diff options
author | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
---|---|---|
committer | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
commit | 6ffe9e53658409f212834330e13564e4952558f6 (patch) | |
tree | 85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm14/lib/CodeGen/MachineFunction.cpp | |
parent | 726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff) | |
download | ydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz |
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm14/lib/CodeGen/MachineFunction.cpp')
-rw-r--r-- | contrib/libs/llvm14/lib/CodeGen/MachineFunction.cpp | 1517 |
1 files changed, 1517 insertions, 0 deletions
diff --git a/contrib/libs/llvm14/lib/CodeGen/MachineFunction.cpp b/contrib/libs/llvm14/lib/CodeGen/MachineFunction.cpp new file mode 100644 index 0000000000..02f58ca5ee --- /dev/null +++ b/contrib/libs/llvm14/lib/CodeGen/MachineFunction.cpp @@ -0,0 +1,1517 @@ +//===- MachineFunction.cpp ------------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Collect native machine code information for a function. This allows +// target-specific information about the generated code to be stored with each +// function. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Twine.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/EHPersonalities.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/CodeGen/TargetFrameLowering.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/CodeGen/WasmEHFuncInfo.h" +#include "llvm/CodeGen/WinEHFuncInfo.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/ModuleSlotTracker.h" +#include "llvm/IR/Value.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/MC/SectionKind.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/DOTGraphTraits.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/GraphWriter.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <iterator> +#include <string> +#include <type_traits> +#include <utility> +#include <vector> + +#include "LiveDebugValues/LiveDebugValues.h" + +using namespace llvm; + +#define DEBUG_TYPE "codegen" + +static cl::opt<unsigned> AlignAllFunctions( + "align-all-functions", + cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " + "means align on 16B boundaries)."), + cl::init(0), cl::Hidden); + +static const char *getPropertyName(MachineFunctionProperties::Property Prop) { + using P = MachineFunctionProperties::Property; + + // clang-format off + switch(Prop) { + case P::FailedISel: return "FailedISel"; + case P::IsSSA: return "IsSSA"; + case P::Legalized: return "Legalized"; + case P::NoPHIs: return "NoPHIs"; + case P::NoVRegs: return "NoVRegs"; + case P::RegBankSelected: return "RegBankSelected"; + case P::Selected: return "Selected"; + case P::TracksLiveness: return "TracksLiveness"; + case P::TiedOpsRewritten: return "TiedOpsRewritten"; + case P::FailsVerification: return "FailsVerification"; + case P::TracksDebugUserValues: return "TracksDebugUserValues"; + } + // clang-format on + llvm_unreachable("Invalid machine function property"); +} + +// Pin the vtable to this file. +void MachineFunction::Delegate::anchor() {} + +void MachineFunctionProperties::print(raw_ostream &OS) const { + const char *Separator = ""; + for (BitVector::size_type I = 0; I < Properties.size(); ++I) { + if (!Properties[I]) + continue; + OS << Separator << getPropertyName(static_cast<Property>(I)); + Separator = ", "; + } +} + +//===----------------------------------------------------------------------===// +// MachineFunction implementation +//===----------------------------------------------------------------------===// + +// Out-of-line virtual method. +MachineFunctionInfo::~MachineFunctionInfo() = default; + +void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { + MBB->getParent()->deleteMachineBasicBlock(MBB); +} + +static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, + const Function &F) { + if (auto MA = F.getFnStackAlign()) + return MA->value(); + return STI->getFrameLowering()->getStackAlign().value(); +} + +MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, + const TargetSubtargetInfo &STI, + unsigned FunctionNum, MachineModuleInfo &mmi) + : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { + FunctionNumber = FunctionNum; + init(); +} + +void MachineFunction::handleInsertion(MachineInstr &MI) { + if (TheDelegate) + TheDelegate->MF_HandleInsertion(MI); +} + +void MachineFunction::handleRemoval(MachineInstr &MI) { + if (TheDelegate) + TheDelegate->MF_HandleRemoval(MI); +} + +void MachineFunction::init() { + // Assume the function starts in SSA form with correct liveness. + Properties.set(MachineFunctionProperties::Property::IsSSA); + Properties.set(MachineFunctionProperties::Property::TracksLiveness); + if (STI->getRegisterInfo()) + RegInfo = new (Allocator) MachineRegisterInfo(this); + else + RegInfo = nullptr; + + MFInfo = nullptr; + // We can realign the stack if the target supports it and the user hasn't + // explicitly asked us not to. + bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && + !F.hasFnAttribute("no-realign-stack"); + FrameInfo = new (Allocator) MachineFrameInfo( + getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, + /*ForcedRealign=*/CanRealignSP && + F.hasFnAttribute(Attribute::StackAlignment)); + + if (F.hasFnAttribute(Attribute::StackAlignment)) + FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); + + ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); + Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); + + // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. + // FIXME: Use Function::hasOptSize(). + if (!F.hasFnAttribute(Attribute::OptimizeForSize)) + Alignment = std::max(Alignment, + STI->getTargetLowering()->getPrefFunctionAlignment()); + + if (AlignAllFunctions) + Alignment = Align(1ULL << AlignAllFunctions); + + JumpTableInfo = nullptr; + + if (isFuncletEHPersonality(classifyEHPersonality( + F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { + WinEHInfo = new (Allocator) WinEHFuncInfo(); + } + + if (isScopedEHPersonality(classifyEHPersonality( + F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { + WasmEHInfo = new (Allocator) WasmEHFuncInfo(); + } + + assert(Target.isCompatibleDataLayout(getDataLayout()) && + "Can't create a MachineFunction using a Module with a " + "Target-incompatible DataLayout attached\n"); + + PSVManager = + std::make_unique<PseudoSourceValueManager>(*(getSubtarget(). + getInstrInfo())); +} + +MachineFunction::~MachineFunction() { + clear(); +} + +void MachineFunction::clear() { + Properties.reset(); + // Don't call destructors on MachineInstr and MachineOperand. All of their + // memory comes from the BumpPtrAllocator which is about to be purged. + // + // Do call MachineBasicBlock destructors, it contains std::vectors. + for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) + I->Insts.clearAndLeakNodesUnsafely(); + MBBNumbering.clear(); + + InstructionRecycler.clear(Allocator); + OperandRecycler.clear(Allocator); + BasicBlockRecycler.clear(Allocator); + CodeViewAnnotations.clear(); + VariableDbgInfos.clear(); + if (RegInfo) { + RegInfo->~MachineRegisterInfo(); + Allocator.Deallocate(RegInfo); + } + if (MFInfo) { + MFInfo->~MachineFunctionInfo(); + Allocator.Deallocate(MFInfo); + } + + FrameInfo->~MachineFrameInfo(); + Allocator.Deallocate(FrameInfo); + + ConstantPool->~MachineConstantPool(); + Allocator.Deallocate(ConstantPool); + + if (JumpTableInfo) { + JumpTableInfo->~MachineJumpTableInfo(); + Allocator.Deallocate(JumpTableInfo); + } + + if (WinEHInfo) { + WinEHInfo->~WinEHFuncInfo(); + Allocator.Deallocate(WinEHInfo); + } + + if (WasmEHInfo) { + WasmEHInfo->~WasmEHFuncInfo(); + Allocator.Deallocate(WasmEHInfo); + } +} + +const DataLayout &MachineFunction::getDataLayout() const { + return F.getParent()->getDataLayout(); +} + +/// Get the JumpTableInfo for this function. +/// If it does not already exist, allocate one. +MachineJumpTableInfo *MachineFunction:: +getOrCreateJumpTableInfo(unsigned EntryKind) { + if (JumpTableInfo) return JumpTableInfo; + + JumpTableInfo = new (Allocator) + MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); + return JumpTableInfo; +} + +DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { + return F.getDenormalMode(FPType); +} + +/// Should we be emitting segmented stack stuff for the function +bool MachineFunction::shouldSplitStack() const { + return getFunction().hasFnAttribute("split-stack"); +} + +LLVM_NODISCARD unsigned +MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { + FrameInstructions.push_back(Inst); + return FrameInstructions.size() - 1; +} + +/// This discards all of the MachineBasicBlock numbers and recomputes them. +/// This guarantees that the MBB numbers are sequential, dense, and match the +/// ordering of the blocks within the function. If a specific MachineBasicBlock +/// is specified, only that block and those after it are renumbered. +void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { + if (empty()) { MBBNumbering.clear(); return; } + MachineFunction::iterator MBBI, E = end(); + if (MBB == nullptr) + MBBI = begin(); + else + MBBI = MBB->getIterator(); + + // Figure out the block number this should have. + unsigned BlockNo = 0; + if (MBBI != begin()) + BlockNo = std::prev(MBBI)->getNumber() + 1; + + for (; MBBI != E; ++MBBI, ++BlockNo) { + if (MBBI->getNumber() != (int)BlockNo) { + // Remove use of the old number. + if (MBBI->getNumber() != -1) { + assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && + "MBB number mismatch!"); + MBBNumbering[MBBI->getNumber()] = nullptr; + } + + // If BlockNo is already taken, set that block's number to -1. + if (MBBNumbering[BlockNo]) + MBBNumbering[BlockNo]->setNumber(-1); + + MBBNumbering[BlockNo] = &*MBBI; + MBBI->setNumber(BlockNo); + } + } + + // Okay, all the blocks are renumbered. If we have compactified the block + // numbering, shrink MBBNumbering now. + assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); + MBBNumbering.resize(BlockNo); +} + +/// This method iterates over the basic blocks and assigns their IsBeginSection +/// and IsEndSection fields. This must be called after MBB layout is finalized +/// and the SectionID's are assigned to MBBs. +void MachineFunction::assignBeginEndSections() { + front().setIsBeginSection(); + auto CurrentSectionID = front().getSectionID(); + for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { + if (MBBI->getSectionID() == CurrentSectionID) + continue; + MBBI->setIsBeginSection(); + std::prev(MBBI)->setIsEndSection(); + CurrentSectionID = MBBI->getSectionID(); + } + back().setIsEndSection(); +} + +/// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. +MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, + DebugLoc DL, + bool NoImplicit) { + return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) + MachineInstr(*this, MCID, std::move(DL), NoImplicit); +} + +/// Create a new MachineInstr which is a copy of the 'Orig' instruction, +/// identical in all ways except the instruction has no parent, prev, or next. +MachineInstr * +MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { + return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) + MachineInstr(*this, *Orig); +} + +MachineInstr &MachineFunction::cloneMachineInstrBundle( + MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, + const MachineInstr &Orig) { + MachineInstr *FirstClone = nullptr; + MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); + while (true) { + MachineInstr *Cloned = CloneMachineInstr(&*I); + MBB.insert(InsertBefore, Cloned); + if (FirstClone == nullptr) { + FirstClone = Cloned; + } else { + Cloned->bundleWithPred(); + } + + if (!I->isBundledWithSucc()) + break; + ++I; + } + // Copy over call site info to the cloned instruction if needed. If Orig is in + // a bundle, copyCallSiteInfo takes care of finding the call instruction in + // the bundle. + if (Orig.shouldUpdateCallSiteInfo()) + copyCallSiteInfo(&Orig, FirstClone); + return *FirstClone; +} + +/// Delete the given MachineInstr. +/// +/// This function also serves as the MachineInstr destructor - the real +/// ~MachineInstr() destructor must be empty. +void MachineFunction::deleteMachineInstr(MachineInstr *MI) { + // Verify that a call site info is at valid state. This assertion should + // be triggered during the implementation of support for the + // call site info of a new architecture. If the assertion is triggered, + // back trace will tell where to insert a call to updateCallSiteInfo(). + assert((!MI->isCandidateForCallSiteEntry() || + CallSitesInfo.find(MI) == CallSitesInfo.end()) && + "Call site info was not updated!"); + // Strip it for parts. The operand array and the MI object itself are + // independently recyclable. + if (MI->Operands) + deallocateOperandArray(MI->CapOperands, MI->Operands); + // Don't call ~MachineInstr() which must be trivial anyway because + // ~MachineFunction drops whole lists of MachineInstrs wihout calling their + // destructors. + InstructionRecycler.Deallocate(Allocator, MI); +} + +/// Allocate a new MachineBasicBlock. Use this instead of +/// `new MachineBasicBlock'. +MachineBasicBlock * +MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { + return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) + MachineBasicBlock(*this, bb); +} + +/// Delete the given MachineBasicBlock. +void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) { + assert(MBB->getParent() == this && "MBB parent mismatch!"); + // Clean up any references to MBB in jump tables before deleting it. + if (JumpTableInfo) + JumpTableInfo->RemoveMBBFromJumpTables(MBB); + MBB->~MachineBasicBlock(); + BasicBlockRecycler.Deallocate(Allocator, MBB); +} + +MachineMemOperand *MachineFunction::getMachineMemOperand( + MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, + Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, + SyncScope::ID SSID, AtomicOrdering Ordering, + AtomicOrdering FailureOrdering) { + return new (Allocator) + MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, + SSID, Ordering, FailureOrdering); +} + +MachineMemOperand *MachineFunction::getMachineMemOperand( + MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, + Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, + SyncScope::ID SSID, AtomicOrdering Ordering, + AtomicOrdering FailureOrdering) { + return new (Allocator) + MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, + Ordering, FailureOrdering); +} + +MachineMemOperand *MachineFunction::getMachineMemOperand( + const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) { + return new (Allocator) + MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), + AAMDNodes(), nullptr, MMO->getSyncScopeID(), + MMO->getSuccessOrdering(), MMO->getFailureOrdering()); +} + +MachineMemOperand *MachineFunction::getMachineMemOperand( + const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { + return new (Allocator) + MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), + AAMDNodes(), nullptr, MMO->getSyncScopeID(), + MMO->getSuccessOrdering(), MMO->getFailureOrdering()); +} + +MachineMemOperand * +MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, + int64_t Offset, LLT Ty) { + const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); + + // If there is no pointer value, the offset isn't tracked so we need to adjust + // the base alignment. + Align Alignment = PtrInfo.V.isNull() + ? commonAlignment(MMO->getBaseAlign(), Offset) + : MMO->getBaseAlign(); + + // Do not preserve ranges, since we don't necessarily know what the high bits + // are anymore. + return new (Allocator) MachineMemOperand( + PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, + MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), + MMO->getSuccessOrdering(), MMO->getFailureOrdering()); +} + +MachineMemOperand * +MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, + const AAMDNodes &AAInfo) { + MachinePointerInfo MPI = MMO->getValue() ? + MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : + MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); + + return new (Allocator) MachineMemOperand( + MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, + MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), + MMO->getFailureOrdering()); +} + +MachineMemOperand * +MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, + MachineMemOperand::Flags Flags) { + return new (Allocator) MachineMemOperand( + MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), + MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), + MMO->getSuccessOrdering(), MMO->getFailureOrdering()); +} + +MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( + ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, + MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) { + return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, + PostInstrSymbol, HeapAllocMarker); +} + +const char *MachineFunction::createExternalSymbolName(StringRef Name) { + char *Dest = Allocator.Allocate<char>(Name.size() + 1); + llvm::copy(Name, Dest); + Dest[Name.size()] = 0; + return Dest; +} + +uint32_t *MachineFunction::allocateRegMask() { + unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); + unsigned Size = MachineOperand::getRegMaskSize(NumRegs); + uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); + memset(Mask, 0, Size * sizeof(Mask[0])); + return Mask; +} + +ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { + int* AllocMask = Allocator.Allocate<int>(Mask.size()); + copy(Mask, AllocMask); + return {AllocMask, Mask.size()}; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void MachineFunction::dump() const { + print(dbgs()); +} +#endif + +StringRef MachineFunction::getName() const { + return getFunction().getName(); +} + +void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { + OS << "# Machine code for function " << getName() << ": "; + getProperties().print(OS); + OS << '\n'; + + // Print Frame Information + FrameInfo->print(*this, OS); + + // Print JumpTable Information + if (JumpTableInfo) + JumpTableInfo->print(OS); + + // Print Constant Pool + ConstantPool->print(OS); + + const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); + + if (RegInfo && !RegInfo->livein_empty()) { + OS << "Function Live Ins: "; + for (MachineRegisterInfo::livein_iterator + I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { + OS << printReg(I->first, TRI); + if (I->second) + OS << " in " << printReg(I->second, TRI); + if (std::next(I) != E) + OS << ", "; + } + OS << '\n'; + } + + ModuleSlotTracker MST(getFunction().getParent()); + MST.incorporateFunction(getFunction()); + for (const auto &BB : *this) { + OS << '\n'; + // If we print the whole function, print it at its most verbose level. + BB.print(OS, MST, Indexes, /*IsStandalone=*/true); + } + + OS << "\n# End machine code for function " << getName() << ".\n\n"; +} + +/// True if this function needs frame moves for debug or exceptions. +bool MachineFunction::needsFrameMoves() const { + return getMMI().hasDebugInfo() || + getTarget().Options.ForceDwarfFrameSection || + F.needsUnwindTableEntry(); +} + +namespace llvm { + + template<> + struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { + DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} + + static std::string getGraphName(const MachineFunction *F) { + return ("CFG for '" + F->getName() + "' function").str(); + } + + std::string getNodeLabel(const MachineBasicBlock *Node, + const MachineFunction *Graph) { + std::string OutStr; + { + raw_string_ostream OSS(OutStr); + + if (isSimple()) { + OSS << printMBBReference(*Node); + if (const BasicBlock *BB = Node->getBasicBlock()) + OSS << ": " << BB->getName(); + } else + Node->print(OSS); + } + + if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); + + // Process string output to make it nicer... + for (unsigned i = 0; i != OutStr.length(); ++i) + if (OutStr[i] == '\n') { // Left justify + OutStr[i] = '\\'; + OutStr.insert(OutStr.begin()+i+1, 'l'); + } + return OutStr; + } + }; + +} // end namespace llvm + +void MachineFunction::viewCFG() const +{ +#ifndef NDEBUG + ViewGraph(this, "mf" + getName()); +#else + errs() << "MachineFunction::viewCFG is only available in debug builds on " + << "systems with Graphviz or gv!\n"; +#endif // NDEBUG +} + +void MachineFunction::viewCFGOnly() const +{ +#ifndef NDEBUG + ViewGraph(this, "mf" + getName(), true); +#else + errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " + << "systems with Graphviz or gv!\n"; +#endif // NDEBUG +} + +/// Add the specified physical register as a live-in value and +/// create a corresponding virtual register for it. +Register MachineFunction::addLiveIn(MCRegister PReg, + const TargetRegisterClass *RC) { + MachineRegisterInfo &MRI = getRegInfo(); + Register VReg = MRI.getLiveInVirtReg(PReg); + if (VReg) { + const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); + (void)VRegRC; + // A physical register can be added several times. + // Between two calls, the register class of the related virtual register + // may have been constrained to match some operation constraints. + // In that case, check that the current register class includes the + // physical register and is a sub class of the specified RC. + assert((VRegRC == RC || (VRegRC->contains(PReg) && + RC->hasSubClassEq(VRegRC))) && + "Register class mismatch!"); + return VReg; + } + VReg = MRI.createVirtualRegister(RC); + MRI.addLiveIn(PReg, VReg); + return VReg; +} + +/// Return the MCSymbol for the specified non-empty jump table. +/// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a +/// normal 'L' label is returned. +MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, + bool isLinkerPrivate) const { + const DataLayout &DL = getDataLayout(); + assert(JumpTableInfo && "No jump tables"); + assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); + + StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() + : DL.getPrivateGlobalPrefix(); + SmallString<60> Name; + raw_svector_ostream(Name) + << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; + return Ctx.getOrCreateSymbol(Name); +} + +/// Return a function-local symbol to represent the PIC base. +MCSymbol *MachineFunction::getPICBaseSymbol() const { + const DataLayout &DL = getDataLayout(); + return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + + Twine(getFunctionNumber()) + "$pb"); +} + +/// \name Exception Handling +/// \{ + +LandingPadInfo & +MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { + unsigned N = LandingPads.size(); + for (unsigned i = 0; i < N; ++i) { + LandingPadInfo &LP = LandingPads[i]; + if (LP.LandingPadBlock == LandingPad) + return LP; + } + + LandingPads.push_back(LandingPadInfo(LandingPad)); + return LandingPads[N]; +} + +void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, + MCSymbol *BeginLabel, MCSymbol *EndLabel) { + LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); + LP.BeginLabels.push_back(BeginLabel); + LP.EndLabels.push_back(EndLabel); +} + +MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { + MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); + LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); + LP.LandingPadLabel = LandingPadLabel; + + const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); + if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { + if (const auto *PF = + dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) + getMMI().addPersonality(PF); + + if (LPI->isCleanup()) + addCleanup(LandingPad); + + // FIXME: New EH - Add the clauses in reverse order. This isn't 100% + // correct, but we need to do it this way because of how the DWARF EH + // emitter processes the clauses. + for (unsigned I = LPI->getNumClauses(); I != 0; --I) { + Value *Val = LPI->getClause(I - 1); + if (LPI->isCatch(I - 1)) { + addCatchTypeInfo(LandingPad, + dyn_cast<GlobalValue>(Val->stripPointerCasts())); + } else { + // Add filters in a list. + auto *CVal = cast<Constant>(Val); + SmallVector<const GlobalValue *, 4> FilterList; + for (const Use &U : CVal->operands()) + FilterList.push_back(cast<GlobalValue>(U->stripPointerCasts())); + + addFilterTypeInfo(LandingPad, FilterList); + } + } + + } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { + for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) { + Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); + addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); + } + + } else { + assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); + } + + return LandingPadLabel; +} + +void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, + ArrayRef<const GlobalValue *> TyInfo) { + LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); + for (const GlobalValue *GV : llvm::reverse(TyInfo)) + LP.TypeIds.push_back(getTypeIDFor(GV)); +} + +void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, + ArrayRef<const GlobalValue *> TyInfo) { + LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); + std::vector<unsigned> IdsInFilter(TyInfo.size()); + for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) + IdsInFilter[I] = getTypeIDFor(TyInfo[I]); + LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); +} + +void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, + bool TidyIfNoBeginLabels) { + for (unsigned i = 0; i != LandingPads.size(); ) { + LandingPadInfo &LandingPad = LandingPads[i]; + if (LandingPad.LandingPadLabel && + !LandingPad.LandingPadLabel->isDefined() && + (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) + LandingPad.LandingPadLabel = nullptr; + + // Special case: we *should* emit LPs with null LP MBB. This indicates + // "nounwind" case. + if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { + LandingPads.erase(LandingPads.begin() + i); + continue; + } + + if (TidyIfNoBeginLabels) { + for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { + MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; + MCSymbol *EndLabel = LandingPad.EndLabels[j]; + if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && + (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) + continue; + + LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); + LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); + --j; + --e; + } + + // Remove landing pads with no try-ranges. + if (LandingPads[i].BeginLabels.empty()) { + LandingPads.erase(LandingPads.begin() + i); + continue; + } + } + + // If there is no landing pad, ensure that the list of typeids is empty. + // If the only typeid is a cleanup, this is the same as having no typeids. + if (!LandingPad.LandingPadBlock || + (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) + LandingPad.TypeIds.clear(); + ++i; + } +} + +void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { + LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); + LP.TypeIds.push_back(0); +} + +void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, + const Function *Filter, + const BlockAddress *RecoverBA) { + LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); + SEHHandler Handler; + Handler.FilterOrFinally = Filter; + Handler.RecoverBA = RecoverBA; + LP.SEHHandlers.push_back(Handler); +} + +void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, + const Function *Cleanup) { + LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); + SEHHandler Handler; + Handler.FilterOrFinally = Cleanup; + Handler.RecoverBA = nullptr; + LP.SEHHandlers.push_back(Handler); +} + +void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, + ArrayRef<unsigned> Sites) { + LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); +} + +unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { + for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) + if (TypeInfos[i] == TI) return i + 1; + + TypeInfos.push_back(TI); + return TypeInfos.size(); +} + +int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { + // If the new filter coincides with the tail of an existing filter, then + // re-use the existing filter. Folding filters more than this requires + // re-ordering filters and/or their elements - probably not worth it. + for (unsigned i : FilterEnds) { + unsigned j = TyIds.size(); + + while (i && j) + if (FilterIds[--i] != TyIds[--j]) + goto try_next; + + if (!j) + // The new filter coincides with range [i, end) of the existing filter. + return -(1 + i); + +try_next:; + } + + // Add the new filter. + int FilterID = -(1 + FilterIds.size()); + FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); + llvm::append_range(FilterIds, TyIds); + FilterEnds.push_back(FilterIds.size()); + FilterIds.push_back(0); // terminator + return FilterID; +} + +MachineFunction::CallSiteInfoMap::iterator +MachineFunction::getCallSiteInfo(const MachineInstr *MI) { + assert(MI->isCandidateForCallSiteEntry() && + "Call site info refers only to call (MI) candidates"); + + if (!Target.Options.EmitCallSiteInfo) + return CallSitesInfo.end(); + return CallSitesInfo.find(MI); +} + +/// Return the call machine instruction or find a call within bundle. +static const MachineInstr *getCallInstr(const MachineInstr *MI) { + if (!MI->isBundle()) + return MI; + + for (auto &BMI : make_range(getBundleStart(MI->getIterator()), + getBundleEnd(MI->getIterator()))) + if (BMI.isCandidateForCallSiteEntry()) + return &BMI; + + llvm_unreachable("Unexpected bundle without a call site candidate"); +} + +void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { + assert(MI->shouldUpdateCallSiteInfo() && + "Call site info refers only to call (MI) candidates or " + "candidates inside bundles"); + + const MachineInstr *CallMI = getCallInstr(MI); + CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); + if (CSIt == CallSitesInfo.end()) + return; + CallSitesInfo.erase(CSIt); +} + +void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, + const MachineInstr *New) { + assert(Old->shouldUpdateCallSiteInfo() && + "Call site info refers only to call (MI) candidates or " + "candidates inside bundles"); + + if (!New->isCandidateForCallSiteEntry()) + return eraseCallSiteInfo(Old); + + const MachineInstr *OldCallMI = getCallInstr(Old); + CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); + if (CSIt == CallSitesInfo.end()) + return; + + CallSiteInfo CSInfo = CSIt->second; + CallSitesInfo[New] = CSInfo; +} + +void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, + const MachineInstr *New) { + assert(Old->shouldUpdateCallSiteInfo() && + "Call site info refers only to call (MI) candidates or " + "candidates inside bundles"); + + if (!New->isCandidateForCallSiteEntry()) + return eraseCallSiteInfo(Old); + + const MachineInstr *OldCallMI = getCallInstr(Old); + CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); + if (CSIt == CallSitesInfo.end()) + return; + + CallSiteInfo CSInfo = std::move(CSIt->second); + CallSitesInfo.erase(CSIt); + CallSitesInfo[New] = CSInfo; +} + +void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { + DebugInstrNumberingCount = Num; +} + +void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, + DebugInstrOperandPair B, + unsigned Subreg) { + // Catch any accidental self-loops. + assert(A.first != B.first); + // Don't allow any substitutions _from_ the memory operand number. + assert(A.second != DebugOperandMemNumber); + + DebugValueSubstitutions.push_back({A, B, Subreg}); +} + +void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, + MachineInstr &New, + unsigned MaxOperand) { + // If the Old instruction wasn't tracked at all, there is no work to do. + unsigned OldInstrNum = Old.peekDebugInstrNum(); + if (!OldInstrNum) + return; + + // Iterate over all operands looking for defs to create substitutions for. + // Avoid creating new instr numbers unless we create a new substitution. + // While this has no functional effect, it risks confusing someone reading + // MIR output. + // Examine all the operands, or the first N specified by the caller. + MaxOperand = std::min(MaxOperand, Old.getNumOperands()); + for (unsigned int I = 0; I < MaxOperand; ++I) { + const auto &OldMO = Old.getOperand(I); + auto &NewMO = New.getOperand(I); + (void)NewMO; + + if (!OldMO.isReg() || !OldMO.isDef()) + continue; + assert(NewMO.isDef()); + + unsigned NewInstrNum = New.getDebugInstrNum(); + makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), + std::make_pair(NewInstrNum, I)); + } +} + +auto MachineFunction::salvageCopySSA(MachineInstr &MI) + -> DebugInstrOperandPair { + MachineRegisterInfo &MRI = getRegInfo(); + const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); + const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); + + // Chase the value read by a copy-like instruction back to the instruction + // that ultimately _defines_ that value. This may pass: + // * Through multiple intermediate copies, including subregister moves / + // copies, + // * Copies from physical registers that must then be traced back to the + // defining instruction, + // * Or, physical registers may be live-in to (only) the entry block, which + // requires a DBG_PHI to be created. + // We can pursue this problem in that order: trace back through copies, + // optionally through a physical register, to a defining instruction. We + // should never move from physreg to vreg. As we're still in SSA form, no need + // to worry about partial definitions of registers. + + // Helper lambda to interpret a copy-like instruction. Takes instruction, + // returns the register read and any subregister identifying which part is + // read. + auto GetRegAndSubreg = + [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { + Register NewReg, OldReg; + unsigned SubReg; + if (Cpy.isCopy()) { + OldReg = Cpy.getOperand(0).getReg(); + NewReg = Cpy.getOperand(1).getReg(); + SubReg = Cpy.getOperand(1).getSubReg(); + } else if (Cpy.isSubregToReg()) { + OldReg = Cpy.getOperand(0).getReg(); + NewReg = Cpy.getOperand(2).getReg(); + SubReg = Cpy.getOperand(3).getImm(); + } else { + auto CopyDetails = *TII.isCopyInstr(Cpy); + const MachineOperand &Src = *CopyDetails.Source; + const MachineOperand &Dest = *CopyDetails.Destination; + OldReg = Dest.getReg(); + NewReg = Src.getReg(); + SubReg = Src.getSubReg(); + } + + return {NewReg, SubReg}; + }; + + // First seek either the defining instruction, or a copy from a physreg. + // During search, the current state is the current copy instruction, and which + // register we've read. Accumulate qualifying subregisters into SubregsSeen; + // deal with those later. + auto State = GetRegAndSubreg(MI); + auto CurInst = MI.getIterator(); + SmallVector<unsigned, 4> SubregsSeen; + while (true) { + // If we've found a copy from a physreg, first portion of search is over. + if (!State.first.isVirtual()) + break; + + // Record any subregister qualifier. + if (State.second) + SubregsSeen.push_back(State.second); + + assert(MRI.hasOneDef(State.first)); + MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); + CurInst = Inst.getIterator(); + + // Any non-copy instruction is the defining instruction we're seeking. + if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst)) + break; + State = GetRegAndSubreg(Inst); + }; + + // Helper lambda to apply additional subregister substitutions to a known + // instruction/operand pair. Adds new (fake) substitutions so that we can + // record the subregister. FIXME: this isn't very space efficient if multiple + // values are tracked back through the same copies; cache something later. + auto ApplySubregisters = + [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { + for (unsigned Subreg : reverse(SubregsSeen)) { + // Fetch a new instruction number, not attached to an actual instruction. + unsigned NewInstrNumber = getNewDebugInstrNum(); + // Add a substitution from the "new" number to the known one, with a + // qualifying subreg. + makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); + // Return the new number; to find the underlying value, consumers need to + // deal with the qualifying subreg. + P = {NewInstrNumber, 0}; + } + return P; + }; + + // If we managed to find the defining instruction after COPYs, return an + // instruction / operand pair after adding subregister qualifiers. + if (State.first.isVirtual()) { + // Virtual register def -- we can just look up where this happens. + MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); + for (auto &MO : Inst->operands()) { + if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first) + continue; + return ApplySubregisters( + {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)}); + } + + llvm_unreachable("Vreg def with no corresponding operand?"); + } + + // Our search ended in a copy from a physreg: walk back up the function + // looking for whatever defines the physreg. + assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); + State = GetRegAndSubreg(*CurInst); + Register RegToSeek = State.first; + + auto RMII = CurInst->getReverseIterator(); + auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); + for (auto &ToExamine : PrevInstrs) { + for (auto &MO : ToExamine.operands()) { + // Test for operand that defines something aliasing RegToSeek. + if (!MO.isReg() || !MO.isDef() || + !TRI.regsOverlap(RegToSeek, MO.getReg())) + continue; + + return ApplySubregisters( + {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)}); + } + } + + MachineBasicBlock &InsertBB = *CurInst->getParent(); + + // We reached the start of the block before finding a defining instruction. + // It could be from a constant register, otherwise it must be an argument. + if (TRI.isConstantPhysReg(State.first)) { + // We can produce a DBG_PHI that identifies the constant physreg. Doesn't + // matter where we put it, as it's constant valued. + assert(CurInst->isCopy()); + } else if (State.first == TRI.getFrameRegister(*this)) { + // LLVM IR is allowed to read the framepointer by calling a + // llvm.frameaddress.* intrinsic. We can support this by emitting a + // DBG_PHI $fp. This isn't ideal, because it extends the behaviours / + // position that DBG_PHIs appear at, limiting what can be done later. + // TODO: see if there's a better way of expressing these variable + // locations. + ; + } else { + // Assert that this is the entry block, or an EH pad. If it isn't, then + // there is some code construct we don't recognise that deals with physregs + // across blocks. + assert(!State.first.isVirtual()); + assert(&*InsertBB.getParent()->begin() == &InsertBB || InsertBB.isEHPad()); + } + + // Create DBG_PHI for specified physreg. + auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), + TII.get(TargetOpcode::DBG_PHI)); + Builder.addReg(State.first); + unsigned NewNum = getNewDebugInstrNum(); + Builder.addImm(NewNum); + return ApplySubregisters({NewNum, 0u}); +} + +void MachineFunction::finalizeDebugInstrRefs() { + auto *TII = getSubtarget().getInstrInfo(); + + auto MakeUndefDbgValue = [&](MachineInstr &MI) { + const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE); + MI.setDesc(RefII); + MI.getOperand(0).setReg(0); + MI.getOperand(1).ChangeToRegister(0, false); + }; + + for (auto &MBB : *this) { + for (auto &MI : MBB) { + if (!MI.isDebugRef() || !MI.getOperand(0).isReg()) + continue; + + Register Reg = MI.getOperand(0).getReg(); + + // Some vregs can be deleted as redundant in the meantime. Mark those + // as DBG_VALUE $noreg. Additionally, some normal instructions are + // quickly deleted, leaving dangling references to vregs with no def. + if (Reg == 0 || !RegInfo->hasOneDef(Reg)) { + MakeUndefDbgValue(MI); + continue; + } + + assert(Reg.isVirtual()); + MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); + + // If we've found a copy-like instruction, follow it back to the + // instruction that defines the source value, see salvageCopySSA docs + // for why this is important. + if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { + auto Result = salvageCopySSA(DefMI); + MI.getOperand(0).ChangeToImmediate(Result.first); + MI.getOperand(1).setImm(Result.second); + } else { + // Otherwise, identify the operand number that the VReg refers to. + unsigned OperandIdx = 0; + for (const auto &MO : DefMI.operands()) { + if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) + break; + ++OperandIdx; + } + assert(OperandIdx < DefMI.getNumOperands()); + + // Morph this instr ref to point at the given instruction and operand. + unsigned ID = DefMI.getDebugInstrNum(); + MI.getOperand(0).ChangeToImmediate(ID); + MI.getOperand(1).setImm(OperandIdx); + } + } + } +} + +bool MachineFunction::useDebugInstrRef() const { + // Disable instr-ref at -O0: it's very slow (in compile time). We can still + // have optimized code inlined into this unoptimized code, however with + // fewer and less aggressive optimizations happening, coverage and accuracy + // should not suffer. + if (getTarget().getOptLevel() == CodeGenOpt::None) + return false; + + // Don't use instr-ref if this function is marked optnone. + if (F.hasFnAttribute(Attribute::OptimizeNone)) + return false; + + if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple())) + return true; + + return false; +} + +// Use one million as a high / reserved number. +const unsigned MachineFunction::DebugOperandMemNumber = 1000000; + +/// \} + +//===----------------------------------------------------------------------===// +// MachineJumpTableInfo implementation +//===----------------------------------------------------------------------===// + +/// Return the size of each entry in the jump table. +unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { + // The size of a jump table entry is 4 bytes unless the entry is just the + // address of a block, in which case it is the pointer size. + switch (getEntryKind()) { + case MachineJumpTableInfo::EK_BlockAddress: + return TD.getPointerSize(); + case MachineJumpTableInfo::EK_GPRel64BlockAddress: + return 8; + case MachineJumpTableInfo::EK_GPRel32BlockAddress: + case MachineJumpTableInfo::EK_LabelDifference32: + case MachineJumpTableInfo::EK_Custom32: + return 4; + case MachineJumpTableInfo::EK_Inline: + return 0; + } + llvm_unreachable("Unknown jump table encoding!"); +} + +/// Return the alignment of each entry in the jump table. +unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { + // The alignment of a jump table entry is the alignment of int32 unless the + // entry is just the address of a block, in which case it is the pointer + // alignment. + switch (getEntryKind()) { + case MachineJumpTableInfo::EK_BlockAddress: + return TD.getPointerABIAlignment(0).value(); + case MachineJumpTableInfo::EK_GPRel64BlockAddress: + return TD.getABIIntegerTypeAlignment(64).value(); + case MachineJumpTableInfo::EK_GPRel32BlockAddress: + case MachineJumpTableInfo::EK_LabelDifference32: + case MachineJumpTableInfo::EK_Custom32: + return TD.getABIIntegerTypeAlignment(32).value(); + case MachineJumpTableInfo::EK_Inline: + return 1; + } + llvm_unreachable("Unknown jump table encoding!"); +} + +/// Create a new jump table entry in the jump table info. +unsigned MachineJumpTableInfo::createJumpTableIndex( + const std::vector<MachineBasicBlock*> &DestBBs) { + assert(!DestBBs.empty() && "Cannot create an empty jump table!"); + JumpTables.push_back(MachineJumpTableEntry(DestBBs)); + return JumpTables.size()-1; +} + +/// If Old is the target of any jump tables, update the jump tables to branch +/// to New instead. +bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, + MachineBasicBlock *New) { + assert(Old != New && "Not making a change?"); + bool MadeChange = false; + for (size_t i = 0, e = JumpTables.size(); i != e; ++i) + ReplaceMBBInJumpTable(i, Old, New); + return MadeChange; +} + +/// If MBB is present in any jump tables, remove it. +bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { + bool MadeChange = false; + for (MachineJumpTableEntry &JTE : JumpTables) { + auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); + MadeChange |= (removeBeginItr != JTE.MBBs.end()); + JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); + } + return MadeChange; +} + +/// If Old is a target of the jump tables, update the jump table to branch to +/// New instead. +bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, + MachineBasicBlock *Old, + MachineBasicBlock *New) { + assert(Old != New && "Not making a change?"); + bool MadeChange = false; + MachineJumpTableEntry &JTE = JumpTables[Idx]; + for (MachineBasicBlock *&MBB : JTE.MBBs) + if (MBB == Old) { + MBB = New; + MadeChange = true; + } + return MadeChange; +} + +void MachineJumpTableInfo::print(raw_ostream &OS) const { + if (JumpTables.empty()) return; + + OS << "Jump Tables:\n"; + + for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { + OS << printJumpTableEntryReference(i) << ':'; + for (const MachineBasicBlock *MBB : JumpTables[i].MBBs) + OS << ' ' << printMBBReference(*MBB); + if (i != e) + OS << '\n'; + } + + OS << '\n'; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } +#endif + +Printable llvm::printJumpTableEntryReference(unsigned Idx) { + return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); +} + +//===----------------------------------------------------------------------===// +// MachineConstantPool implementation +//===----------------------------------------------------------------------===// + +void MachineConstantPoolValue::anchor() {} + +unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { + return DL.getTypeAllocSize(Ty); +} + +unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { + if (isMachineConstantPoolEntry()) + return Val.MachineCPVal->getSizeInBytes(DL); + return DL.getTypeAllocSize(Val.ConstVal->getType()); +} + +bool MachineConstantPoolEntry::needsRelocation() const { + if (isMachineConstantPoolEntry()) + return true; + return Val.ConstVal->needsDynamicRelocation(); +} + +SectionKind +MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { + if (needsRelocation()) + return SectionKind::getReadOnlyWithRel(); + switch (getSizeInBytes(*DL)) { + case 4: + return SectionKind::getMergeableConst4(); + case 8: + return SectionKind::getMergeableConst8(); + case 16: + return SectionKind::getMergeableConst16(); + case 32: + return SectionKind::getMergeableConst32(); + default: + return SectionKind::getReadOnly(); + } +} + +MachineConstantPool::~MachineConstantPool() { + // A constant may be a member of both Constants and MachineCPVsSharingEntries, + // so keep track of which we've deleted to avoid double deletions. + DenseSet<MachineConstantPoolValue*> Deleted; + for (const MachineConstantPoolEntry &C : Constants) + if (C.isMachineConstantPoolEntry()) { + Deleted.insert(C.Val.MachineCPVal); + delete C.Val.MachineCPVal; + } + for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { + if (Deleted.count(CPV) == 0) + delete CPV; + } +} + +/// Test whether the given two constants can be allocated the same constant pool +/// entry. +static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, + const DataLayout &DL) { + // Handle the trivial case quickly. + if (A == B) return true; + + // If they have the same type but weren't the same constant, quickly + // reject them. + if (A->getType() == B->getType()) return false; + + // We can't handle structs or arrays. + if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || + isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) + return false; + + // For now, only support constants with the same size. + uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); + if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) + return false; + + Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); + + // Try constant folding a bitcast of both instructions to an integer. If we + // get two identical ConstantInt's, then we are good to share them. We use + // the constant folding APIs to do this so that we get the benefit of + // DataLayout. + if (isa<PointerType>(A->getType())) + A = ConstantFoldCastOperand(Instruction::PtrToInt, + const_cast<Constant *>(A), IntTy, DL); + else if (A->getType() != IntTy) + A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), + IntTy, DL); + if (isa<PointerType>(B->getType())) + B = ConstantFoldCastOperand(Instruction::PtrToInt, + const_cast<Constant *>(B), IntTy, DL); + else if (B->getType() != IntTy) + B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), + IntTy, DL); + + return A == B; +} + +/// Create a new entry in the constant pool or return an existing one. +/// User must specify the log2 of the minimum required alignment for the object. +unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, + Align Alignment) { + if (Alignment > PoolAlignment) PoolAlignment = Alignment; + + // Check to see if we already have this constant. + // + // FIXME, this could be made much more efficient for large constant pools. + for (unsigned i = 0, e = Constants.size(); i != e; ++i) + if (!Constants[i].isMachineConstantPoolEntry() && + CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { + if (Constants[i].getAlign() < Alignment) + Constants[i].Alignment = Alignment; + return i; + } + + Constants.push_back(MachineConstantPoolEntry(C, Alignment)); + return Constants.size()-1; +} + +unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, + Align Alignment) { + if (Alignment > PoolAlignment) PoolAlignment = Alignment; + + // Check to see if we already have this constant. + // + // FIXME, this could be made much more efficient for large constant pools. + int Idx = V->getExistingMachineCPValue(this, Alignment); + if (Idx != -1) { + MachineCPVsSharingEntries.insert(V); + return (unsigned)Idx; + } + + Constants.push_back(MachineConstantPoolEntry(V, Alignment)); + return Constants.size()-1; +} + +void MachineConstantPool::print(raw_ostream &OS) const { + if (Constants.empty()) return; + + OS << "Constant Pool:\n"; + for (unsigned i = 0, e = Constants.size(); i != e; ++i) { + OS << " cp#" << i << ": "; + if (Constants[i].isMachineConstantPoolEntry()) + Constants[i].Val.MachineCPVal->print(OS); + else + Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); + OS << ", align=" << Constants[i].getAlign().value(); + OS << "\n"; + } +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } +#endif |