diff options
| author | robot-piglet <[email protected]> | 2025-03-05 13:38:11 +0300 |
|---|---|---|
| committer | robot-piglet <[email protected]> | 2025-03-05 13:49:53 +0300 |
| commit | 9eed360f02de773a5ed2de5d2a3e81fc7f06acfa (patch) | |
| tree | 744a4054e64eb443073c7c6ad36b29cedcf9c2e6 /contrib/libs/llvm14/lib/Analysis/VectorUtils.cpp | |
| parent | c141a5c40bda2eed1a68b0626ffdae5fd19359a6 (diff) | |
Intermediate changes
commit_hash:2ec2671384dd8e604d41bc5c52c2f7858e4afea6
Diffstat (limited to 'contrib/libs/llvm14/lib/Analysis/VectorUtils.cpp')
| -rw-r--r-- | contrib/libs/llvm14/lib/Analysis/VectorUtils.cpp | 1440 |
1 files changed, 0 insertions, 1440 deletions
diff --git a/contrib/libs/llvm14/lib/Analysis/VectorUtils.cpp b/contrib/libs/llvm14/lib/Analysis/VectorUtils.cpp deleted file mode 100644 index 655c248907f..00000000000 --- a/contrib/libs/llvm14/lib/Analysis/VectorUtils.cpp +++ /dev/null @@ -1,1440 +0,0 @@ -//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file defines vectorizer utilities. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/VectorUtils.h" -#include "llvm/ADT/EquivalenceClasses.h" -#include "llvm/Analysis/DemandedBits.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/LoopIterator.h" -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Analysis/ScalarEvolutionExpressions.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/GetElementPtrTypeIterator.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/Value.h" -#include "llvm/Support/CommandLine.h" - -#define DEBUG_TYPE "vectorutils" - -using namespace llvm; -using namespace llvm::PatternMatch; - -/// Maximum factor for an interleaved memory access. -static cl::opt<unsigned> MaxInterleaveGroupFactor( - "max-interleave-group-factor", cl::Hidden, - cl::desc("Maximum factor for an interleaved access group (default = 8)"), - cl::init(8)); - -/// Return true if all of the intrinsic's arguments and return type are scalars -/// for the scalar form of the intrinsic, and vectors for the vector form of the -/// intrinsic (except operands that are marked as always being scalar by -/// hasVectorInstrinsicScalarOpd). -bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { - switch (ID) { - case Intrinsic::abs: // Begin integer bit-manipulation. - case Intrinsic::bswap: - case Intrinsic::bitreverse: - case Intrinsic::ctpop: - case Intrinsic::ctlz: - case Intrinsic::cttz: - case Intrinsic::fshl: - case Intrinsic::fshr: - case Intrinsic::smax: - case Intrinsic::smin: - case Intrinsic::umax: - case Intrinsic::umin: - case Intrinsic::sadd_sat: - case Intrinsic::ssub_sat: - case Intrinsic::uadd_sat: - case Intrinsic::usub_sat: - case Intrinsic::smul_fix: - case Intrinsic::smul_fix_sat: - case Intrinsic::umul_fix: - case Intrinsic::umul_fix_sat: - case Intrinsic::sqrt: // Begin floating-point. - case Intrinsic::sin: - case Intrinsic::cos: - case Intrinsic::exp: - case Intrinsic::exp2: - case Intrinsic::log: - case Intrinsic::log10: - case Intrinsic::log2: - case Intrinsic::fabs: - case Intrinsic::minnum: - case Intrinsic::maxnum: - case Intrinsic::minimum: - case Intrinsic::maximum: - case Intrinsic::copysign: - case Intrinsic::floor: - case Intrinsic::ceil: - case Intrinsic::trunc: - case Intrinsic::rint: - case Intrinsic::nearbyint: - case Intrinsic::round: - case Intrinsic::roundeven: - case Intrinsic::pow: - case Intrinsic::fma: - case Intrinsic::fmuladd: - case Intrinsic::powi: - case Intrinsic::canonicalize: - return true; - default: - return false; - } -} - -/// Identifies if the vector form of the intrinsic has a scalar operand. -bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, - unsigned ScalarOpdIdx) { - switch (ID) { - case Intrinsic::abs: - case Intrinsic::ctlz: - case Intrinsic::cttz: - case Intrinsic::powi: - return (ScalarOpdIdx == 1); - case Intrinsic::smul_fix: - case Intrinsic::smul_fix_sat: - case Intrinsic::umul_fix: - case Intrinsic::umul_fix_sat: - return (ScalarOpdIdx == 2); - default: - return false; - } -} - -bool llvm::hasVectorInstrinsicOverloadedScalarOpd(Intrinsic::ID ID, - unsigned ScalarOpdIdx) { - switch (ID) { - case Intrinsic::powi: - return (ScalarOpdIdx == 1); - default: - return false; - } -} - -/// Returns intrinsic ID for call. -/// For the input call instruction it finds mapping intrinsic and returns -/// its ID, in case it does not found it return not_intrinsic. -Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, - const TargetLibraryInfo *TLI) { - Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI); - if (ID == Intrinsic::not_intrinsic) - return Intrinsic::not_intrinsic; - - if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || - ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || - ID == Intrinsic::experimental_noalias_scope_decl || - ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe) - return ID; - return Intrinsic::not_intrinsic; -} - -/// Find the operand of the GEP that should be checked for consecutive -/// stores. This ignores trailing indices that have no effect on the final -/// pointer. -unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { - const DataLayout &DL = Gep->getModule()->getDataLayout(); - unsigned LastOperand = Gep->getNumOperands() - 1; - TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); - - // Walk backwards and try to peel off zeros. - while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { - // Find the type we're currently indexing into. - gep_type_iterator GEPTI = gep_type_begin(Gep); - std::advance(GEPTI, LastOperand - 2); - - // If it's a type with the same allocation size as the result of the GEP we - // can peel off the zero index. - if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) - break; - --LastOperand; - } - - return LastOperand; -} - -/// If the argument is a GEP, then returns the operand identified by -/// getGEPInductionOperand. However, if there is some other non-loop-invariant -/// operand, it returns that instead. -Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { - GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); - if (!GEP) - return Ptr; - - unsigned InductionOperand = getGEPInductionOperand(GEP); - - // Check that all of the gep indices are uniform except for our induction - // operand. - for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) - if (i != InductionOperand && - !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) - return Ptr; - return GEP->getOperand(InductionOperand); -} - -/// If a value has only one user that is a CastInst, return it. -Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { - Value *UniqueCast = nullptr; - for (User *U : Ptr->users()) { - CastInst *CI = dyn_cast<CastInst>(U); - if (CI && CI->getType() == Ty) { - if (!UniqueCast) - UniqueCast = CI; - else - return nullptr; - } - } - return UniqueCast; -} - -/// Get the stride of a pointer access in a loop. Looks for symbolic -/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. -Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { - auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); - if (!PtrTy || PtrTy->isAggregateType()) - return nullptr; - - // Try to remove a gep instruction to make the pointer (actually index at this - // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the - // pointer, otherwise, we are analyzing the index. - Value *OrigPtr = Ptr; - - // The size of the pointer access. - int64_t PtrAccessSize = 1; - - Ptr = stripGetElementPtr(Ptr, SE, Lp); - const SCEV *V = SE->getSCEV(Ptr); - - if (Ptr != OrigPtr) - // Strip off casts. - while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) - V = C->getOperand(); - - const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); - if (!S) - return nullptr; - - V = S->getStepRecurrence(*SE); - if (!V) - return nullptr; - - // Strip off the size of access multiplication if we are still analyzing the - // pointer. - if (OrigPtr == Ptr) { - if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { - if (M->getOperand(0)->getSCEVType() != scConstant) - return nullptr; - - const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); - - // Huge step value - give up. - if (APStepVal.getBitWidth() > 64) - return nullptr; - - int64_t StepVal = APStepVal.getSExtValue(); - if (PtrAccessSize != StepVal) - return nullptr; - V = M->getOperand(1); - } - } - - // Strip off casts. - Type *StripedOffRecurrenceCast = nullptr; - if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) { - StripedOffRecurrenceCast = C->getType(); - V = C->getOperand(); - } - - // Look for the loop invariant symbolic value. - const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); - if (!U) - return nullptr; - - Value *Stride = U->getValue(); - if (!Lp->isLoopInvariant(Stride)) - return nullptr; - - // If we have stripped off the recurrence cast we have to make sure that we - // return the value that is used in this loop so that we can replace it later. - if (StripedOffRecurrenceCast) - Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); - - return Stride; -} - -/// Given a vector and an element number, see if the scalar value is -/// already around as a register, for example if it were inserted then extracted -/// from the vector. -Value *llvm::findScalarElement(Value *V, unsigned EltNo) { - assert(V->getType()->isVectorTy() && "Not looking at a vector?"); - VectorType *VTy = cast<VectorType>(V->getType()); - // For fixed-length vector, return undef for out of range access. - if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { - unsigned Width = FVTy->getNumElements(); - if (EltNo >= Width) - return UndefValue::get(FVTy->getElementType()); - } - - if (Constant *C = dyn_cast<Constant>(V)) - return C->getAggregateElement(EltNo); - - if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { - // If this is an insert to a variable element, we don't know what it is. - if (!isa<ConstantInt>(III->getOperand(2))) - return nullptr; - unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); - - // If this is an insert to the element we are looking for, return the - // inserted value. - if (EltNo == IIElt) - return III->getOperand(1); - - // Guard against infinite loop on malformed, unreachable IR. - if (III == III->getOperand(0)) - return nullptr; - - // Otherwise, the insertelement doesn't modify the value, recurse on its - // vector input. - return findScalarElement(III->getOperand(0), EltNo); - } - - ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); - // Restrict the following transformation to fixed-length vector. - if (SVI && isa<FixedVectorType>(SVI->getType())) { - unsigned LHSWidth = - cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements(); - int InEl = SVI->getMaskValue(EltNo); - if (InEl < 0) - return UndefValue::get(VTy->getElementType()); - if (InEl < (int)LHSWidth) - return findScalarElement(SVI->getOperand(0), InEl); - return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); - } - - // Extract a value from a vector add operation with a constant zero. - // TODO: Use getBinOpIdentity() to generalize this. - Value *Val; Constant *C; - if (match(V, m_Add(m_Value(Val), m_Constant(C)))) - if (Constant *Elt = C->getAggregateElement(EltNo)) - if (Elt->isNullValue()) - return findScalarElement(Val, EltNo); - - // If the vector is a splat then we can trivially find the scalar element. - if (isa<ScalableVectorType>(VTy)) - if (Value *Splat = getSplatValue(V)) - if (EltNo < VTy->getElementCount().getKnownMinValue()) - return Splat; - - // Otherwise, we don't know. - return nullptr; -} - -int llvm::getSplatIndex(ArrayRef<int> Mask) { - int SplatIndex = -1; - for (int M : Mask) { - // Ignore invalid (undefined) mask elements. - if (M < 0) - continue; - - // There can be only 1 non-negative mask element value if this is a splat. - if (SplatIndex != -1 && SplatIndex != M) - return -1; - - // Initialize the splat index to the 1st non-negative mask element. - SplatIndex = M; - } - assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?"); - return SplatIndex; -} - -/// Get splat value if the input is a splat vector or return nullptr. -/// This function is not fully general. It checks only 2 cases: -/// the input value is (1) a splat constant vector or (2) a sequence -/// of instructions that broadcasts a scalar at element 0. -Value *llvm::getSplatValue(const Value *V) { - if (isa<VectorType>(V->getType())) - if (auto *C = dyn_cast<Constant>(V)) - return C->getSplatValue(); - - // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> - Value *Splat; - if (match(V, - m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()), - m_Value(), m_ZeroMask()))) - return Splat; - - return nullptr; -} - -bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) { - assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); - - if (isa<VectorType>(V->getType())) { - if (isa<UndefValue>(V)) - return true; - // FIXME: We can allow undefs, but if Index was specified, we may want to - // check that the constant is defined at that index. - if (auto *C = dyn_cast<Constant>(V)) - return C->getSplatValue() != nullptr; - } - - if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) { - // FIXME: We can safely allow undefs here. If Index was specified, we will - // check that the mask elt is defined at the required index. - if (!is_splat(Shuf->getShuffleMask())) - return false; - - // Match any index. - if (Index == -1) - return true; - - // Match a specific element. The mask should be defined at and match the - // specified index. - return Shuf->getMaskValue(Index) == Index; - } - - // The remaining tests are all recursive, so bail out if we hit the limit. - if (Depth++ == MaxAnalysisRecursionDepth) - return false; - - // If both operands of a binop are splats, the result is a splat. - Value *X, *Y, *Z; - if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) - return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth); - - // If all operands of a select are splats, the result is a splat. - if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) - return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) && - isSplatValue(Z, Index, Depth); - - // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). - - return false; -} - -void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask, - SmallVectorImpl<int> &ScaledMask) { - assert(Scale > 0 && "Unexpected scaling factor"); - - // Fast-path: if no scaling, then it is just a copy. - if (Scale == 1) { - ScaledMask.assign(Mask.begin(), Mask.end()); - return; - } - - ScaledMask.clear(); - for (int MaskElt : Mask) { - if (MaskElt >= 0) { - assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX && - "Overflowed 32-bits"); - } - for (int SliceElt = 0; SliceElt != Scale; ++SliceElt) - ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt); - } -} - -bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask, - SmallVectorImpl<int> &ScaledMask) { - assert(Scale > 0 && "Unexpected scaling factor"); - - // Fast-path: if no scaling, then it is just a copy. - if (Scale == 1) { - ScaledMask.assign(Mask.begin(), Mask.end()); - return true; - } - - // We must map the original elements down evenly to a type with less elements. - int NumElts = Mask.size(); - if (NumElts % Scale != 0) - return false; - - ScaledMask.clear(); - ScaledMask.reserve(NumElts / Scale); - - // Step through the input mask by splitting into Scale-sized slices. - do { - ArrayRef<int> MaskSlice = Mask.take_front(Scale); - assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice."); - - // The first element of the slice determines how we evaluate this slice. - int SliceFront = MaskSlice.front(); - if (SliceFront < 0) { - // Negative values (undef or other "sentinel" values) must be equal across - // the entire slice. - if (!is_splat(MaskSlice)) - return false; - ScaledMask.push_back(SliceFront); - } else { - // A positive mask element must be cleanly divisible. - if (SliceFront % Scale != 0) - return false; - // Elements of the slice must be consecutive. - for (int i = 1; i < Scale; ++i) - if (MaskSlice[i] != SliceFront + i) - return false; - ScaledMask.push_back(SliceFront / Scale); - } - Mask = Mask.drop_front(Scale); - } while (!Mask.empty()); - - assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask"); - - // All elements of the original mask can be scaled down to map to the elements - // of a mask with wider elements. - return true; -} - -MapVector<Instruction *, uint64_t> -llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, - const TargetTransformInfo *TTI) { - - // DemandedBits will give us every value's live-out bits. But we want - // to ensure no extra casts would need to be inserted, so every DAG - // of connected values must have the same minimum bitwidth. - EquivalenceClasses<Value *> ECs; - SmallVector<Value *, 16> Worklist; - SmallPtrSet<Value *, 4> Roots; - SmallPtrSet<Value *, 16> Visited; - DenseMap<Value *, uint64_t> DBits; - SmallPtrSet<Instruction *, 4> InstructionSet; - MapVector<Instruction *, uint64_t> MinBWs; - - // Determine the roots. We work bottom-up, from truncs or icmps. - bool SeenExtFromIllegalType = false; - for (auto *BB : Blocks) - for (auto &I : *BB) { - InstructionSet.insert(&I); - - if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && - !TTI->isTypeLegal(I.getOperand(0)->getType())) - SeenExtFromIllegalType = true; - - // Only deal with non-vector integers up to 64-bits wide. - if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && - !I.getType()->isVectorTy() && - I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { - // Don't make work for ourselves. If we know the loaded type is legal, - // don't add it to the worklist. - if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) - continue; - - Worklist.push_back(&I); - Roots.insert(&I); - } - } - // Early exit. - if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) - return MinBWs; - - // Now proceed breadth-first, unioning values together. - while (!Worklist.empty()) { - Value *Val = Worklist.pop_back_val(); - Value *Leader = ECs.getOrInsertLeaderValue(Val); - - if (Visited.count(Val)) - continue; - Visited.insert(Val); - - // Non-instructions terminate a chain successfully. - if (!isa<Instruction>(Val)) - continue; - Instruction *I = cast<Instruction>(Val); - - // If we encounter a type that is larger than 64 bits, we can't represent - // it so bail out. - if (DB.getDemandedBits(I).getBitWidth() > 64) - return MapVector<Instruction *, uint64_t>(); - - uint64_t V = DB.getDemandedBits(I).getZExtValue(); - DBits[Leader] |= V; - DBits[I] = V; - - // Casts, loads and instructions outside of our range terminate a chain - // successfully. - if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || - !InstructionSet.count(I)) - continue; - - // Unsafe casts terminate a chain unsuccessfully. We can't do anything - // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to - // transform anything that relies on them. - if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || - !I->getType()->isIntegerTy()) { - DBits[Leader] |= ~0ULL; - continue; - } - - // We don't modify the types of PHIs. Reductions will already have been - // truncated if possible, and inductions' sizes will have been chosen by - // indvars. - if (isa<PHINode>(I)) - continue; - - if (DBits[Leader] == ~0ULL) - // All bits demanded, no point continuing. - continue; - - for (Value *O : cast<User>(I)->operands()) { - ECs.unionSets(Leader, O); - Worklist.push_back(O); - } - } - - // Now we've discovered all values, walk them to see if there are - // any users we didn't see. If there are, we can't optimize that - // chain. - for (auto &I : DBits) - for (auto *U : I.first->users()) - if (U->getType()->isIntegerTy() && DBits.count(U) == 0) - DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; - - for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { - uint64_t LeaderDemandedBits = 0; - for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) - LeaderDemandedBits |= DBits[M]; - - uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - - llvm::countLeadingZeros(LeaderDemandedBits); - // Round up to a power of 2 - if (!isPowerOf2_64((uint64_t)MinBW)) - MinBW = NextPowerOf2(MinBW); - - // We don't modify the types of PHIs. Reductions will already have been - // truncated if possible, and inductions' sizes will have been chosen by - // indvars. - // If we are required to shrink a PHI, abandon this entire equivalence class. - bool Abort = false; - for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) - if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) { - Abort = true; - break; - } - if (Abort) - continue; - - for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) { - if (!isa<Instruction>(M)) - continue; - Type *Ty = M->getType(); - if (Roots.count(M)) - Ty = cast<Instruction>(M)->getOperand(0)->getType(); - if (MinBW < Ty->getScalarSizeInBits()) - MinBWs[cast<Instruction>(M)] = MinBW; - } - } - - return MinBWs; -} - -/// Add all access groups in @p AccGroups to @p List. -template <typename ListT> -static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { - // Interpret an access group as a list containing itself. - if (AccGroups->getNumOperands() == 0) { - assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); - List.insert(AccGroups); - return; - } - - for (auto &AccGroupListOp : AccGroups->operands()) { - auto *Item = cast<MDNode>(AccGroupListOp.get()); - assert(isValidAsAccessGroup(Item) && "List item must be an access group"); - List.insert(Item); - } -} - -MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { - if (!AccGroups1) - return AccGroups2; - if (!AccGroups2) - return AccGroups1; - if (AccGroups1 == AccGroups2) - return AccGroups1; - - SmallSetVector<Metadata *, 4> Union; - addToAccessGroupList(Union, AccGroups1); - addToAccessGroupList(Union, AccGroups2); - - if (Union.size() == 0) - return nullptr; - if (Union.size() == 1) - return cast<MDNode>(Union.front()); - - LLVMContext &Ctx = AccGroups1->getContext(); - return MDNode::get(Ctx, Union.getArrayRef()); -} - -MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, - const Instruction *Inst2) { - bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); - bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); - - if (!MayAccessMem1 && !MayAccessMem2) - return nullptr; - if (!MayAccessMem1) - return Inst2->getMetadata(LLVMContext::MD_access_group); - if (!MayAccessMem2) - return Inst1->getMetadata(LLVMContext::MD_access_group); - - MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); - MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); - if (!MD1 || !MD2) - return nullptr; - if (MD1 == MD2) - return MD1; - - // Use set for scalable 'contains' check. - SmallPtrSet<Metadata *, 4> AccGroupSet2; - addToAccessGroupList(AccGroupSet2, MD2); - - SmallVector<Metadata *, 4> Intersection; - if (MD1->getNumOperands() == 0) { - assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); - if (AccGroupSet2.count(MD1)) - Intersection.push_back(MD1); - } else { - for (const MDOperand &Node : MD1->operands()) { - auto *Item = cast<MDNode>(Node.get()); - assert(isValidAsAccessGroup(Item) && "List item must be an access group"); - if (AccGroupSet2.count(Item)) - Intersection.push_back(Item); - } - } - - if (Intersection.size() == 0) - return nullptr; - if (Intersection.size() == 1) - return cast<MDNode>(Intersection.front()); - - LLVMContext &Ctx = Inst1->getContext(); - return MDNode::get(Ctx, Intersection); -} - -/// \returns \p I after propagating metadata from \p VL. -Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { - if (VL.empty()) - return Inst; - Instruction *I0 = cast<Instruction>(VL[0]); - SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; - I0->getAllMetadataOtherThanDebugLoc(Metadata); - - for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, - LLVMContext::MD_noalias, LLVMContext::MD_fpmath, - LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, - LLVMContext::MD_access_group}) { - MDNode *MD = I0->getMetadata(Kind); - - for (int J = 1, E = VL.size(); MD && J != E; ++J) { - const Instruction *IJ = cast<Instruction>(VL[J]); - MDNode *IMD = IJ->getMetadata(Kind); - switch (Kind) { - case LLVMContext::MD_tbaa: - MD = MDNode::getMostGenericTBAA(MD, IMD); - break; - case LLVMContext::MD_alias_scope: - MD = MDNode::getMostGenericAliasScope(MD, IMD); - break; - case LLVMContext::MD_fpmath: - MD = MDNode::getMostGenericFPMath(MD, IMD); - break; - case LLVMContext::MD_noalias: - case LLVMContext::MD_nontemporal: - case LLVMContext::MD_invariant_load: - MD = MDNode::intersect(MD, IMD); - break; - case LLVMContext::MD_access_group: - MD = intersectAccessGroups(Inst, IJ); - break; - default: - llvm_unreachable("unhandled metadata"); - } - } - - Inst->setMetadata(Kind, MD); - } - - return Inst; -} - -Constant * -llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, - const InterleaveGroup<Instruction> &Group) { - // All 1's means mask is not needed. - if (Group.getNumMembers() == Group.getFactor()) - return nullptr; - - // TODO: support reversed access. - assert(!Group.isReverse() && "Reversed group not supported."); - - SmallVector<Constant *, 16> Mask; - for (unsigned i = 0; i < VF; i++) - for (unsigned j = 0; j < Group.getFactor(); ++j) { - unsigned HasMember = Group.getMember(j) ? 1 : 0; - Mask.push_back(Builder.getInt1(HasMember)); - } - - return ConstantVector::get(Mask); -} - -llvm::SmallVector<int, 16> -llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) { - SmallVector<int, 16> MaskVec; - for (unsigned i = 0; i < VF; i++) - for (unsigned j = 0; j < ReplicationFactor; j++) - MaskVec.push_back(i); - - return MaskVec; -} - -llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF, - unsigned NumVecs) { - SmallVector<int, 16> Mask; - for (unsigned i = 0; i < VF; i++) - for (unsigned j = 0; j < NumVecs; j++) - Mask.push_back(j * VF + i); - - return Mask; -} - -llvm::SmallVector<int, 16> -llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) { - SmallVector<int, 16> Mask; - for (unsigned i = 0; i < VF; i++) - Mask.push_back(Start + i * Stride); - - return Mask; -} - -llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start, - unsigned NumInts, - unsigned NumUndefs) { - SmallVector<int, 16> Mask; - for (unsigned i = 0; i < NumInts; i++) - Mask.push_back(Start + i); - - for (unsigned i = 0; i < NumUndefs; i++) - Mask.push_back(-1); - - return Mask; -} - -llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask, - unsigned NumElts) { - // Avoid casts in the loop and make sure we have a reasonable number. - int NumEltsSigned = NumElts; - assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count"); - - // If the mask chooses an element from operand 1, reduce it to choose from the - // corresponding element of operand 0. Undef mask elements are unchanged. - SmallVector<int, 16> UnaryMask; - for (int MaskElt : Mask) { - assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask"); - int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt; - UnaryMask.push_back(UnaryElt); - } - return UnaryMask; -} - -/// A helper function for concatenating vectors. This function concatenates two -/// vectors having the same element type. If the second vector has fewer -/// elements than the first, it is padded with undefs. -static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, - Value *V2) { - VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); - VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); - assert(VecTy1 && VecTy2 && - VecTy1->getScalarType() == VecTy2->getScalarType() && - "Expect two vectors with the same element type"); - - unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements(); - unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements(); - assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); - - if (NumElts1 > NumElts2) { - // Extend with UNDEFs. - V2 = Builder.CreateShuffleVector( - V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2)); - } - - return Builder.CreateShuffleVector( - V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0)); -} - -Value *llvm::concatenateVectors(IRBuilderBase &Builder, - ArrayRef<Value *> Vecs) { - unsigned NumVecs = Vecs.size(); - assert(NumVecs > 1 && "Should be at least two vectors"); - - SmallVector<Value *, 8> ResList; - ResList.append(Vecs.begin(), Vecs.end()); - do { - SmallVector<Value *, 8> TmpList; - for (unsigned i = 0; i < NumVecs - 1; i += 2) { - Value *V0 = ResList[i], *V1 = ResList[i + 1]; - assert((V0->getType() == V1->getType() || i == NumVecs - 2) && - "Only the last vector may have a different type"); - - TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); - } - - // Push the last vector if the total number of vectors is odd. - if (NumVecs % 2 != 0) - TmpList.push_back(ResList[NumVecs - 1]); - - ResList = TmpList; - NumVecs = ResList.size(); - } while (NumVecs > 1); - - return ResList[0]; -} - -bool llvm::maskIsAllZeroOrUndef(Value *Mask) { - assert(isa<VectorType>(Mask->getType()) && - isa<IntegerType>(Mask->getType()->getScalarType()) && - cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == - 1 && - "Mask must be a vector of i1"); - - auto *ConstMask = dyn_cast<Constant>(Mask); - if (!ConstMask) - return false; - if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) - return true; - if (isa<ScalableVectorType>(ConstMask->getType())) - return false; - for (unsigned - I = 0, - E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); - I != E; ++I) { - if (auto *MaskElt = ConstMask->getAggregateElement(I)) - if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) - continue; - return false; - } - return true; -} - -bool llvm::maskIsAllOneOrUndef(Value *Mask) { - assert(isa<VectorType>(Mask->getType()) && - isa<IntegerType>(Mask->getType()->getScalarType()) && - cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == - 1 && - "Mask must be a vector of i1"); - - auto *ConstMask = dyn_cast<Constant>(Mask); - if (!ConstMask) - return false; - if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) - return true; - if (isa<ScalableVectorType>(ConstMask->getType())) - return false; - for (unsigned - I = 0, - E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); - I != E; ++I) { - if (auto *MaskElt = ConstMask->getAggregateElement(I)) - if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) - continue; - return false; - } - return true; -} - -/// TODO: This is a lot like known bits, but for -/// vectors. Is there something we can common this with? -APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { - assert(isa<FixedVectorType>(Mask->getType()) && - isa<IntegerType>(Mask->getType()->getScalarType()) && - cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == - 1 && - "Mask must be a fixed width vector of i1"); - - const unsigned VWidth = - cast<FixedVectorType>(Mask->getType())->getNumElements(); - APInt DemandedElts = APInt::getAllOnes(VWidth); - if (auto *CV = dyn_cast<ConstantVector>(Mask)) - for (unsigned i = 0; i < VWidth; i++) - if (CV->getAggregateElement(i)->isNullValue()) - DemandedElts.clearBit(i); - return DemandedElts; -} - -bool InterleavedAccessInfo::isStrided(int Stride) { - unsigned Factor = std::abs(Stride); - return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; -} - -void InterleavedAccessInfo::collectConstStrideAccesses( - MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, - const ValueToValueMap &Strides) { - auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); - - // Since it's desired that the load/store instructions be maintained in - // "program order" for the interleaved access analysis, we have to visit the - // blocks in the loop in reverse postorder (i.e., in a topological order). - // Such an ordering will ensure that any load/store that may be executed - // before a second load/store will precede the second load/store in - // AccessStrideInfo. - LoopBlocksDFS DFS(TheLoop); - DFS.perform(LI); - for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) - for (auto &I : *BB) { - Value *Ptr = getLoadStorePointerOperand(&I); - if (!Ptr) - continue; - Type *ElementTy = getLoadStoreType(&I); - - // We don't check wrapping here because we don't know yet if Ptr will be - // part of a full group or a group with gaps. Checking wrapping for all - // pointers (even those that end up in groups with no gaps) will be overly - // conservative. For full groups, wrapping should be ok since if we would - // wrap around the address space we would do a memory access at nullptr - // even without the transformation. The wrapping checks are therefore - // deferred until after we've formed the interleaved groups. - int64_t Stride = getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides, - /*Assume=*/true, /*ShouldCheckWrap=*/false); - - const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); - uint64_t Size = DL.getTypeAllocSize(ElementTy); - AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, - getLoadStoreAlignment(&I)); - } -} - -// Analyze interleaved accesses and collect them into interleaved load and -// store groups. -// -// When generating code for an interleaved load group, we effectively hoist all -// loads in the group to the location of the first load in program order. When -// generating code for an interleaved store group, we sink all stores to the -// location of the last store. This code motion can change the order of load -// and store instructions and may break dependences. -// -// The code generation strategy mentioned above ensures that we won't violate -// any write-after-read (WAR) dependences. -// -// E.g., for the WAR dependence: a = A[i]; // (1) -// A[i] = b; // (2) -// -// The store group of (2) is always inserted at or below (2), and the load -// group of (1) is always inserted at or above (1). Thus, the instructions will -// never be reordered. All other dependences are checked to ensure the -// correctness of the instruction reordering. -// -// The algorithm visits all memory accesses in the loop in bottom-up program -// order. Program order is established by traversing the blocks in the loop in -// reverse postorder when collecting the accesses. -// -// We visit the memory accesses in bottom-up order because it can simplify the -// construction of store groups in the presence of write-after-write (WAW) -// dependences. -// -// E.g., for the WAW dependence: A[i] = a; // (1) -// A[i] = b; // (2) -// A[i + 1] = c; // (3) -// -// We will first create a store group with (3) and (2). (1) can't be added to -// this group because it and (2) are dependent. However, (1) can be grouped -// with other accesses that may precede it in program order. Note that a -// bottom-up order does not imply that WAW dependences should not be checked. -void InterleavedAccessInfo::analyzeInterleaving( - bool EnablePredicatedInterleavedMemAccesses) { - LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); - const ValueToValueMap &Strides = LAI->getSymbolicStrides(); - - // Holds all accesses with a constant stride. - MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; - collectConstStrideAccesses(AccessStrideInfo, Strides); - - if (AccessStrideInfo.empty()) - return; - - // Collect the dependences in the loop. - collectDependences(); - - // Holds all interleaved store groups temporarily. - SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; - // Holds all interleaved load groups temporarily. - SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; - - // Search in bottom-up program order for pairs of accesses (A and B) that can - // form interleaved load or store groups. In the algorithm below, access A - // precedes access B in program order. We initialize a group for B in the - // outer loop of the algorithm, and then in the inner loop, we attempt to - // insert each A into B's group if: - // - // 1. A and B have the same stride, - // 2. A and B have the same memory object size, and - // 3. A belongs in B's group according to its distance from B. - // - // Special care is taken to ensure group formation will not break any - // dependences. - for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); - BI != E; ++BI) { - Instruction *B = BI->first; - StrideDescriptor DesB = BI->second; - - // Initialize a group for B if it has an allowable stride. Even if we don't - // create a group for B, we continue with the bottom-up algorithm to ensure - // we don't break any of B's dependences. - InterleaveGroup<Instruction> *Group = nullptr; - if (isStrided(DesB.Stride) && - (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { - Group = getInterleaveGroup(B); - if (!Group) { - LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B - << '\n'); - Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); - } - if (B->mayWriteToMemory()) - StoreGroups.insert(Group); - else - LoadGroups.insert(Group); - } - - for (auto AI = std::next(BI); AI != E; ++AI) { - Instruction *A = AI->first; - StrideDescriptor DesA = AI->second; - - // Our code motion strategy implies that we can't have dependences - // between accesses in an interleaved group and other accesses located - // between the first and last member of the group. Note that this also - // means that a group can't have more than one member at a given offset. - // The accesses in a group can have dependences with other accesses, but - // we must ensure we don't extend the boundaries of the group such that - // we encompass those dependent accesses. - // - // For example, assume we have the sequence of accesses shown below in a - // stride-2 loop: - // - // (1, 2) is a group | A[i] = a; // (1) - // | A[i-1] = b; // (2) | - // A[i-3] = c; // (3) - // A[i] = d; // (4) | (2, 4) is not a group - // - // Because accesses (2) and (3) are dependent, we can group (2) with (1) - // but not with (4). If we did, the dependent access (3) would be within - // the boundaries of the (2, 4) group. - if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { - // If a dependence exists and A is already in a group, we know that A - // must be a store since A precedes B and WAR dependences are allowed. - // Thus, A would be sunk below B. We release A's group to prevent this - // illegal code motion. A will then be free to form another group with - // instructions that precede it. - if (isInterleaved(A)) { - InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A); - - LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " - "dependence between " << *A << " and "<< *B << '\n'); - - StoreGroups.remove(StoreGroup); - releaseGroup(StoreGroup); - } - - // If a dependence exists and A is not already in a group (or it was - // and we just released it), B might be hoisted above A (if B is a - // load) or another store might be sunk below A (if B is a store). In - // either case, we can't add additional instructions to B's group. B - // will only form a group with instructions that it precedes. - break; - } - - // At this point, we've checked for illegal code motion. If either A or B - // isn't strided, there's nothing left to do. - if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) - continue; - - // Ignore A if it's already in a group or isn't the same kind of memory - // operation as B. - // Note that mayReadFromMemory() isn't mutually exclusive to - // mayWriteToMemory in the case of atomic loads. We shouldn't see those - // here, canVectorizeMemory() should have returned false - except for the - // case we asked for optimization remarks. - if (isInterleaved(A) || - (A->mayReadFromMemory() != B->mayReadFromMemory()) || - (A->mayWriteToMemory() != B->mayWriteToMemory())) - continue; - - // Check rules 1 and 2. Ignore A if its stride or size is different from - // that of B. - if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) - continue; - - // Ignore A if the memory object of A and B don't belong to the same - // address space - if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) - continue; - - // Calculate the distance from A to B. - const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( - PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); - if (!DistToB) - continue; - int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); - - // Check rule 3. Ignore A if its distance to B is not a multiple of the - // size. - if (DistanceToB % static_cast<int64_t>(DesB.Size)) - continue; - - // All members of a predicated interleave-group must have the same predicate, - // and currently must reside in the same BB. - BasicBlock *BlockA = A->getParent(); - BasicBlock *BlockB = B->getParent(); - if ((isPredicated(BlockA) || isPredicated(BlockB)) && - (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) - continue; - - // The index of A is the index of B plus A's distance to B in multiples - // of the size. - int IndexA = - Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); - - // Try to insert A into B's group. - if (Group->insertMember(A, IndexA, DesA.Alignment)) { - LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' - << " into the interleave group with" << *B - << '\n'); - InterleaveGroupMap[A] = Group; - - // Set the first load in program order as the insert position. - if (A->mayReadFromMemory()) - Group->setInsertPos(A); - } - } // Iteration over A accesses. - } // Iteration over B accesses. - - auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group, - int Index, - std::string FirstOrLast) -> bool { - Instruction *Member = Group->getMember(Index); - assert(Member && "Group member does not exist"); - Value *MemberPtr = getLoadStorePointerOperand(Member); - Type *AccessTy = getLoadStoreType(Member); - if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides, - /*Assume=*/false, /*ShouldCheckWrap=*/true)) - return false; - LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " - << FirstOrLast - << " group member potentially pointer-wrapping.\n"); - releaseGroup(Group); - return true; - }; - - // Remove interleaved groups with gaps whose memory - // accesses may wrap around. We have to revisit the getPtrStride analysis, - // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does - // not check wrapping (see documentation there). - // FORNOW we use Assume=false; - // TODO: Change to Assume=true but making sure we don't exceed the threshold - // of runtime SCEV assumptions checks (thereby potentially failing to - // vectorize altogether). - // Additional optional optimizations: - // TODO: If we are peeling the loop and we know that the first pointer doesn't - // wrap then we can deduce that all pointers in the group don't wrap. - // This means that we can forcefully peel the loop in order to only have to - // check the first pointer for no-wrap. When we'll change to use Assume=true - // we'll only need at most one runtime check per interleaved group. - for (auto *Group : LoadGroups) { - // Case 1: A full group. Can Skip the checks; For full groups, if the wide - // load would wrap around the address space we would do a memory access at - // nullptr even without the transformation. - if (Group->getNumMembers() == Group->getFactor()) - continue; - - // Case 2: If first and last members of the group don't wrap this implies - // that all the pointers in the group don't wrap. - // So we check only group member 0 (which is always guaranteed to exist), - // and group member Factor - 1; If the latter doesn't exist we rely on - // peeling (if it is a non-reversed accsess -- see Case 3). - if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) - continue; - if (Group->getMember(Group->getFactor() - 1)) - InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1, - std::string("last")); - else { - // Case 3: A non-reversed interleaved load group with gaps: We need - // to execute at least one scalar epilogue iteration. This will ensure - // we don't speculatively access memory out-of-bounds. We only need - // to look for a member at index factor - 1, since every group must have - // a member at index zero. - if (Group->isReverse()) { - LLVM_DEBUG( - dbgs() << "LV: Invalidate candidate interleaved group due to " - "a reverse access with gaps.\n"); - releaseGroup(Group); - continue; - } - LLVM_DEBUG( - dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); - RequiresScalarEpilogue = true; - } - } - - for (auto *Group : StoreGroups) { - // Case 1: A full group. Can Skip the checks; For full groups, if the wide - // store would wrap around the address space we would do a memory access at - // nullptr even without the transformation. - if (Group->getNumMembers() == Group->getFactor()) - continue; - - // Interleave-store-group with gaps is implemented using masked wide store. - // Remove interleaved store groups with gaps if - // masked-interleaved-accesses are not enabled by the target. - if (!EnablePredicatedInterleavedMemAccesses) { - LLVM_DEBUG( - dbgs() << "LV: Invalidate candidate interleaved store group due " - "to gaps.\n"); - releaseGroup(Group); - continue; - } - - // Case 2: If first and last members of the group don't wrap this implies - // that all the pointers in the group don't wrap. - // So we check only group member 0 (which is always guaranteed to exist), - // and the last group member. Case 3 (scalar epilog) is not relevant for - // stores with gaps, which are implemented with masked-store (rather than - // speculative access, as in loads). - if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) - continue; - for (int Index = Group->getFactor() - 1; Index > 0; Index--) - if (Group->getMember(Index)) { - InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last")); - break; - } - } -} - -void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { - // If no group had triggered the requirement to create an epilogue loop, - // there is nothing to do. - if (!requiresScalarEpilogue()) - return; - - bool ReleasedGroup = false; - // Release groups requiring scalar epilogues. Note that this also removes them - // from InterleaveGroups. - for (auto *Group : make_early_inc_range(InterleaveGroups)) { - if (!Group->requiresScalarEpilogue()) - continue; - LLVM_DEBUG( - dbgs() - << "LV: Invalidate candidate interleaved group due to gaps that " - "require a scalar epilogue (not allowed under optsize) and cannot " - "be masked (not enabled). \n"); - releaseGroup(Group); - ReleasedGroup = true; - } - assert(ReleasedGroup && "At least one group must be invalidated, as a " - "scalar epilogue was required"); - (void)ReleasedGroup; - RequiresScalarEpilogue = false; -} - -template <typename InstT> -void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { - llvm_unreachable("addMetadata can only be used for Instruction"); -} - -namespace llvm { -template <> -void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { - SmallVector<Value *, 4> VL; - std::transform(Members.begin(), Members.end(), std::back_inserter(VL), - [](std::pair<int, Instruction *> p) { return p.second; }); - propagateMetadata(NewInst, VL); -} -} - -std::string VFABI::mangleTLIVectorName(StringRef VectorName, - StringRef ScalarName, unsigned numArgs, - ElementCount VF) { - SmallString<256> Buffer; - llvm::raw_svector_ostream Out(Buffer); - Out << "_ZGV" << VFABI::_LLVM_ << "N"; - if (VF.isScalable()) - Out << 'x'; - else - Out << VF.getFixedValue(); - for (unsigned I = 0; I < numArgs; ++I) - Out << "v"; - Out << "_" << ScalarName << "(" << VectorName << ")"; - return std::string(Out.str()); -} - -void VFABI::getVectorVariantNames( - const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) { - const StringRef S = CI.getFnAttr(VFABI::MappingsAttrName).getValueAsString(); - if (S.empty()) - return; - - SmallVector<StringRef, 8> ListAttr; - S.split(ListAttr, ","); - - for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) { -#ifndef NDEBUG - LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n"); - Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule())); - assert(Info.hasValue() && "Invalid name for a VFABI variant."); - assert(CI.getModule()->getFunction(Info.getValue().VectorName) && - "Vector function is missing."); -#endif - VariantMappings.push_back(std::string(S)); - } -} - -bool VFShape::hasValidParameterList() const { - for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams; - ++Pos) { - assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list."); - - switch (Parameters[Pos].ParamKind) { - default: // Nothing to check. - break; - case VFParamKind::OMP_Linear: - case VFParamKind::OMP_LinearRef: - case VFParamKind::OMP_LinearVal: - case VFParamKind::OMP_LinearUVal: - // Compile time linear steps must be non-zero. - if (Parameters[Pos].LinearStepOrPos == 0) - return false; - break; - case VFParamKind::OMP_LinearPos: - case VFParamKind::OMP_LinearRefPos: - case VFParamKind::OMP_LinearValPos: - case VFParamKind::OMP_LinearUValPos: - // The runtime linear step must be referring to some other - // parameters in the signature. - if (Parameters[Pos].LinearStepOrPos >= int(NumParams)) - return false; - // The linear step parameter must be marked as uniform. - if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind != - VFParamKind::OMP_Uniform) - return false; - // The linear step parameter can't point at itself. - if (Parameters[Pos].LinearStepOrPos == int(Pos)) - return false; - break; - case VFParamKind::GlobalPredicate: - // The global predicate must be the unique. Can be placed anywhere in the - // signature. - for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos) - if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate) - return false; - break; - } - } - return true; -} |
