diff options
author | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
---|---|---|
committer | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
commit | 6ffe9e53658409f212834330e13564e4952558f6 (patch) | |
tree | 85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm14/lib/Analysis/DependenceAnalysis.cpp | |
parent | 726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff) | |
download | ydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz |
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm14/lib/Analysis/DependenceAnalysis.cpp')
-rw-r--r-- | contrib/libs/llvm14/lib/Analysis/DependenceAnalysis.cpp | 4136 |
1 files changed, 4136 insertions, 0 deletions
diff --git a/contrib/libs/llvm14/lib/Analysis/DependenceAnalysis.cpp b/contrib/libs/llvm14/lib/Analysis/DependenceAnalysis.cpp new file mode 100644 index 0000000000..f827f74d53 --- /dev/null +++ b/contrib/libs/llvm14/lib/Analysis/DependenceAnalysis.cpp @@ -0,0 +1,4136 @@ +//===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// DependenceAnalysis is an LLVM pass that analyses dependences between memory +// accesses. Currently, it is an (incomplete) implementation of the approach +// described in +// +// Practical Dependence Testing +// Goff, Kennedy, Tseng +// PLDI 1991 +// +// There's a single entry point that analyzes the dependence between a pair +// of memory references in a function, returning either NULL, for no dependence, +// or a more-or-less detailed description of the dependence between them. +// +// Currently, the implementation cannot propagate constraints between +// coupled RDIV subscripts and lacks a multi-subscript MIV test. +// Both of these are conservative weaknesses; +// that is, not a source of correctness problems. +// +// Since Clang linearizes some array subscripts, the dependence +// analysis is using SCEV->delinearize to recover the representation of multiple +// subscripts, and thus avoid the more expensive and less precise MIV tests. The +// delinearization is controlled by the flag -da-delinearize. +// +// We should pay some careful attention to the possibility of integer overflow +// in the implementation of the various tests. This could happen with Add, +// Subtract, or Multiply, with both APInt's and SCEV's. +// +// Some non-linear subscript pairs can be handled by the GCD test +// (and perhaps other tests). +// Should explore how often these things occur. +// +// Finally, it seems like certain test cases expose weaknesses in the SCEV +// simplification, especially in the handling of sign and zero extensions. +// It could be useful to spend time exploring these. +// +// Please note that this is work in progress and the interface is subject to +// change. +// +//===----------------------------------------------------------------------===// +// // +// In memory of Ken Kennedy, 1945 - 2007 // +// // +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/DependenceAnalysis.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/Delinearization.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/InitializePasses.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; + +#define DEBUG_TYPE "da" + +//===----------------------------------------------------------------------===// +// statistics + +STATISTIC(TotalArrayPairs, "Array pairs tested"); +STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs"); +STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs"); +STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs"); +STATISTIC(ZIVapplications, "ZIV applications"); +STATISTIC(ZIVindependence, "ZIV independence"); +STATISTIC(StrongSIVapplications, "Strong SIV applications"); +STATISTIC(StrongSIVsuccesses, "Strong SIV successes"); +STATISTIC(StrongSIVindependence, "Strong SIV independence"); +STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications"); +STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes"); +STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence"); +STATISTIC(ExactSIVapplications, "Exact SIV applications"); +STATISTIC(ExactSIVsuccesses, "Exact SIV successes"); +STATISTIC(ExactSIVindependence, "Exact SIV independence"); +STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications"); +STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes"); +STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence"); +STATISTIC(ExactRDIVapplications, "Exact RDIV applications"); +STATISTIC(ExactRDIVindependence, "Exact RDIV independence"); +STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications"); +STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence"); +STATISTIC(DeltaApplications, "Delta applications"); +STATISTIC(DeltaSuccesses, "Delta successes"); +STATISTIC(DeltaIndependence, "Delta independence"); +STATISTIC(DeltaPropagations, "Delta propagations"); +STATISTIC(GCDapplications, "GCD applications"); +STATISTIC(GCDsuccesses, "GCD successes"); +STATISTIC(GCDindependence, "GCD independence"); +STATISTIC(BanerjeeApplications, "Banerjee applications"); +STATISTIC(BanerjeeIndependence, "Banerjee independence"); +STATISTIC(BanerjeeSuccesses, "Banerjee successes"); + +static cl::opt<bool> + Delinearize("da-delinearize", cl::init(true), cl::Hidden, cl::ZeroOrMore, + cl::desc("Try to delinearize array references.")); +static cl::opt<bool> DisableDelinearizationChecks( + "da-disable-delinearization-checks", cl::init(false), cl::Hidden, + cl::ZeroOrMore, + cl::desc( + "Disable checks that try to statically verify validity of " + "delinearized subscripts. Enabling this option may result in incorrect " + "dependence vectors for languages that allow the subscript of one " + "dimension to underflow or overflow into another dimension.")); + +static cl::opt<unsigned> MIVMaxLevelThreshold( + "da-miv-max-level-threshold", cl::init(7), cl::Hidden, cl::ZeroOrMore, + cl::desc("Maximum depth allowed for the recursive algorithm used to " + "explore MIV direction vectors.")); + +//===----------------------------------------------------------------------===// +// basics + +DependenceAnalysis::Result +DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) { + auto &AA = FAM.getResult<AAManager>(F); + auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F); + auto &LI = FAM.getResult<LoopAnalysis>(F); + return DependenceInfo(&F, &AA, &SE, &LI); +} + +AnalysisKey DependenceAnalysis::Key; + +INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da", + "Dependence Analysis", true, true) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis", + true, true) + +char DependenceAnalysisWrapperPass::ID = 0; + +DependenceAnalysisWrapperPass::DependenceAnalysisWrapperPass() + : FunctionPass(ID) { + initializeDependenceAnalysisWrapperPassPass(*PassRegistry::getPassRegistry()); +} + +FunctionPass *llvm::createDependenceAnalysisWrapperPass() { + return new DependenceAnalysisWrapperPass(); +} + +bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) { + auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); + auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + info.reset(new DependenceInfo(&F, &AA, &SE, &LI)); + return false; +} + +DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; } + +void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); } + +void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequiredTransitive<AAResultsWrapperPass>(); + AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); + AU.addRequiredTransitive<LoopInfoWrapperPass>(); +} + +// Used to test the dependence analyzer. +// Looks through the function, noting instructions that may access memory. +// Calls depends() on every possible pair and prints out the result. +// Ignores all other instructions. +static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) { + auto *F = DA->getFunction(); + for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE; + ++SrcI) { + if (SrcI->mayReadOrWriteMemory()) { + for (inst_iterator DstI = SrcI, DstE = inst_end(F); + DstI != DstE; ++DstI) { + if (DstI->mayReadOrWriteMemory()) { + OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n"; + OS << " da analyze - "; + if (auto D = DA->depends(&*SrcI, &*DstI, true)) { + D->dump(OS); + for (unsigned Level = 1; Level <= D->getLevels(); Level++) { + if (D->isSplitable(Level)) { + OS << " da analyze - split level = " << Level; + OS << ", iteration = " << *DA->getSplitIteration(*D, Level); + OS << "!\n"; + } + } + } + else + OS << "none!\n"; + } + } + } + } +} + +void DependenceAnalysisWrapperPass::print(raw_ostream &OS, + const Module *) const { + dumpExampleDependence(OS, info.get()); +} + +PreservedAnalyses +DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) { + OS << "'Dependence Analysis' for function '" << F.getName() << "':\n"; + dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F)); + return PreservedAnalyses::all(); +} + +//===----------------------------------------------------------------------===// +// Dependence methods + +// Returns true if this is an input dependence. +bool Dependence::isInput() const { + return Src->mayReadFromMemory() && Dst->mayReadFromMemory(); +} + + +// Returns true if this is an output dependence. +bool Dependence::isOutput() const { + return Src->mayWriteToMemory() && Dst->mayWriteToMemory(); +} + + +// Returns true if this is an flow (aka true) dependence. +bool Dependence::isFlow() const { + return Src->mayWriteToMemory() && Dst->mayReadFromMemory(); +} + + +// Returns true if this is an anti dependence. +bool Dependence::isAnti() const { + return Src->mayReadFromMemory() && Dst->mayWriteToMemory(); +} + + +// Returns true if a particular level is scalar; that is, +// if no subscript in the source or destination mention the induction +// variable associated with the loop at this level. +// Leave this out of line, so it will serve as a virtual method anchor +bool Dependence::isScalar(unsigned level) const { + return false; +} + + +//===----------------------------------------------------------------------===// +// FullDependence methods + +FullDependence::FullDependence(Instruction *Source, Instruction *Destination, + bool PossiblyLoopIndependent, + unsigned CommonLevels) + : Dependence(Source, Destination), Levels(CommonLevels), + LoopIndependent(PossiblyLoopIndependent) { + Consistent = true; + if (CommonLevels) + DV = std::make_unique<DVEntry[]>(CommonLevels); +} + +// The rest are simple getters that hide the implementation. + +// getDirection - Returns the direction associated with a particular level. +unsigned FullDependence::getDirection(unsigned Level) const { + assert(0 < Level && Level <= Levels && "Level out of range"); + return DV[Level - 1].Direction; +} + + +// Returns the distance (or NULL) associated with a particular level. +const SCEV *FullDependence::getDistance(unsigned Level) const { + assert(0 < Level && Level <= Levels && "Level out of range"); + return DV[Level - 1].Distance; +} + + +// Returns true if a particular level is scalar; that is, +// if no subscript in the source or destination mention the induction +// variable associated with the loop at this level. +bool FullDependence::isScalar(unsigned Level) const { + assert(0 < Level && Level <= Levels && "Level out of range"); + return DV[Level - 1].Scalar; +} + + +// Returns true if peeling the first iteration from this loop +// will break this dependence. +bool FullDependence::isPeelFirst(unsigned Level) const { + assert(0 < Level && Level <= Levels && "Level out of range"); + return DV[Level - 1].PeelFirst; +} + + +// Returns true if peeling the last iteration from this loop +// will break this dependence. +bool FullDependence::isPeelLast(unsigned Level) const { + assert(0 < Level && Level <= Levels && "Level out of range"); + return DV[Level - 1].PeelLast; +} + + +// Returns true if splitting this loop will break the dependence. +bool FullDependence::isSplitable(unsigned Level) const { + assert(0 < Level && Level <= Levels && "Level out of range"); + return DV[Level - 1].Splitable; +} + + +//===----------------------------------------------------------------------===// +// DependenceInfo::Constraint methods + +// If constraint is a point <X, Y>, returns X. +// Otherwise assert. +const SCEV *DependenceInfo::Constraint::getX() const { + assert(Kind == Point && "Kind should be Point"); + return A; +} + + +// If constraint is a point <X, Y>, returns Y. +// Otherwise assert. +const SCEV *DependenceInfo::Constraint::getY() const { + assert(Kind == Point && "Kind should be Point"); + return B; +} + + +// If constraint is a line AX + BY = C, returns A. +// Otherwise assert. +const SCEV *DependenceInfo::Constraint::getA() const { + assert((Kind == Line || Kind == Distance) && + "Kind should be Line (or Distance)"); + return A; +} + + +// If constraint is a line AX + BY = C, returns B. +// Otherwise assert. +const SCEV *DependenceInfo::Constraint::getB() const { + assert((Kind == Line || Kind == Distance) && + "Kind should be Line (or Distance)"); + return B; +} + + +// If constraint is a line AX + BY = C, returns C. +// Otherwise assert. +const SCEV *DependenceInfo::Constraint::getC() const { + assert((Kind == Line || Kind == Distance) && + "Kind should be Line (or Distance)"); + return C; +} + + +// If constraint is a distance, returns D. +// Otherwise assert. +const SCEV *DependenceInfo::Constraint::getD() const { + assert(Kind == Distance && "Kind should be Distance"); + return SE->getNegativeSCEV(C); +} + + +// Returns the loop associated with this constraint. +const Loop *DependenceInfo::Constraint::getAssociatedLoop() const { + assert((Kind == Distance || Kind == Line || Kind == Point) && + "Kind should be Distance, Line, or Point"); + return AssociatedLoop; +} + +void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y, + const Loop *CurLoop) { + Kind = Point; + A = X; + B = Y; + AssociatedLoop = CurLoop; +} + +void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB, + const SCEV *CC, const Loop *CurLoop) { + Kind = Line; + A = AA; + B = BB; + C = CC; + AssociatedLoop = CurLoop; +} + +void DependenceInfo::Constraint::setDistance(const SCEV *D, + const Loop *CurLoop) { + Kind = Distance; + A = SE->getOne(D->getType()); + B = SE->getNegativeSCEV(A); + C = SE->getNegativeSCEV(D); + AssociatedLoop = CurLoop; +} + +void DependenceInfo::Constraint::setEmpty() { Kind = Empty; } + +void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) { + SE = NewSE; + Kind = Any; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +// For debugging purposes. Dumps the constraint out to OS. +LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const { + if (isEmpty()) + OS << " Empty\n"; + else if (isAny()) + OS << " Any\n"; + else if (isPoint()) + OS << " Point is <" << *getX() << ", " << *getY() << ">\n"; + else if (isDistance()) + OS << " Distance is " << *getD() << + " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n"; + else if (isLine()) + OS << " Line is " << *getA() << "*X + " << + *getB() << "*Y = " << *getC() << "\n"; + else + llvm_unreachable("unknown constraint type in Constraint::dump"); +} +#endif + + +// Updates X with the intersection +// of the Constraints X and Y. Returns true if X has changed. +// Corresponds to Figure 4 from the paper +// +// Practical Dependence Testing +// Goff, Kennedy, Tseng +// PLDI 1991 +bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) { + ++DeltaApplications; + LLVM_DEBUG(dbgs() << "\tintersect constraints\n"); + LLVM_DEBUG(dbgs() << "\t X ="; X->dump(dbgs())); + LLVM_DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs())); + assert(!Y->isPoint() && "Y must not be a Point"); + if (X->isAny()) { + if (Y->isAny()) + return false; + *X = *Y; + return true; + } + if (X->isEmpty()) + return false; + if (Y->isEmpty()) { + X->setEmpty(); + return true; + } + + if (X->isDistance() && Y->isDistance()) { + LLVM_DEBUG(dbgs() << "\t intersect 2 distances\n"); + if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD())) + return false; + if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) { + X->setEmpty(); + ++DeltaSuccesses; + return true; + } + // Hmmm, interesting situation. + // I guess if either is constant, keep it and ignore the other. + if (isa<SCEVConstant>(Y->getD())) { + *X = *Y; + return true; + } + return false; + } + + // At this point, the pseudo-code in Figure 4 of the paper + // checks if (X->isPoint() && Y->isPoint()). + // This case can't occur in our implementation, + // since a Point can only arise as the result of intersecting + // two Line constraints, and the right-hand value, Y, is never + // the result of an intersection. + assert(!(X->isPoint() && Y->isPoint()) && + "We shouldn't ever see X->isPoint() && Y->isPoint()"); + + if (X->isLine() && Y->isLine()) { + LLVM_DEBUG(dbgs() << "\t intersect 2 lines\n"); + const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB()); + const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA()); + if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) { + // slopes are equal, so lines are parallel + LLVM_DEBUG(dbgs() << "\t\tsame slope\n"); + Prod1 = SE->getMulExpr(X->getC(), Y->getB()); + Prod2 = SE->getMulExpr(X->getB(), Y->getC()); + if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) + return false; + if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) { + X->setEmpty(); + ++DeltaSuccesses; + return true; + } + return false; + } + if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) { + // slopes differ, so lines intersect + LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n"); + const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB()); + const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA()); + const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB()); + const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA()); + const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB()); + const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB()); + const SCEVConstant *C1A2_C2A1 = + dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1)); + const SCEVConstant *C1B2_C2B1 = + dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1)); + const SCEVConstant *A1B2_A2B1 = + dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1)); + const SCEVConstant *A2B1_A1B2 = + dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2)); + if (!C1B2_C2B1 || !C1A2_C2A1 || + !A1B2_A2B1 || !A2B1_A1B2) + return false; + APInt Xtop = C1B2_C2B1->getAPInt(); + APInt Xbot = A1B2_A2B1->getAPInt(); + APInt Ytop = C1A2_C2A1->getAPInt(); + APInt Ybot = A2B1_A1B2->getAPInt(); + LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n"); + LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n"); + LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n"); + LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n"); + APInt Xq = Xtop; // these need to be initialized, even + APInt Xr = Xtop; // though they're just going to be overwritten + APInt::sdivrem(Xtop, Xbot, Xq, Xr); + APInt Yq = Ytop; + APInt Yr = Ytop; + APInt::sdivrem(Ytop, Ybot, Yq, Yr); + if (Xr != 0 || Yr != 0) { + X->setEmpty(); + ++DeltaSuccesses; + return true; + } + LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n"); + if (Xq.slt(0) || Yq.slt(0)) { + X->setEmpty(); + ++DeltaSuccesses; + return true; + } + if (const SCEVConstant *CUB = + collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) { + const APInt &UpperBound = CUB->getAPInt(); + LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n"); + if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) { + X->setEmpty(); + ++DeltaSuccesses; + return true; + } + } + X->setPoint(SE->getConstant(Xq), + SE->getConstant(Yq), + X->getAssociatedLoop()); + ++DeltaSuccesses; + return true; + } + return false; + } + + // if (X->isLine() && Y->isPoint()) This case can't occur. + assert(!(X->isLine() && Y->isPoint()) && "This case should never occur"); + + if (X->isPoint() && Y->isLine()) { + LLVM_DEBUG(dbgs() << "\t intersect Point and Line\n"); + const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX()); + const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY()); + const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1); + if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC())) + return false; + if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) { + X->setEmpty(); + ++DeltaSuccesses; + return true; + } + return false; + } + + llvm_unreachable("shouldn't reach the end of Constraint intersection"); + return false; +} + + +//===----------------------------------------------------------------------===// +// DependenceInfo methods + +// For debugging purposes. Dumps a dependence to OS. +void Dependence::dump(raw_ostream &OS) const { + bool Splitable = false; + if (isConfused()) + OS << "confused"; + else { + if (isConsistent()) + OS << "consistent "; + if (isFlow()) + OS << "flow"; + else if (isOutput()) + OS << "output"; + else if (isAnti()) + OS << "anti"; + else if (isInput()) + OS << "input"; + unsigned Levels = getLevels(); + OS << " ["; + for (unsigned II = 1; II <= Levels; ++II) { + if (isSplitable(II)) + Splitable = true; + if (isPeelFirst(II)) + OS << 'p'; + const SCEV *Distance = getDistance(II); + if (Distance) + OS << *Distance; + else if (isScalar(II)) + OS << "S"; + else { + unsigned Direction = getDirection(II); + if (Direction == DVEntry::ALL) + OS << "*"; + else { + if (Direction & DVEntry::LT) + OS << "<"; + if (Direction & DVEntry::EQ) + OS << "="; + if (Direction & DVEntry::GT) + OS << ">"; + } + } + if (isPeelLast(II)) + OS << 'p'; + if (II < Levels) + OS << " "; + } + if (isLoopIndependent()) + OS << "|<"; + OS << "]"; + if (Splitable) + OS << " splitable"; + } + OS << "!\n"; +} + +// Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their +// underlaying objects. If LocA and LocB are known to not alias (for any reason: +// tbaa, non-overlapping regions etc), then it is known there is no dependecy. +// Otherwise the underlying objects are checked to see if they point to +// different identifiable objects. +static AliasResult underlyingObjectsAlias(AAResults *AA, + const DataLayout &DL, + const MemoryLocation &LocA, + const MemoryLocation &LocB) { + // Check the original locations (minus size) for noalias, which can happen for + // tbaa, incompatible underlying object locations, etc. + MemoryLocation LocAS = + MemoryLocation::getBeforeOrAfter(LocA.Ptr, LocA.AATags); + MemoryLocation LocBS = + MemoryLocation::getBeforeOrAfter(LocB.Ptr, LocB.AATags); + if (AA->isNoAlias(LocAS, LocBS)) + return AliasResult::NoAlias; + + // Check the underlying objects are the same + const Value *AObj = getUnderlyingObject(LocA.Ptr); + const Value *BObj = getUnderlyingObject(LocB.Ptr); + + // If the underlying objects are the same, they must alias + if (AObj == BObj) + return AliasResult::MustAlias; + + // We may have hit the recursion limit for underlying objects, or have + // underlying objects where we don't know they will alias. + if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj)) + return AliasResult::MayAlias; + + // Otherwise we know the objects are different and both identified objects so + // must not alias. + return AliasResult::NoAlias; +} + + +// Returns true if the load or store can be analyzed. Atomic and volatile +// operations have properties which this analysis does not understand. +static +bool isLoadOrStore(const Instruction *I) { + if (const LoadInst *LI = dyn_cast<LoadInst>(I)) + return LI->isUnordered(); + else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) + return SI->isUnordered(); + return false; +} + + +// Examines the loop nesting of the Src and Dst +// instructions and establishes their shared loops. Sets the variables +// CommonLevels, SrcLevels, and MaxLevels. +// The source and destination instructions needn't be contained in the same +// loop. The routine establishNestingLevels finds the level of most deeply +// nested loop that contains them both, CommonLevels. An instruction that's +// not contained in a loop is at level = 0. MaxLevels is equal to the level +// of the source plus the level of the destination, minus CommonLevels. +// This lets us allocate vectors MaxLevels in length, with room for every +// distinct loop referenced in both the source and destination subscripts. +// The variable SrcLevels is the nesting depth of the source instruction. +// It's used to help calculate distinct loops referenced by the destination. +// Here's the map from loops to levels: +// 0 - unused +// 1 - outermost common loop +// ... - other common loops +// CommonLevels - innermost common loop +// ... - loops containing Src but not Dst +// SrcLevels - innermost loop containing Src but not Dst +// ... - loops containing Dst but not Src +// MaxLevels - innermost loops containing Dst but not Src +// Consider the follow code fragment: +// for (a = ...) { +// for (b = ...) { +// for (c = ...) { +// for (d = ...) { +// A[] = ...; +// } +// } +// for (e = ...) { +// for (f = ...) { +// for (g = ...) { +// ... = A[]; +// } +// } +// } +// } +// } +// If we're looking at the possibility of a dependence between the store +// to A (the Src) and the load from A (the Dst), we'll note that they +// have 2 loops in common, so CommonLevels will equal 2 and the direction +// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7. +// A map from loop names to loop numbers would look like +// a - 1 +// b - 2 = CommonLevels +// c - 3 +// d - 4 = SrcLevels +// e - 5 +// f - 6 +// g - 7 = MaxLevels +void DependenceInfo::establishNestingLevels(const Instruction *Src, + const Instruction *Dst) { + const BasicBlock *SrcBlock = Src->getParent(); + const BasicBlock *DstBlock = Dst->getParent(); + unsigned SrcLevel = LI->getLoopDepth(SrcBlock); + unsigned DstLevel = LI->getLoopDepth(DstBlock); + const Loop *SrcLoop = LI->getLoopFor(SrcBlock); + const Loop *DstLoop = LI->getLoopFor(DstBlock); + SrcLevels = SrcLevel; + MaxLevels = SrcLevel + DstLevel; + while (SrcLevel > DstLevel) { + SrcLoop = SrcLoop->getParentLoop(); + SrcLevel--; + } + while (DstLevel > SrcLevel) { + DstLoop = DstLoop->getParentLoop(); + DstLevel--; + } + while (SrcLoop != DstLoop) { + SrcLoop = SrcLoop->getParentLoop(); + DstLoop = DstLoop->getParentLoop(); + SrcLevel--; + } + CommonLevels = SrcLevel; + MaxLevels -= CommonLevels; +} + + +// Given one of the loops containing the source, return +// its level index in our numbering scheme. +unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const { + return SrcLoop->getLoopDepth(); +} + + +// Given one of the loops containing the destination, +// return its level index in our numbering scheme. +unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const { + unsigned D = DstLoop->getLoopDepth(); + if (D > CommonLevels) + return D - CommonLevels + SrcLevels; + else + return D; +} + + +// Returns true if Expression is loop invariant in LoopNest. +bool DependenceInfo::isLoopInvariant(const SCEV *Expression, + const Loop *LoopNest) const { + if (!LoopNest) + return true; + return SE->isLoopInvariant(Expression, LoopNest) && + isLoopInvariant(Expression, LoopNest->getParentLoop()); +} + + + +// Finds the set of loops from the LoopNest that +// have a level <= CommonLevels and are referred to by the SCEV Expression. +void DependenceInfo::collectCommonLoops(const SCEV *Expression, + const Loop *LoopNest, + SmallBitVector &Loops) const { + while (LoopNest) { + unsigned Level = LoopNest->getLoopDepth(); + if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest)) + Loops.set(Level); + LoopNest = LoopNest->getParentLoop(); + } +} + +void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) { + + unsigned widestWidthSeen = 0; + Type *widestType; + + // Go through each pair and find the widest bit to which we need + // to extend all of them. + for (Subscript *Pair : Pairs) { + const SCEV *Src = Pair->Src; + const SCEV *Dst = Pair->Dst; + IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType()); + IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType()); + if (SrcTy == nullptr || DstTy == nullptr) { + assert(SrcTy == DstTy && "This function only unify integer types and " + "expect Src and Dst share the same type " + "otherwise."); + continue; + } + if (SrcTy->getBitWidth() > widestWidthSeen) { + widestWidthSeen = SrcTy->getBitWidth(); + widestType = SrcTy; + } + if (DstTy->getBitWidth() > widestWidthSeen) { + widestWidthSeen = DstTy->getBitWidth(); + widestType = DstTy; + } + } + + + assert(widestWidthSeen > 0); + + // Now extend each pair to the widest seen. + for (Subscript *Pair : Pairs) { + const SCEV *Src = Pair->Src; + const SCEV *Dst = Pair->Dst; + IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType()); + IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType()); + if (SrcTy == nullptr || DstTy == nullptr) { + assert(SrcTy == DstTy && "This function only unify integer types and " + "expect Src and Dst share the same type " + "otherwise."); + continue; + } + if (SrcTy->getBitWidth() < widestWidthSeen) + // Sign-extend Src to widestType + Pair->Src = SE->getSignExtendExpr(Src, widestType); + if (DstTy->getBitWidth() < widestWidthSeen) { + // Sign-extend Dst to widestType + Pair->Dst = SE->getSignExtendExpr(Dst, widestType); + } + } +} + +// removeMatchingExtensions - Examines a subscript pair. +// If the source and destination are identically sign (or zero) +// extended, it strips off the extension in an effect to simplify +// the actual analysis. +void DependenceInfo::removeMatchingExtensions(Subscript *Pair) { + const SCEV *Src = Pair->Src; + const SCEV *Dst = Pair->Dst; + if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) || + (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) { + const SCEVIntegralCastExpr *SrcCast = cast<SCEVIntegralCastExpr>(Src); + const SCEVIntegralCastExpr *DstCast = cast<SCEVIntegralCastExpr>(Dst); + const SCEV *SrcCastOp = SrcCast->getOperand(); + const SCEV *DstCastOp = DstCast->getOperand(); + if (SrcCastOp->getType() == DstCastOp->getType()) { + Pair->Src = SrcCastOp; + Pair->Dst = DstCastOp; + } + } +} + +// Examine the scev and return true iff it's linear. +// Collect any loops mentioned in the set of "Loops". +bool DependenceInfo::checkSubscript(const SCEV *Expr, const Loop *LoopNest, + SmallBitVector &Loops, bool IsSrc) { + const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); + if (!AddRec) + return isLoopInvariant(Expr, LoopNest); + const SCEV *Start = AddRec->getStart(); + const SCEV *Step = AddRec->getStepRecurrence(*SE); + const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop()); + if (!isa<SCEVCouldNotCompute>(UB)) { + if (SE->getTypeSizeInBits(Start->getType()) < + SE->getTypeSizeInBits(UB->getType())) { + if (!AddRec->getNoWrapFlags()) + return false; + } + } + if (!isLoopInvariant(Step, LoopNest)) + return false; + if (IsSrc) + Loops.set(mapSrcLoop(AddRec->getLoop())); + else + Loops.set(mapDstLoop(AddRec->getLoop())); + return checkSubscript(Start, LoopNest, Loops, IsSrc); +} + +// Examine the scev and return true iff it's linear. +// Collect any loops mentioned in the set of "Loops". +bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest, + SmallBitVector &Loops) { + return checkSubscript(Src, LoopNest, Loops, true); +} + +// Examine the scev and return true iff it's linear. +// Collect any loops mentioned in the set of "Loops". +bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest, + SmallBitVector &Loops) { + return checkSubscript(Dst, LoopNest, Loops, false); +} + + +// Examines the subscript pair (the Src and Dst SCEVs) +// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear. +// Collects the associated loops in a set. +DependenceInfo::Subscript::ClassificationKind +DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest, + const SCEV *Dst, const Loop *DstLoopNest, + SmallBitVector &Loops) { + SmallBitVector SrcLoops(MaxLevels + 1); + SmallBitVector DstLoops(MaxLevels + 1); + if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops)) + return Subscript::NonLinear; + if (!checkDstSubscript(Dst, DstLoopNest, DstLoops)) + return Subscript::NonLinear; + Loops = SrcLoops; + Loops |= DstLoops; + unsigned N = Loops.count(); + if (N == 0) + return Subscript::ZIV; + if (N == 1) + return Subscript::SIV; + if (N == 2 && (SrcLoops.count() == 0 || + DstLoops.count() == 0 || + (SrcLoops.count() == 1 && DstLoops.count() == 1))) + return Subscript::RDIV; + return Subscript::MIV; +} + + +// A wrapper around SCEV::isKnownPredicate. +// Looks for cases where we're interested in comparing for equality. +// If both X and Y have been identically sign or zero extended, +// it strips off the (confusing) extensions before invoking +// SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package +// will be similarly updated. +// +// If SCEV::isKnownPredicate can't prove the predicate, +// we try simple subtraction, which seems to help in some cases +// involving symbolics. +bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X, + const SCEV *Y) const { + if (Pred == CmpInst::ICMP_EQ || + Pred == CmpInst::ICMP_NE) { + if ((isa<SCEVSignExtendExpr>(X) && + isa<SCEVSignExtendExpr>(Y)) || + (isa<SCEVZeroExtendExpr>(X) && + isa<SCEVZeroExtendExpr>(Y))) { + const SCEVIntegralCastExpr *CX = cast<SCEVIntegralCastExpr>(X); + const SCEVIntegralCastExpr *CY = cast<SCEVIntegralCastExpr>(Y); + const SCEV *Xop = CX->getOperand(); + const SCEV *Yop = CY->getOperand(); + if (Xop->getType() == Yop->getType()) { + X = Xop; + Y = Yop; + } + } + } + if (SE->isKnownPredicate(Pred, X, Y)) + return true; + // If SE->isKnownPredicate can't prove the condition, + // we try the brute-force approach of subtracting + // and testing the difference. + // By testing with SE->isKnownPredicate first, we avoid + // the possibility of overflow when the arguments are constants. + const SCEV *Delta = SE->getMinusSCEV(X, Y); + switch (Pred) { + case CmpInst::ICMP_EQ: + return Delta->isZero(); + case CmpInst::ICMP_NE: + return SE->isKnownNonZero(Delta); + case CmpInst::ICMP_SGE: + return SE->isKnownNonNegative(Delta); + case CmpInst::ICMP_SLE: + return SE->isKnownNonPositive(Delta); + case CmpInst::ICMP_SGT: + return SE->isKnownPositive(Delta); + case CmpInst::ICMP_SLT: + return SE->isKnownNegative(Delta); + default: + llvm_unreachable("unexpected predicate in isKnownPredicate"); + } +} + +/// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1)) +/// with some extra checking if S is an AddRec and we can prove less-than using +/// the loop bounds. +bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const { + // First unify to the same type + auto *SType = dyn_cast<IntegerType>(S->getType()); + auto *SizeType = dyn_cast<IntegerType>(Size->getType()); + if (!SType || !SizeType) + return false; + Type *MaxType = + (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType; + S = SE->getTruncateOrZeroExtend(S, MaxType); + Size = SE->getTruncateOrZeroExtend(Size, MaxType); + + // Special check for addrecs using BE taken count + const SCEV *Bound = SE->getMinusSCEV(S, Size); + if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) { + if (AddRec->isAffine()) { + const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop()); + if (!isa<SCEVCouldNotCompute>(BECount)) { + const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE); + if (SE->isKnownNegative(Limit)) + return true; + } + } + } + + // Check using normal isKnownNegative + const SCEV *LimitedBound = + SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType()))); + return SE->isKnownNegative(LimitedBound); +} + +bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const { + bool Inbounds = false; + if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr)) + Inbounds = SrcGEP->isInBounds(); + if (Inbounds) { + if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { + if (AddRec->isAffine()) { + // We know S is for Ptr, the operand on a load/store, so doesn't wrap. + // If both parts are NonNegative, the end result will be NonNegative + if (SE->isKnownNonNegative(AddRec->getStart()) && + SE->isKnownNonNegative(AddRec->getOperand(1))) + return true; + } + } + } + + return SE->isKnownNonNegative(S); +} + +// All subscripts are all the same type. +// Loop bound may be smaller (e.g., a char). +// Should zero extend loop bound, since it's always >= 0. +// This routine collects upper bound and extends or truncates if needed. +// Truncating is safe when subscripts are known not to wrap. Cases without +// nowrap flags should have been rejected earlier. +// Return null if no bound available. +const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const { + if (SE->hasLoopInvariantBackedgeTakenCount(L)) { + const SCEV *UB = SE->getBackedgeTakenCount(L); + return SE->getTruncateOrZeroExtend(UB, T); + } + return nullptr; +} + + +// Calls collectUpperBound(), then attempts to cast it to SCEVConstant. +// If the cast fails, returns NULL. +const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L, + Type *T) const { + if (const SCEV *UB = collectUpperBound(L, T)) + return dyn_cast<SCEVConstant>(UB); + return nullptr; +} + + +// testZIV - +// When we have a pair of subscripts of the form [c1] and [c2], +// where c1 and c2 are both loop invariant, we attack it using +// the ZIV test. Basically, we test by comparing the two values, +// but there are actually three possible results: +// 1) the values are equal, so there's a dependence +// 2) the values are different, so there's no dependence +// 3) the values might be equal, so we have to assume a dependence. +// +// Return true if dependence disproved. +bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst, + FullDependence &Result) const { + LLVM_DEBUG(dbgs() << " src = " << *Src << "\n"); + LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n"); + ++ZIVapplications; + if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) { + LLVM_DEBUG(dbgs() << " provably dependent\n"); + return false; // provably dependent + } + if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) { + LLVM_DEBUG(dbgs() << " provably independent\n"); + ++ZIVindependence; + return true; // provably independent + } + LLVM_DEBUG(dbgs() << " possibly dependent\n"); + Result.Consistent = false; + return false; // possibly dependent +} + + +// strongSIVtest - +// From the paper, Practical Dependence Testing, Section 4.2.1 +// +// When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i], +// where i is an induction variable, c1 and c2 are loop invariant, +// and a is a constant, we can solve it exactly using the Strong SIV test. +// +// Can prove independence. Failing that, can compute distance (and direction). +// In the presence of symbolic terms, we can sometimes make progress. +// +// If there's a dependence, +// +// c1 + a*i = c2 + a*i' +// +// The dependence distance is +// +// d = i' - i = (c1 - c2)/a +// +// A dependence only exists if d is an integer and abs(d) <= U, where U is the +// loop's upper bound. If a dependence exists, the dependence direction is +// defined as +// +// { < if d > 0 +// direction = { = if d = 0 +// { > if d < 0 +// +// Return true if dependence disproved. +bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst, + const SCEV *DstConst, const Loop *CurLoop, + unsigned Level, FullDependence &Result, + Constraint &NewConstraint) const { + LLVM_DEBUG(dbgs() << "\tStrong SIV test\n"); + LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff); + LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n"); + LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst); + LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n"); + LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst); + LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n"); + ++StrongSIVapplications; + assert(0 < Level && Level <= CommonLevels && "level out of range"); + Level--; + + const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst); + LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta); + LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n"); + + // check that |Delta| < iteration count + if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { + LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound); + LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n"); + const SCEV *AbsDelta = + SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta); + const SCEV *AbsCoeff = + SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff); + const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff); + if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) { + // Distance greater than trip count - no dependence + ++StrongSIVindependence; + ++StrongSIVsuccesses; + return true; + } + } + + // Can we compute distance? + if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) { + APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt(); + APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt(); + APInt Distance = ConstDelta; // these need to be initialized + APInt Remainder = ConstDelta; + APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder); + LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n"); + LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n"); + // Make sure Coeff divides Delta exactly + if (Remainder != 0) { + // Coeff doesn't divide Distance, no dependence + ++StrongSIVindependence; + ++StrongSIVsuccesses; + return true; + } + Result.DV[Level].Distance = SE->getConstant(Distance); + NewConstraint.setDistance(SE->getConstant(Distance), CurLoop); + if (Distance.sgt(0)) + Result.DV[Level].Direction &= Dependence::DVEntry::LT; + else if (Distance.slt(0)) + Result.DV[Level].Direction &= Dependence::DVEntry::GT; + else + Result.DV[Level].Direction &= Dependence::DVEntry::EQ; + ++StrongSIVsuccesses; + } + else if (Delta->isZero()) { + // since 0/X == 0 + Result.DV[Level].Distance = Delta; + NewConstraint.setDistance(Delta, CurLoop); + Result.DV[Level].Direction &= Dependence::DVEntry::EQ; + ++StrongSIVsuccesses; + } + else { + if (Coeff->isOne()) { + LLVM_DEBUG(dbgs() << "\t Distance = " << *Delta << "\n"); + Result.DV[Level].Distance = Delta; // since X/1 == X + NewConstraint.setDistance(Delta, CurLoop); + } + else { + Result.Consistent = false; + NewConstraint.setLine(Coeff, + SE->getNegativeSCEV(Coeff), + SE->getNegativeSCEV(Delta), CurLoop); + } + + // maybe we can get a useful direction + bool DeltaMaybeZero = !SE->isKnownNonZero(Delta); + bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta); + bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta); + bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff); + bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff); + // The double negatives above are confusing. + // It helps to read !SE->isKnownNonZero(Delta) + // as "Delta might be Zero" + unsigned NewDirection = Dependence::DVEntry::NONE; + if ((DeltaMaybePositive && CoeffMaybePositive) || + (DeltaMaybeNegative && CoeffMaybeNegative)) + NewDirection = Dependence::DVEntry::LT; + if (DeltaMaybeZero) + NewDirection |= Dependence::DVEntry::EQ; + if ((DeltaMaybeNegative && CoeffMaybePositive) || + (DeltaMaybePositive && CoeffMaybeNegative)) + NewDirection |= Dependence::DVEntry::GT; + if (NewDirection < Result.DV[Level].Direction) + ++StrongSIVsuccesses; + Result.DV[Level].Direction &= NewDirection; + } + return false; +} + + +// weakCrossingSIVtest - +// From the paper, Practical Dependence Testing, Section 4.2.2 +// +// When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i], +// where i is an induction variable, c1 and c2 are loop invariant, +// and a is a constant, we can solve it exactly using the +// Weak-Crossing SIV test. +// +// Given c1 + a*i = c2 - a*i', we can look for the intersection of +// the two lines, where i = i', yielding +// +// c1 + a*i = c2 - a*i +// 2a*i = c2 - c1 +// i = (c2 - c1)/2a +// +// If i < 0, there is no dependence. +// If i > upperbound, there is no dependence. +// If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0. +// If i = upperbound, there's a dependence with distance = 0. +// If i is integral, there's a dependence (all directions). +// If the non-integer part = 1/2, there's a dependence (<> directions). +// Otherwise, there's no dependence. +// +// Can prove independence. Failing that, +// can sometimes refine the directions. +// Can determine iteration for splitting. +// +// Return true if dependence disproved. +bool DependenceInfo::weakCrossingSIVtest( + const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst, + const Loop *CurLoop, unsigned Level, FullDependence &Result, + Constraint &NewConstraint, const SCEV *&SplitIter) const { + LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n"); + LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n"); + LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); + LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); + ++WeakCrossingSIVapplications; + assert(0 < Level && Level <= CommonLevels && "Level out of range"); + Level--; + Result.Consistent = false; + const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); + LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); + NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop); + if (Delta->isZero()) { + Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT); + Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT); + ++WeakCrossingSIVsuccesses; + if (!Result.DV[Level].Direction) { + ++WeakCrossingSIVindependence; + return true; + } + Result.DV[Level].Distance = Delta; // = 0 + return false; + } + const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff); + if (!ConstCoeff) + return false; + + Result.DV[Level].Splitable = true; + if (SE->isKnownNegative(ConstCoeff)) { + ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff)); + assert(ConstCoeff && + "dynamic cast of negative of ConstCoeff should yield constant"); + Delta = SE->getNegativeSCEV(Delta); + } + assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive"); + + // compute SplitIter for use by DependenceInfo::getSplitIteration() + SplitIter = SE->getUDivExpr( + SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta), + SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff)); + LLVM_DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n"); + + const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta); + if (!ConstDelta) + return false; + + // We're certain that ConstCoeff > 0; therefore, + // if Delta < 0, then no dependence. + LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); + LLVM_DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n"); + if (SE->isKnownNegative(Delta)) { + // No dependence, Delta < 0 + ++WeakCrossingSIVindependence; + ++WeakCrossingSIVsuccesses; + return true; + } + + // We're certain that Delta > 0 and ConstCoeff > 0. + // Check Delta/(2*ConstCoeff) against upper loop bound + if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { + LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n"); + const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2); + const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound), + ConstantTwo); + LLVM_DEBUG(dbgs() << "\t ML = " << *ML << "\n"); + if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) { + // Delta too big, no dependence + ++WeakCrossingSIVindependence; + ++WeakCrossingSIVsuccesses; + return true; + } + if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) { + // i = i' = UB + Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT); + Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT); + ++WeakCrossingSIVsuccesses; + if (!Result.DV[Level].Direction) { + ++WeakCrossingSIVindependence; + return true; + } + Result.DV[Level].Splitable = false; + Result.DV[Level].Distance = SE->getZero(Delta->getType()); + return false; + } + } + + // check that Coeff divides Delta + APInt APDelta = ConstDelta->getAPInt(); + APInt APCoeff = ConstCoeff->getAPInt(); + APInt Distance = APDelta; // these need to be initialzed + APInt Remainder = APDelta; + APInt::sdivrem(APDelta, APCoeff, Distance, Remainder); + LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n"); + if (Remainder != 0) { + // Coeff doesn't divide Delta, no dependence + ++WeakCrossingSIVindependence; + ++WeakCrossingSIVsuccesses; + return true; + } + LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n"); + + // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible + APInt Two = APInt(Distance.getBitWidth(), 2, true); + Remainder = Distance.srem(Two); + LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n"); + if (Remainder != 0) { + // Equal direction isn't possible + Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ); + ++WeakCrossingSIVsuccesses; + } + return false; +} + + +// Kirch's algorithm, from +// +// Optimizing Supercompilers for Supercomputers +// Michael Wolfe +// MIT Press, 1989 +// +// Program 2.1, page 29. +// Computes the GCD of AM and BM. +// Also finds a solution to the equation ax - by = gcd(a, b). +// Returns true if dependence disproved; i.e., gcd does not divide Delta. +static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM, + const APInt &Delta, APInt &G, APInt &X, APInt &Y) { + APInt A0(Bits, 1, true), A1(Bits, 0, true); + APInt B0(Bits, 0, true), B1(Bits, 1, true); + APInt G0 = AM.abs(); + APInt G1 = BM.abs(); + APInt Q = G0; // these need to be initialized + APInt R = G0; + APInt::sdivrem(G0, G1, Q, R); + while (R != 0) { + APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2; + APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2; + G0 = G1; G1 = R; + APInt::sdivrem(G0, G1, Q, R); + } + G = G1; + LLVM_DEBUG(dbgs() << "\t GCD = " << G << "\n"); + X = AM.slt(0) ? -A1 : A1; + Y = BM.slt(0) ? B1 : -B1; + + // make sure gcd divides Delta + R = Delta.srem(G); + if (R != 0) + return true; // gcd doesn't divide Delta, no dependence + Q = Delta.sdiv(G); + return false; +} + +static APInt floorOfQuotient(const APInt &A, const APInt &B) { + APInt Q = A; // these need to be initialized + APInt R = A; + APInt::sdivrem(A, B, Q, R); + if (R == 0) + return Q; + if ((A.sgt(0) && B.sgt(0)) || + (A.slt(0) && B.slt(0))) + return Q; + else + return Q - 1; +} + +static APInt ceilingOfQuotient(const APInt &A, const APInt &B) { + APInt Q = A; // these need to be initialized + APInt R = A; + APInt::sdivrem(A, B, Q, R); + if (R == 0) + return Q; + if ((A.sgt(0) && B.sgt(0)) || + (A.slt(0) && B.slt(0))) + return Q + 1; + else + return Q; +} + +// exactSIVtest - +// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i], +// where i is an induction variable, c1 and c2 are loop invariant, and a1 +// and a2 are constant, we can solve it exactly using an algorithm developed +// by Banerjee and Wolfe. See Algorithm 6.2.1 (case 2.5) in: +// +// Dependence Analysis for Supercomputing +// Utpal Banerjee +// Kluwer Academic Publishers, 1988 +// +// It's slower than the specialized tests (strong SIV, weak-zero SIV, etc), +// so use them if possible. They're also a bit better with symbolics and, +// in the case of the strong SIV test, can compute Distances. +// +// Return true if dependence disproved. +// +// This is a modified version of the original Banerjee algorithm. The original +// only tested whether Dst depends on Src. This algorithm extends that and +// returns all the dependencies that exist between Dst and Src. +bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff, + const SCEV *SrcConst, const SCEV *DstConst, + const Loop *CurLoop, unsigned Level, + FullDependence &Result, + Constraint &NewConstraint) const { + LLVM_DEBUG(dbgs() << "\tExact SIV test\n"); + LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n"); + LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n"); + LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); + LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); + ++ExactSIVapplications; + assert(0 < Level && Level <= CommonLevels && "Level out of range"); + Level--; + Result.Consistent = false; + const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); + LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); + NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff), Delta, + CurLoop); + const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta); + const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff); + const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff); + if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff) + return false; + + // find gcd + APInt G, X, Y; + APInt AM = ConstSrcCoeff->getAPInt(); + APInt BM = ConstDstCoeff->getAPInt(); + APInt CM = ConstDelta->getAPInt(); + unsigned Bits = AM.getBitWidth(); + if (findGCD(Bits, AM, BM, CM, G, X, Y)) { + // gcd doesn't divide Delta, no dependence + ++ExactSIVindependence; + ++ExactSIVsuccesses; + return true; + } + + LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n"); + + // since SCEV construction normalizes, LM = 0 + APInt UM(Bits, 1, true); + bool UMValid = false; + // UM is perhaps unavailable, let's check + if (const SCEVConstant *CUB = + collectConstantUpperBound(CurLoop, Delta->getType())) { + UM = CUB->getAPInt(); + LLVM_DEBUG(dbgs() << "\t UM = " << UM << "\n"); + UMValid = true; + } + + APInt TU(APInt::getSignedMaxValue(Bits)); + APInt TL(APInt::getSignedMinValue(Bits)); + APInt TC = CM.sdiv(G); + APInt TX = X * TC; + APInt TY = Y * TC; + LLVM_DEBUG(dbgs() << "\t TC = " << TC << "\n"); + LLVM_DEBUG(dbgs() << "\t TX = " << TX << "\n"); + LLVM_DEBUG(dbgs() << "\t TY = " << TY << "\n"); + + SmallVector<APInt, 2> TLVec, TUVec; + APInt TB = BM.sdiv(G); + if (TB.sgt(0)) { + TLVec.push_back(ceilingOfQuotient(-TX, TB)); + LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n"); + // New bound check - modification to Banerjee's e3 check + if (UMValid) { + TUVec.push_back(floorOfQuotient(UM - TX, TB)); + LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n"); + } + } else { + TUVec.push_back(floorOfQuotient(-TX, TB)); + LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n"); + // New bound check - modification to Banerjee's e3 check + if (UMValid) { + TLVec.push_back(ceilingOfQuotient(UM - TX, TB)); + LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n"); + } + } + + APInt TA = AM.sdiv(G); + if (TA.sgt(0)) { + if (UMValid) { + TUVec.push_back(floorOfQuotient(UM - TY, TA)); + LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n"); + } + // New bound check - modification to Banerjee's e3 check + TLVec.push_back(ceilingOfQuotient(-TY, TA)); + LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n"); + } else { + if (UMValid) { + TLVec.push_back(ceilingOfQuotient(UM - TY, TA)); + LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n"); + } + // New bound check - modification to Banerjee's e3 check + TUVec.push_back(floorOfQuotient(-TY, TA)); + LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n"); + } + + LLVM_DEBUG(dbgs() << "\t TA = " << TA << "\n"); + LLVM_DEBUG(dbgs() << "\t TB = " << TB << "\n"); + + if (TLVec.empty() || TUVec.empty()) + return false; + TL = APIntOps::smax(TLVec.front(), TLVec.back()); + TU = APIntOps::smin(TUVec.front(), TUVec.back()); + LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n"); + LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n"); + + if (TL.sgt(TU)) { + ++ExactSIVindependence; + ++ExactSIVsuccesses; + return true; + } + + // explore directions + unsigned NewDirection = Dependence::DVEntry::NONE; + APInt LowerDistance, UpperDistance; + if (TA.sgt(TB)) { + LowerDistance = (TY - TX) + (TA - TB) * TL; + UpperDistance = (TY - TX) + (TA - TB) * TU; + } else { + LowerDistance = (TY - TX) + (TA - TB) * TU; + UpperDistance = (TY - TX) + (TA - TB) * TL; + } + + LLVM_DEBUG(dbgs() << "\t LowerDistance = " << LowerDistance << "\n"); + LLVM_DEBUG(dbgs() << "\t UpperDistance = " << UpperDistance << "\n"); + + APInt Zero(Bits, 0, true); + if (LowerDistance.sle(Zero) && UpperDistance.sge(Zero)) { + NewDirection |= Dependence::DVEntry::EQ; + ++ExactSIVsuccesses; + } + if (LowerDistance.slt(0)) { + NewDirection |= Dependence::DVEntry::GT; + ++ExactSIVsuccesses; + } + if (UpperDistance.sgt(0)) { + NewDirection |= Dependence::DVEntry::LT; + ++ExactSIVsuccesses; + } + + // finished + Result.DV[Level].Direction &= NewDirection; + if (Result.DV[Level].Direction == Dependence::DVEntry::NONE) + ++ExactSIVindependence; + LLVM_DEBUG(dbgs() << "\t Result = "); + LLVM_DEBUG(Result.dump(dbgs())); + return Result.DV[Level].Direction == Dependence::DVEntry::NONE; +} + + +// Return true if the divisor evenly divides the dividend. +static +bool isRemainderZero(const SCEVConstant *Dividend, + const SCEVConstant *Divisor) { + const APInt &ConstDividend = Dividend->getAPInt(); + const APInt &ConstDivisor = Divisor->getAPInt(); + return ConstDividend.srem(ConstDivisor) == 0; +} + + +// weakZeroSrcSIVtest - +// From the paper, Practical Dependence Testing, Section 4.2.2 +// +// When we have a pair of subscripts of the form [c1] and [c2 + a*i], +// where i is an induction variable, c1 and c2 are loop invariant, +// and a is a constant, we can solve it exactly using the +// Weak-Zero SIV test. +// +// Given +// +// c1 = c2 + a*i +// +// we get +// +// (c1 - c2)/a = i +// +// If i is not an integer, there's no dependence. +// If i < 0 or > UB, there's no dependence. +// If i = 0, the direction is >= and peeling the +// 1st iteration will break the dependence. +// If i = UB, the direction is <= and peeling the +// last iteration will break the dependence. +// Otherwise, the direction is *. +// +// Can prove independence. Failing that, we can sometimes refine +// the directions. Can sometimes show that first or last +// iteration carries all the dependences (so worth peeling). +// +// (see also weakZeroDstSIVtest) +// +// Return true if dependence disproved. +bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff, + const SCEV *SrcConst, + const SCEV *DstConst, + const Loop *CurLoop, unsigned Level, + FullDependence &Result, + Constraint &NewConstraint) const { + // For the WeakSIV test, it's possible the loop isn't common to + // the Src and Dst loops. If it isn't, then there's no need to + // record a direction. + LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n"); + LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n"); + LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); + LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); + ++WeakZeroSIVapplications; + assert(0 < Level && Level <= MaxLevels && "Level out of range"); + Level--; + Result.Consistent = false; + const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst); + NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta, + CurLoop); + LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); + if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) { + if (Level < CommonLevels) { + Result.DV[Level].Direction &= Dependence::DVEntry::GE; + Result.DV[Level].PeelFirst = true; + ++WeakZeroSIVsuccesses; + } + return false; // dependences caused by first iteration + } + const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff); + if (!ConstCoeff) + return false; + const SCEV *AbsCoeff = + SE->isKnownNegative(ConstCoeff) ? + SE->getNegativeSCEV(ConstCoeff) : ConstCoeff; + const SCEV *NewDelta = + SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta; + + // check that Delta/SrcCoeff < iteration count + // really check NewDelta < count*AbsCoeff + if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { + LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n"); + const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound); + if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) { + ++WeakZeroSIVindependence; + ++WeakZeroSIVsuccesses; + return true; + } + if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) { + // dependences caused by last iteration + if (Level < CommonLevels) { + Result.DV[Level].Direction &= Dependence::DVEntry::LE; + Result.DV[Level].PeelLast = true; + ++WeakZeroSIVsuccesses; + } + return false; + } + } + + // check that Delta/SrcCoeff >= 0 + // really check that NewDelta >= 0 + if (SE->isKnownNegative(NewDelta)) { + // No dependence, newDelta < 0 + ++WeakZeroSIVindependence; + ++WeakZeroSIVsuccesses; + return true; + } + + // if SrcCoeff doesn't divide Delta, then no dependence + if (isa<SCEVConstant>(Delta) && + !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) { + ++WeakZeroSIVindependence; + ++WeakZeroSIVsuccesses; + return true; + } + return false; +} + + +// weakZeroDstSIVtest - +// From the paper, Practical Dependence Testing, Section 4.2.2 +// +// When we have a pair of subscripts of the form [c1 + a*i] and [c2], +// where i is an induction variable, c1 and c2 are loop invariant, +// and a is a constant, we can solve it exactly using the +// Weak-Zero SIV test. +// +// Given +// +// c1 + a*i = c2 +// +// we get +// +// i = (c2 - c1)/a +// +// If i is not an integer, there's no dependence. +// If i < 0 or > UB, there's no dependence. +// If i = 0, the direction is <= and peeling the +// 1st iteration will break the dependence. +// If i = UB, the direction is >= and peeling the +// last iteration will break the dependence. +// Otherwise, the direction is *. +// +// Can prove independence. Failing that, we can sometimes refine +// the directions. Can sometimes show that first or last +// iteration carries all the dependences (so worth peeling). +// +// (see also weakZeroSrcSIVtest) +// +// Return true if dependence disproved. +bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff, + const SCEV *SrcConst, + const SCEV *DstConst, + const Loop *CurLoop, unsigned Level, + FullDependence &Result, + Constraint &NewConstraint) const { + // For the WeakSIV test, it's possible the loop isn't common to the + // Src and Dst loops. If it isn't, then there's no need to record a direction. + LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n"); + LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n"); + LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); + LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); + ++WeakZeroSIVapplications; + assert(0 < Level && Level <= SrcLevels && "Level out of range"); + Level--; + Result.Consistent = false; + const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); + NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta, + CurLoop); + LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); + if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) { + if (Level < CommonLevels) { + Result.DV[Level].Direction &= Dependence::DVEntry::LE; + Result.DV[Level].PeelFirst = true; + ++WeakZeroSIVsuccesses; + } + return false; // dependences caused by first iteration + } + const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff); + if (!ConstCoeff) + return false; + const SCEV *AbsCoeff = + SE->isKnownNegative(ConstCoeff) ? + SE->getNegativeSCEV(ConstCoeff) : ConstCoeff; + const SCEV *NewDelta = + SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta; + + // check that Delta/SrcCoeff < iteration count + // really check NewDelta < count*AbsCoeff + if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { + LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n"); + const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound); + if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) { + ++WeakZeroSIVindependence; + ++WeakZeroSIVsuccesses; + return true; + } + if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) { + // dependences caused by last iteration + if (Level < CommonLevels) { + Result.DV[Level].Direction &= Dependence::DVEntry::GE; + Result.DV[Level].PeelLast = true; + ++WeakZeroSIVsuccesses; + } + return false; + } + } + + // check that Delta/SrcCoeff >= 0 + // really check that NewDelta >= 0 + if (SE->isKnownNegative(NewDelta)) { + // No dependence, newDelta < 0 + ++WeakZeroSIVindependence; + ++WeakZeroSIVsuccesses; + return true; + } + + // if SrcCoeff doesn't divide Delta, then no dependence + if (isa<SCEVConstant>(Delta) && + !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) { + ++WeakZeroSIVindependence; + ++WeakZeroSIVsuccesses; + return true; + } + return false; +} + + +// exactRDIVtest - Tests the RDIV subscript pair for dependence. +// Things of the form [c1 + a*i] and [c2 + b*j], +// where i and j are induction variable, c1 and c2 are loop invariant, +// and a and b are constants. +// Returns true if any possible dependence is disproved. +// Marks the result as inconsistent. +// Works in some cases that symbolicRDIVtest doesn't, and vice versa. +bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff, + const SCEV *SrcConst, const SCEV *DstConst, + const Loop *SrcLoop, const Loop *DstLoop, + FullDependence &Result) const { + LLVM_DEBUG(dbgs() << "\tExact RDIV test\n"); + LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n"); + LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n"); + LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n"); + LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n"); + ++ExactRDIVapplications; + Result.Consistent = false; + const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); + LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n"); + const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta); + const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff); + const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff); + if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff) + return false; + + // find gcd + APInt G, X, Y; + APInt AM = ConstSrcCoeff->getAPInt(); + APInt BM = ConstDstCoeff->getAPInt(); + APInt CM = ConstDelta->getAPInt(); + unsigned Bits = AM.getBitWidth(); + if (findGCD(Bits, AM, BM, CM, G, X, Y)) { + // gcd doesn't divide Delta, no dependence + ++ExactRDIVindependence; + return true; + } + + LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n"); + + // since SCEV construction seems to normalize, LM = 0 + APInt SrcUM(Bits, 1, true); + bool SrcUMvalid = false; + // SrcUM is perhaps unavailable, let's check + if (const SCEVConstant *UpperBound = + collectConstantUpperBound(SrcLoop, Delta->getType())) { + SrcUM = UpperBound->getAPInt(); + LLVM_DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n"); + SrcUMvalid = true; + } + + APInt DstUM(Bits, 1, true); + bool DstUMvalid = false; + // UM is perhaps unavailable, let's check + if (const SCEVConstant *UpperBound = + collectConstantUpperBound(DstLoop, Delta->getType())) { + DstUM = UpperBound->getAPInt(); + LLVM_DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n"); + DstUMvalid = true; + } + + APInt TU(APInt::getSignedMaxValue(Bits)); + APInt TL(APInt::getSignedMinValue(Bits)); + APInt TC = CM.sdiv(G); + APInt TX = X * TC; + APInt TY = Y * TC; + LLVM_DEBUG(dbgs() << "\t TC = " << TC << "\n"); + LLVM_DEBUG(dbgs() << "\t TX = " << TX << "\n"); + LLVM_DEBUG(dbgs() << "\t TY = " << TY << "\n"); + + SmallVector<APInt, 2> TLVec, TUVec; + APInt TB = BM.sdiv(G); + if (TB.sgt(0)) { + TLVec.push_back(ceilingOfQuotient(-TX, TB)); + LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n"); + if (SrcUMvalid) { + TUVec.push_back(floorOfQuotient(SrcUM - TX, TB)); + LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n"); + } + } else { + TUVec.push_back(floorOfQuotient(-TX, TB)); + LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n"); + if (SrcUMvalid) { + TLVec.push_back(ceilingOfQuotient(SrcUM - TX, TB)); + LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n"); + } + } + + APInt TA = AM.sdiv(G); + if (TA.sgt(0)) { + TLVec.push_back(ceilingOfQuotient(-TY, TA)); + LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n"); + if (DstUMvalid) { + TUVec.push_back(floorOfQuotient(DstUM - TY, TA)); + LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n"); + } + } else { + TUVec.push_back(floorOfQuotient(-TY, TA)); + LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n"); + if (DstUMvalid) { + TLVec.push_back(ceilingOfQuotient(DstUM - TY, TA)); + LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n"); + } + } + + if (TLVec.empty() || TUVec.empty()) + return false; + + LLVM_DEBUG(dbgs() << "\t TA = " << TA << "\n"); + LLVM_DEBUG(dbgs() << "\t TB = " << TB << "\n"); + + TL = APIntOps::smax(TLVec.front(), TLVec.back()); + TU = APIntOps::smin(TUVec.front(), TUVec.back()); + LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n"); + LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n"); + + if (TL.sgt(TU)) + ++ExactRDIVindependence; + return TL.sgt(TU); +} + + +// symbolicRDIVtest - +// In Section 4.5 of the Practical Dependence Testing paper,the authors +// introduce a special case of Banerjee's Inequalities (also called the +// Extreme-Value Test) that can handle some of the SIV and RDIV cases, +// particularly cases with symbolics. Since it's only able to disprove +// dependence (not compute distances or directions), we'll use it as a +// fall back for the other tests. +// +// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j] +// where i and j are induction variables and c1 and c2 are loop invariants, +// we can use the symbolic tests to disprove some dependences, serving as a +// backup for the RDIV test. Note that i and j can be the same variable, +// letting this test serve as a backup for the various SIV tests. +// +// For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some +// 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized) +// loop bounds for the i and j loops, respectively. So, ... +// +// c1 + a1*i = c2 + a2*j +// a1*i - a2*j = c2 - c1 +// +// To test for a dependence, we compute c2 - c1 and make sure it's in the +// range of the maximum and minimum possible values of a1*i - a2*j. +// Considering the signs of a1 and a2, we have 4 possible cases: +// +// 1) If a1 >= 0 and a2 >= 0, then +// a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0 +// -a2*N2 <= c2 - c1 <= a1*N1 +// +// 2) If a1 >= 0 and a2 <= 0, then +// a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2 +// 0 <= c2 - c1 <= a1*N1 - a2*N2 +// +// 3) If a1 <= 0 and a2 >= 0, then +// a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0 +// a1*N1 - a2*N2 <= c2 - c1 <= 0 +// +// 4) If a1 <= 0 and a2 <= 0, then +// a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2 +// a1*N1 <= c2 - c1 <= -a2*N2 +// +// return true if dependence disproved +bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2, + const SCEV *C1, const SCEV *C2, + const Loop *Loop1, + const Loop *Loop2) const { + ++SymbolicRDIVapplications; + LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n"); + LLVM_DEBUG(dbgs() << "\t A1 = " << *A1); + LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n"); + LLVM_DEBUG(dbgs() << "\t A2 = " << *A2 << "\n"); + LLVM_DEBUG(dbgs() << "\t C1 = " << *C1 << "\n"); + LLVM_DEBUG(dbgs() << "\t C2 = " << *C2 << "\n"); + const SCEV *N1 = collectUpperBound(Loop1, A1->getType()); + const SCEV *N2 = collectUpperBound(Loop2, A1->getType()); + LLVM_DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n"); + LLVM_DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n"); + const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1); + const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2); + LLVM_DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n"); + LLVM_DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n"); + if (SE->isKnownNonNegative(A1)) { + if (SE->isKnownNonNegative(A2)) { + // A1 >= 0 && A2 >= 0 + if (N1) { + // make sure that c2 - c1 <= a1*N1 + const SCEV *A1N1 = SE->getMulExpr(A1, N1); + LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n"); + if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) { + ++SymbolicRDIVindependence; + return true; + } + } + if (N2) { + // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2 + const SCEV *A2N2 = SE->getMulExpr(A2, N2); + LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n"); + if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) { + ++SymbolicRDIVindependence; + return true; + } + } + } + else if (SE->isKnownNonPositive(A2)) { + // a1 >= 0 && a2 <= 0 + if (N1 && N2) { + // make sure that c2 - c1 <= a1*N1 - a2*N2 + const SCEV *A1N1 = SE->getMulExpr(A1, N1); + const SCEV *A2N2 = SE->getMulExpr(A2, N2); + const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2); + LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n"); + if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) { + ++SymbolicRDIVindependence; + return true; + } + } + // make sure that 0 <= c2 - c1 + if (SE->isKnownNegative(C2_C1)) { + ++SymbolicRDIVindependence; + return true; + } + } + } + else if (SE->isKnownNonPositive(A1)) { + if (SE->isKnownNonNegative(A2)) { + // a1 <= 0 && a2 >= 0 + if (N1 && N2) { + // make sure that a1*N1 - a2*N2 <= c2 - c1 + const SCEV *A1N1 = SE->getMulExpr(A1, N1); + const SCEV *A2N2 = SE->getMulExpr(A2, N2); + const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2); + LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n"); + if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) { + ++SymbolicRDIVindependence; + return true; + } + } + // make sure that c2 - c1 <= 0 + if (SE->isKnownPositive(C2_C1)) { + ++SymbolicRDIVindependence; + return true; + } + } + else if (SE->isKnownNonPositive(A2)) { + // a1 <= 0 && a2 <= 0 + if (N1) { + // make sure that a1*N1 <= c2 - c1 + const SCEV *A1N1 = SE->getMulExpr(A1, N1); + LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n"); + if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) { + ++SymbolicRDIVindependence; + return true; + } + } + if (N2) { + // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2 + const SCEV *A2N2 = SE->getMulExpr(A2, N2); + LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n"); + if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) { + ++SymbolicRDIVindependence; + return true; + } + } + } + } + return false; +} + + +// testSIV - +// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i] +// where i is an induction variable, c1 and c2 are loop invariant, and a1 and +// a2 are constant, we attack it with an SIV test. While they can all be +// solved with the Exact SIV test, it's worthwhile to use simpler tests when +// they apply; they're cheaper and sometimes more precise. +// +// Return true if dependence disproved. +bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level, + FullDependence &Result, Constraint &NewConstraint, + const SCEV *&SplitIter) const { + LLVM_DEBUG(dbgs() << " src = " << *Src << "\n"); + LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n"); + const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src); + const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst); + if (SrcAddRec && DstAddRec) { + const SCEV *SrcConst = SrcAddRec->getStart(); + const SCEV *DstConst = DstAddRec->getStart(); + const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE); + const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE); + const Loop *CurLoop = SrcAddRec->getLoop(); + assert(CurLoop == DstAddRec->getLoop() && + "both loops in SIV should be same"); + Level = mapSrcLoop(CurLoop); + bool disproven; + if (SrcCoeff == DstCoeff) + disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, + Level, Result, NewConstraint); + else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff)) + disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, + Level, Result, NewConstraint, SplitIter); + else + disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, + Level, Result, NewConstraint); + return disproven || + gcdMIVtest(Src, Dst, Result) || + symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop); + } + if (SrcAddRec) { + const SCEV *SrcConst = SrcAddRec->getStart(); + const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE); + const SCEV *DstConst = Dst; + const Loop *CurLoop = SrcAddRec->getLoop(); + Level = mapSrcLoop(CurLoop); + return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, + Level, Result, NewConstraint) || + gcdMIVtest(Src, Dst, Result); + } + if (DstAddRec) { + const SCEV *DstConst = DstAddRec->getStart(); + const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE); + const SCEV *SrcConst = Src; + const Loop *CurLoop = DstAddRec->getLoop(); + Level = mapDstLoop(CurLoop); + return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst, + CurLoop, Level, Result, NewConstraint) || + gcdMIVtest(Src, Dst, Result); + } + llvm_unreachable("SIV test expected at least one AddRec"); + return false; +} + + +// testRDIV - +// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j] +// where i and j are induction variables, c1 and c2 are loop invariant, +// and a1 and a2 are constant, we can solve it exactly with an easy adaptation +// of the Exact SIV test, the Restricted Double Index Variable (RDIV) test. +// It doesn't make sense to talk about distance or direction in this case, +// so there's no point in making special versions of the Strong SIV test or +// the Weak-crossing SIV test. +// +// With minor algebra, this test can also be used for things like +// [c1 + a1*i + a2*j][c2]. +// +// Return true if dependence disproved. +bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst, + FullDependence &Result) const { + // we have 3 possible situations here: + // 1) [a*i + b] and [c*j + d] + // 2) [a*i + c*j + b] and [d] + // 3) [b] and [a*i + c*j + d] + // We need to find what we've got and get organized + + const SCEV *SrcConst, *DstConst; + const SCEV *SrcCoeff, *DstCoeff; + const Loop *SrcLoop, *DstLoop; + + LLVM_DEBUG(dbgs() << " src = " << *Src << "\n"); + LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n"); + const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src); + const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst); + if (SrcAddRec && DstAddRec) { + SrcConst = SrcAddRec->getStart(); + SrcCoeff = SrcAddRec->getStepRecurrence(*SE); + SrcLoop = SrcAddRec->getLoop(); + DstConst = DstAddRec->getStart(); + DstCoeff = DstAddRec->getStepRecurrence(*SE); + DstLoop = DstAddRec->getLoop(); + } + else if (SrcAddRec) { + if (const SCEVAddRecExpr *tmpAddRec = + dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) { + SrcConst = tmpAddRec->getStart(); + SrcCoeff = tmpAddRec->getStepRecurrence(*SE); + SrcLoop = tmpAddRec->getLoop(); + DstConst = Dst; + DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE)); + DstLoop = SrcAddRec->getLoop(); + } + else + llvm_unreachable("RDIV reached by surprising SCEVs"); + } + else if (DstAddRec) { + if (const SCEVAddRecExpr *tmpAddRec = + dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) { + DstConst = tmpAddRec->getStart(); + DstCoeff = tmpAddRec->getStepRecurrence(*SE); + DstLoop = tmpAddRec->getLoop(); + SrcConst = Src; + SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE)); + SrcLoop = DstAddRec->getLoop(); + } + else + llvm_unreachable("RDIV reached by surprising SCEVs"); + } + else + llvm_unreachable("RDIV expected at least one AddRec"); + return exactRDIVtest(SrcCoeff, DstCoeff, + SrcConst, DstConst, + SrcLoop, DstLoop, + Result) || + gcdMIVtest(Src, Dst, Result) || + symbolicRDIVtest(SrcCoeff, DstCoeff, + SrcConst, DstConst, + SrcLoop, DstLoop); +} + + +// Tests the single-subscript MIV pair (Src and Dst) for dependence. +// Return true if dependence disproved. +// Can sometimes refine direction vectors. +bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst, + const SmallBitVector &Loops, + FullDependence &Result) const { + LLVM_DEBUG(dbgs() << " src = " << *Src << "\n"); + LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n"); + Result.Consistent = false; + return gcdMIVtest(Src, Dst, Result) || + banerjeeMIVtest(Src, Dst, Loops, Result); +} + + +// Given a product, e.g., 10*X*Y, returns the first constant operand, +// in this case 10. If there is no constant part, returns NULL. +static +const SCEVConstant *getConstantPart(const SCEV *Expr) { + if (const auto *Constant = dyn_cast<SCEVConstant>(Expr)) + return Constant; + else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr)) + if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0))) + return Constant; + return nullptr; +} + + +//===----------------------------------------------------------------------===// +// gcdMIVtest - +// Tests an MIV subscript pair for dependence. +// Returns true if any possible dependence is disproved. +// Marks the result as inconsistent. +// Can sometimes disprove the equal direction for 1 or more loops, +// as discussed in Michael Wolfe's book, +// High Performance Compilers for Parallel Computing, page 235. +// +// We spend some effort (code!) to handle cases like +// [10*i + 5*N*j + 15*M + 6], where i and j are induction variables, +// but M and N are just loop-invariant variables. +// This should help us handle linearized subscripts; +// also makes this test a useful backup to the various SIV tests. +// +// It occurs to me that the presence of loop-invariant variables +// changes the nature of the test from "greatest common divisor" +// to "a common divisor". +bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst, + FullDependence &Result) const { + LLVM_DEBUG(dbgs() << "starting gcd\n"); + ++GCDapplications; + unsigned BitWidth = SE->getTypeSizeInBits(Src->getType()); + APInt RunningGCD = APInt::getZero(BitWidth); + + // Examine Src coefficients. + // Compute running GCD and record source constant. + // Because we're looking for the constant at the end of the chain, + // we can't quit the loop just because the GCD == 1. + const SCEV *Coefficients = Src; + while (const SCEVAddRecExpr *AddRec = + dyn_cast<SCEVAddRecExpr>(Coefficients)) { + const SCEV *Coeff = AddRec->getStepRecurrence(*SE); + // If the coefficient is the product of a constant and other stuff, + // we can use the constant in the GCD computation. + const auto *Constant = getConstantPart(Coeff); + if (!Constant) + return false; + APInt ConstCoeff = Constant->getAPInt(); + RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); + Coefficients = AddRec->getStart(); + } + const SCEV *SrcConst = Coefficients; + + // Examine Dst coefficients. + // Compute running GCD and record destination constant. + // Because we're looking for the constant at the end of the chain, + // we can't quit the loop just because the GCD == 1. + Coefficients = Dst; + while (const SCEVAddRecExpr *AddRec = + dyn_cast<SCEVAddRecExpr>(Coefficients)) { + const SCEV *Coeff = AddRec->getStepRecurrence(*SE); + // If the coefficient is the product of a constant and other stuff, + // we can use the constant in the GCD computation. + const auto *Constant = getConstantPart(Coeff); + if (!Constant) + return false; + APInt ConstCoeff = Constant->getAPInt(); + RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); + Coefficients = AddRec->getStart(); + } + const SCEV *DstConst = Coefficients; + + APInt ExtraGCD = APInt::getZero(BitWidth); + const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); + LLVM_DEBUG(dbgs() << " Delta = " << *Delta << "\n"); + const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta); + if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) { + // If Delta is a sum of products, we may be able to make further progress. + for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) { + const SCEV *Operand = Sum->getOperand(Op); + if (isa<SCEVConstant>(Operand)) { + assert(!Constant && "Surprised to find multiple constants"); + Constant = cast<SCEVConstant>(Operand); + } + else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) { + // Search for constant operand to participate in GCD; + // If none found; return false. + const SCEVConstant *ConstOp = getConstantPart(Product); + if (!ConstOp) + return false; + APInt ConstOpValue = ConstOp->getAPInt(); + ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD, + ConstOpValue.abs()); + } + else + return false; + } + } + if (!Constant) + return false; + APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt(); + LLVM_DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n"); + if (ConstDelta == 0) + return false; + RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD); + LLVM_DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n"); + APInt Remainder = ConstDelta.srem(RunningGCD); + if (Remainder != 0) { + ++GCDindependence; + return true; + } + + // Try to disprove equal directions. + // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1], + // the code above can't disprove the dependence because the GCD = 1. + // So we consider what happen if i = i' and what happens if j = j'. + // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1], + // which is infeasible, so we can disallow the = direction for the i level. + // Setting j = j' doesn't help matters, so we end up with a direction vector + // of [<>, *] + // + // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5], + // we need to remember that the constant part is 5 and the RunningGCD should + // be initialized to ExtraGCD = 30. + LLVM_DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n'); + + bool Improved = false; + Coefficients = Src; + while (const SCEVAddRecExpr *AddRec = + dyn_cast<SCEVAddRecExpr>(Coefficients)) { + Coefficients = AddRec->getStart(); + const Loop *CurLoop = AddRec->getLoop(); + RunningGCD = ExtraGCD; + const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE); + const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff); + const SCEV *Inner = Src; + while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) { + AddRec = cast<SCEVAddRecExpr>(Inner); + const SCEV *Coeff = AddRec->getStepRecurrence(*SE); + if (CurLoop == AddRec->getLoop()) + ; // SrcCoeff == Coeff + else { + // If the coefficient is the product of a constant and other stuff, + // we can use the constant in the GCD computation. + Constant = getConstantPart(Coeff); + if (!Constant) + return false; + APInt ConstCoeff = Constant->getAPInt(); + RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); + } + Inner = AddRec->getStart(); + } + Inner = Dst; + while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) { + AddRec = cast<SCEVAddRecExpr>(Inner); + const SCEV *Coeff = AddRec->getStepRecurrence(*SE); + if (CurLoop == AddRec->getLoop()) + DstCoeff = Coeff; + else { + // If the coefficient is the product of a constant and other stuff, + // we can use the constant in the GCD computation. + Constant = getConstantPart(Coeff); + if (!Constant) + return false; + APInt ConstCoeff = Constant->getAPInt(); + RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); + } + Inner = AddRec->getStart(); + } + Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff); + // If the coefficient is the product of a constant and other stuff, + // we can use the constant in the GCD computation. + Constant = getConstantPart(Delta); + if (!Constant) + // The difference of the two coefficients might not be a product + // or constant, in which case we give up on this direction. + continue; + APInt ConstCoeff = Constant->getAPInt(); + RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); + LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n"); + if (RunningGCD != 0) { + Remainder = ConstDelta.srem(RunningGCD); + LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n"); + if (Remainder != 0) { + unsigned Level = mapSrcLoop(CurLoop); + Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ); + Improved = true; + } + } + } + if (Improved) + ++GCDsuccesses; + LLVM_DEBUG(dbgs() << "all done\n"); + return false; +} + + +//===----------------------------------------------------------------------===// +// banerjeeMIVtest - +// Use Banerjee's Inequalities to test an MIV subscript pair. +// (Wolfe, in the race-car book, calls this the Extreme Value Test.) +// Generally follows the discussion in Section 2.5.2 of +// +// Optimizing Supercompilers for Supercomputers +// Michael Wolfe +// +// The inequalities given on page 25 are simplified in that loops are +// normalized so that the lower bound is always 0 and the stride is always 1. +// For example, Wolfe gives +// +// LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k +// +// where A_k is the coefficient of the kth index in the source subscript, +// B_k is the coefficient of the kth index in the destination subscript, +// U_k is the upper bound of the kth index, L_k is the lower bound of the Kth +// index, and N_k is the stride of the kth index. Since all loops are normalized +// by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the +// equation to +// +// LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1 +// = (A^-_k - B_k)^- (U_k - 1) - B_k +// +// Similar simplifications are possible for the other equations. +// +// When we can't determine the number of iterations for a loop, +// we use NULL as an indicator for the worst case, infinity. +// When computing the upper bound, NULL denotes +inf; +// for the lower bound, NULL denotes -inf. +// +// Return true if dependence disproved. +bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst, + const SmallBitVector &Loops, + FullDependence &Result) const { + LLVM_DEBUG(dbgs() << "starting Banerjee\n"); + ++BanerjeeApplications; + LLVM_DEBUG(dbgs() << " Src = " << *Src << '\n'); + const SCEV *A0; + CoefficientInfo *A = collectCoeffInfo(Src, true, A0); + LLVM_DEBUG(dbgs() << " Dst = " << *Dst << '\n'); + const SCEV *B0; + CoefficientInfo *B = collectCoeffInfo(Dst, false, B0); + BoundInfo *Bound = new BoundInfo[MaxLevels + 1]; + const SCEV *Delta = SE->getMinusSCEV(B0, A0); + LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n'); + + // Compute bounds for all the * directions. + LLVM_DEBUG(dbgs() << "\tBounds[*]\n"); + for (unsigned K = 1; K <= MaxLevels; ++K) { + Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations; + Bound[K].Direction = Dependence::DVEntry::ALL; + Bound[K].DirSet = Dependence::DVEntry::NONE; + findBoundsALL(A, B, Bound, K); +#ifndef NDEBUG + LLVM_DEBUG(dbgs() << "\t " << K << '\t'); + if (Bound[K].Lower[Dependence::DVEntry::ALL]) + LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t'); + else + LLVM_DEBUG(dbgs() << "-inf\t"); + if (Bound[K].Upper[Dependence::DVEntry::ALL]) + LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n'); + else + LLVM_DEBUG(dbgs() << "+inf\n"); +#endif + } + + // Test the *, *, *, ... case. + bool Disproved = false; + if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) { + // Explore the direction vector hierarchy. + unsigned DepthExpanded = 0; + unsigned NewDeps = exploreDirections(1, A, B, Bound, + Loops, DepthExpanded, Delta); + if (NewDeps > 0) { + bool Improved = false; + for (unsigned K = 1; K <= CommonLevels; ++K) { + if (Loops[K]) { + unsigned Old = Result.DV[K - 1].Direction; + Result.DV[K - 1].Direction = Old & Bound[K].DirSet; + Improved |= Old != Result.DV[K - 1].Direction; + if (!Result.DV[K - 1].Direction) { + Improved = false; + Disproved = true; + break; + } + } + } + if (Improved) + ++BanerjeeSuccesses; + } + else { + ++BanerjeeIndependence; + Disproved = true; + } + } + else { + ++BanerjeeIndependence; + Disproved = true; + } + delete [] Bound; + delete [] A; + delete [] B; + return Disproved; +} + + +// Hierarchically expands the direction vector +// search space, combining the directions of discovered dependences +// in the DirSet field of Bound. Returns the number of distinct +// dependences discovered. If the dependence is disproved, +// it will return 0. +unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A, + CoefficientInfo *B, BoundInfo *Bound, + const SmallBitVector &Loops, + unsigned &DepthExpanded, + const SCEV *Delta) const { + // This algorithm has worst case complexity of O(3^n), where 'n' is the number + // of common loop levels. To avoid excessive compile-time, pessimize all the + // results and immediately return when the number of common levels is beyond + // the given threshold. + if (CommonLevels > MIVMaxLevelThreshold) { + LLVM_DEBUG(dbgs() << "Number of common levels exceeded the threshold. MIV " + "direction exploration is terminated.\n"); + for (unsigned K = 1; K <= CommonLevels; ++K) + if (Loops[K]) + Bound[K].DirSet = Dependence::DVEntry::ALL; + return 1; + } + + if (Level > CommonLevels) { + // record result + LLVM_DEBUG(dbgs() << "\t["); + for (unsigned K = 1; K <= CommonLevels; ++K) { + if (Loops[K]) { + Bound[K].DirSet |= Bound[K].Direction; +#ifndef NDEBUG + switch (Bound[K].Direction) { + case Dependence::DVEntry::LT: + LLVM_DEBUG(dbgs() << " <"); + break; + case Dependence::DVEntry::EQ: + LLVM_DEBUG(dbgs() << " ="); + break; + case Dependence::DVEntry::GT: + LLVM_DEBUG(dbgs() << " >"); + break; + case Dependence::DVEntry::ALL: + LLVM_DEBUG(dbgs() << " *"); + break; + default: + llvm_unreachable("unexpected Bound[K].Direction"); + } +#endif + } + } + LLVM_DEBUG(dbgs() << " ]\n"); + return 1; + } + if (Loops[Level]) { + if (Level > DepthExpanded) { + DepthExpanded = Level; + // compute bounds for <, =, > at current level + findBoundsLT(A, B, Bound, Level); + findBoundsGT(A, B, Bound, Level); + findBoundsEQ(A, B, Bound, Level); +#ifndef NDEBUG + LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n'); + LLVM_DEBUG(dbgs() << "\t <\t"); + if (Bound[Level].Lower[Dependence::DVEntry::LT]) + LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] + << '\t'); + else + LLVM_DEBUG(dbgs() << "-inf\t"); + if (Bound[Level].Upper[Dependence::DVEntry::LT]) + LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] + << '\n'); + else + LLVM_DEBUG(dbgs() << "+inf\n"); + LLVM_DEBUG(dbgs() << "\t =\t"); + if (Bound[Level].Lower[Dependence::DVEntry::EQ]) + LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] + << '\t'); + else + LLVM_DEBUG(dbgs() << "-inf\t"); + if (Bound[Level].Upper[Dependence::DVEntry::EQ]) + LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] + << '\n'); + else + LLVM_DEBUG(dbgs() << "+inf\n"); + LLVM_DEBUG(dbgs() << "\t >\t"); + if (Bound[Level].Lower[Dependence::DVEntry::GT]) + LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] + << '\t'); + else + LLVM_DEBUG(dbgs() << "-inf\t"); + if (Bound[Level].Upper[Dependence::DVEntry::GT]) + LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] + << '\n'); + else + LLVM_DEBUG(dbgs() << "+inf\n"); +#endif + } + + unsigned NewDeps = 0; + + // test bounds for <, *, *, ... + if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta)) + NewDeps += exploreDirections(Level + 1, A, B, Bound, + Loops, DepthExpanded, Delta); + + // Test bounds for =, *, *, ... + if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta)) + NewDeps += exploreDirections(Level + 1, A, B, Bound, + Loops, DepthExpanded, Delta); + + // test bounds for >, *, *, ... + if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta)) + NewDeps += exploreDirections(Level + 1, A, B, Bound, + Loops, DepthExpanded, Delta); + + Bound[Level].Direction = Dependence::DVEntry::ALL; + return NewDeps; + } + else + return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta); +} + + +// Returns true iff the current bounds are plausible. +bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level, + BoundInfo *Bound, const SCEV *Delta) const { + Bound[Level].Direction = DirKind; + if (const SCEV *LowerBound = getLowerBound(Bound)) + if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta)) + return false; + if (const SCEV *UpperBound = getUpperBound(Bound)) + if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound)) + return false; + return true; +} + + +// Computes the upper and lower bounds for level K +// using the * direction. Records them in Bound. +// Wolfe gives the equations +// +// LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k +// UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k +// +// Since we normalize loops, we can simplify these equations to +// +// LB^*_k = (A^-_k - B^+_k)U_k +// UB^*_k = (A^+_k - B^-_k)U_k +// +// We must be careful to handle the case where the upper bound is unknown. +// Note that the lower bound is always <= 0 +// and the upper bound is always >= 0. +void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B, + BoundInfo *Bound, unsigned K) const { + Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity. + Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity. + if (Bound[K].Iterations) { + Bound[K].Lower[Dependence::DVEntry::ALL] = + SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart), + Bound[K].Iterations); + Bound[K].Upper[Dependence::DVEntry::ALL] = + SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart), + Bound[K].Iterations); + } + else { + // If the difference is 0, we won't need to know the number of iterations. + if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart)) + Bound[K].Lower[Dependence::DVEntry::ALL] = + SE->getZero(A[K].Coeff->getType()); + if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart)) + Bound[K].Upper[Dependence::DVEntry::ALL] = + SE->getZero(A[K].Coeff->getType()); + } +} + + +// Computes the upper and lower bounds for level K +// using the = direction. Records them in Bound. +// Wolfe gives the equations +// +// LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k +// UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k +// +// Since we normalize loops, we can simplify these equations to +// +// LB^=_k = (A_k - B_k)^- U_k +// UB^=_k = (A_k - B_k)^+ U_k +// +// We must be careful to handle the case where the upper bound is unknown. +// Note that the lower bound is always <= 0 +// and the upper bound is always >= 0. +void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B, + BoundInfo *Bound, unsigned K) const { + Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity. + Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity. + if (Bound[K].Iterations) { + const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff); + const SCEV *NegativePart = getNegativePart(Delta); + Bound[K].Lower[Dependence::DVEntry::EQ] = + SE->getMulExpr(NegativePart, Bound[K].Iterations); + const SCEV *PositivePart = getPositivePart(Delta); + Bound[K].Upper[Dependence::DVEntry::EQ] = + SE->getMulExpr(PositivePart, Bound[K].Iterations); + } + else { + // If the positive/negative part of the difference is 0, + // we won't need to know the number of iterations. + const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff); + const SCEV *NegativePart = getNegativePart(Delta); + if (NegativePart->isZero()) + Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero + const SCEV *PositivePart = getPositivePart(Delta); + if (PositivePart->isZero()) + Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero + } +} + + +// Computes the upper and lower bounds for level K +// using the < direction. Records them in Bound. +// Wolfe gives the equations +// +// LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k +// UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k +// +// Since we normalize loops, we can simplify these equations to +// +// LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k +// UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k +// +// We must be careful to handle the case where the upper bound is unknown. +void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B, + BoundInfo *Bound, unsigned K) const { + Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity. + Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity. + if (Bound[K].Iterations) { + const SCEV *Iter_1 = SE->getMinusSCEV( + Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType())); + const SCEV *NegPart = + getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff)); + Bound[K].Lower[Dependence::DVEntry::LT] = + SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff); + const SCEV *PosPart = + getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff)); + Bound[K].Upper[Dependence::DVEntry::LT] = + SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff); + } + else { + // If the positive/negative part of the difference is 0, + // we won't need to know the number of iterations. + const SCEV *NegPart = + getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff)); + if (NegPart->isZero()) + Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff); + const SCEV *PosPart = + getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff)); + if (PosPart->isZero()) + Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff); + } +} + + +// Computes the upper and lower bounds for level K +// using the > direction. Records them in Bound. +// Wolfe gives the equations +// +// LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k +// UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k +// +// Since we normalize loops, we can simplify these equations to +// +// LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k +// UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k +// +// We must be careful to handle the case where the upper bound is unknown. +void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B, + BoundInfo *Bound, unsigned K) const { + Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity. + Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity. + if (Bound[K].Iterations) { + const SCEV *Iter_1 = SE->getMinusSCEV( + Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType())); + const SCEV *NegPart = + getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart)); + Bound[K].Lower[Dependence::DVEntry::GT] = + SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff); + const SCEV *PosPart = + getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart)); + Bound[K].Upper[Dependence::DVEntry::GT] = + SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff); + } + else { + // If the positive/negative part of the difference is 0, + // we won't need to know the number of iterations. + const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart)); + if (NegPart->isZero()) + Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff; + const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart)); + if (PosPart->isZero()) + Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff; + } +} + + +// X^+ = max(X, 0) +const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const { + return SE->getSMaxExpr(X, SE->getZero(X->getType())); +} + + +// X^- = min(X, 0) +const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const { + return SE->getSMinExpr(X, SE->getZero(X->getType())); +} + + +// Walks through the subscript, +// collecting each coefficient, the associated loop bounds, +// and recording its positive and negative parts for later use. +DependenceInfo::CoefficientInfo * +DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag, + const SCEV *&Constant) const { + const SCEV *Zero = SE->getZero(Subscript->getType()); + CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1]; + for (unsigned K = 1; K <= MaxLevels; ++K) { + CI[K].Coeff = Zero; + CI[K].PosPart = Zero; + CI[K].NegPart = Zero; + CI[K].Iterations = nullptr; + } + while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) { + const Loop *L = AddRec->getLoop(); + unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L); + CI[K].Coeff = AddRec->getStepRecurrence(*SE); + CI[K].PosPart = getPositivePart(CI[K].Coeff); + CI[K].NegPart = getNegativePart(CI[K].Coeff); + CI[K].Iterations = collectUpperBound(L, Subscript->getType()); + Subscript = AddRec->getStart(); + } + Constant = Subscript; +#ifndef NDEBUG + LLVM_DEBUG(dbgs() << "\tCoefficient Info\n"); + for (unsigned K = 1; K <= MaxLevels; ++K) { + LLVM_DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff); + LLVM_DEBUG(dbgs() << "\tPos Part = "); + LLVM_DEBUG(dbgs() << *CI[K].PosPart); + LLVM_DEBUG(dbgs() << "\tNeg Part = "); + LLVM_DEBUG(dbgs() << *CI[K].NegPart); + LLVM_DEBUG(dbgs() << "\tUpper Bound = "); + if (CI[K].Iterations) + LLVM_DEBUG(dbgs() << *CI[K].Iterations); + else + LLVM_DEBUG(dbgs() << "+inf"); + LLVM_DEBUG(dbgs() << '\n'); + } + LLVM_DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n'); +#endif + return CI; +} + + +// Looks through all the bounds info and +// computes the lower bound given the current direction settings +// at each level. If the lower bound for any level is -inf, +// the result is -inf. +const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const { + const SCEV *Sum = Bound[1].Lower[Bound[1].Direction]; + for (unsigned K = 2; Sum && K <= MaxLevels; ++K) { + if (Bound[K].Lower[Bound[K].Direction]) + Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]); + else + Sum = nullptr; + } + return Sum; +} + + +// Looks through all the bounds info and +// computes the upper bound given the current direction settings +// at each level. If the upper bound at any level is +inf, +// the result is +inf. +const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const { + const SCEV *Sum = Bound[1].Upper[Bound[1].Direction]; + for (unsigned K = 2; Sum && K <= MaxLevels; ++K) { + if (Bound[K].Upper[Bound[K].Direction]) + Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]); + else + Sum = nullptr; + } + return Sum; +} + + +//===----------------------------------------------------------------------===// +// Constraint manipulation for Delta test. + +// Given a linear SCEV, +// return the coefficient (the step) +// corresponding to the specified loop. +// If there isn't one, return 0. +// For example, given a*i + b*j + c*k, finding the coefficient +// corresponding to the j loop would yield b. +const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr, + const Loop *TargetLoop) const { + const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); + if (!AddRec) + return SE->getZero(Expr->getType()); + if (AddRec->getLoop() == TargetLoop) + return AddRec->getStepRecurrence(*SE); + return findCoefficient(AddRec->getStart(), TargetLoop); +} + + +// Given a linear SCEV, +// return the SCEV given by zeroing out the coefficient +// corresponding to the specified loop. +// For example, given a*i + b*j + c*k, zeroing the coefficient +// corresponding to the j loop would yield a*i + c*k. +const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr, + const Loop *TargetLoop) const { + const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); + if (!AddRec) + return Expr; // ignore + if (AddRec->getLoop() == TargetLoop) + return AddRec->getStart(); + return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop), + AddRec->getStepRecurrence(*SE), + AddRec->getLoop(), + AddRec->getNoWrapFlags()); +} + + +// Given a linear SCEV Expr, +// return the SCEV given by adding some Value to the +// coefficient corresponding to the specified TargetLoop. +// For example, given a*i + b*j + c*k, adding 1 to the coefficient +// corresponding to the j loop would yield a*i + (b+1)*j + c*k. +const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr, + const Loop *TargetLoop, + const SCEV *Value) const { + const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); + if (!AddRec) // create a new addRec + return SE->getAddRecExpr(Expr, + Value, + TargetLoop, + SCEV::FlagAnyWrap); // Worst case, with no info. + if (AddRec->getLoop() == TargetLoop) { + const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value); + if (Sum->isZero()) + return AddRec->getStart(); + return SE->getAddRecExpr(AddRec->getStart(), + Sum, + AddRec->getLoop(), + AddRec->getNoWrapFlags()); + } + if (SE->isLoopInvariant(AddRec, TargetLoop)) + return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap); + return SE->getAddRecExpr( + addToCoefficient(AddRec->getStart(), TargetLoop, Value), + AddRec->getStepRecurrence(*SE), AddRec->getLoop(), + AddRec->getNoWrapFlags()); +} + + +// Review the constraints, looking for opportunities +// to simplify a subscript pair (Src and Dst). +// Return true if some simplification occurs. +// If the simplification isn't exact (that is, if it is conservative +// in terms of dependence), set consistent to false. +// Corresponds to Figure 5 from the paper +// +// Practical Dependence Testing +// Goff, Kennedy, Tseng +// PLDI 1991 +bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst, + SmallBitVector &Loops, + SmallVectorImpl<Constraint> &Constraints, + bool &Consistent) { + bool Result = false; + for (unsigned LI : Loops.set_bits()) { + LLVM_DEBUG(dbgs() << "\t Constraint[" << LI << "] is"); + LLVM_DEBUG(Constraints[LI].dump(dbgs())); + if (Constraints[LI].isDistance()) + Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent); + else if (Constraints[LI].isLine()) + Result |= propagateLine(Src, Dst, Constraints[LI], Consistent); + else if (Constraints[LI].isPoint()) + Result |= propagatePoint(Src, Dst, Constraints[LI]); + } + return Result; +} + + +// Attempt to propagate a distance +// constraint into a subscript pair (Src and Dst). +// Return true if some simplification occurs. +// If the simplification isn't exact (that is, if it is conservative +// in terms of dependence), set consistent to false. +bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst, + Constraint &CurConstraint, + bool &Consistent) { + const Loop *CurLoop = CurConstraint.getAssociatedLoop(); + LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n"); + const SCEV *A_K = findCoefficient(Src, CurLoop); + if (A_K->isZero()) + return false; + const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD()); + Src = SE->getMinusSCEV(Src, DA_K); + Src = zeroCoefficient(Src, CurLoop); + LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n"); + LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n"); + Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K)); + LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n"); + if (!findCoefficient(Dst, CurLoop)->isZero()) + Consistent = false; + return true; +} + + +// Attempt to propagate a line +// constraint into a subscript pair (Src and Dst). +// Return true if some simplification occurs. +// If the simplification isn't exact (that is, if it is conservative +// in terms of dependence), set consistent to false. +bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst, + Constraint &CurConstraint, + bool &Consistent) { + const Loop *CurLoop = CurConstraint.getAssociatedLoop(); + const SCEV *A = CurConstraint.getA(); + const SCEV *B = CurConstraint.getB(); + const SCEV *C = CurConstraint.getC(); + LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C + << "\n"); + LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n"); + LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n"); + if (A->isZero()) { + const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B); + const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C); + if (!Bconst || !Cconst) return false; + APInt Beta = Bconst->getAPInt(); + APInt Charlie = Cconst->getAPInt(); + APInt CdivB = Charlie.sdiv(Beta); + assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B"); + const SCEV *AP_K = findCoefficient(Dst, CurLoop); + // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB))); + Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB))); + Dst = zeroCoefficient(Dst, CurLoop); + if (!findCoefficient(Src, CurLoop)->isZero()) + Consistent = false; + } + else if (B->isZero()) { + const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A); + const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C); + if (!Aconst || !Cconst) return false; + APInt Alpha = Aconst->getAPInt(); + APInt Charlie = Cconst->getAPInt(); + APInt CdivA = Charlie.sdiv(Alpha); + assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A"); + const SCEV *A_K = findCoefficient(Src, CurLoop); + Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA))); + Src = zeroCoefficient(Src, CurLoop); + if (!findCoefficient(Dst, CurLoop)->isZero()) + Consistent = false; + } + else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) { + const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A); + const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C); + if (!Aconst || !Cconst) return false; + APInt Alpha = Aconst->getAPInt(); + APInt Charlie = Cconst->getAPInt(); + APInt CdivA = Charlie.sdiv(Alpha); + assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A"); + const SCEV *A_K = findCoefficient(Src, CurLoop); + Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA))); + Src = zeroCoefficient(Src, CurLoop); + Dst = addToCoefficient(Dst, CurLoop, A_K); + if (!findCoefficient(Dst, CurLoop)->isZero()) + Consistent = false; + } + else { + // paper is incorrect here, or perhaps just misleading + const SCEV *A_K = findCoefficient(Src, CurLoop); + Src = SE->getMulExpr(Src, A); + Dst = SE->getMulExpr(Dst, A); + Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C)); + Src = zeroCoefficient(Src, CurLoop); + Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B)); + if (!findCoefficient(Dst, CurLoop)->isZero()) + Consistent = false; + } + LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n"); + LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n"); + return true; +} + + +// Attempt to propagate a point +// constraint into a subscript pair (Src and Dst). +// Return true if some simplification occurs. +bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst, + Constraint &CurConstraint) { + const Loop *CurLoop = CurConstraint.getAssociatedLoop(); + const SCEV *A_K = findCoefficient(Src, CurLoop); + const SCEV *AP_K = findCoefficient(Dst, CurLoop); + const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX()); + const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY()); + LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n"); + Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K)); + Src = zeroCoefficient(Src, CurLoop); + LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n"); + LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n"); + Dst = zeroCoefficient(Dst, CurLoop); + LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n"); + return true; +} + + +// Update direction vector entry based on the current constraint. +void DependenceInfo::updateDirection(Dependence::DVEntry &Level, + const Constraint &CurConstraint) const { + LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint ="); + LLVM_DEBUG(CurConstraint.dump(dbgs())); + if (CurConstraint.isAny()) + ; // use defaults + else if (CurConstraint.isDistance()) { + // this one is consistent, the others aren't + Level.Scalar = false; + Level.Distance = CurConstraint.getD(); + unsigned NewDirection = Dependence::DVEntry::NONE; + if (!SE->isKnownNonZero(Level.Distance)) // if may be zero + NewDirection = Dependence::DVEntry::EQ; + if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive + NewDirection |= Dependence::DVEntry::LT; + if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative + NewDirection |= Dependence::DVEntry::GT; + Level.Direction &= NewDirection; + } + else if (CurConstraint.isLine()) { + Level.Scalar = false; + Level.Distance = nullptr; + // direction should be accurate + } + else if (CurConstraint.isPoint()) { + Level.Scalar = false; + Level.Distance = nullptr; + unsigned NewDirection = Dependence::DVEntry::NONE; + if (!isKnownPredicate(CmpInst::ICMP_NE, + CurConstraint.getY(), + CurConstraint.getX())) + // if X may be = Y + NewDirection |= Dependence::DVEntry::EQ; + if (!isKnownPredicate(CmpInst::ICMP_SLE, + CurConstraint.getY(), + CurConstraint.getX())) + // if Y may be > X + NewDirection |= Dependence::DVEntry::LT; + if (!isKnownPredicate(CmpInst::ICMP_SGE, + CurConstraint.getY(), + CurConstraint.getX())) + // if Y may be < X + NewDirection |= Dependence::DVEntry::GT; + Level.Direction &= NewDirection; + } + else + llvm_unreachable("constraint has unexpected kind"); +} + +/// Check if we can delinearize the subscripts. If the SCEVs representing the +/// source and destination array references are recurrences on a nested loop, +/// this function flattens the nested recurrences into separate recurrences +/// for each loop level. +bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst, + SmallVectorImpl<Subscript> &Pair) { + assert(isLoadOrStore(Src) && "instruction is not load or store"); + assert(isLoadOrStore(Dst) && "instruction is not load or store"); + Value *SrcPtr = getLoadStorePointerOperand(Src); + Value *DstPtr = getLoadStorePointerOperand(Dst); + Loop *SrcLoop = LI->getLoopFor(Src->getParent()); + Loop *DstLoop = LI->getLoopFor(Dst->getParent()); + const SCEV *SrcAccessFn = SE->getSCEVAtScope(SrcPtr, SrcLoop); + const SCEV *DstAccessFn = SE->getSCEVAtScope(DstPtr, DstLoop); + const SCEVUnknown *SrcBase = + dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn)); + const SCEVUnknown *DstBase = + dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn)); + + if (!SrcBase || !DstBase || SrcBase != DstBase) + return false; + + SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts; + + if (!tryDelinearizeFixedSize(Src, Dst, SrcAccessFn, DstAccessFn, + SrcSubscripts, DstSubscripts) && + !tryDelinearizeParametricSize(Src, Dst, SrcAccessFn, DstAccessFn, + SrcSubscripts, DstSubscripts)) + return false; + + int Size = SrcSubscripts.size(); + LLVM_DEBUG({ + dbgs() << "\nSrcSubscripts: "; + for (int I = 0; I < Size; I++) + dbgs() << *SrcSubscripts[I]; + dbgs() << "\nDstSubscripts: "; + for (int I = 0; I < Size; I++) + dbgs() << *DstSubscripts[I]; + }); + + // The delinearization transforms a single-subscript MIV dependence test into + // a multi-subscript SIV dependence test that is easier to compute. So we + // resize Pair to contain as many pairs of subscripts as the delinearization + // has found, and then initialize the pairs following the delinearization. + Pair.resize(Size); + for (int I = 0; I < Size; ++I) { + Pair[I].Src = SrcSubscripts[I]; + Pair[I].Dst = DstSubscripts[I]; + unifySubscriptType(&Pair[I]); + } + + return true; +} + +bool DependenceInfo::tryDelinearizeFixedSize( + Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn, + const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts, + SmallVectorImpl<const SCEV *> &DstSubscripts) { + + Value *SrcPtr = getLoadStorePointerOperand(Src); + Value *DstPtr = getLoadStorePointerOperand(Dst); + const SCEVUnknown *SrcBase = + dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn)); + const SCEVUnknown *DstBase = + dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn)); + assert(SrcBase && DstBase && SrcBase == DstBase && + "expected src and dst scev unknowns to be equal"); + + // Check the simple case where the array dimensions are fixed size. + auto *SrcGEP = dyn_cast<GetElementPtrInst>(SrcPtr); + auto *DstGEP = dyn_cast<GetElementPtrInst>(DstPtr); + if (!SrcGEP || !DstGEP) + return false; + + SmallVector<int, 4> SrcSizes, DstSizes; + getIndexExpressionsFromGEP(*SE, SrcGEP, SrcSubscripts, SrcSizes); + getIndexExpressionsFromGEP(*SE, DstGEP, DstSubscripts, DstSizes); + + // Check that the two size arrays are non-empty and equal in length and + // value. + if (SrcSizes.empty() || SrcSubscripts.size() <= 1 || + SrcSizes.size() != DstSizes.size() || + !std::equal(SrcSizes.begin(), SrcSizes.end(), DstSizes.begin())) { + SrcSubscripts.clear(); + DstSubscripts.clear(); + return false; + } + + Value *SrcBasePtr = SrcGEP->getOperand(0); + Value *DstBasePtr = DstGEP->getOperand(0); + while (auto *PCast = dyn_cast<BitCastInst>(SrcBasePtr)) + SrcBasePtr = PCast->getOperand(0); + while (auto *PCast = dyn_cast<BitCastInst>(DstBasePtr)) + DstBasePtr = PCast->getOperand(0); + + // Check that for identical base pointers we do not miss index offsets + // that have been added before this GEP is applied. + if (SrcBasePtr != SrcBase->getValue() || DstBasePtr != DstBase->getValue()) { + SrcSubscripts.clear(); + DstSubscripts.clear(); + return false; + } + + assert(SrcSubscripts.size() == DstSubscripts.size() && + SrcSubscripts.size() == SrcSizes.size() + 1 && + "Expected equal number of entries in the list of sizes and " + "subscripts."); + + // In general we cannot safely assume that the subscripts recovered from GEPs + // are in the range of values defined for their corresponding array + // dimensions. For example some C language usage/interpretation make it + // impossible to verify this at compile-time. As such we can only delinearize + // iff the subscripts are positive and are less than the range of the + // dimension. + if (!DisableDelinearizationChecks) { + auto AllIndiciesInRange = [&](SmallVector<int, 4> &DimensionSizes, + SmallVectorImpl<const SCEV *> &Subscripts, + Value *Ptr) { + size_t SSize = Subscripts.size(); + for (size_t I = 1; I < SSize; ++I) { + const SCEV *S = Subscripts[I]; + if (!isKnownNonNegative(S, Ptr)) + return false; + if (auto *SType = dyn_cast<IntegerType>(S->getType())) { + const SCEV *Range = SE->getConstant( + ConstantInt::get(SType, DimensionSizes[I - 1], false)); + if (!isKnownLessThan(S, Range)) + return false; + } + } + return true; + }; + + if (!AllIndiciesInRange(SrcSizes, SrcSubscripts, SrcPtr) || + !AllIndiciesInRange(DstSizes, DstSubscripts, DstPtr)) { + SrcSubscripts.clear(); + DstSubscripts.clear(); + return false; + } + } + LLVM_DEBUG({ + dbgs() << "Delinearized subscripts of fixed-size array\n" + << "SrcGEP:" << *SrcGEP << "\n" + << "DstGEP:" << *DstGEP << "\n"; + }); + return true; +} + +bool DependenceInfo::tryDelinearizeParametricSize( + Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn, + const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts, + SmallVectorImpl<const SCEV *> &DstSubscripts) { + + Value *SrcPtr = getLoadStorePointerOperand(Src); + Value *DstPtr = getLoadStorePointerOperand(Dst); + const SCEVUnknown *SrcBase = + dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn)); + const SCEVUnknown *DstBase = + dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn)); + assert(SrcBase && DstBase && SrcBase == DstBase && + "expected src and dst scev unknowns to be equal"); + + const SCEV *ElementSize = SE->getElementSize(Src); + if (ElementSize != SE->getElementSize(Dst)) + return false; + + const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase); + const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase); + + const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV); + const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV); + if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine()) + return false; + + // First step: collect parametric terms in both array references. + SmallVector<const SCEV *, 4> Terms; + collectParametricTerms(*SE, SrcAR, Terms); + collectParametricTerms(*SE, DstAR, Terms); + + // Second step: find subscript sizes. + SmallVector<const SCEV *, 4> Sizes; + findArrayDimensions(*SE, Terms, Sizes, ElementSize); + + // Third step: compute the access functions for each subscript. + computeAccessFunctions(*SE, SrcAR, SrcSubscripts, Sizes); + computeAccessFunctions(*SE, DstAR, DstSubscripts, Sizes); + + // Fail when there is only a subscript: that's a linearized access function. + if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 || + SrcSubscripts.size() != DstSubscripts.size()) + return false; + + size_t Size = SrcSubscripts.size(); + + // Statically check that the array bounds are in-range. The first subscript we + // don't have a size for and it cannot overflow into another subscript, so is + // always safe. The others need to be 0 <= subscript[i] < bound, for both src + // and dst. + // FIXME: It may be better to record these sizes and add them as constraints + // to the dependency checks. + if (!DisableDelinearizationChecks) + for (size_t I = 1; I < Size; ++I) { + if (!isKnownNonNegative(SrcSubscripts[I], SrcPtr)) + return false; + + if (!isKnownLessThan(SrcSubscripts[I], Sizes[I - 1])) + return false; + + if (!isKnownNonNegative(DstSubscripts[I], DstPtr)) + return false; + + if (!isKnownLessThan(DstSubscripts[I], Sizes[I - 1])) + return false; + } + + return true; +} + +//===----------------------------------------------------------------------===// + +#ifndef NDEBUG +// For debugging purposes, dump a small bit vector to dbgs(). +static void dumpSmallBitVector(SmallBitVector &BV) { + dbgs() << "{"; + for (unsigned VI : BV.set_bits()) { + dbgs() << VI; + if (BV.find_next(VI) >= 0) + dbgs() << ' '; + } + dbgs() << "}\n"; +} +#endif + +bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA, + FunctionAnalysisManager::Invalidator &Inv) { + // Check if the analysis itself has been invalidated. + auto PAC = PA.getChecker<DependenceAnalysis>(); + if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) + return true; + + // Check transitive dependencies. + return Inv.invalidate<AAManager>(F, PA) || + Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) || + Inv.invalidate<LoopAnalysis>(F, PA); +} + +// depends - +// Returns NULL if there is no dependence. +// Otherwise, return a Dependence with as many details as possible. +// Corresponds to Section 3.1 in the paper +// +// Practical Dependence Testing +// Goff, Kennedy, Tseng +// PLDI 1991 +// +// Care is required to keep the routine below, getSplitIteration(), +// up to date with respect to this routine. +std::unique_ptr<Dependence> +DependenceInfo::depends(Instruction *Src, Instruction *Dst, + bool PossiblyLoopIndependent) { + if (Src == Dst) + PossiblyLoopIndependent = false; + + if (!(Src->mayReadOrWriteMemory() && Dst->mayReadOrWriteMemory())) + // if both instructions don't reference memory, there's no dependence + return nullptr; + + if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) { + // can only analyze simple loads and stores, i.e., no calls, invokes, etc. + LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n"); + return std::make_unique<Dependence>(Src, Dst); + } + + assert(isLoadOrStore(Src) && "instruction is not load or store"); + assert(isLoadOrStore(Dst) && "instruction is not load or store"); + Value *SrcPtr = getLoadStorePointerOperand(Src); + Value *DstPtr = getLoadStorePointerOperand(Dst); + + switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), + MemoryLocation::get(Dst), + MemoryLocation::get(Src))) { + case AliasResult::MayAlias: + case AliasResult::PartialAlias: + // cannot analyse objects if we don't understand their aliasing. + LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n"); + return std::make_unique<Dependence>(Src, Dst); + case AliasResult::NoAlias: + // If the objects noalias, they are distinct, accesses are independent. + LLVM_DEBUG(dbgs() << "no alias\n"); + return nullptr; + case AliasResult::MustAlias: + break; // The underlying objects alias; test accesses for dependence. + } + + // establish loop nesting levels + establishNestingLevels(Src, Dst); + LLVM_DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n"); + LLVM_DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n"); + + FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels); + ++TotalArrayPairs; + + unsigned Pairs = 1; + SmallVector<Subscript, 2> Pair(Pairs); + const SCEV *SrcSCEV = SE->getSCEV(SrcPtr); + const SCEV *DstSCEV = SE->getSCEV(DstPtr); + LLVM_DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n"); + LLVM_DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n"); + if (SE->getPointerBase(SrcSCEV) != SE->getPointerBase(DstSCEV)) { + // If two pointers have different bases, trying to analyze indexes won't + // work; we can't compare them to each other. This can happen, for example, + // if one is produced by an LCSSA PHI node. + // + // We check this upfront so we don't crash in cases where getMinusSCEV() + // returns a SCEVCouldNotCompute. + LLVM_DEBUG(dbgs() << "can't analyze SCEV with different pointer base\n"); + return std::make_unique<Dependence>(Src, Dst); + } + Pair[0].Src = SrcSCEV; + Pair[0].Dst = DstSCEV; + + if (Delinearize) { + if (tryDelinearize(Src, Dst, Pair)) { + LLVM_DEBUG(dbgs() << " delinearized\n"); + Pairs = Pair.size(); + } + } + + for (unsigned P = 0; P < Pairs; ++P) { + Pair[P].Loops.resize(MaxLevels + 1); + Pair[P].GroupLoops.resize(MaxLevels + 1); + Pair[P].Group.resize(Pairs); + removeMatchingExtensions(&Pair[P]); + Pair[P].Classification = + classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()), + Pair[P].Dst, LI->getLoopFor(Dst->getParent()), + Pair[P].Loops); + Pair[P].GroupLoops = Pair[P].Loops; + Pair[P].Group.set(P); + LLVM_DEBUG(dbgs() << " subscript " << P << "\n"); + LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n"); + LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n"); + LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n"); + LLVM_DEBUG(dbgs() << "\tloops = "); + LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops)); + } + + SmallBitVector Separable(Pairs); + SmallBitVector Coupled(Pairs); + + // Partition subscripts into separable and minimally-coupled groups + // Algorithm in paper is algorithmically better; + // this may be faster in practice. Check someday. + // + // Here's an example of how it works. Consider this code: + // + // for (i = ...) { + // for (j = ...) { + // for (k = ...) { + // for (l = ...) { + // for (m = ...) { + // A[i][j][k][m] = ...; + // ... = A[0][j][l][i + j]; + // } + // } + // } + // } + // } + // + // There are 4 subscripts here: + // 0 [i] and [0] + // 1 [j] and [j] + // 2 [k] and [l] + // 3 [m] and [i + j] + // + // We've already classified each subscript pair as ZIV, SIV, etc., + // and collected all the loops mentioned by pair P in Pair[P].Loops. + // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops + // and set Pair[P].Group = {P}. + // + // Src Dst Classification Loops GroupLoops Group + // 0 [i] [0] SIV {1} {1} {0} + // 1 [j] [j] SIV {2} {2} {1} + // 2 [k] [l] RDIV {3,4} {3,4} {2} + // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3} + // + // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ. + // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc. + // + // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty. + // Next, 0 and 2. Again, the intersection of their GroupLoops is empty. + // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty, + // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added + // to either Separable or Coupled). + // + // Next, we consider 1 and 2. The intersection of the GroupLoops is empty. + // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty, + // so Pair[3].Group = {0, 1, 3} and Done = false. + // + // Next, we compare 2 against 3. The intersection of the GroupLoops is empty. + // Since Done remains true, we add 2 to the set of Separable pairs. + // + // Finally, we consider 3. There's nothing to compare it with, + // so Done remains true and we add it to the Coupled set. + // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}. + // + // In the end, we've got 1 separable subscript and 1 coupled group. + for (unsigned SI = 0; SI < Pairs; ++SI) { + if (Pair[SI].Classification == Subscript::NonLinear) { + // ignore these, but collect loops for later + ++NonlinearSubscriptPairs; + collectCommonLoops(Pair[SI].Src, + LI->getLoopFor(Src->getParent()), + Pair[SI].Loops); + collectCommonLoops(Pair[SI].Dst, + LI->getLoopFor(Dst->getParent()), + Pair[SI].Loops); + Result.Consistent = false; + } else if (Pair[SI].Classification == Subscript::ZIV) { + // always separable + Separable.set(SI); + } + else { + // SIV, RDIV, or MIV, so check for coupled group + bool Done = true; + for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) { + SmallBitVector Intersection = Pair[SI].GroupLoops; + Intersection &= Pair[SJ].GroupLoops; + if (Intersection.any()) { + // accumulate set of all the loops in group + Pair[SJ].GroupLoops |= Pair[SI].GroupLoops; + // accumulate set of all subscripts in group + Pair[SJ].Group |= Pair[SI].Group; + Done = false; + } + } + if (Done) { + if (Pair[SI].Group.count() == 1) { + Separable.set(SI); + ++SeparableSubscriptPairs; + } + else { + Coupled.set(SI); + ++CoupledSubscriptPairs; + } + } + } + } + + LLVM_DEBUG(dbgs() << " Separable = "); + LLVM_DEBUG(dumpSmallBitVector(Separable)); + LLVM_DEBUG(dbgs() << " Coupled = "); + LLVM_DEBUG(dumpSmallBitVector(Coupled)); + + Constraint NewConstraint; + NewConstraint.setAny(SE); + + // test separable subscripts + for (unsigned SI : Separable.set_bits()) { + LLVM_DEBUG(dbgs() << "testing subscript " << SI); + switch (Pair[SI].Classification) { + case Subscript::ZIV: + LLVM_DEBUG(dbgs() << ", ZIV\n"); + if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result)) + return nullptr; + break; + case Subscript::SIV: { + LLVM_DEBUG(dbgs() << ", SIV\n"); + unsigned Level; + const SCEV *SplitIter = nullptr; + if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint, + SplitIter)) + return nullptr; + break; + } + case Subscript::RDIV: + LLVM_DEBUG(dbgs() << ", RDIV\n"); + if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result)) + return nullptr; + break; + case Subscript::MIV: + LLVM_DEBUG(dbgs() << ", MIV\n"); + if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result)) + return nullptr; + break; + default: + llvm_unreachable("subscript has unexpected classification"); + } + } + + if (Coupled.count()) { + // test coupled subscript groups + LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n"); + LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n"); + SmallVector<Constraint, 4> Constraints(MaxLevels + 1); + for (unsigned II = 0; II <= MaxLevels; ++II) + Constraints[II].setAny(SE); + for (unsigned SI : Coupled.set_bits()) { + LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { "); + SmallBitVector Group(Pair[SI].Group); + SmallBitVector Sivs(Pairs); + SmallBitVector Mivs(Pairs); + SmallBitVector ConstrainedLevels(MaxLevels + 1); + SmallVector<Subscript *, 4> PairsInGroup; + for (unsigned SJ : Group.set_bits()) { + LLVM_DEBUG(dbgs() << SJ << " "); + if (Pair[SJ].Classification == Subscript::SIV) + Sivs.set(SJ); + else + Mivs.set(SJ); + PairsInGroup.push_back(&Pair[SJ]); + } + unifySubscriptType(PairsInGroup); + LLVM_DEBUG(dbgs() << "}\n"); + while (Sivs.any()) { + bool Changed = false; + for (unsigned SJ : Sivs.set_bits()) { + LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n"); + // SJ is an SIV subscript that's part of the current coupled group + unsigned Level; + const SCEV *SplitIter = nullptr; + LLVM_DEBUG(dbgs() << "SIV\n"); + if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint, + SplitIter)) + return nullptr; + ConstrainedLevels.set(Level); + if (intersectConstraints(&Constraints[Level], &NewConstraint)) { + if (Constraints[Level].isEmpty()) { + ++DeltaIndependence; + return nullptr; + } + Changed = true; + } + Sivs.reset(SJ); + } + if (Changed) { + // propagate, possibly creating new SIVs and ZIVs + LLVM_DEBUG(dbgs() << " propagating\n"); + LLVM_DEBUG(dbgs() << "\tMivs = "); + LLVM_DEBUG(dumpSmallBitVector(Mivs)); + for (unsigned SJ : Mivs.set_bits()) { + // SJ is an MIV subscript that's part of the current coupled group + LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n"); + if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, + Constraints, Result.Consistent)) { + LLVM_DEBUG(dbgs() << "\t Changed\n"); + ++DeltaPropagations; + Pair[SJ].Classification = + classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()), + Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()), + Pair[SJ].Loops); + switch (Pair[SJ].Classification) { + case Subscript::ZIV: + LLVM_DEBUG(dbgs() << "ZIV\n"); + if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result)) + return nullptr; + Mivs.reset(SJ); + break; + case Subscript::SIV: + Sivs.set(SJ); + Mivs.reset(SJ); + break; + case Subscript::RDIV: + case Subscript::MIV: + break; + default: + llvm_unreachable("bad subscript classification"); + } + } + } + } + } + + // test & propagate remaining RDIVs + for (unsigned SJ : Mivs.set_bits()) { + if (Pair[SJ].Classification == Subscript::RDIV) { + LLVM_DEBUG(dbgs() << "RDIV test\n"); + if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result)) + return nullptr; + // I don't yet understand how to propagate RDIV results + Mivs.reset(SJ); + } + } + + // test remaining MIVs + // This code is temporary. + // Better to somehow test all remaining subscripts simultaneously. + for (unsigned SJ : Mivs.set_bits()) { + if (Pair[SJ].Classification == Subscript::MIV) { + LLVM_DEBUG(dbgs() << "MIV test\n"); + if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result)) + return nullptr; + } + else + llvm_unreachable("expected only MIV subscripts at this point"); + } + + // update Result.DV from constraint vector + LLVM_DEBUG(dbgs() << " updating\n"); + for (unsigned SJ : ConstrainedLevels.set_bits()) { + if (SJ > CommonLevels) + break; + updateDirection(Result.DV[SJ - 1], Constraints[SJ]); + if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE) + return nullptr; + } + } + } + + // Make sure the Scalar flags are set correctly. + SmallBitVector CompleteLoops(MaxLevels + 1); + for (unsigned SI = 0; SI < Pairs; ++SI) + CompleteLoops |= Pair[SI].Loops; + for (unsigned II = 1; II <= CommonLevels; ++II) + if (CompleteLoops[II]) + Result.DV[II - 1].Scalar = false; + + if (PossiblyLoopIndependent) { + // Make sure the LoopIndependent flag is set correctly. + // All directions must include equal, otherwise no + // loop-independent dependence is possible. + for (unsigned II = 1; II <= CommonLevels; ++II) { + if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) { + Result.LoopIndependent = false; + break; + } + } + } + else { + // On the other hand, if all directions are equal and there's no + // loop-independent dependence possible, then no dependence exists. + bool AllEqual = true; + for (unsigned II = 1; II <= CommonLevels; ++II) { + if (Result.getDirection(II) != Dependence::DVEntry::EQ) { + AllEqual = false; + break; + } + } + if (AllEqual) + return nullptr; + } + + return std::make_unique<FullDependence>(std::move(Result)); +} + +//===----------------------------------------------------------------------===// +// getSplitIteration - +// Rather than spend rarely-used space recording the splitting iteration +// during the Weak-Crossing SIV test, we re-compute it on demand. +// The re-computation is basically a repeat of the entire dependence test, +// though simplified since we know that the dependence exists. +// It's tedious, since we must go through all propagations, etc. +// +// Care is required to keep this code up to date with respect to the routine +// above, depends(). +// +// Generally, the dependence analyzer will be used to build +// a dependence graph for a function (basically a map from instructions +// to dependences). Looking for cycles in the graph shows us loops +// that cannot be trivially vectorized/parallelized. +// +// We can try to improve the situation by examining all the dependences +// that make up the cycle, looking for ones we can break. +// Sometimes, peeling the first or last iteration of a loop will break +// dependences, and we've got flags for those possibilities. +// Sometimes, splitting a loop at some other iteration will do the trick, +// and we've got a flag for that case. Rather than waste the space to +// record the exact iteration (since we rarely know), we provide +// a method that calculates the iteration. It's a drag that it must work +// from scratch, but wonderful in that it's possible. +// +// Here's an example: +// +// for (i = 0; i < 10; i++) +// A[i] = ... +// ... = A[11 - i] +// +// There's a loop-carried flow dependence from the store to the load, +// found by the weak-crossing SIV test. The dependence will have a flag, +// indicating that the dependence can be broken by splitting the loop. +// Calling getSplitIteration will return 5. +// Splitting the loop breaks the dependence, like so: +// +// for (i = 0; i <= 5; i++) +// A[i] = ... +// ... = A[11 - i] +// for (i = 6; i < 10; i++) +// A[i] = ... +// ... = A[11 - i] +// +// breaks the dependence and allows us to vectorize/parallelize +// both loops. +const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep, + unsigned SplitLevel) { + assert(Dep.isSplitable(SplitLevel) && + "Dep should be splitable at SplitLevel"); + Instruction *Src = Dep.getSrc(); + Instruction *Dst = Dep.getDst(); + assert(Src->mayReadFromMemory() || Src->mayWriteToMemory()); + assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory()); + assert(isLoadOrStore(Src)); + assert(isLoadOrStore(Dst)); + Value *SrcPtr = getLoadStorePointerOperand(Src); + Value *DstPtr = getLoadStorePointerOperand(Dst); + assert(underlyingObjectsAlias( + AA, F->getParent()->getDataLayout(), MemoryLocation::get(Dst), + MemoryLocation::get(Src)) == AliasResult::MustAlias); + + // establish loop nesting levels + establishNestingLevels(Src, Dst); + + FullDependence Result(Src, Dst, false, CommonLevels); + + unsigned Pairs = 1; + SmallVector<Subscript, 2> Pair(Pairs); + const SCEV *SrcSCEV = SE->getSCEV(SrcPtr); + const SCEV *DstSCEV = SE->getSCEV(DstPtr); + Pair[0].Src = SrcSCEV; + Pair[0].Dst = DstSCEV; + + if (Delinearize) { + if (tryDelinearize(Src, Dst, Pair)) { + LLVM_DEBUG(dbgs() << " delinearized\n"); + Pairs = Pair.size(); + } + } + + for (unsigned P = 0; P < Pairs; ++P) { + Pair[P].Loops.resize(MaxLevels + 1); + Pair[P].GroupLoops.resize(MaxLevels + 1); + Pair[P].Group.resize(Pairs); + removeMatchingExtensions(&Pair[P]); + Pair[P].Classification = + classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()), + Pair[P].Dst, LI->getLoopFor(Dst->getParent()), + Pair[P].Loops); + Pair[P].GroupLoops = Pair[P].Loops; + Pair[P].Group.set(P); + } + + SmallBitVector Separable(Pairs); + SmallBitVector Coupled(Pairs); + + // partition subscripts into separable and minimally-coupled groups + for (unsigned SI = 0; SI < Pairs; ++SI) { + if (Pair[SI].Classification == Subscript::NonLinear) { + // ignore these, but collect loops for later + collectCommonLoops(Pair[SI].Src, + LI->getLoopFor(Src->getParent()), + Pair[SI].Loops); + collectCommonLoops(Pair[SI].Dst, + LI->getLoopFor(Dst->getParent()), + Pair[SI].Loops); + Result.Consistent = false; + } + else if (Pair[SI].Classification == Subscript::ZIV) + Separable.set(SI); + else { + // SIV, RDIV, or MIV, so check for coupled group + bool Done = true; + for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) { + SmallBitVector Intersection = Pair[SI].GroupLoops; + Intersection &= Pair[SJ].GroupLoops; + if (Intersection.any()) { + // accumulate set of all the loops in group + Pair[SJ].GroupLoops |= Pair[SI].GroupLoops; + // accumulate set of all subscripts in group + Pair[SJ].Group |= Pair[SI].Group; + Done = false; + } + } + if (Done) { + if (Pair[SI].Group.count() == 1) + Separable.set(SI); + else + Coupled.set(SI); + } + } + } + + Constraint NewConstraint; + NewConstraint.setAny(SE); + + // test separable subscripts + for (unsigned SI : Separable.set_bits()) { + switch (Pair[SI].Classification) { + case Subscript::SIV: { + unsigned Level; + const SCEV *SplitIter = nullptr; + (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level, + Result, NewConstraint, SplitIter); + if (Level == SplitLevel) { + assert(SplitIter != nullptr); + return SplitIter; + } + break; + } + case Subscript::ZIV: + case Subscript::RDIV: + case Subscript::MIV: + break; + default: + llvm_unreachable("subscript has unexpected classification"); + } + } + + if (Coupled.count()) { + // test coupled subscript groups + SmallVector<Constraint, 4> Constraints(MaxLevels + 1); + for (unsigned II = 0; II <= MaxLevels; ++II) + Constraints[II].setAny(SE); + for (unsigned SI : Coupled.set_bits()) { + SmallBitVector Group(Pair[SI].Group); + SmallBitVector Sivs(Pairs); + SmallBitVector Mivs(Pairs); + SmallBitVector ConstrainedLevels(MaxLevels + 1); + for (unsigned SJ : Group.set_bits()) { + if (Pair[SJ].Classification == Subscript::SIV) + Sivs.set(SJ); + else + Mivs.set(SJ); + } + while (Sivs.any()) { + bool Changed = false; + for (unsigned SJ : Sivs.set_bits()) { + // SJ is an SIV subscript that's part of the current coupled group + unsigned Level; + const SCEV *SplitIter = nullptr; + (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, + Result, NewConstraint, SplitIter); + if (Level == SplitLevel && SplitIter) + return SplitIter; + ConstrainedLevels.set(Level); + if (intersectConstraints(&Constraints[Level], &NewConstraint)) + Changed = true; + Sivs.reset(SJ); + } + if (Changed) { + // propagate, possibly creating new SIVs and ZIVs + for (unsigned SJ : Mivs.set_bits()) { + // SJ is an MIV subscript that's part of the current coupled group + if (propagate(Pair[SJ].Src, Pair[SJ].Dst, + Pair[SJ].Loops, Constraints, Result.Consistent)) { + Pair[SJ].Classification = + classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()), + Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()), + Pair[SJ].Loops); + switch (Pair[SJ].Classification) { + case Subscript::ZIV: + Mivs.reset(SJ); + break; + case Subscript::SIV: + Sivs.set(SJ); + Mivs.reset(SJ); + break; + case Subscript::RDIV: + case Subscript::MIV: + break; + default: + llvm_unreachable("bad subscript classification"); + } + } + } + } + } + } + } + llvm_unreachable("somehow reached end of routine"); + return nullptr; +} |