diff options
author | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
---|---|---|
committer | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
commit | 6ffe9e53658409f212834330e13564e4952558f6 (patch) | |
tree | 85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm14/lib/CodeGen/MachineInstr.cpp | |
parent | 726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff) | |
download | ydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz |
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm14/lib/CodeGen/MachineInstr.cpp')
-rw-r--r-- | contrib/libs/llvm14/lib/CodeGen/MachineInstr.cpp | 2363 |
1 files changed, 2363 insertions, 0 deletions
diff --git a/contrib/libs/llvm14/lib/CodeGen/MachineInstr.cpp b/contrib/libs/llvm14/lib/CodeGen/MachineInstr.cpp new file mode 100644 index 0000000000..85b266afce --- /dev/null +++ b/contrib/libs/llvm14/lib/CodeGen/MachineInstr.cpp @@ -0,0 +1,2363 @@ +//===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Methods common to all machine instructions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/Hashing.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallBitVector.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/CodeGen/GlobalISel/RegisterBank.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineInstrBundle.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/CodeGen/StackMaps.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/ModuleSlotTracker.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/FormattedStream.h" +#include "llvm/Support/LowLevelTypeImpl.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetIntrinsicInfo.h" +#include "llvm/Target/TargetMachine.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <cstring> +#include <iterator> +#include <utility> + +using namespace llvm; + +static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { + if (const MachineBasicBlock *MBB = MI.getParent()) + if (const MachineFunction *MF = MBB->getParent()) + return MF; + return nullptr; +} + +// Try to crawl up to the machine function and get TRI and IntrinsicInfo from +// it. +static void tryToGetTargetInfo(const MachineInstr &MI, + const TargetRegisterInfo *&TRI, + const MachineRegisterInfo *&MRI, + const TargetIntrinsicInfo *&IntrinsicInfo, + const TargetInstrInfo *&TII) { + + if (const MachineFunction *MF = getMFIfAvailable(MI)) { + TRI = MF->getSubtarget().getRegisterInfo(); + MRI = &MF->getRegInfo(); + IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); + TII = MF->getSubtarget().getInstrInfo(); + } +} + +void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { + if (MCID->ImplicitDefs) + for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; + ++ImpDefs) + addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); + if (MCID->ImplicitUses) + for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; + ++ImpUses) + addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); +} + +/// MachineInstr ctor - This constructor creates a MachineInstr and adds the +/// implicit operands. It reserves space for the number of operands specified by +/// the MCInstrDesc. +MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID, + DebugLoc DL, bool NoImp) + : MCID(&TID), DbgLoc(std::move(DL)), DebugInstrNum(0) { + assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); + + // Reserve space for the expected number of operands. + if (unsigned NumOps = MCID->getNumOperands() + + MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { + CapOperands = OperandCapacity::get(NumOps); + Operands = MF.allocateOperandArray(CapOperands); + } + + if (!NoImp) + addImplicitDefUseOperands(MF); +} + +/// MachineInstr ctor - Copies MachineInstr arg exactly. +/// Does not copy the number from debug instruction numbering, to preserve +/// uniqueness. +MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) + : MCID(&MI.getDesc()), Info(MI.Info), DbgLoc(MI.getDebugLoc()), + DebugInstrNum(0) { + assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); + + CapOperands = OperandCapacity::get(MI.getNumOperands()); + Operands = MF.allocateOperandArray(CapOperands); + + // Copy operands. + for (const MachineOperand &MO : MI.operands()) + addOperand(MF, MO); + + // Copy all the sensible flags. + setFlags(MI.Flags); +} + +void MachineInstr::moveBefore(MachineInstr *MovePos) { + MovePos->getParent()->splice(MovePos, getParent(), getIterator()); +} + +/// getRegInfo - If this instruction is embedded into a MachineFunction, +/// return the MachineRegisterInfo object for the current function, otherwise +/// return null. +MachineRegisterInfo *MachineInstr::getRegInfo() { + if (MachineBasicBlock *MBB = getParent()) + return &MBB->getParent()->getRegInfo(); + return nullptr; +} + +/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in +/// this instruction from their respective use lists. This requires that the +/// operands already be on their use lists. +void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { + for (MachineOperand &MO : operands()) + if (MO.isReg()) + MRI.removeRegOperandFromUseList(&MO); +} + +/// AddRegOperandsToUseLists - Add all of the register operands in +/// this instruction from their respective use lists. This requires that the +/// operands not be on their use lists yet. +void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { + for (MachineOperand &MO : operands()) + if (MO.isReg()) + MRI.addRegOperandToUseList(&MO); +} + +void MachineInstr::addOperand(const MachineOperand &Op) { + MachineBasicBlock *MBB = getParent(); + assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); + MachineFunction *MF = MBB->getParent(); + assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); + addOperand(*MF, Op); +} + +/// Move NumOps MachineOperands from Src to Dst, with support for overlapping +/// ranges. If MRI is non-null also update use-def chains. +static void moveOperands(MachineOperand *Dst, MachineOperand *Src, + unsigned NumOps, MachineRegisterInfo *MRI) { + if (MRI) + return MRI->moveOperands(Dst, Src, NumOps); + // MachineOperand is a trivially copyable type so we can just use memmove. + assert(Dst && Src && "Unknown operands"); + std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); +} + +/// addOperand - Add the specified operand to the instruction. If it is an +/// implicit operand, it is added to the end of the operand list. If it is +/// an explicit operand it is added at the end of the explicit operand list +/// (before the first implicit operand). +void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { + assert(MCID && "Cannot add operands before providing an instr descriptor"); + + // Check if we're adding one of our existing operands. + if (&Op >= Operands && &Op < Operands + NumOperands) { + // This is unusual: MI->addOperand(MI->getOperand(i)). + // If adding Op requires reallocating or moving existing operands around, + // the Op reference could go stale. Support it by copying Op. + MachineOperand CopyOp(Op); + return addOperand(MF, CopyOp); + } + + // Find the insert location for the new operand. Implicit registers go at + // the end, everything else goes before the implicit regs. + // + // FIXME: Allow mixed explicit and implicit operands on inline asm. + // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as + // implicit-defs, but they must not be moved around. See the FIXME in + // InstrEmitter.cpp. + unsigned OpNo = getNumOperands(); + bool isImpReg = Op.isReg() && Op.isImplicit(); + if (!isImpReg && !isInlineAsm()) { + while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { + --OpNo; + assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); + } + } + +#ifndef NDEBUG + bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata || + Op.getType() == MachineOperand::MO_MCSymbol; + // OpNo now points as the desired insertion point. Unless this is a variadic + // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). + // RegMask operands go between the explicit and implicit operands. + assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || + OpNo < MCID->getNumOperands() || isDebugOp) && + "Trying to add an operand to a machine instr that is already done!"); +#endif + + MachineRegisterInfo *MRI = getRegInfo(); + + // Determine if the Operands array needs to be reallocated. + // Save the old capacity and operand array. + OperandCapacity OldCap = CapOperands; + MachineOperand *OldOperands = Operands; + if (!OldOperands || OldCap.getSize() == getNumOperands()) { + CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); + Operands = MF.allocateOperandArray(CapOperands); + // Move the operands before the insertion point. + if (OpNo) + moveOperands(Operands, OldOperands, OpNo, MRI); + } + + // Move the operands following the insertion point. + if (OpNo != NumOperands) + moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, + MRI); + ++NumOperands; + + // Deallocate the old operand array. + if (OldOperands != Operands && OldOperands) + MF.deallocateOperandArray(OldCap, OldOperands); + + // Copy Op into place. It still needs to be inserted into the MRI use lists. + MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); + NewMO->ParentMI = this; + + // When adding a register operand, tell MRI about it. + if (NewMO->isReg()) { + // Ensure isOnRegUseList() returns false, regardless of Op's status. + NewMO->Contents.Reg.Prev = nullptr; + // Ignore existing ties. This is not a property that can be copied. + NewMO->TiedTo = 0; + // Add the new operand to MRI, but only for instructions in an MBB. + if (MRI) + MRI->addRegOperandToUseList(NewMO); + // The MCID operand information isn't accurate until we start adding + // explicit operands. The implicit operands are added first, then the + // explicits are inserted before them. + if (!isImpReg) { + // Tie uses to defs as indicated in MCInstrDesc. + if (NewMO->isUse()) { + int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); + if (DefIdx != -1) + tieOperands(DefIdx, OpNo); + } + // If the register operand is flagged as early, mark the operand as such. + if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) + NewMO->setIsEarlyClobber(true); + } + // Ensure debug instructions set debug flag on register uses. + if (NewMO->isUse() && isDebugInstr()) + NewMO->setIsDebug(); + } +} + +/// RemoveOperand - Erase an operand from an instruction, leaving it with one +/// fewer operand than it started with. +/// +void MachineInstr::RemoveOperand(unsigned OpNo) { + assert(OpNo < getNumOperands() && "Invalid operand number"); + untieRegOperand(OpNo); + +#ifndef NDEBUG + // Moving tied operands would break the ties. + for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) + if (Operands[i].isReg()) + assert(!Operands[i].isTied() && "Cannot move tied operands"); +#endif + + MachineRegisterInfo *MRI = getRegInfo(); + if (MRI && Operands[OpNo].isReg()) + MRI->removeRegOperandFromUseList(Operands + OpNo); + + // Don't call the MachineOperand destructor. A lot of this code depends on + // MachineOperand having a trivial destructor anyway, and adding a call here + // wouldn't make it 'destructor-correct'. + + if (unsigned N = NumOperands - 1 - OpNo) + moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); + --NumOperands; +} + +void MachineInstr::setExtraInfo(MachineFunction &MF, + ArrayRef<MachineMemOperand *> MMOs, + MCSymbol *PreInstrSymbol, + MCSymbol *PostInstrSymbol, + MDNode *HeapAllocMarker) { + bool HasPreInstrSymbol = PreInstrSymbol != nullptr; + bool HasPostInstrSymbol = PostInstrSymbol != nullptr; + bool HasHeapAllocMarker = HeapAllocMarker != nullptr; + int NumPointers = + MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker; + + // Drop all extra info if there is none. + if (NumPointers <= 0) { + Info.clear(); + return; + } + + // If more than one pointer, then store out of line. Store heap alloc markers + // out of line because PointerSumType cannot hold more than 4 tag types with + // 32-bit pointers. + // FIXME: Maybe we should make the symbols in the extra info mutable? + else if (NumPointers > 1 || HasHeapAllocMarker) { + Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo( + MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker)); + return; + } + + // Otherwise store the single pointer inline. + if (HasPreInstrSymbol) + Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); + else if (HasPostInstrSymbol) + Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); + else + Info.set<EIIK_MMO>(MMOs[0]); +} + +void MachineInstr::dropMemRefs(MachineFunction &MF) { + if (memoperands_empty()) + return; + + setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), + getHeapAllocMarker()); +} + +void MachineInstr::setMemRefs(MachineFunction &MF, + ArrayRef<MachineMemOperand *> MMOs) { + if (MMOs.empty()) { + dropMemRefs(MF); + return; + } + + setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), + getHeapAllocMarker()); +} + +void MachineInstr::addMemOperand(MachineFunction &MF, + MachineMemOperand *MO) { + SmallVector<MachineMemOperand *, 2> MMOs; + MMOs.append(memoperands_begin(), memoperands_end()); + MMOs.push_back(MO); + setMemRefs(MF, MMOs); +} + +void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { + if (this == &MI) + // Nothing to do for a self-clone! + return; + + assert(&MF == MI.getMF() && + "Invalid machine functions when cloning memory refrences!"); + // See if we can just steal the extra info already allocated for the + // instruction. We can do this whenever the pre- and post-instruction symbols + // are the same (including null). + if (getPreInstrSymbol() == MI.getPreInstrSymbol() && + getPostInstrSymbol() == MI.getPostInstrSymbol() && + getHeapAllocMarker() == MI.getHeapAllocMarker()) { + Info = MI.Info; + return; + } + + // Otherwise, fall back on a copy-based clone. + setMemRefs(MF, MI.memoperands()); +} + +/// Check to see if the MMOs pointed to by the two MemRefs arrays are +/// identical. +static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, + ArrayRef<MachineMemOperand *> RHS) { + if (LHS.size() != RHS.size()) + return false; + + auto LHSPointees = make_pointee_range(LHS); + auto RHSPointees = make_pointee_range(RHS); + return std::equal(LHSPointees.begin(), LHSPointees.end(), + RHSPointees.begin()); +} + +void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, + ArrayRef<const MachineInstr *> MIs) { + // Try handling easy numbers of MIs with simpler mechanisms. + if (MIs.empty()) { + dropMemRefs(MF); + return; + } + if (MIs.size() == 1) { + cloneMemRefs(MF, *MIs[0]); + return; + } + // Because an empty memoperands list provides *no* information and must be + // handled conservatively (assuming the instruction can do anything), the only + // way to merge with it is to drop all other memoperands. + if (MIs[0]->memoperands_empty()) { + dropMemRefs(MF); + return; + } + + // Handle the general case. + SmallVector<MachineMemOperand *, 2> MergedMMOs; + // Start with the first instruction. + assert(&MF == MIs[0]->getMF() && + "Invalid machine functions when cloning memory references!"); + MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); + // Now walk all the other instructions and accumulate any different MMOs. + for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { + assert(&MF == MI.getMF() && + "Invalid machine functions when cloning memory references!"); + + // Skip MIs with identical operands to the first. This is a somewhat + // arbitrary hack but will catch common cases without being quadratic. + // TODO: We could fully implement merge semantics here if needed. + if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) + continue; + + // Because an empty memoperands list provides *no* information and must be + // handled conservatively (assuming the instruction can do anything), the + // only way to merge with it is to drop all other memoperands. + if (MI.memoperands_empty()) { + dropMemRefs(MF); + return; + } + + // Otherwise accumulate these into our temporary buffer of the merged state. + MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); + } + + setMemRefs(MF, MergedMMOs); +} + +void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { + // Do nothing if old and new symbols are the same. + if (Symbol == getPreInstrSymbol()) + return; + + // If there was only one symbol and we're removing it, just clear info. + if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { + Info.clear(); + return; + } + + setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), + getHeapAllocMarker()); +} + +void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { + // Do nothing if old and new symbols are the same. + if (Symbol == getPostInstrSymbol()) + return; + + // If there was only one symbol and we're removing it, just clear info. + if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { + Info.clear(); + return; + } + + setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, + getHeapAllocMarker()); +} + +void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { + // Do nothing if old and new symbols are the same. + if (Marker == getHeapAllocMarker()) + return; + + setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), + Marker); +} + +void MachineInstr::cloneInstrSymbols(MachineFunction &MF, + const MachineInstr &MI) { + if (this == &MI) + // Nothing to do for a self-clone! + return; + + assert(&MF == MI.getMF() && + "Invalid machine functions when cloning instruction symbols!"); + + setPreInstrSymbol(MF, MI.getPreInstrSymbol()); + setPostInstrSymbol(MF, MI.getPostInstrSymbol()); + setHeapAllocMarker(MF, MI.getHeapAllocMarker()); +} + +uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { + // For now, the just return the union of the flags. If the flags get more + // complicated over time, we might need more logic here. + return getFlags() | Other.getFlags(); +} + +uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { + uint16_t MIFlags = 0; + // Copy the wrapping flags. + if (const OverflowingBinaryOperator *OB = + dyn_cast<OverflowingBinaryOperator>(&I)) { + if (OB->hasNoSignedWrap()) + MIFlags |= MachineInstr::MIFlag::NoSWrap; + if (OB->hasNoUnsignedWrap()) + MIFlags |= MachineInstr::MIFlag::NoUWrap; + } + + // Copy the exact flag. + if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) + if (PE->isExact()) + MIFlags |= MachineInstr::MIFlag::IsExact; + + // Copy the fast-math flags. + if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { + const FastMathFlags Flags = FP->getFastMathFlags(); + if (Flags.noNaNs()) + MIFlags |= MachineInstr::MIFlag::FmNoNans; + if (Flags.noInfs()) + MIFlags |= MachineInstr::MIFlag::FmNoInfs; + if (Flags.noSignedZeros()) + MIFlags |= MachineInstr::MIFlag::FmNsz; + if (Flags.allowReciprocal()) + MIFlags |= MachineInstr::MIFlag::FmArcp; + if (Flags.allowContract()) + MIFlags |= MachineInstr::MIFlag::FmContract; + if (Flags.approxFunc()) + MIFlags |= MachineInstr::MIFlag::FmAfn; + if (Flags.allowReassoc()) + MIFlags |= MachineInstr::MIFlag::FmReassoc; + } + + return MIFlags; +} + +void MachineInstr::copyIRFlags(const Instruction &I) { + Flags = copyFlagsFromInstruction(I); +} + +bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { + assert(!isBundledWithPred() && "Must be called on bundle header"); + for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { + if (MII->getDesc().getFlags() & Mask) { + if (Type == AnyInBundle) + return true; + } else { + if (Type == AllInBundle && !MII->isBundle()) + return false; + } + // This was the last instruction in the bundle. + if (!MII->isBundledWithSucc()) + return Type == AllInBundle; + } +} + +bool MachineInstr::isIdenticalTo(const MachineInstr &Other, + MICheckType Check) const { + // If opcodes or number of operands are not the same then the two + // instructions are obviously not identical. + if (Other.getOpcode() != getOpcode() || + Other.getNumOperands() != getNumOperands()) + return false; + + if (isBundle()) { + // We have passed the test above that both instructions have the same + // opcode, so we know that both instructions are bundles here. Let's compare + // MIs inside the bundle. + assert(Other.isBundle() && "Expected that both instructions are bundles."); + MachineBasicBlock::const_instr_iterator I1 = getIterator(); + MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); + // Loop until we analysed the last intruction inside at least one of the + // bundles. + while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { + ++I1; + ++I2; + if (!I1->isIdenticalTo(*I2, Check)) + return false; + } + // If we've reached the end of just one of the two bundles, but not both, + // the instructions are not identical. + if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) + return false; + } + + // Check operands to make sure they match. + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + const MachineOperand &OMO = Other.getOperand(i); + if (!MO.isReg()) { + if (!MO.isIdenticalTo(OMO)) + return false; + continue; + } + + // Clients may or may not want to ignore defs when testing for equality. + // For example, machine CSE pass only cares about finding common + // subexpressions, so it's safe to ignore virtual register defs. + if (MO.isDef()) { + if (Check == IgnoreDefs) + continue; + else if (Check == IgnoreVRegDefs) { + if (!Register::isVirtualRegister(MO.getReg()) || + !Register::isVirtualRegister(OMO.getReg())) + if (!MO.isIdenticalTo(OMO)) + return false; + } else { + if (!MO.isIdenticalTo(OMO)) + return false; + if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) + return false; + } + } else { + if (!MO.isIdenticalTo(OMO)) + return false; + if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) + return false; + } + } + // If DebugLoc does not match then two debug instructions are not identical. + if (isDebugInstr()) + if (getDebugLoc() && Other.getDebugLoc() && + getDebugLoc() != Other.getDebugLoc()) + return false; + return true; +} + +const MachineFunction *MachineInstr::getMF() const { + return getParent()->getParent(); +} + +MachineInstr *MachineInstr::removeFromParent() { + assert(getParent() && "Not embedded in a basic block!"); + return getParent()->remove(this); +} + +MachineInstr *MachineInstr::removeFromBundle() { + assert(getParent() && "Not embedded in a basic block!"); + return getParent()->remove_instr(this); +} + +void MachineInstr::eraseFromParent() { + assert(getParent() && "Not embedded in a basic block!"); + getParent()->erase(this); +} + +void MachineInstr::eraseFromBundle() { + assert(getParent() && "Not embedded in a basic block!"); + getParent()->erase_instr(this); +} + +bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { + if (!isCall(Type)) + return false; + switch (getOpcode()) { + case TargetOpcode::PATCHPOINT: + case TargetOpcode::STACKMAP: + case TargetOpcode::STATEPOINT: + case TargetOpcode::FENTRY_CALL: + return false; + } + return true; +} + +bool MachineInstr::shouldUpdateCallSiteInfo() const { + if (isBundle()) + return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); + return isCandidateForCallSiteEntry(); +} + +unsigned MachineInstr::getNumExplicitOperands() const { + unsigned NumOperands = MCID->getNumOperands(); + if (!MCID->isVariadic()) + return NumOperands; + + for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { + const MachineOperand &MO = getOperand(I); + // The operands must always be in the following order: + // - explicit reg defs, + // - other explicit operands (reg uses, immediates, etc.), + // - implicit reg defs + // - implicit reg uses + if (MO.isReg() && MO.isImplicit()) + break; + ++NumOperands; + } + return NumOperands; +} + +unsigned MachineInstr::getNumExplicitDefs() const { + unsigned NumDefs = MCID->getNumDefs(); + if (!MCID->isVariadic()) + return NumDefs; + + for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { + const MachineOperand &MO = getOperand(I); + if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) + break; + ++NumDefs; + } + return NumDefs; +} + +void MachineInstr::bundleWithPred() { + assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); + setFlag(BundledPred); + MachineBasicBlock::instr_iterator Pred = getIterator(); + --Pred; + assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); + Pred->setFlag(BundledSucc); +} + +void MachineInstr::bundleWithSucc() { + assert(!isBundledWithSucc() && "MI is already bundled with its successor"); + setFlag(BundledSucc); + MachineBasicBlock::instr_iterator Succ = getIterator(); + ++Succ; + assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); + Succ->setFlag(BundledPred); +} + +void MachineInstr::unbundleFromPred() { + assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); + clearFlag(BundledPred); + MachineBasicBlock::instr_iterator Pred = getIterator(); + --Pred; + assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); + Pred->clearFlag(BundledSucc); +} + +void MachineInstr::unbundleFromSucc() { + assert(isBundledWithSucc() && "MI isn't bundled with its successor"); + clearFlag(BundledSucc); + MachineBasicBlock::instr_iterator Succ = getIterator(); + ++Succ; + assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); + Succ->clearFlag(BundledPred); +} + +bool MachineInstr::isStackAligningInlineAsm() const { + if (isInlineAsm()) { + unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); + if (ExtraInfo & InlineAsm::Extra_IsAlignStack) + return true; + } + return false; +} + +InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { + assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); + unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); + return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); +} + +int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, + unsigned *GroupNo) const { + assert(isInlineAsm() && "Expected an inline asm instruction"); + assert(OpIdx < getNumOperands() && "OpIdx out of range"); + + // Ignore queries about the initial operands. + if (OpIdx < InlineAsm::MIOp_FirstOperand) + return -1; + + unsigned Group = 0; + unsigned NumOps; + for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; + i += NumOps) { + const MachineOperand &FlagMO = getOperand(i); + // If we reach the implicit register operands, stop looking. + if (!FlagMO.isImm()) + return -1; + NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); + if (i + NumOps > OpIdx) { + if (GroupNo) + *GroupNo = Group; + return i; + } + ++Group; + } + return -1; +} + +const DILabel *MachineInstr::getDebugLabel() const { + assert(isDebugLabel() && "not a DBG_LABEL"); + return cast<DILabel>(getOperand(0).getMetadata()); +} + +const MachineOperand &MachineInstr::getDebugVariableOp() const { + assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); + unsigned VariableOp = isDebugValueList() ? 0 : 2; + return getOperand(VariableOp); +} + +MachineOperand &MachineInstr::getDebugVariableOp() { + assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); + unsigned VariableOp = isDebugValueList() ? 0 : 2; + return getOperand(VariableOp); +} + +const DILocalVariable *MachineInstr::getDebugVariable() const { + return cast<DILocalVariable>(getDebugVariableOp().getMetadata()); +} + +const MachineOperand &MachineInstr::getDebugExpressionOp() const { + assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); + unsigned ExpressionOp = isDebugValueList() ? 1 : 3; + return getOperand(ExpressionOp); +} + +MachineOperand &MachineInstr::getDebugExpressionOp() { + assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); + unsigned ExpressionOp = isDebugValueList() ? 1 : 3; + return getOperand(ExpressionOp); +} + +const DIExpression *MachineInstr::getDebugExpression() const { + return cast<DIExpression>(getDebugExpressionOp().getMetadata()); +} + +bool MachineInstr::isDebugEntryValue() const { + return isDebugValue() && getDebugExpression()->isEntryValue(); +} + +const TargetRegisterClass* +MachineInstr::getRegClassConstraint(unsigned OpIdx, + const TargetInstrInfo *TII, + const TargetRegisterInfo *TRI) const { + assert(getParent() && "Can't have an MBB reference here!"); + assert(getMF() && "Can't have an MF reference here!"); + const MachineFunction &MF = *getMF(); + + // Most opcodes have fixed constraints in their MCInstrDesc. + if (!isInlineAsm()) + return TII->getRegClass(getDesc(), OpIdx, TRI, MF); + + if (!getOperand(OpIdx).isReg()) + return nullptr; + + // For tied uses on inline asm, get the constraint from the def. + unsigned DefIdx; + if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) + OpIdx = DefIdx; + + // Inline asm stores register class constraints in the flag word. + int FlagIdx = findInlineAsmFlagIdx(OpIdx); + if (FlagIdx < 0) + return nullptr; + + unsigned Flag = getOperand(FlagIdx).getImm(); + unsigned RCID; + if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || + InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || + InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && + InlineAsm::hasRegClassConstraint(Flag, RCID)) + return TRI->getRegClass(RCID); + + // Assume that all registers in a memory operand are pointers. + if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) + return TRI->getPointerRegClass(MF); + + return nullptr; +} + +const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( + Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, + const TargetRegisterInfo *TRI, bool ExploreBundle) const { + // Check every operands inside the bundle if we have + // been asked to. + if (ExploreBundle) + for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; + ++OpndIt) + CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( + OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); + else + // Otherwise, just check the current operands. + for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) + CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); + return CurRC; +} + +const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( + unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, + const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { + assert(CurRC && "Invalid initial register class"); + // Check if Reg is constrained by some of its use/def from MI. + const MachineOperand &MO = getOperand(OpIdx); + if (!MO.isReg() || MO.getReg() != Reg) + return CurRC; + // If yes, accumulate the constraints through the operand. + return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); +} + +const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( + unsigned OpIdx, const TargetRegisterClass *CurRC, + const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { + const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); + const MachineOperand &MO = getOperand(OpIdx); + assert(MO.isReg() && + "Cannot get register constraints for non-register operand"); + assert(CurRC && "Invalid initial register class"); + if (unsigned SubIdx = MO.getSubReg()) { + if (OpRC) + CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); + else + CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); + } else if (OpRC) + CurRC = TRI->getCommonSubClass(CurRC, OpRC); + return CurRC; +} + +/// Return the number of instructions inside the MI bundle, not counting the +/// header instruction. +unsigned MachineInstr::getBundleSize() const { + MachineBasicBlock::const_instr_iterator I = getIterator(); + unsigned Size = 0; + while (I->isBundledWithSucc()) { + ++Size; + ++I; + } + return Size; +} + +/// Returns true if the MachineInstr has an implicit-use operand of exactly +/// the given register (not considering sub/super-registers). +bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) + return true; + } + return false; +} + +/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of +/// the specific register or -1 if it is not found. It further tightens +/// the search criteria to a use that kills the register if isKill is true. +int MachineInstr::findRegisterUseOperandIdx( + Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + if (!MO.isReg() || !MO.isUse()) + continue; + Register MOReg = MO.getReg(); + if (!MOReg) + continue; + if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) + if (!isKill || MO.isKill()) + return i; + } + return -1; +} + +/// readsWritesVirtualRegister - Return a pair of bools (reads, writes) +/// indicating if this instruction reads or writes Reg. This also considers +/// partial defines. +std::pair<bool,bool> +MachineInstr::readsWritesVirtualRegister(Register Reg, + SmallVectorImpl<unsigned> *Ops) const { + bool PartDef = false; // Partial redefine. + bool FullDef = false; // Full define. + bool Use = false; + + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + if (!MO.isReg() || MO.getReg() != Reg) + continue; + if (Ops) + Ops->push_back(i); + if (MO.isUse()) + Use |= !MO.isUndef(); + else if (MO.getSubReg() && !MO.isUndef()) + // A partial def undef doesn't count as reading the register. + PartDef = true; + else + FullDef = true; + } + // A partial redefine uses Reg unless there is also a full define. + return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); +} + +/// findRegisterDefOperandIdx() - Returns the operand index that is a def of +/// the specified register or -1 if it is not found. If isDead is true, defs +/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it +/// also checks if there is a def of a super-register. +int +MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, + const TargetRegisterInfo *TRI) const { + bool isPhys = Register::isPhysicalRegister(Reg); + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + // Accept regmask operands when Overlap is set. + // Ignore them when looking for a specific def operand (Overlap == false). + if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) + return i; + if (!MO.isReg() || !MO.isDef()) + continue; + Register MOReg = MO.getReg(); + bool Found = (MOReg == Reg); + if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) { + if (Overlap) + Found = TRI->regsOverlap(MOReg, Reg); + else + Found = TRI->isSubRegister(MOReg, Reg); + } + if (Found && (!isDead || MO.isDead())) + return i; + } + return -1; +} + +/// findFirstPredOperandIdx() - Find the index of the first operand in the +/// operand list that is used to represent the predicate. It returns -1 if +/// none is found. +int MachineInstr::findFirstPredOperandIdx() const { + // Don't call MCID.findFirstPredOperandIdx() because this variant + // is sometimes called on an instruction that's not yet complete, and + // so the number of operands is less than the MCID indicates. In + // particular, the PTX target does this. + const MCInstrDesc &MCID = getDesc(); + if (MCID.isPredicable()) { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (MCID.OpInfo[i].isPredicate()) + return i; + } + + return -1; +} + +// MachineOperand::TiedTo is 4 bits wide. +const unsigned TiedMax = 15; + +/// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. +/// +/// Use and def operands can be tied together, indicated by a non-zero TiedTo +/// field. TiedTo can have these values: +/// +/// 0: Operand is not tied to anything. +/// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). +/// TiedMax: Tied to an operand >= TiedMax-1. +/// +/// The tied def must be one of the first TiedMax operands on a normal +/// instruction. INLINEASM instructions allow more tied defs. +/// +void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { + MachineOperand &DefMO = getOperand(DefIdx); + MachineOperand &UseMO = getOperand(UseIdx); + assert(DefMO.isDef() && "DefIdx must be a def operand"); + assert(UseMO.isUse() && "UseIdx must be a use operand"); + assert(!DefMO.isTied() && "Def is already tied to another use"); + assert(!UseMO.isTied() && "Use is already tied to another def"); + + if (DefIdx < TiedMax) + UseMO.TiedTo = DefIdx + 1; + else { + // Inline asm can use the group descriptors to find tied operands, + // statepoint tied operands are trivial to match (1-1 reg def with reg use), + // but on normal instruction, the tied def must be within the first TiedMax + // operands. + assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && + "DefIdx out of range"); + UseMO.TiedTo = TiedMax; + } + + // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). + DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); +} + +/// Given the index of a tied register operand, find the operand it is tied to. +/// Defs are tied to uses and vice versa. Returns the index of the tied operand +/// which must exist. +unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { + const MachineOperand &MO = getOperand(OpIdx); + assert(MO.isTied() && "Operand isn't tied"); + + // Normally TiedTo is in range. + if (MO.TiedTo < TiedMax) + return MO.TiedTo - 1; + + // Uses on normal instructions can be out of range. + if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { + // Normal tied defs must be in the 0..TiedMax-1 range. + if (MO.isUse()) + return TiedMax - 1; + // MO is a def. Search for the tied use. + for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { + const MachineOperand &UseMO = getOperand(i); + if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) + return i; + } + llvm_unreachable("Can't find tied use"); + } + + if (getOpcode() == TargetOpcode::STATEPOINT) { + // In STATEPOINT defs correspond 1-1 to GC pointer operands passed + // on registers. + StatepointOpers SO(this); + unsigned CurUseIdx = SO.getFirstGCPtrIdx(); + assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied"); + unsigned NumDefs = getNumDefs(); + for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { + while (!getOperand(CurUseIdx).isReg()) + CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); + if (OpIdx == CurDefIdx) + return CurUseIdx; + if (OpIdx == CurUseIdx) + return CurDefIdx; + CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); + } + llvm_unreachable("Can't find tied use"); + } + + // Now deal with inline asm by parsing the operand group descriptor flags. + // Find the beginning of each operand group. + SmallVector<unsigned, 8> GroupIdx; + unsigned OpIdxGroup = ~0u; + unsigned NumOps; + for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; + i += NumOps) { + const MachineOperand &FlagMO = getOperand(i); + assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); + unsigned CurGroup = GroupIdx.size(); + GroupIdx.push_back(i); + NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); + // OpIdx belongs to this operand group. + if (OpIdx > i && OpIdx < i + NumOps) + OpIdxGroup = CurGroup; + unsigned TiedGroup; + if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) + continue; + // Operands in this group are tied to operands in TiedGroup which must be + // earlier. Find the number of operands between the two groups. + unsigned Delta = i - GroupIdx[TiedGroup]; + + // OpIdx is a use tied to TiedGroup. + if (OpIdxGroup == CurGroup) + return OpIdx - Delta; + + // OpIdx is a def tied to this use group. + if (OpIdxGroup == TiedGroup) + return OpIdx + Delta; + } + llvm_unreachable("Invalid tied operand on inline asm"); +} + +/// clearKillInfo - Clears kill flags on all operands. +/// +void MachineInstr::clearKillInfo() { + for (MachineOperand &MO : operands()) { + if (MO.isReg() && MO.isUse()) + MO.setIsKill(false); + } +} + +void MachineInstr::substituteRegister(Register FromReg, Register ToReg, + unsigned SubIdx, + const TargetRegisterInfo &RegInfo) { + if (Register::isPhysicalRegister(ToReg)) { + if (SubIdx) + ToReg = RegInfo.getSubReg(ToReg, SubIdx); + for (MachineOperand &MO : operands()) { + if (!MO.isReg() || MO.getReg() != FromReg) + continue; + MO.substPhysReg(ToReg, RegInfo); + } + } else { + for (MachineOperand &MO : operands()) { + if (!MO.isReg() || MO.getReg() != FromReg) + continue; + MO.substVirtReg(ToReg, SubIdx, RegInfo); + } + } +} + +/// isSafeToMove - Return true if it is safe to move this instruction. If +/// SawStore is set to true, it means that there is a store (or call) between +/// the instruction's location and its intended destination. +bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { + // Ignore stuff that we obviously can't move. + // + // Treat volatile loads as stores. This is not strictly necessary for + // volatiles, but it is required for atomic loads. It is not allowed to move + // a load across an atomic load with Ordering > Monotonic. + if (mayStore() || isCall() || isPHI() || + (mayLoad() && hasOrderedMemoryRef())) { + SawStore = true; + return false; + } + + if (isPosition() || isDebugInstr() || isTerminator() || + mayRaiseFPException() || hasUnmodeledSideEffects()) + return false; + + // See if this instruction does a load. If so, we have to guarantee that the + // loaded value doesn't change between the load and the its intended + // destination. The check for isInvariantLoad gives the target the chance to + // classify the load as always returning a constant, e.g. a constant pool + // load. + if (mayLoad() && !isDereferenceableInvariantLoad(AA)) + // Otherwise, this is a real load. If there is a store between the load and + // end of block, we can't move it. + return !SawStore; + + return true; +} + +static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, + bool UseTBAA, const MachineMemOperand *MMOa, + const MachineMemOperand *MMOb) { + // The following interface to AA is fashioned after DAGCombiner::isAlias and + // operates with MachineMemOperand offset with some important assumptions: + // - LLVM fundamentally assumes flat address spaces. + // - MachineOperand offset can *only* result from legalization and cannot + // affect queries other than the trivial case of overlap checking. + // - These offsets never wrap and never step outside of allocated objects. + // - There should never be any negative offsets here. + // + // FIXME: Modify API to hide this math from "user" + // Even before we go to AA we can reason locally about some memory objects. It + // can save compile time, and possibly catch some corner cases not currently + // covered. + + int64_t OffsetA = MMOa->getOffset(); + int64_t OffsetB = MMOb->getOffset(); + int64_t MinOffset = std::min(OffsetA, OffsetB); + + uint64_t WidthA = MMOa->getSize(); + uint64_t WidthB = MMOb->getSize(); + bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; + bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; + + const Value *ValA = MMOa->getValue(); + const Value *ValB = MMOb->getValue(); + bool SameVal = (ValA && ValB && (ValA == ValB)); + if (!SameVal) { + const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); + const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); + if (PSVa && ValB && !PSVa->mayAlias(&MFI)) + return false; + if (PSVb && ValA && !PSVb->mayAlias(&MFI)) + return false; + if (PSVa && PSVb && (PSVa == PSVb)) + SameVal = true; + } + + if (SameVal) { + if (!KnownWidthA || !KnownWidthB) + return true; + int64_t MaxOffset = std::max(OffsetA, OffsetB); + int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; + return (MinOffset + LowWidth > MaxOffset); + } + + if (!AA) + return true; + + if (!ValA || !ValB) + return true; + + assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); + assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); + + int64_t OverlapA = + KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize; + int64_t OverlapB = + KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize; + + return !AA->isNoAlias( + MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), + MemoryLocation(ValB, OverlapB, + UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); +} + +bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, + bool UseTBAA) const { + const MachineFunction *MF = getMF(); + const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); + const MachineFrameInfo &MFI = MF->getFrameInfo(); + + // Exclude call instruction which may alter the memory but can not be handled + // by this function. + if (isCall() || Other.isCall()) + return true; + + // If neither instruction stores to memory, they can't alias in any + // meaningful way, even if they read from the same address. + if (!mayStore() && !Other.mayStore()) + return false; + + // Both instructions must be memory operations to be able to alias. + if (!mayLoadOrStore() || !Other.mayLoadOrStore()) + return false; + + // Let the target decide if memory accesses cannot possibly overlap. + if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) + return false; + + // Memory operations without memory operands may access anything. Be + // conservative and assume `MayAlias`. + if (memoperands_empty() || Other.memoperands_empty()) + return true; + + // Skip if there are too many memory operands. + auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); + if (NumChecks > TII->getMemOperandAACheckLimit()) + return true; + + // Check each pair of memory operands from both instructions, which can't + // alias only if all pairs won't alias. + for (auto *MMOa : memoperands()) + for (auto *MMOb : Other.memoperands()) + if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) + return true; + + return false; +} + +/// hasOrderedMemoryRef - Return true if this instruction may have an ordered +/// or volatile memory reference, or if the information describing the memory +/// reference is not available. Return false if it is known to have no ordered +/// memory references. +bool MachineInstr::hasOrderedMemoryRef() const { + // An instruction known never to access memory won't have a volatile access. + if (!mayStore() && + !mayLoad() && + !isCall() && + !hasUnmodeledSideEffects()) + return false; + + // Otherwise, if the instruction has no memory reference information, + // conservatively assume it wasn't preserved. + if (memoperands_empty()) + return true; + + // Check if any of our memory operands are ordered. + return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { + return !MMO->isUnordered(); + }); +} + +/// isDereferenceableInvariantLoad - Return true if this instruction will never +/// trap and is loading from a location whose value is invariant across a run of +/// this function. +bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const { + // If the instruction doesn't load at all, it isn't an invariant load. + if (!mayLoad()) + return false; + + // If the instruction has lost its memoperands, conservatively assume that + // it may not be an invariant load. + if (memoperands_empty()) + return false; + + const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); + + for (MachineMemOperand *MMO : memoperands()) { + if (!MMO->isUnordered()) + // If the memory operand has ordering side effects, we can't move the + // instruction. Such an instruction is technically an invariant load, + // but the caller code would need updated to expect that. + return false; + if (MMO->isStore()) return false; + if (MMO->isInvariant() && MMO->isDereferenceable()) + continue; + + // A load from a constant PseudoSourceValue is invariant. + if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) + if (PSV->isConstant(&MFI)) + continue; + + if (const Value *V = MMO->getValue()) { + // If we have an AliasAnalysis, ask it whether the memory is constant. + if (AA && + AA->pointsToConstantMemory( + MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) + continue; + } + + // Otherwise assume conservatively. + return false; + } + + // Everything checks out. + return true; +} + +/// isConstantValuePHI - If the specified instruction is a PHI that always +/// merges together the same virtual register, return the register, otherwise +/// return 0. +unsigned MachineInstr::isConstantValuePHI() const { + if (!isPHI()) + return 0; + assert(getNumOperands() >= 3 && + "It's illegal to have a PHI without source operands"); + + Register Reg = getOperand(1).getReg(); + for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) + if (getOperand(i).getReg() != Reg) + return 0; + return Reg; +} + +bool MachineInstr::hasUnmodeledSideEffects() const { + if (hasProperty(MCID::UnmodeledSideEffects)) + return true; + if (isInlineAsm()) { + unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); + if (ExtraInfo & InlineAsm::Extra_HasSideEffects) + return true; + } + + return false; +} + +bool MachineInstr::isLoadFoldBarrier() const { + return mayStore() || isCall() || + (hasUnmodeledSideEffects() && !isPseudoProbe()); +} + +/// allDefsAreDead - Return true if all the defs of this instruction are dead. +/// +bool MachineInstr::allDefsAreDead() const { + for (const MachineOperand &MO : operands()) { + if (!MO.isReg() || MO.isUse()) + continue; + if (!MO.isDead()) + return false; + } + return true; +} + +/// copyImplicitOps - Copy implicit register operands from specified +/// instruction to this instruction. +void MachineInstr::copyImplicitOps(MachineFunction &MF, + const MachineInstr &MI) { + for (const MachineOperand &MO : + llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) + if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) + addOperand(MF, MO); +} + +bool MachineInstr::hasComplexRegisterTies() const { + const MCInstrDesc &MCID = getDesc(); + if (MCID.Opcode == TargetOpcode::STATEPOINT) + return true; + for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { + const auto &Operand = getOperand(I); + if (!Operand.isReg() || Operand.isDef()) + // Ignore the defined registers as MCID marks only the uses as tied. + continue; + int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); + int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; + if (ExpectedTiedIdx != TiedIdx) + return true; + } + return false; +} + +LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, + const MachineRegisterInfo &MRI) const { + const MachineOperand &Op = getOperand(OpIdx); + if (!Op.isReg()) + return LLT{}; + + if (isVariadic() || OpIdx >= getNumExplicitOperands()) + return MRI.getType(Op.getReg()); + + auto &OpInfo = getDesc().OpInfo[OpIdx]; + if (!OpInfo.isGenericType()) + return MRI.getType(Op.getReg()); + + if (PrintedTypes[OpInfo.getGenericTypeIndex()]) + return LLT{}; + + LLT TypeToPrint = MRI.getType(Op.getReg()); + // Don't mark the type index printed if it wasn't actually printed: maybe + // another operand with the same type index has an actual type attached: + if (TypeToPrint.isValid()) + PrintedTypes.set(OpInfo.getGenericTypeIndex()); + return TypeToPrint; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void MachineInstr::dump() const { + dbgs() << " "; + print(dbgs()); +} + +LLVM_DUMP_METHOD void MachineInstr::dumprImpl( + const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, + SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { + if (Depth >= MaxDepth) + return; + if (!AlreadySeenInstrs.insert(this).second) + return; + // PadToColumn always inserts at least one space. + // Don't mess up the alignment if we don't want any space. + if (Depth) + fdbgs().PadToColumn(Depth * 2); + print(fdbgs()); + for (const MachineOperand &MO : operands()) { + if (!MO.isReg() || MO.isDef()) + continue; + Register Reg = MO.getReg(); + if (Reg.isPhysical()) + continue; + const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); + if (NewMI == nullptr) + continue; + NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); + } +} + +LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, + unsigned MaxDepth) const { + SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; + dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); +} +#endif + +void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, + bool SkipDebugLoc, bool AddNewLine, + const TargetInstrInfo *TII) const { + const Module *M = nullptr; + const Function *F = nullptr; + if (const MachineFunction *MF = getMFIfAvailable(*this)) { + F = &MF->getFunction(); + M = F->getParent(); + if (!TII) + TII = MF->getSubtarget().getInstrInfo(); + } + + ModuleSlotTracker MST(M); + if (F) + MST.incorporateFunction(*F); + print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); +} + +void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, + bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, + bool AddNewLine, const TargetInstrInfo *TII) const { + // We can be a bit tidier if we know the MachineFunction. + const TargetRegisterInfo *TRI = nullptr; + const MachineRegisterInfo *MRI = nullptr; + const TargetIntrinsicInfo *IntrinsicInfo = nullptr; + tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); + + if (isCFIInstruction()) + assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); + + SmallBitVector PrintedTypes(8); + bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); + auto getTiedOperandIdx = [&](unsigned OpIdx) { + if (!ShouldPrintRegisterTies) + return 0U; + const MachineOperand &MO = getOperand(OpIdx); + if (MO.isReg() && MO.isTied() && !MO.isDef()) + return findTiedOperandIdx(OpIdx); + return 0U; + }; + unsigned StartOp = 0; + unsigned e = getNumOperands(); + + // Print explicitly defined operands on the left of an assignment syntax. + while (StartOp < e) { + const MachineOperand &MO = getOperand(StartOp); + if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) + break; + + if (StartOp != 0) + OS << ", "; + + LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; + unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); + MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, + ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); + ++StartOp; + } + + if (StartOp != 0) + OS << " = "; + + if (getFlag(MachineInstr::FrameSetup)) + OS << "frame-setup "; + if (getFlag(MachineInstr::FrameDestroy)) + OS << "frame-destroy "; + if (getFlag(MachineInstr::FmNoNans)) + OS << "nnan "; + if (getFlag(MachineInstr::FmNoInfs)) + OS << "ninf "; + if (getFlag(MachineInstr::FmNsz)) + OS << "nsz "; + if (getFlag(MachineInstr::FmArcp)) + OS << "arcp "; + if (getFlag(MachineInstr::FmContract)) + OS << "contract "; + if (getFlag(MachineInstr::FmAfn)) + OS << "afn "; + if (getFlag(MachineInstr::FmReassoc)) + OS << "reassoc "; + if (getFlag(MachineInstr::NoUWrap)) + OS << "nuw "; + if (getFlag(MachineInstr::NoSWrap)) + OS << "nsw "; + if (getFlag(MachineInstr::IsExact)) + OS << "exact "; + if (getFlag(MachineInstr::NoFPExcept)) + OS << "nofpexcept "; + if (getFlag(MachineInstr::NoMerge)) + OS << "nomerge "; + + // Print the opcode name. + if (TII) + OS << TII->getName(getOpcode()); + else + OS << "UNKNOWN"; + + if (SkipOpers) + return; + + // Print the rest of the operands. + bool FirstOp = true; + unsigned AsmDescOp = ~0u; + unsigned AsmOpCount = 0; + + if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { + // Print asm string. + OS << " "; + const unsigned OpIdx = InlineAsm::MIOp_AsmString; + LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; + unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); + getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, + ShouldPrintRegisterTies, TiedOperandIdx, TRI, + IntrinsicInfo); + + // Print HasSideEffects, MayLoad, MayStore, IsAlignStack + unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); + if (ExtraInfo & InlineAsm::Extra_HasSideEffects) + OS << " [sideeffect]"; + if (ExtraInfo & InlineAsm::Extra_MayLoad) + OS << " [mayload]"; + if (ExtraInfo & InlineAsm::Extra_MayStore) + OS << " [maystore]"; + if (ExtraInfo & InlineAsm::Extra_IsConvergent) + OS << " [isconvergent]"; + if (ExtraInfo & InlineAsm::Extra_IsAlignStack) + OS << " [alignstack]"; + if (getInlineAsmDialect() == InlineAsm::AD_ATT) + OS << " [attdialect]"; + if (getInlineAsmDialect() == InlineAsm::AD_Intel) + OS << " [inteldialect]"; + + StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; + FirstOp = false; + } + + for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + + if (FirstOp) FirstOp = false; else OS << ","; + OS << " "; + + if (isDebugValue() && MO.isMetadata()) { + // Pretty print DBG_VALUE* instructions. + auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); + if (DIV && !DIV->getName().empty()) + OS << "!\"" << DIV->getName() << '\"'; + else { + LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; + unsigned TiedOperandIdx = getTiedOperandIdx(i); + MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, + ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); + } + } else if (isDebugLabel() && MO.isMetadata()) { + // Pretty print DBG_LABEL instructions. + auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); + if (DIL && !DIL->getName().empty()) + OS << "\"" << DIL->getName() << '\"'; + else { + LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; + unsigned TiedOperandIdx = getTiedOperandIdx(i); + MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, + ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); + } + } else if (i == AsmDescOp && MO.isImm()) { + // Pretty print the inline asm operand descriptor. + OS << '$' << AsmOpCount++; + unsigned Flag = MO.getImm(); + OS << ":["; + OS << InlineAsm::getKindName(InlineAsm::getKind(Flag)); + + unsigned RCID = 0; + if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && + InlineAsm::hasRegClassConstraint(Flag, RCID)) { + if (TRI) { + OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); + } else + OS << ":RC" << RCID; + } + + if (InlineAsm::isMemKind(Flag)) { + unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); + OS << ":" << InlineAsm::getMemConstraintName(MCID); + } + + unsigned TiedTo = 0; + if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) + OS << " tiedto:$" << TiedTo; + + OS << ']'; + + // Compute the index of the next operand descriptor. + AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); + } else { + LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; + unsigned TiedOperandIdx = getTiedOperandIdx(i); + if (MO.isImm() && isOperandSubregIdx(i)) + MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); + else + MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, + ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); + } + } + + // Print any optional symbols attached to this instruction as-if they were + // operands. + if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { + if (!FirstOp) { + FirstOp = false; + OS << ','; + } + OS << " pre-instr-symbol "; + MachineOperand::printSymbol(OS, *PreInstrSymbol); + } + if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { + if (!FirstOp) { + FirstOp = false; + OS << ','; + } + OS << " post-instr-symbol "; + MachineOperand::printSymbol(OS, *PostInstrSymbol); + } + if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { + if (!FirstOp) { + FirstOp = false; + OS << ','; + } + OS << " heap-alloc-marker "; + HeapAllocMarker->printAsOperand(OS, MST); + } + + if (DebugInstrNum) { + if (!FirstOp) + OS << ","; + OS << " debug-instr-number " << DebugInstrNum; + } + + if (!SkipDebugLoc) { + if (const DebugLoc &DL = getDebugLoc()) { + if (!FirstOp) + OS << ','; + OS << " debug-location "; + DL->printAsOperand(OS, MST); + } + } + + if (!memoperands_empty()) { + SmallVector<StringRef, 0> SSNs; + const LLVMContext *Context = nullptr; + std::unique_ptr<LLVMContext> CtxPtr; + const MachineFrameInfo *MFI = nullptr; + if (const MachineFunction *MF = getMFIfAvailable(*this)) { + MFI = &MF->getFrameInfo(); + Context = &MF->getFunction().getContext(); + } else { + CtxPtr = std::make_unique<LLVMContext>(); + Context = CtxPtr.get(); + } + + OS << " :: "; + bool NeedComma = false; + for (const MachineMemOperand *Op : memoperands()) { + if (NeedComma) + OS << ", "; + Op->print(OS, MST, SSNs, *Context, MFI, TII); + NeedComma = true; + } + } + + if (SkipDebugLoc) + return; + + bool HaveSemi = false; + + // Print debug location information. + if (const DebugLoc &DL = getDebugLoc()) { + if (!HaveSemi) { + OS << ';'; + HaveSemi = true; + } + OS << ' '; + DL.print(OS); + } + + // Print extra comments for DEBUG_VALUE. + if (isDebugValue() && getDebugVariableOp().isMetadata()) { + if (!HaveSemi) { + OS << ";"; + HaveSemi = true; + } + auto *DV = getDebugVariable(); + OS << " line no:" << DV->getLine(); + if (isIndirectDebugValue()) + OS << " indirect"; + } + // TODO: DBG_LABEL + + if (AddNewLine) + OS << '\n'; +} + +bool MachineInstr::addRegisterKilled(Register IncomingReg, + const TargetRegisterInfo *RegInfo, + bool AddIfNotFound) { + bool isPhysReg = Register::isPhysicalRegister(IncomingReg); + bool hasAliases = isPhysReg && + MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); + bool Found = false; + SmallVector<unsigned,4> DeadOps; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + MachineOperand &MO = getOperand(i); + if (!MO.isReg() || !MO.isUse() || MO.isUndef()) + continue; + + // DEBUG_VALUE nodes do not contribute to code generation and should + // always be ignored. Failure to do so may result in trying to modify + // KILL flags on DEBUG_VALUE nodes. + if (MO.isDebug()) + continue; + + Register Reg = MO.getReg(); + if (!Reg) + continue; + + if (Reg == IncomingReg) { + if (!Found) { + if (MO.isKill()) + // The register is already marked kill. + return true; + if (isPhysReg && isRegTiedToDefOperand(i)) + // Two-address uses of physregs must not be marked kill. + return true; + MO.setIsKill(); + Found = true; + } + } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) { + // A super-register kill already exists. + if (RegInfo->isSuperRegister(IncomingReg, Reg)) + return true; + if (RegInfo->isSubRegister(IncomingReg, Reg)) + DeadOps.push_back(i); + } + } + + // Trim unneeded kill operands. + while (!DeadOps.empty()) { + unsigned OpIdx = DeadOps.back(); + if (getOperand(OpIdx).isImplicit() && + (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) + RemoveOperand(OpIdx); + else + getOperand(OpIdx).setIsKill(false); + DeadOps.pop_back(); + } + + // If not found, this means an alias of one of the operands is killed. Add a + // new implicit operand if required. + if (!Found && AddIfNotFound) { + addOperand(MachineOperand::CreateReg(IncomingReg, + false /*IsDef*/, + true /*IsImp*/, + true /*IsKill*/)); + return true; + } + return Found; +} + +void MachineInstr::clearRegisterKills(Register Reg, + const TargetRegisterInfo *RegInfo) { + if (!Register::isPhysicalRegister(Reg)) + RegInfo = nullptr; + for (MachineOperand &MO : operands()) { + if (!MO.isReg() || !MO.isUse() || !MO.isKill()) + continue; + Register OpReg = MO.getReg(); + if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) + MO.setIsKill(false); + } +} + +bool MachineInstr::addRegisterDead(Register Reg, + const TargetRegisterInfo *RegInfo, + bool AddIfNotFound) { + bool isPhysReg = Register::isPhysicalRegister(Reg); + bool hasAliases = isPhysReg && + MCRegAliasIterator(Reg, RegInfo, false).isValid(); + bool Found = false; + SmallVector<unsigned,4> DeadOps; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + MachineOperand &MO = getOperand(i); + if (!MO.isReg() || !MO.isDef()) + continue; + Register MOReg = MO.getReg(); + if (!MOReg) + continue; + + if (MOReg == Reg) { + MO.setIsDead(); + Found = true; + } else if (hasAliases && MO.isDead() && + Register::isPhysicalRegister(MOReg)) { + // There exists a super-register that's marked dead. + if (RegInfo->isSuperRegister(Reg, MOReg)) + return true; + if (RegInfo->isSubRegister(Reg, MOReg)) + DeadOps.push_back(i); + } + } + + // Trim unneeded dead operands. + while (!DeadOps.empty()) { + unsigned OpIdx = DeadOps.back(); + if (getOperand(OpIdx).isImplicit() && + (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) + RemoveOperand(OpIdx); + else + getOperand(OpIdx).setIsDead(false); + DeadOps.pop_back(); + } + + // If not found, this means an alias of one of the operands is dead. Add a + // new implicit operand if required. + if (Found || !AddIfNotFound) + return Found; + + addOperand(MachineOperand::CreateReg(Reg, + true /*IsDef*/, + true /*IsImp*/, + false /*IsKill*/, + true /*IsDead*/)); + return true; +} + +void MachineInstr::clearRegisterDeads(Register Reg) { + for (MachineOperand &MO : operands()) { + if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) + continue; + MO.setIsDead(false); + } +} + +void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { + for (MachineOperand &MO : operands()) { + if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) + continue; + MO.setIsUndef(IsUndef); + } +} + +void MachineInstr::addRegisterDefined(Register Reg, + const TargetRegisterInfo *RegInfo) { + if (Register::isPhysicalRegister(Reg)) { + MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); + if (MO) + return; + } else { + for (const MachineOperand &MO : operands()) { + if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && + MO.getSubReg() == 0) + return; + } + } + addOperand(MachineOperand::CreateReg(Reg, + true /*IsDef*/, + true /*IsImp*/)); +} + +void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, + const TargetRegisterInfo &TRI) { + bool HasRegMask = false; + for (MachineOperand &MO : operands()) { + if (MO.isRegMask()) { + HasRegMask = true; + continue; + } + if (!MO.isReg() || !MO.isDef()) continue; + Register Reg = MO.getReg(); + if (!Reg.isPhysical()) + continue; + // If there are no uses, including partial uses, the def is dead. + if (llvm::none_of(UsedRegs, + [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) + MO.setIsDead(); + } + + // This is a call with a register mask operand. + // Mask clobbers are always dead, so add defs for the non-dead defines. + if (HasRegMask) + for (const Register &UsedReg : UsedRegs) + addRegisterDefined(UsedReg, &TRI); +} + +unsigned +MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { + // Build up a buffer of hash code components. + SmallVector<size_t, 16> HashComponents; + HashComponents.reserve(MI->getNumOperands() + 1); + HashComponents.push_back(MI->getOpcode()); + for (const MachineOperand &MO : MI->operands()) { + if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) + continue; // Skip virtual register defs. + + HashComponents.push_back(hash_value(MO)); + } + return hash_combine_range(HashComponents.begin(), HashComponents.end()); +} + +void MachineInstr::emitError(StringRef Msg) const { + // Find the source location cookie. + uint64_t LocCookie = 0; + const MDNode *LocMD = nullptr; + for (unsigned i = getNumOperands(); i != 0; --i) { + if (getOperand(i-1).isMetadata() && + (LocMD = getOperand(i-1).getMetadata()) && + LocMD->getNumOperands() != 0) { + if (const ConstantInt *CI = + mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { + LocCookie = CI->getZExtValue(); + break; + } + } + } + + if (const MachineBasicBlock *MBB = getParent()) + if (const MachineFunction *MF = MBB->getParent()) + return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); + report_fatal_error(Msg); +} + +MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, + const MCInstrDesc &MCID, bool IsIndirect, + Register Reg, const MDNode *Variable, + const MDNode *Expr) { + assert(isa<DILocalVariable>(Variable) && "not a variable"); + assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); + assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && + "Expected inlined-at fields to agree"); + auto MIB = BuildMI(MF, DL, MCID).addReg(Reg); + if (IsIndirect) + MIB.addImm(0U); + else + MIB.addReg(0U); + return MIB.addMetadata(Variable).addMetadata(Expr); +} + +MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, + const MCInstrDesc &MCID, bool IsIndirect, + const MachineOperand &MO, + const MDNode *Variable, const MDNode *Expr) { + assert(isa<DILocalVariable>(Variable) && "not a variable"); + assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); + assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && + "Expected inlined-at fields to agree"); + if (MO.isReg()) + return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); + + auto MIB = BuildMI(MF, DL, MCID).add(MO); + if (IsIndirect) + MIB.addImm(0U); + else + MIB.addReg(0U); + return MIB.addMetadata(Variable).addMetadata(Expr); +} + +MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, + const MCInstrDesc &MCID, bool IsIndirect, + ArrayRef<MachineOperand> MOs, + const MDNode *Variable, const MDNode *Expr) { + assert(isa<DILocalVariable>(Variable) && "not a variable"); + assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); + assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && + "Expected inlined-at fields to agree"); + if (MCID.Opcode == TargetOpcode::DBG_VALUE) + return BuildMI(MF, DL, MCID, IsIndirect, MOs[0], Variable, Expr); + + auto MIB = BuildMI(MF, DL, MCID); + MIB.addMetadata(Variable).addMetadata(Expr); + for (const MachineOperand &MO : MOs) + if (MO.isReg()) + MIB.addReg(MO.getReg()); + else + MIB.add(MO); + return MIB; +} + +MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, + MachineBasicBlock::iterator I, + const DebugLoc &DL, const MCInstrDesc &MCID, + bool IsIndirect, Register Reg, + const MDNode *Variable, const MDNode *Expr) { + MachineFunction &MF = *BB.getParent(); + MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); + BB.insert(I, MI); + return MachineInstrBuilder(MF, MI); +} + +MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, + MachineBasicBlock::iterator I, + const DebugLoc &DL, const MCInstrDesc &MCID, + bool IsIndirect, MachineOperand &MO, + const MDNode *Variable, const MDNode *Expr) { + MachineFunction &MF = *BB.getParent(); + MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); + BB.insert(I, MI); + return MachineInstrBuilder(MF, *MI); +} + +MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, + MachineBasicBlock::iterator I, + const DebugLoc &DL, const MCInstrDesc &MCID, + bool IsIndirect, ArrayRef<MachineOperand> MOs, + const MDNode *Variable, const MDNode *Expr) { + MachineFunction &MF = *BB.getParent(); + MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MOs, Variable, Expr); + BB.insert(I, MI); + return MachineInstrBuilder(MF, *MI); +} + +/// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. +/// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. +static const DIExpression * +computeExprForSpill(const MachineInstr &MI, + SmallVectorImpl<const MachineOperand *> &SpilledOperands) { + assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && + "Expected inlined-at fields to agree"); + + const DIExpression *Expr = MI.getDebugExpression(); + if (MI.isIndirectDebugValue()) { + assert(MI.getDebugOffset().getImm() == 0 && + "DBG_VALUE with nonzero offset"); + Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); + } else if (MI.isDebugValueList()) { + // We will replace the spilled register with a frame index, so + // immediately deref all references to the spilled register. + std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}}; + for (const MachineOperand *Op : SpilledOperands) { + unsigned OpIdx = MI.getDebugOperandIndex(Op); + Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx); + } + } + return Expr; +} +static const DIExpression *computeExprForSpill(const MachineInstr &MI, + Register SpillReg) { + assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI."); + SmallVector<const MachineOperand *> SpillOperands; + for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg)) + SpillOperands.push_back(&Op); + return computeExprForSpill(MI, SpillOperands); +} + +MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, + MachineBasicBlock::iterator I, + const MachineInstr &Orig, + int FrameIndex, Register SpillReg) { + const DIExpression *Expr = computeExprForSpill(Orig, SpillReg); + MachineInstrBuilder NewMI = + BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); + // Non-Variadic Operands: Location, Offset, Variable, Expression + // Variadic Operands: Variable, Expression, Locations... + if (Orig.isNonListDebugValue()) + NewMI.addFrameIndex(FrameIndex).addImm(0U); + NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); + if (Orig.isDebugValueList()) { + for (const MachineOperand &Op : Orig.debug_operands()) + if (Op.isReg() && Op.getReg() == SpillReg) + NewMI.addFrameIndex(FrameIndex); + else + NewMI.add(MachineOperand(Op)); + } + return NewMI; +} +MachineInstr *llvm::buildDbgValueForSpill( + MachineBasicBlock &BB, MachineBasicBlock::iterator I, + const MachineInstr &Orig, int FrameIndex, + SmallVectorImpl<const MachineOperand *> &SpilledOperands) { + const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands); + MachineInstrBuilder NewMI = + BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); + // Non-Variadic Operands: Location, Offset, Variable, Expression + // Variadic Operands: Variable, Expression, Locations... + if (Orig.isNonListDebugValue()) + NewMI.addFrameIndex(FrameIndex).addImm(0U); + NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); + if (Orig.isDebugValueList()) { + for (const MachineOperand &Op : Orig.debug_operands()) + if (is_contained(SpilledOperands, &Op)) + NewMI.addFrameIndex(FrameIndex); + else + NewMI.add(MachineOperand(Op)); + } + return NewMI; +} + +void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex, + Register Reg) { + const DIExpression *Expr = computeExprForSpill(Orig, Reg); + if (Orig.isNonListDebugValue()) + Orig.getDebugOffset().ChangeToImmediate(0U); + for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg)) + Op.ChangeToFrameIndex(FrameIndex); + Orig.getDebugExpressionOp().setMetadata(Expr); +} + +void MachineInstr::collectDebugValues( + SmallVectorImpl<MachineInstr *> &DbgValues) { + MachineInstr &MI = *this; + if (!MI.getOperand(0).isReg()) + return; + + MachineBasicBlock::iterator DI = MI; ++DI; + for (MachineBasicBlock::iterator DE = MI.getParent()->end(); + DI != DE; ++DI) { + if (!DI->isDebugValue()) + return; + if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg())) + DbgValues.push_back(&*DI); + } +} + +void MachineInstr::changeDebugValuesDefReg(Register Reg) { + // Collect matching debug values. + SmallVector<MachineInstr *, 2> DbgValues; + + if (!getOperand(0).isReg()) + return; + + Register DefReg = getOperand(0).getReg(); + auto *MRI = getRegInfo(); + for (auto &MO : MRI->use_operands(DefReg)) { + auto *DI = MO.getParent(); + if (!DI->isDebugValue()) + continue; + if (DI->hasDebugOperandForReg(DefReg)) { + DbgValues.push_back(DI); + } + } + + // Propagate Reg to debug value instructions. + for (auto *DBI : DbgValues) + for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg)) + Op.setReg(Reg); +} + +using MMOList = SmallVector<const MachineMemOperand *, 2>; + +static unsigned getSpillSlotSize(const MMOList &Accesses, + const MachineFrameInfo &MFI) { + unsigned Size = 0; + for (auto A : Accesses) + if (MFI.isSpillSlotObjectIndex( + cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) + ->getFrameIndex())) + Size += A->getSize(); + return Size; +} + +Optional<unsigned> +MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { + int FI; + if (TII->isStoreToStackSlotPostFE(*this, FI)) { + const MachineFrameInfo &MFI = getMF()->getFrameInfo(); + if (MFI.isSpillSlotObjectIndex(FI)) + return (*memoperands_begin())->getSize(); + } + return None; +} + +Optional<unsigned> +MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { + MMOList Accesses; + if (TII->hasStoreToStackSlot(*this, Accesses)) + return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); + return None; +} + +Optional<unsigned> +MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { + int FI; + if (TII->isLoadFromStackSlotPostFE(*this, FI)) { + const MachineFrameInfo &MFI = getMF()->getFrameInfo(); + if (MFI.isSpillSlotObjectIndex(FI)) + return (*memoperands_begin())->getSize(); + } + return None; +} + +Optional<unsigned> +MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { + MMOList Accesses; + if (TII->hasLoadFromStackSlot(*this, Accesses)) + return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); + return None; +} + +unsigned MachineInstr::getDebugInstrNum() { + if (DebugInstrNum == 0) + DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); + return DebugInstrNum; +} + +unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) { + if (DebugInstrNum == 0) + DebugInstrNum = MF.getNewDebugInstrNum(); + return DebugInstrNum; +} |