aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/CodeGen/MachineFunction.cpp
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm14/lib/CodeGen/MachineFunction.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm14/lib/CodeGen/MachineFunction.cpp')
-rw-r--r--contrib/libs/llvm14/lib/CodeGen/MachineFunction.cpp1517
1 files changed, 1517 insertions, 0 deletions
diff --git a/contrib/libs/llvm14/lib/CodeGen/MachineFunction.cpp b/contrib/libs/llvm14/lib/CodeGen/MachineFunction.cpp
new file mode 100644
index 0000000000..02f58ca5ee
--- /dev/null
+++ b/contrib/libs/llvm14/lib/CodeGen/MachineFunction.cpp
@@ -0,0 +1,1517 @@
+//===- MachineFunction.cpp ------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Collect native machine code information for a function. This allows
+// target-specific information about the generated code to be stored with each
+// function.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/EHPersonalities.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/TargetFrameLowering.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/CodeGen/WasmEHFuncInfo.h"
+#include "llvm/CodeGen/WinEHFuncInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/ModuleSlotTracker.h"
+#include "llvm/IR/Value.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/SectionKind.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/DOTGraphTraits.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/GraphWriter.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <iterator>
+#include <string>
+#include <type_traits>
+#include <utility>
+#include <vector>
+
+#include "LiveDebugValues/LiveDebugValues.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "codegen"
+
+static cl::opt<unsigned> AlignAllFunctions(
+ "align-all-functions",
+ cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
+ "means align on 16B boundaries)."),
+ cl::init(0), cl::Hidden);
+
+static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
+ using P = MachineFunctionProperties::Property;
+
+ // clang-format off
+ switch(Prop) {
+ case P::FailedISel: return "FailedISel";
+ case P::IsSSA: return "IsSSA";
+ case P::Legalized: return "Legalized";
+ case P::NoPHIs: return "NoPHIs";
+ case P::NoVRegs: return "NoVRegs";
+ case P::RegBankSelected: return "RegBankSelected";
+ case P::Selected: return "Selected";
+ case P::TracksLiveness: return "TracksLiveness";
+ case P::TiedOpsRewritten: return "TiedOpsRewritten";
+ case P::FailsVerification: return "FailsVerification";
+ case P::TracksDebugUserValues: return "TracksDebugUserValues";
+ }
+ // clang-format on
+ llvm_unreachable("Invalid machine function property");
+}
+
+// Pin the vtable to this file.
+void MachineFunction::Delegate::anchor() {}
+
+void MachineFunctionProperties::print(raw_ostream &OS) const {
+ const char *Separator = "";
+ for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
+ if (!Properties[I])
+ continue;
+ OS << Separator << getPropertyName(static_cast<Property>(I));
+ Separator = ", ";
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// MachineFunction implementation
+//===----------------------------------------------------------------------===//
+
+// Out-of-line virtual method.
+MachineFunctionInfo::~MachineFunctionInfo() = default;
+
+void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
+ MBB->getParent()->deleteMachineBasicBlock(MBB);
+}
+
+static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
+ const Function &F) {
+ if (auto MA = F.getFnStackAlign())
+ return MA->value();
+ return STI->getFrameLowering()->getStackAlign().value();
+}
+
+MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
+ const TargetSubtargetInfo &STI,
+ unsigned FunctionNum, MachineModuleInfo &mmi)
+ : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
+ FunctionNumber = FunctionNum;
+ init();
+}
+
+void MachineFunction::handleInsertion(MachineInstr &MI) {
+ if (TheDelegate)
+ TheDelegate->MF_HandleInsertion(MI);
+}
+
+void MachineFunction::handleRemoval(MachineInstr &MI) {
+ if (TheDelegate)
+ TheDelegate->MF_HandleRemoval(MI);
+}
+
+void MachineFunction::init() {
+ // Assume the function starts in SSA form with correct liveness.
+ Properties.set(MachineFunctionProperties::Property::IsSSA);
+ Properties.set(MachineFunctionProperties::Property::TracksLiveness);
+ if (STI->getRegisterInfo())
+ RegInfo = new (Allocator) MachineRegisterInfo(this);
+ else
+ RegInfo = nullptr;
+
+ MFInfo = nullptr;
+ // We can realign the stack if the target supports it and the user hasn't
+ // explicitly asked us not to.
+ bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
+ !F.hasFnAttribute("no-realign-stack");
+ FrameInfo = new (Allocator) MachineFrameInfo(
+ getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
+ /*ForcedRealign=*/CanRealignSP &&
+ F.hasFnAttribute(Attribute::StackAlignment));
+
+ if (F.hasFnAttribute(Attribute::StackAlignment))
+ FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
+
+ ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
+ Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
+
+ // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
+ // FIXME: Use Function::hasOptSize().
+ if (!F.hasFnAttribute(Attribute::OptimizeForSize))
+ Alignment = std::max(Alignment,
+ STI->getTargetLowering()->getPrefFunctionAlignment());
+
+ if (AlignAllFunctions)
+ Alignment = Align(1ULL << AlignAllFunctions);
+
+ JumpTableInfo = nullptr;
+
+ if (isFuncletEHPersonality(classifyEHPersonality(
+ F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
+ WinEHInfo = new (Allocator) WinEHFuncInfo();
+ }
+
+ if (isScopedEHPersonality(classifyEHPersonality(
+ F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
+ WasmEHInfo = new (Allocator) WasmEHFuncInfo();
+ }
+
+ assert(Target.isCompatibleDataLayout(getDataLayout()) &&
+ "Can't create a MachineFunction using a Module with a "
+ "Target-incompatible DataLayout attached\n");
+
+ PSVManager =
+ std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
+ getInstrInfo()));
+}
+
+MachineFunction::~MachineFunction() {
+ clear();
+}
+
+void MachineFunction::clear() {
+ Properties.reset();
+ // Don't call destructors on MachineInstr and MachineOperand. All of their
+ // memory comes from the BumpPtrAllocator which is about to be purged.
+ //
+ // Do call MachineBasicBlock destructors, it contains std::vectors.
+ for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
+ I->Insts.clearAndLeakNodesUnsafely();
+ MBBNumbering.clear();
+
+ InstructionRecycler.clear(Allocator);
+ OperandRecycler.clear(Allocator);
+ BasicBlockRecycler.clear(Allocator);
+ CodeViewAnnotations.clear();
+ VariableDbgInfos.clear();
+ if (RegInfo) {
+ RegInfo->~MachineRegisterInfo();
+ Allocator.Deallocate(RegInfo);
+ }
+ if (MFInfo) {
+ MFInfo->~MachineFunctionInfo();
+ Allocator.Deallocate(MFInfo);
+ }
+
+ FrameInfo->~MachineFrameInfo();
+ Allocator.Deallocate(FrameInfo);
+
+ ConstantPool->~MachineConstantPool();
+ Allocator.Deallocate(ConstantPool);
+
+ if (JumpTableInfo) {
+ JumpTableInfo->~MachineJumpTableInfo();
+ Allocator.Deallocate(JumpTableInfo);
+ }
+
+ if (WinEHInfo) {
+ WinEHInfo->~WinEHFuncInfo();
+ Allocator.Deallocate(WinEHInfo);
+ }
+
+ if (WasmEHInfo) {
+ WasmEHInfo->~WasmEHFuncInfo();
+ Allocator.Deallocate(WasmEHInfo);
+ }
+}
+
+const DataLayout &MachineFunction::getDataLayout() const {
+ return F.getParent()->getDataLayout();
+}
+
+/// Get the JumpTableInfo for this function.
+/// If it does not already exist, allocate one.
+MachineJumpTableInfo *MachineFunction::
+getOrCreateJumpTableInfo(unsigned EntryKind) {
+ if (JumpTableInfo) return JumpTableInfo;
+
+ JumpTableInfo = new (Allocator)
+ MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
+ return JumpTableInfo;
+}
+
+DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
+ return F.getDenormalMode(FPType);
+}
+
+/// Should we be emitting segmented stack stuff for the function
+bool MachineFunction::shouldSplitStack() const {
+ return getFunction().hasFnAttribute("split-stack");
+}
+
+LLVM_NODISCARD unsigned
+MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
+ FrameInstructions.push_back(Inst);
+ return FrameInstructions.size() - 1;
+}
+
+/// This discards all of the MachineBasicBlock numbers and recomputes them.
+/// This guarantees that the MBB numbers are sequential, dense, and match the
+/// ordering of the blocks within the function. If a specific MachineBasicBlock
+/// is specified, only that block and those after it are renumbered.
+void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
+ if (empty()) { MBBNumbering.clear(); return; }
+ MachineFunction::iterator MBBI, E = end();
+ if (MBB == nullptr)
+ MBBI = begin();
+ else
+ MBBI = MBB->getIterator();
+
+ // Figure out the block number this should have.
+ unsigned BlockNo = 0;
+ if (MBBI != begin())
+ BlockNo = std::prev(MBBI)->getNumber() + 1;
+
+ for (; MBBI != E; ++MBBI, ++BlockNo) {
+ if (MBBI->getNumber() != (int)BlockNo) {
+ // Remove use of the old number.
+ if (MBBI->getNumber() != -1) {
+ assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
+ "MBB number mismatch!");
+ MBBNumbering[MBBI->getNumber()] = nullptr;
+ }
+
+ // If BlockNo is already taken, set that block's number to -1.
+ if (MBBNumbering[BlockNo])
+ MBBNumbering[BlockNo]->setNumber(-1);
+
+ MBBNumbering[BlockNo] = &*MBBI;
+ MBBI->setNumber(BlockNo);
+ }
+ }
+
+ // Okay, all the blocks are renumbered. If we have compactified the block
+ // numbering, shrink MBBNumbering now.
+ assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
+ MBBNumbering.resize(BlockNo);
+}
+
+/// This method iterates over the basic blocks and assigns their IsBeginSection
+/// and IsEndSection fields. This must be called after MBB layout is finalized
+/// and the SectionID's are assigned to MBBs.
+void MachineFunction::assignBeginEndSections() {
+ front().setIsBeginSection();
+ auto CurrentSectionID = front().getSectionID();
+ for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
+ if (MBBI->getSectionID() == CurrentSectionID)
+ continue;
+ MBBI->setIsBeginSection();
+ std::prev(MBBI)->setIsEndSection();
+ CurrentSectionID = MBBI->getSectionID();
+ }
+ back().setIsEndSection();
+}
+
+/// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
+MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
+ DebugLoc DL,
+ bool NoImplicit) {
+ return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
+ MachineInstr(*this, MCID, std::move(DL), NoImplicit);
+}
+
+/// Create a new MachineInstr which is a copy of the 'Orig' instruction,
+/// identical in all ways except the instruction has no parent, prev, or next.
+MachineInstr *
+MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
+ return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
+ MachineInstr(*this, *Orig);
+}
+
+MachineInstr &MachineFunction::cloneMachineInstrBundle(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
+ const MachineInstr &Orig) {
+ MachineInstr *FirstClone = nullptr;
+ MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
+ while (true) {
+ MachineInstr *Cloned = CloneMachineInstr(&*I);
+ MBB.insert(InsertBefore, Cloned);
+ if (FirstClone == nullptr) {
+ FirstClone = Cloned;
+ } else {
+ Cloned->bundleWithPred();
+ }
+
+ if (!I->isBundledWithSucc())
+ break;
+ ++I;
+ }
+ // Copy over call site info to the cloned instruction if needed. If Orig is in
+ // a bundle, copyCallSiteInfo takes care of finding the call instruction in
+ // the bundle.
+ if (Orig.shouldUpdateCallSiteInfo())
+ copyCallSiteInfo(&Orig, FirstClone);
+ return *FirstClone;
+}
+
+/// Delete the given MachineInstr.
+///
+/// This function also serves as the MachineInstr destructor - the real
+/// ~MachineInstr() destructor must be empty.
+void MachineFunction::deleteMachineInstr(MachineInstr *MI) {
+ // Verify that a call site info is at valid state. This assertion should
+ // be triggered during the implementation of support for the
+ // call site info of a new architecture. If the assertion is triggered,
+ // back trace will tell where to insert a call to updateCallSiteInfo().
+ assert((!MI->isCandidateForCallSiteEntry() ||
+ CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
+ "Call site info was not updated!");
+ // Strip it for parts. The operand array and the MI object itself are
+ // independently recyclable.
+ if (MI->Operands)
+ deallocateOperandArray(MI->CapOperands, MI->Operands);
+ // Don't call ~MachineInstr() which must be trivial anyway because
+ // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
+ // destructors.
+ InstructionRecycler.Deallocate(Allocator, MI);
+}
+
+/// Allocate a new MachineBasicBlock. Use this instead of
+/// `new MachineBasicBlock'.
+MachineBasicBlock *
+MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
+ return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
+ MachineBasicBlock(*this, bb);
+}
+
+/// Delete the given MachineBasicBlock.
+void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) {
+ assert(MBB->getParent() == this && "MBB parent mismatch!");
+ // Clean up any references to MBB in jump tables before deleting it.
+ if (JumpTableInfo)
+ JumpTableInfo->RemoveMBBFromJumpTables(MBB);
+ MBB->~MachineBasicBlock();
+ BasicBlockRecycler.Deallocate(Allocator, MBB);
+}
+
+MachineMemOperand *MachineFunction::getMachineMemOperand(
+ MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
+ Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
+ SyncScope::ID SSID, AtomicOrdering Ordering,
+ AtomicOrdering FailureOrdering) {
+ return new (Allocator)
+ MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
+ SSID, Ordering, FailureOrdering);
+}
+
+MachineMemOperand *MachineFunction::getMachineMemOperand(
+ MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
+ Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
+ SyncScope::ID SSID, AtomicOrdering Ordering,
+ AtomicOrdering FailureOrdering) {
+ return new (Allocator)
+ MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
+ Ordering, FailureOrdering);
+}
+
+MachineMemOperand *MachineFunction::getMachineMemOperand(
+ const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) {
+ return new (Allocator)
+ MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
+ AAMDNodes(), nullptr, MMO->getSyncScopeID(),
+ MMO->getSuccessOrdering(), MMO->getFailureOrdering());
+}
+
+MachineMemOperand *MachineFunction::getMachineMemOperand(
+ const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
+ return new (Allocator)
+ MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
+ AAMDNodes(), nullptr, MMO->getSyncScopeID(),
+ MMO->getSuccessOrdering(), MMO->getFailureOrdering());
+}
+
+MachineMemOperand *
+MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
+ int64_t Offset, LLT Ty) {
+ const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
+
+ // If there is no pointer value, the offset isn't tracked so we need to adjust
+ // the base alignment.
+ Align Alignment = PtrInfo.V.isNull()
+ ? commonAlignment(MMO->getBaseAlign(), Offset)
+ : MMO->getBaseAlign();
+
+ // Do not preserve ranges, since we don't necessarily know what the high bits
+ // are anymore.
+ return new (Allocator) MachineMemOperand(
+ PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
+ MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
+ MMO->getSuccessOrdering(), MMO->getFailureOrdering());
+}
+
+MachineMemOperand *
+MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
+ const AAMDNodes &AAInfo) {
+ MachinePointerInfo MPI = MMO->getValue() ?
+ MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
+ MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
+
+ return new (Allocator) MachineMemOperand(
+ MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
+ MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
+ MMO->getFailureOrdering());
+}
+
+MachineMemOperand *
+MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
+ MachineMemOperand::Flags Flags) {
+ return new (Allocator) MachineMemOperand(
+ MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
+ MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
+ MMO->getSuccessOrdering(), MMO->getFailureOrdering());
+}
+
+MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
+ ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
+ MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) {
+ return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
+ PostInstrSymbol, HeapAllocMarker);
+}
+
+const char *MachineFunction::createExternalSymbolName(StringRef Name) {
+ char *Dest = Allocator.Allocate<char>(Name.size() + 1);
+ llvm::copy(Name, Dest);
+ Dest[Name.size()] = 0;
+ return Dest;
+}
+
+uint32_t *MachineFunction::allocateRegMask() {
+ unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
+ unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
+ uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
+ memset(Mask, 0, Size * sizeof(Mask[0]));
+ return Mask;
+}
+
+ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
+ int* AllocMask = Allocator.Allocate<int>(Mask.size());
+ copy(Mask, AllocMask);
+ return {AllocMask, Mask.size()};
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void MachineFunction::dump() const {
+ print(dbgs());
+}
+#endif
+
+StringRef MachineFunction::getName() const {
+ return getFunction().getName();
+}
+
+void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
+ OS << "# Machine code for function " << getName() << ": ";
+ getProperties().print(OS);
+ OS << '\n';
+
+ // Print Frame Information
+ FrameInfo->print(*this, OS);
+
+ // Print JumpTable Information
+ if (JumpTableInfo)
+ JumpTableInfo->print(OS);
+
+ // Print Constant Pool
+ ConstantPool->print(OS);
+
+ const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
+
+ if (RegInfo && !RegInfo->livein_empty()) {
+ OS << "Function Live Ins: ";
+ for (MachineRegisterInfo::livein_iterator
+ I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
+ OS << printReg(I->first, TRI);
+ if (I->second)
+ OS << " in " << printReg(I->second, TRI);
+ if (std::next(I) != E)
+ OS << ", ";
+ }
+ OS << '\n';
+ }
+
+ ModuleSlotTracker MST(getFunction().getParent());
+ MST.incorporateFunction(getFunction());
+ for (const auto &BB : *this) {
+ OS << '\n';
+ // If we print the whole function, print it at its most verbose level.
+ BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
+ }
+
+ OS << "\n# End machine code for function " << getName() << ".\n\n";
+}
+
+/// True if this function needs frame moves for debug or exceptions.
+bool MachineFunction::needsFrameMoves() const {
+ return getMMI().hasDebugInfo() ||
+ getTarget().Options.ForceDwarfFrameSection ||
+ F.needsUnwindTableEntry();
+}
+
+namespace llvm {
+
+ template<>
+ struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
+ DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
+
+ static std::string getGraphName(const MachineFunction *F) {
+ return ("CFG for '" + F->getName() + "' function").str();
+ }
+
+ std::string getNodeLabel(const MachineBasicBlock *Node,
+ const MachineFunction *Graph) {
+ std::string OutStr;
+ {
+ raw_string_ostream OSS(OutStr);
+
+ if (isSimple()) {
+ OSS << printMBBReference(*Node);
+ if (const BasicBlock *BB = Node->getBasicBlock())
+ OSS << ": " << BB->getName();
+ } else
+ Node->print(OSS);
+ }
+
+ if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
+
+ // Process string output to make it nicer...
+ for (unsigned i = 0; i != OutStr.length(); ++i)
+ if (OutStr[i] == '\n') { // Left justify
+ OutStr[i] = '\\';
+ OutStr.insert(OutStr.begin()+i+1, 'l');
+ }
+ return OutStr;
+ }
+ };
+
+} // end namespace llvm
+
+void MachineFunction::viewCFG() const
+{
+#ifndef NDEBUG
+ ViewGraph(this, "mf" + getName());
+#else
+ errs() << "MachineFunction::viewCFG is only available in debug builds on "
+ << "systems with Graphviz or gv!\n";
+#endif // NDEBUG
+}
+
+void MachineFunction::viewCFGOnly() const
+{
+#ifndef NDEBUG
+ ViewGraph(this, "mf" + getName(), true);
+#else
+ errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
+ << "systems with Graphviz or gv!\n";
+#endif // NDEBUG
+}
+
+/// Add the specified physical register as a live-in value and
+/// create a corresponding virtual register for it.
+Register MachineFunction::addLiveIn(MCRegister PReg,
+ const TargetRegisterClass *RC) {
+ MachineRegisterInfo &MRI = getRegInfo();
+ Register VReg = MRI.getLiveInVirtReg(PReg);
+ if (VReg) {
+ const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
+ (void)VRegRC;
+ // A physical register can be added several times.
+ // Between two calls, the register class of the related virtual register
+ // may have been constrained to match some operation constraints.
+ // In that case, check that the current register class includes the
+ // physical register and is a sub class of the specified RC.
+ assert((VRegRC == RC || (VRegRC->contains(PReg) &&
+ RC->hasSubClassEq(VRegRC))) &&
+ "Register class mismatch!");
+ return VReg;
+ }
+ VReg = MRI.createVirtualRegister(RC);
+ MRI.addLiveIn(PReg, VReg);
+ return VReg;
+}
+
+/// Return the MCSymbol for the specified non-empty jump table.
+/// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
+/// normal 'L' label is returned.
+MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
+ bool isLinkerPrivate) const {
+ const DataLayout &DL = getDataLayout();
+ assert(JumpTableInfo && "No jump tables");
+ assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
+
+ StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
+ : DL.getPrivateGlobalPrefix();
+ SmallString<60> Name;
+ raw_svector_ostream(Name)
+ << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
+ return Ctx.getOrCreateSymbol(Name);
+}
+
+/// Return a function-local symbol to represent the PIC base.
+MCSymbol *MachineFunction::getPICBaseSymbol() const {
+ const DataLayout &DL = getDataLayout();
+ return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
+ Twine(getFunctionNumber()) + "$pb");
+}
+
+/// \name Exception Handling
+/// \{
+
+LandingPadInfo &
+MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
+ unsigned N = LandingPads.size();
+ for (unsigned i = 0; i < N; ++i) {
+ LandingPadInfo &LP = LandingPads[i];
+ if (LP.LandingPadBlock == LandingPad)
+ return LP;
+ }
+
+ LandingPads.push_back(LandingPadInfo(LandingPad));
+ return LandingPads[N];
+}
+
+void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
+ MCSymbol *BeginLabel, MCSymbol *EndLabel) {
+ LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
+ LP.BeginLabels.push_back(BeginLabel);
+ LP.EndLabels.push_back(EndLabel);
+}
+
+MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
+ MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
+ LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
+ LP.LandingPadLabel = LandingPadLabel;
+
+ const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
+ if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
+ if (const auto *PF =
+ dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
+ getMMI().addPersonality(PF);
+
+ if (LPI->isCleanup())
+ addCleanup(LandingPad);
+
+ // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
+ // correct, but we need to do it this way because of how the DWARF EH
+ // emitter processes the clauses.
+ for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
+ Value *Val = LPI->getClause(I - 1);
+ if (LPI->isCatch(I - 1)) {
+ addCatchTypeInfo(LandingPad,
+ dyn_cast<GlobalValue>(Val->stripPointerCasts()));
+ } else {
+ // Add filters in a list.
+ auto *CVal = cast<Constant>(Val);
+ SmallVector<const GlobalValue *, 4> FilterList;
+ for (const Use &U : CVal->operands())
+ FilterList.push_back(cast<GlobalValue>(U->stripPointerCasts()));
+
+ addFilterTypeInfo(LandingPad, FilterList);
+ }
+ }
+
+ } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
+ for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
+ Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
+ addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
+ }
+
+ } else {
+ assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
+ }
+
+ return LandingPadLabel;
+}
+
+void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
+ ArrayRef<const GlobalValue *> TyInfo) {
+ LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
+ for (const GlobalValue *GV : llvm::reverse(TyInfo))
+ LP.TypeIds.push_back(getTypeIDFor(GV));
+}
+
+void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
+ ArrayRef<const GlobalValue *> TyInfo) {
+ LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
+ std::vector<unsigned> IdsInFilter(TyInfo.size());
+ for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
+ IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
+ LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
+}
+
+void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
+ bool TidyIfNoBeginLabels) {
+ for (unsigned i = 0; i != LandingPads.size(); ) {
+ LandingPadInfo &LandingPad = LandingPads[i];
+ if (LandingPad.LandingPadLabel &&
+ !LandingPad.LandingPadLabel->isDefined() &&
+ (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
+ LandingPad.LandingPadLabel = nullptr;
+
+ // Special case: we *should* emit LPs with null LP MBB. This indicates
+ // "nounwind" case.
+ if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
+ LandingPads.erase(LandingPads.begin() + i);
+ continue;
+ }
+
+ if (TidyIfNoBeginLabels) {
+ for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
+ MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
+ MCSymbol *EndLabel = LandingPad.EndLabels[j];
+ if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
+ (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
+ continue;
+
+ LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
+ LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
+ --j;
+ --e;
+ }
+
+ // Remove landing pads with no try-ranges.
+ if (LandingPads[i].BeginLabels.empty()) {
+ LandingPads.erase(LandingPads.begin() + i);
+ continue;
+ }
+ }
+
+ // If there is no landing pad, ensure that the list of typeids is empty.
+ // If the only typeid is a cleanup, this is the same as having no typeids.
+ if (!LandingPad.LandingPadBlock ||
+ (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
+ LandingPad.TypeIds.clear();
+ ++i;
+ }
+}
+
+void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
+ LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
+ LP.TypeIds.push_back(0);
+}
+
+void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
+ const Function *Filter,
+ const BlockAddress *RecoverBA) {
+ LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
+ SEHHandler Handler;
+ Handler.FilterOrFinally = Filter;
+ Handler.RecoverBA = RecoverBA;
+ LP.SEHHandlers.push_back(Handler);
+}
+
+void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
+ const Function *Cleanup) {
+ LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
+ SEHHandler Handler;
+ Handler.FilterOrFinally = Cleanup;
+ Handler.RecoverBA = nullptr;
+ LP.SEHHandlers.push_back(Handler);
+}
+
+void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
+ ArrayRef<unsigned> Sites) {
+ LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
+}
+
+unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
+ for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
+ if (TypeInfos[i] == TI) return i + 1;
+
+ TypeInfos.push_back(TI);
+ return TypeInfos.size();
+}
+
+int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
+ // If the new filter coincides with the tail of an existing filter, then
+ // re-use the existing filter. Folding filters more than this requires
+ // re-ordering filters and/or their elements - probably not worth it.
+ for (unsigned i : FilterEnds) {
+ unsigned j = TyIds.size();
+
+ while (i && j)
+ if (FilterIds[--i] != TyIds[--j])
+ goto try_next;
+
+ if (!j)
+ // The new filter coincides with range [i, end) of the existing filter.
+ return -(1 + i);
+
+try_next:;
+ }
+
+ // Add the new filter.
+ int FilterID = -(1 + FilterIds.size());
+ FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
+ llvm::append_range(FilterIds, TyIds);
+ FilterEnds.push_back(FilterIds.size());
+ FilterIds.push_back(0); // terminator
+ return FilterID;
+}
+
+MachineFunction::CallSiteInfoMap::iterator
+MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
+ assert(MI->isCandidateForCallSiteEntry() &&
+ "Call site info refers only to call (MI) candidates");
+
+ if (!Target.Options.EmitCallSiteInfo)
+ return CallSitesInfo.end();
+ return CallSitesInfo.find(MI);
+}
+
+/// Return the call machine instruction or find a call within bundle.
+static const MachineInstr *getCallInstr(const MachineInstr *MI) {
+ if (!MI->isBundle())
+ return MI;
+
+ for (auto &BMI : make_range(getBundleStart(MI->getIterator()),
+ getBundleEnd(MI->getIterator())))
+ if (BMI.isCandidateForCallSiteEntry())
+ return &BMI;
+
+ llvm_unreachable("Unexpected bundle without a call site candidate");
+}
+
+void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
+ assert(MI->shouldUpdateCallSiteInfo() &&
+ "Call site info refers only to call (MI) candidates or "
+ "candidates inside bundles");
+
+ const MachineInstr *CallMI = getCallInstr(MI);
+ CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
+ if (CSIt == CallSitesInfo.end())
+ return;
+ CallSitesInfo.erase(CSIt);
+}
+
+void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
+ const MachineInstr *New) {
+ assert(Old->shouldUpdateCallSiteInfo() &&
+ "Call site info refers only to call (MI) candidates or "
+ "candidates inside bundles");
+
+ if (!New->isCandidateForCallSiteEntry())
+ return eraseCallSiteInfo(Old);
+
+ const MachineInstr *OldCallMI = getCallInstr(Old);
+ CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
+ if (CSIt == CallSitesInfo.end())
+ return;
+
+ CallSiteInfo CSInfo = CSIt->second;
+ CallSitesInfo[New] = CSInfo;
+}
+
+void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
+ const MachineInstr *New) {
+ assert(Old->shouldUpdateCallSiteInfo() &&
+ "Call site info refers only to call (MI) candidates or "
+ "candidates inside bundles");
+
+ if (!New->isCandidateForCallSiteEntry())
+ return eraseCallSiteInfo(Old);
+
+ const MachineInstr *OldCallMI = getCallInstr(Old);
+ CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
+ if (CSIt == CallSitesInfo.end())
+ return;
+
+ CallSiteInfo CSInfo = std::move(CSIt->second);
+ CallSitesInfo.erase(CSIt);
+ CallSitesInfo[New] = CSInfo;
+}
+
+void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
+ DebugInstrNumberingCount = Num;
+}
+
+void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
+ DebugInstrOperandPair B,
+ unsigned Subreg) {
+ // Catch any accidental self-loops.
+ assert(A.first != B.first);
+ // Don't allow any substitutions _from_ the memory operand number.
+ assert(A.second != DebugOperandMemNumber);
+
+ DebugValueSubstitutions.push_back({A, B, Subreg});
+}
+
+void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
+ MachineInstr &New,
+ unsigned MaxOperand) {
+ // If the Old instruction wasn't tracked at all, there is no work to do.
+ unsigned OldInstrNum = Old.peekDebugInstrNum();
+ if (!OldInstrNum)
+ return;
+
+ // Iterate over all operands looking for defs to create substitutions for.
+ // Avoid creating new instr numbers unless we create a new substitution.
+ // While this has no functional effect, it risks confusing someone reading
+ // MIR output.
+ // Examine all the operands, or the first N specified by the caller.
+ MaxOperand = std::min(MaxOperand, Old.getNumOperands());
+ for (unsigned int I = 0; I < MaxOperand; ++I) {
+ const auto &OldMO = Old.getOperand(I);
+ auto &NewMO = New.getOperand(I);
+ (void)NewMO;
+
+ if (!OldMO.isReg() || !OldMO.isDef())
+ continue;
+ assert(NewMO.isDef());
+
+ unsigned NewInstrNum = New.getDebugInstrNum();
+ makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
+ std::make_pair(NewInstrNum, I));
+ }
+}
+
+auto MachineFunction::salvageCopySSA(MachineInstr &MI)
+ -> DebugInstrOperandPair {
+ MachineRegisterInfo &MRI = getRegInfo();
+ const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
+ const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
+
+ // Chase the value read by a copy-like instruction back to the instruction
+ // that ultimately _defines_ that value. This may pass:
+ // * Through multiple intermediate copies, including subregister moves /
+ // copies,
+ // * Copies from physical registers that must then be traced back to the
+ // defining instruction,
+ // * Or, physical registers may be live-in to (only) the entry block, which
+ // requires a DBG_PHI to be created.
+ // We can pursue this problem in that order: trace back through copies,
+ // optionally through a physical register, to a defining instruction. We
+ // should never move from physreg to vreg. As we're still in SSA form, no need
+ // to worry about partial definitions of registers.
+
+ // Helper lambda to interpret a copy-like instruction. Takes instruction,
+ // returns the register read and any subregister identifying which part is
+ // read.
+ auto GetRegAndSubreg =
+ [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
+ Register NewReg, OldReg;
+ unsigned SubReg;
+ if (Cpy.isCopy()) {
+ OldReg = Cpy.getOperand(0).getReg();
+ NewReg = Cpy.getOperand(1).getReg();
+ SubReg = Cpy.getOperand(1).getSubReg();
+ } else if (Cpy.isSubregToReg()) {
+ OldReg = Cpy.getOperand(0).getReg();
+ NewReg = Cpy.getOperand(2).getReg();
+ SubReg = Cpy.getOperand(3).getImm();
+ } else {
+ auto CopyDetails = *TII.isCopyInstr(Cpy);
+ const MachineOperand &Src = *CopyDetails.Source;
+ const MachineOperand &Dest = *CopyDetails.Destination;
+ OldReg = Dest.getReg();
+ NewReg = Src.getReg();
+ SubReg = Src.getSubReg();
+ }
+
+ return {NewReg, SubReg};
+ };
+
+ // First seek either the defining instruction, or a copy from a physreg.
+ // During search, the current state is the current copy instruction, and which
+ // register we've read. Accumulate qualifying subregisters into SubregsSeen;
+ // deal with those later.
+ auto State = GetRegAndSubreg(MI);
+ auto CurInst = MI.getIterator();
+ SmallVector<unsigned, 4> SubregsSeen;
+ while (true) {
+ // If we've found a copy from a physreg, first portion of search is over.
+ if (!State.first.isVirtual())
+ break;
+
+ // Record any subregister qualifier.
+ if (State.second)
+ SubregsSeen.push_back(State.second);
+
+ assert(MRI.hasOneDef(State.first));
+ MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
+ CurInst = Inst.getIterator();
+
+ // Any non-copy instruction is the defining instruction we're seeking.
+ if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
+ break;
+ State = GetRegAndSubreg(Inst);
+ };
+
+ // Helper lambda to apply additional subregister substitutions to a known
+ // instruction/operand pair. Adds new (fake) substitutions so that we can
+ // record the subregister. FIXME: this isn't very space efficient if multiple
+ // values are tracked back through the same copies; cache something later.
+ auto ApplySubregisters =
+ [&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
+ for (unsigned Subreg : reverse(SubregsSeen)) {
+ // Fetch a new instruction number, not attached to an actual instruction.
+ unsigned NewInstrNumber = getNewDebugInstrNum();
+ // Add a substitution from the "new" number to the known one, with a
+ // qualifying subreg.
+ makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
+ // Return the new number; to find the underlying value, consumers need to
+ // deal with the qualifying subreg.
+ P = {NewInstrNumber, 0};
+ }
+ return P;
+ };
+
+ // If we managed to find the defining instruction after COPYs, return an
+ // instruction / operand pair after adding subregister qualifiers.
+ if (State.first.isVirtual()) {
+ // Virtual register def -- we can just look up where this happens.
+ MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
+ for (auto &MO : Inst->operands()) {
+ if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first)
+ continue;
+ return ApplySubregisters(
+ {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)});
+ }
+
+ llvm_unreachable("Vreg def with no corresponding operand?");
+ }
+
+ // Our search ended in a copy from a physreg: walk back up the function
+ // looking for whatever defines the physreg.
+ assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
+ State = GetRegAndSubreg(*CurInst);
+ Register RegToSeek = State.first;
+
+ auto RMII = CurInst->getReverseIterator();
+ auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
+ for (auto &ToExamine : PrevInstrs) {
+ for (auto &MO : ToExamine.operands()) {
+ // Test for operand that defines something aliasing RegToSeek.
+ if (!MO.isReg() || !MO.isDef() ||
+ !TRI.regsOverlap(RegToSeek, MO.getReg()))
+ continue;
+
+ return ApplySubregisters(
+ {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)});
+ }
+ }
+
+ MachineBasicBlock &InsertBB = *CurInst->getParent();
+
+ // We reached the start of the block before finding a defining instruction.
+ // It could be from a constant register, otherwise it must be an argument.
+ if (TRI.isConstantPhysReg(State.first)) {
+ // We can produce a DBG_PHI that identifies the constant physreg. Doesn't
+ // matter where we put it, as it's constant valued.
+ assert(CurInst->isCopy());
+ } else if (State.first == TRI.getFrameRegister(*this)) {
+ // LLVM IR is allowed to read the framepointer by calling a
+ // llvm.frameaddress.* intrinsic. We can support this by emitting a
+ // DBG_PHI $fp. This isn't ideal, because it extends the behaviours /
+ // position that DBG_PHIs appear at, limiting what can be done later.
+ // TODO: see if there's a better way of expressing these variable
+ // locations.
+ ;
+ } else {
+ // Assert that this is the entry block, or an EH pad. If it isn't, then
+ // there is some code construct we don't recognise that deals with physregs
+ // across blocks.
+ assert(!State.first.isVirtual());
+ assert(&*InsertBB.getParent()->begin() == &InsertBB || InsertBB.isEHPad());
+ }
+
+ // Create DBG_PHI for specified physreg.
+ auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
+ TII.get(TargetOpcode::DBG_PHI));
+ Builder.addReg(State.first);
+ unsigned NewNum = getNewDebugInstrNum();
+ Builder.addImm(NewNum);
+ return ApplySubregisters({NewNum, 0u});
+}
+
+void MachineFunction::finalizeDebugInstrRefs() {
+ auto *TII = getSubtarget().getInstrInfo();
+
+ auto MakeUndefDbgValue = [&](MachineInstr &MI) {
+ const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE);
+ MI.setDesc(RefII);
+ MI.getOperand(0).setReg(0);
+ MI.getOperand(1).ChangeToRegister(0, false);
+ };
+
+ for (auto &MBB : *this) {
+ for (auto &MI : MBB) {
+ if (!MI.isDebugRef() || !MI.getOperand(0).isReg())
+ continue;
+
+ Register Reg = MI.getOperand(0).getReg();
+
+ // Some vregs can be deleted as redundant in the meantime. Mark those
+ // as DBG_VALUE $noreg. Additionally, some normal instructions are
+ // quickly deleted, leaving dangling references to vregs with no def.
+ if (Reg == 0 || !RegInfo->hasOneDef(Reg)) {
+ MakeUndefDbgValue(MI);
+ continue;
+ }
+
+ assert(Reg.isVirtual());
+ MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
+
+ // If we've found a copy-like instruction, follow it back to the
+ // instruction that defines the source value, see salvageCopySSA docs
+ // for why this is important.
+ if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
+ auto Result = salvageCopySSA(DefMI);
+ MI.getOperand(0).ChangeToImmediate(Result.first);
+ MI.getOperand(1).setImm(Result.second);
+ } else {
+ // Otherwise, identify the operand number that the VReg refers to.
+ unsigned OperandIdx = 0;
+ for (const auto &MO : DefMI.operands()) {
+ if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
+ break;
+ ++OperandIdx;
+ }
+ assert(OperandIdx < DefMI.getNumOperands());
+
+ // Morph this instr ref to point at the given instruction and operand.
+ unsigned ID = DefMI.getDebugInstrNum();
+ MI.getOperand(0).ChangeToImmediate(ID);
+ MI.getOperand(1).setImm(OperandIdx);
+ }
+ }
+ }
+}
+
+bool MachineFunction::useDebugInstrRef() const {
+ // Disable instr-ref at -O0: it's very slow (in compile time). We can still
+ // have optimized code inlined into this unoptimized code, however with
+ // fewer and less aggressive optimizations happening, coverage and accuracy
+ // should not suffer.
+ if (getTarget().getOptLevel() == CodeGenOpt::None)
+ return false;
+
+ // Don't use instr-ref if this function is marked optnone.
+ if (F.hasFnAttribute(Attribute::OptimizeNone))
+ return false;
+
+ if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
+ return true;
+
+ return false;
+}
+
+// Use one million as a high / reserved number.
+const unsigned MachineFunction::DebugOperandMemNumber = 1000000;
+
+/// \}
+
+//===----------------------------------------------------------------------===//
+// MachineJumpTableInfo implementation
+//===----------------------------------------------------------------------===//
+
+/// Return the size of each entry in the jump table.
+unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
+ // The size of a jump table entry is 4 bytes unless the entry is just the
+ // address of a block, in which case it is the pointer size.
+ switch (getEntryKind()) {
+ case MachineJumpTableInfo::EK_BlockAddress:
+ return TD.getPointerSize();
+ case MachineJumpTableInfo::EK_GPRel64BlockAddress:
+ return 8;
+ case MachineJumpTableInfo::EK_GPRel32BlockAddress:
+ case MachineJumpTableInfo::EK_LabelDifference32:
+ case MachineJumpTableInfo::EK_Custom32:
+ return 4;
+ case MachineJumpTableInfo::EK_Inline:
+ return 0;
+ }
+ llvm_unreachable("Unknown jump table encoding!");
+}
+
+/// Return the alignment of each entry in the jump table.
+unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
+ // The alignment of a jump table entry is the alignment of int32 unless the
+ // entry is just the address of a block, in which case it is the pointer
+ // alignment.
+ switch (getEntryKind()) {
+ case MachineJumpTableInfo::EK_BlockAddress:
+ return TD.getPointerABIAlignment(0).value();
+ case MachineJumpTableInfo::EK_GPRel64BlockAddress:
+ return TD.getABIIntegerTypeAlignment(64).value();
+ case MachineJumpTableInfo::EK_GPRel32BlockAddress:
+ case MachineJumpTableInfo::EK_LabelDifference32:
+ case MachineJumpTableInfo::EK_Custom32:
+ return TD.getABIIntegerTypeAlignment(32).value();
+ case MachineJumpTableInfo::EK_Inline:
+ return 1;
+ }
+ llvm_unreachable("Unknown jump table encoding!");
+}
+
+/// Create a new jump table entry in the jump table info.
+unsigned MachineJumpTableInfo::createJumpTableIndex(
+ const std::vector<MachineBasicBlock*> &DestBBs) {
+ assert(!DestBBs.empty() && "Cannot create an empty jump table!");
+ JumpTables.push_back(MachineJumpTableEntry(DestBBs));
+ return JumpTables.size()-1;
+}
+
+/// If Old is the target of any jump tables, update the jump tables to branch
+/// to New instead.
+bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
+ MachineBasicBlock *New) {
+ assert(Old != New && "Not making a change?");
+ bool MadeChange = false;
+ for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
+ ReplaceMBBInJumpTable(i, Old, New);
+ return MadeChange;
+}
+
+/// If MBB is present in any jump tables, remove it.
+bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
+ bool MadeChange = false;
+ for (MachineJumpTableEntry &JTE : JumpTables) {
+ auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
+ MadeChange |= (removeBeginItr != JTE.MBBs.end());
+ JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
+ }
+ return MadeChange;
+}
+
+/// If Old is a target of the jump tables, update the jump table to branch to
+/// New instead.
+bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
+ MachineBasicBlock *Old,
+ MachineBasicBlock *New) {
+ assert(Old != New && "Not making a change?");
+ bool MadeChange = false;
+ MachineJumpTableEntry &JTE = JumpTables[Idx];
+ for (MachineBasicBlock *&MBB : JTE.MBBs)
+ if (MBB == Old) {
+ MBB = New;
+ MadeChange = true;
+ }
+ return MadeChange;
+}
+
+void MachineJumpTableInfo::print(raw_ostream &OS) const {
+ if (JumpTables.empty()) return;
+
+ OS << "Jump Tables:\n";
+
+ for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
+ OS << printJumpTableEntryReference(i) << ':';
+ for (const MachineBasicBlock *MBB : JumpTables[i].MBBs)
+ OS << ' ' << printMBBReference(*MBB);
+ if (i != e)
+ OS << '\n';
+ }
+
+ OS << '\n';
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
+#endif
+
+Printable llvm::printJumpTableEntryReference(unsigned Idx) {
+ return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
+}
+
+//===----------------------------------------------------------------------===//
+// MachineConstantPool implementation
+//===----------------------------------------------------------------------===//
+
+void MachineConstantPoolValue::anchor() {}
+
+unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
+ return DL.getTypeAllocSize(Ty);
+}
+
+unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
+ if (isMachineConstantPoolEntry())
+ return Val.MachineCPVal->getSizeInBytes(DL);
+ return DL.getTypeAllocSize(Val.ConstVal->getType());
+}
+
+bool MachineConstantPoolEntry::needsRelocation() const {
+ if (isMachineConstantPoolEntry())
+ return true;
+ return Val.ConstVal->needsDynamicRelocation();
+}
+
+SectionKind
+MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
+ if (needsRelocation())
+ return SectionKind::getReadOnlyWithRel();
+ switch (getSizeInBytes(*DL)) {
+ case 4:
+ return SectionKind::getMergeableConst4();
+ case 8:
+ return SectionKind::getMergeableConst8();
+ case 16:
+ return SectionKind::getMergeableConst16();
+ case 32:
+ return SectionKind::getMergeableConst32();
+ default:
+ return SectionKind::getReadOnly();
+ }
+}
+
+MachineConstantPool::~MachineConstantPool() {
+ // A constant may be a member of both Constants and MachineCPVsSharingEntries,
+ // so keep track of which we've deleted to avoid double deletions.
+ DenseSet<MachineConstantPoolValue*> Deleted;
+ for (const MachineConstantPoolEntry &C : Constants)
+ if (C.isMachineConstantPoolEntry()) {
+ Deleted.insert(C.Val.MachineCPVal);
+ delete C.Val.MachineCPVal;
+ }
+ for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
+ if (Deleted.count(CPV) == 0)
+ delete CPV;
+ }
+}
+
+/// Test whether the given two constants can be allocated the same constant pool
+/// entry.
+static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
+ const DataLayout &DL) {
+ // Handle the trivial case quickly.
+ if (A == B) return true;
+
+ // If they have the same type but weren't the same constant, quickly
+ // reject them.
+ if (A->getType() == B->getType()) return false;
+
+ // We can't handle structs or arrays.
+ if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
+ isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
+ return false;
+
+ // For now, only support constants with the same size.
+ uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
+ if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
+ return false;
+
+ Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
+
+ // Try constant folding a bitcast of both instructions to an integer. If we
+ // get two identical ConstantInt's, then we are good to share them. We use
+ // the constant folding APIs to do this so that we get the benefit of
+ // DataLayout.
+ if (isa<PointerType>(A->getType()))
+ A = ConstantFoldCastOperand(Instruction::PtrToInt,
+ const_cast<Constant *>(A), IntTy, DL);
+ else if (A->getType() != IntTy)
+ A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
+ IntTy, DL);
+ if (isa<PointerType>(B->getType()))
+ B = ConstantFoldCastOperand(Instruction::PtrToInt,
+ const_cast<Constant *>(B), IntTy, DL);
+ else if (B->getType() != IntTy)
+ B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
+ IntTy, DL);
+
+ return A == B;
+}
+
+/// Create a new entry in the constant pool or return an existing one.
+/// User must specify the log2 of the minimum required alignment for the object.
+unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
+ Align Alignment) {
+ if (Alignment > PoolAlignment) PoolAlignment = Alignment;
+
+ // Check to see if we already have this constant.
+ //
+ // FIXME, this could be made much more efficient for large constant pools.
+ for (unsigned i = 0, e = Constants.size(); i != e; ++i)
+ if (!Constants[i].isMachineConstantPoolEntry() &&
+ CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
+ if (Constants[i].getAlign() < Alignment)
+ Constants[i].Alignment = Alignment;
+ return i;
+ }
+
+ Constants.push_back(MachineConstantPoolEntry(C, Alignment));
+ return Constants.size()-1;
+}
+
+unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
+ Align Alignment) {
+ if (Alignment > PoolAlignment) PoolAlignment = Alignment;
+
+ // Check to see if we already have this constant.
+ //
+ // FIXME, this could be made much more efficient for large constant pools.
+ int Idx = V->getExistingMachineCPValue(this, Alignment);
+ if (Idx != -1) {
+ MachineCPVsSharingEntries.insert(V);
+ return (unsigned)Idx;
+ }
+
+ Constants.push_back(MachineConstantPoolEntry(V, Alignment));
+ return Constants.size()-1;
+}
+
+void MachineConstantPool::print(raw_ostream &OS) const {
+ if (Constants.empty()) return;
+
+ OS << "Constant Pool:\n";
+ for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
+ OS << " cp#" << i << ": ";
+ if (Constants[i].isMachineConstantPoolEntry())
+ Constants[i].Val.MachineCPVal->print(OS);
+ else
+ Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
+ OS << ", align=" << Constants[i].getAlign().value();
+ OS << "\n";
+ }
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
+#endif