aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/lib/CodeGen/InterleavedLoadCombinePass.cpp
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm14/lib/CodeGen/InterleavedLoadCombinePass.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm14/lib/CodeGen/InterleavedLoadCombinePass.cpp')
-rw-r--r--contrib/libs/llvm14/lib/CodeGen/InterleavedLoadCombinePass.cpp1365
1 files changed, 1365 insertions, 0 deletions
diff --git a/contrib/libs/llvm14/lib/CodeGen/InterleavedLoadCombinePass.cpp b/contrib/libs/llvm14/lib/CodeGen/InterleavedLoadCombinePass.cpp
new file mode 100644
index 0000000000..230c6846dd
--- /dev/null
+++ b/contrib/libs/llvm14/lib/CodeGen/InterleavedLoadCombinePass.cpp
@@ -0,0 +1,1365 @@
+//===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// \file
+//
+// This file defines the interleaved-load-combine pass. The pass searches for
+// ShuffleVectorInstruction that execute interleaving loads. If a matching
+// pattern is found, it adds a combined load and further instructions in a
+// pattern that is detectable by InterleavedAccesPass. The old instructions are
+// left dead to be removed later. The pass is specifically designed to be
+// executed just before InterleavedAccesPass to find any left-over instances
+// that are not detected within former passes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/MemoryLocation.h"
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/Analysis/MemorySSAUpdater.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/LegacyPassManager.h"
+#include "llvm/IR/Module.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+
+#include <algorithm>
+#include <cassert>
+#include <list>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "interleaved-load-combine"
+
+namespace {
+
+/// Statistic counter
+STATISTIC(NumInterleavedLoadCombine, "Number of combined loads");
+
+/// Option to disable the pass
+static cl::opt<bool> DisableInterleavedLoadCombine(
+ "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden,
+ cl::desc("Disable combining of interleaved loads"));
+
+struct VectorInfo;
+
+struct InterleavedLoadCombineImpl {
+public:
+ InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA,
+ TargetMachine &TM)
+ : F(F), DT(DT), MSSA(MSSA),
+ TLI(*TM.getSubtargetImpl(F)->getTargetLowering()),
+ TTI(TM.getTargetTransformInfo(F)) {}
+
+ /// Scan the function for interleaved load candidates and execute the
+ /// replacement if applicable.
+ bool run();
+
+private:
+ /// Function this pass is working on
+ Function &F;
+
+ /// Dominator Tree Analysis
+ DominatorTree &DT;
+
+ /// Memory Alias Analyses
+ MemorySSA &MSSA;
+
+ /// Target Lowering Information
+ const TargetLowering &TLI;
+
+ /// Target Transform Information
+ const TargetTransformInfo TTI;
+
+ /// Find the instruction in sets LIs that dominates all others, return nullptr
+ /// if there is none.
+ LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs);
+
+ /// Replace interleaved load candidates. It does additional
+ /// analyses if this makes sense. Returns true on success and false
+ /// of nothing has been changed.
+ bool combine(std::list<VectorInfo> &InterleavedLoad,
+ OptimizationRemarkEmitter &ORE);
+
+ /// Given a set of VectorInfo containing candidates for a given interleave
+ /// factor, find a set that represents a 'factor' interleaved load.
+ bool findPattern(std::list<VectorInfo> &Candidates,
+ std::list<VectorInfo> &InterleavedLoad, unsigned Factor,
+ const DataLayout &DL);
+}; // InterleavedLoadCombine
+
+/// First Order Polynomial on an n-Bit Integer Value
+///
+/// Polynomial(Value) = Value * B + A + E*2^(n-e)
+///
+/// A and B are the coefficients. E*2^(n-e) is an error within 'e' most
+/// significant bits. It is introduced if an exact computation cannot be proven
+/// (e.q. division by 2).
+///
+/// As part of this optimization multiple loads will be combined. It necessary
+/// to prove that loads are within some relative offset to each other. This
+/// class is used to prove relative offsets of values loaded from memory.
+///
+/// Representing an integer in this form is sound since addition in two's
+/// complement is associative (trivial) and multiplication distributes over the
+/// addition (see Proof(1) in Polynomial::mul). Further, both operations
+/// commute.
+//
+// Example:
+// declare @fn(i64 %IDX, <4 x float>* %PTR) {
+// %Pa1 = add i64 %IDX, 2
+// %Pa2 = lshr i64 %Pa1, 1
+// %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2
+// %Va = load <4 x float>, <4 x float>* %Pa3
+//
+// %Pb1 = add i64 %IDX, 4
+// %Pb2 = lshr i64 %Pb1, 1
+// %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2
+// %Vb = load <4 x float>, <4 x float>* %Pb3
+// ... }
+//
+// The goal is to prove that two loads load consecutive addresses.
+//
+// In this case the polynomials are constructed by the following
+// steps.
+//
+// The number tag #e specifies the error bits.
+//
+// Pa_0 = %IDX #0
+// Pa_1 = %IDX + 2 #0 | add 2
+// Pa_2 = %IDX/2 + 1 #1 | lshr 1
+// Pa_3 = %IDX/2 + 1 #1 | GEP, step signext to i64
+// Pa_4 = (%IDX/2)*16 + 16 #0 | GEP, multiply index by sizeof(4) for floats
+// Pa_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components
+//
+// Pb_0 = %IDX #0
+// Pb_1 = %IDX + 4 #0 | add 2
+// Pb_2 = %IDX/2 + 2 #1 | lshr 1
+// Pb_3 = %IDX/2 + 2 #1 | GEP, step signext to i64
+// Pb_4 = (%IDX/2)*16 + 32 #0 | GEP, multiply index by sizeof(4) for floats
+// Pb_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components
+//
+// Pb_5 - Pa_5 = 16 #0 | subtract to get the offset
+//
+// Remark: %PTR is not maintained within this class. So in this instance the
+// offset of 16 can only be assumed if the pointers are equal.
+//
+class Polynomial {
+ /// Operations on B
+ enum BOps {
+ LShr,
+ Mul,
+ SExt,
+ Trunc,
+ };
+
+ /// Number of Error Bits e
+ unsigned ErrorMSBs;
+
+ /// Value
+ Value *V;
+
+ /// Coefficient B
+ SmallVector<std::pair<BOps, APInt>, 4> B;
+
+ /// Coefficient A
+ APInt A;
+
+public:
+ Polynomial(Value *V) : ErrorMSBs((unsigned)-1), V(V) {
+ IntegerType *Ty = dyn_cast<IntegerType>(V->getType());
+ if (Ty) {
+ ErrorMSBs = 0;
+ this->V = V;
+ A = APInt(Ty->getBitWidth(), 0);
+ }
+ }
+
+ Polynomial(const APInt &A, unsigned ErrorMSBs = 0)
+ : ErrorMSBs(ErrorMSBs), V(nullptr), A(A) {}
+
+ Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0)
+ : ErrorMSBs(ErrorMSBs), V(nullptr), A(BitWidth, A) {}
+
+ Polynomial() : ErrorMSBs((unsigned)-1), V(nullptr) {}
+
+ /// Increment and clamp the number of undefined bits.
+ void incErrorMSBs(unsigned amt) {
+ if (ErrorMSBs == (unsigned)-1)
+ return;
+
+ ErrorMSBs += amt;
+ if (ErrorMSBs > A.getBitWidth())
+ ErrorMSBs = A.getBitWidth();
+ }
+
+ /// Decrement and clamp the number of undefined bits.
+ void decErrorMSBs(unsigned amt) {
+ if (ErrorMSBs == (unsigned)-1)
+ return;
+
+ if (ErrorMSBs > amt)
+ ErrorMSBs -= amt;
+ else
+ ErrorMSBs = 0;
+ }
+
+ /// Apply an add on the polynomial
+ Polynomial &add(const APInt &C) {
+ // Note: Addition is associative in two's complement even when in case of
+ // signed overflow.
+ //
+ // Error bits can only propagate into higher significant bits. As these are
+ // already regarded as undefined, there is no change.
+ //
+ // Theorem: Adding a constant to a polynomial does not change the error
+ // term.
+ //
+ // Proof:
+ //
+ // Since the addition is associative and commutes:
+ //
+ // (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e)
+ // [qed]
+
+ if (C.getBitWidth() != A.getBitWidth()) {
+ ErrorMSBs = (unsigned)-1;
+ return *this;
+ }
+
+ A += C;
+ return *this;
+ }
+
+ /// Apply a multiplication onto the polynomial.
+ Polynomial &mul(const APInt &C) {
+ // Note: Multiplication distributes over the addition
+ //
+ // Theorem: Multiplication distributes over the addition
+ //
+ // Proof(1):
+ //
+ // (B+A)*C =-
+ // = (B + A) + (B + A) + .. {C Times}
+ // addition is associative and commutes, hence
+ // = B + B + .. {C Times} .. + A + A + .. {C times}
+ // = B*C + A*C
+ // (see (function add) for signed values and overflows)
+ // [qed]
+ //
+ // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out
+ // to the left.
+ //
+ // Proof(2):
+ //
+ // Let B' and A' be the n-Bit inputs with some unknown errors EA,
+ // EB at e leading bits. B' and A' can be written down as:
+ //
+ // B' = B + 2^(n-e)*EB
+ // A' = A + 2^(n-e)*EA
+ //
+ // Let C' be an input with c trailing zero bits. C' can be written as
+ //
+ // C' = C*2^c
+ //
+ // Therefore we can compute the result by using distributivity and
+ // commutativity.
+ //
+ // (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' =
+ // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
+ // = (B'+A') * C' =
+ // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
+ // = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' =
+ // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' =
+ // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c =
+ // = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c =
+ //
+ // Let EC be the final error with EC = C*(EB + EA)
+ //
+ // = (B + A)*C' + EC*2^(n-e)*2^c =
+ // = (B + A)*C' + EC*2^(n-(e-c))
+ //
+ // Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c
+ // less error bits than the input. c bits are shifted out to the left.
+ // [qed]
+
+ if (C.getBitWidth() != A.getBitWidth()) {
+ ErrorMSBs = (unsigned)-1;
+ return *this;
+ }
+
+ // Multiplying by one is a no-op.
+ if (C.isOne()) {
+ return *this;
+ }
+
+ // Multiplying by zero removes the coefficient B and defines all bits.
+ if (C.isZero()) {
+ ErrorMSBs = 0;
+ deleteB();
+ }
+
+ // See Proof(2): Trailing zero bits indicate a left shift. This removes
+ // leading bits from the result even if they are undefined.
+ decErrorMSBs(C.countTrailingZeros());
+
+ A *= C;
+ pushBOperation(Mul, C);
+ return *this;
+ }
+
+ /// Apply a logical shift right on the polynomial
+ Polynomial &lshr(const APInt &C) {
+ // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e')
+ // where
+ // e' = e + 1,
+ // E is a e-bit number,
+ // E' is a e'-bit number,
+ // holds under the following precondition:
+ // pre(1): A % 2 = 0
+ // pre(2): e < n, (see Theorem(2) for the trivial case with e=n)
+ // where >> expresses a logical shift to the right, with adding zeros.
+ //
+ // We need to show that for every, E there is a E'
+ //
+ // B = b_h * 2^(n-1) + b_m * 2 + b_l
+ // A = a_h * 2^(n-1) + a_m * 2 (pre(1))
+ //
+ // where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers
+ //
+ // Let X = (B + A + E*2^(n-e)) >> 1
+ // Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1
+ //
+ // X = [B + A + E*2^(n-e)] >> 1 =
+ // = [ b_h * 2^(n-1) + b_m * 2 + b_l +
+ // + a_h * 2^(n-1) + a_m * 2 +
+ // + E * 2^(n-e) ] >> 1 =
+ //
+ // The sum is built by putting the overflow of [a_m + b+n] into the term
+ // 2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within
+ // this bit is discarded. This is expressed by % 2.
+ //
+ // The bit in position 0 cannot overflow into the term (b_m + a_m).
+ //
+ // = [ ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) +
+ // + ((b_m + a_m) % 2^(n-2)) * 2 +
+ // + b_l + E * 2^(n-e) ] >> 1 =
+ //
+ // The shift is computed by dividing the terms by 2 and by cutting off
+ // b_l.
+ //
+ // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
+ // + ((b_m + a_m) % 2^(n-2)) +
+ // + E * 2^(n-(e+1)) =
+ //
+ // by the definition in the Theorem e+1 = e'
+ //
+ // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
+ // + ((b_m + a_m) % 2^(n-2)) +
+ // + E * 2^(n-e') =
+ //
+ // Compute Y by applying distributivity first
+ //
+ // Y = (B >> 1) + (A >> 1) + E*2^(n-e') =
+ // = (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 +
+ // + (a_h * 2^(n-1) + a_m * 2) >> 1 +
+ // + E * 2^(n-e) >> 1 =
+ //
+ // Again, the shift is computed by dividing the terms by 2 and by cutting
+ // off b_l.
+ //
+ // = b_h * 2^(n-2) + b_m +
+ // + a_h * 2^(n-2) + a_m +
+ // + E * 2^(n-(e+1)) =
+ //
+ // Again, the sum is built by putting the overflow of [a_m + b+n] into
+ // the term 2^(n-1). But this time there is room for a second bit in the
+ // term 2^(n-2) we add this bit to a new term and denote it o_h in a
+ // second step.
+ //
+ // = ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) +
+ // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
+ // + ((b_m + a_m) % 2^(n-2)) +
+ // + E * 2^(n-(e+1)) =
+ //
+ // Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1
+ // Further replace e+1 by e'.
+ //
+ // = o_h * 2^(n-1) +
+ // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
+ // + ((b_m + a_m) % 2^(n-2)) +
+ // + E * 2^(n-e') =
+ //
+ // Move o_h into the error term and construct E'. To ensure that there is
+ // no 2^x with negative x, this step requires pre(2) (e < n).
+ //
+ // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
+ // + ((b_m + a_m) % 2^(n-2)) +
+ // + o_h * 2^(e'-1) * 2^(n-e') + | pre(2), move 2^(e'-1)
+ // | out of the old exponent
+ // + E * 2^(n-e') =
+ // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
+ // + ((b_m + a_m) % 2^(n-2)) +
+ // + [o_h * 2^(e'-1) + E] * 2^(n-e') + | move 2^(e'-1) out of
+ // | the old exponent
+ //
+ // Let E' = o_h * 2^(e'-1) + E
+ //
+ // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
+ // + ((b_m + a_m) % 2^(n-2)) +
+ // + E' * 2^(n-e')
+ //
+ // Because X and Y are distinct only in there error terms and E' can be
+ // constructed as shown the theorem holds.
+ // [qed]
+ //
+ // For completeness in case of the case e=n it is also required to show that
+ // distributivity can be applied.
+ //
+ // In this case Theorem(1) transforms to (the pre-condition on A can also be
+ // dropped)
+ //
+ // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E'
+ // where
+ // A, B, E, E' are two's complement numbers with the same bit
+ // width
+ //
+ // Let A + B + E = X
+ // Let (B >> 1) + (A >> 1) = Y
+ //
+ // Therefore we need to show that for every X and Y there is an E' which
+ // makes the equation
+ //
+ // X = Y + E'
+ //
+ // hold. This is trivially the case for E' = X - Y.
+ //
+ // [qed]
+ //
+ // Remark: Distributing lshr with and arbitrary number n can be expressed as
+ // ((((B + A) lshr 1) lshr 1) ... ) {n times}.
+ // This construction induces n additional error bits at the left.
+
+ if (C.getBitWidth() != A.getBitWidth()) {
+ ErrorMSBs = (unsigned)-1;
+ return *this;
+ }
+
+ if (C.isZero())
+ return *this;
+
+ // Test if the result will be zero
+ unsigned shiftAmt = C.getZExtValue();
+ if (shiftAmt >= C.getBitWidth())
+ return mul(APInt(C.getBitWidth(), 0));
+
+ // The proof that shiftAmt LSBs are zero for at least one summand is only
+ // possible for the constant number.
+ //
+ // If this can be proven add shiftAmt to the error counter
+ // `ErrorMSBs`. Otherwise set all bits as undefined.
+ if (A.countTrailingZeros() < shiftAmt)
+ ErrorMSBs = A.getBitWidth();
+ else
+ incErrorMSBs(shiftAmt);
+
+ // Apply the operation.
+ pushBOperation(LShr, C);
+ A = A.lshr(shiftAmt);
+
+ return *this;
+ }
+
+ /// Apply a sign-extend or truncate operation on the polynomial.
+ Polynomial &sextOrTrunc(unsigned n) {
+ if (n < A.getBitWidth()) {
+ // Truncate: Clearly undefined Bits on the MSB side are removed
+ // if there are any.
+ decErrorMSBs(A.getBitWidth() - n);
+ A = A.trunc(n);
+ pushBOperation(Trunc, APInt(sizeof(n) * 8, n));
+ }
+ if (n > A.getBitWidth()) {
+ // Extend: Clearly extending first and adding later is different
+ // to adding first and extending later in all extended bits.
+ incErrorMSBs(n - A.getBitWidth());
+ A = A.sext(n);
+ pushBOperation(SExt, APInt(sizeof(n) * 8, n));
+ }
+
+ return *this;
+ }
+
+ /// Test if there is a coefficient B.
+ bool isFirstOrder() const { return V != nullptr; }
+
+ /// Test coefficient B of two Polynomials are equal.
+ bool isCompatibleTo(const Polynomial &o) const {
+ // The polynomial use different bit width.
+ if (A.getBitWidth() != o.A.getBitWidth())
+ return false;
+
+ // If neither Polynomial has the Coefficient B.
+ if (!isFirstOrder() && !o.isFirstOrder())
+ return true;
+
+ // The index variable is different.
+ if (V != o.V)
+ return false;
+
+ // Check the operations.
+ if (B.size() != o.B.size())
+ return false;
+
+ auto ob = o.B.begin();
+ for (auto &b : B) {
+ if (b != *ob)
+ return false;
+ ob++;
+ }
+
+ return true;
+ }
+
+ /// Subtract two polynomials, return an undefined polynomial if
+ /// subtraction is not possible.
+ Polynomial operator-(const Polynomial &o) const {
+ // Return an undefined polynomial if incompatible.
+ if (!isCompatibleTo(o))
+ return Polynomial();
+
+ // If the polynomials are compatible (meaning they have the same
+ // coefficient on B), B is eliminated. Thus a polynomial solely
+ // containing A is returned
+ return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs));
+ }
+
+ /// Subtract a constant from a polynomial,
+ Polynomial operator-(uint64_t C) const {
+ Polynomial Result(*this);
+ Result.A -= C;
+ return Result;
+ }
+
+ /// Add a constant to a polynomial,
+ Polynomial operator+(uint64_t C) const {
+ Polynomial Result(*this);
+ Result.A += C;
+ return Result;
+ }
+
+ /// Returns true if it can be proven that two Polynomials are equal.
+ bool isProvenEqualTo(const Polynomial &o) {
+ // Subtract both polynomials and test if it is fully defined and zero.
+ Polynomial r = *this - o;
+ return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isZero());
+ }
+
+ /// Print the polynomial into a stream.
+ void print(raw_ostream &OS) const {
+ OS << "[{#ErrBits:" << ErrorMSBs << "} ";
+
+ if (V) {
+ for (auto b : B)
+ OS << "(";
+ OS << "(" << *V << ") ";
+
+ for (auto b : B) {
+ switch (b.first) {
+ case LShr:
+ OS << "LShr ";
+ break;
+ case Mul:
+ OS << "Mul ";
+ break;
+ case SExt:
+ OS << "SExt ";
+ break;
+ case Trunc:
+ OS << "Trunc ";
+ break;
+ }
+
+ OS << b.second << ") ";
+ }
+ }
+
+ OS << "+ " << A << "]";
+ }
+
+private:
+ void deleteB() {
+ V = nullptr;
+ B.clear();
+ }
+
+ void pushBOperation(const BOps Op, const APInt &C) {
+ if (isFirstOrder()) {
+ B.push_back(std::make_pair(Op, C));
+ return;
+ }
+ }
+};
+
+#ifndef NDEBUG
+static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) {
+ S.print(OS);
+ return OS;
+}
+#endif
+
+/// VectorInfo stores abstract the following information for each vector
+/// element:
+///
+/// 1) The the memory address loaded into the element as Polynomial
+/// 2) a set of load instruction necessary to construct the vector,
+/// 3) a set of all other instructions that are necessary to create the vector and
+/// 4) a pointer value that can be used as relative base for all elements.
+struct VectorInfo {
+private:
+ VectorInfo(const VectorInfo &c) : VTy(c.VTy) {
+ llvm_unreachable(
+ "Copying VectorInfo is neither implemented nor necessary,");
+ }
+
+public:
+ /// Information of a Vector Element
+ struct ElementInfo {
+ /// Offset Polynomial.
+ Polynomial Ofs;
+
+ /// The Load Instruction used to Load the entry. LI is null if the pointer
+ /// of the load instruction does not point on to the entry
+ LoadInst *LI;
+
+ ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr)
+ : Ofs(Offset), LI(LI) {}
+ };
+
+ /// Basic-block the load instructions are within
+ BasicBlock *BB = nullptr;
+
+ /// Pointer value of all participation load instructions
+ Value *PV = nullptr;
+
+ /// Participating load instructions
+ std::set<LoadInst *> LIs;
+
+ /// Participating instructions
+ std::set<Instruction *> Is;
+
+ /// Final shuffle-vector instruction
+ ShuffleVectorInst *SVI = nullptr;
+
+ /// Information of the offset for each vector element
+ ElementInfo *EI;
+
+ /// Vector Type
+ FixedVectorType *const VTy;
+
+ VectorInfo(FixedVectorType *VTy) : VTy(VTy) {
+ EI = new ElementInfo[VTy->getNumElements()];
+ }
+
+ virtual ~VectorInfo() { delete[] EI; }
+
+ unsigned getDimension() const { return VTy->getNumElements(); }
+
+ /// Test if the VectorInfo can be part of an interleaved load with the
+ /// specified factor.
+ ///
+ /// \param Factor of the interleave
+ /// \param DL Targets Datalayout
+ ///
+ /// \returns true if this is possible and false if not
+ bool isInterleaved(unsigned Factor, const DataLayout &DL) const {
+ unsigned Size = DL.getTypeAllocSize(VTy->getElementType());
+ for (unsigned i = 1; i < getDimension(); i++) {
+ if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ /// Recursively computes the vector information stored in V.
+ ///
+ /// This function delegates the work to specialized implementations
+ ///
+ /// \param V Value to operate on
+ /// \param Result Result of the computation
+ ///
+ /// \returns false if no sensible information can be gathered.
+ static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) {
+ ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
+ if (SVI)
+ return computeFromSVI(SVI, Result, DL);
+ LoadInst *LI = dyn_cast<LoadInst>(V);
+ if (LI)
+ return computeFromLI(LI, Result, DL);
+ BitCastInst *BCI = dyn_cast<BitCastInst>(V);
+ if (BCI)
+ return computeFromBCI(BCI, Result, DL);
+ return false;
+ }
+
+ /// BitCastInst specialization to compute the vector information.
+ ///
+ /// \param BCI BitCastInst to operate on
+ /// \param Result Result of the computation
+ ///
+ /// \returns false if no sensible information can be gathered.
+ static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result,
+ const DataLayout &DL) {
+ Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0));
+
+ if (!Op)
+ return false;
+
+ FixedVectorType *VTy = dyn_cast<FixedVectorType>(Op->getType());
+ if (!VTy)
+ return false;
+
+ // We can only cast from large to smaller vectors
+ if (Result.VTy->getNumElements() % VTy->getNumElements())
+ return false;
+
+ unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements();
+ unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType());
+ unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType());
+
+ if (NewSize * Factor != OldSize)
+ return false;
+
+ VectorInfo Old(VTy);
+ if (!compute(Op, Old, DL))
+ return false;
+
+ for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) {
+ for (unsigned j = 0; j < Factor; j++) {
+ Result.EI[i + j] =
+ ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize,
+ j == 0 ? Old.EI[i / Factor].LI : nullptr);
+ }
+ }
+
+ Result.BB = Old.BB;
+ Result.PV = Old.PV;
+ Result.LIs.insert(Old.LIs.begin(), Old.LIs.end());
+ Result.Is.insert(Old.Is.begin(), Old.Is.end());
+ Result.Is.insert(BCI);
+ Result.SVI = nullptr;
+
+ return true;
+ }
+
+ /// ShuffleVectorInst specialization to compute vector information.
+ ///
+ /// \param SVI ShuffleVectorInst to operate on
+ /// \param Result Result of the computation
+ ///
+ /// Compute the left and the right side vector information and merge them by
+ /// applying the shuffle operation. This function also ensures that the left
+ /// and right side have compatible loads. This means that all loads are with
+ /// in the same basic block and are based on the same pointer.
+ ///
+ /// \returns false if no sensible information can be gathered.
+ static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result,
+ const DataLayout &DL) {
+ FixedVectorType *ArgTy =
+ cast<FixedVectorType>(SVI->getOperand(0)->getType());
+
+ // Compute the left hand vector information.
+ VectorInfo LHS(ArgTy);
+ if (!compute(SVI->getOperand(0), LHS, DL))
+ LHS.BB = nullptr;
+
+ // Compute the right hand vector information.
+ VectorInfo RHS(ArgTy);
+ if (!compute(SVI->getOperand(1), RHS, DL))
+ RHS.BB = nullptr;
+
+ // Neither operand produced sensible results?
+ if (!LHS.BB && !RHS.BB)
+ return false;
+ // Only RHS produced sensible results?
+ else if (!LHS.BB) {
+ Result.BB = RHS.BB;
+ Result.PV = RHS.PV;
+ }
+ // Only LHS produced sensible results?
+ else if (!RHS.BB) {
+ Result.BB = LHS.BB;
+ Result.PV = LHS.PV;
+ }
+ // Both operands produced sensible results?
+ else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) {
+ Result.BB = LHS.BB;
+ Result.PV = LHS.PV;
+ }
+ // Both operands produced sensible results but they are incompatible.
+ else {
+ return false;
+ }
+
+ // Merge and apply the operation on the offset information.
+ if (LHS.BB) {
+ Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end());
+ Result.Is.insert(LHS.Is.begin(), LHS.Is.end());
+ }
+ if (RHS.BB) {
+ Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end());
+ Result.Is.insert(RHS.Is.begin(), RHS.Is.end());
+ }
+ Result.Is.insert(SVI);
+ Result.SVI = SVI;
+
+ int j = 0;
+ for (int i : SVI->getShuffleMask()) {
+ assert((i < 2 * (signed)ArgTy->getNumElements()) &&
+ "Invalid ShuffleVectorInst (index out of bounds)");
+
+ if (i < 0)
+ Result.EI[j] = ElementInfo();
+ else if (i < (signed)ArgTy->getNumElements()) {
+ if (LHS.BB)
+ Result.EI[j] = LHS.EI[i];
+ else
+ Result.EI[j] = ElementInfo();
+ } else {
+ if (RHS.BB)
+ Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()];
+ else
+ Result.EI[j] = ElementInfo();
+ }
+ j++;
+ }
+
+ return true;
+ }
+
+ /// LoadInst specialization to compute vector information.
+ ///
+ /// This function also acts as abort condition to the recursion.
+ ///
+ /// \param LI LoadInst to operate on
+ /// \param Result Result of the computation
+ ///
+ /// \returns false if no sensible information can be gathered.
+ static bool computeFromLI(LoadInst *LI, VectorInfo &Result,
+ const DataLayout &DL) {
+ Value *BasePtr;
+ Polynomial Offset;
+
+ if (LI->isVolatile())
+ return false;
+
+ if (LI->isAtomic())
+ return false;
+
+ // Get the base polynomial
+ computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL);
+
+ Result.BB = LI->getParent();
+ Result.PV = BasePtr;
+ Result.LIs.insert(LI);
+ Result.Is.insert(LI);
+
+ for (unsigned i = 0; i < Result.getDimension(); i++) {
+ Value *Idx[2] = {
+ ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0),
+ ConstantInt::get(Type::getInt32Ty(LI->getContext()), i),
+ };
+ int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, makeArrayRef(Idx, 2));
+ Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr);
+ }
+
+ return true;
+ }
+
+ /// Recursively compute polynomial of a value.
+ ///
+ /// \param BO Input binary operation
+ /// \param Result Result polynomial
+ static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) {
+ Value *LHS = BO.getOperand(0);
+ Value *RHS = BO.getOperand(1);
+
+ // Find the RHS Constant if any
+ ConstantInt *C = dyn_cast<ConstantInt>(RHS);
+ if ((!C) && BO.isCommutative()) {
+ C = dyn_cast<ConstantInt>(LHS);
+ if (C)
+ std::swap(LHS, RHS);
+ }
+
+ switch (BO.getOpcode()) {
+ case Instruction::Add:
+ if (!C)
+ break;
+
+ computePolynomial(*LHS, Result);
+ Result.add(C->getValue());
+ return;
+
+ case Instruction::LShr:
+ if (!C)
+ break;
+
+ computePolynomial(*LHS, Result);
+ Result.lshr(C->getValue());
+ return;
+
+ default:
+ break;
+ }
+
+ Result = Polynomial(&BO);
+ }
+
+ /// Recursively compute polynomial of a value
+ ///
+ /// \param V input value
+ /// \param Result result polynomial
+ static void computePolynomial(Value &V, Polynomial &Result) {
+ if (auto *BO = dyn_cast<BinaryOperator>(&V))
+ computePolynomialBinOp(*BO, Result);
+ else
+ Result = Polynomial(&V);
+ }
+
+ /// Compute the Polynomial representation of a Pointer type.
+ ///
+ /// \param Ptr input pointer value
+ /// \param Result result polynomial
+ /// \param BasePtr pointer the polynomial is based on
+ /// \param DL Datalayout of the target machine
+ static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result,
+ Value *&BasePtr,
+ const DataLayout &DL) {
+ // Not a pointer type? Return an undefined polynomial
+ PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType());
+ if (!PtrTy) {
+ Result = Polynomial();
+ BasePtr = nullptr;
+ return;
+ }
+ unsigned PointerBits =
+ DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace());
+
+ /// Skip pointer casts. Return Zero polynomial otherwise
+ if (isa<CastInst>(&Ptr)) {
+ CastInst &CI = *cast<CastInst>(&Ptr);
+ switch (CI.getOpcode()) {
+ case Instruction::BitCast:
+ computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL);
+ break;
+ default:
+ BasePtr = &Ptr;
+ Polynomial(PointerBits, 0);
+ break;
+ }
+ }
+ /// Resolve GetElementPtrInst.
+ else if (isa<GetElementPtrInst>(&Ptr)) {
+ GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr);
+
+ APInt BaseOffset(PointerBits, 0);
+
+ // Check if we can compute the Offset with accumulateConstantOffset
+ if (GEP.accumulateConstantOffset(DL, BaseOffset)) {
+ Result = Polynomial(BaseOffset);
+ BasePtr = GEP.getPointerOperand();
+ return;
+ } else {
+ // Otherwise we allow that the last index operand of the GEP is
+ // non-constant.
+ unsigned idxOperand, e;
+ SmallVector<Value *, 4> Indices;
+ for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e;
+ idxOperand++) {
+ ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand));
+ if (!IDX)
+ break;
+ Indices.push_back(IDX);
+ }
+
+ // It must also be the last operand.
+ if (idxOperand + 1 != e) {
+ Result = Polynomial();
+ BasePtr = nullptr;
+ return;
+ }
+
+ // Compute the polynomial of the index operand.
+ computePolynomial(*GEP.getOperand(idxOperand), Result);
+
+ // Compute base offset from zero based index, excluding the last
+ // variable operand.
+ BaseOffset =
+ DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices);
+
+ // Apply the operations of GEP to the polynomial.
+ unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType());
+ Result.sextOrTrunc(PointerBits);
+ Result.mul(APInt(PointerBits, ResultSize));
+ Result.add(BaseOffset);
+ BasePtr = GEP.getPointerOperand();
+ }
+ }
+ // All other instructions are handled by using the value as base pointer and
+ // a zero polynomial.
+ else {
+ BasePtr = &Ptr;
+ Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0);
+ }
+ }
+
+#ifndef NDEBUG
+ void print(raw_ostream &OS) const {
+ if (PV)
+ OS << *PV;
+ else
+ OS << "(none)";
+ OS << " + ";
+ for (unsigned i = 0; i < getDimension(); i++)
+ OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs;
+ OS << "]";
+ }
+#endif
+};
+
+} // anonymous namespace
+
+bool InterleavedLoadCombineImpl::findPattern(
+ std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad,
+ unsigned Factor, const DataLayout &DL) {
+ for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) {
+ unsigned i;
+ // Try to find an interleaved load using the front of Worklist as first line
+ unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType());
+
+ // List containing iterators pointing to the VectorInfos of the candidates
+ std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end());
+
+ for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) {
+ if (C->VTy != C0->VTy)
+ continue;
+ if (C->BB != C0->BB)
+ continue;
+ if (C->PV != C0->PV)
+ continue;
+
+ // Check the current value matches any of factor - 1 remaining lines
+ for (i = 1; i < Factor; i++) {
+ if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) {
+ Res[i] = C;
+ }
+ }
+
+ for (i = 1; i < Factor; i++) {
+ if (Res[i] == Candidates.end())
+ break;
+ }
+ if (i == Factor) {
+ Res[0] = C0;
+ break;
+ }
+ }
+
+ if (Res[0] != Candidates.end()) {
+ // Move the result into the output
+ for (unsigned i = 0; i < Factor; i++) {
+ InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]);
+ }
+
+ return true;
+ }
+ }
+ return false;
+}
+
+LoadInst *
+InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) {
+ assert(!LIs.empty() && "No load instructions given.");
+
+ // All LIs are within the same BB. Select the first for a reference.
+ BasicBlock *BB = (*LIs.begin())->getParent();
+ BasicBlock::iterator FLI = llvm::find_if(
+ *BB, [&LIs](Instruction &I) -> bool { return is_contained(LIs, &I); });
+ assert(FLI != BB->end());
+
+ return cast<LoadInst>(FLI);
+}
+
+bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad,
+ OptimizationRemarkEmitter &ORE) {
+ LLVM_DEBUG(dbgs() << "Checking interleaved load\n");
+
+ // The insertion point is the LoadInst which loads the first values. The
+ // following tests are used to proof that the combined load can be inserted
+ // just before InsertionPoint.
+ LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI;
+
+ // Test if the offset is computed
+ if (!InsertionPoint)
+ return false;
+
+ std::set<LoadInst *> LIs;
+ std::set<Instruction *> Is;
+ std::set<Instruction *> SVIs;
+
+ InstructionCost InterleavedCost;
+ InstructionCost InstructionCost = 0;
+ const TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency;
+
+ // Get the interleave factor
+ unsigned Factor = InterleavedLoad.size();
+
+ // Merge all input sets used in analysis
+ for (auto &VI : InterleavedLoad) {
+ // Generate a set of all load instructions to be combined
+ LIs.insert(VI.LIs.begin(), VI.LIs.end());
+
+ // Generate a set of all instructions taking part in load
+ // interleaved. This list excludes the instructions necessary for the
+ // polynomial construction.
+ Is.insert(VI.Is.begin(), VI.Is.end());
+
+ // Generate the set of the final ShuffleVectorInst.
+ SVIs.insert(VI.SVI);
+ }
+
+ // There is nothing to combine.
+ if (LIs.size() < 2)
+ return false;
+
+ // Test if all participating instruction will be dead after the
+ // transformation. If intermediate results are used, no performance gain can
+ // be expected. Also sum the cost of the Instructions beeing left dead.
+ for (auto &I : Is) {
+ // Compute the old cost
+ InstructionCost += TTI.getInstructionCost(I, CostKind);
+
+ // The final SVIs are allowed not to be dead, all uses will be replaced
+ if (SVIs.find(I) != SVIs.end())
+ continue;
+
+ // If there are users outside the set to be eliminated, we abort the
+ // transformation. No gain can be expected.
+ for (auto *U : I->users()) {
+ if (Is.find(dyn_cast<Instruction>(U)) == Is.end())
+ return false;
+ }
+ }
+
+ // We need to have a valid cost in order to proceed.
+ if (!InstructionCost.isValid())
+ return false;
+
+ // We know that all LoadInst are within the same BB. This guarantees that
+ // either everything or nothing is loaded.
+ LoadInst *First = findFirstLoad(LIs);
+
+ // To be safe that the loads can be combined, iterate over all loads and test
+ // that the corresponding defining access dominates first LI. This guarantees
+ // that there are no aliasing stores in between the loads.
+ auto FMA = MSSA.getMemoryAccess(First);
+ for (auto LI : LIs) {
+ auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess();
+ if (!MSSA.dominates(MADef, FMA))
+ return false;
+ }
+ assert(!LIs.empty() && "There are no LoadInst to combine");
+
+ // It is necessary that insertion point dominates all final ShuffleVectorInst.
+ for (auto &VI : InterleavedLoad) {
+ if (!DT.dominates(InsertionPoint, VI.SVI))
+ return false;
+ }
+
+ // All checks are done. Add instructions detectable by InterleavedAccessPass
+ // The old instruction will are left dead.
+ IRBuilder<> Builder(InsertionPoint);
+ Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType();
+ unsigned ElementsPerSVI =
+ cast<FixedVectorType>(InterleavedLoad.front().SVI->getType())
+ ->getNumElements();
+ FixedVectorType *ILTy = FixedVectorType::get(ETy, Factor * ElementsPerSVI);
+
+ SmallVector<unsigned, 4> Indices;
+ for (unsigned i = 0; i < Factor; i++)
+ Indices.push_back(i);
+ InterleavedCost = TTI.getInterleavedMemoryOpCost(
+ Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlign(),
+ InsertionPoint->getPointerAddressSpace(), CostKind);
+
+ if (InterleavedCost >= InstructionCost) {
+ return false;
+ }
+
+ // Create a pointer cast for the wide load.
+ auto CI = Builder.CreatePointerCast(InsertionPoint->getOperand(0),
+ ILTy->getPointerTo(),
+ "interleaved.wide.ptrcast");
+
+ // Create the wide load and update the MemorySSA.
+ auto LI = Builder.CreateAlignedLoad(ILTy, CI, InsertionPoint->getAlign(),
+ "interleaved.wide.load");
+ auto MSSAU = MemorySSAUpdater(&MSSA);
+ MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore(
+ LI, nullptr, MSSA.getMemoryAccess(InsertionPoint)));
+ MSSAU.insertUse(MSSALoad);
+
+ // Create the final SVIs and replace all uses.
+ int i = 0;
+ for (auto &VI : InterleavedLoad) {
+ SmallVector<int, 4> Mask;
+ for (unsigned j = 0; j < ElementsPerSVI; j++)
+ Mask.push_back(i + j * Factor);
+
+ Builder.SetInsertPoint(VI.SVI);
+ auto SVI = Builder.CreateShuffleVector(LI, Mask, "interleaved.shuffle");
+ VI.SVI->replaceAllUsesWith(SVI);
+ i++;
+ }
+
+ NumInterleavedLoadCombine++;
+ ORE.emit([&]() {
+ return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI)
+ << "Load interleaved combined with factor "
+ << ore::NV("Factor", Factor);
+ });
+
+ return true;
+}
+
+bool InterleavedLoadCombineImpl::run() {
+ OptimizationRemarkEmitter ORE(&F);
+ bool changed = false;
+ unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor();
+
+ auto &DL = F.getParent()->getDataLayout();
+
+ // Start with the highest factor to avoid combining and recombining.
+ for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) {
+ std::list<VectorInfo> Candidates;
+
+ for (BasicBlock &BB : F) {
+ for (Instruction &I : BB) {
+ if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) {
+ // We don't support scalable vectors in this pass.
+ if (isa<ScalableVectorType>(SVI->getType()))
+ continue;
+
+ Candidates.emplace_back(cast<FixedVectorType>(SVI->getType()));
+
+ if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) {
+ Candidates.pop_back();
+ continue;
+ }
+
+ if (!Candidates.back().isInterleaved(Factor, DL)) {
+ Candidates.pop_back();
+ }
+ }
+ }
+ }
+
+ std::list<VectorInfo> InterleavedLoad;
+ while (findPattern(Candidates, InterleavedLoad, Factor, DL)) {
+ if (combine(InterleavedLoad, ORE)) {
+ changed = true;
+ } else {
+ // Remove the first element of the Interleaved Load but put the others
+ // back on the list and continue searching
+ Candidates.splice(Candidates.begin(), InterleavedLoad,
+ std::next(InterleavedLoad.begin()),
+ InterleavedLoad.end());
+ }
+ InterleavedLoad.clear();
+ }
+ }
+
+ return changed;
+}
+
+namespace {
+/// This pass combines interleaved loads into a pattern detectable by
+/// InterleavedAccessPass.
+struct InterleavedLoadCombine : public FunctionPass {
+ static char ID;
+
+ InterleavedLoadCombine() : FunctionPass(ID) {
+ initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry());
+ }
+
+ StringRef getPassName() const override {
+ return "Interleaved Load Combine Pass";
+ }
+
+ bool runOnFunction(Function &F) override {
+ if (DisableInterleavedLoadCombine)
+ return false;
+
+ auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
+ if (!TPC)
+ return false;
+
+ LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName()
+ << "\n");
+
+ return InterleavedLoadCombineImpl(
+ F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
+ getAnalysis<MemorySSAWrapperPass>().getMSSA(),
+ TPC->getTM<TargetMachine>())
+ .run();
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MemorySSAWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ FunctionPass::getAnalysisUsage(AU);
+ }
+
+private:
+};
+} // anonymous namespace
+
+char InterleavedLoadCombine::ID = 0;
+
+INITIALIZE_PASS_BEGIN(
+ InterleavedLoadCombine, DEBUG_TYPE,
+ "Combine interleaved loads into wide loads and shufflevector instructions",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
+INITIALIZE_PASS_END(
+ InterleavedLoadCombine, DEBUG_TYPE,
+ "Combine interleaved loads into wide loads and shufflevector instructions",
+ false, false)
+
+FunctionPass *
+llvm::createInterleavedLoadCombinePass() {
+ auto P = new InterleavedLoadCombine();
+ return P;
+}