diff options
author | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
---|---|---|
committer | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
commit | 6ffe9e53658409f212834330e13564e4952558f6 (patch) | |
tree | 85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm14/include/llvm/CodeGen/ScheduleDAG.h | |
parent | 726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff) | |
download | ydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz |
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm14/include/llvm/CodeGen/ScheduleDAG.h')
-rw-r--r-- | contrib/libs/llvm14/include/llvm/CodeGen/ScheduleDAG.h | 798 |
1 files changed, 798 insertions, 0 deletions
diff --git a/contrib/libs/llvm14/include/llvm/CodeGen/ScheduleDAG.h b/contrib/libs/llvm14/include/llvm/CodeGen/ScheduleDAG.h new file mode 100644 index 0000000000..aafa084858 --- /dev/null +++ b/contrib/libs/llvm14/include/llvm/CodeGen/ScheduleDAG.h @@ -0,0 +1,798 @@ +#pragma once + +#ifdef __GNUC__ +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wunused-parameter" +#endif + +//===- llvm/CodeGen/ScheduleDAG.h - Common Base Class -----------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file Implements the ScheduleDAG class, which is used as the common base +/// class for instruction schedulers. This encapsulates the scheduling DAG, +/// which is shared between SelectionDAG and MachineInstr scheduling. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_CODEGEN_SCHEDULEDAG_H +#define LLVM_CODEGEN_SCHEDULEDAG_H + +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/GraphTraits.h" +#include "llvm/ADT/PointerIntPair.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/iterator.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/Support/ErrorHandling.h" +#include <cassert> +#include <cstddef> +#include <iterator> +#include <string> +#include <vector> + +namespace llvm { + +template<class Graph> class GraphWriter; +class LLVMTargetMachine; +class MachineFunction; +class MachineRegisterInfo; +class MCInstrDesc; +struct MCSchedClassDesc; +class SDNode; +class SUnit; +class ScheduleDAG; +class TargetInstrInfo; +class TargetRegisterClass; +class TargetRegisterInfo; + + /// Scheduling dependency. This represents one direction of an edge in the + /// scheduling DAG. + class SDep { + public: + /// These are the different kinds of scheduling dependencies. + enum Kind { + Data, ///< Regular data dependence (aka true-dependence). + Anti, ///< A register anti-dependence (aka WAR). + Output, ///< A register output-dependence (aka WAW). + Order ///< Any other ordering dependency. + }; + + // Strong dependencies must be respected by the scheduler. Artificial + // dependencies may be removed only if they are redundant with another + // strong dependence. + // + // Weak dependencies may be violated by the scheduling strategy, but only if + // the strategy can prove it is correct to do so. + // + // Strong OrderKinds must occur before "Weak". + // Weak OrderKinds must occur after "Weak". + enum OrderKind { + Barrier, ///< An unknown scheduling barrier. + MayAliasMem, ///< Nonvolatile load/Store instructions that may alias. + MustAliasMem, ///< Nonvolatile load/Store instructions that must alias. + Artificial, ///< Arbitrary strong DAG edge (no real dependence). + Weak, ///< Arbitrary weak DAG edge. + Cluster ///< Weak DAG edge linking a chain of clustered instrs. + }; + + private: + /// A pointer to the depending/depended-on SUnit, and an enum + /// indicating the kind of the dependency. + PointerIntPair<SUnit *, 2, Kind> Dep; + + /// A union discriminated by the dependence kind. + union { + /// For Data, Anti, and Output dependencies, the associated register. For + /// Data dependencies that don't currently have a register/ assigned, this + /// is set to zero. + unsigned Reg; + + /// Additional information about Order dependencies. + unsigned OrdKind; // enum OrderKind + } Contents; + + /// The time associated with this edge. Often this is just the value of the + /// Latency field of the predecessor, however advanced models may provide + /// additional information about specific edges. + unsigned Latency; + + public: + /// Constructs a null SDep. This is only for use by container classes which + /// require default constructors. SUnits may not/ have null SDep edges. + SDep() : Dep(nullptr, Data) {} + + /// Constructs an SDep with the specified values. + SDep(SUnit *S, Kind kind, unsigned Reg) + : Dep(S, kind), Contents() { + switch (kind) { + default: + llvm_unreachable("Reg given for non-register dependence!"); + case Anti: + case Output: + assert(Reg != 0 && + "SDep::Anti and SDep::Output must use a non-zero Reg!"); + Contents.Reg = Reg; + Latency = 0; + break; + case Data: + Contents.Reg = Reg; + Latency = 1; + break; + } + } + + SDep(SUnit *S, OrderKind kind) + : Dep(S, Order), Contents(), Latency(0) { + Contents.OrdKind = kind; + } + + /// Returns true if the specified SDep is equivalent except for latency. + bool overlaps(const SDep &Other) const; + + bool operator==(const SDep &Other) const { + return overlaps(Other) && Latency == Other.Latency; + } + + bool operator!=(const SDep &Other) const { + return !operator==(Other); + } + + /// Returns the latency value for this edge, which roughly means the + /// minimum number of cycles that must elapse between the predecessor and + /// the successor, given that they have this edge between them. + unsigned getLatency() const { + return Latency; + } + + /// Sets the latency for this edge. + void setLatency(unsigned Lat) { + Latency = Lat; + } + + //// Returns the SUnit to which this edge points. + SUnit *getSUnit() const; + + //// Assigns the SUnit to which this edge points. + void setSUnit(SUnit *SU); + + /// Returns an enum value representing the kind of the dependence. + Kind getKind() const; + + /// Shorthand for getKind() != SDep::Data. + bool isCtrl() const { + return getKind() != Data; + } + + /// Tests if this is an Order dependence between two memory accesses + /// where both sides of the dependence access memory in non-volatile and + /// fully modeled ways. + bool isNormalMemory() const { + return getKind() == Order && (Contents.OrdKind == MayAliasMem + || Contents.OrdKind == MustAliasMem); + } + + /// Tests if this is an Order dependence that is marked as a barrier. + bool isBarrier() const { + return getKind() == Order && Contents.OrdKind == Barrier; + } + + /// Tests if this is could be any kind of memory dependence. + bool isNormalMemoryOrBarrier() const { + return (isNormalMemory() || isBarrier()); + } + + /// Tests if this is an Order dependence that is marked as + /// "must alias", meaning that the SUnits at either end of the edge have a + /// memory dependence on a known memory location. + bool isMustAlias() const { + return getKind() == Order && Contents.OrdKind == MustAliasMem; + } + + /// Tests if this a weak dependence. Weak dependencies are considered DAG + /// edges for height computation and other heuristics, but do not force + /// ordering. Breaking a weak edge may require the scheduler to compensate, + /// for example by inserting a copy. + bool isWeak() const { + return getKind() == Order && Contents.OrdKind >= Weak; + } + + /// Tests if this is an Order dependence that is marked as + /// "artificial", meaning it isn't necessary for correctness. + bool isArtificial() const { + return getKind() == Order && Contents.OrdKind == Artificial; + } + + /// Tests if this is an Order dependence that is marked as "cluster", + /// meaning it is artificial and wants to be adjacent. + bool isCluster() const { + return getKind() == Order && Contents.OrdKind == Cluster; + } + + /// Tests if this is a Data dependence that is associated with a register. + bool isAssignedRegDep() const { + return getKind() == Data && Contents.Reg != 0; + } + + /// Returns the register associated with this edge. This is only valid on + /// Data, Anti, and Output edges. On Data edges, this value may be zero, + /// meaning there is no associated register. + unsigned getReg() const { + assert((getKind() == Data || getKind() == Anti || getKind() == Output) && + "getReg called on non-register dependence edge!"); + return Contents.Reg; + } + + /// Assigns the associated register for this edge. This is only valid on + /// Data, Anti, and Output edges. On Anti and Output edges, this value must + /// not be zero. On Data edges, the value may be zero, which would mean that + /// no specific register is associated with this edge. + void setReg(unsigned Reg) { + assert((getKind() == Data || getKind() == Anti || getKind() == Output) && + "setReg called on non-register dependence edge!"); + assert((getKind() != Anti || Reg != 0) && + "SDep::Anti edge cannot use the zero register!"); + assert((getKind() != Output || Reg != 0) && + "SDep::Output edge cannot use the zero register!"); + Contents.Reg = Reg; + } + + void dump(const TargetRegisterInfo *TRI = nullptr) const; + }; + + /// Scheduling unit. This is a node in the scheduling DAG. + class SUnit { + private: + enum : unsigned { BoundaryID = ~0u }; + + SDNode *Node = nullptr; ///< Representative node. + MachineInstr *Instr = nullptr; ///< Alternatively, a MachineInstr. + + public: + SUnit *OrigNode = nullptr; ///< If not this, the node from which this node + /// was cloned. (SD scheduling only) + + const MCSchedClassDesc *SchedClass = + nullptr; ///< nullptr or resolved SchedClass. + + SmallVector<SDep, 4> Preds; ///< All sunit predecessors. + SmallVector<SDep, 4> Succs; ///< All sunit successors. + + typedef SmallVectorImpl<SDep>::iterator pred_iterator; + typedef SmallVectorImpl<SDep>::iterator succ_iterator; + typedef SmallVectorImpl<SDep>::const_iterator const_pred_iterator; + typedef SmallVectorImpl<SDep>::const_iterator const_succ_iterator; + + unsigned NodeNum = BoundaryID; ///< Entry # of node in the node vector. + unsigned NodeQueueId = 0; ///< Queue id of node. + unsigned NumPreds = 0; ///< # of SDep::Data preds. + unsigned NumSuccs = 0; ///< # of SDep::Data sucss. + unsigned NumPredsLeft = 0; ///< # of preds not scheduled. + unsigned NumSuccsLeft = 0; ///< # of succs not scheduled. + unsigned WeakPredsLeft = 0; ///< # of weak preds not scheduled. + unsigned WeakSuccsLeft = 0; ///< # of weak succs not scheduled. + unsigned short NumRegDefsLeft = 0; ///< # of reg defs with no scheduled use. + unsigned short Latency = 0; ///< Node latency. + bool isVRegCycle : 1; ///< May use and def the same vreg. + bool isCall : 1; ///< Is a function call. + bool isCallOp : 1; ///< Is a function call operand. + bool isTwoAddress : 1; ///< Is a two-address instruction. + bool isCommutable : 1; ///< Is a commutable instruction. + bool hasPhysRegUses : 1; ///< Has physreg uses. + bool hasPhysRegDefs : 1; ///< Has physreg defs that are being used. + bool hasPhysRegClobbers : 1; ///< Has any physreg defs, used or not. + bool isPending : 1; ///< True once pending. + bool isAvailable : 1; ///< True once available. + bool isScheduled : 1; ///< True once scheduled. + bool isScheduleHigh : 1; ///< True if preferable to schedule high. + bool isScheduleLow : 1; ///< True if preferable to schedule low. + bool isCloned : 1; ///< True if this node has been cloned. + bool isUnbuffered : 1; ///< Uses an unbuffered resource. + bool hasReservedResource : 1; ///< Uses a reserved resource. + Sched::Preference SchedulingPref = Sched::None; ///< Scheduling preference. + + private: + bool isDepthCurrent : 1; ///< True if Depth is current. + bool isHeightCurrent : 1; ///< True if Height is current. + unsigned Depth = 0; ///< Node depth. + unsigned Height = 0; ///< Node height. + + public: + unsigned TopReadyCycle = 0; ///< Cycle relative to start when node is ready. + unsigned BotReadyCycle = 0; ///< Cycle relative to end when node is ready. + + const TargetRegisterClass *CopyDstRC = + nullptr; ///< Is a special copy node if != nullptr. + const TargetRegisterClass *CopySrcRC = nullptr; + + /// Constructs an SUnit for pre-regalloc scheduling to represent an + /// SDNode and any nodes flagged to it. + SUnit(SDNode *node, unsigned nodenum) + : Node(node), NodeNum(nodenum), isVRegCycle(false), isCall(false), + isCallOp(false), isTwoAddress(false), isCommutable(false), + hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false), + isPending(false), isAvailable(false), isScheduled(false), + isScheduleHigh(false), isScheduleLow(false), isCloned(false), + isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false), + isHeightCurrent(false) {} + + /// Constructs an SUnit for post-regalloc scheduling to represent a + /// MachineInstr. + SUnit(MachineInstr *instr, unsigned nodenum) + : Instr(instr), NodeNum(nodenum), isVRegCycle(false), isCall(false), + isCallOp(false), isTwoAddress(false), isCommutable(false), + hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false), + isPending(false), isAvailable(false), isScheduled(false), + isScheduleHigh(false), isScheduleLow(false), isCloned(false), + isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false), + isHeightCurrent(false) {} + + /// Constructs a placeholder SUnit. + SUnit() + : isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false), + isCommutable(false), hasPhysRegUses(false), hasPhysRegDefs(false), + hasPhysRegClobbers(false), isPending(false), isAvailable(false), + isScheduled(false), isScheduleHigh(false), isScheduleLow(false), + isCloned(false), isUnbuffered(false), hasReservedResource(false), + isDepthCurrent(false), isHeightCurrent(false) {} + + /// Boundary nodes are placeholders for the boundary of the + /// scheduling region. + /// + /// BoundaryNodes can have DAG edges, including Data edges, but they do not + /// correspond to schedulable entities (e.g. instructions) and do not have a + /// valid ID. Consequently, always check for boundary nodes before accessing + /// an associative data structure keyed on node ID. + bool isBoundaryNode() const { return NodeNum == BoundaryID; } + + /// Assigns the representative SDNode for this SUnit. This may be used + /// during pre-regalloc scheduling. + void setNode(SDNode *N) { + assert(!Instr && "Setting SDNode of SUnit with MachineInstr!"); + Node = N; + } + + /// Returns the representative SDNode for this SUnit. This may be used + /// during pre-regalloc scheduling. + SDNode *getNode() const { + assert(!Instr && "Reading SDNode of SUnit with MachineInstr!"); + return Node; + } + + /// Returns true if this SUnit refers to a machine instruction as + /// opposed to an SDNode. + bool isInstr() const { return Instr; } + + /// Assigns the instruction for the SUnit. This may be used during + /// post-regalloc scheduling. + void setInstr(MachineInstr *MI) { + assert(!Node && "Setting MachineInstr of SUnit with SDNode!"); + Instr = MI; + } + + /// Returns the representative MachineInstr for this SUnit. This may be used + /// during post-regalloc scheduling. + MachineInstr *getInstr() const { + assert(!Node && "Reading MachineInstr of SUnit with SDNode!"); + return Instr; + } + + /// Adds the specified edge as a pred of the current node if not already. + /// It also adds the current node as a successor of the specified node. + bool addPred(const SDep &D, bool Required = true); + + /// Adds a barrier edge to SU by calling addPred(), with latency 0 + /// generally or latency 1 for a store followed by a load. + bool addPredBarrier(SUnit *SU) { + SDep Dep(SU, SDep::Barrier); + unsigned TrueMemOrderLatency = + ((SU->getInstr()->mayStore() && this->getInstr()->mayLoad()) ? 1 : 0); + Dep.setLatency(TrueMemOrderLatency); + return addPred(Dep); + } + + /// Removes the specified edge as a pred of the current node if it exists. + /// It also removes the current node as a successor of the specified node. + void removePred(const SDep &D); + + /// Returns the depth of this node, which is the length of the maximum path + /// up to any node which has no predecessors. + unsigned getDepth() const { + if (!isDepthCurrent) + const_cast<SUnit *>(this)->ComputeDepth(); + return Depth; + } + + /// Returns the height of this node, which is the length of the + /// maximum path down to any node which has no successors. + unsigned getHeight() const { + if (!isHeightCurrent) + const_cast<SUnit *>(this)->ComputeHeight(); + return Height; + } + + /// If NewDepth is greater than this node's depth value, sets it to + /// be the new depth value. This also recursively marks successor nodes + /// dirty. + void setDepthToAtLeast(unsigned NewDepth); + + /// If NewHeight is greater than this node's height value, set it to be + /// the new height value. This also recursively marks predecessor nodes + /// dirty. + void setHeightToAtLeast(unsigned NewHeight); + + /// Sets a flag in this node to indicate that its stored Depth value + /// will require recomputation the next time getDepth() is called. + void setDepthDirty(); + + /// Sets a flag in this node to indicate that its stored Height value + /// will require recomputation the next time getHeight() is called. + void setHeightDirty(); + + /// Tests if node N is a predecessor of this node. + bool isPred(const SUnit *N) const { + for (const SDep &Pred : Preds) + if (Pred.getSUnit() == N) + return true; + return false; + } + + /// Tests if node N is a successor of this node. + bool isSucc(const SUnit *N) const { + for (const SDep &Succ : Succs) + if (Succ.getSUnit() == N) + return true; + return false; + } + + bool isTopReady() const { + return NumPredsLeft == 0; + } + bool isBottomReady() const { + return NumSuccsLeft == 0; + } + + /// Orders this node's predecessor edges such that the critical path + /// edge occurs first. + void biasCriticalPath(); + + void dumpAttributes() const; + + private: + void ComputeDepth(); + void ComputeHeight(); + }; + + /// Returns true if the specified SDep is equivalent except for latency. + inline bool SDep::overlaps(const SDep &Other) const { + if (Dep != Other.Dep) + return false; + switch (Dep.getInt()) { + case Data: + case Anti: + case Output: + return Contents.Reg == Other.Contents.Reg; + case Order: + return Contents.OrdKind == Other.Contents.OrdKind; + } + llvm_unreachable("Invalid dependency kind!"); + } + + //// Returns the SUnit to which this edge points. + inline SUnit *SDep::getSUnit() const { return Dep.getPointer(); } + + //// Assigns the SUnit to which this edge points. + inline void SDep::setSUnit(SUnit *SU) { Dep.setPointer(SU); } + + /// Returns an enum value representing the kind of the dependence. + inline SDep::Kind SDep::getKind() const { return Dep.getInt(); } + + //===--------------------------------------------------------------------===// + + /// This interface is used to plug different priorities computation + /// algorithms into the list scheduler. It implements the interface of a + /// standard priority queue, where nodes are inserted in arbitrary order and + /// returned in priority order. The computation of the priority and the + /// representation of the queue are totally up to the implementation to + /// decide. + class SchedulingPriorityQueue { + virtual void anchor(); + + unsigned CurCycle = 0; + bool HasReadyFilter; + + public: + SchedulingPriorityQueue(bool rf = false) : HasReadyFilter(rf) {} + + virtual ~SchedulingPriorityQueue() = default; + + virtual bool isBottomUp() const = 0; + + virtual void initNodes(std::vector<SUnit> &SUnits) = 0; + virtual void addNode(const SUnit *SU) = 0; + virtual void updateNode(const SUnit *SU) = 0; + virtual void releaseState() = 0; + + virtual bool empty() const = 0; + + bool hasReadyFilter() const { return HasReadyFilter; } + + virtual bool tracksRegPressure() const { return false; } + + virtual bool isReady(SUnit *) const { + assert(!HasReadyFilter && "The ready filter must override isReady()"); + return true; + } + + virtual void push(SUnit *U) = 0; + + void push_all(const std::vector<SUnit *> &Nodes) { + for (std::vector<SUnit *>::const_iterator I = Nodes.begin(), + E = Nodes.end(); I != E; ++I) + push(*I); + } + + virtual SUnit *pop() = 0; + + virtual void remove(SUnit *SU) = 0; + + virtual void dump(ScheduleDAG *) const {} + + /// As each node is scheduled, this method is invoked. This allows the + /// priority function to adjust the priority of related unscheduled nodes, + /// for example. + virtual void scheduledNode(SUnit *) {} + + virtual void unscheduledNode(SUnit *) {} + + void setCurCycle(unsigned Cycle) { + CurCycle = Cycle; + } + + unsigned getCurCycle() const { + return CurCycle; + } + }; + + class ScheduleDAG { + public: + const LLVMTargetMachine &TM; ///< Target processor + const TargetInstrInfo *TII; ///< Target instruction information + const TargetRegisterInfo *TRI; ///< Target processor register info + MachineFunction &MF; ///< Machine function + MachineRegisterInfo &MRI; ///< Virtual/real register map + std::vector<SUnit> SUnits; ///< The scheduling units. + SUnit EntrySU; ///< Special node for the region entry. + SUnit ExitSU; ///< Special node for the region exit. + +#ifdef NDEBUG + static const bool StressSched = false; +#else + bool StressSched; +#endif + + explicit ScheduleDAG(MachineFunction &mf); + + virtual ~ScheduleDAG(); + + /// Clears the DAG state (between regions). + void clearDAG(); + + /// Returns the MCInstrDesc of this SUnit. + /// Returns NULL for SDNodes without a machine opcode. + const MCInstrDesc *getInstrDesc(const SUnit *SU) const { + if (SU->isInstr()) return &SU->getInstr()->getDesc(); + return getNodeDesc(SU->getNode()); + } + + /// Pops up a GraphViz/gv window with the ScheduleDAG rendered using 'dot'. + virtual void viewGraph(const Twine &Name, const Twine &Title); + virtual void viewGraph(); + + virtual void dumpNode(const SUnit &SU) const = 0; + virtual void dump() const = 0; + void dumpNodeName(const SUnit &SU) const; + + /// Returns a label for an SUnit node in a visualization of the ScheduleDAG. + virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0; + + /// Returns a label for the region of code covered by the DAG. + virtual std::string getDAGName() const = 0; + + /// Adds custom features for a visualization of the ScheduleDAG. + virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {} + +#ifndef NDEBUG + /// Verifies that all SUnits were scheduled and that their state is + /// consistent. Returns the number of scheduled SUnits. + unsigned VerifyScheduledDAG(bool isBottomUp); +#endif + + protected: + void dumpNodeAll(const SUnit &SU) const; + + private: + /// Returns the MCInstrDesc of this SDNode or NULL. + const MCInstrDesc *getNodeDesc(const SDNode *Node) const; + }; + + class SUnitIterator { + SUnit *Node; + unsigned Operand; + + SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {} + + public: + using iterator_category = std::forward_iterator_tag; + using value_type = SUnit; + using difference_type = std::ptrdiff_t; + using pointer = value_type *; + using reference = value_type &; + + bool operator==(const SUnitIterator& x) const { + return Operand == x.Operand; + } + bool operator!=(const SUnitIterator& x) const { return !operator==(x); } + + pointer operator*() const { + return Node->Preds[Operand].getSUnit(); + } + pointer operator->() const { return operator*(); } + + SUnitIterator& operator++() { // Preincrement + ++Operand; + return *this; + } + SUnitIterator operator++(int) { // Postincrement + SUnitIterator tmp = *this; ++*this; return tmp; + } + + static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); } + static SUnitIterator end (SUnit *N) { + return SUnitIterator(N, (unsigned)N->Preds.size()); + } + + unsigned getOperand() const { return Operand; } + const SUnit *getNode() const { return Node; } + + /// Tests if this is not an SDep::Data dependence. + bool isCtrlDep() const { + return getSDep().isCtrl(); + } + bool isArtificialDep() const { + return getSDep().isArtificial(); + } + const SDep &getSDep() const { + return Node->Preds[Operand]; + } + }; + + template <> struct GraphTraits<SUnit*> { + typedef SUnit *NodeRef; + typedef SUnitIterator ChildIteratorType; + static NodeRef getEntryNode(SUnit *N) { return N; } + static ChildIteratorType child_begin(NodeRef N) { + return SUnitIterator::begin(N); + } + static ChildIteratorType child_end(NodeRef N) { + return SUnitIterator::end(N); + } + }; + + template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> { + typedef pointer_iterator<std::vector<SUnit>::iterator> nodes_iterator; + static nodes_iterator nodes_begin(ScheduleDAG *G) { + return nodes_iterator(G->SUnits.begin()); + } + static nodes_iterator nodes_end(ScheduleDAG *G) { + return nodes_iterator(G->SUnits.end()); + } + }; + + /// This class can compute a topological ordering for SUnits and provides + /// methods for dynamically updating the ordering as new edges are added. + /// + /// This allows a very fast implementation of IsReachable, for example. + class ScheduleDAGTopologicalSort { + /// A reference to the ScheduleDAG's SUnits. + std::vector<SUnit> &SUnits; + SUnit *ExitSU; + + // Have any new nodes been added? + bool Dirty = false; + + // Outstanding added edges, that have not been applied to the ordering. + SmallVector<std::pair<SUnit *, SUnit *>, 16> Updates; + + /// Maps topological index to the node number. + std::vector<int> Index2Node; + /// Maps the node number to its topological index. + std::vector<int> Node2Index; + /// a set of nodes visited during a DFS traversal. + BitVector Visited; + + /// Makes a DFS traversal and mark all nodes affected by the edge insertion. + /// These nodes will later get new topological indexes by means of the Shift + /// method. + void DFS(const SUnit *SU, int UpperBound, bool& HasLoop); + + /// Reassigns topological indexes for the nodes in the DAG to + /// preserve the topological ordering. + void Shift(BitVector& Visited, int LowerBound, int UpperBound); + + /// Assigns the topological index to the node n. + void Allocate(int n, int index); + + /// Fix the ordering, by either recomputing from scratch or by applying + /// any outstanding updates. Uses a heuristic to estimate what will be + /// cheaper. + void FixOrder(); + + public: + ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits, SUnit *ExitSU); + + /// Add a SUnit without predecessors to the end of the topological order. It + /// also must be the first new node added to the DAG. + void AddSUnitWithoutPredecessors(const SUnit *SU); + + /// Creates the initial topological ordering from the DAG to be scheduled. + void InitDAGTopologicalSorting(); + + /// Returns an array of SUs that are both in the successor + /// subtree of StartSU and in the predecessor subtree of TargetSU. + /// StartSU and TargetSU are not in the array. + /// Success is false if TargetSU is not in the successor subtree of + /// StartSU, else it is true. + std::vector<int> GetSubGraph(const SUnit &StartSU, const SUnit &TargetSU, + bool &Success); + + /// Checks if \p SU is reachable from \p TargetSU. + bool IsReachable(const SUnit *SU, const SUnit *TargetSU); + + /// Returns true if addPred(TargetSU, SU) creates a cycle. + bool WillCreateCycle(SUnit *TargetSU, SUnit *SU); + + /// Updates the topological ordering to accommodate an edge to be + /// added from SUnit \p X to SUnit \p Y. + void AddPred(SUnit *Y, SUnit *X); + + /// Queues an update to the topological ordering to accommodate an edge to + /// be added from SUnit \p X to SUnit \p Y. + void AddPredQueued(SUnit *Y, SUnit *X); + + /// Updates the topological ordering to accommodate an an edge to be + /// removed from the specified node \p N from the predecessors of the + /// current node \p M. + void RemovePred(SUnit *M, SUnit *N); + + /// Mark the ordering as temporarily broken, after a new node has been + /// added. + void MarkDirty() { Dirty = true; } + + typedef std::vector<int>::iterator iterator; + typedef std::vector<int>::const_iterator const_iterator; + iterator begin() { return Index2Node.begin(); } + const_iterator begin() const { return Index2Node.begin(); } + iterator end() { return Index2Node.end(); } + const_iterator end() const { return Index2Node.end(); } + + typedef std::vector<int>::reverse_iterator reverse_iterator; + typedef std::vector<int>::const_reverse_iterator const_reverse_iterator; + reverse_iterator rbegin() { return Index2Node.rbegin(); } + const_reverse_iterator rbegin() const { return Index2Node.rbegin(); } + reverse_iterator rend() { return Index2Node.rend(); } + const_reverse_iterator rend() const { return Index2Node.rend(); } + }; + +} // end namespace llvm + +#endif // LLVM_CODEGEN_SCHEDULEDAG_H + +#ifdef __GNUC__ +#pragma GCC diagnostic pop +#endif |