diff options
| author | vitalyisaev <[email protected]> | 2023-06-29 10:00:50 +0300 | 
|---|---|---|
| committer | vitalyisaev <[email protected]> | 2023-06-29 10:00:50 +0300 | 
| commit | 6ffe9e53658409f212834330e13564e4952558f6 (patch) | |
| tree | 85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm14/include/llvm/CodeGen/MachineBasicBlock.h | |
| parent | 726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff) | |
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm14/include/llvm/CodeGen/MachineBasicBlock.h')
| -rw-r--r-- | contrib/libs/llvm14/include/llvm/CodeGen/MachineBasicBlock.h | 1281 | 
1 files changed, 1281 insertions, 0 deletions
| diff --git a/contrib/libs/llvm14/include/llvm/CodeGen/MachineBasicBlock.h b/contrib/libs/llvm14/include/llvm/CodeGen/MachineBasicBlock.h new file mode 100644 index 00000000000..e17e912816e --- /dev/null +++ b/contrib/libs/llvm14/include/llvm/CodeGen/MachineBasicBlock.h @@ -0,0 +1,1281 @@ +#pragma once + +#ifdef __GNUC__ +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wunused-parameter" +#endif + +//===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Collect the sequence of machine instructions for a basic block. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H +#define LLVM_CODEGEN_MACHINEBASICBLOCK_H + +#include "llvm/ADT/GraphTraits.h" +#include "llvm/ADT/ilist.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/ADT/SparseBitVector.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBundleIterator.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/MC/LaneBitmask.h" +#include "llvm/Support/BranchProbability.h" +#include <cassert> +#include <cstdint> +#include <functional> +#include <iterator> +#include <string> +#include <vector> + +namespace llvm { + +class BasicBlock; +class MachineFunction; +class MCSymbol; +class ModuleSlotTracker; +class Pass; +class Printable; +class SlotIndexes; +class StringRef; +class raw_ostream; +class LiveIntervals; +class TargetRegisterClass; +class TargetRegisterInfo; + +// This structure uniquely identifies a basic block section. +// Possible values are +//  {Type: Default, Number: (unsigned)} (These are regular section IDs) +//  {Type: Exception, Number: 0}  (ExceptionSectionID) +//  {Type: Cold, Number: 0}  (ColdSectionID) +struct MBBSectionID { +  enum SectionType { +    Default = 0, // Regular section (these sections are distinguished by the +                 // Number field). +    Exception,   // Special section type for exception handling blocks +    Cold,        // Special section type for cold blocks +  } Type; +  unsigned Number; + +  MBBSectionID(unsigned N) : Type(Default), Number(N) {} + +  // Special unique sections for cold and exception blocks. +  const static MBBSectionID ColdSectionID; +  const static MBBSectionID ExceptionSectionID; + +  bool operator==(const MBBSectionID &Other) const { +    return Type == Other.Type && Number == Other.Number; +  } + +  bool operator!=(const MBBSectionID &Other) const { return !(*this == Other); } + +private: +  // This is only used to construct the special cold and exception sections. +  MBBSectionID(SectionType T) : Type(T), Number(0) {} +}; + +template <> struct ilist_traits<MachineInstr> { +private: +  friend class MachineBasicBlock; // Set by the owning MachineBasicBlock. + +  MachineBasicBlock *Parent; + +  using instr_iterator = +      simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator; + +public: +  void addNodeToList(MachineInstr *N); +  void removeNodeFromList(MachineInstr *N); +  void transferNodesFromList(ilist_traits &FromList, instr_iterator First, +                             instr_iterator Last); +  void deleteNode(MachineInstr *MI); +}; + +class MachineBasicBlock +    : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> { +public: +  /// Pair of physical register and lane mask. +  /// This is not simply a std::pair typedef because the members should be named +  /// clearly as they both have an integer type. +  struct RegisterMaskPair { +  public: +    MCPhysReg PhysReg; +    LaneBitmask LaneMask; + +    RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask) +        : PhysReg(PhysReg), LaneMask(LaneMask) {} +  }; + +private: +  using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>; + +  Instructions Insts; +  const BasicBlock *BB; +  int Number; +  MachineFunction *xParent; + +  /// Keep track of the predecessor / successor basic blocks. +  std::vector<MachineBasicBlock *> Predecessors; +  std::vector<MachineBasicBlock *> Successors; + +  /// Keep track of the probabilities to the successors. This vector has the +  /// same order as Successors, or it is empty if we don't use it (disable +  /// optimization). +  std::vector<BranchProbability> Probs; +  using probability_iterator = std::vector<BranchProbability>::iterator; +  using const_probability_iterator = +      std::vector<BranchProbability>::const_iterator; + +  Optional<uint64_t> IrrLoopHeaderWeight; + +  /// Keep track of the physical registers that are livein of the basicblock. +  using LiveInVector = std::vector<RegisterMaskPair>; +  LiveInVector LiveIns; + +  /// Alignment of the basic block. One if the basic block does not need to be +  /// aligned. +  Align Alignment; +  /// Maximum amount of bytes that can be added to align the basic block. If the +  /// alignment cannot be reached in this many bytes, no bytes are emitted. +  /// Zero to represent no maximum. +  unsigned MaxBytesForAlignment = 0; + +  /// Indicate that this basic block is entered via an exception handler. +  bool IsEHPad = false; + +  /// Indicate that this basic block is potentially the target of an indirect +  /// branch. +  bool AddressTaken = false; + +  /// Indicate that this basic block needs its symbol be emitted regardless of +  /// whether the flow just falls-through to it. +  bool LabelMustBeEmitted = false; + +  /// Indicate that this basic block is the entry block of an EH scope, i.e., +  /// the block that used to have a catchpad or cleanuppad instruction in the +  /// LLVM IR. +  bool IsEHScopeEntry = false; + +  /// Indicates if this is a target block of a catchret. +  bool IsEHCatchretTarget = false; + +  /// Indicate that this basic block is the entry block of an EH funclet. +  bool IsEHFuncletEntry = false; + +  /// Indicate that this basic block is the entry block of a cleanup funclet. +  bool IsCleanupFuncletEntry = false; + +  /// With basic block sections, this stores the Section ID of the basic block. +  MBBSectionID SectionID{0}; + +  // Indicate that this basic block begins a section. +  bool IsBeginSection = false; + +  // Indicate that this basic block ends a section. +  bool IsEndSection = false; + +  /// Indicate that this basic block is the indirect dest of an INLINEASM_BR. +  bool IsInlineAsmBrIndirectTarget = false; + +  /// since getSymbol is a relatively heavy-weight operation, the symbol +  /// is only computed once and is cached. +  mutable MCSymbol *CachedMCSymbol = nullptr; + +  /// Cached MCSymbol for this block (used if IsEHCatchRetTarget). +  mutable MCSymbol *CachedEHCatchretMCSymbol = nullptr; + +  /// Marks the end of the basic block. Used during basic block sections to +  /// calculate the size of the basic block, or the BB section ending with it. +  mutable MCSymbol *CachedEndMCSymbol = nullptr; + +  // Intrusive list support +  MachineBasicBlock() = default; + +  explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB); + +  ~MachineBasicBlock(); + +  // MachineBasicBlocks are allocated and owned by MachineFunction. +  friend class MachineFunction; + +public: +  /// Return the LLVM basic block that this instance corresponded to originally. +  /// Note that this may be NULL if this instance does not correspond directly +  /// to an LLVM basic block. +  const BasicBlock *getBasicBlock() const { return BB; } + +  /// Return the name of the corresponding LLVM basic block, or an empty string. +  StringRef getName() const; + +  /// Return a formatted string to identify this block and its parent function. +  std::string getFullName() const; + +  /// Test whether this block is potentially the target of an indirect branch. +  bool hasAddressTaken() const { return AddressTaken; } + +  /// Set this block to reflect that it potentially is the target of an indirect +  /// branch. +  void setHasAddressTaken() { AddressTaken = true; } + +  /// Test whether this block must have its label emitted. +  bool hasLabelMustBeEmitted() const { return LabelMustBeEmitted; } + +  /// Set this block to reflect that, regardless how we flow to it, we need +  /// its label be emitted. +  void setLabelMustBeEmitted() { LabelMustBeEmitted = true; } + +  /// Return the MachineFunction containing this basic block. +  const MachineFunction *getParent() const { return xParent; } +  MachineFunction *getParent() { return xParent; } + +  using instr_iterator = Instructions::iterator; +  using const_instr_iterator = Instructions::const_iterator; +  using reverse_instr_iterator = Instructions::reverse_iterator; +  using const_reverse_instr_iterator = Instructions::const_reverse_iterator; + +  using iterator = MachineInstrBundleIterator<MachineInstr>; +  using const_iterator = MachineInstrBundleIterator<const MachineInstr>; +  using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>; +  using const_reverse_iterator = +      MachineInstrBundleIterator<const MachineInstr, true>; + +  unsigned size() const { return (unsigned)Insts.size(); } +  bool empty() const { return Insts.empty(); } + +  MachineInstr       &instr_front()       { return Insts.front(); } +  MachineInstr       &instr_back()        { return Insts.back();  } +  const MachineInstr &instr_front() const { return Insts.front(); } +  const MachineInstr &instr_back()  const { return Insts.back();  } + +  MachineInstr       &front()             { return Insts.front(); } +  MachineInstr       &back()              { return *--end();      } +  const MachineInstr &front()       const { return Insts.front(); } +  const MachineInstr &back()        const { return *--end();      } + +  instr_iterator                instr_begin()       { return Insts.begin();  } +  const_instr_iterator          instr_begin() const { return Insts.begin();  } +  instr_iterator                  instr_end()       { return Insts.end();    } +  const_instr_iterator            instr_end() const { return Insts.end();    } +  reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); } +  const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); } +  reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   } +  const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   } + +  using instr_range = iterator_range<instr_iterator>; +  using const_instr_range = iterator_range<const_instr_iterator>; +  instr_range instrs() { return instr_range(instr_begin(), instr_end()); } +  const_instr_range instrs() const { +    return const_instr_range(instr_begin(), instr_end()); +  } + +  iterator                begin()       { return instr_begin();  } +  const_iterator          begin() const { return instr_begin();  } +  iterator                end  ()       { return instr_end();    } +  const_iterator          end  () const { return instr_end();    } +  reverse_iterator rbegin() { +    return reverse_iterator::getAtBundleBegin(instr_rbegin()); +  } +  const_reverse_iterator rbegin() const { +    return const_reverse_iterator::getAtBundleBegin(instr_rbegin()); +  } +  reverse_iterator rend() { return reverse_iterator(instr_rend()); } +  const_reverse_iterator rend() const { +    return const_reverse_iterator(instr_rend()); +  } + +  /// Support for MachineInstr::getNextNode(). +  static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) { +    return &MachineBasicBlock::Insts; +  } + +  inline iterator_range<iterator> terminators() { +    return make_range(getFirstTerminator(), end()); +  } +  inline iterator_range<const_iterator> terminators() const { +    return make_range(getFirstTerminator(), end()); +  } + +  /// Returns a range that iterates over the phis in the basic block. +  inline iterator_range<iterator> phis() { +    return make_range(begin(), getFirstNonPHI()); +  } +  inline iterator_range<const_iterator> phis() const { +    return const_cast<MachineBasicBlock *>(this)->phis(); +  } + +  // Machine-CFG iterators +  using pred_iterator = std::vector<MachineBasicBlock *>::iterator; +  using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator; +  using succ_iterator = std::vector<MachineBasicBlock *>::iterator; +  using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator; +  using pred_reverse_iterator = +      std::vector<MachineBasicBlock *>::reverse_iterator; +  using const_pred_reverse_iterator = +      std::vector<MachineBasicBlock *>::const_reverse_iterator; +  using succ_reverse_iterator = +      std::vector<MachineBasicBlock *>::reverse_iterator; +  using const_succ_reverse_iterator = +      std::vector<MachineBasicBlock *>::const_reverse_iterator; +  pred_iterator        pred_begin()       { return Predecessors.begin(); } +  const_pred_iterator  pred_begin() const { return Predecessors.begin(); } +  pred_iterator        pred_end()         { return Predecessors.end();   } +  const_pred_iterator  pred_end()   const { return Predecessors.end();   } +  pred_reverse_iterator        pred_rbegin() +                                          { return Predecessors.rbegin();} +  const_pred_reverse_iterator  pred_rbegin() const +                                          { return Predecessors.rbegin();} +  pred_reverse_iterator        pred_rend() +                                          { return Predecessors.rend();  } +  const_pred_reverse_iterator  pred_rend()   const +                                          { return Predecessors.rend();  } +  unsigned             pred_size()  const { +    return (unsigned)Predecessors.size(); +  } +  bool                 pred_empty() const { return Predecessors.empty(); } +  succ_iterator        succ_begin()       { return Successors.begin();   } +  const_succ_iterator  succ_begin() const { return Successors.begin();   } +  succ_iterator        succ_end()         { return Successors.end();     } +  const_succ_iterator  succ_end()   const { return Successors.end();     } +  succ_reverse_iterator        succ_rbegin() +                                          { return Successors.rbegin();  } +  const_succ_reverse_iterator  succ_rbegin() const +                                          { return Successors.rbegin();  } +  succ_reverse_iterator        succ_rend() +                                          { return Successors.rend();    } +  const_succ_reverse_iterator  succ_rend()   const +                                          { return Successors.rend();    } +  unsigned             succ_size()  const { +    return (unsigned)Successors.size(); +  } +  bool                 succ_empty() const { return Successors.empty();   } + +  inline iterator_range<pred_iterator> predecessors() { +    return make_range(pred_begin(), pred_end()); +  } +  inline iterator_range<const_pred_iterator> predecessors() const { +    return make_range(pred_begin(), pred_end()); +  } +  inline iterator_range<succ_iterator> successors() { +    return make_range(succ_begin(), succ_end()); +  } +  inline iterator_range<const_succ_iterator> successors() const { +    return make_range(succ_begin(), succ_end()); +  } + +  // LiveIn management methods. + +  /// Adds the specified register as a live in. Note that it is an error to add +  /// the same register to the same set more than once unless the intention is +  /// to call sortUniqueLiveIns after all registers are added. +  void addLiveIn(MCRegister PhysReg, +                 LaneBitmask LaneMask = LaneBitmask::getAll()) { +    LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask)); +  } +  void addLiveIn(const RegisterMaskPair &RegMaskPair) { +    LiveIns.push_back(RegMaskPair); +  } + +  /// Sorts and uniques the LiveIns vector. It can be significantly faster to do +  /// this than repeatedly calling isLiveIn before calling addLiveIn for every +  /// LiveIn insertion. +  void sortUniqueLiveIns(); + +  /// Clear live in list. +  void clearLiveIns(); + +  /// Add PhysReg as live in to this block, and ensure that there is a copy of +  /// PhysReg to a virtual register of class RC. Return the virtual register +  /// that is a copy of the live in PhysReg. +  Register addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC); + +  /// Remove the specified register from the live in set. +  void removeLiveIn(MCPhysReg Reg, +                    LaneBitmask LaneMask = LaneBitmask::getAll()); + +  /// Return true if the specified register is in the live in set. +  bool isLiveIn(MCPhysReg Reg, +                LaneBitmask LaneMask = LaneBitmask::getAll()) const; + +  // Iteration support for live in sets.  These sets are kept in sorted +  // order by their register number. +  using livein_iterator = LiveInVector::const_iterator; +#ifndef NDEBUG +  /// Unlike livein_begin, this method does not check that the liveness +  /// information is accurate. Still for debug purposes it may be useful +  /// to have iterators that won't assert if the liveness information +  /// is not current. +  livein_iterator livein_begin_dbg() const { return LiveIns.begin(); } +  iterator_range<livein_iterator> liveins_dbg() const { +    return make_range(livein_begin_dbg(), livein_end()); +  } +#endif +  livein_iterator livein_begin() const; +  livein_iterator livein_end()   const { return LiveIns.end(); } +  bool            livein_empty() const { return LiveIns.empty(); } +  iterator_range<livein_iterator> liveins() const { +    return make_range(livein_begin(), livein_end()); +  } + +  /// Remove entry from the livein set and return iterator to the next. +  livein_iterator removeLiveIn(livein_iterator I); + +  class liveout_iterator { +  public: +    using iterator_category = std::input_iterator_tag; +    using difference_type = std::ptrdiff_t; +    using value_type = RegisterMaskPair; +    using pointer = const RegisterMaskPair *; +    using reference = const RegisterMaskPair &; + +    liveout_iterator(const MachineBasicBlock &MBB, MCPhysReg ExceptionPointer, +                     MCPhysReg ExceptionSelector, bool End) +        : ExceptionPointer(ExceptionPointer), +          ExceptionSelector(ExceptionSelector), BlockI(MBB.succ_begin()), +          BlockEnd(MBB.succ_end()) { +      if (End) +        BlockI = BlockEnd; +      else if (BlockI != BlockEnd) { +        LiveRegI = (*BlockI)->livein_begin(); +        if (!advanceToValidPosition()) +          return; +        if (LiveRegI->PhysReg == ExceptionPointer || +            LiveRegI->PhysReg == ExceptionSelector) +          ++(*this); +      } +    } + +    liveout_iterator &operator++() { +      do { +        ++LiveRegI; +        if (!advanceToValidPosition()) +          return *this; +      } while ((*BlockI)->isEHPad() && +               (LiveRegI->PhysReg == ExceptionPointer || +                LiveRegI->PhysReg == ExceptionSelector)); +      return *this; +    } + +    liveout_iterator operator++(int) { +      liveout_iterator Tmp = *this; +      ++(*this); +      return Tmp; +    } + +    reference operator*() const { +      return *LiveRegI; +    } + +    pointer operator->() const { +      return &*LiveRegI; +    } + +    bool operator==(const liveout_iterator &RHS) const { +      if (BlockI != BlockEnd) +        return BlockI == RHS.BlockI && LiveRegI == RHS.LiveRegI; +      return RHS.BlockI == BlockEnd; +    } + +    bool operator!=(const liveout_iterator &RHS) const { +      return !(*this == RHS); +    } +  private: +    bool advanceToValidPosition() { +      if (LiveRegI != (*BlockI)->livein_end()) +        return true; + +      do { +        ++BlockI; +      } while (BlockI != BlockEnd && (*BlockI)->livein_empty()); +      if (BlockI == BlockEnd) +        return false; + +      LiveRegI = (*BlockI)->livein_begin(); +      return true; +    } + +    MCPhysReg ExceptionPointer, ExceptionSelector; +    const_succ_iterator BlockI; +    const_succ_iterator BlockEnd; +    livein_iterator LiveRegI; +  }; + +  /// Iterator scanning successor basic blocks' liveins to determine the +  /// registers potentially live at the end of this block. There may be +  /// duplicates or overlapping registers in the list returned. +  liveout_iterator liveout_begin() const; +  liveout_iterator liveout_end() const { +    return liveout_iterator(*this, 0, 0, true); +  } +  iterator_range<liveout_iterator> liveouts() const { +    return make_range(liveout_begin(), liveout_end()); +  } + +  /// Get the clobber mask for the start of this basic block. Funclets use this +  /// to prevent register allocation across funclet transitions. +  const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const; + +  /// Get the clobber mask for the end of the basic block. +  /// \see getBeginClobberMask() +  const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const; + +  /// Return alignment of the basic block. +  Align getAlignment() const { return Alignment; } + +  /// Set alignment of the basic block. +  void setAlignment(Align A) { Alignment = A; } + +  void setAlignment(Align A, unsigned MaxBytes) { +    setAlignment(A); +    setMaxBytesForAlignment(MaxBytes); +  } + +  /// Return the maximum amount of padding allowed for aligning the basic block. +  unsigned getMaxBytesForAlignment() const { return MaxBytesForAlignment; } + +  /// Set the maximum amount of padding allowed for aligning the basic block +  void setMaxBytesForAlignment(unsigned MaxBytes) { +    MaxBytesForAlignment = MaxBytes; +  } + +  /// Returns true if the block is a landing pad. That is this basic block is +  /// entered via an exception handler. +  bool isEHPad() const { return IsEHPad; } + +  /// Indicates the block is a landing pad.  That is this basic block is entered +  /// via an exception handler. +  void setIsEHPad(bool V = true) { IsEHPad = V; } + +  bool hasEHPadSuccessor() const; + +  /// Returns true if this is the entry block of the function. +  bool isEntryBlock() const; + +  /// Returns true if this is the entry block of an EH scope, i.e., the block +  /// that used to have a catchpad or cleanuppad instruction in the LLVM IR. +  bool isEHScopeEntry() const { return IsEHScopeEntry; } + +  /// Indicates if this is the entry block of an EH scope, i.e., the block that +  /// that used to have a catchpad or cleanuppad instruction in the LLVM IR. +  void setIsEHScopeEntry(bool V = true) { IsEHScopeEntry = V; } + +  /// Returns true if this is a target block of a catchret. +  bool isEHCatchretTarget() const { return IsEHCatchretTarget; } + +  /// Indicates if this is a target block of a catchret. +  void setIsEHCatchretTarget(bool V = true) { IsEHCatchretTarget = V; } + +  /// Returns true if this is the entry block of an EH funclet. +  bool isEHFuncletEntry() const { return IsEHFuncletEntry; } + +  /// Indicates if this is the entry block of an EH funclet. +  void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; } + +  /// Returns true if this is the entry block of a cleanup funclet. +  bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; } + +  /// Indicates if this is the entry block of a cleanup funclet. +  void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; } + +  /// Returns true if this block begins any section. +  bool isBeginSection() const { return IsBeginSection; } + +  /// Returns true if this block ends any section. +  bool isEndSection() const { return IsEndSection; } + +  void setIsBeginSection(bool V = true) { IsBeginSection = V; } + +  void setIsEndSection(bool V = true) { IsEndSection = V; } + +  /// Returns the section ID of this basic block. +  MBBSectionID getSectionID() const { return SectionID; } + +  /// Returns the unique section ID number of this basic block. +  unsigned getSectionIDNum() const { +    return ((unsigned)MBBSectionID::SectionType::Cold) - +           ((unsigned)SectionID.Type) + SectionID.Number; +  } + +  /// Sets the section ID for this basic block. +  void setSectionID(MBBSectionID V) { SectionID = V; } + +  /// Returns the MCSymbol marking the end of this basic block. +  MCSymbol *getEndSymbol() const; + +  /// Returns true if this block may have an INLINEASM_BR (overestimate, by +  /// checking if any of the successors are indirect targets of any inlineasm_br +  /// in the function). +  bool mayHaveInlineAsmBr() const; + +  /// Returns true if this is the indirect dest of an INLINEASM_BR. +  bool isInlineAsmBrIndirectTarget() const { +    return IsInlineAsmBrIndirectTarget; +  } + +  /// Indicates if this is the indirect dest of an INLINEASM_BR. +  void setIsInlineAsmBrIndirectTarget(bool V = true) { +    IsInlineAsmBrIndirectTarget = V; +  } + +  /// Returns true if it is legal to hoist instructions into this block. +  bool isLegalToHoistInto() const; + +  // Code Layout methods. + +  /// Move 'this' block before or after the specified block.  This only moves +  /// the block, it does not modify the CFG or adjust potential fall-throughs at +  /// the end of the block. +  void moveBefore(MachineBasicBlock *NewAfter); +  void moveAfter(MachineBasicBlock *NewBefore); + +  /// Returns true if this and MBB belong to the same section. +  bool sameSection(const MachineBasicBlock *MBB) const { +    return getSectionID() == MBB->getSectionID(); +  } + +  /// Update the terminator instructions in block to account for changes to +  /// block layout which may have been made. PreviousLayoutSuccessor should be +  /// set to the block which may have been used as fallthrough before the block +  /// layout was modified.  If the block previously fell through to that block, +  /// it may now need a branch. If it previously branched to another block, it +  /// may now be able to fallthrough to the current layout successor. +  void updateTerminator(MachineBasicBlock *PreviousLayoutSuccessor); + +  // Machine-CFG mutators + +  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list +  /// of Succ is automatically updated. PROB parameter is stored in +  /// Probabilities list. The default probability is set as unknown. Mixing +  /// known and unknown probabilities in successor list is not allowed. When all +  /// successors have unknown probabilities, 1 / N is returned as the +  /// probability for each successor, where N is the number of successors. +  /// +  /// Note that duplicate Machine CFG edges are not allowed. +  void addSuccessor(MachineBasicBlock *Succ, +                    BranchProbability Prob = BranchProbability::getUnknown()); + +  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list +  /// of Succ is automatically updated. The probability is not provided because +  /// BPI is not available (e.g. -O0 is used), in which case edge probabilities +  /// won't be used. Using this interface can save some space. +  void addSuccessorWithoutProb(MachineBasicBlock *Succ); + +  /// Set successor probability of a given iterator. +  void setSuccProbability(succ_iterator I, BranchProbability Prob); + +  /// Normalize probabilities of all successors so that the sum of them becomes +  /// one. This is usually done when the current update on this MBB is done, and +  /// the sum of its successors' probabilities is not guaranteed to be one. The +  /// user is responsible for the correct use of this function. +  /// MBB::removeSuccessor() has an option to do this automatically. +  void normalizeSuccProbs() { +    BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); +  } + +  /// Validate successors' probabilities and check if the sum of them is +  /// approximate one. This only works in DEBUG mode. +  void validateSuccProbs() const; + +  /// Remove successor from the successors list of this MachineBasicBlock. The +  /// Predecessors list of Succ is automatically updated. +  /// If NormalizeSuccProbs is true, then normalize successors' probabilities +  /// after the successor is removed. +  void removeSuccessor(MachineBasicBlock *Succ, +                       bool NormalizeSuccProbs = false); + +  /// Remove specified successor from the successors list of this +  /// MachineBasicBlock. The Predecessors list of Succ is automatically updated. +  /// If NormalizeSuccProbs is true, then normalize successors' probabilities +  /// after the successor is removed. +  /// Return the iterator to the element after the one removed. +  succ_iterator removeSuccessor(succ_iterator I, +                                bool NormalizeSuccProbs = false); + +  /// Replace successor OLD with NEW and update probability info. +  void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New); + +  /// Copy a successor (and any probability info) from original block to this +  /// block's. Uses an iterator into the original blocks successors. +  /// +  /// This is useful when doing a partial clone of successors. Afterward, the +  /// probabilities may need to be normalized. +  void copySuccessor(MachineBasicBlock *Orig, succ_iterator I); + +  /// Split the old successor into old plus new and updates the probability +  /// info. +  void splitSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New, +                      bool NormalizeSuccProbs = false); + +  /// Transfers all the successors from MBB to this machine basic block (i.e., +  /// copies all the successors FromMBB and remove all the successors from +  /// FromMBB). +  void transferSuccessors(MachineBasicBlock *FromMBB); + +  /// Transfers all the successors, as in transferSuccessors, and update PHI +  /// operands in the successor blocks which refer to FromMBB to refer to this. +  void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB); + +  /// Return true if any of the successors have probabilities attached to them. +  bool hasSuccessorProbabilities() const { return !Probs.empty(); } + +  /// Return true if the specified MBB is a predecessor of this block. +  bool isPredecessor(const MachineBasicBlock *MBB) const; + +  /// Return true if the specified MBB is a successor of this block. +  bool isSuccessor(const MachineBasicBlock *MBB) const; + +  /// Return true if the specified MBB will be emitted immediately after this +  /// block, such that if this block exits by falling through, control will +  /// transfer to the specified MBB. Note that MBB need not be a successor at +  /// all, for example if this block ends with an unconditional branch to some +  /// other block. +  bool isLayoutSuccessor(const MachineBasicBlock *MBB) const; + +  /// Return the fallthrough block if the block can implicitly +  /// transfer control to the block after it by falling off the end of +  /// it.  This should return null if it can reach the block after +  /// it, but it uses an explicit branch to do so (e.g., a table +  /// jump).  Non-null return  is a conservative answer. +  MachineBasicBlock *getFallThrough(); + +  /// Return true if the block can implicitly transfer control to the +  /// block after it by falling off the end of it.  This should return +  /// false if it can reach the block after it, but it uses an +  /// explicit branch to do so (e.g., a table jump).  True is a +  /// conservative answer. +  bool canFallThrough(); + +  /// Returns a pointer to the first instruction in this block that is not a +  /// PHINode instruction. When adding instructions to the beginning of the +  /// basic block, they should be added before the returned value, not before +  /// the first instruction, which might be PHI. +  /// Returns end() is there's no non-PHI instruction. +  iterator getFirstNonPHI(); + +  /// Return the first instruction in MBB after I that is not a PHI or a label. +  /// This is the correct point to insert lowered copies at the beginning of a +  /// basic block that must be before any debugging information. +  iterator SkipPHIsAndLabels(iterator I); + +  /// Return the first instruction in MBB after I that is not a PHI, label or +  /// debug.  This is the correct point to insert copies at the beginning of a +  /// basic block. +  iterator SkipPHIsLabelsAndDebug(iterator I, bool SkipPseudoOp = true); + +  /// Returns an iterator to the first terminator instruction of this basic +  /// block. If a terminator does not exist, it returns end(). +  iterator getFirstTerminator(); +  const_iterator getFirstTerminator() const { +    return const_cast<MachineBasicBlock *>(this)->getFirstTerminator(); +  } + +  /// Same getFirstTerminator but it ignores bundles and return an +  /// instr_iterator instead. +  instr_iterator getFirstInstrTerminator(); + +  /// Returns an iterator to the first non-debug instruction in the basic block, +  /// or end(). Skip any pseudo probe operation if \c SkipPseudoOp is true. +  /// Pseudo probes are like debug instructions which do not turn into real +  /// machine code. We try to use the function to skip both debug instructions +  /// and pseudo probe operations to avoid API proliferation. This should work +  /// most of the time when considering optimizing the rest of code in the +  /// block, except for certain cases where pseudo probes are designed to block +  /// the optimizations. For example, code merge like optimizations are supposed +  /// to be blocked by pseudo probes for better AutoFDO profile quality. +  /// Therefore, they should be considered as a valid instruction when this +  /// function is called in a context of such optimizations. On the other hand, +  /// \c SkipPseudoOp should be true when it's used in optimizations that +  /// unlikely hurt profile quality, e.g., without block merging. The default +  /// value of \c SkipPseudoOp is set to true to maximize code quality in +  /// general, with an explict false value passed in in a few places like branch +  /// folding and if-conversion to favor profile quality. +  iterator getFirstNonDebugInstr(bool SkipPseudoOp = true); +  const_iterator getFirstNonDebugInstr(bool SkipPseudoOp = true) const { +    return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr( +        SkipPseudoOp); +  } + +  /// Returns an iterator to the last non-debug instruction in the basic block, +  /// or end(). Skip any pseudo operation if \c SkipPseudoOp is true. +  /// Pseudo probes are like debug instructions which do not turn into real +  /// machine code. We try to use the function to skip both debug instructions +  /// and pseudo probe operations to avoid API proliferation. This should work +  /// most of the time when considering optimizing the rest of code in the +  /// block, except for certain cases where pseudo probes are designed to block +  /// the optimizations. For example, code merge like optimizations are supposed +  /// to be blocked by pseudo probes for better AutoFDO profile quality. +  /// Therefore, they should be considered as a valid instruction when this +  /// function is called in a context of such optimizations. On the other hand, +  /// \c SkipPseudoOp should be true when it's used in optimizations that +  /// unlikely hurt profile quality, e.g., without block merging. The default +  /// value of \c SkipPseudoOp is set to true to maximize code quality in +  /// general, with an explict false value passed in in a few places like branch +  /// folding and if-conversion to favor profile quality. +  iterator getLastNonDebugInstr(bool SkipPseudoOp = true); +  const_iterator getLastNonDebugInstr(bool SkipPseudoOp = true) const { +    return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr( +        SkipPseudoOp); +  } + +  /// Convenience function that returns true if the block ends in a return +  /// instruction. +  bool isReturnBlock() const { +    return !empty() && back().isReturn(); +  } + +  /// Convenience function that returns true if the bock ends in a EH scope +  /// return instruction. +  bool isEHScopeReturnBlock() const { +    return !empty() && back().isEHScopeReturn(); +  } + +  /// Split a basic block into 2 pieces at \p SplitPoint. A new block will be +  /// inserted after this block, and all instructions after \p SplitInst moved +  /// to it (\p SplitInst will be in the original block). If \p LIS is provided, +  /// LiveIntervals will be appropriately updated. \return the newly inserted +  /// block. +  /// +  /// If \p UpdateLiveIns is true, this will ensure the live ins list is +  /// accurate, including for physreg uses/defs in the original block. +  MachineBasicBlock *splitAt(MachineInstr &SplitInst, bool UpdateLiveIns = true, +                             LiveIntervals *LIS = nullptr); + +  /// Split the critical edge from this block to the given successor block, and +  /// return the newly created block, or null if splitting is not possible. +  /// +  /// This function updates LiveVariables, MachineDominatorTree, and +  /// MachineLoopInfo, as applicable. +  MachineBasicBlock * +  SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P, +                    std::vector<SparseBitVector<>> *LiveInSets = nullptr); + +  /// Check if the edge between this block and the given successor \p +  /// Succ, can be split. If this returns true a subsequent call to +  /// SplitCriticalEdge is guaranteed to return a valid basic block if +  /// no changes occurred in the meantime. +  bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const; + +  void pop_front() { Insts.pop_front(); } +  void pop_back() { Insts.pop_back(); } +  void push_back(MachineInstr *MI) { Insts.push_back(MI); } + +  /// Insert MI into the instruction list before I, possibly inside a bundle. +  /// +  /// If the insertion point is inside a bundle, MI will be added to the bundle, +  /// otherwise MI will not be added to any bundle. That means this function +  /// alone can't be used to prepend or append instructions to bundles. See +  /// MIBundleBuilder::insert() for a more reliable way of doing that. +  instr_iterator insert(instr_iterator I, MachineInstr *M); + +  /// Insert a range of instructions into the instruction list before I. +  template<typename IT> +  void insert(iterator I, IT S, IT E) { +    assert((I == end() || I->getParent() == this) && +           "iterator points outside of basic block"); +    Insts.insert(I.getInstrIterator(), S, E); +  } + +  /// Insert MI into the instruction list before I. +  iterator insert(iterator I, MachineInstr *MI) { +    assert((I == end() || I->getParent() == this) && +           "iterator points outside of basic block"); +    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && +           "Cannot insert instruction with bundle flags"); +    return Insts.insert(I.getInstrIterator(), MI); +  } + +  /// Insert MI into the instruction list after I. +  iterator insertAfter(iterator I, MachineInstr *MI) { +    assert((I == end() || I->getParent() == this) && +           "iterator points outside of basic block"); +    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && +           "Cannot insert instruction with bundle flags"); +    return Insts.insertAfter(I.getInstrIterator(), MI); +  } + +  /// If I is bundled then insert MI into the instruction list after the end of +  /// the bundle, otherwise insert MI immediately after I. +  instr_iterator insertAfterBundle(instr_iterator I, MachineInstr *MI) { +    assert((I == instr_end() || I->getParent() == this) && +           "iterator points outside of basic block"); +    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && +           "Cannot insert instruction with bundle flags"); +    while (I->isBundledWithSucc()) +      ++I; +    return Insts.insertAfter(I, MI); +  } + +  /// Remove an instruction from the instruction list and delete it. +  /// +  /// If the instruction is part of a bundle, the other instructions in the +  /// bundle will still be bundled after removing the single instruction. +  instr_iterator erase(instr_iterator I); + +  /// Remove an instruction from the instruction list and delete it. +  /// +  /// If the instruction is part of a bundle, the other instructions in the +  /// bundle will still be bundled after removing the single instruction. +  instr_iterator erase_instr(MachineInstr *I) { +    return erase(instr_iterator(I)); +  } + +  /// Remove a range of instructions from the instruction list and delete them. +  iterator erase(iterator I, iterator E) { +    return Insts.erase(I.getInstrIterator(), E.getInstrIterator()); +  } + +  /// Remove an instruction or bundle from the instruction list and delete it. +  /// +  /// If I points to a bundle of instructions, they are all erased. +  iterator erase(iterator I) { +    return erase(I, std::next(I)); +  } + +  /// Remove an instruction from the instruction list and delete it. +  /// +  /// If I is the head of a bundle of instructions, the whole bundle will be +  /// erased. +  iterator erase(MachineInstr *I) { +    return erase(iterator(I)); +  } + +  /// Remove the unbundled instruction from the instruction list without +  /// deleting it. +  /// +  /// This function can not be used to remove bundled instructions, use +  /// remove_instr to remove individual instructions from a bundle. +  MachineInstr *remove(MachineInstr *I) { +    assert(!I->isBundled() && "Cannot remove bundled instructions"); +    return Insts.remove(instr_iterator(I)); +  } + +  /// Remove the possibly bundled instruction from the instruction list +  /// without deleting it. +  /// +  /// If the instruction is part of a bundle, the other instructions in the +  /// bundle will still be bundled after removing the single instruction. +  MachineInstr *remove_instr(MachineInstr *I); + +  void clear() { +    Insts.clear(); +  } + +  /// Take an instruction from MBB 'Other' at the position From, and insert it +  /// into this MBB right before 'Where'. +  /// +  /// If From points to a bundle of instructions, the whole bundle is moved. +  void splice(iterator Where, MachineBasicBlock *Other, iterator From) { +    // The range splice() doesn't allow noop moves, but this one does. +    if (Where != From) +      splice(Where, Other, From, std::next(From)); +  } + +  /// Take a block of instructions from MBB 'Other' in the range [From, To), +  /// and insert them into this MBB right before 'Where'. +  /// +  /// The instruction at 'Where' must not be included in the range of +  /// instructions to move. +  void splice(iterator Where, MachineBasicBlock *Other, +              iterator From, iterator To) { +    Insts.splice(Where.getInstrIterator(), Other->Insts, +                 From.getInstrIterator(), To.getInstrIterator()); +  } + +  /// This method unlinks 'this' from the containing function, and returns it, +  /// but does not delete it. +  MachineBasicBlock *removeFromParent(); + +  /// This method unlinks 'this' from the containing function and deletes it. +  void eraseFromParent(); + +  /// Given a machine basic block that branched to 'Old', change the code and +  /// CFG so that it branches to 'New' instead. +  void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New); + +  /// Update all phi nodes in this basic block to refer to basic block \p New +  /// instead of basic block \p Old. +  void replacePhiUsesWith(MachineBasicBlock *Old, MachineBasicBlock *New); + +  /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE +  /// and DBG_LABEL instructions.  Return UnknownLoc if there is none. +  DebugLoc findDebugLoc(instr_iterator MBBI); +  DebugLoc findDebugLoc(iterator MBBI) { +    return findDebugLoc(MBBI.getInstrIterator()); +  } + +  /// Has exact same behavior as @ref findDebugLoc (it also +  /// searches from the first to the last MI of this MBB) except +  /// that this takes reverse iterator. +  DebugLoc rfindDebugLoc(reverse_instr_iterator MBBI); +  DebugLoc rfindDebugLoc(reverse_iterator MBBI) { +    return rfindDebugLoc(MBBI.getInstrIterator()); +  } + +  /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE +  /// instructions.  Return UnknownLoc if there is none. +  DebugLoc findPrevDebugLoc(instr_iterator MBBI); +  DebugLoc findPrevDebugLoc(iterator MBBI) { +    return findPrevDebugLoc(MBBI.getInstrIterator()); +  } + +  /// Has exact same behavior as @ref findPrevDebugLoc (it also +  /// searches from the last to the first MI of this MBB) except +  /// that this takes reverse iterator. +  DebugLoc rfindPrevDebugLoc(reverse_instr_iterator MBBI); +  DebugLoc rfindPrevDebugLoc(reverse_iterator MBBI) { +    return rfindPrevDebugLoc(MBBI.getInstrIterator()); +  } + +  /// Find and return the merged DebugLoc of the branch instructions of the +  /// block. Return UnknownLoc if there is none. +  DebugLoc findBranchDebugLoc(); + +  /// Possible outcome of a register liveness query to computeRegisterLiveness() +  enum LivenessQueryResult { +    LQR_Live,   ///< Register is known to be (at least partially) live. +    LQR_Dead,   ///< Register is known to be fully dead. +    LQR_Unknown ///< Register liveness not decidable from local neighborhood. +  }; + +  /// Return whether (physical) register \p Reg has been defined and not +  /// killed as of just before \p Before. +  /// +  /// Search is localised to a neighborhood of \p Neighborhood instructions +  /// before (searching for defs or kills) and \p Neighborhood instructions +  /// after (searching just for defs) \p Before. +  /// +  /// \p Reg must be a physical register. +  LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI, +                                              MCRegister Reg, +                                              const_iterator Before, +                                              unsigned Neighborhood = 10) const; + +  // Debugging methods. +  void dump() const; +  void print(raw_ostream &OS, const SlotIndexes * = nullptr, +             bool IsStandalone = true) const; +  void print(raw_ostream &OS, ModuleSlotTracker &MST, +             const SlotIndexes * = nullptr, bool IsStandalone = true) const; + +  enum PrintNameFlag { +    PrintNameIr = (1 << 0), ///< Add IR name where available +    PrintNameAttributes = (1 << 1), ///< Print attributes +  }; + +  void printName(raw_ostream &os, unsigned printNameFlags = PrintNameIr, +                 ModuleSlotTracker *moduleSlotTracker = nullptr) const; + +  // Printing method used by LoopInfo. +  void printAsOperand(raw_ostream &OS, bool PrintType = true) const; + +  /// MachineBasicBlocks are uniquely numbered at the function level, unless +  /// they're not in a MachineFunction yet, in which case this will return -1. +  int getNumber() const { return Number; } +  void setNumber(int N) { Number = N; } + +  /// Return the MCSymbol for this basic block. +  MCSymbol *getSymbol() const; + +  /// Return the EHCatchret Symbol for this basic block. +  MCSymbol *getEHCatchretSymbol() const; + +  Optional<uint64_t> getIrrLoopHeaderWeight() const { +    return IrrLoopHeaderWeight; +  } + +  void setIrrLoopHeaderWeight(uint64_t Weight) { +    IrrLoopHeaderWeight = Weight; +  } + +private: +  /// Return probability iterator corresponding to the I successor iterator. +  probability_iterator getProbabilityIterator(succ_iterator I); +  const_probability_iterator +  getProbabilityIterator(const_succ_iterator I) const; + +  friend class MachineBranchProbabilityInfo; +  friend class MIPrinter; + +  /// Return probability of the edge from this block to MBB. This method should +  /// NOT be called directly, but by using getEdgeProbability method from +  /// MachineBranchProbabilityInfo class. +  BranchProbability getSuccProbability(const_succ_iterator Succ) const; + +  // Methods used to maintain doubly linked list of blocks... +  friend struct ilist_callback_traits<MachineBasicBlock>; + +  // Machine-CFG mutators + +  /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this +  /// unless you know what you're doing, because it doesn't update Pred's +  /// successors list. Use Pred->addSuccessor instead. +  void addPredecessor(MachineBasicBlock *Pred); + +  /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this +  /// unless you know what you're doing, because it doesn't update Pred's +  /// successors list. Use Pred->removeSuccessor instead. +  void removePredecessor(MachineBasicBlock *Pred); +}; + +raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB); + +/// Prints a machine basic block reference. +/// +/// The format is: +///   %bb.5           - a machine basic block with MBB.getNumber() == 5. +/// +/// Usage: OS << printMBBReference(MBB) << '\n'; +Printable printMBBReference(const MachineBasicBlock &MBB); + +// This is useful when building IndexedMaps keyed on basic block pointers. +struct MBB2NumberFunctor { +  using argument_type = const MachineBasicBlock *; +  unsigned operator()(const MachineBasicBlock *MBB) const { +    return MBB->getNumber(); +  } +}; + +//===--------------------------------------------------------------------===// +// GraphTraits specializations for machine basic block graphs (machine-CFGs) +//===--------------------------------------------------------------------===// + +// Provide specializations of GraphTraits to be able to treat a +// MachineFunction as a graph of MachineBasicBlocks. +// + +template <> struct GraphTraits<MachineBasicBlock *> { +  using NodeRef = MachineBasicBlock *; +  using ChildIteratorType = MachineBasicBlock::succ_iterator; + +  static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; } +  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } +  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } +}; + +template <> struct GraphTraits<const MachineBasicBlock *> { +  using NodeRef = const MachineBasicBlock *; +  using ChildIteratorType = MachineBasicBlock::const_succ_iterator; + +  static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; } +  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } +  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } +}; + +// Provide specializations of GraphTraits to be able to treat a +// MachineFunction as a graph of MachineBasicBlocks and to walk it +// in inverse order.  Inverse order for a function is considered +// to be when traversing the predecessor edges of a MBB +// instead of the successor edges. +// +template <> struct GraphTraits<Inverse<MachineBasicBlock*>> { +  using NodeRef = MachineBasicBlock *; +  using ChildIteratorType = MachineBasicBlock::pred_iterator; + +  static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) { +    return G.Graph; +  } + +  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); } +  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); } +}; + +template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> { +  using NodeRef = const MachineBasicBlock *; +  using ChildIteratorType = MachineBasicBlock::const_pred_iterator; + +  static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) { +    return G.Graph; +  } + +  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); } +  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); } +}; + +/// MachineInstrSpan provides an interface to get an iteration range +/// containing the instruction it was initialized with, along with all +/// those instructions inserted prior to or following that instruction +/// at some point after the MachineInstrSpan is constructed. +class MachineInstrSpan { +  MachineBasicBlock &MBB; +  MachineBasicBlock::iterator I, B, E; + +public: +  MachineInstrSpan(MachineBasicBlock::iterator I, MachineBasicBlock *BB) +      : MBB(*BB), I(I), B(I == MBB.begin() ? MBB.end() : std::prev(I)), +        E(std::next(I)) { +    assert(I == BB->end() || I->getParent() == BB); +  } + +  MachineBasicBlock::iterator begin() { +    return B == MBB.end() ? MBB.begin() : std::next(B); +  } +  MachineBasicBlock::iterator end() { return E; } +  bool empty() { return begin() == end(); } + +  MachineBasicBlock::iterator getInitial() { return I; } +}; + +/// Increment \p It until it points to a non-debug instruction or to \p End +/// and return the resulting iterator. This function should only be used +/// MachineBasicBlock::{iterator, const_iterator, instr_iterator, +/// const_instr_iterator} and the respective reverse iterators. +template <typename IterT> +inline IterT skipDebugInstructionsForward(IterT It, IterT End, +                                          bool SkipPseudoOp = true) { +  while (It != End && +         (It->isDebugInstr() || (SkipPseudoOp && It->isPseudoProbe()))) +    ++It; +  return It; +} + +/// Decrement \p It until it points to a non-debug instruction or to \p Begin +/// and return the resulting iterator. This function should only be used +/// MachineBasicBlock::{iterator, const_iterator, instr_iterator, +/// const_instr_iterator} and the respective reverse iterators. +template <class IterT> +inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin, +                                           bool SkipPseudoOp = true) { +  while (It != Begin && +         (It->isDebugInstr() || (SkipPseudoOp && It->isPseudoProbe()))) +    --It; +  return It; +} + +/// Increment \p It, then continue incrementing it while it points to a debug +/// instruction. A replacement for std::next. +template <typename IterT> +inline IterT next_nodbg(IterT It, IterT End, bool SkipPseudoOp = true) { +  return skipDebugInstructionsForward(std::next(It), End, SkipPseudoOp); +} + +/// Decrement \p It, then continue decrementing it while it points to a debug +/// instruction. A replacement for std::prev. +template <typename IterT> +inline IterT prev_nodbg(IterT It, IterT Begin, bool SkipPseudoOp = true) { +  return skipDebugInstructionsBackward(std::prev(It), Begin, SkipPseudoOp); +} + +/// Construct a range iterator which begins at \p It and moves forwards until +/// \p End is reached, skipping any debug instructions. +template <typename IterT> +inline auto instructionsWithoutDebug(IterT It, IterT End, +                                     bool SkipPseudoOp = true) { +  return make_filter_range(make_range(It, End), [=](const MachineInstr &MI) { +    return !MI.isDebugInstr() && !(SkipPseudoOp && MI.isPseudoProbe()); +  }); +} + +} // end namespace llvm + +#endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H + +#ifdef __GNUC__ +#pragma GCC diagnostic pop +#endif | 
