summaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp
diff options
context:
space:
mode:
authorrobot-piglet <[email protected]>2025-03-05 13:38:11 +0300
committerrobot-piglet <[email protected]>2025-03-05 13:49:53 +0300
commit9eed360f02de773a5ed2de5d2a3e81fc7f06acfa (patch)
tree744a4054e64eb443073c7c6ad36b29cedcf9c2e6 /contrib/libs/llvm14/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp
parentc141a5c40bda2eed1a68b0626ffdae5fd19359a6 (diff)
Intermediate changes
commit_hash:2ec2671384dd8e604d41bc5c52c2f7858e4afea6
Diffstat (limited to 'contrib/libs/llvm14/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp')
-rw-r--r--contrib/libs/llvm14/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp3683
1 files changed, 0 insertions, 3683 deletions
diff --git a/contrib/libs/llvm14/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp b/contrib/libs/llvm14/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp
deleted file mode 100644
index 6af5f07d801..00000000000
--- a/contrib/libs/llvm14/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp
+++ /dev/null
@@ -1,3683 +0,0 @@
-//===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-/// \file InstrRefBasedImpl.cpp
-///
-/// This is a separate implementation of LiveDebugValues, see
-/// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
-///
-/// This pass propagates variable locations between basic blocks, resolving
-/// control flow conflicts between them. The problem is SSA construction, where
-/// each debug instruction assigns the *value* that a variable has, and every
-/// instruction where the variable is in scope uses that variable. The resulting
-/// map of instruction-to-value is then translated into a register (or spill)
-/// location for each variable over each instruction.
-///
-/// The primary difference from normal SSA construction is that we cannot
-/// _create_ PHI values that contain variable values. CodeGen has already
-/// completed, and we can't alter it just to make debug-info complete. Thus:
-/// we can identify function positions where we would like a PHI value for a
-/// variable, but must search the MachineFunction to see whether such a PHI is
-/// available. If no such PHI exists, the variable location must be dropped.
-///
-/// To achieve this, we perform two kinds of analysis. First, we identify
-/// every value defined by every instruction (ignoring those that only move
-/// another value), then re-compute an SSA-form representation of the
-/// MachineFunction, using value propagation to eliminate any un-necessary
-/// PHI values. This gives us a map of every value computed in the function,
-/// and its location within the register file / stack.
-///
-/// Secondly, for each variable we perform the same analysis, where each debug
-/// instruction is considered a def, and every instruction where the variable
-/// is in lexical scope as a use. Value propagation is used again to eliminate
-/// any un-necessary PHIs. This gives us a map of each variable to the value
-/// it should have in a block.
-///
-/// Once both are complete, we have two maps for each block:
-/// * Variables to the values they should have,
-/// * Values to the register / spill slot they are located in.
-/// After which we can marry-up variable values with a location, and emit
-/// DBG_VALUE instructions specifying those locations. Variable locations may
-/// be dropped in this process due to the desired variable value not being
-/// resident in any machine location, or because there is no PHI value in any
-/// location that accurately represents the desired value. The building of
-/// location lists for each block is left to DbgEntityHistoryCalculator.
-///
-/// This pass is kept efficient because the size of the first SSA problem
-/// is proportional to the working-set size of the function, which the compiler
-/// tries to keep small. (It's also proportional to the number of blocks).
-/// Additionally, we repeatedly perform the second SSA problem analysis with
-/// only the variables and blocks in a single lexical scope, exploiting their
-/// locality.
-///
-/// ### Terminology
-///
-/// A machine location is a register or spill slot, a value is something that's
-/// defined by an instruction or PHI node, while a variable value is the value
-/// assigned to a variable. A variable location is a machine location, that must
-/// contain the appropriate variable value. A value that is a PHI node is
-/// occasionally called an mphi.
-///
-/// The first SSA problem is the "machine value location" problem,
-/// because we're determining which machine locations contain which values.
-/// The "locations" are constant: what's unknown is what value they contain.
-///
-/// The second SSA problem (the one for variables) is the "variable value
-/// problem", because it's determining what values a variable has, rather than
-/// what location those values are placed in.
-///
-/// TODO:
-/// Overlapping fragments
-/// Entry values
-/// Add back DEBUG statements for debugging this
-/// Collect statistics
-///
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/PostOrderIterator.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/IteratedDominanceFrontier.h"
-#include "llvm/CodeGen/LexicalScopes.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/CodeGen/MachineDominators.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineInstrBundle.h"
-#include "llvm/CodeGen/MachineMemOperand.h"
-#include "llvm/CodeGen/MachineOperand.h"
-#include "llvm/CodeGen/PseudoSourceValue.h"
-#include "llvm/CodeGen/RegisterScavenging.h"
-#include "llvm/CodeGen/TargetFrameLowering.h"
-#include "llvm/CodeGen/TargetInstrInfo.h"
-#include "llvm/CodeGen/TargetLowering.h"
-#include "llvm/CodeGen/TargetPassConfig.h"
-#include "llvm/CodeGen/TargetRegisterInfo.h"
-#include "llvm/CodeGen/TargetSubtargetInfo.h"
-#include "llvm/Config/llvm-config.h"
-#include "llvm/IR/DIBuilder.h"
-#include "llvm/IR/DebugInfoMetadata.h"
-#include "llvm/IR/DebugLoc.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/Module.h"
-#include "llvm/InitializePasses.h"
-#include "llvm/MC/MCRegisterInfo.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/TypeSize.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdint>
-#include <functional>
-#include <limits.h>
-#include <limits>
-#include <queue>
-#include <tuple>
-#include <utility>
-#include <vector>
-
-#include "InstrRefBasedImpl.h"
-#include "LiveDebugValues.h"
-
-using namespace llvm;
-using namespace LiveDebugValues;
-
-// SSAUpdaterImple sets DEBUG_TYPE, change it.
-#undef DEBUG_TYPE
-#define DEBUG_TYPE "livedebugvalues"
-
-// Act more like the VarLoc implementation, by propagating some locations too
-// far and ignoring some transfers.
-static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
- cl::desc("Act like old LiveDebugValues did"),
- cl::init(false));
-
-// Limit for the maximum number of stack slots we should track, past which we
-// will ignore any spills. InstrRefBasedLDV gathers detailed information on all
-// stack slots which leads to high memory consumption, and in some scenarios
-// (such as asan with very many locals) the working set of the function can be
-// very large, causing many spills. In these scenarios, it is very unlikely that
-// the developer has hundreds of variables live at the same time that they're
-// carefully thinking about -- instead, they probably autogenerated the code.
-// When this happens, gracefully stop tracking excess spill slots, rather than
-// consuming all the developer's memory.
-static cl::opt<unsigned>
- StackWorkingSetLimit("livedebugvalues-max-stack-slots", cl::Hidden,
- cl::desc("livedebugvalues-stack-ws-limit"),
- cl::init(250));
-
-/// Tracker for converting machine value locations and variable values into
-/// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
-/// specifying block live-in locations and transfers within blocks.
-///
-/// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
-/// and must be initialized with the set of variable values that are live-in to
-/// the block. The caller then repeatedly calls process(). TransferTracker picks
-/// out variable locations for the live-in variable values (if there _is_ a
-/// location) and creates the corresponding DBG_VALUEs. Then, as the block is
-/// stepped through, transfers of values between machine locations are
-/// identified and if profitable, a DBG_VALUE created.
-///
-/// This is where debug use-before-defs would be resolved: a variable with an
-/// unavailable value could materialize in the middle of a block, when the
-/// value becomes available. Or, we could detect clobbers and re-specify the
-/// variable in a backup location. (XXX these are unimplemented).
-class TransferTracker {
-public:
- const TargetInstrInfo *TII;
- const TargetLowering *TLI;
- /// This machine location tracker is assumed to always contain the up-to-date
- /// value mapping for all machine locations. TransferTracker only reads
- /// information from it. (XXX make it const?)
- MLocTracker *MTracker;
- MachineFunction &MF;
- bool ShouldEmitDebugEntryValues;
-
- /// Record of all changes in variable locations at a block position. Awkwardly
- /// we allow inserting either before or after the point: MBB != nullptr
- /// indicates it's before, otherwise after.
- struct Transfer {
- MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
- MachineBasicBlock *MBB; /// non-null if we should insert after.
- SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
- };
-
- struct LocAndProperties {
- LocIdx Loc;
- DbgValueProperties Properties;
- };
-
- /// Collection of transfers (DBG_VALUEs) to be inserted.
- SmallVector<Transfer, 32> Transfers;
-
- /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
- /// between TransferTrackers view of variable locations and MLocTrackers. For
- /// example, MLocTracker observes all clobbers, but TransferTracker lazily
- /// does not.
- SmallVector<ValueIDNum, 32> VarLocs;
-
- /// Map from LocIdxes to which DebugVariables are based that location.
- /// Mantained while stepping through the block. Not accurate if
- /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
- DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
-
- /// Map from DebugVariable to it's current location and qualifying meta
- /// information. To be used in conjunction with ActiveMLocs to construct
- /// enough information for the DBG_VALUEs for a particular LocIdx.
- DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
-
- /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
- SmallVector<MachineInstr *, 4> PendingDbgValues;
-
- /// Record of a use-before-def: created when a value that's live-in to the
- /// current block isn't available in any machine location, but it will be
- /// defined in this block.
- struct UseBeforeDef {
- /// Value of this variable, def'd in block.
- ValueIDNum ID;
- /// Identity of this variable.
- DebugVariable Var;
- /// Additional variable properties.
- DbgValueProperties Properties;
- };
-
- /// Map from instruction index (within the block) to the set of UseBeforeDefs
- /// that become defined at that instruction.
- DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
-
- /// The set of variables that are in UseBeforeDefs and can become a location
- /// once the relevant value is defined. An element being erased from this
- /// collection prevents the use-before-def materializing.
- DenseSet<DebugVariable> UseBeforeDefVariables;
-
- const TargetRegisterInfo &TRI;
- const BitVector &CalleeSavedRegs;
-
- TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
- MachineFunction &MF, const TargetRegisterInfo &TRI,
- const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
- : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
- CalleeSavedRegs(CalleeSavedRegs) {
- TLI = MF.getSubtarget().getTargetLowering();
- auto &TM = TPC.getTM<TargetMachine>();
- ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
- }
-
- /// Load object with live-in variable values. \p mlocs contains the live-in
- /// values in each machine location, while \p vlocs the live-in variable
- /// values. This method picks variable locations for the live-in variables,
- /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
- /// object fields to track variable locations as we step through the block.
- /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
- void
- loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
- const SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
- unsigned NumLocs) {
- ActiveMLocs.clear();
- ActiveVLocs.clear();
- VarLocs.clear();
- VarLocs.reserve(NumLocs);
- UseBeforeDefs.clear();
- UseBeforeDefVariables.clear();
-
- auto isCalleeSaved = [&](LocIdx L) {
- unsigned Reg = MTracker->LocIdxToLocID[L];
- if (Reg >= MTracker->NumRegs)
- return false;
- for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
- if (CalleeSavedRegs.test(*RAI))
- return true;
- return false;
- };
-
- // Map of the preferred location for each value.
- DenseMap<ValueIDNum, LocIdx> ValueToLoc;
-
- // Initialized the preferred-location map with illegal locations, to be
- // filled in later.
- for (auto &VLoc : VLocs)
- if (VLoc.second.Kind == DbgValue::Def)
- ValueToLoc.insert({VLoc.second.ID, LocIdx::MakeIllegalLoc()});
-
- ActiveMLocs.reserve(VLocs.size());
- ActiveVLocs.reserve(VLocs.size());
-
- // Produce a map of value numbers to the current machine locs they live
- // in. When emulating VarLocBasedImpl, there should only be one
- // location; when not, we get to pick.
- for (auto Location : MTracker->locations()) {
- LocIdx Idx = Location.Idx;
- ValueIDNum &VNum = MLocs[Idx.asU64()];
- VarLocs.push_back(VNum);
-
- // Is there a variable that wants a location for this value? If not, skip.
- auto VIt = ValueToLoc.find(VNum);
- if (VIt == ValueToLoc.end())
- continue;
-
- LocIdx CurLoc = VIt->second;
- // In order of preference, pick:
- // * Callee saved registers,
- // * Other registers,
- // * Spill slots.
- if (CurLoc.isIllegal() || MTracker->isSpill(CurLoc) ||
- (!isCalleeSaved(CurLoc) && isCalleeSaved(Idx.asU64()))) {
- // Insert, or overwrite if insertion failed.
- VIt->second = Idx;
- }
- }
-
- // Now map variables to their picked LocIdxes.
- for (const auto &Var : VLocs) {
- if (Var.second.Kind == DbgValue::Const) {
- PendingDbgValues.push_back(
- emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties));
- continue;
- }
-
- // If the value has no location, we can't make a variable location.
- const ValueIDNum &Num = Var.second.ID;
- auto ValuesPreferredLoc = ValueToLoc.find(Num);
- if (ValuesPreferredLoc->second.isIllegal()) {
- // If it's a def that occurs in this block, register it as a
- // use-before-def to be resolved as we step through the block.
- if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
- addUseBeforeDef(Var.first, Var.second.Properties, Num);
- else
- recoverAsEntryValue(Var.first, Var.second.Properties, Num);
- continue;
- }
-
- LocIdx M = ValuesPreferredLoc->second;
- auto NewValue = LocAndProperties{M, Var.second.Properties};
- auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
- if (!Result.second)
- Result.first->second = NewValue;
- ActiveMLocs[M].insert(Var.first);
- PendingDbgValues.push_back(
- MTracker->emitLoc(M, Var.first, Var.second.Properties));
- }
- flushDbgValues(MBB.begin(), &MBB);
- }
-
- /// Record that \p Var has value \p ID, a value that becomes available
- /// later in the function.
- void addUseBeforeDef(const DebugVariable &Var,
- const DbgValueProperties &Properties, ValueIDNum ID) {
- UseBeforeDef UBD = {ID, Var, Properties};
- UseBeforeDefs[ID.getInst()].push_back(UBD);
- UseBeforeDefVariables.insert(Var);
- }
-
- /// After the instruction at index \p Inst and position \p pos has been
- /// processed, check whether it defines a variable value in a use-before-def.
- /// If so, and the variable value hasn't changed since the start of the
- /// block, create a DBG_VALUE.
- void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
- auto MIt = UseBeforeDefs.find(Inst);
- if (MIt == UseBeforeDefs.end())
- return;
-
- for (auto &Use : MIt->second) {
- LocIdx L = Use.ID.getLoc();
-
- // If something goes very wrong, we might end up labelling a COPY
- // instruction or similar with an instruction number, where it doesn't
- // actually define a new value, instead it moves a value. In case this
- // happens, discard.
- if (MTracker->readMLoc(L) != Use.ID)
- continue;
-
- // If a different debug instruction defined the variable value / location
- // since the start of the block, don't materialize this use-before-def.
- if (!UseBeforeDefVariables.count(Use.Var))
- continue;
-
- PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
- }
- flushDbgValues(pos, nullptr);
- }
-
- /// Helper to move created DBG_VALUEs into Transfers collection.
- void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
- if (PendingDbgValues.size() == 0)
- return;
-
- // Pick out the instruction start position.
- MachineBasicBlock::instr_iterator BundleStart;
- if (MBB && Pos == MBB->begin())
- BundleStart = MBB->instr_begin();
- else
- BundleStart = getBundleStart(Pos->getIterator());
-
- Transfers.push_back({BundleStart, MBB, PendingDbgValues});
- PendingDbgValues.clear();
- }
-
- bool isEntryValueVariable(const DebugVariable &Var,
- const DIExpression *Expr) const {
- if (!Var.getVariable()->isParameter())
- return false;
-
- if (Var.getInlinedAt())
- return false;
-
- if (Expr->getNumElements() > 0)
- return false;
-
- return true;
- }
-
- bool isEntryValueValue(const ValueIDNum &Val) const {
- // Must be in entry block (block number zero), and be a PHI / live-in value.
- if (Val.getBlock() || !Val.isPHI())
- return false;
-
- // Entry values must enter in a register.
- if (MTracker->isSpill(Val.getLoc()))
- return false;
-
- Register SP = TLI->getStackPointerRegisterToSaveRestore();
- Register FP = TRI.getFrameRegister(MF);
- Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
- return Reg != SP && Reg != FP;
- }
-
- bool recoverAsEntryValue(const DebugVariable &Var,
- const DbgValueProperties &Prop,
- const ValueIDNum &Num) {
- // Is this variable location a candidate to be an entry value. First,
- // should we be trying this at all?
- if (!ShouldEmitDebugEntryValues)
- return false;
-
- // Is the variable appropriate for entry values (i.e., is a parameter).
- if (!isEntryValueVariable(Var, Prop.DIExpr))
- return false;
-
- // Is the value assigned to this variable still the entry value?
- if (!isEntryValueValue(Num))
- return false;
-
- // Emit a variable location using an entry value expression.
- DIExpression *NewExpr =
- DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
- Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
- MachineOperand MO = MachineOperand::CreateReg(Reg, false);
-
- PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
- return true;
- }
-
- /// Change a variable value after encountering a DBG_VALUE inside a block.
- void redefVar(const MachineInstr &MI) {
- DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
- MI.getDebugLoc()->getInlinedAt());
- DbgValueProperties Properties(MI);
-
- const MachineOperand &MO = MI.getOperand(0);
-
- // Ignore non-register locations, we don't transfer those.
- if (!MO.isReg() || MO.getReg() == 0) {
- auto It = ActiveVLocs.find(Var);
- if (It != ActiveVLocs.end()) {
- ActiveMLocs[It->second.Loc].erase(Var);
- ActiveVLocs.erase(It);
- }
- // Any use-before-defs no longer apply.
- UseBeforeDefVariables.erase(Var);
- return;
- }
-
- Register Reg = MO.getReg();
- LocIdx NewLoc = MTracker->getRegMLoc(Reg);
- redefVar(MI, Properties, NewLoc);
- }
-
- /// Handle a change in variable location within a block. Terminate the
- /// variables current location, and record the value it now refers to, so
- /// that we can detect location transfers later on.
- void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
- Optional<LocIdx> OptNewLoc) {
- DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
- MI.getDebugLoc()->getInlinedAt());
- // Any use-before-defs no longer apply.
- UseBeforeDefVariables.erase(Var);
-
- // Erase any previous location,
- auto It = ActiveVLocs.find(Var);
- if (It != ActiveVLocs.end())
- ActiveMLocs[It->second.Loc].erase(Var);
-
- // If there _is_ no new location, all we had to do was erase.
- if (!OptNewLoc)
- return;
- LocIdx NewLoc = *OptNewLoc;
-
- // Check whether our local copy of values-by-location in #VarLocs is out of
- // date. Wipe old tracking data for the location if it's been clobbered in
- // the meantime.
- if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
- for (auto &P : ActiveMLocs[NewLoc]) {
- ActiveVLocs.erase(P);
- }
- ActiveMLocs[NewLoc.asU64()].clear();
- VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
- }
-
- ActiveMLocs[NewLoc].insert(Var);
- if (It == ActiveVLocs.end()) {
- ActiveVLocs.insert(
- std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
- } else {
- It->second.Loc = NewLoc;
- It->second.Properties = Properties;
- }
- }
-
- /// Account for a location \p mloc being clobbered. Examine the variable
- /// locations that will be terminated: and try to recover them by using
- /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
- /// explicitly terminate a location if it can't be recovered.
- void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
- bool MakeUndef = true) {
- auto ActiveMLocIt = ActiveMLocs.find(MLoc);
- if (ActiveMLocIt == ActiveMLocs.end())
- return;
-
- // What was the old variable value?
- ValueIDNum OldValue = VarLocs[MLoc.asU64()];
- VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
-
- // Examine the remaining variable locations: if we can find the same value
- // again, we can recover the location.
- Optional<LocIdx> NewLoc = None;
- for (auto Loc : MTracker->locations())
- if (Loc.Value == OldValue)
- NewLoc = Loc.Idx;
-
- // If there is no location, and we weren't asked to make the variable
- // explicitly undef, then stop here.
- if (!NewLoc && !MakeUndef) {
- // Try and recover a few more locations with entry values.
- for (auto &Var : ActiveMLocIt->second) {
- auto &Prop = ActiveVLocs.find(Var)->second.Properties;
- recoverAsEntryValue(Var, Prop, OldValue);
- }
- flushDbgValues(Pos, nullptr);
- return;
- }
-
- // Examine all the variables based on this location.
- DenseSet<DebugVariable> NewMLocs;
- for (auto &Var : ActiveMLocIt->second) {
- auto ActiveVLocIt = ActiveVLocs.find(Var);
- // Re-state the variable location: if there's no replacement then NewLoc
- // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
- // identifying the alternative location will be emitted.
- const DbgValueProperties &Properties = ActiveVLocIt->second.Properties;
- PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));
-
- // Update machine locations <=> variable locations maps. Defer updating
- // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
- if (!NewLoc) {
- ActiveVLocs.erase(ActiveVLocIt);
- } else {
- ActiveVLocIt->second.Loc = *NewLoc;
- NewMLocs.insert(Var);
- }
- }
-
- // Commit any deferred ActiveMLoc changes.
- if (!NewMLocs.empty())
- for (auto &Var : NewMLocs)
- ActiveMLocs[*NewLoc].insert(Var);
-
- // We lazily track what locations have which values; if we've found a new
- // location for the clobbered value, remember it.
- if (NewLoc)
- VarLocs[NewLoc->asU64()] = OldValue;
-
- flushDbgValues(Pos, nullptr);
-
- // Re-find ActiveMLocIt, iterator could have been invalidated.
- ActiveMLocIt = ActiveMLocs.find(MLoc);
- ActiveMLocIt->second.clear();
- }
-
- /// Transfer variables based on \p Src to be based on \p Dst. This handles
- /// both register copies as well as spills and restores. Creates DBG_VALUEs
- /// describing the movement.
- void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
- // Does Src still contain the value num we expect? If not, it's been
- // clobbered in the meantime, and our variable locations are stale.
- if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
- return;
-
- // assert(ActiveMLocs[Dst].size() == 0);
- //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
-
- // Move set of active variables from one location to another.
- auto MovingVars = ActiveMLocs[Src];
- ActiveMLocs[Dst] = MovingVars;
- VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
-
- // For each variable based on Src; create a location at Dst.
- for (auto &Var : MovingVars) {
- auto ActiveVLocIt = ActiveVLocs.find(Var);
- assert(ActiveVLocIt != ActiveVLocs.end());
- ActiveVLocIt->second.Loc = Dst;
-
- MachineInstr *MI =
- MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
- PendingDbgValues.push_back(MI);
- }
- ActiveMLocs[Src].clear();
- flushDbgValues(Pos, nullptr);
-
- // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
- // about the old location.
- if (EmulateOldLDV)
- VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
- }
-
- MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
- const DebugVariable &Var,
- const DbgValueProperties &Properties) {
- DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
- Var.getVariable()->getScope(),
- const_cast<DILocation *>(Var.getInlinedAt()));
- auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
- MIB.add(MO);
- if (Properties.Indirect)
- MIB.addImm(0);
- else
- MIB.addReg(0);
- MIB.addMetadata(Var.getVariable());
- MIB.addMetadata(Properties.DIExpr);
- return MIB;
- }
-};
-
-//===----------------------------------------------------------------------===//
-// Implementation
-//===----------------------------------------------------------------------===//
-
-ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
-ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1};
-
-#ifndef NDEBUG
-void DbgValue::dump(const MLocTracker *MTrack) const {
- if (Kind == Const) {
- MO->dump();
- } else if (Kind == NoVal) {
- dbgs() << "NoVal(" << BlockNo << ")";
- } else if (Kind == VPHI) {
- dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")";
- } else {
- assert(Kind == Def);
- dbgs() << MTrack->IDAsString(ID);
- }
- if (Properties.Indirect)
- dbgs() << " indir";
- if (Properties.DIExpr)
- dbgs() << " " << *Properties.DIExpr;
-}
-#endif
-
-MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
- const TargetRegisterInfo &TRI,
- const TargetLowering &TLI)
- : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
- LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
- NumRegs = TRI.getNumRegs();
- reset();
- LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
- assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
-
- // Always track SP. This avoids the implicit clobbering caused by regmasks
- // from affectings its values. (LiveDebugValues disbelieves calls and
- // regmasks that claim to clobber SP).
- Register SP = TLI.getStackPointerRegisterToSaveRestore();
- if (SP) {
- unsigned ID = getLocID(SP);
- (void)lookupOrTrackRegister(ID);
-
- for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
- SPAliases.insert(*RAI);
- }
-
- // Build some common stack positions -- full registers being spilt to the
- // stack.
- StackSlotIdxes.insert({{8, 0}, 0});
- StackSlotIdxes.insert({{16, 0}, 1});
- StackSlotIdxes.insert({{32, 0}, 2});
- StackSlotIdxes.insert({{64, 0}, 3});
- StackSlotIdxes.insert({{128, 0}, 4});
- StackSlotIdxes.insert({{256, 0}, 5});
- StackSlotIdxes.insert({{512, 0}, 6});
-
- // Traverse all the subregister idxes, and ensure there's an index for them.
- // Duplicates are no problem: we're interested in their position in the
- // stack slot, we don't want to type the slot.
- for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
- unsigned Size = TRI.getSubRegIdxSize(I);
- unsigned Offs = TRI.getSubRegIdxOffset(I);
- unsigned Idx = StackSlotIdxes.size();
-
- // Some subregs have -1, -2 and so forth fed into their fields, to mean
- // special backend things. Ignore those.
- if (Size > 60000 || Offs > 60000)
- continue;
-
- StackSlotIdxes.insert({{Size, Offs}, Idx});
- }
-
- for (auto &Idx : StackSlotIdxes)
- StackIdxesToPos[Idx.second] = Idx.first;
-
- NumSlotIdxes = StackSlotIdxes.size();
-}
-
-LocIdx MLocTracker::trackRegister(unsigned ID) {
- assert(ID != 0);
- LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
- LocIdxToIDNum.grow(NewIdx);
- LocIdxToLocID.grow(NewIdx);
-
- // Default: it's an mphi.
- ValueIDNum ValNum = {CurBB, 0, NewIdx};
- // Was this reg ever touched by a regmask?
- for (const auto &MaskPair : reverse(Masks)) {
- if (MaskPair.first->clobbersPhysReg(ID)) {
- // There was an earlier def we skipped.
- ValNum = {CurBB, MaskPair.second, NewIdx};
- break;
- }
- }
-
- LocIdxToIDNum[NewIdx] = ValNum;
- LocIdxToLocID[NewIdx] = ID;
- return NewIdx;
-}
-
-void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
- unsigned InstID) {
- // Def any register we track have that isn't preserved. The regmask
- // terminates the liveness of a register, meaning its value can't be
- // relied upon -- we represent this by giving it a new value.
- for (auto Location : locations()) {
- unsigned ID = LocIdxToLocID[Location.Idx];
- // Don't clobber SP, even if the mask says it's clobbered.
- if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
- defReg(ID, CurBB, InstID);
- }
- Masks.push_back(std::make_pair(MO, InstID));
-}
-
-Optional<SpillLocationNo> MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
- SpillLocationNo SpillID(SpillLocs.idFor(L));
-
- if (SpillID.id() == 0) {
- // If there is no location, and we have reached the limit of how many stack
- // slots to track, then don't track this one.
- if (SpillLocs.size() >= StackWorkingSetLimit)
- return None;
-
- // Spill location is untracked: create record for this one, and all
- // subregister slots too.
- SpillID = SpillLocationNo(SpillLocs.insert(L));
- for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
- unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
- LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
- LocIdxToIDNum.grow(Idx);
- LocIdxToLocID.grow(Idx);
- LocIDToLocIdx.push_back(Idx);
- LocIdxToLocID[Idx] = L;
- // Initialize to PHI value; corresponds to the location's live-in value
- // during transfer function construction.
- LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
- }
- }
- return SpillID;
-}
-
-std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
- unsigned ID = LocIdxToLocID[Idx];
- if (ID >= NumRegs) {
- StackSlotPos Pos = locIDToSpillIdx(ID);
- ID -= NumRegs;
- unsigned Slot = ID / NumSlotIdxes;
- return Twine("slot ")
- .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
- .concat(Twine(" offs ").concat(Twine(Pos.second))))))
- .str();
- } else {
- return TRI.getRegAsmName(ID).str();
- }
-}
-
-std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
- std::string DefName = LocIdxToName(Num.getLoc());
- return Num.asString(DefName);
-}
-
-#ifndef NDEBUG
-LLVM_DUMP_METHOD void MLocTracker::dump() {
- for (auto Location : locations()) {
- std::string MLocName = LocIdxToName(Location.Value.getLoc());
- std::string DefName = Location.Value.asString(MLocName);
- dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
- }
-}
-
-LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
- for (auto Location : locations()) {
- std::string foo = LocIdxToName(Location.Idx);
- dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
- }
-}
-#endif
-
-MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc,
- const DebugVariable &Var,
- const DbgValueProperties &Properties) {
- DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
- Var.getVariable()->getScope(),
- const_cast<DILocation *>(Var.getInlinedAt()));
- auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
-
- const DIExpression *Expr = Properties.DIExpr;
- if (!MLoc) {
- // No location -> DBG_VALUE $noreg
- MIB.addReg(0);
- MIB.addReg(0);
- } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
- unsigned LocID = LocIdxToLocID[*MLoc];
- SpillLocationNo SpillID = locIDToSpill(LocID);
- StackSlotPos StackIdx = locIDToSpillIdx(LocID);
- unsigned short Offset = StackIdx.second;
-
- // TODO: support variables that are located in spill slots, with non-zero
- // offsets from the start of the spill slot. It would require some more
- // complex DIExpression calculations. This doesn't seem to be produced by
- // LLVM right now, so don't try and support it.
- // Accept no-subregister slots and subregisters where the offset is zero.
- // The consumer should already have type information to work out how large
- // the variable is.
- if (Offset == 0) {
- const SpillLoc &Spill = SpillLocs[SpillID.id()];
- Expr = TRI.prependOffsetExpression(Expr, DIExpression::ApplyOffset,
- Spill.SpillOffset);
- unsigned Base = Spill.SpillBase;
- MIB.addReg(Base);
- MIB.addImm(0);
-
- // Being on the stack makes this location indirect; if it was _already_
- // indirect though, we need to add extra indirection. See this test for
- // a scenario where this happens:
- // llvm/test/DebugInfo/X86/spill-nontrivial-param.ll
- if (Properties.Indirect) {
- std::vector<uint64_t> Elts = {dwarf::DW_OP_deref};
- Expr = DIExpression::append(Expr, Elts);
- }
- } else {
- // This is a stack location with a weird subregister offset: emit an undef
- // DBG_VALUE instead.
- MIB.addReg(0);
- MIB.addReg(0);
- }
- } else {
- // Non-empty, non-stack slot, must be a plain register.
- unsigned LocID = LocIdxToLocID[*MLoc];
- MIB.addReg(LocID);
- if (Properties.Indirect)
- MIB.addImm(0);
- else
- MIB.addReg(0);
- }
-
- MIB.addMetadata(Var.getVariable());
- MIB.addMetadata(Expr);
- return MIB;
-}
-
-/// Default construct and initialize the pass.
-InstrRefBasedLDV::InstrRefBasedLDV() {}
-
-bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
- unsigned Reg = MTracker->LocIdxToLocID[L];
- for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
- if (CalleeSavedRegs.test(*RAI))
- return true;
- return false;
-}
-
-//===----------------------------------------------------------------------===//
-// Debug Range Extension Implementation
-//===----------------------------------------------------------------------===//
-
-#ifndef NDEBUG
-// Something to restore in the future.
-// void InstrRefBasedLDV::printVarLocInMBB(..)
-#endif
-
-Optional<SpillLocationNo>
-InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
- assert(MI.hasOneMemOperand() &&
- "Spill instruction does not have exactly one memory operand?");
- auto MMOI = MI.memoperands_begin();
- const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
- assert(PVal->kind() == PseudoSourceValue::FixedStack &&
- "Inconsistent memory operand in spill instruction");
- int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
- const MachineBasicBlock *MBB = MI.getParent();
- Register Reg;
- StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
- return MTracker->getOrTrackSpillLoc({Reg, Offset});
-}
-
-Optional<LocIdx>
-InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) {
- Optional<SpillLocationNo> SpillLoc = extractSpillBaseRegAndOffset(MI);
- if (!SpillLoc)
- return None;
-
- // Where in the stack slot is this value defined -- i.e., what size of value
- // is this? An important question, because it could be loaded into a register
- // from the stack at some point. Happily the memory operand will tell us
- // the size written to the stack.
- auto *MemOperand = *MI.memoperands_begin();
- unsigned SizeInBits = MemOperand->getSizeInBits();
-
- // Find that position in the stack indexes we're tracking.
- auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0});
- if (IdxIt == MTracker->StackSlotIdxes.end())
- // That index is not tracked. This is suprising, and unlikely to ever
- // occur, but the safe action is to indicate the variable is optimised out.
- return None;
-
- unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillLoc, IdxIt->second);
- return MTracker->getSpillMLoc(SpillID);
-}
-
-/// End all previous ranges related to @MI and start a new range from @MI
-/// if it is a DBG_VALUE instr.
-bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
- if (!MI.isDebugValue())
- return false;
-
- const DILocalVariable *Var = MI.getDebugVariable();
- const DIExpression *Expr = MI.getDebugExpression();
- const DILocation *DebugLoc = MI.getDebugLoc();
- const DILocation *InlinedAt = DebugLoc->getInlinedAt();
- assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
- "Expected inlined-at fields to agree");
-
- DebugVariable V(Var, Expr, InlinedAt);
- DbgValueProperties Properties(MI);
-
- // If there are no instructions in this lexical scope, do no location tracking
- // at all, this variable shouldn't get a legitimate location range.
- auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
- if (Scope == nullptr)
- return true; // handled it; by doing nothing
-
- // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to
- // contribute to locations in this block, but don't propagate further.
- // Interpret it like a DBG_VALUE $noreg.
- if (MI.isDebugValueList()) {
- if (VTracker)
- VTracker->defVar(MI, Properties, None);
- if (TTracker)
- TTracker->redefVar(MI, Properties, None);
- return true;
- }
-
- const MachineOperand &MO = MI.getOperand(0);
-
- // MLocTracker needs to know that this register is read, even if it's only
- // read by a debug inst.
- if (MO.isReg() && MO.getReg() != 0)
- (void)MTracker->readReg(MO.getReg());
-
- // If we're preparing for the second analysis (variables), the machine value
- // locations are already solved, and we report this DBG_VALUE and the value
- // it refers to to VLocTracker.
- if (VTracker) {
- if (MO.isReg()) {
- // Feed defVar the new variable location, or if this is a
- // DBG_VALUE $noreg, feed defVar None.
- if (MO.getReg())
- VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
- else
- VTracker->defVar(MI, Properties, None);
- } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
- MI.getOperand(0).isCImm()) {
- VTracker->defVar(MI, MI.getOperand(0));
- }
- }
-
- // If performing final tracking of transfers, report this variable definition
- // to the TransferTracker too.
- if (TTracker)
- TTracker->redefVar(MI);
- return true;
-}
-
-bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
- ValueIDNum **MLiveOuts,
- ValueIDNum **MLiveIns) {
- if (!MI.isDebugRef())
- return false;
-
- // Only handle this instruction when we are building the variable value
- // transfer function.
- if (!VTracker && !TTracker)
- return false;
-
- unsigned InstNo = MI.getOperand(0).getImm();
- unsigned OpNo = MI.getOperand(1).getImm();
-
- const DILocalVariable *Var = MI.getDebugVariable();
- const DIExpression *Expr = MI.getDebugExpression();
- const DILocation *DebugLoc = MI.getDebugLoc();
- const DILocation *InlinedAt = DebugLoc->getInlinedAt();
- assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
- "Expected inlined-at fields to agree");
-
- DebugVariable V(Var, Expr, InlinedAt);
-
- auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
- if (Scope == nullptr)
- return true; // Handled by doing nothing. This variable is never in scope.
-
- const MachineFunction &MF = *MI.getParent()->getParent();
-
- // Various optimizations may have happened to the value during codegen,
- // recorded in the value substitution table. Apply any substitutions to
- // the instruction / operand number in this DBG_INSTR_REF, and collect
- // any subregister extractions performed during optimization.
-
- // Create dummy substitution with Src set, for lookup.
- auto SoughtSub =
- MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
-
- SmallVector<unsigned, 4> SeenSubregs;
- auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
- while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
- LowerBoundIt->Src == SoughtSub.Src) {
- std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
- SoughtSub.Src = LowerBoundIt->Dest;
- if (unsigned Subreg = LowerBoundIt->Subreg)
- SeenSubregs.push_back(Subreg);
- LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
- }
-
- // Default machine value number is <None> -- if no instruction defines
- // the corresponding value, it must have been optimized out.
- Optional<ValueIDNum> NewID = None;
-
- // Try to lookup the instruction number, and find the machine value number
- // that it defines. It could be an instruction, or a PHI.
- auto InstrIt = DebugInstrNumToInstr.find(InstNo);
- auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
- DebugPHINumToValue.end(), InstNo);
- if (InstrIt != DebugInstrNumToInstr.end()) {
- const MachineInstr &TargetInstr = *InstrIt->second.first;
- uint64_t BlockNo = TargetInstr.getParent()->getNumber();
-
- // Pick out the designated operand. It might be a memory reference, if
- // a register def was folded into a stack store.
- if (OpNo == MachineFunction::DebugOperandMemNumber &&
- TargetInstr.hasOneMemOperand()) {
- Optional<LocIdx> L = findLocationForMemOperand(TargetInstr);
- if (L)
- NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L);
- } else if (OpNo != MachineFunction::DebugOperandMemNumber) {
- assert(OpNo < TargetInstr.getNumOperands());
- const MachineOperand &MO = TargetInstr.getOperand(OpNo);
-
- // Today, this can only be a register.
- assert(MO.isReg() && MO.isDef());
-
- unsigned LocID = MTracker->getLocID(MO.getReg());
- LocIdx L = MTracker->LocIDToLocIdx[LocID];
- NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
- }
- // else: NewID is left as None.
- } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
- // It's actually a PHI value. Which value it is might not be obvious, use
- // the resolver helper to find out.
- NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
- MI, InstNo);
- }
-
- // Apply any subregister extractions, in reverse. We might have seen code
- // like this:
- // CALL64 @foo, implicit-def $rax
- // %0:gr64 = COPY $rax
- // %1:gr32 = COPY %0.sub_32bit
- // %2:gr16 = COPY %1.sub_16bit
- // %3:gr8 = COPY %2.sub_8bit
- // In which case each copy would have been recorded as a substitution with
- // a subregister qualifier. Apply those qualifiers now.
- if (NewID && !SeenSubregs.empty()) {
- unsigned Offset = 0;
- unsigned Size = 0;
-
- // Look at each subregister that we passed through, and progressively
- // narrow in, accumulating any offsets that occur. Substitutions should
- // only ever be the same or narrower width than what they read from;
- // iterate in reverse order so that we go from wide to small.
- for (unsigned Subreg : reverse(SeenSubregs)) {
- unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
- unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
- Offset += ThisOffset;
- Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
- }
-
- // If that worked, look for an appropriate subregister with the register
- // where the define happens. Don't look at values that were defined during
- // a stack write: we can't currently express register locations within
- // spills.
- LocIdx L = NewID->getLoc();
- if (NewID && !MTracker->isSpill(L)) {
- // Find the register class for the register where this def happened.
- // FIXME: no index for this?
- Register Reg = MTracker->LocIdxToLocID[L];
- const TargetRegisterClass *TRC = nullptr;
- for (auto *TRCI : TRI->regclasses())
- if (TRCI->contains(Reg))
- TRC = TRCI;
- assert(TRC && "Couldn't find target register class?");
-
- // If the register we have isn't the right size or in the right place,
- // Try to find a subregister inside it.
- unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
- if (Size != MainRegSize || Offset) {
- // Enumerate all subregisters, searching.
- Register NewReg = 0;
- for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
- unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
- unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
- unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
- if (SubregSize == Size && SubregOffset == Offset) {
- NewReg = *SRI;
- break;
- }
- }
-
- // If we didn't find anything: there's no way to express our value.
- if (!NewReg) {
- NewID = None;
- } else {
- // Re-state the value as being defined within the subregister
- // that we found.
- LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
- NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
- }
- }
- } else {
- // If we can't handle subregisters, unset the new value.
- NewID = None;
- }
- }
-
- // We, we have a value number or None. Tell the variable value tracker about
- // it. The rest of this LiveDebugValues implementation acts exactly the same
- // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
- // aren't immediately available).
- DbgValueProperties Properties(Expr, false);
- if (VTracker)
- VTracker->defVar(MI, Properties, NewID);
-
- // If we're on the final pass through the function, decompose this INSTR_REF
- // into a plain DBG_VALUE.
- if (!TTracker)
- return true;
-
- // Pick a location for the machine value number, if such a location exists.
- // (This information could be stored in TransferTracker to make it faster).
- Optional<LocIdx> FoundLoc = None;
- for (auto Location : MTracker->locations()) {
- LocIdx CurL = Location.Idx;
- ValueIDNum ID = MTracker->readMLoc(CurL);
- if (NewID && ID == NewID) {
- // If this is the first location with that value, pick it. Otherwise,
- // consider whether it's a "longer term" location.
- if (!FoundLoc) {
- FoundLoc = CurL;
- continue;
- }
-
- if (MTracker->isSpill(CurL))
- FoundLoc = CurL; // Spills are a longer term location.
- else if (!MTracker->isSpill(*FoundLoc) &&
- !MTracker->isSpill(CurL) &&
- !isCalleeSaved(*FoundLoc) &&
- isCalleeSaved(CurL))
- FoundLoc = CurL; // Callee saved regs are longer term than normal.
- }
- }
-
- // Tell transfer tracker that the variable value has changed.
- TTracker->redefVar(MI, Properties, FoundLoc);
-
- // If there was a value with no location; but the value is defined in a
- // later instruction in this block, this is a block-local use-before-def.
- if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
- NewID->getInst() > CurInst)
- TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
-
- // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
- // This DBG_VALUE is potentially a $noreg / undefined location, if
- // FoundLoc is None.
- // (XXX -- could morph the DBG_INSTR_REF in the future).
- MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
- TTracker->PendingDbgValues.push_back(DbgMI);
- TTracker->flushDbgValues(MI.getIterator(), nullptr);
- return true;
-}
-
-bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
- if (!MI.isDebugPHI())
- return false;
-
- // Analyse these only when solving the machine value location problem.
- if (VTracker || TTracker)
- return true;
-
- // First operand is the value location, either a stack slot or register.
- // Second is the debug instruction number of the original PHI.
- const MachineOperand &MO = MI.getOperand(0);
- unsigned InstrNum = MI.getOperand(1).getImm();
-
- if (MO.isReg()) {
- // The value is whatever's currently in the register. Read and record it,
- // to be analysed later.
- Register Reg = MO.getReg();
- ValueIDNum Num = MTracker->readReg(Reg);
- auto PHIRec = DebugPHIRecord(
- {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
- DebugPHINumToValue.push_back(PHIRec);
-
- // Ensure this register is tracked.
- for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
- MTracker->lookupOrTrackRegister(*RAI);
- } else {
- // The value is whatever's in this stack slot.
- assert(MO.isFI());
- unsigned FI = MO.getIndex();
-
- // If the stack slot is dead, then this was optimized away.
- // FIXME: stack slot colouring should account for slots that get merged.
- if (MFI->isDeadObjectIndex(FI))
- return true;
-
- // Identify this spill slot, ensure it's tracked.
- Register Base;
- StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
- SpillLoc SL = {Base, Offs};
- Optional<SpillLocationNo> SpillNo = MTracker->getOrTrackSpillLoc(SL);
-
- // We might be able to find a value, but have chosen not to, to avoid
- // tracking too much stack information.
- if (!SpillNo)
- return true;
-
- // Problem: what value should we extract from the stack? LLVM does not
- // record what size the last store to the slot was, and it would become
- // sketchy after stack slot colouring anyway. Take a look at what values
- // are stored on the stack, and pick the largest one that wasn't def'd
- // by a spill (i.e., the value most likely to have been def'd in a register
- // and then spilt.
- std::array<unsigned, 4> CandidateSizes = {64, 32, 16, 8};
- Optional<ValueIDNum> Result = None;
- Optional<LocIdx> SpillLoc = None;
- for (unsigned CS : CandidateSizes) {
- unsigned SpillID = MTracker->getLocID(*SpillNo, {CS, 0});
- SpillLoc = MTracker->getSpillMLoc(SpillID);
- ValueIDNum Val = MTracker->readMLoc(*SpillLoc);
- // If this value was defined in it's own position, then it was probably
- // an aliasing index of a small value that was spilt.
- if (Val.getLoc() != SpillLoc->asU64()) {
- Result = Val;
- break;
- }
- }
-
- // If we didn't find anything, we're probably looking at a PHI, or a memory
- // store folded into an instruction. FIXME: Take a guess that's it's 64
- // bits. This isn't ideal, but tracking the size that the spill is
- // "supposed" to be is more complex, and benefits a small number of
- // locations.
- if (!Result) {
- unsigned SpillID = MTracker->getLocID(*SpillNo, {64, 0});
- SpillLoc = MTracker->getSpillMLoc(SpillID);
- Result = MTracker->readMLoc(*SpillLoc);
- }
-
- // Record this DBG_PHI for later analysis.
- auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), *Result, *SpillLoc});
- DebugPHINumToValue.push_back(DbgPHI);
- }
-
- return true;
-}
-
-void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
- // Meta Instructions do not affect the debug liveness of any register they
- // define.
- if (MI.isImplicitDef()) {
- // Except when there's an implicit def, and the location it's defining has
- // no value number. The whole point of an implicit def is to announce that
- // the register is live, without be specific about it's value. So define
- // a value if there isn't one already.
- ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
- // Has a legitimate value -> ignore the implicit def.
- if (Num.getLoc() != 0)
- return;
- // Otherwise, def it here.
- } else if (MI.isMetaInstruction())
- return;
-
- // We always ignore SP defines on call instructions, they don't actually
- // change the value of the stack pointer... except for win32's _chkstk. This
- // is rare: filter quickly for the common case (no stack adjustments, not a
- // call, etc). If it is a call that modifies SP, recognise the SP register
- // defs.
- bool CallChangesSP = false;
- if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() &&
- !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data()))
- CallChangesSP = true;
-
- // Test whether we should ignore a def of this register due to it being part
- // of the stack pointer.
- auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool {
- if (CallChangesSP)
- return false;
- return MI.isCall() && MTracker->SPAliases.count(R);
- };
-
- // Find the regs killed by MI, and find regmasks of preserved regs.
- // Max out the number of statically allocated elements in `DeadRegs`, as this
- // prevents fallback to std::set::count() operations.
- SmallSet<uint32_t, 32> DeadRegs;
- SmallVector<const uint32_t *, 4> RegMasks;
- SmallVector<const MachineOperand *, 4> RegMaskPtrs;
- for (const MachineOperand &MO : MI.operands()) {
- // Determine whether the operand is a register def.
- if (MO.isReg() && MO.isDef() && MO.getReg() &&
- Register::isPhysicalRegister(MO.getReg()) &&
- !IgnoreSPAlias(MO.getReg())) {
- // Remove ranges of all aliased registers.
- for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
- // FIXME: Can we break out of this loop early if no insertion occurs?
- DeadRegs.insert(*RAI);
- } else if (MO.isRegMask()) {
- RegMasks.push_back(MO.getRegMask());
- RegMaskPtrs.push_back(&MO);
- }
- }
-
- // Tell MLocTracker about all definitions, of regmasks and otherwise.
- for (uint32_t DeadReg : DeadRegs)
- MTracker->defReg(DeadReg, CurBB, CurInst);
-
- for (auto *MO : RegMaskPtrs)
- MTracker->writeRegMask(MO, CurBB, CurInst);
-
- // If this instruction writes to a spill slot, def that slot.
- if (hasFoldedStackStore(MI)) {
- if (Optional<SpillLocationNo> SpillNo = extractSpillBaseRegAndOffset(MI)) {
- for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
- unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
- LocIdx L = MTracker->getSpillMLoc(SpillID);
- MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L));
- }
- }
- }
-
- if (!TTracker)
- return;
-
- // When committing variable values to locations: tell transfer tracker that
- // we've clobbered things. It may be able to recover the variable from a
- // different location.
-
- // Inform TTracker about any direct clobbers.
- for (uint32_t DeadReg : DeadRegs) {
- LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
- TTracker->clobberMloc(Loc, MI.getIterator(), false);
- }
-
- // Look for any clobbers performed by a register mask. Only test locations
- // that are actually being tracked.
- if (!RegMaskPtrs.empty()) {
- for (auto L : MTracker->locations()) {
- // Stack locations can't be clobbered by regmasks.
- if (MTracker->isSpill(L.Idx))
- continue;
-
- Register Reg = MTracker->LocIdxToLocID[L.Idx];
- if (IgnoreSPAlias(Reg))
- continue;
-
- for (auto *MO : RegMaskPtrs)
- if (MO->clobbersPhysReg(Reg))
- TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
- }
- }
-
- // Tell TTracker about any folded stack store.
- if (hasFoldedStackStore(MI)) {
- if (Optional<SpillLocationNo> SpillNo = extractSpillBaseRegAndOffset(MI)) {
- for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
- unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
- LocIdx L = MTracker->getSpillMLoc(SpillID);
- TTracker->clobberMloc(L, MI.getIterator(), true);
- }
- }
- }
-}
-
-void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
- // In all circumstances, re-def all aliases. It's definitely a new value now.
- for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
- MTracker->defReg(*RAI, CurBB, CurInst);
-
- ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
- MTracker->setReg(DstRegNum, SrcValue);
-
- // Copy subregisters from one location to another.
- for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
- unsigned SrcSubReg = SRI.getSubReg();
- unsigned SubRegIdx = SRI.getSubRegIndex();
- unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
- if (!DstSubReg)
- continue;
-
- // Do copy. There are two matching subregisters, the source value should
- // have been def'd when the super-reg was, the latter might not be tracked
- // yet.
- // This will force SrcSubReg to be tracked, if it isn't yet. Will read
- // mphi values if it wasn't tracked.
- LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
- LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
- (void)SrcL;
- (void)DstL;
- ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);
-
- MTracker->setReg(DstSubReg, CpyValue);
- }
-}
-
-Optional<SpillLocationNo>
-InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
- MachineFunction *MF) {
- // TODO: Handle multiple stores folded into one.
- if (!MI.hasOneMemOperand())
- return None;
-
- // Reject any memory operand that's aliased -- we can't guarantee its value.
- auto MMOI = MI.memoperands_begin();
- const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
- if (PVal->isAliased(MFI))
- return None;
-
- if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
- return None; // This is not a spill instruction, since no valid size was
- // returned from either function.
-
- return extractSpillBaseRegAndOffset(MI);
-}
-
-bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
- MachineFunction *MF, unsigned &Reg) {
- if (!isSpillInstruction(MI, MF))
- return false;
-
- int FI;
- Reg = TII->isStoreToStackSlotPostFE(MI, FI);
- return Reg != 0;
-}
-
-Optional<SpillLocationNo>
-InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
- MachineFunction *MF, unsigned &Reg) {
- if (!MI.hasOneMemOperand())
- return None;
-
- // FIXME: Handle folded restore instructions with more than one memory
- // operand.
- if (MI.getRestoreSize(TII)) {
- Reg = MI.getOperand(0).getReg();
- return extractSpillBaseRegAndOffset(MI);
- }
- return None;
-}
-
-bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
- // XXX -- it's too difficult to implement VarLocBasedImpl's stack location
- // limitations under the new model. Therefore, when comparing them, compare
- // versions that don't attempt spills or restores at all.
- if (EmulateOldLDV)
- return false;
-
- // Strictly limit ourselves to plain loads and stores, not all instructions
- // that can access the stack.
- int DummyFI = -1;
- if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
- !TII->isLoadFromStackSlotPostFE(MI, DummyFI))
- return false;
-
- MachineFunction *MF = MI.getMF();
- unsigned Reg;
-
- LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
-
- // Strictly limit ourselves to plain loads and stores, not all instructions
- // that can access the stack.
- int FIDummy;
- if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) &&
- !TII->isLoadFromStackSlotPostFE(MI, FIDummy))
- return false;
-
- // First, if there are any DBG_VALUEs pointing at a spill slot that is
- // written to, terminate that variable location. The value in memory
- // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
- if (Optional<SpillLocationNo> Loc = isSpillInstruction(MI, MF)) {
- // Un-set this location and clobber, so that earlier locations don't
- // continue past this store.
- for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
- unsigned SpillID = MTracker->getSpillIDWithIdx(*Loc, SlotIdx);
- Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
- if (!MLoc)
- continue;
-
- // We need to over-write the stack slot with something (here, a def at
- // this instruction) to ensure no values are preserved in this stack slot
- // after the spill. It also prevents TTracker from trying to recover the
- // location and re-installing it in the same place.
- ValueIDNum Def(CurBB, CurInst, *MLoc);
- MTracker->setMLoc(*MLoc, Def);
- if (TTracker)
- TTracker->clobberMloc(*MLoc, MI.getIterator());
- }
- }
-
- // Try to recognise spill and restore instructions that may transfer a value.
- if (isLocationSpill(MI, MF, Reg)) {
- // isLocationSpill returning true should guarantee we can extract a
- // location.
- SpillLocationNo Loc = *extractSpillBaseRegAndOffset(MI);
-
- auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
- auto ReadValue = MTracker->readReg(SrcReg);
- LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
- MTracker->setMLoc(DstLoc, ReadValue);
-
- if (TTracker) {
- LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
- TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
- }
- };
-
- // Then, transfer subreg bits.
- for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
- // Ensure this reg is tracked,
- (void)MTracker->lookupOrTrackRegister(*SRI);
- unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI);
- unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
- DoTransfer(*SRI, SpillID);
- }
-
- // Directly lookup size of main source reg, and transfer.
- unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
- unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
- DoTransfer(Reg, SpillID);
- } else {
- Optional<SpillLocationNo> Loc = isRestoreInstruction(MI, MF, Reg);
- if (!Loc)
- return false;
-
- // Assumption: we're reading from the base of the stack slot, not some
- // offset into it. It seems very unlikely LLVM would ever generate
- // restores where this wasn't true. This then becomes a question of what
- // subregisters in the destination register line up with positions in the
- // stack slot.
-
- // Def all registers that alias the destination.
- for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
- MTracker->defReg(*RAI, CurBB, CurInst);
-
- // Now find subregisters within the destination register, and load values
- // from stack slot positions.
- auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
- LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
- auto ReadValue = MTracker->readMLoc(SrcIdx);
- MTracker->setReg(DestReg, ReadValue);
-
- if (TTracker) {
- LocIdx DstLoc = MTracker->getRegMLoc(DestReg);
- TTracker->transferMlocs(SrcIdx, DstLoc, MI.getIterator());
- }
- };
-
- for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
- unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
- unsigned SpillID = MTracker->getLocID(*Loc, Subreg);
- DoTransfer(*SRI, SpillID);
- }
-
- // Directly look up this registers slot idx by size, and transfer.
- unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
- unsigned SpillID = MTracker->getLocID(*Loc, {Size, 0});
- DoTransfer(Reg, SpillID);
- }
- return true;
-}
-
-bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
- auto DestSrc = TII->isCopyInstr(MI);
- if (!DestSrc)
- return false;
-
- const MachineOperand *DestRegOp = DestSrc->Destination;
- const MachineOperand *SrcRegOp = DestSrc->Source;
-
- auto isCalleeSavedReg = [&](unsigned Reg) {
- for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
- if (CalleeSavedRegs.test(*RAI))
- return true;
- return false;
- };
-
- Register SrcReg = SrcRegOp->getReg();
- Register DestReg = DestRegOp->getReg();
-
- // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
- if (SrcReg == DestReg)
- return true;
-
- // For emulating VarLocBasedImpl:
- // We want to recognize instructions where destination register is callee
- // saved register. If register that could be clobbered by the call is
- // included, there would be a great chance that it is going to be clobbered
- // soon. It is more likely that previous register, which is callee saved, is
- // going to stay unclobbered longer, even if it is killed.
- //
- // For InstrRefBasedImpl, we can track multiple locations per value, so
- // ignore this condition.
- if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
- return false;
-
- // InstrRefBasedImpl only followed killing copies.
- if (EmulateOldLDV && !SrcRegOp->isKill())
- return false;
-
- // Copy MTracker info, including subregs if available.
- InstrRefBasedLDV::performCopy(SrcReg, DestReg);
-
- // Only produce a transfer of DBG_VALUE within a block where old LDV
- // would have. We might make use of the additional value tracking in some
- // other way, later.
- if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
- TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
- MTracker->getRegMLoc(DestReg), MI.getIterator());
-
- // VarLocBasedImpl would quit tracking the old location after copying.
- if (EmulateOldLDV && SrcReg != DestReg)
- MTracker->defReg(SrcReg, CurBB, CurInst);
-
- // Finally, the copy might have clobbered variables based on the destination
- // register. Tell TTracker about it, in case a backup location exists.
- if (TTracker) {
- for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
- LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
- TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false);
- }
- }
-
- return true;
-}
-
-/// Accumulate a mapping between each DILocalVariable fragment and other
-/// fragments of that DILocalVariable which overlap. This reduces work during
-/// the data-flow stage from "Find any overlapping fragments" to "Check if the
-/// known-to-overlap fragments are present".
-/// \param MI A previously unprocessed debug instruction to analyze for
-/// fragment usage.
-void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
- assert(MI.isDebugValue() || MI.isDebugRef());
- DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
- MI.getDebugLoc()->getInlinedAt());
- FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
-
- // If this is the first sighting of this variable, then we are guaranteed
- // there are currently no overlapping fragments either. Initialize the set
- // of seen fragments, record no overlaps for the current one, and return.
- auto SeenIt = SeenFragments.find(MIVar.getVariable());
- if (SeenIt == SeenFragments.end()) {
- SmallSet<FragmentInfo, 4> OneFragment;
- OneFragment.insert(ThisFragment);
- SeenFragments.insert({MIVar.getVariable(), OneFragment});
-
- OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
- return;
- }
-
- // If this particular Variable/Fragment pair already exists in the overlap
- // map, it has already been accounted for.
- auto IsInOLapMap =
- OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
- if (!IsInOLapMap.second)
- return;
-
- auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
- auto &AllSeenFragments = SeenIt->second;
-
- // Otherwise, examine all other seen fragments for this variable, with "this"
- // fragment being a previously unseen fragment. Record any pair of
- // overlapping fragments.
- for (auto &ASeenFragment : AllSeenFragments) {
- // Does this previously seen fragment overlap?
- if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
- // Yes: Mark the current fragment as being overlapped.
- ThisFragmentsOverlaps.push_back(ASeenFragment);
- // Mark the previously seen fragment as being overlapped by the current
- // one.
- auto ASeenFragmentsOverlaps =
- OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
- assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
- "Previously seen var fragment has no vector of overlaps");
- ASeenFragmentsOverlaps->second.push_back(ThisFragment);
- }
- }
-
- AllSeenFragments.insert(ThisFragment);
-}
-
-void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts,
- ValueIDNum **MLiveIns) {
- // Try to interpret an MI as a debug or transfer instruction. Only if it's
- // none of these should we interpret it's register defs as new value
- // definitions.
- if (transferDebugValue(MI))
- return;
- if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
- return;
- if (transferDebugPHI(MI))
- return;
- if (transferRegisterCopy(MI))
- return;
- if (transferSpillOrRestoreInst(MI))
- return;
- transferRegisterDef(MI);
-}
-
-void InstrRefBasedLDV::produceMLocTransferFunction(
- MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
- unsigned MaxNumBlocks) {
- // Because we try to optimize around register mask operands by ignoring regs
- // that aren't currently tracked, we set up something ugly for later: RegMask
- // operands that are seen earlier than the first use of a register, still need
- // to clobber that register in the transfer function. But this information
- // isn't actively recorded. Instead, we track each RegMask used in each block,
- // and accumulated the clobbered but untracked registers in each block into
- // the following bitvector. Later, if new values are tracked, we can add
- // appropriate clobbers.
- SmallVector<BitVector, 32> BlockMasks;
- BlockMasks.resize(MaxNumBlocks);
-
- // Reserve one bit per register for the masks described above.
- unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
- for (auto &BV : BlockMasks)
- BV.resize(TRI->getNumRegs(), true);
-
- // Step through all instructions and inhale the transfer function.
- for (auto &MBB : MF) {
- // Object fields that are read by trackers to know where we are in the
- // function.
- CurBB = MBB.getNumber();
- CurInst = 1;
-
- // Set all machine locations to a PHI value. For transfer function
- // production only, this signifies the live-in value to the block.
- MTracker->reset();
- MTracker->setMPhis(CurBB);
-
- // Step through each instruction in this block.
- for (auto &MI : MBB) {
- process(MI);
- // Also accumulate fragment map.
- if (MI.isDebugValue() || MI.isDebugRef())
- accumulateFragmentMap(MI);
-
- // Create a map from the instruction number (if present) to the
- // MachineInstr and its position.
- if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
- auto InstrAndPos = std::make_pair(&MI, CurInst);
- auto InsertResult =
- DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
-
- // There should never be duplicate instruction numbers.
- assert(InsertResult.second);
- (void)InsertResult;
- }
-
- ++CurInst;
- }
-
- // Produce the transfer function, a map of machine location to new value. If
- // any machine location has the live-in phi value from the start of the
- // block, it's live-through and doesn't need recording in the transfer
- // function.
- for (auto Location : MTracker->locations()) {
- LocIdx Idx = Location.Idx;
- ValueIDNum &P = Location.Value;
- if (P.isPHI() && P.getLoc() == Idx.asU64())
- continue;
-
- // Insert-or-update.
- auto &TransferMap = MLocTransfer[CurBB];
- auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
- if (!Result.second)
- Result.first->second = P;
- }
-
- // Accumulate any bitmask operands into the clobberred reg mask for this
- // block.
- for (auto &P : MTracker->Masks) {
- BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
- }
- }
-
- // Compute a bitvector of all the registers that are tracked in this block.
- BitVector UsedRegs(TRI->getNumRegs());
- for (auto Location : MTracker->locations()) {
- unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
- // Ignore stack slots, and aliases of the stack pointer.
- if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
- continue;
- UsedRegs.set(ID);
- }
-
- // Check that any regmask-clobber of a register that gets tracked, is not
- // live-through in the transfer function. It needs to be clobbered at the
- // very least.
- for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
- BitVector &BV = BlockMasks[I];
- BV.flip();
- BV &= UsedRegs;
- // This produces all the bits that we clobber, but also use. Check that
- // they're all clobbered or at least set in the designated transfer
- // elem.
- for (unsigned Bit : BV.set_bits()) {
- unsigned ID = MTracker->getLocID(Bit);
- LocIdx Idx = MTracker->LocIDToLocIdx[ID];
- auto &TransferMap = MLocTransfer[I];
-
- // Install a value representing the fact that this location is effectively
- // written to in this block. As there's no reserved value, instead use
- // a value number that is never generated. Pick the value number for the
- // first instruction in the block, def'ing this location, which we know
- // this block never used anyway.
- ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
- auto Result =
- TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
- if (!Result.second) {
- ValueIDNum &ValueID = Result.first->second;
- if (ValueID.getBlock() == I && ValueID.isPHI())
- // It was left as live-through. Set it to clobbered.
- ValueID = NotGeneratedNum;
- }
- }
- }
-}
-
-bool InstrRefBasedLDV::mlocJoin(
- MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
- ValueIDNum **OutLocs, ValueIDNum *InLocs) {
- LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
- bool Changed = false;
-
- // Handle value-propagation when control flow merges on entry to a block. For
- // any location without a PHI already placed, the location has the same value
- // as its predecessors. If a PHI is placed, test to see whether it's now a
- // redundant PHI that we can eliminate.
-
- SmallVector<const MachineBasicBlock *, 8> BlockOrders;
- for (auto Pred : MBB.predecessors())
- BlockOrders.push_back(Pred);
-
- // Visit predecessors in RPOT order.
- auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
- return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
- };
- llvm::sort(BlockOrders, Cmp);
-
- // Skip entry block.
- if (BlockOrders.size() == 0)
- return false;
-
- // Step through all machine locations, look at each predecessor and test
- // whether we can eliminate redundant PHIs.
- for (auto Location : MTracker->locations()) {
- LocIdx Idx = Location.Idx;
-
- // Pick out the first predecessors live-out value for this location. It's
- // guaranteed to not be a backedge, as we order by RPO.
- ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
-
- // If we've already eliminated a PHI here, do no further checking, just
- // propagate the first live-in value into this block.
- if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
- if (InLocs[Idx.asU64()] != FirstVal) {
- InLocs[Idx.asU64()] = FirstVal;
- Changed |= true;
- }
- continue;
- }
-
- // We're now examining a PHI to see whether it's un-necessary. Loop around
- // the other live-in values and test whether they're all the same.
- bool Disagree = false;
- for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
- const MachineBasicBlock *PredMBB = BlockOrders[I];
- const ValueIDNum &PredLiveOut =
- OutLocs[PredMBB->getNumber()][Idx.asU64()];
-
- // Incoming values agree, continue trying to eliminate this PHI.
- if (FirstVal == PredLiveOut)
- continue;
-
- // We can also accept a PHI value that feeds back into itself.
- if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
- continue;
-
- // Live-out of a predecessor disagrees with the first predecessor.
- Disagree = true;
- }
-
- // No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
- if (!Disagree) {
- InLocs[Idx.asU64()] = FirstVal;
- Changed |= true;
- }
- }
-
- // TODO: Reimplement NumInserted and NumRemoved.
- return Changed;
-}
-
-void InstrRefBasedLDV::findStackIndexInterference(
- SmallVectorImpl<unsigned> &Slots) {
- // We could spend a bit of time finding the exact, minimal, set of stack
- // indexes that interfere with each other, much like reg units. Or, we can
- // rely on the fact that:
- // * The smallest / lowest index will interfere with everything at zero
- // offset, which will be the largest set of registers,
- // * Most indexes with non-zero offset will end up being interference units
- // anyway.
- // So just pick those out and return them.
-
- // We can rely on a single-byte stack index existing already, because we
- // initialize them in MLocTracker.
- auto It = MTracker->StackSlotIdxes.find({8, 0});
- assert(It != MTracker->StackSlotIdxes.end());
- Slots.push_back(It->second);
-
- // Find anything that has a non-zero offset and add that too.
- for (auto &Pair : MTracker->StackSlotIdxes) {
- // Is offset zero? If so, ignore.
- if (!Pair.first.second)
- continue;
- Slots.push_back(Pair.second);
- }
-}
-
-void InstrRefBasedLDV::placeMLocPHIs(
- MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
- ValueIDNum **MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
- SmallVector<unsigned, 4> StackUnits;
- findStackIndexInterference(StackUnits);
-
- // To avoid repeatedly running the PHI placement algorithm, leverage the
- // fact that a def of register MUST also def its register units. Find the
- // units for registers, place PHIs for them, and then replicate them for
- // aliasing registers. Some inputs that are never def'd (DBG_PHIs of
- // arguments) don't lead to register units being tracked, just place PHIs for
- // those registers directly. Stack slots have their own form of "unit",
- // store them to one side.
- SmallSet<Register, 32> RegUnitsToPHIUp;
- SmallSet<LocIdx, 32> NormalLocsToPHI;
- SmallSet<SpillLocationNo, 32> StackSlots;
- for (auto Location : MTracker->locations()) {
- LocIdx L = Location.Idx;
- if (MTracker->isSpill(L)) {
- StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L]));
- continue;
- }
-
- Register R = MTracker->LocIdxToLocID[L];
- SmallSet<Register, 8> FoundRegUnits;
- bool AnyIllegal = false;
- for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) {
- for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){
- if (!MTracker->isRegisterTracked(*URoot)) {
- // Not all roots were loaded into the tracking map: this register
- // isn't actually def'd anywhere, we only read from it. Generate PHIs
- // for this reg, but don't iterate units.
- AnyIllegal = true;
- } else {
- FoundRegUnits.insert(*URoot);
- }
- }
- }
-
- if (AnyIllegal) {
- NormalLocsToPHI.insert(L);
- continue;
- }
-
- RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
- }
-
- // Lambda to fetch PHIs for a given location, and write into the PHIBlocks
- // collection.
- SmallVector<MachineBasicBlock *, 32> PHIBlocks;
- auto CollectPHIsForLoc = [&](LocIdx L) {
- // Collect the set of defs.
- SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
- for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
- MachineBasicBlock *MBB = OrderToBB[I];
- const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
- if (TransferFunc.find(L) != TransferFunc.end())
- DefBlocks.insert(MBB);
- }
-
- // The entry block defs the location too: it's the live-in / argument value.
- // Only insert if there are other defs though; everything is trivially live
- // through otherwise.
- if (!DefBlocks.empty())
- DefBlocks.insert(&*MF.begin());
-
- // Ask the SSA construction algorithm where we should put PHIs. Clear
- // anything that might have been hanging around from earlier.
- PHIBlocks.clear();
- BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
- };
-
- auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) {
- for (const MachineBasicBlock *MBB : PHIBlocks)
- MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
- };
-
- // For locations with no reg units, just place PHIs.
- for (LocIdx L : NormalLocsToPHI) {
- CollectPHIsForLoc(L);
- // Install those PHI values into the live-in value array.
- InstallPHIsAtLoc(L);
- }
-
- // For stack slots, calculate PHIs for the equivalent of the units, then
- // install for each index.
- for (SpillLocationNo Slot : StackSlots) {
- for (unsigned Idx : StackUnits) {
- unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx);
- LocIdx L = MTracker->getSpillMLoc(SpillID);
- CollectPHIsForLoc(L);
- InstallPHIsAtLoc(L);
-
- // Find anything that aliases this stack index, install PHIs for it too.
- unsigned Size, Offset;
- std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx];
- for (auto &Pair : MTracker->StackSlotIdxes) {
- unsigned ThisSize, ThisOffset;
- std::tie(ThisSize, ThisOffset) = Pair.first;
- if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset)
- continue;
-
- unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second);
- LocIdx ThisL = MTracker->getSpillMLoc(ThisID);
- InstallPHIsAtLoc(ThisL);
- }
- }
- }
-
- // For reg units, place PHIs, and then place them for any aliasing registers.
- for (Register R : RegUnitsToPHIUp) {
- LocIdx L = MTracker->lookupOrTrackRegister(R);
- CollectPHIsForLoc(L);
-
- // Install those PHI values into the live-in value array.
- InstallPHIsAtLoc(L);
-
- // Now find aliases and install PHIs for those.
- for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
- // Super-registers that are "above" the largest register read/written by
- // the function will alias, but will not be tracked.
- if (!MTracker->isRegisterTracked(*RAI))
- continue;
-
- LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
- InstallPHIsAtLoc(AliasLoc);
- }
- }
-}
-
-void InstrRefBasedLDV::buildMLocValueMap(
- MachineFunction &MF, ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
- SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
- std::priority_queue<unsigned int, std::vector<unsigned int>,
- std::greater<unsigned int>>
- Worklist, Pending;
-
- // We track what is on the current and pending worklist to avoid inserting
- // the same thing twice. We could avoid this with a custom priority queue,
- // but this is probably not worth it.
- SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
-
- // Initialize worklist with every block to be visited. Also produce list of
- // all blocks.
- SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
- for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
- Worklist.push(I);
- OnWorklist.insert(OrderToBB[I]);
- AllBlocks.insert(OrderToBB[I]);
- }
-
- // Initialize entry block to PHIs. These represent arguments.
- for (auto Location : MTracker->locations())
- MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);
-
- MTracker->reset();
-
- // Start by placing PHIs, using the usual SSA constructor algorithm. Consider
- // any machine-location that isn't live-through a block to be def'd in that
- // block.
- placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
-
- // Propagate values to eliminate redundant PHIs. At the same time, this
- // produces the table of Block x Location => Value for the entry to each
- // block.
- // The kind of PHIs we can eliminate are, for example, where one path in a
- // conditional spills and restores a register, and the register still has
- // the same value once control flow joins, unbeknowns to the PHI placement
- // code. Propagating values allows us to identify such un-necessary PHIs and
- // remove them.
- SmallPtrSet<const MachineBasicBlock *, 16> Visited;
- while (!Worklist.empty() || !Pending.empty()) {
- // Vector for storing the evaluated block transfer function.
- SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
-
- while (!Worklist.empty()) {
- MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
- CurBB = MBB->getNumber();
- Worklist.pop();
-
- // Join the values in all predecessor blocks.
- bool InLocsChanged;
- InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
- InLocsChanged |= Visited.insert(MBB).second;
-
- // Don't examine transfer function if we've visited this loc at least
- // once, and inlocs haven't changed.
- if (!InLocsChanged)
- continue;
-
- // Load the current set of live-ins into MLocTracker.
- MTracker->loadFromArray(MInLocs[CurBB], CurBB);
-
- // Each element of the transfer function can be a new def, or a read of
- // a live-in value. Evaluate each element, and store to "ToRemap".
- ToRemap.clear();
- for (auto &P : MLocTransfer[CurBB]) {
- if (P.second.getBlock() == CurBB && P.second.isPHI()) {
- // This is a movement of whatever was live in. Read it.
- ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
- ToRemap.push_back(std::make_pair(P.first, NewID));
- } else {
- // It's a def. Just set it.
- assert(P.second.getBlock() == CurBB);
- ToRemap.push_back(std::make_pair(P.first, P.second));
- }
- }
-
- // Commit the transfer function changes into mloc tracker, which
- // transforms the contents of the MLocTracker into the live-outs.
- for (auto &P : ToRemap)
- MTracker->setMLoc(P.first, P.second);
-
- // Now copy out-locs from mloc tracker into out-loc vector, checking
- // whether changes have occurred. These changes can have come from both
- // the transfer function, and mlocJoin.
- bool OLChanged = false;
- for (auto Location : MTracker->locations()) {
- OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
- MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
- }
-
- MTracker->reset();
-
- // No need to examine successors again if out-locs didn't change.
- if (!OLChanged)
- continue;
-
- // All successors should be visited: put any back-edges on the pending
- // list for the next pass-through, and any other successors to be
- // visited this pass, if they're not going to be already.
- for (auto s : MBB->successors()) {
- // Does branching to this successor represent a back-edge?
- if (BBToOrder[s] > BBToOrder[MBB]) {
- // No: visit it during this dataflow iteration.
- if (OnWorklist.insert(s).second)
- Worklist.push(BBToOrder[s]);
- } else {
- // Yes: visit it on the next iteration.
- if (OnPending.insert(s).second)
- Pending.push(BBToOrder[s]);
- }
- }
- }
-
- Worklist.swap(Pending);
- std::swap(OnPending, OnWorklist);
- OnPending.clear();
- // At this point, pending must be empty, since it was just the empty
- // worklist
- assert(Pending.empty() && "Pending should be empty");
- }
-
- // Once all the live-ins don't change on mlocJoin(), we've eliminated all
- // redundant PHIs.
-}
-
-void InstrRefBasedLDV::BlockPHIPlacement(
- const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
- const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
- SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
- // Apply IDF calculator to the designated set of location defs, storing
- // required PHIs into PHIBlocks. Uses the dominator tree stored in the
- // InstrRefBasedLDV object.
- IDFCalculatorBase<MachineBasicBlock, false> IDF(DomTree->getBase());
-
- IDF.setLiveInBlocks(AllBlocks);
- IDF.setDefiningBlocks(DefBlocks);
- IDF.calculate(PHIBlocks);
-}
-
-Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc(
- const MachineBasicBlock &MBB, const DebugVariable &Var,
- const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
- const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
- // Collect a set of locations from predecessor where its live-out value can
- // be found.
- SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
- SmallVector<const DbgValueProperties *, 4> Properties;
- unsigned NumLocs = MTracker->getNumLocs();
-
- // No predecessors means no PHIs.
- if (BlockOrders.empty())
- return None;
-
- for (auto p : BlockOrders) {
- unsigned ThisBBNum = p->getNumber();
- auto OutValIt = LiveOuts.find(p);
- if (OutValIt == LiveOuts.end())
- // If we have a predecessor not in scope, we'll never find a PHI position.
- return None;
- const DbgValue &OutVal = *OutValIt->second;
-
- if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
- // Consts and no-values cannot have locations we can join on.
- return None;
-
- Properties.push_back(&OutVal.Properties);
-
- // Create new empty vector of locations.
- Locs.resize(Locs.size() + 1);
-
- // If the live-in value is a def, find the locations where that value is
- // present. Do the same for VPHIs where we know the VPHI value.
- if (OutVal.Kind == DbgValue::Def ||
- (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
- OutVal.ID != ValueIDNum::EmptyValue)) {
- ValueIDNum ValToLookFor = OutVal.ID;
- // Search the live-outs of the predecessor for the specified value.
- for (unsigned int I = 0; I < NumLocs; ++I) {
- if (MOutLocs[ThisBBNum][I] == ValToLookFor)
- Locs.back().push_back(LocIdx(I));
- }
- } else {
- assert(OutVal.Kind == DbgValue::VPHI);
- // For VPHIs where we don't know the location, we definitely can't find
- // a join loc.
- if (OutVal.BlockNo != MBB.getNumber())
- return None;
-
- // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
- // a value that's live-through the whole loop. (It has to be a backedge,
- // because a block can't dominate itself). We can accept as a PHI location
- // any location where the other predecessors agree, _and_ the machine
- // locations feed back into themselves. Therefore, add all self-looping
- // machine-value PHI locations.
- for (unsigned int I = 0; I < NumLocs; ++I) {
- ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
- if (MOutLocs[ThisBBNum][I] == MPHI)
- Locs.back().push_back(LocIdx(I));
- }
- }
- }
-
- // We should have found locations for all predecessors, or returned.
- assert(Locs.size() == BlockOrders.size());
-
- // Check that all properties are the same. We can't pick a location if they're
- // not.
- const DbgValueProperties *Properties0 = Properties[0];
- for (auto *Prop : Properties)
- if (*Prop != *Properties0)
- return None;
-
- // Starting with the first set of locations, take the intersection with
- // subsequent sets.
- SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
- for (unsigned int I = 1; I < Locs.size(); ++I) {
- auto &LocVec = Locs[I];
- SmallVector<LocIdx, 4> NewCandidates;
- std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
- LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
- CandidateLocs = NewCandidates;
- }
- if (CandidateLocs.empty())
- return None;
-
- // We now have a set of LocIdxes that contain the right output value in
- // each of the predecessors. Pick the lowest; if there's a register loc,
- // that'll be it.
- LocIdx L = *CandidateLocs.begin();
-
- // Return a PHI-value-number for the found location.
- ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
- return PHIVal;
-}
-
-bool InstrRefBasedLDV::vlocJoin(
- MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
- SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
- DbgValue &LiveIn) {
- LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
- bool Changed = false;
-
- // Order predecessors by RPOT order, for exploring them in that order.
- SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
-
- auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
- return BBToOrder[A] < BBToOrder[B];
- };
-
- llvm::sort(BlockOrders, Cmp);
-
- unsigned CurBlockRPONum = BBToOrder[&MBB];
-
- // Collect all the incoming DbgValues for this variable, from predecessor
- // live-out values.
- SmallVector<InValueT, 8> Values;
- bool Bail = false;
- int BackEdgesStart = 0;
- for (auto p : BlockOrders) {
- // If the predecessor isn't in scope / to be explored, we'll never be
- // able to join any locations.
- if (!BlocksToExplore.contains(p)) {
- Bail = true;
- break;
- }
-
- // All Live-outs will have been initialized.
- DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
-
- // Keep track of where back-edges begin in the Values vector. Relies on
- // BlockOrders being sorted by RPO.
- unsigned ThisBBRPONum = BBToOrder[p];
- if (ThisBBRPONum < CurBlockRPONum)
- ++BackEdgesStart;
-
- Values.push_back(std::make_pair(p, &OutLoc));
- }
-
- // If there were no values, or one of the predecessors couldn't have a
- // value, then give up immediately. It's not safe to produce a live-in
- // value. Leave as whatever it was before.
- if (Bail || Values.size() == 0)
- return false;
-
- // All (non-entry) blocks have at least one non-backedge predecessor.
- // Pick the variable value from the first of these, to compare against
- // all others.
- const DbgValue &FirstVal = *Values[0].second;
-
- // If the old live-in value is not a PHI then either a) no PHI is needed
- // here, or b) we eliminated the PHI that was here. If so, we can just
- // propagate in the first parent's incoming value.
- if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
- Changed = LiveIn != FirstVal;
- if (Changed)
- LiveIn = FirstVal;
- return Changed;
- }
-
- // Scan for variable values that can never be resolved: if they have
- // different DIExpressions, different indirectness, or are mixed constants /
- // non-constants.
- for (auto &V : Values) {
- if (V.second->Properties != FirstVal.Properties)
- return false;
- if (V.second->Kind == DbgValue::NoVal)
- return false;
- if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
- return false;
- }
-
- // Try to eliminate this PHI. Do the incoming values all agree?
- bool Disagree = false;
- for (auto &V : Values) {
- if (*V.second == FirstVal)
- continue; // No disagreement.
-
- // Eliminate if a backedge feeds a VPHI back into itself.
- if (V.second->Kind == DbgValue::VPHI &&
- V.second->BlockNo == MBB.getNumber() &&
- // Is this a backedge?
- std::distance(Values.begin(), &V) >= BackEdgesStart)
- continue;
-
- Disagree = true;
- }
-
- // No disagreement -> live-through value.
- if (!Disagree) {
- Changed = LiveIn != FirstVal;
- if (Changed)
- LiveIn = FirstVal;
- return Changed;
- } else {
- // Otherwise use a VPHI.
- DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
- Changed = LiveIn != VPHI;
- if (Changed)
- LiveIn = VPHI;
- return Changed;
- }
-}
-
-void InstrRefBasedLDV::getBlocksForScope(
- const DILocation *DILoc,
- SmallPtrSetImpl<const MachineBasicBlock *> &BlocksToExplore,
- const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks) {
- // Get the set of "normal" in-lexical-scope blocks.
- LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
-
- // VarLoc LiveDebugValues tracks variable locations that are defined in
- // blocks not in scope. This is something we could legitimately ignore, but
- // lets allow it for now for the sake of coverage.
- BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
-
- // Storage for artificial blocks we intend to add to BlocksToExplore.
- DenseSet<const MachineBasicBlock *> ToAdd;
-
- // To avoid needlessly dropping large volumes of variable locations, propagate
- // variables through aritifical blocks, i.e. those that don't have any
- // instructions in scope at all. To accurately replicate VarLoc
- // LiveDebugValues, this means exploring all artificial successors too.
- // Perform a depth-first-search to enumerate those blocks.
- for (auto *MBB : BlocksToExplore) {
- // Depth-first-search state: each node is a block and which successor
- // we're currently exploring.
- SmallVector<std::pair<const MachineBasicBlock *,
- MachineBasicBlock::const_succ_iterator>,
- 8>
- DFS;
-
- // Find any artificial successors not already tracked.
- for (auto *succ : MBB->successors()) {
- if (BlocksToExplore.count(succ))
- continue;
- if (!ArtificialBlocks.count(succ))
- continue;
- ToAdd.insert(succ);
- DFS.push_back({succ, succ->succ_begin()});
- }
-
- // Search all those blocks, depth first.
- while (!DFS.empty()) {
- const MachineBasicBlock *CurBB = DFS.back().first;
- MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
- // Walk back if we've explored this blocks successors to the end.
- if (CurSucc == CurBB->succ_end()) {
- DFS.pop_back();
- continue;
- }
-
- // If the current successor is artificial and unexplored, descend into
- // it.
- if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
- ToAdd.insert(*CurSucc);
- DFS.push_back({*CurSucc, (*CurSucc)->succ_begin()});
- continue;
- }
-
- ++CurSucc;
- }
- };
-
- BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
-}
-
-void InstrRefBasedLDV::buildVLocValueMap(
- const DILocation *DILoc, const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
- SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
- ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
- SmallVectorImpl<VLocTracker> &AllTheVLocs) {
- // This method is much like buildMLocValueMap: but focuses on a single
- // LexicalScope at a time. Pick out a set of blocks and variables that are
- // to have their value assignments solved, then run our dataflow algorithm
- // until a fixedpoint is reached.
- std::priority_queue<unsigned int, std::vector<unsigned int>,
- std::greater<unsigned int>>
- Worklist, Pending;
- SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
-
- // The set of blocks we'll be examining.
- SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
-
- // The order in which to examine them (RPO).
- SmallVector<MachineBasicBlock *, 8> BlockOrders;
-
- // RPO ordering function.
- auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
- return BBToOrder[A] < BBToOrder[B];
- };
-
- getBlocksForScope(DILoc, BlocksToExplore, AssignBlocks);
-
- // Single block scope: not interesting! No propagation at all. Note that
- // this could probably go above ArtificialBlocks without damage, but
- // that then produces output differences from original-live-debug-values,
- // which propagates from a single block into many artificial ones.
- if (BlocksToExplore.size() == 1)
- return;
-
- // Convert a const set to a non-const set. LexicalScopes
- // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
- // (Neither of them mutate anything).
- SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
- for (const auto *MBB : BlocksToExplore)
- MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
-
- // Picks out relevants blocks RPO order and sort them.
- for (auto *MBB : BlocksToExplore)
- BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
-
- llvm::sort(BlockOrders, Cmp);
- unsigned NumBlocks = BlockOrders.size();
-
- // Allocate some vectors for storing the live ins and live outs. Large.
- SmallVector<DbgValue, 32> LiveIns, LiveOuts;
- LiveIns.reserve(NumBlocks);
- LiveOuts.reserve(NumBlocks);
-
- // Initialize all values to start as NoVals. This signifies "it's live
- // through, but we don't know what it is".
- DbgValueProperties EmptyProperties(EmptyExpr, false);
- for (unsigned int I = 0; I < NumBlocks; ++I) {
- DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
- LiveIns.push_back(EmptyDbgValue);
- LiveOuts.push_back(EmptyDbgValue);
- }
-
- // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
- // vlocJoin.
- LiveIdxT LiveOutIdx, LiveInIdx;
- LiveOutIdx.reserve(NumBlocks);
- LiveInIdx.reserve(NumBlocks);
- for (unsigned I = 0; I < NumBlocks; ++I) {
- LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
- LiveInIdx[BlockOrders[I]] = &LiveIns[I];
- }
-
- // Loop over each variable and place PHIs for it, then propagate values
- // between blocks. This keeps the locality of working on one lexical scope at
- // at time, but avoids re-processing variable values because some other
- // variable has been assigned.
- for (auto &Var : VarsWeCareAbout) {
- // Re-initialize live-ins and live-outs, to clear the remains of previous
- // variables live-ins / live-outs.
- for (unsigned int I = 0; I < NumBlocks; ++I) {
- DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
- LiveIns[I] = EmptyDbgValue;
- LiveOuts[I] = EmptyDbgValue;
- }
-
- // Place PHIs for variable values, using the LLVM IDF calculator.
- // Collect the set of blocks where variables are def'd.
- SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
- for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
- auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
- if (TransferFunc.find(Var) != TransferFunc.end())
- DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
- }
-
- SmallVector<MachineBasicBlock *, 32> PHIBlocks;
-
- // Request the set of PHIs we should insert for this variable. If there's
- // only one value definition, things are very simple.
- if (DefBlocks.size() == 1) {
- placePHIsForSingleVarDefinition(MutBlocksToExplore, *DefBlocks.begin(),
- AllTheVLocs, Var, Output);
- continue;
- }
-
- // Otherwise: we need to place PHIs through SSA and propagate values.
- BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
-
- // Insert PHIs into the per-block live-in tables for this variable.
- for (MachineBasicBlock *PHIMBB : PHIBlocks) {
- unsigned BlockNo = PHIMBB->getNumber();
- DbgValue *LiveIn = LiveInIdx[PHIMBB];
- *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
- }
-
- for (auto *MBB : BlockOrders) {
- Worklist.push(BBToOrder[MBB]);
- OnWorklist.insert(MBB);
- }
-
- // Iterate over all the blocks we selected, propagating the variables value.
- // This loop does two things:
- // * Eliminates un-necessary VPHIs in vlocJoin,
- // * Evaluates the blocks transfer function (i.e. variable assignments) and
- // stores the result to the blocks live-outs.
- // Always evaluate the transfer function on the first iteration, and when
- // the live-ins change thereafter.
- bool FirstTrip = true;
- while (!Worklist.empty() || !Pending.empty()) {
- while (!Worklist.empty()) {
- auto *MBB = OrderToBB[Worklist.top()];
- CurBB = MBB->getNumber();
- Worklist.pop();
-
- auto LiveInsIt = LiveInIdx.find(MBB);
- assert(LiveInsIt != LiveInIdx.end());
- DbgValue *LiveIn = LiveInsIt->second;
-
- // Join values from predecessors. Updates LiveInIdx, and writes output
- // into JoinedInLocs.
- bool InLocsChanged =
- vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn);
-
- SmallVector<const MachineBasicBlock *, 8> Preds;
- for (const auto *Pred : MBB->predecessors())
- Preds.push_back(Pred);
-
- // If this block's live-in value is a VPHI, try to pick a machine-value
- // for it. This makes the machine-value available and propagated
- // through all blocks by the time value propagation finishes. We can't
- // do this any earlier as it needs to read the block live-outs.
- if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
- // There's a small possibility that on a preceeding path, a VPHI is
- // eliminated and transitions from VPHI-with-location to
- // live-through-value. As a result, the selected location of any VPHI
- // might change, so we need to re-compute it on each iteration.
- Optional<ValueIDNum> ValueNum =
- pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds);
-
- if (ValueNum) {
- InLocsChanged |= LiveIn->ID != *ValueNum;
- LiveIn->ID = *ValueNum;
- }
- }
-
- if (!InLocsChanged && !FirstTrip)
- continue;
-
- DbgValue *LiveOut = LiveOutIdx[MBB];
- bool OLChanged = false;
-
- // Do transfer function.
- auto &VTracker = AllTheVLocs[MBB->getNumber()];
- auto TransferIt = VTracker.Vars.find(Var);
- if (TransferIt != VTracker.Vars.end()) {
- // Erase on empty transfer (DBG_VALUE $noreg).
- if (TransferIt->second.Kind == DbgValue::Undef) {
- DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
- if (*LiveOut != NewVal) {
- *LiveOut = NewVal;
- OLChanged = true;
- }
- } else {
- // Insert new variable value; or overwrite.
- if (*LiveOut != TransferIt->second) {
- *LiveOut = TransferIt->second;
- OLChanged = true;
- }
- }
- } else {
- // Just copy live-ins to live-outs, for anything not transferred.
- if (*LiveOut != *LiveIn) {
- *LiveOut = *LiveIn;
- OLChanged = true;
- }
- }
-
- // If no live-out value changed, there's no need to explore further.
- if (!OLChanged)
- continue;
-
- // We should visit all successors. Ensure we'll visit any non-backedge
- // successors during this dataflow iteration; book backedge successors
- // to be visited next time around.
- for (auto s : MBB->successors()) {
- // Ignore out of scope / not-to-be-explored successors.
- if (LiveInIdx.find(s) == LiveInIdx.end())
- continue;
-
- if (BBToOrder[s] > BBToOrder[MBB]) {
- if (OnWorklist.insert(s).second)
- Worklist.push(BBToOrder[s]);
- } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
- Pending.push(BBToOrder[s]);
- }
- }
- }
- Worklist.swap(Pending);
- std::swap(OnWorklist, OnPending);
- OnPending.clear();
- assert(Pending.empty());
- FirstTrip = false;
- }
-
- // Save live-ins to output vector. Ignore any that are still marked as being
- // VPHIs with no location -- those are variables that we know the value of,
- // but are not actually available in the register file.
- for (auto *MBB : BlockOrders) {
- DbgValue *BlockLiveIn = LiveInIdx[MBB];
- if (BlockLiveIn->Kind == DbgValue::NoVal)
- continue;
- if (BlockLiveIn->Kind == DbgValue::VPHI &&
- BlockLiveIn->ID == ValueIDNum::EmptyValue)
- continue;
- if (BlockLiveIn->Kind == DbgValue::VPHI)
- BlockLiveIn->Kind = DbgValue::Def;
- assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() ==
- Var.getFragment() && "Fragment info missing during value prop");
- Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
- }
- } // Per-variable loop.
-
- BlockOrders.clear();
- BlocksToExplore.clear();
-}
-
-void InstrRefBasedLDV::placePHIsForSingleVarDefinition(
- const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
- MachineBasicBlock *AssignMBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
- const DebugVariable &Var, LiveInsT &Output) {
- // If there is a single definition of the variable, then working out it's
- // value everywhere is very simple: it's every block dominated by the
- // definition. At the dominance frontier, the usual algorithm would:
- // * Place PHIs,
- // * Propagate values into them,
- // * Find there's no incoming variable value from the other incoming branches
- // of the dominance frontier,
- // * Specify there's no variable value in blocks past the frontier.
- // This is a common case, hence it's worth special-casing it.
-
- // Pick out the variables value from the block transfer function.
- VLocTracker &VLocs = AllTheVLocs[AssignMBB->getNumber()];
- auto ValueIt = VLocs.Vars.find(Var);
- const DbgValue &Value = ValueIt->second;
-
- // If it's an explicit assignment of "undef", that means there is no location
- // anyway, anywhere.
- if (Value.Kind == DbgValue::Undef)
- return;
-
- // Assign the variable value to entry to each dominated block that's in scope.
- // Skip the definition block -- it's assigned the variable value in the middle
- // of the block somewhere.
- for (auto *ScopeBlock : InScopeBlocks) {
- if (!DomTree->properlyDominates(AssignMBB, ScopeBlock))
- continue;
-
- Output[ScopeBlock->getNumber()].push_back({Var, Value});
- }
-
- // All blocks that aren't dominated have no live-in value, thus no variable
- // value will be given to them.
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-void InstrRefBasedLDV::dump_mloc_transfer(
- const MLocTransferMap &mloc_transfer) const {
- for (auto &P : mloc_transfer) {
- std::string foo = MTracker->LocIdxToName(P.first);
- std::string bar = MTracker->IDAsString(P.second);
- dbgs() << "Loc " << foo << " --> " << bar << "\n";
- }
-}
-#endif
-
-void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
- // Build some useful data structures.
-
- LLVMContext &Context = MF.getFunction().getContext();
- EmptyExpr = DIExpression::get(Context, {});
-
- auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
- if (const DebugLoc &DL = MI.getDebugLoc())
- return DL.getLine() != 0;
- return false;
- };
- // Collect a set of all the artificial blocks.
- for (auto &MBB : MF)
- if (none_of(MBB.instrs(), hasNonArtificialLocation))
- ArtificialBlocks.insert(&MBB);
-
- // Compute mappings of block <=> RPO order.
- ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
- unsigned int RPONumber = 0;
- for (MachineBasicBlock *MBB : RPOT) {
- OrderToBB[RPONumber] = MBB;
- BBToOrder[MBB] = RPONumber;
- BBNumToRPO[MBB->getNumber()] = RPONumber;
- ++RPONumber;
- }
-
- // Order value substitutions by their "source" operand pair, for quick lookup.
- llvm::sort(MF.DebugValueSubstitutions);
-
-#ifdef EXPENSIVE_CHECKS
- // As an expensive check, test whether there are any duplicate substitution
- // sources in the collection.
- if (MF.DebugValueSubstitutions.size() > 2) {
- for (auto It = MF.DebugValueSubstitutions.begin();
- It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
- assert(It->Src != std::next(It)->Src && "Duplicate variable location "
- "substitution seen");
- }
- }
-#endif
-}
-
-// Produce an "ejection map" for blocks, i.e., what's the highest-numbered
-// lexical scope it's used in. When exploring in DFS order and we pass that
-// scope, the block can be processed and any tracking information freed.
-void InstrRefBasedLDV::makeDepthFirstEjectionMap(
- SmallVectorImpl<unsigned> &EjectionMap,
- const ScopeToDILocT &ScopeToDILocation,
- ScopeToAssignBlocksT &ScopeToAssignBlocks) {
- SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
- SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
- auto *TopScope = LS.getCurrentFunctionScope();
-
- // Unlike lexical scope explorers, we explore in reverse order, to find the
- // "last" lexical scope used for each block early.
- WorkStack.push_back({TopScope, TopScope->getChildren().size() - 1});
-
- while (!WorkStack.empty()) {
- auto &ScopePosition = WorkStack.back();
- LexicalScope *WS = ScopePosition.first;
- ssize_t ChildNum = ScopePosition.second--;
-
- const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
- if (ChildNum >= 0) {
- // If ChildNum is positive, there are remaining children to explore.
- // Push the child and its children-count onto the stack.
- auto &ChildScope = Children[ChildNum];
- WorkStack.push_back(
- std::make_pair(ChildScope, ChildScope->getChildren().size() - 1));
- } else {
- WorkStack.pop_back();
-
- // We've explored all children and any later blocks: examine all blocks
- // in our scope. If they haven't yet had an ejection number set, then
- // this scope will be the last to use that block.
- auto DILocationIt = ScopeToDILocation.find(WS);
- if (DILocationIt != ScopeToDILocation.end()) {
- getBlocksForScope(DILocationIt->second, BlocksToExplore,
- ScopeToAssignBlocks.find(WS)->second);
- for (auto *MBB : BlocksToExplore) {
- unsigned BBNum = MBB->getNumber();
- if (EjectionMap[BBNum] == 0)
- EjectionMap[BBNum] = WS->getDFSOut();
- }
-
- BlocksToExplore.clear();
- }
- }
- }
-}
-
-bool InstrRefBasedLDV::depthFirstVLocAndEmit(
- unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
- const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToAssignBlocks,
- LiveInsT &Output, ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
- SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
- DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
- const TargetPassConfig &TPC) {
- TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
- unsigned NumLocs = MTracker->getNumLocs();
- VTracker = nullptr;
-
- // No scopes? No variable locations.
- if (!LS.getCurrentFunctionScope()) {
- // FIXME: this is a sticking plaster to prevent a memory leak, these
- // pointers will be automagically freed by being unique pointers, shortly.
- for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
- delete[] MInLocs[I];
- delete[] MOutLocs[I];
- }
- return false;
- }
-
- // Build map from block number to the last scope that uses the block.
- SmallVector<unsigned, 16> EjectionMap;
- EjectionMap.resize(MaxNumBlocks, 0);
- makeDepthFirstEjectionMap(EjectionMap, ScopeToDILocation,
- ScopeToAssignBlocks);
-
- // Helper lambda for ejecting a block -- if nothing is going to use the block,
- // we can translate the variable location information into DBG_VALUEs and then
- // free all of InstrRefBasedLDV's data structures.
- auto EjectBlock = [&](MachineBasicBlock &MBB) -> void {
- unsigned BBNum = MBB.getNumber();
- AllTheVLocs[BBNum].clear();
-
- // Prime the transfer-tracker, and then step through all the block
- // instructions, installing transfers.
- MTracker->reset();
- MTracker->loadFromArray(MInLocs[BBNum], BBNum);
- TTracker->loadInlocs(MBB, MInLocs[BBNum], Output[BBNum], NumLocs);
-
- CurBB = BBNum;
- CurInst = 1;
- for (auto &MI : MBB) {
- process(MI, MOutLocs, MInLocs);
- TTracker->checkInstForNewValues(CurInst, MI.getIterator());
- ++CurInst;
- }
-
- // Free machine-location tables for this block.
- delete[] MInLocs[BBNum];
- delete[] MOutLocs[BBNum];
- // Make ourselves brittle to use-after-free errors.
- MInLocs[BBNum] = nullptr;
- MOutLocs[BBNum] = nullptr;
- // We don't need live-in variable values for this block either.
- Output[BBNum].clear();
- AllTheVLocs[BBNum].clear();
- };
-
- SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
- SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
- WorkStack.push_back({LS.getCurrentFunctionScope(), 0});
- unsigned HighestDFSIn = 0;
-
- // Proceed to explore in depth first order.
- while (!WorkStack.empty()) {
- auto &ScopePosition = WorkStack.back();
- LexicalScope *WS = ScopePosition.first;
- ssize_t ChildNum = ScopePosition.second++;
-
- // We obesrve scopes with children twice here, once descending in, once
- // ascending out of the scope nest. Use HighestDFSIn as a ratchet to ensure
- // we don't process a scope twice. Additionally, ignore scopes that don't
- // have a DILocation -- by proxy, this means we never tracked any variable
- // assignments in that scope.
- auto DILocIt = ScopeToDILocation.find(WS);
- if (HighestDFSIn <= WS->getDFSIn() && DILocIt != ScopeToDILocation.end()) {
- const DILocation *DILoc = DILocIt->second;
- auto &VarsWeCareAbout = ScopeToVars.find(WS)->second;
- auto &BlocksInScope = ScopeToAssignBlocks.find(WS)->second;
-
- buildVLocValueMap(DILoc, VarsWeCareAbout, BlocksInScope, Output, MOutLocs,
- MInLocs, AllTheVLocs);
- }
-
- HighestDFSIn = std::max(HighestDFSIn, WS->getDFSIn());
-
- // Descend into any scope nests.
- const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
- if (ChildNum < (ssize_t)Children.size()) {
- // There are children to explore -- push onto stack and continue.
- auto &ChildScope = Children[ChildNum];
- WorkStack.push_back(std::make_pair(ChildScope, 0));
- } else {
- WorkStack.pop_back();
-
- // We've explored a leaf, or have explored all the children of a scope.
- // Try to eject any blocks where this is the last scope it's relevant to.
- auto DILocationIt = ScopeToDILocation.find(WS);
- if (DILocationIt == ScopeToDILocation.end())
- continue;
-
- getBlocksForScope(DILocationIt->second, BlocksToExplore,
- ScopeToAssignBlocks.find(WS)->second);
- for (auto *MBB : BlocksToExplore)
- if (WS->getDFSOut() == EjectionMap[MBB->getNumber()])
- EjectBlock(const_cast<MachineBasicBlock &>(*MBB));
-
- BlocksToExplore.clear();
- }
- }
-
- // Some artificial blocks may not have been ejected, meaning they're not
- // connected to an actual legitimate scope. This can technically happen
- // with things like the entry block. In theory, we shouldn't need to do
- // anything for such out-of-scope blocks, but for the sake of being similar
- // to VarLocBasedLDV, eject these too.
- for (auto *MBB : ArtificialBlocks)
- if (MOutLocs[MBB->getNumber()])
- EjectBlock(*MBB);
-
- // Finally, there might have been gaps in the block numbering, from dead
- // blocks being deleted or folded. In those scenarios, we might allocate a
- // block-table that's never ejected, meaning we have to free it at the end.
- for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
- if (MInLocs[I]) {
- delete[] MInLocs[I];
- delete[] MOutLocs[I];
- }
- }
-
- return emitTransfers(AllVarsNumbering);
-}
-
-bool InstrRefBasedLDV::emitTransfers(
- DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
- // Go through all the transfers recorded in the TransferTracker -- this is
- // both the live-ins to a block, and any movements of values that happen
- // in the middle.
- for (const auto &P : TTracker->Transfers) {
- // We have to insert DBG_VALUEs in a consistent order, otherwise they
- // appear in DWARF in different orders. Use the order that they appear
- // when walking through each block / each instruction, stored in
- // AllVarsNumbering.
- SmallVector<std::pair<unsigned, MachineInstr *>> Insts;
- for (MachineInstr *MI : P.Insts) {
- DebugVariable Var(MI->getDebugVariable(), MI->getDebugExpression(),
- MI->getDebugLoc()->getInlinedAt());
- Insts.emplace_back(AllVarsNumbering.find(Var)->second, MI);
- }
- llvm::sort(Insts,
- [](const auto &A, const auto &B) { return A.first < B.first; });
-
- // Insert either before or after the designated point...
- if (P.MBB) {
- MachineBasicBlock &MBB = *P.MBB;
- for (const auto &Pair : Insts)
- MBB.insert(P.Pos, Pair.second);
- } else {
- // Terminators, like tail calls, can clobber things. Don't try and place
- // transfers after them.
- if (P.Pos->isTerminator())
- continue;
-
- MachineBasicBlock &MBB = *P.Pos->getParent();
- for (const auto &Pair : Insts)
- MBB.insertAfterBundle(P.Pos, Pair.second);
- }
- }
-
- return TTracker->Transfers.size() != 0;
-}
-
-/// Calculate the liveness information for the given machine function and
-/// extend ranges across basic blocks.
-bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
- MachineDominatorTree *DomTree,
- TargetPassConfig *TPC,
- unsigned InputBBLimit,
- unsigned InputDbgValLimit) {
- // No subprogram means this function contains no debuginfo.
- if (!MF.getFunction().getSubprogram())
- return false;
-
- LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
- this->TPC = TPC;
-
- this->DomTree = DomTree;
- TRI = MF.getSubtarget().getRegisterInfo();
- MRI = &MF.getRegInfo();
- TII = MF.getSubtarget().getInstrInfo();
- TFI = MF.getSubtarget().getFrameLowering();
- TFI->getCalleeSaves(MF, CalleeSavedRegs);
- MFI = &MF.getFrameInfo();
- LS.initialize(MF);
-
- const auto &STI = MF.getSubtarget();
- AdjustsStackInCalls = MFI->adjustsStack() &&
- STI.getFrameLowering()->stackProbeFunctionModifiesSP();
- if (AdjustsStackInCalls)
- StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF);
-
- MTracker =
- new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
- VTracker = nullptr;
- TTracker = nullptr;
-
- SmallVector<MLocTransferMap, 32> MLocTransfer;
- SmallVector<VLocTracker, 8> vlocs;
- LiveInsT SavedLiveIns;
-
- int MaxNumBlocks = -1;
- for (auto &MBB : MF)
- MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
- assert(MaxNumBlocks >= 0);
- ++MaxNumBlocks;
-
- MLocTransfer.resize(MaxNumBlocks);
- vlocs.resize(MaxNumBlocks, VLocTracker(OverlapFragments, EmptyExpr));
- SavedLiveIns.resize(MaxNumBlocks);
-
- initialSetup(MF);
-
- produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
-
- // Allocate and initialize two array-of-arrays for the live-in and live-out
- // machine values. The outer dimension is the block number; while the inner
- // dimension is a LocIdx from MLocTracker.
- ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
- ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
- unsigned NumLocs = MTracker->getNumLocs();
- for (int i = 0; i < MaxNumBlocks; ++i) {
- // These all auto-initialize to ValueIDNum::EmptyValue
- MOutLocs[i] = new ValueIDNum[NumLocs];
- MInLocs[i] = new ValueIDNum[NumLocs];
- }
-
- // Solve the machine value dataflow problem using the MLocTransfer function,
- // storing the computed live-ins / live-outs into the array-of-arrays. We use
- // both live-ins and live-outs for decision making in the variable value
- // dataflow problem.
- buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
-
- // Patch up debug phi numbers, turning unknown block-live-in values into
- // either live-through machine values, or PHIs.
- for (auto &DBG_PHI : DebugPHINumToValue) {
- // Identify unresolved block-live-ins.
- ValueIDNum &Num = DBG_PHI.ValueRead;
- if (!Num.isPHI())
- continue;
-
- unsigned BlockNo = Num.getBlock();
- LocIdx LocNo = Num.getLoc();
- Num = MInLocs[BlockNo][LocNo.asU64()];
- }
- // Later, we'll be looking up ranges of instruction numbers.
- llvm::sort(DebugPHINumToValue);
-
- // Walk back through each block / instruction, collecting DBG_VALUE
- // instructions and recording what machine value their operands refer to.
- for (auto &OrderPair : OrderToBB) {
- MachineBasicBlock &MBB = *OrderPair.second;
- CurBB = MBB.getNumber();
- VTracker = &vlocs[CurBB];
- VTracker->MBB = &MBB;
- MTracker->loadFromArray(MInLocs[CurBB], CurBB);
- CurInst = 1;
- for (auto &MI : MBB) {
- process(MI, MOutLocs, MInLocs);
- ++CurInst;
- }
- MTracker->reset();
- }
-
- // Number all variables in the order that they appear, to be used as a stable
- // insertion order later.
- DenseMap<DebugVariable, unsigned> AllVarsNumbering;
-
- // Map from one LexicalScope to all the variables in that scope.
- ScopeToVarsT ScopeToVars;
-
- // Map from One lexical scope to all blocks where assignments happen for
- // that scope.
- ScopeToAssignBlocksT ScopeToAssignBlocks;
-
- // Store map of DILocations that describes scopes.
- ScopeToDILocT ScopeToDILocation;
-
- // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
- // the order is unimportant, it just has to be stable.
- unsigned VarAssignCount = 0;
- for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
- auto *MBB = OrderToBB[I];
- auto *VTracker = &vlocs[MBB->getNumber()];
- // Collect each variable with a DBG_VALUE in this block.
- for (auto &idx : VTracker->Vars) {
- const auto &Var = idx.first;
- const DILocation *ScopeLoc = VTracker->Scopes[Var];
- assert(ScopeLoc != nullptr);
- auto *Scope = LS.findLexicalScope(ScopeLoc);
-
- // No insts in scope -> shouldn't have been recorded.
- assert(Scope != nullptr);
-
- AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
- ScopeToVars[Scope].insert(Var);
- ScopeToAssignBlocks[Scope].insert(VTracker->MBB);
- ScopeToDILocation[Scope] = ScopeLoc;
- ++VarAssignCount;
- }
- }
-
- bool Changed = false;
-
- // If we have an extremely large number of variable assignments and blocks,
- // bail out at this point. We've burnt some time doing analysis already,
- // however we should cut our losses.
- if ((unsigned)MaxNumBlocks > InputBBLimit &&
- VarAssignCount > InputDbgValLimit) {
- LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
- << " has " << MaxNumBlocks << " basic blocks and "
- << VarAssignCount
- << " variable assignments, exceeding limits.\n");
-
- // Perform memory cleanup that emitLocations would do otherwise.
- for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
- delete[] MOutLocs[Idx];
- delete[] MInLocs[Idx];
- }
- } else {
- // Optionally, solve the variable value problem and emit to blocks by using
- // a lexical-scope-depth search. It should be functionally identical to
- // the "else" block of this condition.
- Changed = depthFirstVLocAndEmit(
- MaxNumBlocks, ScopeToDILocation, ScopeToVars, ScopeToAssignBlocks,
- SavedLiveIns, MOutLocs, MInLocs, vlocs, MF, AllVarsNumbering, *TPC);
- }
-
- // Elements of these arrays will be deleted by emitLocations.
- delete[] MOutLocs;
- delete[] MInLocs;
-
- delete MTracker;
- delete TTracker;
- MTracker = nullptr;
- VTracker = nullptr;
- TTracker = nullptr;
-
- ArtificialBlocks.clear();
- OrderToBB.clear();
- BBToOrder.clear();
- BBNumToRPO.clear();
- DebugInstrNumToInstr.clear();
- DebugPHINumToValue.clear();
- OverlapFragments.clear();
- SeenFragments.clear();
- SeenDbgPHIs.clear();
-
- return Changed;
-}
-
-LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
- return new InstrRefBasedLDV();
-}
-
-namespace {
-class LDVSSABlock;
-class LDVSSAUpdater;
-
-// Pick a type to identify incoming block values as we construct SSA. We
-// can't use anything more robust than an integer unfortunately, as SSAUpdater
-// expects to zero-initialize the type.
-typedef uint64_t BlockValueNum;
-
-/// Represents an SSA PHI node for the SSA updater class. Contains the block
-/// this PHI is in, the value number it would have, and the expected incoming
-/// values from parent blocks.
-class LDVSSAPhi {
-public:
- SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
- LDVSSABlock *ParentBlock;
- BlockValueNum PHIValNum;
- LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
- : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
-
- LDVSSABlock *getParent() { return ParentBlock; }
-};
-
-/// Thin wrapper around a block predecessor iterator. Only difference from a
-/// normal block iterator is that it dereferences to an LDVSSABlock.
-class LDVSSABlockIterator {
-public:
- MachineBasicBlock::pred_iterator PredIt;
- LDVSSAUpdater &Updater;
-
- LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
- LDVSSAUpdater &Updater)
- : PredIt(PredIt), Updater(Updater) {}
-
- bool operator!=(const LDVSSABlockIterator &OtherIt) const {
- return OtherIt.PredIt != PredIt;
- }
-
- LDVSSABlockIterator &operator++() {
- ++PredIt;
- return *this;
- }
-
- LDVSSABlock *operator*();
-};
-
-/// Thin wrapper around a block for SSA Updater interface. Necessary because
-/// we need to track the PHI value(s) that we may have observed as necessary
-/// in this block.
-class LDVSSABlock {
-public:
- MachineBasicBlock &BB;
- LDVSSAUpdater &Updater;
- using PHIListT = SmallVector<LDVSSAPhi, 1>;
- /// List of PHIs in this block. There should only ever be one.
- PHIListT PHIList;
-
- LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
- : BB(BB), Updater(Updater) {}
-
- LDVSSABlockIterator succ_begin() {
- return LDVSSABlockIterator(BB.succ_begin(), Updater);
- }
-
- LDVSSABlockIterator succ_end() {
- return LDVSSABlockIterator(BB.succ_end(), Updater);
- }
-
- /// SSAUpdater has requested a PHI: create that within this block record.
- LDVSSAPhi *newPHI(BlockValueNum Value) {
- PHIList.emplace_back(Value, this);
- return &PHIList.back();
- }
-
- /// SSAUpdater wishes to know what PHIs already exist in this block.
- PHIListT &phis() { return PHIList; }
-};
-
-/// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
-/// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
-// SSAUpdaterTraits<LDVSSAUpdater>.
-class LDVSSAUpdater {
-public:
- /// Map of value numbers to PHI records.
- DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
- /// Map of which blocks generate Undef values -- blocks that are not
- /// dominated by any Def.
- DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
- /// Map of machine blocks to our own records of them.
- DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
- /// Machine location where any PHI must occur.
- LocIdx Loc;
- /// Table of live-in machine value numbers for blocks / locations.
- ValueIDNum **MLiveIns;
-
- LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {}
-
- void reset() {
- for (auto &Block : BlockMap)
- delete Block.second;
-
- PHIs.clear();
- UndefMap.clear();
- BlockMap.clear();
- }
-
- ~LDVSSAUpdater() { reset(); }
-
- /// For a given MBB, create a wrapper block for it. Stores it in the
- /// LDVSSAUpdater block map.
- LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
- auto it = BlockMap.find(BB);
- if (it == BlockMap.end()) {
- BlockMap[BB] = new LDVSSABlock(*BB, *this);
- it = BlockMap.find(BB);
- }
- return it->second;
- }
-
- /// Find the live-in value number for the given block. Looks up the value at
- /// the PHI location on entry.
- BlockValueNum getValue(LDVSSABlock *LDVBB) {
- return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
- }
-};
-
-LDVSSABlock *LDVSSABlockIterator::operator*() {
- return Updater.getSSALDVBlock(*PredIt);
-}
-
-#ifndef NDEBUG
-
-raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
- out << "SSALDVPHI " << PHI.PHIValNum;
- return out;
-}
-
-#endif
-
-} // namespace
-
-namespace llvm {
-
-/// Template specialization to give SSAUpdater access to CFG and value
-/// information. SSAUpdater calls methods in these traits, passing in the
-/// LDVSSAUpdater object, to learn about blocks and the values they define.
-/// It also provides methods to create PHI nodes and track them.
-template <> class SSAUpdaterTraits<LDVSSAUpdater> {
-public:
- using BlkT = LDVSSABlock;
- using ValT = BlockValueNum;
- using PhiT = LDVSSAPhi;
- using BlkSucc_iterator = LDVSSABlockIterator;
-
- // Methods to access block successors -- dereferencing to our wrapper class.
- static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
- static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
-
- /// Iterator for PHI operands.
- class PHI_iterator {
- private:
- LDVSSAPhi *PHI;
- unsigned Idx;
-
- public:
- explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
- : PHI(P), Idx(0) {}
- PHI_iterator(LDVSSAPhi *P, bool) // end iterator
- : PHI(P), Idx(PHI->IncomingValues.size()) {}
-
- PHI_iterator &operator++() {
- Idx++;
- return *this;
- }
- bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
- bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
-
- BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
-
- LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
- };
-
- static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
-
- static inline PHI_iterator PHI_end(PhiT *PHI) {
- return PHI_iterator(PHI, true);
- }
-
- /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
- /// vector.
- static void FindPredecessorBlocks(LDVSSABlock *BB,
- SmallVectorImpl<LDVSSABlock *> *Preds) {
- for (MachineBasicBlock *Pred : BB->BB.predecessors())
- Preds->push_back(BB->Updater.getSSALDVBlock(Pred));
- }
-
- /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
- /// register. For LiveDebugValues, represents a block identified as not having
- /// any DBG_PHI predecessors.
- static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
- // Create a value number for this block -- it needs to be unique and in the
- // "undef" collection, so that we know it's not real. Use a number
- // representing a PHI into this block.
- BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
- Updater->UndefMap[&BB->BB] = Num;
- return Num;
- }
-
- /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
- /// SSAUpdater will populate it with information about incoming values. The
- /// value number of this PHI is whatever the machine value number problem
- /// solution determined it to be. This includes non-phi values if SSAUpdater
- /// tries to create a PHI where the incoming values are identical.
- static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
- LDVSSAUpdater *Updater) {
- BlockValueNum PHIValNum = Updater->getValue(BB);
- LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
- Updater->PHIs[PHIValNum] = PHI;
- return PHIValNum;
- }
-
- /// AddPHIOperand - Add the specified value as an operand of the PHI for
- /// the specified predecessor block.
- static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
- PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
- }
-
- /// ValueIsPHI - Check if the instruction that defines the specified value
- /// is a PHI instruction.
- static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
- auto PHIIt = Updater->PHIs.find(Val);
- if (PHIIt == Updater->PHIs.end())
- return nullptr;
- return PHIIt->second;
- }
-
- /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
- /// operands, i.e., it was just added.
- static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
- LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
- if (PHI && PHI->IncomingValues.size() == 0)
- return PHI;
- return nullptr;
- }
-
- /// GetPHIValue - For the specified PHI instruction, return the value
- /// that it defines.
- static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
-};
-
-} // end namespace llvm
-
-Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF,
- ValueIDNum **MLiveOuts,
- ValueIDNum **MLiveIns,
- MachineInstr &Here,
- uint64_t InstrNum) {
- // This function will be called twice per DBG_INSTR_REF, and might end up
- // computing lots of SSA information: memoize it.
- auto SeenDbgPHIIt = SeenDbgPHIs.find(&Here);
- if (SeenDbgPHIIt != SeenDbgPHIs.end())
- return SeenDbgPHIIt->second;
-
- Optional<ValueIDNum> Result =
- resolveDbgPHIsImpl(MF, MLiveOuts, MLiveIns, Here, InstrNum);
- SeenDbgPHIs.insert({&Here, Result});
- return Result;
-}
-
-Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIsImpl(
- MachineFunction &MF, ValueIDNum **MLiveOuts, ValueIDNum **MLiveIns,
- MachineInstr &Here, uint64_t InstrNum) {
- // Pick out records of DBG_PHI instructions that have been observed. If there
- // are none, then we cannot compute a value number.
- auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
- DebugPHINumToValue.end(), InstrNum);
- auto LowerIt = RangePair.first;
- auto UpperIt = RangePair.second;
-
- // No DBG_PHI means there can be no location.
- if (LowerIt == UpperIt)
- return None;
-
- // If there's only one DBG_PHI, then that is our value number.
- if (std::distance(LowerIt, UpperIt) == 1)
- return LowerIt->ValueRead;
-
- auto DBGPHIRange = make_range(LowerIt, UpperIt);
-
- // Pick out the location (physreg, slot) where any PHIs must occur. It's
- // technically possible for us to merge values in different registers in each
- // block, but highly unlikely that LLVM will generate such code after register
- // allocation.
- LocIdx Loc = LowerIt->ReadLoc;
-
- // We have several DBG_PHIs, and a use position (the Here inst). All each
- // DBG_PHI does is identify a value at a program position. We can treat each
- // DBG_PHI like it's a Def of a value, and the use position is a Use of a
- // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
- // determine which Def is used at the Use, and any PHIs that happen along
- // the way.
- // Adapted LLVM SSA Updater:
- LDVSSAUpdater Updater(Loc, MLiveIns);
- // Map of which Def or PHI is the current value in each block.
- DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
- // Set of PHIs that we have created along the way.
- SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
-
- // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
- // for the SSAUpdater.
- for (const auto &DBG_PHI : DBGPHIRange) {
- LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
- const ValueIDNum &Num = DBG_PHI.ValueRead;
- AvailableValues.insert(std::make_pair(Block, Num.asU64()));
- }
-
- LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
- const auto &AvailIt = AvailableValues.find(HereBlock);
- if (AvailIt != AvailableValues.end()) {
- // Actually, we already know what the value is -- the Use is in the same
- // block as the Def.
- return ValueIDNum::fromU64(AvailIt->second);
- }
-
- // Otherwise, we must use the SSA Updater. It will identify the value number
- // that we are to use, and the PHIs that must happen along the way.
- SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
- BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
- ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
-
- // We have the number for a PHI, or possibly live-through value, to be used
- // at this Use. There are a number of things we have to check about it though:
- // * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
- // Use was not completely dominated by DBG_PHIs and we should abort.
- // * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
- // we've left SSA form. Validate that the inputs to each PHI are the
- // expected values.
- // * Is a PHI we've created actually a merging of values, or are all the
- // predecessor values the same, leading to a non-PHI machine value number?
- // (SSAUpdater doesn't know that either). Remap validated PHIs into the
- // the ValidatedValues collection below to sort this out.
- DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
-
- // Define all the input DBG_PHI values in ValidatedValues.
- for (const auto &DBG_PHI : DBGPHIRange) {
- LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
- const ValueIDNum &Num = DBG_PHI.ValueRead;
- ValidatedValues.insert(std::make_pair(Block, Num));
- }
-
- // Sort PHIs to validate into RPO-order.
- SmallVector<LDVSSAPhi *, 8> SortedPHIs;
- for (auto &PHI : CreatedPHIs)
- SortedPHIs.push_back(PHI);
-
- std::sort(
- SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) {
- return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
- });
-
- for (auto &PHI : SortedPHIs) {
- ValueIDNum ThisBlockValueNum =
- MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
-
- // Are all these things actually defined?
- for (auto &PHIIt : PHI->IncomingValues) {
- // Any undef input means DBG_PHIs didn't dominate the use point.
- if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
- return None;
-
- ValueIDNum ValueToCheck;
- ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
-
- auto VVal = ValidatedValues.find(PHIIt.first);
- if (VVal == ValidatedValues.end()) {
- // We cross a loop, and this is a backedge. LLVMs tail duplication
- // happens so late that DBG_PHI instructions should not be able to
- // migrate into loops -- meaning we can only be live-through this
- // loop.
- ValueToCheck = ThisBlockValueNum;
- } else {
- // Does the block have as a live-out, in the location we're examining,
- // the value that we expect? If not, it's been moved or clobbered.
- ValueToCheck = VVal->second;
- }
-
- if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
- return None;
- }
-
- // Record this value as validated.
- ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
- }
-
- // All the PHIs are valid: we can return what the SSAUpdater said our value
- // number was.
- return Result;
-}