aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/CodeGen/MachineInstr.cpp
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm14/lib/CodeGen/MachineInstr.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm14/lib/CodeGen/MachineInstr.cpp')
-rw-r--r--contrib/libs/llvm14/lib/CodeGen/MachineInstr.cpp2363
1 files changed, 2363 insertions, 0 deletions
diff --git a/contrib/libs/llvm14/lib/CodeGen/MachineInstr.cpp b/contrib/libs/llvm14/lib/CodeGen/MachineInstr.cpp
new file mode 100644
index 0000000000..85b266afce
--- /dev/null
+++ b/contrib/libs/llvm14/lib/CodeGen/MachineInstr.cpp
@@ -0,0 +1,2363 @@
+//===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Methods common to all machine instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/MemoryLocation.h"
+#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineInstrBundle.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/StackMaps.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/ModuleSlotTracker.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/LowLevelTypeImpl.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetIntrinsicInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <cstring>
+#include <iterator>
+#include <utility>
+
+using namespace llvm;
+
+static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
+ if (const MachineBasicBlock *MBB = MI.getParent())
+ if (const MachineFunction *MF = MBB->getParent())
+ return MF;
+ return nullptr;
+}
+
+// Try to crawl up to the machine function and get TRI and IntrinsicInfo from
+// it.
+static void tryToGetTargetInfo(const MachineInstr &MI,
+ const TargetRegisterInfo *&TRI,
+ const MachineRegisterInfo *&MRI,
+ const TargetIntrinsicInfo *&IntrinsicInfo,
+ const TargetInstrInfo *&TII) {
+
+ if (const MachineFunction *MF = getMFIfAvailable(MI)) {
+ TRI = MF->getSubtarget().getRegisterInfo();
+ MRI = &MF->getRegInfo();
+ IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
+ TII = MF->getSubtarget().getInstrInfo();
+ }
+}
+
+void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
+ if (MCID->ImplicitDefs)
+ for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
+ ++ImpDefs)
+ addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
+ if (MCID->ImplicitUses)
+ for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
+ ++ImpUses)
+ addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
+}
+
+/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
+/// implicit operands. It reserves space for the number of operands specified by
+/// the MCInstrDesc.
+MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
+ DebugLoc DL, bool NoImp)
+ : MCID(&TID), DbgLoc(std::move(DL)), DebugInstrNum(0) {
+ assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
+
+ // Reserve space for the expected number of operands.
+ if (unsigned NumOps = MCID->getNumOperands() +
+ MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
+ CapOperands = OperandCapacity::get(NumOps);
+ Operands = MF.allocateOperandArray(CapOperands);
+ }
+
+ if (!NoImp)
+ addImplicitDefUseOperands(MF);
+}
+
+/// MachineInstr ctor - Copies MachineInstr arg exactly.
+/// Does not copy the number from debug instruction numbering, to preserve
+/// uniqueness.
+MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
+ : MCID(&MI.getDesc()), Info(MI.Info), DbgLoc(MI.getDebugLoc()),
+ DebugInstrNum(0) {
+ assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
+
+ CapOperands = OperandCapacity::get(MI.getNumOperands());
+ Operands = MF.allocateOperandArray(CapOperands);
+
+ // Copy operands.
+ for (const MachineOperand &MO : MI.operands())
+ addOperand(MF, MO);
+
+ // Copy all the sensible flags.
+ setFlags(MI.Flags);
+}
+
+void MachineInstr::moveBefore(MachineInstr *MovePos) {
+ MovePos->getParent()->splice(MovePos, getParent(), getIterator());
+}
+
+/// getRegInfo - If this instruction is embedded into a MachineFunction,
+/// return the MachineRegisterInfo object for the current function, otherwise
+/// return null.
+MachineRegisterInfo *MachineInstr::getRegInfo() {
+ if (MachineBasicBlock *MBB = getParent())
+ return &MBB->getParent()->getRegInfo();
+ return nullptr;
+}
+
+/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
+/// this instruction from their respective use lists. This requires that the
+/// operands already be on their use lists.
+void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
+ for (MachineOperand &MO : operands())
+ if (MO.isReg())
+ MRI.removeRegOperandFromUseList(&MO);
+}
+
+/// AddRegOperandsToUseLists - Add all of the register operands in
+/// this instruction from their respective use lists. This requires that the
+/// operands not be on their use lists yet.
+void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
+ for (MachineOperand &MO : operands())
+ if (MO.isReg())
+ MRI.addRegOperandToUseList(&MO);
+}
+
+void MachineInstr::addOperand(const MachineOperand &Op) {
+ MachineBasicBlock *MBB = getParent();
+ assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
+ MachineFunction *MF = MBB->getParent();
+ assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
+ addOperand(*MF, Op);
+}
+
+/// Move NumOps MachineOperands from Src to Dst, with support for overlapping
+/// ranges. If MRI is non-null also update use-def chains.
+static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
+ unsigned NumOps, MachineRegisterInfo *MRI) {
+ if (MRI)
+ return MRI->moveOperands(Dst, Src, NumOps);
+ // MachineOperand is a trivially copyable type so we can just use memmove.
+ assert(Dst && Src && "Unknown operands");
+ std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
+}
+
+/// addOperand - Add the specified operand to the instruction. If it is an
+/// implicit operand, it is added to the end of the operand list. If it is
+/// an explicit operand it is added at the end of the explicit operand list
+/// (before the first implicit operand).
+void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
+ assert(MCID && "Cannot add operands before providing an instr descriptor");
+
+ // Check if we're adding one of our existing operands.
+ if (&Op >= Operands && &Op < Operands + NumOperands) {
+ // This is unusual: MI->addOperand(MI->getOperand(i)).
+ // If adding Op requires reallocating or moving existing operands around,
+ // the Op reference could go stale. Support it by copying Op.
+ MachineOperand CopyOp(Op);
+ return addOperand(MF, CopyOp);
+ }
+
+ // Find the insert location for the new operand. Implicit registers go at
+ // the end, everything else goes before the implicit regs.
+ //
+ // FIXME: Allow mixed explicit and implicit operands on inline asm.
+ // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
+ // implicit-defs, but they must not be moved around. See the FIXME in
+ // InstrEmitter.cpp.
+ unsigned OpNo = getNumOperands();
+ bool isImpReg = Op.isReg() && Op.isImplicit();
+ if (!isImpReg && !isInlineAsm()) {
+ while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
+ --OpNo;
+ assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
+ }
+ }
+
+#ifndef NDEBUG
+ bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
+ Op.getType() == MachineOperand::MO_MCSymbol;
+ // OpNo now points as the desired insertion point. Unless this is a variadic
+ // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
+ // RegMask operands go between the explicit and implicit operands.
+ assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
+ OpNo < MCID->getNumOperands() || isDebugOp) &&
+ "Trying to add an operand to a machine instr that is already done!");
+#endif
+
+ MachineRegisterInfo *MRI = getRegInfo();
+
+ // Determine if the Operands array needs to be reallocated.
+ // Save the old capacity and operand array.
+ OperandCapacity OldCap = CapOperands;
+ MachineOperand *OldOperands = Operands;
+ if (!OldOperands || OldCap.getSize() == getNumOperands()) {
+ CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
+ Operands = MF.allocateOperandArray(CapOperands);
+ // Move the operands before the insertion point.
+ if (OpNo)
+ moveOperands(Operands, OldOperands, OpNo, MRI);
+ }
+
+ // Move the operands following the insertion point.
+ if (OpNo != NumOperands)
+ moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
+ MRI);
+ ++NumOperands;
+
+ // Deallocate the old operand array.
+ if (OldOperands != Operands && OldOperands)
+ MF.deallocateOperandArray(OldCap, OldOperands);
+
+ // Copy Op into place. It still needs to be inserted into the MRI use lists.
+ MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
+ NewMO->ParentMI = this;
+
+ // When adding a register operand, tell MRI about it.
+ if (NewMO->isReg()) {
+ // Ensure isOnRegUseList() returns false, regardless of Op's status.
+ NewMO->Contents.Reg.Prev = nullptr;
+ // Ignore existing ties. This is not a property that can be copied.
+ NewMO->TiedTo = 0;
+ // Add the new operand to MRI, but only for instructions in an MBB.
+ if (MRI)
+ MRI->addRegOperandToUseList(NewMO);
+ // The MCID operand information isn't accurate until we start adding
+ // explicit operands. The implicit operands are added first, then the
+ // explicits are inserted before them.
+ if (!isImpReg) {
+ // Tie uses to defs as indicated in MCInstrDesc.
+ if (NewMO->isUse()) {
+ int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
+ if (DefIdx != -1)
+ tieOperands(DefIdx, OpNo);
+ }
+ // If the register operand is flagged as early, mark the operand as such.
+ if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
+ NewMO->setIsEarlyClobber(true);
+ }
+ // Ensure debug instructions set debug flag on register uses.
+ if (NewMO->isUse() && isDebugInstr())
+ NewMO->setIsDebug();
+ }
+}
+
+/// RemoveOperand - Erase an operand from an instruction, leaving it with one
+/// fewer operand than it started with.
+///
+void MachineInstr::RemoveOperand(unsigned OpNo) {
+ assert(OpNo < getNumOperands() && "Invalid operand number");
+ untieRegOperand(OpNo);
+
+#ifndef NDEBUG
+ // Moving tied operands would break the ties.
+ for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
+ if (Operands[i].isReg())
+ assert(!Operands[i].isTied() && "Cannot move tied operands");
+#endif
+
+ MachineRegisterInfo *MRI = getRegInfo();
+ if (MRI && Operands[OpNo].isReg())
+ MRI->removeRegOperandFromUseList(Operands + OpNo);
+
+ // Don't call the MachineOperand destructor. A lot of this code depends on
+ // MachineOperand having a trivial destructor anyway, and adding a call here
+ // wouldn't make it 'destructor-correct'.
+
+ if (unsigned N = NumOperands - 1 - OpNo)
+ moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
+ --NumOperands;
+}
+
+void MachineInstr::setExtraInfo(MachineFunction &MF,
+ ArrayRef<MachineMemOperand *> MMOs,
+ MCSymbol *PreInstrSymbol,
+ MCSymbol *PostInstrSymbol,
+ MDNode *HeapAllocMarker) {
+ bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
+ bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
+ bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
+ int NumPointers =
+ MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
+
+ // Drop all extra info if there is none.
+ if (NumPointers <= 0) {
+ Info.clear();
+ return;
+ }
+
+ // If more than one pointer, then store out of line. Store heap alloc markers
+ // out of line because PointerSumType cannot hold more than 4 tag types with
+ // 32-bit pointers.
+ // FIXME: Maybe we should make the symbols in the extra info mutable?
+ else if (NumPointers > 1 || HasHeapAllocMarker) {
+ Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
+ MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
+ return;
+ }
+
+ // Otherwise store the single pointer inline.
+ if (HasPreInstrSymbol)
+ Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
+ else if (HasPostInstrSymbol)
+ Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
+ else
+ Info.set<EIIK_MMO>(MMOs[0]);
+}
+
+void MachineInstr::dropMemRefs(MachineFunction &MF) {
+ if (memoperands_empty())
+ return;
+
+ setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
+ getHeapAllocMarker());
+}
+
+void MachineInstr::setMemRefs(MachineFunction &MF,
+ ArrayRef<MachineMemOperand *> MMOs) {
+ if (MMOs.empty()) {
+ dropMemRefs(MF);
+ return;
+ }
+
+ setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
+ getHeapAllocMarker());
+}
+
+void MachineInstr::addMemOperand(MachineFunction &MF,
+ MachineMemOperand *MO) {
+ SmallVector<MachineMemOperand *, 2> MMOs;
+ MMOs.append(memoperands_begin(), memoperands_end());
+ MMOs.push_back(MO);
+ setMemRefs(MF, MMOs);
+}
+
+void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
+ if (this == &MI)
+ // Nothing to do for a self-clone!
+ return;
+
+ assert(&MF == MI.getMF() &&
+ "Invalid machine functions when cloning memory refrences!");
+ // See if we can just steal the extra info already allocated for the
+ // instruction. We can do this whenever the pre- and post-instruction symbols
+ // are the same (including null).
+ if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
+ getPostInstrSymbol() == MI.getPostInstrSymbol() &&
+ getHeapAllocMarker() == MI.getHeapAllocMarker()) {
+ Info = MI.Info;
+ return;
+ }
+
+ // Otherwise, fall back on a copy-based clone.
+ setMemRefs(MF, MI.memoperands());
+}
+
+/// Check to see if the MMOs pointed to by the two MemRefs arrays are
+/// identical.
+static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
+ ArrayRef<MachineMemOperand *> RHS) {
+ if (LHS.size() != RHS.size())
+ return false;
+
+ auto LHSPointees = make_pointee_range(LHS);
+ auto RHSPointees = make_pointee_range(RHS);
+ return std::equal(LHSPointees.begin(), LHSPointees.end(),
+ RHSPointees.begin());
+}
+
+void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
+ ArrayRef<const MachineInstr *> MIs) {
+ // Try handling easy numbers of MIs with simpler mechanisms.
+ if (MIs.empty()) {
+ dropMemRefs(MF);
+ return;
+ }
+ if (MIs.size() == 1) {
+ cloneMemRefs(MF, *MIs[0]);
+ return;
+ }
+ // Because an empty memoperands list provides *no* information and must be
+ // handled conservatively (assuming the instruction can do anything), the only
+ // way to merge with it is to drop all other memoperands.
+ if (MIs[0]->memoperands_empty()) {
+ dropMemRefs(MF);
+ return;
+ }
+
+ // Handle the general case.
+ SmallVector<MachineMemOperand *, 2> MergedMMOs;
+ // Start with the first instruction.
+ assert(&MF == MIs[0]->getMF() &&
+ "Invalid machine functions when cloning memory references!");
+ MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
+ // Now walk all the other instructions and accumulate any different MMOs.
+ for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
+ assert(&MF == MI.getMF() &&
+ "Invalid machine functions when cloning memory references!");
+
+ // Skip MIs with identical operands to the first. This is a somewhat
+ // arbitrary hack but will catch common cases without being quadratic.
+ // TODO: We could fully implement merge semantics here if needed.
+ if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
+ continue;
+
+ // Because an empty memoperands list provides *no* information and must be
+ // handled conservatively (assuming the instruction can do anything), the
+ // only way to merge with it is to drop all other memoperands.
+ if (MI.memoperands_empty()) {
+ dropMemRefs(MF);
+ return;
+ }
+
+ // Otherwise accumulate these into our temporary buffer of the merged state.
+ MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
+ }
+
+ setMemRefs(MF, MergedMMOs);
+}
+
+void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
+ // Do nothing if old and new symbols are the same.
+ if (Symbol == getPreInstrSymbol())
+ return;
+
+ // If there was only one symbol and we're removing it, just clear info.
+ if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
+ Info.clear();
+ return;
+ }
+
+ setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
+ getHeapAllocMarker());
+}
+
+void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
+ // Do nothing if old and new symbols are the same.
+ if (Symbol == getPostInstrSymbol())
+ return;
+
+ // If there was only one symbol and we're removing it, just clear info.
+ if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
+ Info.clear();
+ return;
+ }
+
+ setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
+ getHeapAllocMarker());
+}
+
+void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
+ // Do nothing if old and new symbols are the same.
+ if (Marker == getHeapAllocMarker())
+ return;
+
+ setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
+ Marker);
+}
+
+void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
+ const MachineInstr &MI) {
+ if (this == &MI)
+ // Nothing to do for a self-clone!
+ return;
+
+ assert(&MF == MI.getMF() &&
+ "Invalid machine functions when cloning instruction symbols!");
+
+ setPreInstrSymbol(MF, MI.getPreInstrSymbol());
+ setPostInstrSymbol(MF, MI.getPostInstrSymbol());
+ setHeapAllocMarker(MF, MI.getHeapAllocMarker());
+}
+
+uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
+ // For now, the just return the union of the flags. If the flags get more
+ // complicated over time, we might need more logic here.
+ return getFlags() | Other.getFlags();
+}
+
+uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
+ uint16_t MIFlags = 0;
+ // Copy the wrapping flags.
+ if (const OverflowingBinaryOperator *OB =
+ dyn_cast<OverflowingBinaryOperator>(&I)) {
+ if (OB->hasNoSignedWrap())
+ MIFlags |= MachineInstr::MIFlag::NoSWrap;
+ if (OB->hasNoUnsignedWrap())
+ MIFlags |= MachineInstr::MIFlag::NoUWrap;
+ }
+
+ // Copy the exact flag.
+ if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
+ if (PE->isExact())
+ MIFlags |= MachineInstr::MIFlag::IsExact;
+
+ // Copy the fast-math flags.
+ if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
+ const FastMathFlags Flags = FP->getFastMathFlags();
+ if (Flags.noNaNs())
+ MIFlags |= MachineInstr::MIFlag::FmNoNans;
+ if (Flags.noInfs())
+ MIFlags |= MachineInstr::MIFlag::FmNoInfs;
+ if (Flags.noSignedZeros())
+ MIFlags |= MachineInstr::MIFlag::FmNsz;
+ if (Flags.allowReciprocal())
+ MIFlags |= MachineInstr::MIFlag::FmArcp;
+ if (Flags.allowContract())
+ MIFlags |= MachineInstr::MIFlag::FmContract;
+ if (Flags.approxFunc())
+ MIFlags |= MachineInstr::MIFlag::FmAfn;
+ if (Flags.allowReassoc())
+ MIFlags |= MachineInstr::MIFlag::FmReassoc;
+ }
+
+ return MIFlags;
+}
+
+void MachineInstr::copyIRFlags(const Instruction &I) {
+ Flags = copyFlagsFromInstruction(I);
+}
+
+bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
+ assert(!isBundledWithPred() && "Must be called on bundle header");
+ for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
+ if (MII->getDesc().getFlags() & Mask) {
+ if (Type == AnyInBundle)
+ return true;
+ } else {
+ if (Type == AllInBundle && !MII->isBundle())
+ return false;
+ }
+ // This was the last instruction in the bundle.
+ if (!MII->isBundledWithSucc())
+ return Type == AllInBundle;
+ }
+}
+
+bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
+ MICheckType Check) const {
+ // If opcodes or number of operands are not the same then the two
+ // instructions are obviously not identical.
+ if (Other.getOpcode() != getOpcode() ||
+ Other.getNumOperands() != getNumOperands())
+ return false;
+
+ if (isBundle()) {
+ // We have passed the test above that both instructions have the same
+ // opcode, so we know that both instructions are bundles here. Let's compare
+ // MIs inside the bundle.
+ assert(Other.isBundle() && "Expected that both instructions are bundles.");
+ MachineBasicBlock::const_instr_iterator I1 = getIterator();
+ MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
+ // Loop until we analysed the last intruction inside at least one of the
+ // bundles.
+ while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
+ ++I1;
+ ++I2;
+ if (!I1->isIdenticalTo(*I2, Check))
+ return false;
+ }
+ // If we've reached the end of just one of the two bundles, but not both,
+ // the instructions are not identical.
+ if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
+ return false;
+ }
+
+ // Check operands to make sure they match.
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = getOperand(i);
+ const MachineOperand &OMO = Other.getOperand(i);
+ if (!MO.isReg()) {
+ if (!MO.isIdenticalTo(OMO))
+ return false;
+ continue;
+ }
+
+ // Clients may or may not want to ignore defs when testing for equality.
+ // For example, machine CSE pass only cares about finding common
+ // subexpressions, so it's safe to ignore virtual register defs.
+ if (MO.isDef()) {
+ if (Check == IgnoreDefs)
+ continue;
+ else if (Check == IgnoreVRegDefs) {
+ if (!Register::isVirtualRegister(MO.getReg()) ||
+ !Register::isVirtualRegister(OMO.getReg()))
+ if (!MO.isIdenticalTo(OMO))
+ return false;
+ } else {
+ if (!MO.isIdenticalTo(OMO))
+ return false;
+ if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
+ return false;
+ }
+ } else {
+ if (!MO.isIdenticalTo(OMO))
+ return false;
+ if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
+ return false;
+ }
+ }
+ // If DebugLoc does not match then two debug instructions are not identical.
+ if (isDebugInstr())
+ if (getDebugLoc() && Other.getDebugLoc() &&
+ getDebugLoc() != Other.getDebugLoc())
+ return false;
+ return true;
+}
+
+const MachineFunction *MachineInstr::getMF() const {
+ return getParent()->getParent();
+}
+
+MachineInstr *MachineInstr::removeFromParent() {
+ assert(getParent() && "Not embedded in a basic block!");
+ return getParent()->remove(this);
+}
+
+MachineInstr *MachineInstr::removeFromBundle() {
+ assert(getParent() && "Not embedded in a basic block!");
+ return getParent()->remove_instr(this);
+}
+
+void MachineInstr::eraseFromParent() {
+ assert(getParent() && "Not embedded in a basic block!");
+ getParent()->erase(this);
+}
+
+void MachineInstr::eraseFromBundle() {
+ assert(getParent() && "Not embedded in a basic block!");
+ getParent()->erase_instr(this);
+}
+
+bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
+ if (!isCall(Type))
+ return false;
+ switch (getOpcode()) {
+ case TargetOpcode::PATCHPOINT:
+ case TargetOpcode::STACKMAP:
+ case TargetOpcode::STATEPOINT:
+ case TargetOpcode::FENTRY_CALL:
+ return false;
+ }
+ return true;
+}
+
+bool MachineInstr::shouldUpdateCallSiteInfo() const {
+ if (isBundle())
+ return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
+ return isCandidateForCallSiteEntry();
+}
+
+unsigned MachineInstr::getNumExplicitOperands() const {
+ unsigned NumOperands = MCID->getNumOperands();
+ if (!MCID->isVariadic())
+ return NumOperands;
+
+ for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
+ const MachineOperand &MO = getOperand(I);
+ // The operands must always be in the following order:
+ // - explicit reg defs,
+ // - other explicit operands (reg uses, immediates, etc.),
+ // - implicit reg defs
+ // - implicit reg uses
+ if (MO.isReg() && MO.isImplicit())
+ break;
+ ++NumOperands;
+ }
+ return NumOperands;
+}
+
+unsigned MachineInstr::getNumExplicitDefs() const {
+ unsigned NumDefs = MCID->getNumDefs();
+ if (!MCID->isVariadic())
+ return NumDefs;
+
+ for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
+ const MachineOperand &MO = getOperand(I);
+ if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
+ break;
+ ++NumDefs;
+ }
+ return NumDefs;
+}
+
+void MachineInstr::bundleWithPred() {
+ assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
+ setFlag(BundledPred);
+ MachineBasicBlock::instr_iterator Pred = getIterator();
+ --Pred;
+ assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
+ Pred->setFlag(BundledSucc);
+}
+
+void MachineInstr::bundleWithSucc() {
+ assert(!isBundledWithSucc() && "MI is already bundled with its successor");
+ setFlag(BundledSucc);
+ MachineBasicBlock::instr_iterator Succ = getIterator();
+ ++Succ;
+ assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
+ Succ->setFlag(BundledPred);
+}
+
+void MachineInstr::unbundleFromPred() {
+ assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
+ clearFlag(BundledPred);
+ MachineBasicBlock::instr_iterator Pred = getIterator();
+ --Pred;
+ assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
+ Pred->clearFlag(BundledSucc);
+}
+
+void MachineInstr::unbundleFromSucc() {
+ assert(isBundledWithSucc() && "MI isn't bundled with its successor");
+ clearFlag(BundledSucc);
+ MachineBasicBlock::instr_iterator Succ = getIterator();
+ ++Succ;
+ assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
+ Succ->clearFlag(BundledPred);
+}
+
+bool MachineInstr::isStackAligningInlineAsm() const {
+ if (isInlineAsm()) {
+ unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
+ if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
+ return true;
+ }
+ return false;
+}
+
+InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
+ assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
+ unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
+ return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
+}
+
+int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
+ unsigned *GroupNo) const {
+ assert(isInlineAsm() && "Expected an inline asm instruction");
+ assert(OpIdx < getNumOperands() && "OpIdx out of range");
+
+ // Ignore queries about the initial operands.
+ if (OpIdx < InlineAsm::MIOp_FirstOperand)
+ return -1;
+
+ unsigned Group = 0;
+ unsigned NumOps;
+ for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
+ i += NumOps) {
+ const MachineOperand &FlagMO = getOperand(i);
+ // If we reach the implicit register operands, stop looking.
+ if (!FlagMO.isImm())
+ return -1;
+ NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
+ if (i + NumOps > OpIdx) {
+ if (GroupNo)
+ *GroupNo = Group;
+ return i;
+ }
+ ++Group;
+ }
+ return -1;
+}
+
+const DILabel *MachineInstr::getDebugLabel() const {
+ assert(isDebugLabel() && "not a DBG_LABEL");
+ return cast<DILabel>(getOperand(0).getMetadata());
+}
+
+const MachineOperand &MachineInstr::getDebugVariableOp() const {
+ assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
+ unsigned VariableOp = isDebugValueList() ? 0 : 2;
+ return getOperand(VariableOp);
+}
+
+MachineOperand &MachineInstr::getDebugVariableOp() {
+ assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
+ unsigned VariableOp = isDebugValueList() ? 0 : 2;
+ return getOperand(VariableOp);
+}
+
+const DILocalVariable *MachineInstr::getDebugVariable() const {
+ return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
+}
+
+const MachineOperand &MachineInstr::getDebugExpressionOp() const {
+ assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
+ unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
+ return getOperand(ExpressionOp);
+}
+
+MachineOperand &MachineInstr::getDebugExpressionOp() {
+ assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
+ unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
+ return getOperand(ExpressionOp);
+}
+
+const DIExpression *MachineInstr::getDebugExpression() const {
+ return cast<DIExpression>(getDebugExpressionOp().getMetadata());
+}
+
+bool MachineInstr::isDebugEntryValue() const {
+ return isDebugValue() && getDebugExpression()->isEntryValue();
+}
+
+const TargetRegisterClass*
+MachineInstr::getRegClassConstraint(unsigned OpIdx,
+ const TargetInstrInfo *TII,
+ const TargetRegisterInfo *TRI) const {
+ assert(getParent() && "Can't have an MBB reference here!");
+ assert(getMF() && "Can't have an MF reference here!");
+ const MachineFunction &MF = *getMF();
+
+ // Most opcodes have fixed constraints in their MCInstrDesc.
+ if (!isInlineAsm())
+ return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
+
+ if (!getOperand(OpIdx).isReg())
+ return nullptr;
+
+ // For tied uses on inline asm, get the constraint from the def.
+ unsigned DefIdx;
+ if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
+ OpIdx = DefIdx;
+
+ // Inline asm stores register class constraints in the flag word.
+ int FlagIdx = findInlineAsmFlagIdx(OpIdx);
+ if (FlagIdx < 0)
+ return nullptr;
+
+ unsigned Flag = getOperand(FlagIdx).getImm();
+ unsigned RCID;
+ if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
+ InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
+ InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
+ InlineAsm::hasRegClassConstraint(Flag, RCID))
+ return TRI->getRegClass(RCID);
+
+ // Assume that all registers in a memory operand are pointers.
+ if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
+ return TRI->getPointerRegClass(MF);
+
+ return nullptr;
+}
+
+const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
+ Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
+ const TargetRegisterInfo *TRI, bool ExploreBundle) const {
+ // Check every operands inside the bundle if we have
+ // been asked to.
+ if (ExploreBundle)
+ for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
+ ++OpndIt)
+ CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
+ OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
+ else
+ // Otherwise, just check the current operands.
+ for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
+ CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
+ return CurRC;
+}
+
+const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
+ unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
+ const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
+ assert(CurRC && "Invalid initial register class");
+ // Check if Reg is constrained by some of its use/def from MI.
+ const MachineOperand &MO = getOperand(OpIdx);
+ if (!MO.isReg() || MO.getReg() != Reg)
+ return CurRC;
+ // If yes, accumulate the constraints through the operand.
+ return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
+}
+
+const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
+ unsigned OpIdx, const TargetRegisterClass *CurRC,
+ const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
+ const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
+ const MachineOperand &MO = getOperand(OpIdx);
+ assert(MO.isReg() &&
+ "Cannot get register constraints for non-register operand");
+ assert(CurRC && "Invalid initial register class");
+ if (unsigned SubIdx = MO.getSubReg()) {
+ if (OpRC)
+ CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
+ else
+ CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
+ } else if (OpRC)
+ CurRC = TRI->getCommonSubClass(CurRC, OpRC);
+ return CurRC;
+}
+
+/// Return the number of instructions inside the MI bundle, not counting the
+/// header instruction.
+unsigned MachineInstr::getBundleSize() const {
+ MachineBasicBlock::const_instr_iterator I = getIterator();
+ unsigned Size = 0;
+ while (I->isBundledWithSucc()) {
+ ++Size;
+ ++I;
+ }
+ return Size;
+}
+
+/// Returns true if the MachineInstr has an implicit-use operand of exactly
+/// the given register (not considering sub/super-registers).
+bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = getOperand(i);
+ if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
+ return true;
+ }
+ return false;
+}
+
+/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
+/// the specific register or -1 if it is not found. It further tightens
+/// the search criteria to a use that kills the register if isKill is true.
+int MachineInstr::findRegisterUseOperandIdx(
+ Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = getOperand(i);
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ Register MOReg = MO.getReg();
+ if (!MOReg)
+ continue;
+ if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
+ if (!isKill || MO.isKill())
+ return i;
+ }
+ return -1;
+}
+
+/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
+/// indicating if this instruction reads or writes Reg. This also considers
+/// partial defines.
+std::pair<bool,bool>
+MachineInstr::readsWritesVirtualRegister(Register Reg,
+ SmallVectorImpl<unsigned> *Ops) const {
+ bool PartDef = false; // Partial redefine.
+ bool FullDef = false; // Full define.
+ bool Use = false;
+
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = getOperand(i);
+ if (!MO.isReg() || MO.getReg() != Reg)
+ continue;
+ if (Ops)
+ Ops->push_back(i);
+ if (MO.isUse())
+ Use |= !MO.isUndef();
+ else if (MO.getSubReg() && !MO.isUndef())
+ // A partial def undef doesn't count as reading the register.
+ PartDef = true;
+ else
+ FullDef = true;
+ }
+ // A partial redefine uses Reg unless there is also a full define.
+ return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
+}
+
+/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
+/// the specified register or -1 if it is not found. If isDead is true, defs
+/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
+/// also checks if there is a def of a super-register.
+int
+MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
+ const TargetRegisterInfo *TRI) const {
+ bool isPhys = Register::isPhysicalRegister(Reg);
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = getOperand(i);
+ // Accept regmask operands when Overlap is set.
+ // Ignore them when looking for a specific def operand (Overlap == false).
+ if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
+ return i;
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ Register MOReg = MO.getReg();
+ bool Found = (MOReg == Reg);
+ if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
+ if (Overlap)
+ Found = TRI->regsOverlap(MOReg, Reg);
+ else
+ Found = TRI->isSubRegister(MOReg, Reg);
+ }
+ if (Found && (!isDead || MO.isDead()))
+ return i;
+ }
+ return -1;
+}
+
+/// findFirstPredOperandIdx() - Find the index of the first operand in the
+/// operand list that is used to represent the predicate. It returns -1 if
+/// none is found.
+int MachineInstr::findFirstPredOperandIdx() const {
+ // Don't call MCID.findFirstPredOperandIdx() because this variant
+ // is sometimes called on an instruction that's not yet complete, and
+ // so the number of operands is less than the MCID indicates. In
+ // particular, the PTX target does this.
+ const MCInstrDesc &MCID = getDesc();
+ if (MCID.isPredicable()) {
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+ if (MCID.OpInfo[i].isPredicate())
+ return i;
+ }
+
+ return -1;
+}
+
+// MachineOperand::TiedTo is 4 bits wide.
+const unsigned TiedMax = 15;
+
+/// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
+///
+/// Use and def operands can be tied together, indicated by a non-zero TiedTo
+/// field. TiedTo can have these values:
+///
+/// 0: Operand is not tied to anything.
+/// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
+/// TiedMax: Tied to an operand >= TiedMax-1.
+///
+/// The tied def must be one of the first TiedMax operands on a normal
+/// instruction. INLINEASM instructions allow more tied defs.
+///
+void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
+ MachineOperand &DefMO = getOperand(DefIdx);
+ MachineOperand &UseMO = getOperand(UseIdx);
+ assert(DefMO.isDef() && "DefIdx must be a def operand");
+ assert(UseMO.isUse() && "UseIdx must be a use operand");
+ assert(!DefMO.isTied() && "Def is already tied to another use");
+ assert(!UseMO.isTied() && "Use is already tied to another def");
+
+ if (DefIdx < TiedMax)
+ UseMO.TiedTo = DefIdx + 1;
+ else {
+ // Inline asm can use the group descriptors to find tied operands,
+ // statepoint tied operands are trivial to match (1-1 reg def with reg use),
+ // but on normal instruction, the tied def must be within the first TiedMax
+ // operands.
+ assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
+ "DefIdx out of range");
+ UseMO.TiedTo = TiedMax;
+ }
+
+ // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
+ DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
+}
+
+/// Given the index of a tied register operand, find the operand it is tied to.
+/// Defs are tied to uses and vice versa. Returns the index of the tied operand
+/// which must exist.
+unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
+ const MachineOperand &MO = getOperand(OpIdx);
+ assert(MO.isTied() && "Operand isn't tied");
+
+ // Normally TiedTo is in range.
+ if (MO.TiedTo < TiedMax)
+ return MO.TiedTo - 1;
+
+ // Uses on normal instructions can be out of range.
+ if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
+ // Normal tied defs must be in the 0..TiedMax-1 range.
+ if (MO.isUse())
+ return TiedMax - 1;
+ // MO is a def. Search for the tied use.
+ for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
+ const MachineOperand &UseMO = getOperand(i);
+ if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
+ return i;
+ }
+ llvm_unreachable("Can't find tied use");
+ }
+
+ if (getOpcode() == TargetOpcode::STATEPOINT) {
+ // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
+ // on registers.
+ StatepointOpers SO(this);
+ unsigned CurUseIdx = SO.getFirstGCPtrIdx();
+ assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
+ unsigned NumDefs = getNumDefs();
+ for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
+ while (!getOperand(CurUseIdx).isReg())
+ CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
+ if (OpIdx == CurDefIdx)
+ return CurUseIdx;
+ if (OpIdx == CurUseIdx)
+ return CurDefIdx;
+ CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
+ }
+ llvm_unreachable("Can't find tied use");
+ }
+
+ // Now deal with inline asm by parsing the operand group descriptor flags.
+ // Find the beginning of each operand group.
+ SmallVector<unsigned, 8> GroupIdx;
+ unsigned OpIdxGroup = ~0u;
+ unsigned NumOps;
+ for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
+ i += NumOps) {
+ const MachineOperand &FlagMO = getOperand(i);
+ assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
+ unsigned CurGroup = GroupIdx.size();
+ GroupIdx.push_back(i);
+ NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
+ // OpIdx belongs to this operand group.
+ if (OpIdx > i && OpIdx < i + NumOps)
+ OpIdxGroup = CurGroup;
+ unsigned TiedGroup;
+ if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
+ continue;
+ // Operands in this group are tied to operands in TiedGroup which must be
+ // earlier. Find the number of operands between the two groups.
+ unsigned Delta = i - GroupIdx[TiedGroup];
+
+ // OpIdx is a use tied to TiedGroup.
+ if (OpIdxGroup == CurGroup)
+ return OpIdx - Delta;
+
+ // OpIdx is a def tied to this use group.
+ if (OpIdxGroup == TiedGroup)
+ return OpIdx + Delta;
+ }
+ llvm_unreachable("Invalid tied operand on inline asm");
+}
+
+/// clearKillInfo - Clears kill flags on all operands.
+///
+void MachineInstr::clearKillInfo() {
+ for (MachineOperand &MO : operands()) {
+ if (MO.isReg() && MO.isUse())
+ MO.setIsKill(false);
+ }
+}
+
+void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
+ unsigned SubIdx,
+ const TargetRegisterInfo &RegInfo) {
+ if (Register::isPhysicalRegister(ToReg)) {
+ if (SubIdx)
+ ToReg = RegInfo.getSubReg(ToReg, SubIdx);
+ for (MachineOperand &MO : operands()) {
+ if (!MO.isReg() || MO.getReg() != FromReg)
+ continue;
+ MO.substPhysReg(ToReg, RegInfo);
+ }
+ } else {
+ for (MachineOperand &MO : operands()) {
+ if (!MO.isReg() || MO.getReg() != FromReg)
+ continue;
+ MO.substVirtReg(ToReg, SubIdx, RegInfo);
+ }
+ }
+}
+
+/// isSafeToMove - Return true if it is safe to move this instruction. If
+/// SawStore is set to true, it means that there is a store (or call) between
+/// the instruction's location and its intended destination.
+bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
+ // Ignore stuff that we obviously can't move.
+ //
+ // Treat volatile loads as stores. This is not strictly necessary for
+ // volatiles, but it is required for atomic loads. It is not allowed to move
+ // a load across an atomic load with Ordering > Monotonic.
+ if (mayStore() || isCall() || isPHI() ||
+ (mayLoad() && hasOrderedMemoryRef())) {
+ SawStore = true;
+ return false;
+ }
+
+ if (isPosition() || isDebugInstr() || isTerminator() ||
+ mayRaiseFPException() || hasUnmodeledSideEffects())
+ return false;
+
+ // See if this instruction does a load. If so, we have to guarantee that the
+ // loaded value doesn't change between the load and the its intended
+ // destination. The check for isInvariantLoad gives the target the chance to
+ // classify the load as always returning a constant, e.g. a constant pool
+ // load.
+ if (mayLoad() && !isDereferenceableInvariantLoad(AA))
+ // Otherwise, this is a real load. If there is a store between the load and
+ // end of block, we can't move it.
+ return !SawStore;
+
+ return true;
+}
+
+static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
+ bool UseTBAA, const MachineMemOperand *MMOa,
+ const MachineMemOperand *MMOb) {
+ // The following interface to AA is fashioned after DAGCombiner::isAlias and
+ // operates with MachineMemOperand offset with some important assumptions:
+ // - LLVM fundamentally assumes flat address spaces.
+ // - MachineOperand offset can *only* result from legalization and cannot
+ // affect queries other than the trivial case of overlap checking.
+ // - These offsets never wrap and never step outside of allocated objects.
+ // - There should never be any negative offsets here.
+ //
+ // FIXME: Modify API to hide this math from "user"
+ // Even before we go to AA we can reason locally about some memory objects. It
+ // can save compile time, and possibly catch some corner cases not currently
+ // covered.
+
+ int64_t OffsetA = MMOa->getOffset();
+ int64_t OffsetB = MMOb->getOffset();
+ int64_t MinOffset = std::min(OffsetA, OffsetB);
+
+ uint64_t WidthA = MMOa->getSize();
+ uint64_t WidthB = MMOb->getSize();
+ bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
+ bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
+
+ const Value *ValA = MMOa->getValue();
+ const Value *ValB = MMOb->getValue();
+ bool SameVal = (ValA && ValB && (ValA == ValB));
+ if (!SameVal) {
+ const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
+ const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
+ if (PSVa && ValB && !PSVa->mayAlias(&MFI))
+ return false;
+ if (PSVb && ValA && !PSVb->mayAlias(&MFI))
+ return false;
+ if (PSVa && PSVb && (PSVa == PSVb))
+ SameVal = true;
+ }
+
+ if (SameVal) {
+ if (!KnownWidthA || !KnownWidthB)
+ return true;
+ int64_t MaxOffset = std::max(OffsetA, OffsetB);
+ int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
+ return (MinOffset + LowWidth > MaxOffset);
+ }
+
+ if (!AA)
+ return true;
+
+ if (!ValA || !ValB)
+ return true;
+
+ assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
+ assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
+
+ int64_t OverlapA =
+ KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
+ int64_t OverlapB =
+ KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
+
+ return !AA->isNoAlias(
+ MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
+ MemoryLocation(ValB, OverlapB,
+ UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
+}
+
+bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
+ bool UseTBAA) const {
+ const MachineFunction *MF = getMF();
+ const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
+ const MachineFrameInfo &MFI = MF->getFrameInfo();
+
+ // Exclude call instruction which may alter the memory but can not be handled
+ // by this function.
+ if (isCall() || Other.isCall())
+ return true;
+
+ // If neither instruction stores to memory, they can't alias in any
+ // meaningful way, even if they read from the same address.
+ if (!mayStore() && !Other.mayStore())
+ return false;
+
+ // Both instructions must be memory operations to be able to alias.
+ if (!mayLoadOrStore() || !Other.mayLoadOrStore())
+ return false;
+
+ // Let the target decide if memory accesses cannot possibly overlap.
+ if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
+ return false;
+
+ // Memory operations without memory operands may access anything. Be
+ // conservative and assume `MayAlias`.
+ if (memoperands_empty() || Other.memoperands_empty())
+ return true;
+
+ // Skip if there are too many memory operands.
+ auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
+ if (NumChecks > TII->getMemOperandAACheckLimit())
+ return true;
+
+ // Check each pair of memory operands from both instructions, which can't
+ // alias only if all pairs won't alias.
+ for (auto *MMOa : memoperands())
+ for (auto *MMOb : Other.memoperands())
+ if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
+ return true;
+
+ return false;
+}
+
+/// hasOrderedMemoryRef - Return true if this instruction may have an ordered
+/// or volatile memory reference, or if the information describing the memory
+/// reference is not available. Return false if it is known to have no ordered
+/// memory references.
+bool MachineInstr::hasOrderedMemoryRef() const {
+ // An instruction known never to access memory won't have a volatile access.
+ if (!mayStore() &&
+ !mayLoad() &&
+ !isCall() &&
+ !hasUnmodeledSideEffects())
+ return false;
+
+ // Otherwise, if the instruction has no memory reference information,
+ // conservatively assume it wasn't preserved.
+ if (memoperands_empty())
+ return true;
+
+ // Check if any of our memory operands are ordered.
+ return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
+ return !MMO->isUnordered();
+ });
+}
+
+/// isDereferenceableInvariantLoad - Return true if this instruction will never
+/// trap and is loading from a location whose value is invariant across a run of
+/// this function.
+bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
+ // If the instruction doesn't load at all, it isn't an invariant load.
+ if (!mayLoad())
+ return false;
+
+ // If the instruction has lost its memoperands, conservatively assume that
+ // it may not be an invariant load.
+ if (memoperands_empty())
+ return false;
+
+ const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
+
+ for (MachineMemOperand *MMO : memoperands()) {
+ if (!MMO->isUnordered())
+ // If the memory operand has ordering side effects, we can't move the
+ // instruction. Such an instruction is technically an invariant load,
+ // but the caller code would need updated to expect that.
+ return false;
+ if (MMO->isStore()) return false;
+ if (MMO->isInvariant() && MMO->isDereferenceable())
+ continue;
+
+ // A load from a constant PseudoSourceValue is invariant.
+ if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
+ if (PSV->isConstant(&MFI))
+ continue;
+
+ if (const Value *V = MMO->getValue()) {
+ // If we have an AliasAnalysis, ask it whether the memory is constant.
+ if (AA &&
+ AA->pointsToConstantMemory(
+ MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
+ continue;
+ }
+
+ // Otherwise assume conservatively.
+ return false;
+ }
+
+ // Everything checks out.
+ return true;
+}
+
+/// isConstantValuePHI - If the specified instruction is a PHI that always
+/// merges together the same virtual register, return the register, otherwise
+/// return 0.
+unsigned MachineInstr::isConstantValuePHI() const {
+ if (!isPHI())
+ return 0;
+ assert(getNumOperands() >= 3 &&
+ "It's illegal to have a PHI without source operands");
+
+ Register Reg = getOperand(1).getReg();
+ for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
+ if (getOperand(i).getReg() != Reg)
+ return 0;
+ return Reg;
+}
+
+bool MachineInstr::hasUnmodeledSideEffects() const {
+ if (hasProperty(MCID::UnmodeledSideEffects))
+ return true;
+ if (isInlineAsm()) {
+ unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
+ if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
+ return true;
+ }
+
+ return false;
+}
+
+bool MachineInstr::isLoadFoldBarrier() const {
+ return mayStore() || isCall() ||
+ (hasUnmodeledSideEffects() && !isPseudoProbe());
+}
+
+/// allDefsAreDead - Return true if all the defs of this instruction are dead.
+///
+bool MachineInstr::allDefsAreDead() const {
+ for (const MachineOperand &MO : operands()) {
+ if (!MO.isReg() || MO.isUse())
+ continue;
+ if (!MO.isDead())
+ return false;
+ }
+ return true;
+}
+
+/// copyImplicitOps - Copy implicit register operands from specified
+/// instruction to this instruction.
+void MachineInstr::copyImplicitOps(MachineFunction &MF,
+ const MachineInstr &MI) {
+ for (const MachineOperand &MO :
+ llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
+ if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
+ addOperand(MF, MO);
+}
+
+bool MachineInstr::hasComplexRegisterTies() const {
+ const MCInstrDesc &MCID = getDesc();
+ if (MCID.Opcode == TargetOpcode::STATEPOINT)
+ return true;
+ for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
+ const auto &Operand = getOperand(I);
+ if (!Operand.isReg() || Operand.isDef())
+ // Ignore the defined registers as MCID marks only the uses as tied.
+ continue;
+ int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
+ int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
+ if (ExpectedTiedIdx != TiedIdx)
+ return true;
+ }
+ return false;
+}
+
+LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
+ const MachineRegisterInfo &MRI) const {
+ const MachineOperand &Op = getOperand(OpIdx);
+ if (!Op.isReg())
+ return LLT{};
+
+ if (isVariadic() || OpIdx >= getNumExplicitOperands())
+ return MRI.getType(Op.getReg());
+
+ auto &OpInfo = getDesc().OpInfo[OpIdx];
+ if (!OpInfo.isGenericType())
+ return MRI.getType(Op.getReg());
+
+ if (PrintedTypes[OpInfo.getGenericTypeIndex()])
+ return LLT{};
+
+ LLT TypeToPrint = MRI.getType(Op.getReg());
+ // Don't mark the type index printed if it wasn't actually printed: maybe
+ // another operand with the same type index has an actual type attached:
+ if (TypeToPrint.isValid())
+ PrintedTypes.set(OpInfo.getGenericTypeIndex());
+ return TypeToPrint;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void MachineInstr::dump() const {
+ dbgs() << " ";
+ print(dbgs());
+}
+
+LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
+ const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
+ SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
+ if (Depth >= MaxDepth)
+ return;
+ if (!AlreadySeenInstrs.insert(this).second)
+ return;
+ // PadToColumn always inserts at least one space.
+ // Don't mess up the alignment if we don't want any space.
+ if (Depth)
+ fdbgs().PadToColumn(Depth * 2);
+ print(fdbgs());
+ for (const MachineOperand &MO : operands()) {
+ if (!MO.isReg() || MO.isDef())
+ continue;
+ Register Reg = MO.getReg();
+ if (Reg.isPhysical())
+ continue;
+ const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
+ if (NewMI == nullptr)
+ continue;
+ NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
+ }
+}
+
+LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
+ unsigned MaxDepth) const {
+ SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
+ dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
+}
+#endif
+
+void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
+ bool SkipDebugLoc, bool AddNewLine,
+ const TargetInstrInfo *TII) const {
+ const Module *M = nullptr;
+ const Function *F = nullptr;
+ if (const MachineFunction *MF = getMFIfAvailable(*this)) {
+ F = &MF->getFunction();
+ M = F->getParent();
+ if (!TII)
+ TII = MF->getSubtarget().getInstrInfo();
+ }
+
+ ModuleSlotTracker MST(M);
+ if (F)
+ MST.incorporateFunction(*F);
+ print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
+}
+
+void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
+ bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
+ bool AddNewLine, const TargetInstrInfo *TII) const {
+ // We can be a bit tidier if we know the MachineFunction.
+ const TargetRegisterInfo *TRI = nullptr;
+ const MachineRegisterInfo *MRI = nullptr;
+ const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
+ tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
+
+ if (isCFIInstruction())
+ assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
+
+ SmallBitVector PrintedTypes(8);
+ bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
+ auto getTiedOperandIdx = [&](unsigned OpIdx) {
+ if (!ShouldPrintRegisterTies)
+ return 0U;
+ const MachineOperand &MO = getOperand(OpIdx);
+ if (MO.isReg() && MO.isTied() && !MO.isDef())
+ return findTiedOperandIdx(OpIdx);
+ return 0U;
+ };
+ unsigned StartOp = 0;
+ unsigned e = getNumOperands();
+
+ // Print explicitly defined operands on the left of an assignment syntax.
+ while (StartOp < e) {
+ const MachineOperand &MO = getOperand(StartOp);
+ if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
+ break;
+
+ if (StartOp != 0)
+ OS << ", ";
+
+ LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
+ unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
+ MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
+ ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
+ ++StartOp;
+ }
+
+ if (StartOp != 0)
+ OS << " = ";
+
+ if (getFlag(MachineInstr::FrameSetup))
+ OS << "frame-setup ";
+ if (getFlag(MachineInstr::FrameDestroy))
+ OS << "frame-destroy ";
+ if (getFlag(MachineInstr::FmNoNans))
+ OS << "nnan ";
+ if (getFlag(MachineInstr::FmNoInfs))
+ OS << "ninf ";
+ if (getFlag(MachineInstr::FmNsz))
+ OS << "nsz ";
+ if (getFlag(MachineInstr::FmArcp))
+ OS << "arcp ";
+ if (getFlag(MachineInstr::FmContract))
+ OS << "contract ";
+ if (getFlag(MachineInstr::FmAfn))
+ OS << "afn ";
+ if (getFlag(MachineInstr::FmReassoc))
+ OS << "reassoc ";
+ if (getFlag(MachineInstr::NoUWrap))
+ OS << "nuw ";
+ if (getFlag(MachineInstr::NoSWrap))
+ OS << "nsw ";
+ if (getFlag(MachineInstr::IsExact))
+ OS << "exact ";
+ if (getFlag(MachineInstr::NoFPExcept))
+ OS << "nofpexcept ";
+ if (getFlag(MachineInstr::NoMerge))
+ OS << "nomerge ";
+
+ // Print the opcode name.
+ if (TII)
+ OS << TII->getName(getOpcode());
+ else
+ OS << "UNKNOWN";
+
+ if (SkipOpers)
+ return;
+
+ // Print the rest of the operands.
+ bool FirstOp = true;
+ unsigned AsmDescOp = ~0u;
+ unsigned AsmOpCount = 0;
+
+ if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
+ // Print asm string.
+ OS << " ";
+ const unsigned OpIdx = InlineAsm::MIOp_AsmString;
+ LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
+ unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
+ getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
+ ShouldPrintRegisterTies, TiedOperandIdx, TRI,
+ IntrinsicInfo);
+
+ // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
+ unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
+ if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
+ OS << " [sideeffect]";
+ if (ExtraInfo & InlineAsm::Extra_MayLoad)
+ OS << " [mayload]";
+ if (ExtraInfo & InlineAsm::Extra_MayStore)
+ OS << " [maystore]";
+ if (ExtraInfo & InlineAsm::Extra_IsConvergent)
+ OS << " [isconvergent]";
+ if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
+ OS << " [alignstack]";
+ if (getInlineAsmDialect() == InlineAsm::AD_ATT)
+ OS << " [attdialect]";
+ if (getInlineAsmDialect() == InlineAsm::AD_Intel)
+ OS << " [inteldialect]";
+
+ StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
+ FirstOp = false;
+ }
+
+ for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = getOperand(i);
+
+ if (FirstOp) FirstOp = false; else OS << ",";
+ OS << " ";
+
+ if (isDebugValue() && MO.isMetadata()) {
+ // Pretty print DBG_VALUE* instructions.
+ auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
+ if (DIV && !DIV->getName().empty())
+ OS << "!\"" << DIV->getName() << '\"';
+ else {
+ LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
+ unsigned TiedOperandIdx = getTiedOperandIdx(i);
+ MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
+ ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
+ }
+ } else if (isDebugLabel() && MO.isMetadata()) {
+ // Pretty print DBG_LABEL instructions.
+ auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
+ if (DIL && !DIL->getName().empty())
+ OS << "\"" << DIL->getName() << '\"';
+ else {
+ LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
+ unsigned TiedOperandIdx = getTiedOperandIdx(i);
+ MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
+ ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
+ }
+ } else if (i == AsmDescOp && MO.isImm()) {
+ // Pretty print the inline asm operand descriptor.
+ OS << '$' << AsmOpCount++;
+ unsigned Flag = MO.getImm();
+ OS << ":[";
+ OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
+
+ unsigned RCID = 0;
+ if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
+ InlineAsm::hasRegClassConstraint(Flag, RCID)) {
+ if (TRI) {
+ OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
+ } else
+ OS << ":RC" << RCID;
+ }
+
+ if (InlineAsm::isMemKind(Flag)) {
+ unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
+ OS << ":" << InlineAsm::getMemConstraintName(MCID);
+ }
+
+ unsigned TiedTo = 0;
+ if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
+ OS << " tiedto:$" << TiedTo;
+
+ OS << ']';
+
+ // Compute the index of the next operand descriptor.
+ AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
+ } else {
+ LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
+ unsigned TiedOperandIdx = getTiedOperandIdx(i);
+ if (MO.isImm() && isOperandSubregIdx(i))
+ MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
+ else
+ MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
+ ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
+ }
+ }
+
+ // Print any optional symbols attached to this instruction as-if they were
+ // operands.
+ if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
+ if (!FirstOp) {
+ FirstOp = false;
+ OS << ',';
+ }
+ OS << " pre-instr-symbol ";
+ MachineOperand::printSymbol(OS, *PreInstrSymbol);
+ }
+ if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
+ if (!FirstOp) {
+ FirstOp = false;
+ OS << ',';
+ }
+ OS << " post-instr-symbol ";
+ MachineOperand::printSymbol(OS, *PostInstrSymbol);
+ }
+ if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
+ if (!FirstOp) {
+ FirstOp = false;
+ OS << ',';
+ }
+ OS << " heap-alloc-marker ";
+ HeapAllocMarker->printAsOperand(OS, MST);
+ }
+
+ if (DebugInstrNum) {
+ if (!FirstOp)
+ OS << ",";
+ OS << " debug-instr-number " << DebugInstrNum;
+ }
+
+ if (!SkipDebugLoc) {
+ if (const DebugLoc &DL = getDebugLoc()) {
+ if (!FirstOp)
+ OS << ',';
+ OS << " debug-location ";
+ DL->printAsOperand(OS, MST);
+ }
+ }
+
+ if (!memoperands_empty()) {
+ SmallVector<StringRef, 0> SSNs;
+ const LLVMContext *Context = nullptr;
+ std::unique_ptr<LLVMContext> CtxPtr;
+ const MachineFrameInfo *MFI = nullptr;
+ if (const MachineFunction *MF = getMFIfAvailable(*this)) {
+ MFI = &MF->getFrameInfo();
+ Context = &MF->getFunction().getContext();
+ } else {
+ CtxPtr = std::make_unique<LLVMContext>();
+ Context = CtxPtr.get();
+ }
+
+ OS << " :: ";
+ bool NeedComma = false;
+ for (const MachineMemOperand *Op : memoperands()) {
+ if (NeedComma)
+ OS << ", ";
+ Op->print(OS, MST, SSNs, *Context, MFI, TII);
+ NeedComma = true;
+ }
+ }
+
+ if (SkipDebugLoc)
+ return;
+
+ bool HaveSemi = false;
+
+ // Print debug location information.
+ if (const DebugLoc &DL = getDebugLoc()) {
+ if (!HaveSemi) {
+ OS << ';';
+ HaveSemi = true;
+ }
+ OS << ' ';
+ DL.print(OS);
+ }
+
+ // Print extra comments for DEBUG_VALUE.
+ if (isDebugValue() && getDebugVariableOp().isMetadata()) {
+ if (!HaveSemi) {
+ OS << ";";
+ HaveSemi = true;
+ }
+ auto *DV = getDebugVariable();
+ OS << " line no:" << DV->getLine();
+ if (isIndirectDebugValue())
+ OS << " indirect";
+ }
+ // TODO: DBG_LABEL
+
+ if (AddNewLine)
+ OS << '\n';
+}
+
+bool MachineInstr::addRegisterKilled(Register IncomingReg,
+ const TargetRegisterInfo *RegInfo,
+ bool AddIfNotFound) {
+ bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
+ bool hasAliases = isPhysReg &&
+ MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
+ bool Found = false;
+ SmallVector<unsigned,4> DeadOps;
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = getOperand(i);
+ if (!MO.isReg() || !MO.isUse() || MO.isUndef())
+ continue;
+
+ // DEBUG_VALUE nodes do not contribute to code generation and should
+ // always be ignored. Failure to do so may result in trying to modify
+ // KILL flags on DEBUG_VALUE nodes.
+ if (MO.isDebug())
+ continue;
+
+ Register Reg = MO.getReg();
+ if (!Reg)
+ continue;
+
+ if (Reg == IncomingReg) {
+ if (!Found) {
+ if (MO.isKill())
+ // The register is already marked kill.
+ return true;
+ if (isPhysReg && isRegTiedToDefOperand(i))
+ // Two-address uses of physregs must not be marked kill.
+ return true;
+ MO.setIsKill();
+ Found = true;
+ }
+ } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
+ // A super-register kill already exists.
+ if (RegInfo->isSuperRegister(IncomingReg, Reg))
+ return true;
+ if (RegInfo->isSubRegister(IncomingReg, Reg))
+ DeadOps.push_back(i);
+ }
+ }
+
+ // Trim unneeded kill operands.
+ while (!DeadOps.empty()) {
+ unsigned OpIdx = DeadOps.back();
+ if (getOperand(OpIdx).isImplicit() &&
+ (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
+ RemoveOperand(OpIdx);
+ else
+ getOperand(OpIdx).setIsKill(false);
+ DeadOps.pop_back();
+ }
+
+ // If not found, this means an alias of one of the operands is killed. Add a
+ // new implicit operand if required.
+ if (!Found && AddIfNotFound) {
+ addOperand(MachineOperand::CreateReg(IncomingReg,
+ false /*IsDef*/,
+ true /*IsImp*/,
+ true /*IsKill*/));
+ return true;
+ }
+ return Found;
+}
+
+void MachineInstr::clearRegisterKills(Register Reg,
+ const TargetRegisterInfo *RegInfo) {
+ if (!Register::isPhysicalRegister(Reg))
+ RegInfo = nullptr;
+ for (MachineOperand &MO : operands()) {
+ if (!MO.isReg() || !MO.isUse() || !MO.isKill())
+ continue;
+ Register OpReg = MO.getReg();
+ if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
+ MO.setIsKill(false);
+ }
+}
+
+bool MachineInstr::addRegisterDead(Register Reg,
+ const TargetRegisterInfo *RegInfo,
+ bool AddIfNotFound) {
+ bool isPhysReg = Register::isPhysicalRegister(Reg);
+ bool hasAliases = isPhysReg &&
+ MCRegAliasIterator(Reg, RegInfo, false).isValid();
+ bool Found = false;
+ SmallVector<unsigned,4> DeadOps;
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = getOperand(i);
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ Register MOReg = MO.getReg();
+ if (!MOReg)
+ continue;
+
+ if (MOReg == Reg) {
+ MO.setIsDead();
+ Found = true;
+ } else if (hasAliases && MO.isDead() &&
+ Register::isPhysicalRegister(MOReg)) {
+ // There exists a super-register that's marked dead.
+ if (RegInfo->isSuperRegister(Reg, MOReg))
+ return true;
+ if (RegInfo->isSubRegister(Reg, MOReg))
+ DeadOps.push_back(i);
+ }
+ }
+
+ // Trim unneeded dead operands.
+ while (!DeadOps.empty()) {
+ unsigned OpIdx = DeadOps.back();
+ if (getOperand(OpIdx).isImplicit() &&
+ (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
+ RemoveOperand(OpIdx);
+ else
+ getOperand(OpIdx).setIsDead(false);
+ DeadOps.pop_back();
+ }
+
+ // If not found, this means an alias of one of the operands is dead. Add a
+ // new implicit operand if required.
+ if (Found || !AddIfNotFound)
+ return Found;
+
+ addOperand(MachineOperand::CreateReg(Reg,
+ true /*IsDef*/,
+ true /*IsImp*/,
+ false /*IsKill*/,
+ true /*IsDead*/));
+ return true;
+}
+
+void MachineInstr::clearRegisterDeads(Register Reg) {
+ for (MachineOperand &MO : operands()) {
+ if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
+ continue;
+ MO.setIsDead(false);
+ }
+}
+
+void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
+ for (MachineOperand &MO : operands()) {
+ if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
+ continue;
+ MO.setIsUndef(IsUndef);
+ }
+}
+
+void MachineInstr::addRegisterDefined(Register Reg,
+ const TargetRegisterInfo *RegInfo) {
+ if (Register::isPhysicalRegister(Reg)) {
+ MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
+ if (MO)
+ return;
+ } else {
+ for (const MachineOperand &MO : operands()) {
+ if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
+ MO.getSubReg() == 0)
+ return;
+ }
+ }
+ addOperand(MachineOperand::CreateReg(Reg,
+ true /*IsDef*/,
+ true /*IsImp*/));
+}
+
+void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
+ const TargetRegisterInfo &TRI) {
+ bool HasRegMask = false;
+ for (MachineOperand &MO : operands()) {
+ if (MO.isRegMask()) {
+ HasRegMask = true;
+ continue;
+ }
+ if (!MO.isReg() || !MO.isDef()) continue;
+ Register Reg = MO.getReg();
+ if (!Reg.isPhysical())
+ continue;
+ // If there are no uses, including partial uses, the def is dead.
+ if (llvm::none_of(UsedRegs,
+ [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
+ MO.setIsDead();
+ }
+
+ // This is a call with a register mask operand.
+ // Mask clobbers are always dead, so add defs for the non-dead defines.
+ if (HasRegMask)
+ for (const Register &UsedReg : UsedRegs)
+ addRegisterDefined(UsedReg, &TRI);
+}
+
+unsigned
+MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
+ // Build up a buffer of hash code components.
+ SmallVector<size_t, 16> HashComponents;
+ HashComponents.reserve(MI->getNumOperands() + 1);
+ HashComponents.push_back(MI->getOpcode());
+ for (const MachineOperand &MO : MI->operands()) {
+ if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
+ continue; // Skip virtual register defs.
+
+ HashComponents.push_back(hash_value(MO));
+ }
+ return hash_combine_range(HashComponents.begin(), HashComponents.end());
+}
+
+void MachineInstr::emitError(StringRef Msg) const {
+ // Find the source location cookie.
+ uint64_t LocCookie = 0;
+ const MDNode *LocMD = nullptr;
+ for (unsigned i = getNumOperands(); i != 0; --i) {
+ if (getOperand(i-1).isMetadata() &&
+ (LocMD = getOperand(i-1).getMetadata()) &&
+ LocMD->getNumOperands() != 0) {
+ if (const ConstantInt *CI =
+ mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
+ LocCookie = CI->getZExtValue();
+ break;
+ }
+ }
+ }
+
+ if (const MachineBasicBlock *MBB = getParent())
+ if (const MachineFunction *MF = MBB->getParent())
+ return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
+ report_fatal_error(Msg);
+}
+
+MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
+ const MCInstrDesc &MCID, bool IsIndirect,
+ Register Reg, const MDNode *Variable,
+ const MDNode *Expr) {
+ assert(isa<DILocalVariable>(Variable) && "not a variable");
+ assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
+ assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
+ "Expected inlined-at fields to agree");
+ auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
+ if (IsIndirect)
+ MIB.addImm(0U);
+ else
+ MIB.addReg(0U);
+ return MIB.addMetadata(Variable).addMetadata(Expr);
+}
+
+MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
+ const MCInstrDesc &MCID, bool IsIndirect,
+ const MachineOperand &MO,
+ const MDNode *Variable, const MDNode *Expr) {
+ assert(isa<DILocalVariable>(Variable) && "not a variable");
+ assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
+ assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
+ "Expected inlined-at fields to agree");
+ if (MO.isReg())
+ return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
+
+ auto MIB = BuildMI(MF, DL, MCID).add(MO);
+ if (IsIndirect)
+ MIB.addImm(0U);
+ else
+ MIB.addReg(0U);
+ return MIB.addMetadata(Variable).addMetadata(Expr);
+}
+
+MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
+ const MCInstrDesc &MCID, bool IsIndirect,
+ ArrayRef<MachineOperand> MOs,
+ const MDNode *Variable, const MDNode *Expr) {
+ assert(isa<DILocalVariable>(Variable) && "not a variable");
+ assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
+ assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
+ "Expected inlined-at fields to agree");
+ if (MCID.Opcode == TargetOpcode::DBG_VALUE)
+ return BuildMI(MF, DL, MCID, IsIndirect, MOs[0], Variable, Expr);
+
+ auto MIB = BuildMI(MF, DL, MCID);
+ MIB.addMetadata(Variable).addMetadata(Expr);
+ for (const MachineOperand &MO : MOs)
+ if (MO.isReg())
+ MIB.addReg(MO.getReg());
+ else
+ MIB.add(MO);
+ return MIB;
+}
+
+MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
+ MachineBasicBlock::iterator I,
+ const DebugLoc &DL, const MCInstrDesc &MCID,
+ bool IsIndirect, Register Reg,
+ const MDNode *Variable, const MDNode *Expr) {
+ MachineFunction &MF = *BB.getParent();
+ MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
+ BB.insert(I, MI);
+ return MachineInstrBuilder(MF, MI);
+}
+
+MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
+ MachineBasicBlock::iterator I,
+ const DebugLoc &DL, const MCInstrDesc &MCID,
+ bool IsIndirect, MachineOperand &MO,
+ const MDNode *Variable, const MDNode *Expr) {
+ MachineFunction &MF = *BB.getParent();
+ MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
+ BB.insert(I, MI);
+ return MachineInstrBuilder(MF, *MI);
+}
+
+MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
+ MachineBasicBlock::iterator I,
+ const DebugLoc &DL, const MCInstrDesc &MCID,
+ bool IsIndirect, ArrayRef<MachineOperand> MOs,
+ const MDNode *Variable, const MDNode *Expr) {
+ MachineFunction &MF = *BB.getParent();
+ MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MOs, Variable, Expr);
+ BB.insert(I, MI);
+ return MachineInstrBuilder(MF, *MI);
+}
+
+/// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
+/// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
+static const DIExpression *
+computeExprForSpill(const MachineInstr &MI,
+ SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
+ assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
+ "Expected inlined-at fields to agree");
+
+ const DIExpression *Expr = MI.getDebugExpression();
+ if (MI.isIndirectDebugValue()) {
+ assert(MI.getDebugOffset().getImm() == 0 &&
+ "DBG_VALUE with nonzero offset");
+ Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
+ } else if (MI.isDebugValueList()) {
+ // We will replace the spilled register with a frame index, so
+ // immediately deref all references to the spilled register.
+ std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
+ for (const MachineOperand *Op : SpilledOperands) {
+ unsigned OpIdx = MI.getDebugOperandIndex(Op);
+ Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
+ }
+ }
+ return Expr;
+}
+static const DIExpression *computeExprForSpill(const MachineInstr &MI,
+ Register SpillReg) {
+ assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
+ SmallVector<const MachineOperand *> SpillOperands;
+ for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
+ SpillOperands.push_back(&Op);
+ return computeExprForSpill(MI, SpillOperands);
+}
+
+MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
+ MachineBasicBlock::iterator I,
+ const MachineInstr &Orig,
+ int FrameIndex, Register SpillReg) {
+ const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
+ MachineInstrBuilder NewMI =
+ BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
+ // Non-Variadic Operands: Location, Offset, Variable, Expression
+ // Variadic Operands: Variable, Expression, Locations...
+ if (Orig.isNonListDebugValue())
+ NewMI.addFrameIndex(FrameIndex).addImm(0U);
+ NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
+ if (Orig.isDebugValueList()) {
+ for (const MachineOperand &Op : Orig.debug_operands())
+ if (Op.isReg() && Op.getReg() == SpillReg)
+ NewMI.addFrameIndex(FrameIndex);
+ else
+ NewMI.add(MachineOperand(Op));
+ }
+ return NewMI;
+}
+MachineInstr *llvm::buildDbgValueForSpill(
+ MachineBasicBlock &BB, MachineBasicBlock::iterator I,
+ const MachineInstr &Orig, int FrameIndex,
+ SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
+ const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
+ MachineInstrBuilder NewMI =
+ BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
+ // Non-Variadic Operands: Location, Offset, Variable, Expression
+ // Variadic Operands: Variable, Expression, Locations...
+ if (Orig.isNonListDebugValue())
+ NewMI.addFrameIndex(FrameIndex).addImm(0U);
+ NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
+ if (Orig.isDebugValueList()) {
+ for (const MachineOperand &Op : Orig.debug_operands())
+ if (is_contained(SpilledOperands, &Op))
+ NewMI.addFrameIndex(FrameIndex);
+ else
+ NewMI.add(MachineOperand(Op));
+ }
+ return NewMI;
+}
+
+void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
+ Register Reg) {
+ const DIExpression *Expr = computeExprForSpill(Orig, Reg);
+ if (Orig.isNonListDebugValue())
+ Orig.getDebugOffset().ChangeToImmediate(0U);
+ for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
+ Op.ChangeToFrameIndex(FrameIndex);
+ Orig.getDebugExpressionOp().setMetadata(Expr);
+}
+
+void MachineInstr::collectDebugValues(
+ SmallVectorImpl<MachineInstr *> &DbgValues) {
+ MachineInstr &MI = *this;
+ if (!MI.getOperand(0).isReg())
+ return;
+
+ MachineBasicBlock::iterator DI = MI; ++DI;
+ for (MachineBasicBlock::iterator DE = MI.getParent()->end();
+ DI != DE; ++DI) {
+ if (!DI->isDebugValue())
+ return;
+ if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
+ DbgValues.push_back(&*DI);
+ }
+}
+
+void MachineInstr::changeDebugValuesDefReg(Register Reg) {
+ // Collect matching debug values.
+ SmallVector<MachineInstr *, 2> DbgValues;
+
+ if (!getOperand(0).isReg())
+ return;
+
+ Register DefReg = getOperand(0).getReg();
+ auto *MRI = getRegInfo();
+ for (auto &MO : MRI->use_operands(DefReg)) {
+ auto *DI = MO.getParent();
+ if (!DI->isDebugValue())
+ continue;
+ if (DI->hasDebugOperandForReg(DefReg)) {
+ DbgValues.push_back(DI);
+ }
+ }
+
+ // Propagate Reg to debug value instructions.
+ for (auto *DBI : DbgValues)
+ for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
+ Op.setReg(Reg);
+}
+
+using MMOList = SmallVector<const MachineMemOperand *, 2>;
+
+static unsigned getSpillSlotSize(const MMOList &Accesses,
+ const MachineFrameInfo &MFI) {
+ unsigned Size = 0;
+ for (auto A : Accesses)
+ if (MFI.isSpillSlotObjectIndex(
+ cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
+ ->getFrameIndex()))
+ Size += A->getSize();
+ return Size;
+}
+
+Optional<unsigned>
+MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
+ int FI;
+ if (TII->isStoreToStackSlotPostFE(*this, FI)) {
+ const MachineFrameInfo &MFI = getMF()->getFrameInfo();
+ if (MFI.isSpillSlotObjectIndex(FI))
+ return (*memoperands_begin())->getSize();
+ }
+ return None;
+}
+
+Optional<unsigned>
+MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
+ MMOList Accesses;
+ if (TII->hasStoreToStackSlot(*this, Accesses))
+ return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
+ return None;
+}
+
+Optional<unsigned>
+MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
+ int FI;
+ if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
+ const MachineFrameInfo &MFI = getMF()->getFrameInfo();
+ if (MFI.isSpillSlotObjectIndex(FI))
+ return (*memoperands_begin())->getSize();
+ }
+ return None;
+}
+
+Optional<unsigned>
+MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
+ MMOList Accesses;
+ if (TII->hasLoadFromStackSlot(*this, Accesses))
+ return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
+ return None;
+}
+
+unsigned MachineInstr::getDebugInstrNum() {
+ if (DebugInstrNum == 0)
+ DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
+ return DebugInstrNum;
+}
+
+unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
+ if (DebugInstrNum == 0)
+ DebugInstrNum = MF.getNewDebugInstrNum();
+ return DebugInstrNum;
+}