diff options
| author | robot-piglet <[email protected]> | 2025-03-05 13:38:11 +0300 |
|---|---|---|
| committer | robot-piglet <[email protected]> | 2025-03-05 13:49:53 +0300 |
| commit | 9eed360f02de773a5ed2de5d2a3e81fc7f06acfa (patch) | |
| tree | 744a4054e64eb443073c7c6ad36b29cedcf9c2e6 /contrib/libs/llvm14/lib/Analysis/LazyCallGraph.cpp | |
| parent | c141a5c40bda2eed1a68b0626ffdae5fd19359a6 (diff) | |
Intermediate changes
commit_hash:2ec2671384dd8e604d41bc5c52c2f7858e4afea6
Diffstat (limited to 'contrib/libs/llvm14/lib/Analysis/LazyCallGraph.cpp')
| -rw-r--r-- | contrib/libs/llvm14/lib/Analysis/LazyCallGraph.cpp | 2050 |
1 files changed, 0 insertions, 2050 deletions
diff --git a/contrib/libs/llvm14/lib/Analysis/LazyCallGraph.cpp b/contrib/libs/llvm14/lib/Analysis/LazyCallGraph.cpp deleted file mode 100644 index e8e9593d703..00000000000 --- a/contrib/libs/llvm14/lib/Analysis/LazyCallGraph.cpp +++ /dev/null @@ -1,2050 +0,0 @@ -//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/LazyCallGraph.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/ScopeExit.h" -#include "llvm/ADT/Sequence.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/iterator_range.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/VectorUtils.h" -#include "llvm/Config/llvm-config.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/InstIterator.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/PassManager.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/GraphWriter.h" -#include "llvm/Support/raw_ostream.h" -#include <algorithm> -#include <cassert> -#include <cstddef> -#include <iterator> -#include <string> -#include <tuple> -#include <utility> - -using namespace llvm; - -#define DEBUG_TYPE "lcg" - -void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN, - Edge::Kind EK) { - EdgeIndexMap.insert({&TargetN, Edges.size()}); - Edges.emplace_back(TargetN, EK); -} - -void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) { - Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK); -} - -bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) { - auto IndexMapI = EdgeIndexMap.find(&TargetN); - if (IndexMapI == EdgeIndexMap.end()) - return false; - - Edges[IndexMapI->second] = Edge(); - EdgeIndexMap.erase(IndexMapI); - return true; -} - -static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges, - DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap, - LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) { - if (!EdgeIndexMap.insert({&N, Edges.size()}).second) - return; - - LLVM_DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n"); - Edges.emplace_back(LazyCallGraph::Edge(N, EK)); -} - -LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() { - assert(!Edges && "Must not have already populated the edges for this node!"); - - LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName() - << "' to the graph.\n"); - - Edges = EdgeSequence(); - - SmallVector<Constant *, 16> Worklist; - SmallPtrSet<Function *, 4> Callees; - SmallPtrSet<Constant *, 16> Visited; - - // Find all the potential call graph edges in this function. We track both - // actual call edges and indirect references to functions. The direct calls - // are trivially added, but to accumulate the latter we walk the instructions - // and add every operand which is a constant to the worklist to process - // afterward. - // - // Note that we consider *any* function with a definition to be a viable - // edge. Even if the function's definition is subject to replacement by - // some other module (say, a weak definition) there may still be - // optimizations which essentially speculate based on the definition and - // a way to check that the specific definition is in fact the one being - // used. For example, this could be done by moving the weak definition to - // a strong (internal) definition and making the weak definition be an - // alias. Then a test of the address of the weak function against the new - // strong definition's address would be an effective way to determine the - // safety of optimizing a direct call edge. - for (BasicBlock &BB : *F) - for (Instruction &I : BB) { - if (auto *CB = dyn_cast<CallBase>(&I)) - if (Function *Callee = CB->getCalledFunction()) - if (!Callee->isDeclaration()) - if (Callees.insert(Callee).second) { - Visited.insert(Callee); - addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee), - LazyCallGraph::Edge::Call); - } - - for (Value *Op : I.operand_values()) - if (Constant *C = dyn_cast<Constant>(Op)) - if (Visited.insert(C).second) - Worklist.push_back(C); - } - - // We've collected all the constant (and thus potentially function or - // function containing) operands to all of the instructions in the function. - // Process them (recursively) collecting every function found. - visitReferences(Worklist, Visited, [&](Function &F) { - addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F), - LazyCallGraph::Edge::Ref); - }); - - // Add implicit reference edges to any defined libcall functions (if we - // haven't found an explicit edge). - for (auto *F : G->LibFunctions) - if (!Visited.count(F)) - addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F), - LazyCallGraph::Edge::Ref); - - return *Edges; -} - -void LazyCallGraph::Node::replaceFunction(Function &NewF) { - assert(F != &NewF && "Must not replace a function with itself!"); - F = &NewF; -} - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) -LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const { - dbgs() << *this << '\n'; -} -#endif - -static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) { - LibFunc LF; - - // Either this is a normal library function or a "vectorizable" - // function. Not using the VFDatabase here because this query - // is related only to libraries handled via the TLI. - return TLI.getLibFunc(F, LF) || - TLI.isKnownVectorFunctionInLibrary(F.getName()); -} - -LazyCallGraph::LazyCallGraph( - Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { - LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() - << "\n"); - for (Function &F : M) { - if (F.isDeclaration()) - continue; - // If this function is a known lib function to LLVM then we want to - // synthesize reference edges to it to model the fact that LLVM can turn - // arbitrary code into a library function call. - if (isKnownLibFunction(F, GetTLI(F))) - LibFunctions.insert(&F); - - if (F.hasLocalLinkage()) - continue; - - // External linkage defined functions have edges to them from other - // modules. - LLVM_DEBUG(dbgs() << " Adding '" << F.getName() - << "' to entry set of the graph.\n"); - addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref); - } - - // Externally visible aliases of internal functions are also viable entry - // edges to the module. - for (auto &A : M.aliases()) { - if (A.hasLocalLinkage()) - continue; - if (Function* F = dyn_cast<Function>(A.getAliasee())) { - LLVM_DEBUG(dbgs() << " Adding '" << F->getName() - << "' with alias '" << A.getName() - << "' to entry set of the graph.\n"); - addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref); - } - } - - // Now add entry nodes for functions reachable via initializers to globals. - SmallVector<Constant *, 16> Worklist; - SmallPtrSet<Constant *, 16> Visited; - for (GlobalVariable &GV : M.globals()) - if (GV.hasInitializer()) - if (Visited.insert(GV.getInitializer()).second) - Worklist.push_back(GV.getInitializer()); - - LLVM_DEBUG( - dbgs() << " Adding functions referenced by global initializers to the " - "entry set.\n"); - visitReferences(Worklist, Visited, [&](Function &F) { - addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), - LazyCallGraph::Edge::Ref); - }); -} - -LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) - : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), - EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)), - SCCMap(std::move(G.SCCMap)), - LibFunctions(std::move(G.LibFunctions)) { - updateGraphPtrs(); -} - -bool LazyCallGraph::invalidate(Module &, const PreservedAnalyses &PA, - ModuleAnalysisManager::Invalidator &) { - // Check whether the analysis, all analyses on functions, or the function's - // CFG have been preserved. - auto PAC = PA.getChecker<llvm::LazyCallGraphAnalysis>(); - return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()); -} - -LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { - BPA = std::move(G.BPA); - NodeMap = std::move(G.NodeMap); - EntryEdges = std::move(G.EntryEdges); - SCCBPA = std::move(G.SCCBPA); - SCCMap = std::move(G.SCCMap); - LibFunctions = std::move(G.LibFunctions); - updateGraphPtrs(); - return *this; -} - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) -LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const { - dbgs() << *this << '\n'; -} -#endif - -#if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) -void LazyCallGraph::SCC::verify() { - assert(OuterRefSCC && "Can't have a null RefSCC!"); - assert(!Nodes.empty() && "Can't have an empty SCC!"); - - for (Node *N : Nodes) { - assert(N && "Can't have a null node!"); - assert(OuterRefSCC->G->lookupSCC(*N) == this && - "Node does not map to this SCC!"); - assert(N->DFSNumber == -1 && - "Must set DFS numbers to -1 when adding a node to an SCC!"); - assert(N->LowLink == -1 && - "Must set low link to -1 when adding a node to an SCC!"); - for (Edge &E : **N) - assert(E.getNode().isPopulated() && "Can't have an unpopulated node!"); - -#ifdef EXPENSIVE_CHECKS - // Verify that all nodes in this SCC can reach all other nodes. - SmallVector<Node *, 4> Worklist; - SmallPtrSet<Node *, 4> Visited; - Worklist.push_back(N); - while (!Worklist.empty()) { - Node *VisitingNode = Worklist.pop_back_val(); - if (!Visited.insert(VisitingNode).second) - continue; - for (Edge &E : (*VisitingNode)->calls()) - Worklist.push_back(&E.getNode()); - } - for (Node *NodeToVisit : Nodes) { - assert(Visited.contains(NodeToVisit) && - "Cannot reach all nodes within SCC"); - } -#endif - } -} -#endif - -bool LazyCallGraph::SCC::isParentOf(const SCC &C) const { - if (this == &C) - return false; - - for (Node &N : *this) - for (Edge &E : N->calls()) - if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C) - return true; - - // No edges found. - return false; -} - -bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const { - if (this == &TargetC) - return false; - - LazyCallGraph &G = *OuterRefSCC->G; - - // Start with this SCC. - SmallPtrSet<const SCC *, 16> Visited = {this}; - SmallVector<const SCC *, 16> Worklist = {this}; - - // Walk down the graph until we run out of edges or find a path to TargetC. - do { - const SCC &C = *Worklist.pop_back_val(); - for (Node &N : C) - for (Edge &E : N->calls()) { - SCC *CalleeC = G.lookupSCC(E.getNode()); - if (!CalleeC) - continue; - - // If the callee's SCC is the TargetC, we're done. - if (CalleeC == &TargetC) - return true; - - // If this is the first time we've reached this SCC, put it on the - // worklist to recurse through. - if (Visited.insert(CalleeC).second) - Worklist.push_back(CalleeC); - } - } while (!Worklist.empty()); - - // No paths found. - return false; -} - -LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {} - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) -LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const { - dbgs() << *this << '\n'; -} -#endif - -#if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) -void LazyCallGraph::RefSCC::verify() { - assert(G && "Can't have a null graph!"); - assert(!SCCs.empty() && "Can't have an empty SCC!"); - - // Verify basic properties of the SCCs. - SmallPtrSet<SCC *, 4> SCCSet; - for (SCC *C : SCCs) { - assert(C && "Can't have a null SCC!"); - C->verify(); - assert(&C->getOuterRefSCC() == this && - "SCC doesn't think it is inside this RefSCC!"); - bool Inserted = SCCSet.insert(C).second; - assert(Inserted && "Found a duplicate SCC!"); - auto IndexIt = SCCIndices.find(C); - assert(IndexIt != SCCIndices.end() && - "Found an SCC that doesn't have an index!"); - } - - // Check that our indices map correctly. - for (auto &SCCIndexPair : SCCIndices) { - SCC *C = SCCIndexPair.first; - int i = SCCIndexPair.second; - assert(C && "Can't have a null SCC in the indices!"); - assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!"); - assert(SCCs[i] == C && "Index doesn't point to SCC!"); - } - - // Check that the SCCs are in fact in post-order. - for (int i = 0, Size = SCCs.size(); i < Size; ++i) { - SCC &SourceSCC = *SCCs[i]; - for (Node &N : SourceSCC) - for (Edge &E : *N) { - if (!E.isCall()) - continue; - SCC &TargetSCC = *G->lookupSCC(E.getNode()); - if (&TargetSCC.getOuterRefSCC() == this) { - assert(SCCIndices.find(&TargetSCC)->second <= i && - "Edge between SCCs violates post-order relationship."); - continue; - } - } - } - -#ifdef EXPENSIVE_CHECKS - // Verify that all nodes in this RefSCC can reach all other nodes. - SmallVector<Node *> Nodes; - for (SCC *C : SCCs) { - for (Node &N : *C) - Nodes.push_back(&N); - } - for (Node *N : Nodes) { - SmallVector<Node *, 4> Worklist; - SmallPtrSet<Node *, 4> Visited; - Worklist.push_back(N); - while (!Worklist.empty()) { - Node *VisitingNode = Worklist.pop_back_val(); - if (!Visited.insert(VisitingNode).second) - continue; - for (Edge &E : **VisitingNode) - Worklist.push_back(&E.getNode()); - } - for (Node *NodeToVisit : Nodes) { - assert(Visited.contains(NodeToVisit) && - "Cannot reach all nodes within RefSCC"); - } - } -#endif -} -#endif - -bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const { - if (&RC == this) - return false; - - // Search all edges to see if this is a parent. - for (SCC &C : *this) - for (Node &N : C) - for (Edge &E : *N) - if (G->lookupRefSCC(E.getNode()) == &RC) - return true; - - return false; -} - -bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const { - if (&RC == this) - return false; - - // For each descendant of this RefSCC, see if one of its children is the - // argument. If not, add that descendant to the worklist and continue - // searching. - SmallVector<const RefSCC *, 4> Worklist; - SmallPtrSet<const RefSCC *, 4> Visited; - Worklist.push_back(this); - Visited.insert(this); - do { - const RefSCC &DescendantRC = *Worklist.pop_back_val(); - for (SCC &C : DescendantRC) - for (Node &N : C) - for (Edge &E : *N) { - auto *ChildRC = G->lookupRefSCC(E.getNode()); - if (ChildRC == &RC) - return true; - if (!ChildRC || !Visited.insert(ChildRC).second) - continue; - Worklist.push_back(ChildRC); - } - } while (!Worklist.empty()); - - return false; -} - -/// Generic helper that updates a postorder sequence of SCCs for a potentially -/// cycle-introducing edge insertion. -/// -/// A postorder sequence of SCCs of a directed graph has one fundamental -/// property: all deges in the DAG of SCCs point "up" the sequence. That is, -/// all edges in the SCC DAG point to prior SCCs in the sequence. -/// -/// This routine both updates a postorder sequence and uses that sequence to -/// compute the set of SCCs connected into a cycle. It should only be called to -/// insert a "downward" edge which will require changing the sequence to -/// restore it to a postorder. -/// -/// When inserting an edge from an earlier SCC to a later SCC in some postorder -/// sequence, all of the SCCs which may be impacted are in the closed range of -/// those two within the postorder sequence. The algorithm used here to restore -/// the state is as follows: -/// -/// 1) Starting from the source SCC, construct a set of SCCs which reach the -/// source SCC consisting of just the source SCC. Then scan toward the -/// target SCC in postorder and for each SCC, if it has an edge to an SCC -/// in the set, add it to the set. Otherwise, the source SCC is not -/// a successor, move it in the postorder sequence to immediately before -/// the source SCC, shifting the source SCC and all SCCs in the set one -/// position toward the target SCC. Stop scanning after processing the -/// target SCC. -/// 2) If the source SCC is now past the target SCC in the postorder sequence, -/// and thus the new edge will flow toward the start, we are done. -/// 3) Otherwise, starting from the target SCC, walk all edges which reach an -/// SCC between the source and the target, and add them to the set of -/// connected SCCs, then recurse through them. Once a complete set of the -/// SCCs the target connects to is known, hoist the remaining SCCs between -/// the source and the target to be above the target. Note that there is no -/// need to process the source SCC, it is already known to connect. -/// 4) At this point, all of the SCCs in the closed range between the source -/// SCC and the target SCC in the postorder sequence are connected, -/// including the target SCC and the source SCC. Inserting the edge from -/// the source SCC to the target SCC will form a cycle out of precisely -/// these SCCs. Thus we can merge all of the SCCs in this closed range into -/// a single SCC. -/// -/// This process has various important properties: -/// - Only mutates the SCCs when adding the edge actually changes the SCC -/// structure. -/// - Never mutates SCCs which are unaffected by the change. -/// - Updates the postorder sequence to correctly satisfy the postorder -/// constraint after the edge is inserted. -/// - Only reorders SCCs in the closed postorder sequence from the source to -/// the target, so easy to bound how much has changed even in the ordering. -/// - Big-O is the number of edges in the closed postorder range of SCCs from -/// source to target. -/// -/// This helper routine, in addition to updating the postorder sequence itself -/// will also update a map from SCCs to indices within that sequence. -/// -/// The sequence and the map must operate on pointers to the SCC type. -/// -/// Two callbacks must be provided. The first computes the subset of SCCs in -/// the postorder closed range from the source to the target which connect to -/// the source SCC via some (transitive) set of edges. The second computes the -/// subset of the same range which the target SCC connects to via some -/// (transitive) set of edges. Both callbacks should populate the set argument -/// provided. -template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT, - typename ComputeSourceConnectedSetCallableT, - typename ComputeTargetConnectedSetCallableT> -static iterator_range<typename PostorderSequenceT::iterator> -updatePostorderSequenceForEdgeInsertion( - SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs, - SCCIndexMapT &SCCIndices, - ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet, - ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) { - int SourceIdx = SCCIndices[&SourceSCC]; - int TargetIdx = SCCIndices[&TargetSCC]; - assert(SourceIdx < TargetIdx && "Cannot have equal indices here!"); - - SmallPtrSet<SCCT *, 4> ConnectedSet; - - // Compute the SCCs which (transitively) reach the source. - ComputeSourceConnectedSet(ConnectedSet); - - // Partition the SCCs in this part of the port-order sequence so only SCCs - // connecting to the source remain between it and the target. This is - // a benign partition as it preserves postorder. - auto SourceI = std::stable_partition( - SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1, - [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); }); - for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i) - SCCIndices.find(SCCs[i])->second = i; - - // If the target doesn't connect to the source, then we've corrected the - // post-order and there are no cycles formed. - if (!ConnectedSet.count(&TargetSCC)) { - assert(SourceI > (SCCs.begin() + SourceIdx) && - "Must have moved the source to fix the post-order."); - assert(*std::prev(SourceI) == &TargetSCC && - "Last SCC to move should have bene the target."); - - // Return an empty range at the target SCC indicating there is nothing to - // merge. - return make_range(std::prev(SourceI), std::prev(SourceI)); - } - - assert(SCCs[TargetIdx] == &TargetSCC && - "Should not have moved target if connected!"); - SourceIdx = SourceI - SCCs.begin(); - assert(SCCs[SourceIdx] == &SourceSCC && - "Bad updated index computation for the source SCC!"); - - - // See whether there are any remaining intervening SCCs between the source - // and target. If so we need to make sure they all are reachable form the - // target. - if (SourceIdx + 1 < TargetIdx) { - ConnectedSet.clear(); - ComputeTargetConnectedSet(ConnectedSet); - - // Partition SCCs so that only SCCs reached from the target remain between - // the source and the target. This preserves postorder. - auto TargetI = std::stable_partition( - SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1, - [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); }); - for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i) - SCCIndices.find(SCCs[i])->second = i; - TargetIdx = std::prev(TargetI) - SCCs.begin(); - assert(SCCs[TargetIdx] == &TargetSCC && - "Should always end with the target!"); - } - - // At this point, we know that connecting source to target forms a cycle - // because target connects back to source, and we know that all of the SCCs - // between the source and target in the postorder sequence participate in that - // cycle. - return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx); -} - -bool -LazyCallGraph::RefSCC::switchInternalEdgeToCall( - Node &SourceN, Node &TargetN, - function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) { - assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!"); - SmallVector<SCC *, 1> DeletedSCCs; - -#ifdef EXPENSIVE_CHECKS - verify(); - auto VerifyOnExit = make_scope_exit([&]() { verify(); }); -#endif - - SCC &SourceSCC = *G->lookupSCC(SourceN); - SCC &TargetSCC = *G->lookupSCC(TargetN); - - // If the two nodes are already part of the same SCC, we're also done as - // we've just added more connectivity. - if (&SourceSCC == &TargetSCC) { - SourceN->setEdgeKind(TargetN, Edge::Call); - return false; // No new cycle. - } - - // At this point we leverage the postorder list of SCCs to detect when the - // insertion of an edge changes the SCC structure in any way. - // - // First and foremost, we can eliminate the need for any changes when the - // edge is toward the beginning of the postorder sequence because all edges - // flow in that direction already. Thus adding a new one cannot form a cycle. - int SourceIdx = SCCIndices[&SourceSCC]; - int TargetIdx = SCCIndices[&TargetSCC]; - if (TargetIdx < SourceIdx) { - SourceN->setEdgeKind(TargetN, Edge::Call); - return false; // No new cycle. - } - - // Compute the SCCs which (transitively) reach the source. - auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { -#ifdef EXPENSIVE_CHECKS - // Check that the RefSCC is still valid before computing this as the - // results will be nonsensical of we've broken its invariants. - verify(); -#endif - ConnectedSet.insert(&SourceSCC); - auto IsConnected = [&](SCC &C) { - for (Node &N : C) - for (Edge &E : N->calls()) - if (ConnectedSet.count(G->lookupSCC(E.getNode()))) - return true; - - return false; - }; - - for (SCC *C : - make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1)) - if (IsConnected(*C)) - ConnectedSet.insert(C); - }; - - // Use a normal worklist to find which SCCs the target connects to. We still - // bound the search based on the range in the postorder list we care about, - // but because this is forward connectivity we just "recurse" through the - // edges. - auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { -#ifdef EXPENSIVE_CHECKS - // Check that the RefSCC is still valid before computing this as the - // results will be nonsensical of we've broken its invariants. - verify(); -#endif - ConnectedSet.insert(&TargetSCC); - SmallVector<SCC *, 4> Worklist; - Worklist.push_back(&TargetSCC); - do { - SCC &C = *Worklist.pop_back_val(); - for (Node &N : C) - for (Edge &E : *N) { - if (!E.isCall()) - continue; - SCC &EdgeC = *G->lookupSCC(E.getNode()); - if (&EdgeC.getOuterRefSCC() != this) - // Not in this RefSCC... - continue; - if (SCCIndices.find(&EdgeC)->second <= SourceIdx) - // Not in the postorder sequence between source and target. - continue; - - if (ConnectedSet.insert(&EdgeC).second) - Worklist.push_back(&EdgeC); - } - } while (!Worklist.empty()); - }; - - // Use a generic helper to update the postorder sequence of SCCs and return - // a range of any SCCs connected into a cycle by inserting this edge. This - // routine will also take care of updating the indices into the postorder - // sequence. - auto MergeRange = updatePostorderSequenceForEdgeInsertion( - SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet, - ComputeTargetConnectedSet); - - // Run the user's callback on the merged SCCs before we actually merge them. - if (MergeCB) - MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end())); - - // If the merge range is empty, then adding the edge didn't actually form any - // new cycles. We're done. - if (MergeRange.empty()) { - // Now that the SCC structure is finalized, flip the kind to call. - SourceN->setEdgeKind(TargetN, Edge::Call); - return false; // No new cycle. - } - -#ifdef EXPENSIVE_CHECKS - // Before merging, check that the RefSCC remains valid after all the - // postorder updates. - verify(); -#endif - - // Otherwise we need to merge all of the SCCs in the cycle into a single - // result SCC. - // - // NB: We merge into the target because all of these functions were already - // reachable from the target, meaning any SCC-wide properties deduced about it - // other than the set of functions within it will not have changed. - for (SCC *C : MergeRange) { - assert(C != &TargetSCC && - "We merge *into* the target and shouldn't process it here!"); - SCCIndices.erase(C); - TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end()); - for (Node *N : C->Nodes) - G->SCCMap[N] = &TargetSCC; - C->clear(); - DeletedSCCs.push_back(C); - } - - // Erase the merged SCCs from the list and update the indices of the - // remaining SCCs. - int IndexOffset = MergeRange.end() - MergeRange.begin(); - auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end()); - for (SCC *C : make_range(EraseEnd, SCCs.end())) - SCCIndices[C] -= IndexOffset; - - // Now that the SCC structure is finalized, flip the kind to call. - SourceN->setEdgeKind(TargetN, Edge::Call); - - // And we're done, but we did form a new cycle. - return true; -} - -void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN, - Node &TargetN) { - assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); - -#ifdef EXPENSIVE_CHECKS - verify(); - auto VerifyOnExit = make_scope_exit([&]() { verify(); }); -#endif - - assert(G->lookupRefSCC(SourceN) == this && - "Source must be in this RefSCC."); - assert(G->lookupRefSCC(TargetN) == this && - "Target must be in this RefSCC."); - assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) && - "Source and Target must be in separate SCCs for this to be trivial!"); - - // Set the edge kind. - SourceN->setEdgeKind(TargetN, Edge::Ref); -} - -iterator_range<LazyCallGraph::RefSCC::iterator> -LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) { - assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); - -#ifdef EXPENSIVE_CHECKS - verify(); - auto VerifyOnExit = make_scope_exit([&]() { verify(); }); -#endif - - assert(G->lookupRefSCC(SourceN) == this && - "Source must be in this RefSCC."); - assert(G->lookupRefSCC(TargetN) == this && - "Target must be in this RefSCC."); - - SCC &TargetSCC = *G->lookupSCC(TargetN); - assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in " - "the same SCC to require the " - "full CG update."); - - // Set the edge kind. - SourceN->setEdgeKind(TargetN, Edge::Ref); - - // Otherwise we are removing a call edge from a single SCC. This may break - // the cycle. In order to compute the new set of SCCs, we need to do a small - // DFS over the nodes within the SCC to form any sub-cycles that remain as - // distinct SCCs and compute a postorder over the resulting SCCs. - // - // However, we specially handle the target node. The target node is known to - // reach all other nodes in the original SCC by definition. This means that - // we want the old SCC to be replaced with an SCC containing that node as it - // will be the root of whatever SCC DAG results from the DFS. Assumptions - // about an SCC such as the set of functions called will continue to hold, - // etc. - - SCC &OldSCC = TargetSCC; - SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack; - SmallVector<Node *, 16> PendingSCCStack; - SmallVector<SCC *, 4> NewSCCs; - - // Prepare the nodes for a fresh DFS. - SmallVector<Node *, 16> Worklist; - Worklist.swap(OldSCC.Nodes); - for (Node *N : Worklist) { - N->DFSNumber = N->LowLink = 0; - G->SCCMap.erase(N); - } - - // Force the target node to be in the old SCC. This also enables us to take - // a very significant short-cut in the standard Tarjan walk to re-form SCCs - // below: whenever we build an edge that reaches the target node, we know - // that the target node eventually connects back to all other nodes in our - // walk. As a consequence, we can detect and handle participants in that - // cycle without walking all the edges that form this connection, and instead - // by relying on the fundamental guarantee coming into this operation (all - // nodes are reachable from the target due to previously forming an SCC). - TargetN.DFSNumber = TargetN.LowLink = -1; - OldSCC.Nodes.push_back(&TargetN); - G->SCCMap[&TargetN] = &OldSCC; - - // Scan down the stack and DFS across the call edges. - for (Node *RootN : Worklist) { - assert(DFSStack.empty() && - "Cannot begin a new root with a non-empty DFS stack!"); - assert(PendingSCCStack.empty() && - "Cannot begin a new root with pending nodes for an SCC!"); - - // Skip any nodes we've already reached in the DFS. - if (RootN->DFSNumber != 0) { - assert(RootN->DFSNumber == -1 && - "Shouldn't have any mid-DFS root nodes!"); - continue; - } - - RootN->DFSNumber = RootN->LowLink = 1; - int NextDFSNumber = 2; - - DFSStack.push_back({RootN, (*RootN)->call_begin()}); - do { - Node *N; - EdgeSequence::call_iterator I; - std::tie(N, I) = DFSStack.pop_back_val(); - auto E = (*N)->call_end(); - while (I != E) { - Node &ChildN = I->getNode(); - if (ChildN.DFSNumber == 0) { - // We haven't yet visited this child, so descend, pushing the current - // node onto the stack. - DFSStack.push_back({N, I}); - - assert(!G->SCCMap.count(&ChildN) && - "Found a node with 0 DFS number but already in an SCC!"); - ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; - N = &ChildN; - I = (*N)->call_begin(); - E = (*N)->call_end(); - continue; - } - - // Check for the child already being part of some component. - if (ChildN.DFSNumber == -1) { - if (G->lookupSCC(ChildN) == &OldSCC) { - // If the child is part of the old SCC, we know that it can reach - // every other node, so we have formed a cycle. Pull the entire DFS - // and pending stacks into it. See the comment above about setting - // up the old SCC for why we do this. - int OldSize = OldSCC.size(); - OldSCC.Nodes.push_back(N); - OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end()); - PendingSCCStack.clear(); - while (!DFSStack.empty()) - OldSCC.Nodes.push_back(DFSStack.pop_back_val().first); - for (Node &N : drop_begin(OldSCC, OldSize)) { - N.DFSNumber = N.LowLink = -1; - G->SCCMap[&N] = &OldSCC; - } - N = nullptr; - break; - } - - // If the child has already been added to some child component, it - // couldn't impact the low-link of this parent because it isn't - // connected, and thus its low-link isn't relevant so skip it. - ++I; - continue; - } - - // Track the lowest linked child as the lowest link for this node. - assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); - if (ChildN.LowLink < N->LowLink) - N->LowLink = ChildN.LowLink; - - // Move to the next edge. - ++I; - } - if (!N) - // Cleared the DFS early, start another round. - break; - - // We've finished processing N and its descendants, put it on our pending - // SCC stack to eventually get merged into an SCC of nodes. - PendingSCCStack.push_back(N); - - // If this node is linked to some lower entry, continue walking up the - // stack. - if (N->LowLink != N->DFSNumber) - continue; - - // Otherwise, we've completed an SCC. Append it to our post order list of - // SCCs. - int RootDFSNumber = N->DFSNumber; - // Find the range of the node stack by walking down until we pass the - // root DFS number. - auto SCCNodes = make_range( - PendingSCCStack.rbegin(), - find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { - return N->DFSNumber < RootDFSNumber; - })); - - // Form a new SCC out of these nodes and then clear them off our pending - // stack. - NewSCCs.push_back(G->createSCC(*this, SCCNodes)); - for (Node &N : *NewSCCs.back()) { - N.DFSNumber = N.LowLink = -1; - G->SCCMap[&N] = NewSCCs.back(); - } - PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); - } while (!DFSStack.empty()); - } - - // Insert the remaining SCCs before the old one. The old SCC can reach all - // other SCCs we form because it contains the target node of the removed edge - // of the old SCC. This means that we will have edges into all of the new - // SCCs, which means the old one must come last for postorder. - int OldIdx = SCCIndices[&OldSCC]; - SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end()); - - // Update the mapping from SCC* to index to use the new SCC*s, and remove the - // old SCC from the mapping. - for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx) - SCCIndices[SCCs[Idx]] = Idx; - - return make_range(SCCs.begin() + OldIdx, - SCCs.begin() + OldIdx + NewSCCs.size()); -} - -void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN, - Node &TargetN) { - assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!"); - - assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); - assert(G->lookupRefSCC(TargetN) != this && - "Target must not be in this RefSCC."); -#ifdef EXPENSIVE_CHECKS - assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && - "Target must be a descendant of the Source."); -#endif - - // Edges between RefSCCs are the same regardless of call or ref, so we can - // just flip the edge here. - SourceN->setEdgeKind(TargetN, Edge::Call); - -#ifdef EXPENSIVE_CHECKS - verify(); -#endif -} - -void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN, - Node &TargetN) { - assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!"); - - assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); - assert(G->lookupRefSCC(TargetN) != this && - "Target must not be in this RefSCC."); -#ifdef EXPENSIVE_CHECKS - assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && - "Target must be a descendant of the Source."); -#endif - - // Edges between RefSCCs are the same regardless of call or ref, so we can - // just flip the edge here. - SourceN->setEdgeKind(TargetN, Edge::Ref); - -#ifdef EXPENSIVE_CHECKS - verify(); -#endif -} - -void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN, - Node &TargetN) { - assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); - assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); - - SourceN->insertEdgeInternal(TargetN, Edge::Ref); - -#ifdef EXPENSIVE_CHECKS - verify(); -#endif -} - -void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN, - Edge::Kind EK) { - // First insert it into the caller. - SourceN->insertEdgeInternal(TargetN, EK); - - assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); - - assert(G->lookupRefSCC(TargetN) != this && - "Target must not be in this RefSCC."); -#ifdef EXPENSIVE_CHECKS - assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && - "Target must be a descendant of the Source."); -#endif - -#ifdef EXPENSIVE_CHECKS - verify(); -#endif -} - -SmallVector<LazyCallGraph::RefSCC *, 1> -LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) { - assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); - RefSCC &SourceC = *G->lookupRefSCC(SourceN); - assert(&SourceC != this && "Source must not be in this RefSCC."); -#ifdef EXPENSIVE_CHECKS - assert(SourceC.isDescendantOf(*this) && - "Source must be a descendant of the Target."); -#endif - - SmallVector<RefSCC *, 1> DeletedRefSCCs; - -#ifdef EXPENSIVE_CHECKS - verify(); - auto VerifyOnExit = make_scope_exit([&]() { verify(); }); -#endif - - int SourceIdx = G->RefSCCIndices[&SourceC]; - int TargetIdx = G->RefSCCIndices[this]; - assert(SourceIdx < TargetIdx && - "Postorder list doesn't see edge as incoming!"); - - // Compute the RefSCCs which (transitively) reach the source. We do this by - // working backwards from the source using the parent set in each RefSCC, - // skipping any RefSCCs that don't fall in the postorder range. This has the - // advantage of walking the sparser parent edge (in high fan-out graphs) but - // more importantly this removes examining all forward edges in all RefSCCs - // within the postorder range which aren't in fact connected. Only connected - // RefSCCs (and their edges) are visited here. - auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { - Set.insert(&SourceC); - auto IsConnected = [&](RefSCC &RC) { - for (SCC &C : RC) - for (Node &N : C) - for (Edge &E : *N) - if (Set.count(G->lookupRefSCC(E.getNode()))) - return true; - - return false; - }; - - for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1, - G->PostOrderRefSCCs.begin() + TargetIdx + 1)) - if (IsConnected(*C)) - Set.insert(C); - }; - - // Use a normal worklist to find which SCCs the target connects to. We still - // bound the search based on the range in the postorder list we care about, - // but because this is forward connectivity we just "recurse" through the - // edges. - auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { - Set.insert(this); - SmallVector<RefSCC *, 4> Worklist; - Worklist.push_back(this); - do { - RefSCC &RC = *Worklist.pop_back_val(); - for (SCC &C : RC) - for (Node &N : C) - for (Edge &E : *N) { - RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode()); - if (G->getRefSCCIndex(EdgeRC) <= SourceIdx) - // Not in the postorder sequence between source and target. - continue; - - if (Set.insert(&EdgeRC).second) - Worklist.push_back(&EdgeRC); - } - } while (!Worklist.empty()); - }; - - // Use a generic helper to update the postorder sequence of RefSCCs and return - // a range of any RefSCCs connected into a cycle by inserting this edge. This - // routine will also take care of updating the indices into the postorder - // sequence. - iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange = - updatePostorderSequenceForEdgeInsertion( - SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices, - ComputeSourceConnectedSet, ComputeTargetConnectedSet); - - // Build a set so we can do fast tests for whether a RefSCC will end up as - // part of the merged RefSCC. - SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end()); - - // This RefSCC will always be part of that set, so just insert it here. - MergeSet.insert(this); - - // Now that we have identified all of the SCCs which need to be merged into - // a connected set with the inserted edge, merge all of them into this SCC. - SmallVector<SCC *, 16> MergedSCCs; - int SCCIndex = 0; - for (RefSCC *RC : MergeRange) { - assert(RC != this && "We're merging into the target RefSCC, so it " - "shouldn't be in the range."); - - // Walk the inner SCCs to update their up-pointer and walk all the edges to - // update any parent sets. - // FIXME: We should try to find a way to avoid this (rather expensive) edge - // walk by updating the parent sets in some other manner. - for (SCC &InnerC : *RC) { - InnerC.OuterRefSCC = this; - SCCIndices[&InnerC] = SCCIndex++; - for (Node &N : InnerC) - G->SCCMap[&N] = &InnerC; - } - - // Now merge in the SCCs. We can actually move here so try to reuse storage - // the first time through. - if (MergedSCCs.empty()) - MergedSCCs = std::move(RC->SCCs); - else - MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end()); - RC->SCCs.clear(); - DeletedRefSCCs.push_back(RC); - } - - // Append our original SCCs to the merged list and move it into place. - for (SCC &InnerC : *this) - SCCIndices[&InnerC] = SCCIndex++; - MergedSCCs.append(SCCs.begin(), SCCs.end()); - SCCs = std::move(MergedSCCs); - - // Remove the merged away RefSCCs from the post order sequence. - for (RefSCC *RC : MergeRange) - G->RefSCCIndices.erase(RC); - int IndexOffset = MergeRange.end() - MergeRange.begin(); - auto EraseEnd = - G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end()); - for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end())) - G->RefSCCIndices[RC] -= IndexOffset; - - // At this point we have a merged RefSCC with a post-order SCCs list, just - // connect the nodes to form the new edge. - SourceN->insertEdgeInternal(TargetN, Edge::Ref); - - // We return the list of SCCs which were merged so that callers can - // invalidate any data they have associated with those SCCs. Note that these - // SCCs are no longer in an interesting state (they are totally empty) but - // the pointers will remain stable for the life of the graph itself. - return DeletedRefSCCs; -} - -void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) { - assert(G->lookupRefSCC(SourceN) == this && - "The source must be a member of this RefSCC."); - assert(G->lookupRefSCC(TargetN) != this && - "The target must not be a member of this RefSCC"); - -#ifdef EXPENSIVE_CHECKS - verify(); - auto VerifyOnExit = make_scope_exit([&]() { verify(); }); -#endif - - // First remove it from the node. - bool Removed = SourceN->removeEdgeInternal(TargetN); - (void)Removed; - assert(Removed && "Target not in the edge set for this caller?"); -} - -SmallVector<LazyCallGraph::RefSCC *, 1> -LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, - ArrayRef<Node *> TargetNs) { - // We return a list of the resulting *new* RefSCCs in post-order. - SmallVector<RefSCC *, 1> Result; - -#ifdef EXPENSIVE_CHECKS - // Verify the RefSCC is valid to start with and that either we return an empty - // list of result RefSCCs and this RefSCC remains valid, or we return new - // RefSCCs and this RefSCC is dead. - verify(); - auto VerifyOnExit = make_scope_exit([&]() { - // If we didn't replace our RefSCC with new ones, check that this one - // remains valid. - if (G) - verify(); - }); -#endif - - // First remove the actual edges. - for (Node *TargetN : TargetNs) { - assert(!(*SourceN)[*TargetN].isCall() && - "Cannot remove a call edge, it must first be made a ref edge"); - - bool Removed = SourceN->removeEdgeInternal(*TargetN); - (void)Removed; - assert(Removed && "Target not in the edge set for this caller?"); - } - - // Direct self references don't impact the ref graph at all. - if (llvm::all_of(TargetNs, - [&](Node *TargetN) { return &SourceN == TargetN; })) - return Result; - - // If all targets are in the same SCC as the source, because no call edges - // were removed there is no RefSCC structure change. - SCC &SourceC = *G->lookupSCC(SourceN); - if (llvm::all_of(TargetNs, [&](Node *TargetN) { - return G->lookupSCC(*TargetN) == &SourceC; - })) - return Result; - - // We build somewhat synthetic new RefSCCs by providing a postorder mapping - // for each inner SCC. We store these inside the low-link field of the nodes - // rather than associated with SCCs because this saves a round-trip through - // the node->SCC map and in the common case, SCCs are small. We will verify - // that we always give the same number to every node in the SCC such that - // these are equivalent. - int PostOrderNumber = 0; - - // Reset all the other nodes to prepare for a DFS over them, and add them to - // our worklist. - SmallVector<Node *, 8> Worklist; - for (SCC *C : SCCs) { - for (Node &N : *C) - N.DFSNumber = N.LowLink = 0; - - Worklist.append(C->Nodes.begin(), C->Nodes.end()); - } - - // Track the number of nodes in this RefSCC so that we can quickly recognize - // an important special case of the edge removal not breaking the cycle of - // this RefSCC. - const int NumRefSCCNodes = Worklist.size(); - - SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack; - SmallVector<Node *, 4> PendingRefSCCStack; - do { - assert(DFSStack.empty() && - "Cannot begin a new root with a non-empty DFS stack!"); - assert(PendingRefSCCStack.empty() && - "Cannot begin a new root with pending nodes for an SCC!"); - - Node *RootN = Worklist.pop_back_val(); - // Skip any nodes we've already reached in the DFS. - if (RootN->DFSNumber != 0) { - assert(RootN->DFSNumber == -1 && - "Shouldn't have any mid-DFS root nodes!"); - continue; - } - - RootN->DFSNumber = RootN->LowLink = 1; - int NextDFSNumber = 2; - - DFSStack.push_back({RootN, (*RootN)->begin()}); - do { - Node *N; - EdgeSequence::iterator I; - std::tie(N, I) = DFSStack.pop_back_val(); - auto E = (*N)->end(); - - assert(N->DFSNumber != 0 && "We should always assign a DFS number " - "before processing a node."); - - while (I != E) { - Node &ChildN = I->getNode(); - if (ChildN.DFSNumber == 0) { - // Mark that we should start at this child when next this node is the - // top of the stack. We don't start at the next child to ensure this - // child's lowlink is reflected. - DFSStack.push_back({N, I}); - - // Continue, resetting to the child node. - ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; - N = &ChildN; - I = ChildN->begin(); - E = ChildN->end(); - continue; - } - if (ChildN.DFSNumber == -1) { - // If this child isn't currently in this RefSCC, no need to process - // it. - ++I; - continue; - } - - // Track the lowest link of the children, if any are still in the stack. - // Any child not on the stack will have a LowLink of -1. - assert(ChildN.LowLink != 0 && - "Low-link must not be zero with a non-zero DFS number."); - if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) - N->LowLink = ChildN.LowLink; - ++I; - } - - // We've finished processing N and its descendants, put it on our pending - // stack to eventually get merged into a RefSCC. - PendingRefSCCStack.push_back(N); - - // If this node is linked to some lower entry, continue walking up the - // stack. - if (N->LowLink != N->DFSNumber) { - assert(!DFSStack.empty() && - "We never found a viable root for a RefSCC to pop off!"); - continue; - } - - // Otherwise, form a new RefSCC from the top of the pending node stack. - int RefSCCNumber = PostOrderNumber++; - int RootDFSNumber = N->DFSNumber; - - // Find the range of the node stack by walking down until we pass the - // root DFS number. Update the DFS numbers and low link numbers in the - // process to avoid re-walking this list where possible. - auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) { - if (N->DFSNumber < RootDFSNumber) - // We've found the bottom. - return true; - - // Update this node and keep scanning. - N->DFSNumber = -1; - // Save the post-order number in the lowlink field so that we can use - // it to map SCCs into new RefSCCs after we finish the DFS. - N->LowLink = RefSCCNumber; - return false; - }); - auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end()); - - // If we find a cycle containing all nodes originally in this RefSCC then - // the removal hasn't changed the structure at all. This is an important - // special case and we can directly exit the entire routine more - // efficiently as soon as we discover it. - if (llvm::size(RefSCCNodes) == NumRefSCCNodes) { - // Clear out the low link field as we won't need it. - for (Node *N : RefSCCNodes) - N->LowLink = -1; - // Return the empty result immediately. - return Result; - } - - // We've already marked the nodes internally with the RefSCC number so - // just clear them off the stack and continue. - PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end()); - } while (!DFSStack.empty()); - - assert(DFSStack.empty() && "Didn't flush the entire DFS stack!"); - assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!"); - } while (!Worklist.empty()); - - assert(PostOrderNumber > 1 && - "Should never finish the DFS when the existing RefSCC remains valid!"); - - // Otherwise we create a collection of new RefSCC nodes and build - // a radix-sort style map from postorder number to these new RefSCCs. We then - // append SCCs to each of these RefSCCs in the order they occurred in the - // original SCCs container. - for (int i = 0; i < PostOrderNumber; ++i) - Result.push_back(G->createRefSCC(*G)); - - // Insert the resulting postorder sequence into the global graph postorder - // sequence before the current RefSCC in that sequence, and then remove the - // current one. - // - // FIXME: It'd be nice to change the APIs so that we returned an iterator - // range over the global postorder sequence and generally use that sequence - // rather than building a separate result vector here. - int Idx = G->getRefSCCIndex(*this); - G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx); - G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(), - Result.end()); - for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size())) - G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i; - - for (SCC *C : SCCs) { - // We store the SCC number in the node's low-link field above. - int SCCNumber = C->begin()->LowLink; - // Clear out all of the SCC's node's low-link fields now that we're done - // using them as side-storage. - for (Node &N : *C) { - assert(N.LowLink == SCCNumber && - "Cannot have different numbers for nodes in the same SCC!"); - N.LowLink = -1; - } - - RefSCC &RC = *Result[SCCNumber]; - int SCCIndex = RC.SCCs.size(); - RC.SCCs.push_back(C); - RC.SCCIndices[C] = SCCIndex; - C->OuterRefSCC = &RC; - } - - // Now that we've moved things into the new RefSCCs, clear out our current - // one. - G = nullptr; - SCCs.clear(); - SCCIndices.clear(); - -#ifdef EXPENSIVE_CHECKS - // Verify the new RefSCCs we've built. - for (RefSCC *RC : Result) - RC->verify(); -#endif - - // Return the new list of SCCs. - return Result; -} - -void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN, - Node &TargetN) { -#ifdef EXPENSIVE_CHECKS - auto ExitVerifier = make_scope_exit([this] { verify(); }); - - // Check that we aren't breaking some invariants of the SCC graph. Note that - // this is quadratic in the number of edges in the call graph! - SCC &SourceC = *G->lookupSCC(SourceN); - SCC &TargetC = *G->lookupSCC(TargetN); - if (&SourceC != &TargetC) - assert(SourceC.isAncestorOf(TargetC) && - "Call edge is not trivial in the SCC graph!"); -#endif - - // First insert it into the source or find the existing edge. - auto InsertResult = - SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()}); - if (!InsertResult.second) { - // Already an edge, just update it. - Edge &E = SourceN->Edges[InsertResult.first->second]; - if (E.isCall()) - return; // Nothing to do! - E.setKind(Edge::Call); - } else { - // Create the new edge. - SourceN->Edges.emplace_back(TargetN, Edge::Call); - } -} - -void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) { -#ifdef EXPENSIVE_CHECKS - auto ExitVerifier = make_scope_exit([this] { verify(); }); - - // Check that we aren't breaking some invariants of the RefSCC graph. - RefSCC &SourceRC = *G->lookupRefSCC(SourceN); - RefSCC &TargetRC = *G->lookupRefSCC(TargetN); - if (&SourceRC != &TargetRC) - assert(SourceRC.isAncestorOf(TargetRC) && - "Ref edge is not trivial in the RefSCC graph!"); -#endif - - // First insert it into the source or find the existing edge. - auto InsertResult = - SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()}); - if (!InsertResult.second) - // Already an edge, we're done. - return; - - // Create the new edge. - SourceN->Edges.emplace_back(TargetN, Edge::Ref); -} - -void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) { - Function &OldF = N.getFunction(); - -#ifdef EXPENSIVE_CHECKS - auto ExitVerifier = make_scope_exit([this] { verify(); }); - - assert(G->lookupRefSCC(N) == this && - "Cannot replace the function of a node outside this RefSCC."); - - assert(G->NodeMap.find(&NewF) == G->NodeMap.end() && - "Must not have already walked the new function!'"); - - // It is important that this replacement not introduce graph changes so we - // insist that the caller has already removed every use of the original - // function and that all uses of the new function correspond to existing - // edges in the graph. The common and expected way to use this is when - // replacing the function itself in the IR without changing the call graph - // shape and just updating the analysis based on that. - assert(&OldF != &NewF && "Cannot replace a function with itself!"); - assert(OldF.use_empty() && - "Must have moved all uses from the old function to the new!"); -#endif - - N.replaceFunction(NewF); - - // Update various call graph maps. - G->NodeMap.erase(&OldF); - G->NodeMap[&NewF] = &N; -} - -void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) { - assert(SCCMap.empty() && - "This method cannot be called after SCCs have been formed!"); - - return SourceN->insertEdgeInternal(TargetN, EK); -} - -void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) { - assert(SCCMap.empty() && - "This method cannot be called after SCCs have been formed!"); - - bool Removed = SourceN->removeEdgeInternal(TargetN); - (void)Removed; - assert(Removed && "Target not in the edge set for this caller?"); -} - -void LazyCallGraph::removeDeadFunction(Function &F) { - // FIXME: This is unnecessarily restrictive. We should be able to remove - // functions which recursively call themselves. - assert(F.hasZeroLiveUses() && - "This routine should only be called on trivially dead functions!"); - - // We shouldn't remove library functions as they are never really dead while - // the call graph is in use -- every function definition refers to them. - assert(!isLibFunction(F) && - "Must not remove lib functions from the call graph!"); - - auto NI = NodeMap.find(&F); - if (NI == NodeMap.end()) - // Not in the graph at all! - return; - - Node &N = *NI->second; - NodeMap.erase(NI); - - // Remove this from the entry edges if present. - EntryEdges.removeEdgeInternal(N); - - // Cannot remove a function which has yet to be visited in the DFS walk, so - // if we have a node at all then we must have an SCC and RefSCC. - auto CI = SCCMap.find(&N); - assert(CI != SCCMap.end() && - "Tried to remove a node without an SCC after DFS walk started!"); - SCC &C = *CI->second; - SCCMap.erase(CI); - RefSCC &RC = C.getOuterRefSCC(); - - // This node must be the only member of its SCC as it has no callers, and - // that SCC must be the only member of a RefSCC as it has no references. - // Validate these properties first. - assert(C.size() == 1 && "Dead functions must be in a singular SCC"); - assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC"); - - // Finally clear out all the data structures from the node down through the - // components. postorder_ref_scc_iterator will skip empty RefSCCs, so no need - // to adjust LazyCallGraph data structures. - N.clear(); - N.G = nullptr; - N.F = nullptr; - C.clear(); - RC.clear(); - RC.G = nullptr; - - // Nothing to delete as all the objects are allocated in stable bump pointer - // allocators. -} - -// Gets the Edge::Kind from one function to another by looking at the function's -// instructions. Asserts if there is no edge. -// Useful for determining what type of edge should exist between functions when -// the edge hasn't been created yet. -static LazyCallGraph::Edge::Kind getEdgeKind(Function &OriginalFunction, - Function &NewFunction) { - // In release builds, assume that if there are no direct calls to the new - // function, then there is a ref edge. In debug builds, keep track of - // references to assert that there is actually a ref edge if there is no call - // edge. -#ifndef NDEBUG - SmallVector<Constant *, 16> Worklist; - SmallPtrSet<Constant *, 16> Visited; -#endif - - for (Instruction &I : instructions(OriginalFunction)) { - if (auto *CB = dyn_cast<CallBase>(&I)) { - if (Function *Callee = CB->getCalledFunction()) { - if (Callee == &NewFunction) - return LazyCallGraph::Edge::Kind::Call; - } - } -#ifndef NDEBUG - for (Value *Op : I.operand_values()) { - if (Constant *C = dyn_cast<Constant>(Op)) { - if (Visited.insert(C).second) - Worklist.push_back(C); - } - } -#endif - } - -#ifndef NDEBUG - bool FoundNewFunction = false; - LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &F) { - if (&F == &NewFunction) - FoundNewFunction = true; - }); - assert(FoundNewFunction && "No edge from original function to new function"); -#endif - - return LazyCallGraph::Edge::Kind::Ref; -} - -void LazyCallGraph::addSplitFunction(Function &OriginalFunction, - Function &NewFunction) { - assert(lookup(OriginalFunction) && - "Original function's node should already exist"); - Node &OriginalN = get(OriginalFunction); - SCC *OriginalC = lookupSCC(OriginalN); - RefSCC *OriginalRC = lookupRefSCC(OriginalN); - -#ifdef EXPENSIVE_CHECKS - OriginalRC->verify(); - auto VerifyOnExit = make_scope_exit([&]() { OriginalRC->verify(); }); -#endif - - assert(!lookup(NewFunction) && - "New function's node should not already exist"); - Node &NewN = initNode(NewFunction); - - Edge::Kind EK = getEdgeKind(OriginalFunction, NewFunction); - - SCC *NewC = nullptr; - for (Edge &E : *NewN) { - Node &EN = E.getNode(); - if (EK == Edge::Kind::Call && E.isCall() && lookupSCC(EN) == OriginalC) { - // If the edge to the new function is a call edge and there is a call edge - // from the new function to any function in the original function's SCC, - // it is in the same SCC (and RefSCC) as the original function. - NewC = OriginalC; - NewC->Nodes.push_back(&NewN); - break; - } - } - - if (!NewC) { - for (Edge &E : *NewN) { - Node &EN = E.getNode(); - if (lookupRefSCC(EN) == OriginalRC) { - // If there is any edge from the new function to any function in the - // original function's RefSCC, it is in the same RefSCC as the original - // function but a new SCC. - RefSCC *NewRC = OriginalRC; - NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN})); - - // The new function's SCC is not the same as the original function's - // SCC, since that case was handled earlier. If the edge from the - // original function to the new function was a call edge, then we need - // to insert the newly created function's SCC before the original - // function's SCC. Otherwise either the new SCC comes after the original - // function's SCC, or it doesn't matter, and in both cases we can add it - // to the very end. - int InsertIndex = EK == Edge::Kind::Call ? NewRC->SCCIndices[OriginalC] - : NewRC->SCCIndices.size(); - NewRC->SCCs.insert(NewRC->SCCs.begin() + InsertIndex, NewC); - for (int I = InsertIndex, Size = NewRC->SCCs.size(); I < Size; ++I) - NewRC->SCCIndices[NewRC->SCCs[I]] = I; - - break; - } - } - } - - if (!NewC) { - // We didn't find any edges back to the original function's RefSCC, so the - // new function belongs in a new RefSCC. The new RefSCC goes before the - // original function's RefSCC. - RefSCC *NewRC = createRefSCC(*this); - NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN})); - NewRC->SCCIndices[NewC] = 0; - NewRC->SCCs.push_back(NewC); - auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second; - PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC); - for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I) - RefSCCIndices[PostOrderRefSCCs[I]] = I; - } - - SCCMap[&NewN] = NewC; - - OriginalN->insertEdgeInternal(NewN, EK); -} - -void LazyCallGraph::addSplitRefRecursiveFunctions( - Function &OriginalFunction, ArrayRef<Function *> NewFunctions) { - assert(!NewFunctions.empty() && "Can't add zero functions"); - assert(lookup(OriginalFunction) && - "Original function's node should already exist"); - Node &OriginalN = get(OriginalFunction); - RefSCC *OriginalRC = lookupRefSCC(OriginalN); - -#ifdef EXPENSIVE_CHECKS - OriginalRC->verify(); - auto VerifyOnExit = make_scope_exit([&]() { - OriginalRC->verify(); - for (Function *NewFunction : NewFunctions) - lookupRefSCC(get(*NewFunction))->verify(); - }); -#endif - - bool ExistsRefToOriginalRefSCC = false; - - for (Function *NewFunction : NewFunctions) { - Node &NewN = initNode(*NewFunction); - - OriginalN->insertEdgeInternal(NewN, Edge::Kind::Ref); - - // Check if there is any edge from any new function back to any function in - // the original function's RefSCC. - for (Edge &E : *NewN) { - if (lookupRefSCC(E.getNode()) == OriginalRC) { - ExistsRefToOriginalRefSCC = true; - break; - } - } - } - - RefSCC *NewRC; - if (ExistsRefToOriginalRefSCC) { - // If there is any edge from any new function to any function in the - // original function's RefSCC, all new functions will be in the same RefSCC - // as the original function. - NewRC = OriginalRC; - } else { - // Otherwise the new functions are in their own RefSCC. - NewRC = createRefSCC(*this); - // The new RefSCC goes before the original function's RefSCC in postorder - // since there are only edges from the original function's RefSCC to the new - // RefSCC. - auto OriginalRCIndex = RefSCCIndices.find(OriginalRC)->second; - PostOrderRefSCCs.insert(PostOrderRefSCCs.begin() + OriginalRCIndex, NewRC); - for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I) - RefSCCIndices[PostOrderRefSCCs[I]] = I; - } - - for (Function *NewFunction : NewFunctions) { - Node &NewN = get(*NewFunction); - // Each new function is in its own new SCC. The original function can only - // have a ref edge to new functions, and no other existing functions can - // have references to new functions. Each new function only has a ref edge - // to the other new functions. - SCC *NewC = createSCC(*NewRC, SmallVector<Node *, 1>({&NewN})); - // The new SCCs are either sibling SCCs or parent SCCs to all other existing - // SCCs in the RefSCC. Either way, they can go at the back of the postorder - // SCC list. - auto Index = NewRC->SCCIndices.size(); - NewRC->SCCIndices[NewC] = Index; - NewRC->SCCs.push_back(NewC); - SCCMap[&NewN] = NewC; - } - -#ifndef NDEBUG - for (Function *F1 : NewFunctions) { - assert(getEdgeKind(OriginalFunction, *F1) == Edge::Kind::Ref && - "Expected ref edges from original function to every new function"); - Node &N1 = get(*F1); - for (Function *F2 : NewFunctions) { - if (F1 == F2) - continue; - Node &N2 = get(*F2); - assert(!N1->lookup(N2)->isCall() && - "Edges between new functions must be ref edges"); - } - } -#endif -} - -LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { - return *new (MappedN = BPA.Allocate()) Node(*this, F); -} - -void LazyCallGraph::updateGraphPtrs() { - // Walk the node map to update their graph pointers. While this iterates in - // an unstable order, the order has no effect so it remains correct. - for (auto &FunctionNodePair : NodeMap) - FunctionNodePair.second->G = this; - - for (auto *RC : PostOrderRefSCCs) - RC->G = this; -} - -LazyCallGraph::Node &LazyCallGraph::initNode(Function &F) { - Node &N = get(F); - N.DFSNumber = N.LowLink = -1; - N.populate(); - NodeMap[&F] = &N; - return N; -} - -template <typename RootsT, typename GetBeginT, typename GetEndT, - typename GetNodeT, typename FormSCCCallbackT> -void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin, - GetEndT &&GetEnd, GetNodeT &&GetNode, - FormSCCCallbackT &&FormSCC) { - using EdgeItT = decltype(GetBegin(std::declval<Node &>())); - - SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack; - SmallVector<Node *, 16> PendingSCCStack; - - // Scan down the stack and DFS across the call edges. - for (Node *RootN : Roots) { - assert(DFSStack.empty() && - "Cannot begin a new root with a non-empty DFS stack!"); - assert(PendingSCCStack.empty() && - "Cannot begin a new root with pending nodes for an SCC!"); - - // Skip any nodes we've already reached in the DFS. - if (RootN->DFSNumber != 0) { - assert(RootN->DFSNumber == -1 && - "Shouldn't have any mid-DFS root nodes!"); - continue; - } - - RootN->DFSNumber = RootN->LowLink = 1; - int NextDFSNumber = 2; - - DFSStack.push_back({RootN, GetBegin(*RootN)}); - do { - Node *N; - EdgeItT I; - std::tie(N, I) = DFSStack.pop_back_val(); - auto E = GetEnd(*N); - while (I != E) { - Node &ChildN = GetNode(I); - if (ChildN.DFSNumber == 0) { - // We haven't yet visited this child, so descend, pushing the current - // node onto the stack. - DFSStack.push_back({N, I}); - - ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; - N = &ChildN; - I = GetBegin(*N); - E = GetEnd(*N); - continue; - } - - // If the child has already been added to some child component, it - // couldn't impact the low-link of this parent because it isn't - // connected, and thus its low-link isn't relevant so skip it. - if (ChildN.DFSNumber == -1) { - ++I; - continue; - } - - // Track the lowest linked child as the lowest link for this node. - assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); - if (ChildN.LowLink < N->LowLink) - N->LowLink = ChildN.LowLink; - - // Move to the next edge. - ++I; - } - - // We've finished processing N and its descendants, put it on our pending - // SCC stack to eventually get merged into an SCC of nodes. - PendingSCCStack.push_back(N); - - // If this node is linked to some lower entry, continue walking up the - // stack. - if (N->LowLink != N->DFSNumber) - continue; - - // Otherwise, we've completed an SCC. Append it to our post order list of - // SCCs. - int RootDFSNumber = N->DFSNumber; - // Find the range of the node stack by walking down until we pass the - // root DFS number. - auto SCCNodes = make_range( - PendingSCCStack.rbegin(), - find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) { - return N->DFSNumber < RootDFSNumber; - })); - // Form a new SCC out of these nodes and then clear them off our pending - // stack. - FormSCC(SCCNodes); - PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); - } while (!DFSStack.empty()); - } -} - -/// Build the internal SCCs for a RefSCC from a sequence of nodes. -/// -/// Appends the SCCs to the provided vector and updates the map with their -/// indices. Both the vector and map must be empty when passed into this -/// routine. -void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) { - assert(RC.SCCs.empty() && "Already built SCCs!"); - assert(RC.SCCIndices.empty() && "Already mapped SCC indices!"); - - for (Node *N : Nodes) { - assert(N->LowLink >= (*Nodes.begin())->LowLink && - "We cannot have a low link in an SCC lower than its root on the " - "stack!"); - - // This node will go into the next RefSCC, clear out its DFS and low link - // as we scan. - N->DFSNumber = N->LowLink = 0; - } - - // Each RefSCC contains a DAG of the call SCCs. To build these, we do - // a direct walk of the call edges using Tarjan's algorithm. We reuse the - // internal storage as we won't need it for the outer graph's DFS any longer. - buildGenericSCCs( - Nodes, [](Node &N) { return N->call_begin(); }, - [](Node &N) { return N->call_end(); }, - [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); }, - [this, &RC](node_stack_range Nodes) { - RC.SCCs.push_back(createSCC(RC, Nodes)); - for (Node &N : *RC.SCCs.back()) { - N.DFSNumber = N.LowLink = -1; - SCCMap[&N] = RC.SCCs.back(); - } - }); - - // Wire up the SCC indices. - for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i) - RC.SCCIndices[RC.SCCs[i]] = i; -} - -void LazyCallGraph::buildRefSCCs() { - if (EntryEdges.empty() || !PostOrderRefSCCs.empty()) - // RefSCCs are either non-existent or already built! - return; - - assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!"); - - SmallVector<Node *, 16> Roots; - for (Edge &E : *this) - Roots.push_back(&E.getNode()); - - // The roots will be iterated in order. - buildGenericSCCs( - Roots, - [](Node &N) { - // We need to populate each node as we begin to walk its edges. - N.populate(); - return N->begin(); - }, - [](Node &N) { return N->end(); }, - [](EdgeSequence::iterator I) -> Node & { return I->getNode(); }, - [this](node_stack_range Nodes) { - RefSCC *NewRC = createRefSCC(*this); - buildSCCs(*NewRC, Nodes); - - // Push the new node into the postorder list and remember its position - // in the index map. - bool Inserted = - RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second; - (void)Inserted; - assert(Inserted && "Cannot already have this RefSCC in the index map!"); - PostOrderRefSCCs.push_back(NewRC); -#ifdef EXPENSIVE_CHECKS - NewRC->verify(); -#endif - }); -} - -void LazyCallGraph::visitReferences(SmallVectorImpl<Constant *> &Worklist, - SmallPtrSetImpl<Constant *> &Visited, - function_ref<void(Function &)> Callback) { - while (!Worklist.empty()) { - Constant *C = Worklist.pop_back_val(); - - if (Function *F = dyn_cast<Function>(C)) { - if (!F->isDeclaration()) - Callback(*F); - continue; - } - - // blockaddresses are weird and don't participate in the call graph anyway, - // skip them. - if (isa<BlockAddress>(C)) - continue; - - for (Value *Op : C->operand_values()) - if (Visited.insert(cast<Constant>(Op)).second) - Worklist.push_back(cast<Constant>(Op)); - } -} - -AnalysisKey LazyCallGraphAnalysis::Key; - -LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} - -static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) { - OS << " Edges in function: " << N.getFunction().getName() << "\n"; - for (LazyCallGraph::Edge &E : N.populate()) - OS << " " << (E.isCall() ? "call" : "ref ") << " -> " - << E.getFunction().getName() << "\n"; - - OS << "\n"; -} - -static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) { - OS << " SCC with " << C.size() << " functions:\n"; - - for (LazyCallGraph::Node &N : C) - OS << " " << N.getFunction().getName() << "\n"; -} - -static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) { - OS << " RefSCC with " << C.size() << " call SCCs:\n"; - - for (LazyCallGraph::SCC &InnerC : C) - printSCC(OS, InnerC); - - OS << "\n"; -} - -PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, - ModuleAnalysisManager &AM) { - LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); - - OS << "Printing the call graph for module: " << M.getModuleIdentifier() - << "\n\n"; - - for (Function &F : M) - printNode(OS, G.get(F)); - - G.buildRefSCCs(); - for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs()) - printRefSCC(OS, C); - - return PreservedAnalyses::all(); -} - -LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS) - : OS(OS) {} - -static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) { - std::string Name = - "\"" + DOT::EscapeString(std::string(N.getFunction().getName())) + "\""; - - for (LazyCallGraph::Edge &E : N.populate()) { - OS << " " << Name << " -> \"" - << DOT::EscapeString(std::string(E.getFunction().getName())) << "\""; - if (!E.isCall()) // It is a ref edge. - OS << " [style=dashed,label=\"ref\"]"; - OS << ";\n"; - } - - OS << "\n"; -} - -PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M, - ModuleAnalysisManager &AM) { - LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M); - - OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n"; - - for (Function &F : M) - printNodeDOT(OS, G.get(F)); - - OS << "}\n"; - - return PreservedAnalyses::all(); -} |
