diff options
author | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
---|---|---|
committer | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
commit | 6ffe9e53658409f212834330e13564e4952558f6 (patch) | |
tree | 85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm14/lib/CodeGen/RDFGraph.cpp | |
parent | 726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff) | |
download | ydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz |
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm14/lib/CodeGen/RDFGraph.cpp')
-rw-r--r-- | contrib/libs/llvm14/lib/CodeGen/RDFGraph.cpp | 1832 |
1 files changed, 1832 insertions, 0 deletions
diff --git a/contrib/libs/llvm14/lib/CodeGen/RDFGraph.cpp b/contrib/libs/llvm14/lib/CodeGen/RDFGraph.cpp new file mode 100644 index 0000000000..882f8e91bf --- /dev/null +++ b/contrib/libs/llvm14/lib/CodeGen/RDFGraph.cpp @@ -0,0 +1,1832 @@ +//===- RDFGraph.cpp -------------------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Target-independent, SSA-based data flow graph for register data flow (RDF). +// +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineDominanceFrontier.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/RDFGraph.h" +#include "llvm/CodeGen/RDFRegisters.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/IR/Function.h" +#include "llvm/MC/LaneBitmask.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <cstring> +#include <iterator> +#include <set> +#include <utility> +#include <vector> + +using namespace llvm; +using namespace rdf; + +// Printing functions. Have them here first, so that the rest of the code +// can use them. +namespace llvm { +namespace rdf { + +raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) { + if (!P.Mask.all()) + OS << ':' << PrintLaneMask(P.Mask); + return OS; +} + +raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) { + auto &TRI = P.G.getTRI(); + if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs()) + OS << TRI.getName(P.Obj.Reg); + else + OS << '#' << P.Obj.Reg; + OS << PrintLaneMaskOpt(P.Obj.Mask); + return OS; +} + +raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) { + auto NA = P.G.addr<NodeBase*>(P.Obj); + uint16_t Attrs = NA.Addr->getAttrs(); + uint16_t Kind = NodeAttrs::kind(Attrs); + uint16_t Flags = NodeAttrs::flags(Attrs); + switch (NodeAttrs::type(Attrs)) { + case NodeAttrs::Code: + switch (Kind) { + case NodeAttrs::Func: OS << 'f'; break; + case NodeAttrs::Block: OS << 'b'; break; + case NodeAttrs::Stmt: OS << 's'; break; + case NodeAttrs::Phi: OS << 'p'; break; + default: OS << "c?"; break; + } + break; + case NodeAttrs::Ref: + if (Flags & NodeAttrs::Undef) + OS << '/'; + if (Flags & NodeAttrs::Dead) + OS << '\\'; + if (Flags & NodeAttrs::Preserving) + OS << '+'; + if (Flags & NodeAttrs::Clobbering) + OS << '~'; + switch (Kind) { + case NodeAttrs::Use: OS << 'u'; break; + case NodeAttrs::Def: OS << 'd'; break; + case NodeAttrs::Block: OS << 'b'; break; + default: OS << "r?"; break; + } + break; + default: + OS << '?'; + break; + } + OS << P.Obj; + if (Flags & NodeAttrs::Shadow) + OS << '"'; + return OS; +} + +static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA, + const DataFlowGraph &G) { + OS << Print<NodeId>(RA.Id, G) << '<' + << Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>'; + if (RA.Addr->getFlags() & NodeAttrs::Fixed) + OS << '!'; +} + +raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) { + printRefHeader(OS, P.Obj, P.G); + OS << '('; + if (NodeId N = P.Obj.Addr->getReachingDef()) + OS << Print<NodeId>(N, P.G); + OS << ','; + if (NodeId N = P.Obj.Addr->getReachedDef()) + OS << Print<NodeId>(N, P.G); + OS << ','; + if (NodeId N = P.Obj.Addr->getReachedUse()) + OS << Print<NodeId>(N, P.G); + OS << "):"; + if (NodeId N = P.Obj.Addr->getSibling()) + OS << Print<NodeId>(N, P.G); + return OS; +} + +raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) { + printRefHeader(OS, P.Obj, P.G); + OS << '('; + if (NodeId N = P.Obj.Addr->getReachingDef()) + OS << Print<NodeId>(N, P.G); + OS << "):"; + if (NodeId N = P.Obj.Addr->getSibling()) + OS << Print<NodeId>(N, P.G); + return OS; +} + +raw_ostream &operator<< (raw_ostream &OS, + const Print<NodeAddr<PhiUseNode*>> &P) { + printRefHeader(OS, P.Obj, P.G); + OS << '('; + if (NodeId N = P.Obj.Addr->getReachingDef()) + OS << Print<NodeId>(N, P.G); + OS << ','; + if (NodeId N = P.Obj.Addr->getPredecessor()) + OS << Print<NodeId>(N, P.G); + OS << "):"; + if (NodeId N = P.Obj.Addr->getSibling()) + OS << Print<NodeId>(N, P.G); + return OS; +} + +raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) { + switch (P.Obj.Addr->getKind()) { + case NodeAttrs::Def: + OS << PrintNode<DefNode*>(P.Obj, P.G); + break; + case NodeAttrs::Use: + if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef) + OS << PrintNode<PhiUseNode*>(P.Obj, P.G); + else + OS << PrintNode<UseNode*>(P.Obj, P.G); + break; + } + return OS; +} + +raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) { + unsigned N = P.Obj.size(); + for (auto I : P.Obj) { + OS << Print<NodeId>(I.Id, P.G); + if (--N) + OS << ' '; + } + return OS; +} + +raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) { + unsigned N = P.Obj.size(); + for (auto I : P.Obj) { + OS << Print<NodeId>(I, P.G); + if (--N) + OS << ' '; + } + return OS; +} + +namespace { + + template <typename T> + struct PrintListV { + PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {} + + using Type = T; + const NodeList &List; + const DataFlowGraph &G; + }; + + template <typename T> + raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) { + unsigned N = P.List.size(); + for (NodeAddr<T> A : P.List) { + OS << PrintNode<T>(A, P.G); + if (--N) + OS << ", "; + } + return OS; + } + +} // end anonymous namespace + +raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) { + OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi [" + << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; + return OS; +} + +raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<StmtNode *>> &P) { + const MachineInstr &MI = *P.Obj.Addr->getCode(); + unsigned Opc = MI.getOpcode(); + OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc); + // Print the target for calls and branches (for readability). + if (MI.isCall() || MI.isBranch()) { + MachineInstr::const_mop_iterator T = + llvm::find_if(MI.operands(), + [] (const MachineOperand &Op) -> bool { + return Op.isMBB() || Op.isGlobal() || Op.isSymbol(); + }); + if (T != MI.operands_end()) { + OS << ' '; + if (T->isMBB()) + OS << printMBBReference(*T->getMBB()); + else if (T->isGlobal()) + OS << T->getGlobal()->getName(); + else if (T->isSymbol()) + OS << T->getSymbolName(); + } + } + OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; + return OS; +} + +raw_ostream &operator<< (raw_ostream &OS, + const Print<NodeAddr<InstrNode*>> &P) { + switch (P.Obj.Addr->getKind()) { + case NodeAttrs::Phi: + OS << PrintNode<PhiNode*>(P.Obj, P.G); + break; + case NodeAttrs::Stmt: + OS << PrintNode<StmtNode*>(P.Obj, P.G); + break; + default: + OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G); + break; + } + return OS; +} + +raw_ostream &operator<< (raw_ostream &OS, + const Print<NodeAddr<BlockNode*>> &P) { + MachineBasicBlock *BB = P.Obj.Addr->getCode(); + unsigned NP = BB->pred_size(); + std::vector<int> Ns; + auto PrintBBs = [&OS] (std::vector<int> Ns) -> void { + unsigned N = Ns.size(); + for (int I : Ns) { + OS << "%bb." << I; + if (--N) + OS << ", "; + } + }; + + OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB) + << " --- preds(" << NP << "): "; + for (MachineBasicBlock *B : BB->predecessors()) + Ns.push_back(B->getNumber()); + PrintBBs(Ns); + + unsigned NS = BB->succ_size(); + OS << " succs(" << NS << "): "; + Ns.clear(); + for (MachineBasicBlock *B : BB->successors()) + Ns.push_back(B->getNumber()); + PrintBBs(Ns); + OS << '\n'; + + for (auto I : P.Obj.Addr->members(P.G)) + OS << PrintNode<InstrNode*>(I, P.G) << '\n'; + return OS; +} + +raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<FuncNode *>> &P) { + OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: " + << P.Obj.Addr->getCode()->getName() << '\n'; + for (auto I : P.Obj.Addr->members(P.G)) + OS << PrintNode<BlockNode*>(I, P.G) << '\n'; + OS << "]\n"; + return OS; +} + +raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) { + OS << '{'; + for (auto I : P.Obj) + OS << ' ' << Print<RegisterRef>(I, P.G); + OS << " }"; + return OS; +} + +raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) { + P.Obj.print(OS); + return OS; +} + +raw_ostream &operator<< (raw_ostream &OS, + const Print<DataFlowGraph::DefStack> &P) { + for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) { + OS << Print<NodeId>(I->Id, P.G) + << '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>'; + I.down(); + if (I != E) + OS << ' '; + } + return OS; +} + +} // end namespace rdf +} // end namespace llvm + +// Node allocation functions. +// +// Node allocator is like a slab memory allocator: it allocates blocks of +// memory in sizes that are multiples of the size of a node. Each block has +// the same size. Nodes are allocated from the currently active block, and +// when it becomes full, a new one is created. +// There is a mapping scheme between node id and its location in a block, +// and within that block is described in the header file. +// +void NodeAllocator::startNewBlock() { + void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize); + char *P = static_cast<char*>(T); + Blocks.push_back(P); + // Check if the block index is still within the allowed range, i.e. less + // than 2^N, where N is the number of bits in NodeId for the block index. + // BitsPerIndex is the number of bits per node index. + assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) && + "Out of bits for block index"); + ActiveEnd = P; +} + +bool NodeAllocator::needNewBlock() { + if (Blocks.empty()) + return true; + + char *ActiveBegin = Blocks.back(); + uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize; + return Index >= NodesPerBlock; +} + +NodeAddr<NodeBase*> NodeAllocator::New() { + if (needNewBlock()) + startNewBlock(); + + uint32_t ActiveB = Blocks.size()-1; + uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize; + NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd), + makeId(ActiveB, Index) }; + ActiveEnd += NodeMemSize; + return NA; +} + +NodeId NodeAllocator::id(const NodeBase *P) const { + uintptr_t A = reinterpret_cast<uintptr_t>(P); + for (unsigned i = 0, n = Blocks.size(); i != n; ++i) { + uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]); + if (A < B || A >= B + NodesPerBlock*NodeMemSize) + continue; + uint32_t Idx = (A-B)/NodeMemSize; + return makeId(i, Idx); + } + llvm_unreachable("Invalid node address"); +} + +void NodeAllocator::clear() { + MemPool.Reset(); + Blocks.clear(); + ActiveEnd = nullptr; +} + +// Insert node NA after "this" in the circular chain. +void NodeBase::append(NodeAddr<NodeBase*> NA) { + NodeId Nx = Next; + // If NA is already "next", do nothing. + if (Next != NA.Id) { + Next = NA.Id; + NA.Addr->Next = Nx; + } +} + +// Fundamental node manipulator functions. + +// Obtain the register reference from a reference node. +RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const { + assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); + if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef) + return G.unpack(Ref.PR); + assert(Ref.Op != nullptr); + return G.makeRegRef(*Ref.Op); +} + +// Set the register reference in the reference node directly (for references +// in phi nodes). +void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) { + assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); + assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef); + Ref.PR = G.pack(RR); +} + +// Set the register reference in the reference node based on a machine +// operand (for references in statement nodes). +void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) { + assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); + assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)); + (void)G; + Ref.Op = Op; +} + +// Get the owner of a given reference node. +NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) { + NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext()); + + while (NA.Addr != this) { + if (NA.Addr->getType() == NodeAttrs::Code) + return NA; + NA = G.addr<NodeBase*>(NA.Addr->getNext()); + } + llvm_unreachable("No owner in circular list"); +} + +// Connect the def node to the reaching def node. +void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) { + Ref.RD = DA.Id; + Ref.Sib = DA.Addr->getReachedDef(); + DA.Addr->setReachedDef(Self); +} + +// Connect the use node to the reaching def node. +void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) { + Ref.RD = DA.Id; + Ref.Sib = DA.Addr->getReachedUse(); + DA.Addr->setReachedUse(Self); +} + +// Get the first member of the code node. +NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const { + if (Code.FirstM == 0) + return NodeAddr<NodeBase*>(); + return G.addr<NodeBase*>(Code.FirstM); +} + +// Get the last member of the code node. +NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const { + if (Code.LastM == 0) + return NodeAddr<NodeBase*>(); + return G.addr<NodeBase*>(Code.LastM); +} + +// Add node NA at the end of the member list of the given code node. +void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { + NodeAddr<NodeBase*> ML = getLastMember(G); + if (ML.Id != 0) { + ML.Addr->append(NA); + } else { + Code.FirstM = NA.Id; + NodeId Self = G.id(this); + NA.Addr->setNext(Self); + } + Code.LastM = NA.Id; +} + +// Add node NA after member node MA in the given code node. +void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA, + const DataFlowGraph &G) { + MA.Addr->append(NA); + if (Code.LastM == MA.Id) + Code.LastM = NA.Id; +} + +// Remove member node NA from the given code node. +void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { + NodeAddr<NodeBase*> MA = getFirstMember(G); + assert(MA.Id != 0); + + // Special handling if the member to remove is the first member. + if (MA.Id == NA.Id) { + if (Code.LastM == MA.Id) { + // If it is the only member, set both first and last to 0. + Code.FirstM = Code.LastM = 0; + } else { + // Otherwise, advance the first member. + Code.FirstM = MA.Addr->getNext(); + } + return; + } + + while (MA.Addr != this) { + NodeId MX = MA.Addr->getNext(); + if (MX == NA.Id) { + MA.Addr->setNext(NA.Addr->getNext()); + // If the member to remove happens to be the last one, update the + // LastM indicator. + if (Code.LastM == NA.Id) + Code.LastM = MA.Id; + return; + } + MA = G.addr<NodeBase*>(MX); + } + llvm_unreachable("No such member"); +} + +// Return the list of all members of the code node. +NodeList CodeNode::members(const DataFlowGraph &G) const { + static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; }; + return members_if(True, G); +} + +// Return the owner of the given instr node. +NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) { + NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext()); + + while (NA.Addr != this) { + assert(NA.Addr->getType() == NodeAttrs::Code); + if (NA.Addr->getKind() == NodeAttrs::Block) + return NA; + NA = G.addr<NodeBase*>(NA.Addr->getNext()); + } + llvm_unreachable("No owner in circular list"); +} + +// Add the phi node PA to the given block node. +void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) { + NodeAddr<NodeBase*> M = getFirstMember(G); + if (M.Id == 0) { + addMember(PA, G); + return; + } + + assert(M.Addr->getType() == NodeAttrs::Code); + if (M.Addr->getKind() == NodeAttrs::Stmt) { + // If the first member of the block is a statement, insert the phi as + // the first member. + Code.FirstM = PA.Id; + PA.Addr->setNext(M.Id); + } else { + // If the first member is a phi, find the last phi, and append PA to it. + assert(M.Addr->getKind() == NodeAttrs::Phi); + NodeAddr<NodeBase*> MN = M; + do { + M = MN; + MN = G.addr<NodeBase*>(M.Addr->getNext()); + assert(MN.Addr->getType() == NodeAttrs::Code); + } while (MN.Addr->getKind() == NodeAttrs::Phi); + + // M is the last phi. + addMemberAfter(M, PA, G); + } +} + +// Find the block node corresponding to the machine basic block BB in the +// given func node. +NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB, + const DataFlowGraph &G) const { + auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool { + return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB; + }; + NodeList Ms = members_if(EqBB, G); + if (!Ms.empty()) + return Ms[0]; + return NodeAddr<BlockNode*>(); +} + +// Get the block node for the entry block in the given function. +NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) { + MachineBasicBlock *EntryB = &getCode()->front(); + return findBlock(EntryB, G); +} + +// Target operand information. +// + +// For a given instruction, check if there are any bits of RR that can remain +// unchanged across this def. +bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum) + const { + return TII.isPredicated(In); +} + +// Check if the definition of RR produces an unspecified value. +bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum) + const { + const MachineOperand &Op = In.getOperand(OpNum); + if (Op.isRegMask()) + return true; + assert(Op.isReg()); + if (In.isCall()) + if (Op.isDef() && Op.isDead()) + return true; + return false; +} + +// Check if the given instruction specifically requires +bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum) + const { + if (In.isCall() || In.isReturn() || In.isInlineAsm()) + return true; + // Check for a tail call. + if (In.isBranch()) + for (const MachineOperand &O : In.operands()) + if (O.isGlobal() || O.isSymbol()) + return true; + + const MCInstrDesc &D = In.getDesc(); + if (!D.getImplicitDefs() && !D.getImplicitUses()) + return false; + const MachineOperand &Op = In.getOperand(OpNum); + // If there is a sub-register, treat the operand as non-fixed. Currently, + // fixed registers are those that are listed in the descriptor as implicit + // uses or defs, and those lists do not allow sub-registers. + if (Op.getSubReg() != 0) + return false; + Register Reg = Op.getReg(); + const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs() + : D.getImplicitUses(); + if (!ImpR) + return false; + while (*ImpR) + if (*ImpR++ == Reg) + return true; + return false; +} + +// +// The data flow graph construction. +// + +DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, + const TargetRegisterInfo &tri, const MachineDominatorTree &mdt, + const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi) + : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi), + LiveIns(PRI) { +} + +// The implementation of the definition stack. +// Each register reference has its own definition stack. In particular, +// for a register references "Reg" and "Reg:subreg" will each have their +// own definition stacks. + +// Construct a stack iterator. +DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S, + bool Top) : DS(S) { + if (!Top) { + // Initialize to bottom. + Pos = 0; + return; + } + // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty). + Pos = DS.Stack.size(); + while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1])) + Pos--; +} + +// Return the size of the stack, including block delimiters. +unsigned DataFlowGraph::DefStack::size() const { + unsigned S = 0; + for (auto I = top(), E = bottom(); I != E; I.down()) + S++; + return S; +} + +// Remove the top entry from the stack. Remove all intervening delimiters +// so that after this, the stack is either empty, or the top of the stack +// is a non-delimiter. +void DataFlowGraph::DefStack::pop() { + assert(!empty()); + unsigned P = nextDown(Stack.size()); + Stack.resize(P); +} + +// Push a delimiter for block node N on the stack. +void DataFlowGraph::DefStack::start_block(NodeId N) { + assert(N != 0); + Stack.push_back(NodeAddr<DefNode*>(nullptr, N)); +} + +// Remove all nodes from the top of the stack, until the delimited for +// block node N is encountered. Remove the delimiter as well. In effect, +// this will remove from the stack all definitions from block N. +void DataFlowGraph::DefStack::clear_block(NodeId N) { + assert(N != 0); + unsigned P = Stack.size(); + while (P > 0) { + bool Found = isDelimiter(Stack[P-1], N); + P--; + if (Found) + break; + } + // This will also remove the delimiter, if found. + Stack.resize(P); +} + +// Move the stack iterator up by one. +unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const { + // Get the next valid position after P (skipping all delimiters). + // The input position P does not have to point to a non-delimiter. + unsigned SS = Stack.size(); + bool IsDelim; + assert(P < SS); + do { + P++; + IsDelim = isDelimiter(Stack[P-1]); + } while (P < SS && IsDelim); + assert(!IsDelim); + return P; +} + +// Move the stack iterator down by one. +unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const { + // Get the preceding valid position before P (skipping all delimiters). + // The input position P does not have to point to a non-delimiter. + assert(P > 0 && P <= Stack.size()); + bool IsDelim = isDelimiter(Stack[P-1]); + do { + if (--P == 0) + break; + IsDelim = isDelimiter(Stack[P-1]); + } while (P > 0 && IsDelim); + assert(!IsDelim); + return P; +} + +// Register information. + +RegisterSet DataFlowGraph::getLandingPadLiveIns() const { + RegisterSet LR; + const Function &F = MF.getFunction(); + const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn() + : nullptr; + const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); + if (RegisterId R = TLI.getExceptionPointerRegister(PF)) + LR.insert(RegisterRef(R)); + if (!isFuncletEHPersonality(classifyEHPersonality(PF))) { + if (RegisterId R = TLI.getExceptionSelectorRegister(PF)) + LR.insert(RegisterRef(R)); + } + return LR; +} + +// Node management functions. + +// Get the pointer to the node with the id N. +NodeBase *DataFlowGraph::ptr(NodeId N) const { + if (N == 0) + return nullptr; + return Memory.ptr(N); +} + +// Get the id of the node at the address P. +NodeId DataFlowGraph::id(const NodeBase *P) const { + if (P == nullptr) + return 0; + return Memory.id(P); +} + +// Allocate a new node and set the attributes to Attrs. +NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) { + NodeAddr<NodeBase*> P = Memory.New(); + P.Addr->init(); + P.Addr->setAttrs(Attrs); + return P; +} + +// Make a copy of the given node B, except for the data-flow links, which +// are set to 0. +NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) { + NodeAddr<NodeBase*> NA = newNode(0); + memcpy(NA.Addr, B.Addr, sizeof(NodeBase)); + // Ref nodes need to have the data-flow links reset. + if (NA.Addr->getType() == NodeAttrs::Ref) { + NodeAddr<RefNode*> RA = NA; + RA.Addr->setReachingDef(0); + RA.Addr->setSibling(0); + if (NA.Addr->getKind() == NodeAttrs::Def) { + NodeAddr<DefNode*> DA = NA; + DA.Addr->setReachedDef(0); + DA.Addr->setReachedUse(0); + } + } + return NA; +} + +// Allocation routines for specific node types/kinds. + +NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner, + MachineOperand &Op, uint16_t Flags) { + NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); + UA.Addr->setRegRef(&Op, *this); + return UA; +} + +NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner, + RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) { + NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); + assert(Flags & NodeAttrs::PhiRef); + PUA.Addr->setRegRef(RR, *this); + PUA.Addr->setPredecessor(PredB.Id); + return PUA; +} + +NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, + MachineOperand &Op, uint16_t Flags) { + NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); + DA.Addr->setRegRef(&Op, *this); + return DA; +} + +NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, + RegisterRef RR, uint16_t Flags) { + NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); + assert(Flags & NodeAttrs::PhiRef); + DA.Addr->setRegRef(RR, *this); + return DA; +} + +NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) { + NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi); + Owner.Addr->addPhi(PA, *this); + return PA; +} + +NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner, + MachineInstr *MI) { + NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt); + SA.Addr->setCode(MI); + Owner.Addr->addMember(SA, *this); + return SA; +} + +NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner, + MachineBasicBlock *BB) { + NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block); + BA.Addr->setCode(BB); + Owner.Addr->addMember(BA, *this); + return BA; +} + +NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) { + NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func); + FA.Addr->setCode(MF); + return FA; +} + +// Build the data flow graph. +void DataFlowGraph::build(unsigned Options) { + reset(); + Func = newFunc(&MF); + + if (MF.empty()) + return; + + for (MachineBasicBlock &B : MF) { + NodeAddr<BlockNode*> BA = newBlock(Func, &B); + BlockNodes.insert(std::make_pair(&B, BA)); + for (MachineInstr &I : B) { + if (I.isDebugInstr()) + continue; + buildStmt(BA, I); + } + } + + NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this); + NodeList Blocks = Func.Addr->members(*this); + + // Collect information about block references. + RegisterSet AllRefs; + for (NodeAddr<BlockNode*> BA : Blocks) + for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) + for (NodeAddr<RefNode*> RA : IA.Addr->members(*this)) + AllRefs.insert(RA.Addr->getRegRef(*this)); + + // Collect function live-ins and entry block live-ins. + MachineRegisterInfo &MRI = MF.getRegInfo(); + MachineBasicBlock &EntryB = *EA.Addr->getCode(); + assert(EntryB.pred_empty() && "Function entry block has predecessors"); + for (std::pair<unsigned,unsigned> P : MRI.liveins()) + LiveIns.insert(RegisterRef(P.first)); + if (MRI.tracksLiveness()) { + for (auto I : EntryB.liveins()) + LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask)); + } + + // Add function-entry phi nodes for the live-in registers. + //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) { + for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) { + RegisterRef RR = *I; + NodeAddr<PhiNode*> PA = newPhi(EA); + uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; + NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); + PA.Addr->addMember(DA, *this); + } + + // Add phis for landing pads. + // Landing pads, unlike usual backs blocks, are not entered through + // branches in the program, or fall-throughs from other blocks. They + // are entered from the exception handling runtime and target's ABI + // may define certain registers as defined on entry to such a block. + RegisterSet EHRegs = getLandingPadLiveIns(); + if (!EHRegs.empty()) { + for (NodeAddr<BlockNode*> BA : Blocks) { + const MachineBasicBlock &B = *BA.Addr->getCode(); + if (!B.isEHPad()) + continue; + + // Prepare a list of NodeIds of the block's predecessors. + NodeList Preds; + for (MachineBasicBlock *PB : B.predecessors()) + Preds.push_back(findBlock(PB)); + + // Build phi nodes for each live-in. + for (RegisterRef RR : EHRegs) { + NodeAddr<PhiNode*> PA = newPhi(BA); + uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; + // Add def: + NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); + PA.Addr->addMember(DA, *this); + // Add uses (no reaching defs for phi uses): + for (NodeAddr<BlockNode*> PBA : Preds) { + NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA); + PA.Addr->addMember(PUA, *this); + } + } + } + } + + // Build a map "PhiM" which will contain, for each block, the set + // of references that will require phi definitions in that block. + BlockRefsMap PhiM; + for (NodeAddr<BlockNode*> BA : Blocks) + recordDefsForDF(PhiM, BA); + for (NodeAddr<BlockNode*> BA : Blocks) + buildPhis(PhiM, AllRefs, BA); + + // Link all the refs. This will recursively traverse the dominator tree. + DefStackMap DM; + linkBlockRefs(DM, EA); + + // Finally, remove all unused phi nodes. + if (!(Options & BuildOptions::KeepDeadPhis)) + removeUnusedPhis(); +} + +RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const { + assert(PhysicalRegisterInfo::isRegMaskId(Reg) || + Register::isPhysicalRegister(Reg)); + assert(Reg != 0); + if (Sub != 0) + Reg = TRI.getSubReg(Reg, Sub); + return RegisterRef(Reg); +} + +RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const { + assert(Op.isReg() || Op.isRegMask()); + if (Op.isReg()) + return makeRegRef(Op.getReg(), Op.getSubReg()); + return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll()); +} + +RegisterRef DataFlowGraph::restrictRef(RegisterRef AR, RegisterRef BR) const { + if (AR.Reg == BR.Reg) { + LaneBitmask M = AR.Mask & BR.Mask; + return M.any() ? RegisterRef(AR.Reg, M) : RegisterRef(); + } + // This isn't strictly correct, because the overlap may happen in the + // part masked out. + if (PRI.alias(AR, BR)) + return AR; + return RegisterRef(); +} + +// For each stack in the map DefM, push the delimiter for block B on it. +void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) { + // Push block delimiters. + for (auto &P : DefM) + P.second.start_block(B); +} + +// Remove all definitions coming from block B from each stack in DefM. +void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) { + // Pop all defs from this block from the definition stack. Defs that were + // added to the map during the traversal of instructions will not have a + // delimiter, but for those, the whole stack will be emptied. + for (auto &P : DefM) + P.second.clear_block(B); + + // Finally, remove empty stacks from the map. + for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) { + NextI = std::next(I); + // This preserves the validity of iterators other than I. + if (I->second.empty()) + DefM.erase(I); + } +} + +// Push all definitions from the instruction node IA to an appropriate +// stack in DefM. +void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { + pushClobbers(IA, DefM); + pushDefs(IA, DefM); +} + +// Push all definitions from the instruction node IA to an appropriate +// stack in DefM. +void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { + NodeSet Visited; + std::set<RegisterId> Defined; + + // The important objectives of this function are: + // - to be able to handle instructions both while the graph is being + // constructed, and after the graph has been constructed, and + // - maintain proper ordering of definitions on the stack for each + // register reference: + // - if there are two or more related defs in IA (i.e. coming from + // the same machine operand), then only push one def on the stack, + // - if there are multiple unrelated defs of non-overlapping + // subregisters of S, then the stack for S will have both (in an + // unspecified order), but the order does not matter from the data- + // -flow perspective. + + for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) { + if (Visited.count(DA.Id)) + continue; + if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering)) + continue; + + NodeList Rel = getRelatedRefs(IA, DA); + NodeAddr<DefNode*> PDA = Rel.front(); + RegisterRef RR = PDA.Addr->getRegRef(*this); + + // Push the definition on the stack for the register and all aliases. + // The def stack traversal in linkNodeUp will check the exact aliasing. + DefM[RR.Reg].push(DA); + Defined.insert(RR.Reg); + for (RegisterId A : PRI.getAliasSet(RR.Reg)) { + // Check that we don't push the same def twice. + assert(A != RR.Reg); + if (!Defined.count(A)) + DefM[A].push(DA); + } + // Mark all the related defs as visited. + for (NodeAddr<NodeBase*> T : Rel) + Visited.insert(T.Id); + } +} + +// Push all definitions from the instruction node IA to an appropriate +// stack in DefM. +void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { + NodeSet Visited; +#ifndef NDEBUG + std::set<RegisterId> Defined; +#endif + + // The important objectives of this function are: + // - to be able to handle instructions both while the graph is being + // constructed, and after the graph has been constructed, and + // - maintain proper ordering of definitions on the stack for each + // register reference: + // - if there are two or more related defs in IA (i.e. coming from + // the same machine operand), then only push one def on the stack, + // - if there are multiple unrelated defs of non-overlapping + // subregisters of S, then the stack for S will have both (in an + // unspecified order), but the order does not matter from the data- + // -flow perspective. + + for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) { + if (Visited.count(DA.Id)) + continue; + if (DA.Addr->getFlags() & NodeAttrs::Clobbering) + continue; + + NodeList Rel = getRelatedRefs(IA, DA); + NodeAddr<DefNode*> PDA = Rel.front(); + RegisterRef RR = PDA.Addr->getRegRef(*this); +#ifndef NDEBUG + // Assert if the register is defined in two or more unrelated defs. + // This could happen if there are two or more def operands defining it. + if (!Defined.insert(RR.Reg).second) { + MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode(); + dbgs() << "Multiple definitions of register: " + << Print<RegisterRef>(RR, *this) << " in\n " << *MI << "in " + << printMBBReference(*MI->getParent()) << '\n'; + llvm_unreachable(nullptr); + } +#endif + // Push the definition on the stack for the register and all aliases. + // The def stack traversal in linkNodeUp will check the exact aliasing. + DefM[RR.Reg].push(DA); + for (RegisterId A : PRI.getAliasSet(RR.Reg)) { + // Check that we don't push the same def twice. + assert(A != RR.Reg); + DefM[A].push(DA); + } + // Mark all the related defs as visited. + for (NodeAddr<NodeBase*> T : Rel) + Visited.insert(T.Id); + } +} + +// Return the list of all reference nodes related to RA, including RA itself. +// See "getNextRelated" for the meaning of a "related reference". +NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA, + NodeAddr<RefNode*> RA) const { + assert(IA.Id != 0 && RA.Id != 0); + + NodeList Refs; + NodeId Start = RA.Id; + do { + Refs.push_back(RA); + RA = getNextRelated(IA, RA); + } while (RA.Id != 0 && RA.Id != Start); + return Refs; +} + +// Clear all information in the graph. +void DataFlowGraph::reset() { + Memory.clear(); + BlockNodes.clear(); + Func = NodeAddr<FuncNode*>(); +} + +// Return the next reference node in the instruction node IA that is related +// to RA. Conceptually, two reference nodes are related if they refer to the +// same instance of a register access, but differ in flags or other minor +// characteristics. Specific examples of related nodes are shadow reference +// nodes. +// Return the equivalent of nullptr if there are no more related references. +NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA, + NodeAddr<RefNode*> RA) const { + assert(IA.Id != 0 && RA.Id != 0); + + auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool { + if (TA.Addr->getKind() != RA.Addr->getKind()) + return false; + if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this)) + return false; + return true; + }; + auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool { + return Related(TA) && + &RA.Addr->getOp() == &TA.Addr->getOp(); + }; + auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool { + if (!Related(TA)) + return false; + if (TA.Addr->getKind() != NodeAttrs::Use) + return true; + // For phi uses, compare predecessor blocks. + const NodeAddr<const PhiUseNode*> TUA = TA; + const NodeAddr<const PhiUseNode*> RUA = RA; + return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor(); + }; + + RegisterRef RR = RA.Addr->getRegRef(*this); + if (IA.Addr->getKind() == NodeAttrs::Stmt) + return RA.Addr->getNextRef(RR, RelatedStmt, true, *this); + return RA.Addr->getNextRef(RR, RelatedPhi, true, *this); +} + +// Find the next node related to RA in IA that satisfies condition P. +// If such a node was found, return a pair where the second element is the +// located node. If such a node does not exist, return a pair where the +// first element is the element after which such a node should be inserted, +// and the second element is a null-address. +template <typename Predicate> +std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>> +DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA, + Predicate P) const { + assert(IA.Id != 0 && RA.Id != 0); + + NodeAddr<RefNode*> NA; + NodeId Start = RA.Id; + while (true) { + NA = getNextRelated(IA, RA); + if (NA.Id == 0 || NA.Id == Start) + break; + if (P(NA)) + break; + RA = NA; + } + + if (NA.Id != 0 && NA.Id != Start) + return std::make_pair(RA, NA); + return std::make_pair(RA, NodeAddr<RefNode*>()); +} + +// Get the next shadow node in IA corresponding to RA, and optionally create +// such a node if it does not exist. +NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA, + NodeAddr<RefNode*> RA, bool Create) { + assert(IA.Id != 0 && RA.Id != 0); + + uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; + auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool { + return TA.Addr->getFlags() == Flags; + }; + auto Loc = locateNextRef(IA, RA, IsShadow); + if (Loc.second.Id != 0 || !Create) + return Loc.second; + + // Create a copy of RA and mark is as shadow. + NodeAddr<RefNode*> NA = cloneNode(RA); + NA.Addr->setFlags(Flags | NodeAttrs::Shadow); + IA.Addr->addMemberAfter(Loc.first, NA, *this); + return NA; +} + +// Get the next shadow node in IA corresponding to RA. Return null-address +// if such a node does not exist. +NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA, + NodeAddr<RefNode*> RA) const { + assert(IA.Id != 0 && RA.Id != 0); + uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; + auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool { + return TA.Addr->getFlags() == Flags; + }; + return locateNextRef(IA, RA, IsShadow).second; +} + +// Create a new statement node in the block node BA that corresponds to +// the machine instruction MI. +void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) { + NodeAddr<StmtNode*> SA = newStmt(BA, &In); + + auto isCall = [] (const MachineInstr &In) -> bool { + if (In.isCall()) + return true; + // Is tail call? + if (In.isBranch()) { + for (const MachineOperand &Op : In.operands()) + if (Op.isGlobal() || Op.isSymbol()) + return true; + // Assume indirect branches are calls. This is for the purpose of + // keeping implicit operands, and so it won't hurt on intra-function + // indirect branches. + if (In.isIndirectBranch()) + return true; + } + return false; + }; + + auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool { + // This instruction defines DR. Check if there is a use operand that + // would make DR live on entry to the instruction. + for (const MachineOperand &Op : In.operands()) { + if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef()) + continue; + RegisterRef UR = makeRegRef(Op); + if (PRI.alias(DR, UR)) + return false; + } + return true; + }; + + bool IsCall = isCall(In); + unsigned NumOps = In.getNumOperands(); + + // Avoid duplicate implicit defs. This will not detect cases of implicit + // defs that define registers that overlap, but it is not clear how to + // interpret that in the absence of explicit defs. Overlapping explicit + // defs are likely illegal already. + BitVector DoneDefs(TRI.getNumRegs()); + // Process explicit defs first. + for (unsigned OpN = 0; OpN < NumOps; ++OpN) { + MachineOperand &Op = In.getOperand(OpN); + if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) + continue; + Register R = Op.getReg(); + if (!R || !Register::isPhysicalRegister(R)) + continue; + uint16_t Flags = NodeAttrs::None; + if (TOI.isPreserving(In, OpN)) { + Flags |= NodeAttrs::Preserving; + // If the def is preserving, check if it is also undefined. + if (isDefUndef(In, makeRegRef(Op))) + Flags |= NodeAttrs::Undef; + } + if (TOI.isClobbering(In, OpN)) + Flags |= NodeAttrs::Clobbering; + if (TOI.isFixedReg(In, OpN)) + Flags |= NodeAttrs::Fixed; + if (IsCall && Op.isDead()) + Flags |= NodeAttrs::Dead; + NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); + SA.Addr->addMember(DA, *this); + assert(!DoneDefs.test(R)); + DoneDefs.set(R); + } + + // Process reg-masks (as clobbers). + BitVector DoneClobbers(TRI.getNumRegs()); + for (unsigned OpN = 0; OpN < NumOps; ++OpN) { + MachineOperand &Op = In.getOperand(OpN); + if (!Op.isRegMask()) + continue; + uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed | + NodeAttrs::Dead; + NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); + SA.Addr->addMember(DA, *this); + // Record all clobbered registers in DoneDefs. + const uint32_t *RM = Op.getRegMask(); + for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) + if (!(RM[i/32] & (1u << (i%32)))) + DoneClobbers.set(i); + } + + // Process implicit defs, skipping those that have already been added + // as explicit. + for (unsigned OpN = 0; OpN < NumOps; ++OpN) { + MachineOperand &Op = In.getOperand(OpN); + if (!Op.isReg() || !Op.isDef() || !Op.isImplicit()) + continue; + Register R = Op.getReg(); + if (!R || !Register::isPhysicalRegister(R) || DoneDefs.test(R)) + continue; + RegisterRef RR = makeRegRef(Op); + uint16_t Flags = NodeAttrs::None; + if (TOI.isPreserving(In, OpN)) { + Flags |= NodeAttrs::Preserving; + // If the def is preserving, check if it is also undefined. + if (isDefUndef(In, RR)) + Flags |= NodeAttrs::Undef; + } + if (TOI.isClobbering(In, OpN)) + Flags |= NodeAttrs::Clobbering; + if (TOI.isFixedReg(In, OpN)) + Flags |= NodeAttrs::Fixed; + if (IsCall && Op.isDead()) { + if (DoneClobbers.test(R)) + continue; + Flags |= NodeAttrs::Dead; + } + NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); + SA.Addr->addMember(DA, *this); + DoneDefs.set(R); + } + + for (unsigned OpN = 0; OpN < NumOps; ++OpN) { + MachineOperand &Op = In.getOperand(OpN); + if (!Op.isReg() || !Op.isUse()) + continue; + Register R = Op.getReg(); + if (!R || !Register::isPhysicalRegister(R)) + continue; + uint16_t Flags = NodeAttrs::None; + if (Op.isUndef()) + Flags |= NodeAttrs::Undef; + if (TOI.isFixedReg(In, OpN)) + Flags |= NodeAttrs::Fixed; + NodeAddr<UseNode*> UA = newUse(SA, Op, Flags); + SA.Addr->addMember(UA, *this); + } +} + +// Scan all defs in the block node BA and record in PhiM the locations of +// phi nodes corresponding to these defs. +void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, + NodeAddr<BlockNode*> BA) { + // Check all defs from block BA and record them in each block in BA's + // iterated dominance frontier. This information will later be used to + // create phi nodes. + MachineBasicBlock *BB = BA.Addr->getCode(); + assert(BB); + auto DFLoc = MDF.find(BB); + if (DFLoc == MDF.end() || DFLoc->second.empty()) + return; + + // Traverse all instructions in the block and collect the set of all + // defined references. For each reference there will be a phi created + // in the block's iterated dominance frontier. + // This is done to make sure that each defined reference gets only one + // phi node, even if it is defined multiple times. + RegisterSet Defs; + for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) + for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this)) + Defs.insert(RA.Addr->getRegRef(*this)); + + // Calculate the iterated dominance frontier of BB. + const MachineDominanceFrontier::DomSetType &DF = DFLoc->second; + SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end()); + for (unsigned i = 0; i < IDF.size(); ++i) { + auto F = MDF.find(IDF[i]); + if (F != MDF.end()) + IDF.insert(F->second.begin(), F->second.end()); + } + + // Finally, add the set of defs to each block in the iterated dominance + // frontier. + for (auto DB : IDF) { + NodeAddr<BlockNode*> DBA = findBlock(DB); + PhiM[DBA.Id].insert(Defs.begin(), Defs.end()); + } +} + +// Given the locations of phi nodes in the map PhiM, create the phi nodes +// that are located in the block node BA. +void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs, + NodeAddr<BlockNode*> BA) { + // Check if this blocks has any DF defs, i.e. if there are any defs + // that this block is in the iterated dominance frontier of. + auto HasDF = PhiM.find(BA.Id); + if (HasDF == PhiM.end() || HasDF->second.empty()) + return; + + // First, remove all R in Refs in such that there exists T in Refs + // such that T covers R. In other words, only leave those refs that + // are not covered by another ref (i.e. maximal with respect to covering). + + auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef { + for (RegisterRef I : RRs) + if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI)) + RR = I; + return RR; + }; + + RegisterSet MaxDF; + for (RegisterRef I : HasDF->second) + MaxDF.insert(MaxCoverIn(I, HasDF->second)); + + std::vector<RegisterRef> MaxRefs; + for (RegisterRef I : MaxDF) + MaxRefs.push_back(MaxCoverIn(I, AllRefs)); + + // Now, for each R in MaxRefs, get the alias closure of R. If the closure + // only has R in it, create a phi a def for R. Otherwise, create a phi, + // and add a def for each S in the closure. + + // Sort the refs so that the phis will be created in a deterministic order. + llvm::sort(MaxRefs); + // Remove duplicates. + auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end()); + MaxRefs.erase(NewEnd, MaxRefs.end()); + + auto Aliased = [this,&MaxRefs](RegisterRef RR, + std::vector<unsigned> &Closure) -> bool { + for (unsigned I : Closure) + if (PRI.alias(RR, MaxRefs[I])) + return true; + return false; + }; + + // Prepare a list of NodeIds of the block's predecessors. + NodeList Preds; + const MachineBasicBlock *MBB = BA.Addr->getCode(); + for (MachineBasicBlock *PB : MBB->predecessors()) + Preds.push_back(findBlock(PB)); + + while (!MaxRefs.empty()) { + // Put the first element in the closure, and then add all subsequent + // elements from MaxRefs to it, if they alias at least one element + // already in the closure. + // ClosureIdx: vector of indices in MaxRefs of members of the closure. + std::vector<unsigned> ClosureIdx = { 0 }; + for (unsigned i = 1; i != MaxRefs.size(); ++i) + if (Aliased(MaxRefs[i], ClosureIdx)) + ClosureIdx.push_back(i); + + // Build a phi for the closure. + unsigned CS = ClosureIdx.size(); + NodeAddr<PhiNode*> PA = newPhi(BA); + + // Add defs. + for (unsigned X = 0; X != CS; ++X) { + RegisterRef RR = MaxRefs[ClosureIdx[X]]; + uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; + NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); + PA.Addr->addMember(DA, *this); + } + // Add phi uses. + for (NodeAddr<BlockNode*> PBA : Preds) { + for (unsigned X = 0; X != CS; ++X) { + RegisterRef RR = MaxRefs[ClosureIdx[X]]; + NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA); + PA.Addr->addMember(PUA, *this); + } + } + + // Erase from MaxRefs all elements in the closure. + auto Begin = MaxRefs.begin(); + for (unsigned Idx : llvm::reverse(ClosureIdx)) + MaxRefs.erase(Begin + Idx); + } +} + +// Remove any unneeded phi nodes that were created during the build process. +void DataFlowGraph::removeUnusedPhis() { + // This will remove unused phis, i.e. phis where each def does not reach + // any uses or other defs. This will not detect or remove circular phi + // chains that are otherwise dead. Unused/dead phis are created during + // the build process and this function is intended to remove these cases + // that are easily determinable to be unnecessary. + + SetVector<NodeId> PhiQ; + for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) { + for (auto P : BA.Addr->members_if(IsPhi, *this)) + PhiQ.insert(P.Id); + } + + static auto HasUsedDef = [](NodeList &Ms) -> bool { + for (NodeAddr<NodeBase*> M : Ms) { + if (M.Addr->getKind() != NodeAttrs::Def) + continue; + NodeAddr<DefNode*> DA = M; + if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0) + return true; + } + return false; + }; + + // Any phi, if it is removed, may affect other phis (make them dead). + // For each removed phi, collect the potentially affected phis and add + // them back to the queue. + while (!PhiQ.empty()) { + auto PA = addr<PhiNode*>(PhiQ[0]); + PhiQ.remove(PA.Id); + NodeList Refs = PA.Addr->members(*this); + if (HasUsedDef(Refs)) + continue; + for (NodeAddr<RefNode*> RA : Refs) { + if (NodeId RD = RA.Addr->getReachingDef()) { + auto RDA = addr<DefNode*>(RD); + NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this); + if (IsPhi(OA)) + PhiQ.insert(OA.Id); + } + if (RA.Addr->isDef()) + unlinkDef(RA, true); + else + unlinkUse(RA, true); + } + NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this); + BA.Addr->removeMember(PA, *this); + } +} + +// For a given reference node TA in an instruction node IA, connect the +// reaching def of TA to the appropriate def node. Create any shadow nodes +// as appropriate. +template <typename T> +void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA, + DefStack &DS) { + if (DS.empty()) + return; + RegisterRef RR = TA.Addr->getRegRef(*this); + NodeAddr<T> TAP; + + // References from the def stack that have been examined so far. + RegisterAggr Defs(PRI); + + for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) { + RegisterRef QR = I->Addr->getRegRef(*this); + + // Skip all defs that are aliased to any of the defs that we have already + // seen. If this completes a cover of RR, stop the stack traversal. + bool Alias = Defs.hasAliasOf(QR); + bool Cover = Defs.insert(QR).hasCoverOf(RR); + if (Alias) { + if (Cover) + break; + continue; + } + + // The reaching def. + NodeAddr<DefNode*> RDA = *I; + + // Pick the reached node. + if (TAP.Id == 0) { + TAP = TA; + } else { + // Mark the existing ref as "shadow" and create a new shadow. + TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow); + TAP = getNextShadow(IA, TAP, true); + } + + // Create the link. + TAP.Addr->linkToDef(TAP.Id, RDA); + + if (Cover) + break; + } +} + +// Create data-flow links for all reference nodes in the statement node SA. +template <typename Predicate> +void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA, + Predicate P) { +#ifndef NDEBUG + RegisterSet Defs; +#endif + + // Link all nodes (upwards in the data-flow) with their reaching defs. + for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) { + uint16_t Kind = RA.Addr->getKind(); + assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use); + RegisterRef RR = RA.Addr->getRegRef(*this); +#ifndef NDEBUG + // Do not expect multiple defs of the same reference. + assert(Kind != NodeAttrs::Def || !Defs.count(RR)); + Defs.insert(RR); +#endif + + auto F = DefM.find(RR.Reg); + if (F == DefM.end()) + continue; + DefStack &DS = F->second; + if (Kind == NodeAttrs::Use) + linkRefUp<UseNode*>(SA, RA, DS); + else if (Kind == NodeAttrs::Def) + linkRefUp<DefNode*>(SA, RA, DS); + else + llvm_unreachable("Unexpected node in instruction"); + } +} + +// Create data-flow links for all instructions in the block node BA. This +// will include updating any phi nodes in BA. +void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) { + // Push block delimiters. + markBlock(BA.Id, DefM); + + auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool { + return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering); + }; + auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool { + return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering); + }; + + assert(BA.Addr && "block node address is needed to create a data-flow link"); + // For each non-phi instruction in the block, link all the defs and uses + // to their reaching defs. For any member of the block (including phis), + // push the defs on the corresponding stacks. + for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) { + // Ignore phi nodes here. They will be linked part by part from the + // predecessors. + if (IA.Addr->getKind() == NodeAttrs::Stmt) { + linkStmtRefs(DefM, IA, IsUse); + linkStmtRefs(DefM, IA, IsClobber); + } + + // Push the definitions on the stack. + pushClobbers(IA, DefM); + + if (IA.Addr->getKind() == NodeAttrs::Stmt) + linkStmtRefs(DefM, IA, IsNoClobber); + + pushDefs(IA, DefM); + } + + // Recursively process all children in the dominator tree. + MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode()); + for (auto I : *N) { + MachineBasicBlock *SB = I->getBlock(); + NodeAddr<BlockNode*> SBA = findBlock(SB); + linkBlockRefs(DefM, SBA); + } + + // Link the phi uses from the successor blocks. + auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool { + if (NA.Addr->getKind() != NodeAttrs::Use) + return false; + assert(NA.Addr->getFlags() & NodeAttrs::PhiRef); + NodeAddr<PhiUseNode*> PUA = NA; + return PUA.Addr->getPredecessor() == BA.Id; + }; + + RegisterSet EHLiveIns = getLandingPadLiveIns(); + MachineBasicBlock *MBB = BA.Addr->getCode(); + + for (MachineBasicBlock *SB : MBB->successors()) { + bool IsEHPad = SB->isEHPad(); + NodeAddr<BlockNode*> SBA = findBlock(SB); + for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) { + // Do not link phi uses for landing pad live-ins. + if (IsEHPad) { + // Find what register this phi is for. + NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this); + assert(RA.Id != 0); + if (EHLiveIns.count(RA.Addr->getRegRef(*this))) + continue; + } + // Go over each phi use associated with MBB, and link it. + for (auto U : IA.Addr->members_if(IsUseForBA, *this)) { + NodeAddr<PhiUseNode*> PUA = U; + RegisterRef RR = PUA.Addr->getRegRef(*this); + linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]); + } + } + } + + // Pop all defs from this block from the definition stacks. + releaseBlock(BA.Id, DefM); +} + +// Remove the use node UA from any data-flow and structural links. +void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) { + NodeId RD = UA.Addr->getReachingDef(); + NodeId Sib = UA.Addr->getSibling(); + + if (RD == 0) { + assert(Sib == 0); + return; + } + + auto RDA = addr<DefNode*>(RD); + auto TA = addr<UseNode*>(RDA.Addr->getReachedUse()); + if (TA.Id == UA.Id) { + RDA.Addr->setReachedUse(Sib); + return; + } + + while (TA.Id != 0) { + NodeId S = TA.Addr->getSibling(); + if (S == UA.Id) { + TA.Addr->setSibling(UA.Addr->getSibling()); + return; + } + TA = addr<UseNode*>(S); + } +} + +// Remove the def node DA from any data-flow and structural links. +void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) { + // + // RD + // | reached + // | def + // : + // . + // +----+ + // ... -- | DA | -- ... -- 0 : sibling chain of DA + // +----+ + // | | reached + // | : def + // | . + // | ... : Siblings (defs) + // | + // : reached + // . use + // ... : sibling chain of reached uses + + NodeId RD = DA.Addr->getReachingDef(); + + // Visit all siblings of the reached def and reset their reaching defs. + // Also, defs reached by DA are now "promoted" to being reached by RD, + // so all of them will need to be spliced into the sibling chain where + // DA belongs. + auto getAllNodes = [this] (NodeId N) -> NodeList { + NodeList Res; + while (N) { + auto RA = addr<RefNode*>(N); + // Keep the nodes in the exact sibling order. + Res.push_back(RA); + N = RA.Addr->getSibling(); + } + return Res; + }; + NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef()); + NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse()); + + if (RD == 0) { + for (NodeAddr<RefNode*> I : ReachedDefs) + I.Addr->setSibling(0); + for (NodeAddr<RefNode*> I : ReachedUses) + I.Addr->setSibling(0); + } + for (NodeAddr<DefNode*> I : ReachedDefs) + I.Addr->setReachingDef(RD); + for (NodeAddr<UseNode*> I : ReachedUses) + I.Addr->setReachingDef(RD); + + NodeId Sib = DA.Addr->getSibling(); + if (RD == 0) { + assert(Sib == 0); + return; + } + + // Update the reaching def node and remove DA from the sibling list. + auto RDA = addr<DefNode*>(RD); + auto TA = addr<DefNode*>(RDA.Addr->getReachedDef()); + if (TA.Id == DA.Id) { + // If DA is the first reached def, just update the RD's reached def + // to the DA's sibling. + RDA.Addr->setReachedDef(Sib); + } else { + // Otherwise, traverse the sibling list of the reached defs and remove + // DA from it. + while (TA.Id != 0) { + NodeId S = TA.Addr->getSibling(); + if (S == DA.Id) { + TA.Addr->setSibling(Sib); + break; + } + TA = addr<DefNode*>(S); + } + } + + // Splice the DA's reached defs into the RDA's reached def chain. + if (!ReachedDefs.empty()) { + auto Last = NodeAddr<DefNode*>(ReachedDefs.back()); + Last.Addr->setSibling(RDA.Addr->getReachedDef()); + RDA.Addr->setReachedDef(ReachedDefs.front().Id); + } + // Splice the DA's reached uses into the RDA's reached use chain. + if (!ReachedUses.empty()) { + auto Last = NodeAddr<UseNode*>(ReachedUses.back()); + Last.Addr->setSibling(RDA.Addr->getReachedUse()); + RDA.Addr->setReachedUse(ReachedUses.front().Id); + } +} |