type;
+ retval.ABIAlign = abi_align;
+ retval.PrefAlign = pref_align;
+ retval.TypeBitWidth = bit_width;
+ return retval;
+}
+
+bool
+LayoutAlignElem::operator==(const LayoutAlignElem &rhs) const {
+ return (AlignType == rhs.AlignType
+ && ABIAlign == rhs.ABIAlign
+ && PrefAlign == rhs.PrefAlign
+ && TypeBitWidth == rhs.TypeBitWidth);
+}
+
+//===----------------------------------------------------------------------===//
+// PointerAlignElem, PointerAlign support
+//===----------------------------------------------------------------------===//
+
+PointerAlignElem PointerAlignElem::getInBits(uint32_t AddressSpace,
+ Align ABIAlign, Align PrefAlign,
+ uint32_t TypeBitWidth,
+ uint32_t IndexBitWidth) {
+ assert(ABIAlign <= PrefAlign && "Preferred alignment worse than ABI!");
+ PointerAlignElem retval;
+ retval.AddressSpace = AddressSpace;
+ retval.ABIAlign = ABIAlign;
+ retval.PrefAlign = PrefAlign;
+ retval.TypeBitWidth = TypeBitWidth;
+ retval.IndexBitWidth = IndexBitWidth;
+ return retval;
+}
+
+bool
+PointerAlignElem::operator==(const PointerAlignElem &rhs) const {
+ return (ABIAlign == rhs.ABIAlign && AddressSpace == rhs.AddressSpace &&
+ PrefAlign == rhs.PrefAlign && TypeBitWidth == rhs.TypeBitWidth &&
+ IndexBitWidth == rhs.IndexBitWidth);
+}
+
+//===----------------------------------------------------------------------===//
+// DataLayout Class Implementation
+//===----------------------------------------------------------------------===//
+
+const char *DataLayout::getManglingComponent(const Triple &T) {
+ if (T.isOSBinFormatGOFF())
+ return "-m:l";
+ if (T.isOSBinFormatMachO())
+ return "-m:o";
+ if (T.isOSWindows() && T.isOSBinFormatCOFF())
+ return T.getArch() == Triple::x86 ? "-m:x" : "-m:w";
+ if (T.isOSBinFormatXCOFF())
+ return "-m:a";
+ return "-m:e";
+}
+
+static const LayoutAlignElem DefaultAlignments[] = {
+ {INTEGER_ALIGN, 1, Align(1), Align(1)}, // i1
+ {INTEGER_ALIGN, 8, Align(1), Align(1)}, // i8
+ {INTEGER_ALIGN, 16, Align(2), Align(2)}, // i16
+ {INTEGER_ALIGN, 32, Align(4), Align(4)}, // i32
+ {INTEGER_ALIGN, 64, Align(4), Align(8)}, // i64
+ {FLOAT_ALIGN, 16, Align(2), Align(2)}, // half, bfloat
+ {FLOAT_ALIGN, 32, Align(4), Align(4)}, // float
+ {FLOAT_ALIGN, 64, Align(8), Align(8)}, // double
+ {FLOAT_ALIGN, 128, Align(16), Align(16)}, // ppcf128, quad, ...
+ {VECTOR_ALIGN, 64, Align(8), Align(8)}, // v2i32, v1i64, ...
+ {VECTOR_ALIGN, 128, Align(16), Align(16)}, // v16i8, v8i16, v4i32, ...
+ {AGGREGATE_ALIGN, 0, Align(1), Align(8)} // struct
+};
+
+void DataLayout::reset(StringRef Desc) {
+ clear();
+
+ LayoutMap = nullptr;
+ BigEndian = false;
+ AllocaAddrSpace = 0;
+ StackNaturalAlign.reset();
+ ProgramAddrSpace = 0;
+ DefaultGlobalsAddrSpace = 0;
+ FunctionPtrAlign.reset();
+ TheFunctionPtrAlignType = FunctionPtrAlignType::Independent;
+ ManglingMode = MM_None;
+ NonIntegralAddressSpaces.clear();
+
+ // Default alignments
+ for (const LayoutAlignElem &E : DefaultAlignments) {
+ if (Error Err = setAlignment((AlignTypeEnum)E.AlignType, E.ABIAlign,
+ E.PrefAlign, E.TypeBitWidth))
+ return report_fatal_error(std::move(Err));
+ }
+ if (Error Err = setPointerAlignmentInBits(0, Align(8), Align(8), 64, 64))
+ return report_fatal_error(std::move(Err));
+
+ if (Error Err = parseSpecifier(Desc))
+ return report_fatal_error(std::move(Err));
+}
+
+Expected<DataLayout> DataLayout::parse(StringRef LayoutDescription) {
+ DataLayout Layout("");
+ if (Error Err = Layout.parseSpecifier(LayoutDescription))
+ return std::move(Err);
+ return Layout;
+}
+
+static Error reportError(const Twine &Message) {
+ return createStringError(inconvertibleErrorCode(), Message);
+}
+
+/// Checked version of split, to ensure mandatory subparts.
+static Error split(StringRef Str, char Separator,
+ std::pair<StringRef, StringRef> &Split) {
+ assert(!Str.empty() && "parse error, string can't be empty here");
+ Split = Str.split(Separator);
+ if (Split.second.empty() && Split.first != Str)
+ return reportError("Trailing separator in datalayout string");
+ if (!Split.second.empty() && Split.first.empty())
+ return reportError("Expected token before separator in datalayout string");
+ return Error::success();
+}
+
+/// Get an unsigned integer, including error checks.
+template <typename IntTy> static Error getInt(StringRef R, IntTy &Result) {
+ bool error = R.getAsInteger(10, Result); (void)error;
+ if (error)
+ return reportError("not a number, or does not fit in an unsigned int");
+ return Error::success();
+}
+
+/// Get an unsigned integer representing the number of bits and convert it into
+/// bytes. Error out of not a byte width multiple.
+template <typename IntTy>
+static Error getIntInBytes(StringRef R, IntTy &Result) {
+ if (Error Err = getInt<IntTy>(R, Result))
+ return Err;
+ if (Result % 8)
+ return reportError("number of bits must be a byte width multiple");
+ Result /= 8;
+ return Error::success();
+}
+
+static Error getAddrSpace(StringRef R, unsigned &AddrSpace) {
+ if (Error Err = getInt(R, AddrSpace))
+ return Err;
+ if (!isUInt<24>(AddrSpace))
+ return reportError("Invalid address space, must be a 24-bit integer");
+ return Error::success();
+}
+
+Error DataLayout::parseSpecifier(StringRef Desc) {
+ StringRepresentation = std::string(Desc);
+ while (!Desc.empty()) {
+ // Split at '-'.
+ std::pair<StringRef, StringRef> Split;
+ if (Error Err = ::split(Desc, '-', Split))
+ return Err;
+ Desc = Split.second;
+
+ // Split at ':'.
+ if (Error Err = ::split(Split.first, ':', Split))
+ return Err;
+
+ // Aliases used below.
+ StringRef &Tok = Split.first; // Current token.
+ StringRef &Rest = Split.second; // The rest of the string.
+
+ if (Tok == "ni") {
+ do {
+ if (Error Err = ::split(Rest, ':', Split))
+ return Err;
+ Rest = Split.second;
+ unsigned AS;
+ if (Error Err = getInt(Split.first, AS))
+ return Err;
+ if (AS == 0)
+ return reportError("Address space 0 can never be non-integral");
+ NonIntegralAddressSpaces.push_back(AS);
+ } while (!Rest.empty());
+
+ continue;
+ }
+
+ char Specifier = Tok.front();
+ Tok = Tok.substr(1);
+
+ switch (Specifier) {
+ case 's':
+ // Deprecated, but ignoring here to preserve loading older textual llvm
+ // ASM file
+ break;
+ case 'E':
+ BigEndian = true;
+ break;
+ case 'e':
+ BigEndian = false;
+ break;
+ case 'p': {
+ // Address space.
+ unsigned AddrSpace = 0;
+ if (!Tok.empty())
+ if (Error Err = getInt(Tok, AddrSpace))
+ return Err;
+ if (!isUInt<24>(AddrSpace))
+ return reportError("Invalid address space, must be a 24bit integer");
+
+ // Size.
+ if (Rest.empty())
+ return reportError(
+ "Missing size specification for pointer in datalayout string");
+ if (Error Err = ::split(Rest, ':', Split))
+ return Err;
+ unsigned PointerMemSize;
+ if (Error Err = getInt(Tok, PointerMemSize))
+ return Err;
+ if (!PointerMemSize)
+ return reportError("Invalid pointer size of 0 bytes");
+
+ // ABI alignment.
+ if (Rest.empty())
+ return reportError(
+ "Missing alignment specification for pointer in datalayout string");
+ if (Error Err = ::split(Rest, ':', Split))
+ return Err;
+ unsigned PointerABIAlign;
+ if (Error Err = getIntInBytes(Tok, PointerABIAlign))
+ return Err;
+ if (!isPowerOf2_64(PointerABIAlign))
+ return reportError("Pointer ABI alignment must be a power of 2");
+
+ // Size of index used in GEP for address calculation.
+ // The parameter is optional. By default it is equal to size of pointer.
+ unsigned IndexSize = PointerMemSize;
+
+ // Preferred alignment.
+ unsigned PointerPrefAlign = PointerABIAlign;
+ if (!Rest.empty()) {
+ if (Error Err = ::split(Rest, ':', Split))
+ return Err;
+ if (Error Err = getIntInBytes(Tok, PointerPrefAlign))
+ return Err;
+ if (!isPowerOf2_64(PointerPrefAlign))
+ return reportError(
+ "Pointer preferred alignment must be a power of 2");
+
+ // Now read the index. It is the second optional parameter here.
+ if (!Rest.empty()) {
+ if (Error Err = ::split(Rest, ':', Split))
+ return Err;
+ if (Error Err = getInt(Tok, IndexSize))
+ return Err;
+ if (!IndexSize)
+ return reportError("Invalid index size of 0 bytes");
+ }
+ }
+ if (Error Err = setPointerAlignmentInBits(
+ AddrSpace, assumeAligned(PointerABIAlign),
+ assumeAligned(PointerPrefAlign), PointerMemSize, IndexSize))
+ return Err;
+ break;
+ }
+ case 'i':
+ case 'v':
+ case 'f':
+ case 'a': {
+ AlignTypeEnum AlignType;
+ switch (Specifier) {
+ default: llvm_unreachable("Unexpected specifier!");
+ case 'i': AlignType = INTEGER_ALIGN; break;
+ case 'v': AlignType = VECTOR_ALIGN; break;
+ case 'f': AlignType = FLOAT_ALIGN; break;
+ case 'a': AlignType = AGGREGATE_ALIGN; break;
+ }
+
+ // Bit size.
+ unsigned Size = 0;
+ if (!Tok.empty())
+ if (Error Err = getInt(Tok, Size))
+ return Err;
+
+ if (AlignType == AGGREGATE_ALIGN && Size != 0)
+ return reportError(
+ "Sized aggregate specification in datalayout string");
+
+ // ABI alignment.
+ if (Rest.empty())
+ return reportError(
+ "Missing alignment specification in datalayout string");
+ if (Error Err = ::split(Rest, ':', Split))
+ return Err;
+ unsigned ABIAlign;
+ if (Error Err = getIntInBytes(Tok, ABIAlign))
+ return Err;
+ if (AlignType != AGGREGATE_ALIGN && !ABIAlign)
+ return reportError(
+ "ABI alignment specification must be >0 for non-aggregate types");
+
+ if (!isUInt<16>(ABIAlign))
+ return reportError("Invalid ABI alignment, must be a 16bit integer");
+ if (ABIAlign != 0 && !isPowerOf2_64(ABIAlign))
+ return reportError("Invalid ABI alignment, must be a power of 2");
+
+ // Preferred alignment.
+ unsigned PrefAlign = ABIAlign;
+ if (!Rest.empty()) {
+ if (Error Err = ::split(Rest, ':', Split))
+ return Err;
+ if (Error Err = getIntInBytes(Tok, PrefAlign))
+ return Err;
+ }
+
+ if (!isUInt<16>(PrefAlign))
+ return reportError(
+ "Invalid preferred alignment, must be a 16bit integer");
+ if (PrefAlign != 0 && !isPowerOf2_64(PrefAlign))
+ return reportError("Invalid preferred alignment, must be a power of 2");
+
+ if (Error Err = setAlignment(AlignType, assumeAligned(ABIAlign),
+ assumeAligned(PrefAlign), Size))
+ return Err;
+
+ break;
+ }
+ case 'n': // Native integer types.
+ while (true) {
+ unsigned Width;
+ if (Error Err = getInt(Tok, Width))
+ return Err;
+ if (Width == 0)
+ return reportError(
+ "Zero width native integer type in datalayout string");
+ LegalIntWidths.push_back(Width);
+ if (Rest.empty())
+ break;
+ if (Error Err = ::split(Rest, ':', Split))
+ return Err;
+ }
+ break;
+ case 'S': { // Stack natural alignment.
+ uint64_t Alignment;
+ if (Error Err = getIntInBytes(Tok, Alignment))
+ return Err;
+ if (Alignment != 0 && !llvm::isPowerOf2_64(Alignment))
+ return reportError("Alignment is neither 0 nor a power of 2");
+ StackNaturalAlign = MaybeAlign(Alignment);
+ break;
+ }
+ case 'F': {
+ switch (Tok.front()) {
+ case 'i':
+ TheFunctionPtrAlignType = FunctionPtrAlignType::Independent;
+ break;
+ case 'n':
+ TheFunctionPtrAlignType = FunctionPtrAlignType::MultipleOfFunctionAlign;
+ break;
+ default:
+ return reportError("Unknown function pointer alignment type in "
+ "datalayout string");
+ }
+ Tok = Tok.substr(1);
+ uint64_t Alignment;
+ if (Error Err = getIntInBytes(Tok, Alignment))
+ return Err;
+ if (Alignment != 0 && !llvm::isPowerOf2_64(Alignment))
+ return reportError("Alignment is neither 0 nor a power of 2");
+ FunctionPtrAlign = MaybeAlign(Alignment);
+ break;
+ }
+ case 'P': { // Function address space.
+ if (Error Err = getAddrSpace(Tok, ProgramAddrSpace))
+ return Err;
+ break;
+ }
+ case 'A': { // Default stack/alloca address space.
+ if (Error Err = getAddrSpace(Tok, AllocaAddrSpace))
+ return Err;
+ break;
+ }
+ case 'G': { // Default address space for global variables.
+ if (Error Err = getAddrSpace(Tok, DefaultGlobalsAddrSpace))
+ return Err;
+ break;
+ }
+ case 'm':
+ if (!Tok.empty())
+ return reportError("Unexpected trailing characters after mangling "
+ "specifier in datalayout string");
+ if (Rest.empty())
+ return reportError("Expected mangling specifier in datalayout string");
+ if (Rest.size() > 1)
+ return reportError("Unknown mangling specifier in datalayout string");
+ switch(Rest[0]) {
+ default:
+ return reportError("Unknown mangling in datalayout string");
+ case 'e':
+ ManglingMode = MM_ELF;
+ break;
+ case 'l':
+ ManglingMode = MM_GOFF;
+ break;
+ case 'o':
+ ManglingMode = MM_MachO;
+ break;
+ case 'm':
+ ManglingMode = MM_Mips;
+ break;
+ case 'w':
+ ManglingMode = MM_WinCOFF;
+ break;
+ case 'x':
+ ManglingMode = MM_WinCOFFX86;
+ break;
+ case 'a':
+ ManglingMode = MM_XCOFF;
+ break;
+ }
+ break;
+ default:
+ return reportError("Unknown specifier in datalayout string");
+ break;
+ }
+ }
+
+ return Error::success();
+}
+
+DataLayout::DataLayout(const Module *M) {
+ init(M);
+}
+
+void DataLayout::init(const Module *M) { *this = M->getDataLayout(); }
+
+bool DataLayout::operator==(const DataLayout &Other) const {
+ bool Ret = BigEndian == Other.BigEndian &&
+ AllocaAddrSpace == Other.AllocaAddrSpace &&
+ StackNaturalAlign == Other.StackNaturalAlign &&
+ ProgramAddrSpace == Other.ProgramAddrSpace &&
+ DefaultGlobalsAddrSpace == Other.DefaultGlobalsAddrSpace &&
+ FunctionPtrAlign == Other.FunctionPtrAlign &&
+ TheFunctionPtrAlignType == Other.TheFunctionPtrAlignType &&
+ ManglingMode == Other.ManglingMode &&
+ LegalIntWidths == Other.LegalIntWidths &&
+ Alignments == Other.Alignments && Pointers == Other.Pointers;
+ // Note: getStringRepresentation() might differs, it is not canonicalized
+ return Ret;
+}
+
+DataLayout::AlignmentsTy::iterator
+DataLayout::findAlignmentLowerBound(AlignTypeEnum AlignType,
+ uint32_t BitWidth) {
+ auto Pair = std::make_pair((unsigned)AlignType, BitWidth);
+ return partition_point(Alignments, [=](const LayoutAlignElem &E) {
+ return std::make_pair(E.AlignType, E.TypeBitWidth) < Pair;
+ });
+}
+
+Error DataLayout::setAlignment(AlignTypeEnum align_type, Align abi_align,
+ Align pref_align, uint32_t bit_width) {
+ // AlignmentsTy::ABIAlign and AlignmentsTy::PrefAlign were once stored as
+ // uint16_t, it is unclear if there are requirements for alignment to be less
+ // than 2^16 other than storage. In the meantime we leave the restriction as
+ // an assert. See D67400 for context.
+ assert(Log2(abi_align) < 16 && Log2(pref_align) < 16 && "Alignment too big");
+ if (!isUInt<24>(bit_width))
+ return reportError("Invalid bit width, must be a 24bit integer");
+ if (pref_align < abi_align)
+ return reportError(
+ "Preferred alignment cannot be less than the ABI alignment");
+
+ AlignmentsTy::iterator I = findAlignmentLowerBound(align_type, bit_width);
+ if (I != Alignments.end() &&
+ I->AlignType == (unsigned)align_type && I->TypeBitWidth == bit_width) {
+ // Update the abi, preferred alignments.
+ I->ABIAlign = abi_align;
+ I->PrefAlign = pref_align;
+ } else {
+ // Insert before I to keep the vector sorted.
+ Alignments.insert(I, LayoutAlignElem::get(align_type, abi_align,
+ pref_align, bit_width));
+ }
+ return Error::success();
+}
+
+const PointerAlignElem &
+DataLayout::getPointerAlignElem(uint32_t AddressSpace) const {
+ if (AddressSpace != 0) {
+ auto I = lower_bound(Pointers, AddressSpace,
+ [](const PointerAlignElem &A, uint32_t AddressSpace) {
+ return A.AddressSpace < AddressSpace;
+ });
+ if (I != Pointers.end() && I->AddressSpace == AddressSpace)
+ return *I;
+ }
+
+ assert(Pointers[0].AddressSpace == 0);
+ return Pointers[0];
+}
+
+Error DataLayout::setPointerAlignmentInBits(uint32_t AddrSpace, Align ABIAlign,
+ Align PrefAlign,
+ uint32_t TypeBitWidth,
+ uint32_t IndexBitWidth) {
+ if (PrefAlign < ABIAlign)
+ return reportError(
+ "Preferred alignment cannot be less than the ABI alignment");
+
+ auto I = lower_bound(Pointers, AddrSpace,
+ [](const PointerAlignElem &A, uint32_t AddressSpace) {
+ return A.AddressSpace < AddressSpace;
+ });
+ if (I == Pointers.end() || I->AddressSpace != AddrSpace) {
+ Pointers.insert(I,
+ PointerAlignElem::getInBits(AddrSpace, ABIAlign, PrefAlign,
+ TypeBitWidth, IndexBitWidth));
+ } else {
+ I->ABIAlign = ABIAlign;
+ I->PrefAlign = PrefAlign;
+ I->TypeBitWidth = TypeBitWidth;
+ I->IndexBitWidth = IndexBitWidth;
+ }
+ return Error::success();
+}
+
+Align DataLayout::getIntegerAlignment(uint32_t BitWidth,
+ bool abi_or_pref) const {
+ auto I = findAlignmentLowerBound(INTEGER_ALIGN, BitWidth);
+ // If we don't have an exact match, use alignment of next larger integer
+ // type. If there is none, use alignment of largest integer type by going
+ // back one element.
+ if (I == Alignments.end() || I->AlignType != INTEGER_ALIGN)
+ --I;
+ assert(I->AlignType == INTEGER_ALIGN && "Must be integer alignment");
+ return abi_or_pref ? I->ABIAlign : I->PrefAlign;
+}
+
+namespace {
+
+class StructLayoutMap {
+ using LayoutInfoTy = DenseMap<StructType*, StructLayout*>;
+ LayoutInfoTy LayoutInfo;
+
+public:
+ ~StructLayoutMap() {
+ // Remove any layouts.
+ for (const auto &I : LayoutInfo) {
+ StructLayout *Value = I.second;
+ Value->~StructLayout();
+ free(Value);
+ }
+ }
+
+ StructLayout *&operator[](StructType *STy) {
+ return LayoutInfo[STy];
+ }
+};
+
+} // end anonymous namespace
+
+void DataLayout::clear() {
+ LegalIntWidths.clear();
+ Alignments.clear();
+ Pointers.clear();
+ delete static_cast<StructLayoutMap *>(LayoutMap);
+ LayoutMap = nullptr;
+}
+
+DataLayout::~DataLayout() {
+ clear();
+}
+
+const StructLayout *DataLayout::getStructLayout(StructType *Ty) const {
+ if (!LayoutMap)
+ LayoutMap = new StructLayoutMap();
+
+ StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap);
+ StructLayout *&SL = (*STM)[Ty];
+ if (SL) return SL;
+
+ // Otherwise, create the struct layout. Because it is variable length, we
+ // malloc it, then use placement new.
+ StructLayout *L = (StructLayout *)safe_malloc(
+ StructLayout::totalSizeToAlloc<uint64_t>(Ty->getNumElements()));
+
+ // Set SL before calling StructLayout's ctor. The ctor could cause other
+ // entries to be added to TheMap, invalidating our reference.
+ SL = L;
+
+ new (L) StructLayout(Ty, *this);
+
+ return L;
+}
+
+Align DataLayout::getPointerABIAlignment(unsigned AS) const {
+ return getPointerAlignElem(AS).ABIAlign;
+}
+
+Align DataLayout::getPointerPrefAlignment(unsigned AS) const {
+ return getPointerAlignElem(AS).PrefAlign;
+}
+
+unsigned DataLayout::getPointerSize(unsigned AS) const {
+ return divideCeil(getPointerAlignElem(AS).TypeBitWidth, 8);
+}
+
+unsigned DataLayout::getMaxIndexSize() const {
+ unsigned MaxIndexSize = 0;
+ for (auto &P : Pointers)
+ MaxIndexSize =
+ std::max(MaxIndexSize, (unsigned)divideCeil(P.TypeBitWidth, 8));
+
+ return MaxIndexSize;
+}
+
+unsigned DataLayout::getPointerTypeSizeInBits(Type *Ty) const {
+ assert(Ty->isPtrOrPtrVectorTy() &&
+ "This should only be called with a pointer or pointer vector type");
+ Ty = Ty->getScalarType();
+ return getPointerSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
+}
+
+unsigned DataLayout::getIndexSize(unsigned AS) const {
+ return divideCeil(getPointerAlignElem(AS).IndexBitWidth, 8);
+}
+
+unsigned DataLayout::getIndexTypeSizeInBits(Type *Ty) const {
+ assert(Ty->isPtrOrPtrVectorTy() &&
+ "This should only be called with a pointer or pointer vector type");
+ Ty = Ty->getScalarType();
+ return getIndexSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
+}
+
+/*!
+ \param abi_or_pref Flag that determines which alignment is returned. true
+ returns the ABI alignment, false returns the preferred alignment.
+ \param Ty The underlying type for which alignment is determined.
+
+ Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
+ == false) for the requested type \a Ty.
+ */
+Align DataLayout::getAlignment(Type *Ty, bool abi_or_pref) const {
+ assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
+ switch (Ty->getTypeID()) {
+ // Early escape for the non-numeric types.
+ case Type::LabelTyID:
+ return abi_or_pref ? getPointerABIAlignment(0) : getPointerPrefAlignment(0);
+ case Type::PointerTyID: {
+ unsigned AS = cast<PointerType>(Ty)->getAddressSpace();
+ return abi_or_pref ? getPointerABIAlignment(AS)
+ : getPointerPrefAlignment(AS);
+ }
+ case Type::ArrayTyID:
+ return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
+
+ case Type::StructTyID: {
+ // Packed structure types always have an ABI alignment of one.
+ if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
+ return Align(1);
+
+ // Get the layout annotation... which is lazily created on demand.
+ const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
+ const LayoutAlignElem &AggregateAlign = Alignments[0];
+ assert(AggregateAlign.AlignType == AGGREGATE_ALIGN &&
+ "Aggregate alignment must be first alignment entry");
+ const Align Align =
+ abi_or_pref ? AggregateAlign.ABIAlign : AggregateAlign.PrefAlign;
+ return std::max(Align, Layout->getAlignment());
+ }
+ case Type::IntegerTyID:
+ return getIntegerAlignment(Ty->getIntegerBitWidth(), abi_or_pref);
+ case Type::HalfTyID:
+ case Type::BFloatTyID:
+ case Type::FloatTyID:
+ case Type::DoubleTyID:
+ // PPC_FP128TyID and FP128TyID have different data contents, but the
+ // same size and alignment, so they look the same here.
+ case Type::PPC_FP128TyID:
+ case Type::FP128TyID:
+ case Type::X86_FP80TyID: {
+ unsigned BitWidth = getTypeSizeInBits(Ty).getFixedSize();
+ auto I = findAlignmentLowerBound(FLOAT_ALIGN, BitWidth);
+ if (I != Alignments.end() && I->AlignType == FLOAT_ALIGN &&
+ I->TypeBitWidth == BitWidth)
+ return abi_or_pref ? I->ABIAlign : I->PrefAlign;
+
+ // If we still couldn't find a reasonable default alignment, fall back
+ // to a simple heuristic that the alignment is the first power of two
+ // greater-or-equal to the store size of the type. This is a reasonable
+ // approximation of reality, and if the user wanted something less
+ // less conservative, they should have specified it explicitly in the data
+ // layout.
+ return Align(PowerOf2Ceil(BitWidth / 8));
+ }
+ case Type::X86_MMXTyID:
+ case Type::FixedVectorTyID:
+ case Type::ScalableVectorTyID: {
+ unsigned BitWidth = getTypeSizeInBits(Ty).getKnownMinSize();
+ auto I = findAlignmentLowerBound(VECTOR_ALIGN, BitWidth);
+ if (I != Alignments.end() && I->AlignType == VECTOR_ALIGN &&
+ I->TypeBitWidth == BitWidth)
+ return abi_or_pref ? I->ABIAlign : I->PrefAlign;
+
+ // By default, use natural alignment for vector types. This is consistent
+ // with what clang and llvm-gcc do.
+ //
+ // We're only calculating a natural alignment, so it doesn't have to be
+ // based on the full size for scalable vectors. Using the minimum element
+ // count should be enough here.
+ return Align(PowerOf2Ceil(getTypeStoreSize(Ty).getKnownMinSize()));
+ }
+ case Type::X86_AMXTyID:
+ return Align(64);
+ default:
+ llvm_unreachable("Bad type for getAlignment!!!");
+ }
+}
+
+/// TODO: Remove this function once the transition to Align is over.
+uint64_t DataLayout::getABITypeAlignment(Type *Ty) const {
+ return getABITypeAlign(Ty).value();
+}
+
+Align DataLayout::getABITypeAlign(Type *Ty) const {
+ return getAlignment(Ty, true);
+}
+
+/// TODO: Remove this function once the transition to Align is over.
+uint64_t DataLayout::getPrefTypeAlignment(Type *Ty) const {
+ return getPrefTypeAlign(Ty).value();
+}
+
+Align DataLayout::getPrefTypeAlign(Type *Ty) const {
+ return getAlignment(Ty, false);
+}
+
+IntegerType *DataLayout::getIntPtrType(LLVMContext &C,
+ unsigned AddressSpace) const {
+ return IntegerType::get(C, getPointerSizeInBits(AddressSpace));
+}
+
+Type *DataLayout::getIntPtrType(Type *Ty) const {
+ assert(Ty->isPtrOrPtrVectorTy() &&
+ "Expected a pointer or pointer vector type.");
+ unsigned NumBits = getPointerTypeSizeInBits(Ty);
+ IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
+ if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
+ return VectorType::get(IntTy, VecTy);
+ return IntTy;
+}
+
+Type *DataLayout::getSmallestLegalIntType(LLVMContext &C, unsigned Width) const {
+ for (unsigned LegalIntWidth : LegalIntWidths)
+ if (Width <= LegalIntWidth)
+ return Type::getIntNTy(C, LegalIntWidth);
+ return nullptr;
+}
+
+unsigned DataLayout::getLargestLegalIntTypeSizeInBits() const {
+ auto Max = std::max_element(LegalIntWidths.begin(), LegalIntWidths.end());
+ return Max != LegalIntWidths.end() ? *Max : 0;
+}
+
+Type *DataLayout::getIndexType(Type *Ty) const {
+ assert(Ty->isPtrOrPtrVectorTy() &&
+ "Expected a pointer or pointer vector type.");
+ unsigned NumBits = getIndexTypeSizeInBits(Ty);
+ IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
+ if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
+ return VectorType::get(IntTy, VecTy);
+ return IntTy;
+}
+
+int64_t DataLayout::getIndexedOffsetInType(Type *ElemTy,
+ ArrayRef<Value *> Indices) const {
+ int64_t Result = 0;
+
+ generic_gep_type_iterator<Value* const*>
+ GTI = gep_type_begin(ElemTy, Indices),
+ GTE = gep_type_end(ElemTy, Indices);
+ for (; GTI != GTE; ++GTI) {
+ Value *Idx = GTI.getOperand();
+ if (StructType *STy = GTI.getStructTypeOrNull()) {
+ assert(Idx->getType()->isIntegerTy(32) && "Illegal struct idx");
+ unsigned FieldNo = cast<ConstantInt>(Idx)->getZExtValue();
+
+ // Get structure layout information...
+ const StructLayout *Layout = getStructLayout(STy);
+
+ // Add in the offset, as calculated by the structure layout info...
+ Result += Layout->getElementOffset(FieldNo);
+ } else {
+ // Get the array index and the size of each array element.
+ if (int64_t arrayIdx = cast<ConstantInt>(Idx)->getSExtValue())
+ Result += arrayIdx * getTypeAllocSize(GTI.getIndexedType());
+ }
+ }
+
+ return Result;
+}
+
+static APInt getElementIndex(TypeSize ElemSize, APInt &Offset) {
+ // Skip over scalable or zero size elements. Also skip element sizes larger
+ // than the positive index space, because the arithmetic below may not be
+ // correct in that case.
+ unsigned BitWidth = Offset.getBitWidth();
+ if (ElemSize.isScalable() || ElemSize == 0 ||
+ !isUIntN(BitWidth - 1, ElemSize)) {
+ return APInt::getZero(BitWidth);
+ }
+
+ APInt Index = Offset.sdiv(ElemSize);
+ Offset -= Index * ElemSize;
+ if (Offset.isNegative()) {
+ // Prefer a positive remaining offset to allow struct indexing.
+ --Index;
+ Offset += ElemSize;
+ assert(Offset.isNonNegative() && "Remaining offset shouldn't be negative");
+ }
+ return Index;
+}
+
+Optional<APInt> DataLayout::getGEPIndexForOffset(Type *&ElemTy,
+ APInt &Offset) const {
+ if (auto *ArrTy = dyn_cast<ArrayType>(ElemTy)) {
+ ElemTy = ArrTy->getElementType();
+ return getElementIndex(getTypeAllocSize(ElemTy), Offset);
+ }
+
+ if (auto *VecTy = dyn_cast<VectorType>(ElemTy)) {
+ ElemTy = VecTy->getElementType();
+ unsigned ElemSizeInBits = getTypeSizeInBits(ElemTy).getFixedSize();
+ // GEPs over non-multiple of 8 size vector elements are invalid.
+ if (ElemSizeInBits % 8 != 0)
+ return None;
+
+ return getElementIndex(TypeSize::Fixed(ElemSizeInBits / 8), Offset);
+ }
+
+ if (auto *STy = dyn_cast<StructType>(ElemTy)) {
+ const StructLayout *SL = getStructLayout(STy);
+ uint64_t IntOffset = Offset.getZExtValue();
+ if (IntOffset >= SL->getSizeInBytes())
+ return None;
+
+ unsigned Index = SL->getElementContainingOffset(IntOffset);
+ Offset -= SL->getElementOffset(Index);
+ ElemTy = STy->getElementType(Index);
+ return APInt(32, Index);
+ }
+
+ // Non-aggregate type.
+ return None;
+}
+
+SmallVector<APInt> DataLayout::getGEPIndicesForOffset(Type *&ElemTy,
+ APInt &Offset) const {
+ assert(ElemTy->isSized() && "Element type must be sized");
+ SmallVector<APInt> Indices;
+ Indices.push_back(getElementIndex(getTypeAllocSize(ElemTy), Offset));
+ while (Offset != 0) {
+ Optional<APInt> Index = getGEPIndexForOffset(ElemTy, Offset);
+ if (!Index)
+ break;
+ Indices.push_back(*Index);
+ }
+
+ return Indices;
+}
+
+/// getPreferredAlign - Return the preferred alignment of the specified global.
+/// This includes an explicitly requested alignment (if the global has one).
+Align DataLayout::getPreferredAlign(const GlobalVariable *GV) const {
+ MaybeAlign GVAlignment = GV->getAlign();
+ // If a section is specified, always precisely honor explicit alignment,
+ // so we don't insert padding into a section we don't control.
+ if (GVAlignment && GV->hasSection())
+ return *GVAlignment;
+
+ // If no explicit alignment is specified, compute the alignment based on
+ // the IR type. If an alignment is specified, increase it to match the ABI
+ // alignment of the IR type.
+ //
+ // FIXME: Not sure it makes sense to use the alignment of the type if
+ // there's already an explicit alignment specification.
+ Type *ElemType = GV->getValueType();
+ Align Alignment = getPrefTypeAlign(ElemType);
+ if (GVAlignment) {
+ if (*GVAlignment >= Alignment)
+ Alignment = *GVAlignment;
+ else
+ Alignment = std::max(*GVAlignment, getABITypeAlign(ElemType));
+ }
+
+ // If no explicit alignment is specified, and the global is large, increase
+ // the alignment to 16.
+ // FIXME: Why 16, specifically?
+ if (GV->hasInitializer() && !GVAlignment) {
+ if (Alignment < Align(16)) {
+ // If the global is not external, see if it is large. If so, give it a
+ // larger alignment.
+ if (getTypeSizeInBits(ElemType) > 128)
+ Alignment = Align(16); // 16-byte alignment.
+ }
+ }
+ return Alignment;
+}