aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm14/include/llvm/ADT/TinyPtrVector.h
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm14/include/llvm/ADT/TinyPtrVector.h
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm14/include/llvm/ADT/TinyPtrVector.h')
-rw-r--r--contrib/libs/llvm14/include/llvm/ADT/TinyPtrVector.h369
1 files changed, 369 insertions, 0 deletions
diff --git a/contrib/libs/llvm14/include/llvm/ADT/TinyPtrVector.h b/contrib/libs/llvm14/include/llvm/ADT/TinyPtrVector.h
new file mode 100644
index 0000000000..f84519e77f
--- /dev/null
+++ b/contrib/libs/llvm14/include/llvm/ADT/TinyPtrVector.h
@@ -0,0 +1,369 @@
+#pragma once
+
+#ifdef __GNUC__
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wunused-parameter"
+#endif
+
+//===- llvm/ADT/TinyPtrVector.h - 'Normally tiny' vectors -------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_TINYPTRVECTOR_H
+#define LLVM_ADT_TINYPTRVECTOR_H
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/PointerUnion.h"
+#include "llvm/ADT/SmallVector.h"
+#include <cassert>
+#include <cstddef>
+#include <iterator>
+#include <type_traits>
+
+namespace llvm {
+
+/// TinyPtrVector - This class is specialized for cases where there are
+/// normally 0 or 1 element in a vector, but is general enough to go beyond that
+/// when required.
+///
+/// NOTE: This container doesn't allow you to store a null pointer into it.
+///
+template <typename EltTy>
+class TinyPtrVector {
+public:
+ using VecTy = SmallVector<EltTy, 4>;
+ using value_type = typename VecTy::value_type;
+ // EltTy must be the first pointer type so that is<EltTy> is true for the
+ // default-constructed PtrUnion. This allows an empty TinyPtrVector to
+ // naturally vend a begin/end iterator of type EltTy* without an additional
+ // check for the empty state.
+ using PtrUnion = PointerUnion<EltTy, VecTy *>;
+
+private:
+ PtrUnion Val;
+
+public:
+ TinyPtrVector() = default;
+
+ ~TinyPtrVector() {
+ if (VecTy *V = Val.template dyn_cast<VecTy*>())
+ delete V;
+ }
+
+ TinyPtrVector(const TinyPtrVector &RHS) : Val(RHS.Val) {
+ if (VecTy *V = Val.template dyn_cast<VecTy*>())
+ Val = new VecTy(*V);
+ }
+
+ TinyPtrVector &operator=(const TinyPtrVector &RHS) {
+ if (this == &RHS)
+ return *this;
+ if (RHS.empty()) {
+ this->clear();
+ return *this;
+ }
+
+ // Try to squeeze into the single slot. If it won't fit, allocate a copied
+ // vector.
+ if (Val.template is<EltTy>()) {
+ if (RHS.size() == 1)
+ Val = RHS.front();
+ else
+ Val = new VecTy(*RHS.Val.template get<VecTy*>());
+ return *this;
+ }
+
+ // If we have a full vector allocated, try to re-use it.
+ if (RHS.Val.template is<EltTy>()) {
+ Val.template get<VecTy*>()->clear();
+ Val.template get<VecTy*>()->push_back(RHS.front());
+ } else {
+ *Val.template get<VecTy*>() = *RHS.Val.template get<VecTy*>();
+ }
+ return *this;
+ }
+
+ TinyPtrVector(TinyPtrVector &&RHS) : Val(RHS.Val) {
+ RHS.Val = (EltTy)nullptr;
+ }
+
+ TinyPtrVector &operator=(TinyPtrVector &&RHS) {
+ if (this == &RHS)
+ return *this;
+ if (RHS.empty()) {
+ this->clear();
+ return *this;
+ }
+
+ // If this vector has been allocated on the heap, re-use it if cheap. If it
+ // would require more copying, just delete it and we'll steal the other
+ // side.
+ if (VecTy *V = Val.template dyn_cast<VecTy*>()) {
+ if (RHS.Val.template is<EltTy>()) {
+ V->clear();
+ V->push_back(RHS.front());
+ RHS.Val = EltTy();
+ return *this;
+ }
+ delete V;
+ }
+
+ Val = RHS.Val;
+ RHS.Val = EltTy();
+ return *this;
+ }
+
+ TinyPtrVector(std::initializer_list<EltTy> IL)
+ : Val(IL.size() == 0
+ ? PtrUnion()
+ : IL.size() == 1 ? PtrUnion(*IL.begin())
+ : PtrUnion(new VecTy(IL.begin(), IL.end()))) {}
+
+ /// Constructor from an ArrayRef.
+ ///
+ /// This also is a constructor for individual array elements due to the single
+ /// element constructor for ArrayRef.
+ explicit TinyPtrVector(ArrayRef<EltTy> Elts)
+ : Val(Elts.empty()
+ ? PtrUnion()
+ : Elts.size() == 1
+ ? PtrUnion(Elts[0])
+ : PtrUnion(new VecTy(Elts.begin(), Elts.end()))) {}
+
+ TinyPtrVector(size_t Count, EltTy Value)
+ : Val(Count == 0 ? PtrUnion()
+ : Count == 1 ? PtrUnion(Value)
+ : PtrUnion(new VecTy(Count, Value))) {}
+
+ // implicit conversion operator to ArrayRef.
+ operator ArrayRef<EltTy>() const {
+ if (Val.isNull())
+ return None;
+ if (Val.template is<EltTy>())
+ return *Val.getAddrOfPtr1();
+ return *Val.template get<VecTy*>();
+ }
+
+ // implicit conversion operator to MutableArrayRef.
+ operator MutableArrayRef<EltTy>() {
+ if (Val.isNull())
+ return None;
+ if (Val.template is<EltTy>())
+ return *Val.getAddrOfPtr1();
+ return *Val.template get<VecTy*>();
+ }
+
+ // Implicit conversion to ArrayRef<U> if EltTy* implicitly converts to U*.
+ template <
+ typename U,
+ std::enable_if_t<std::is_convertible<ArrayRef<EltTy>, ArrayRef<U>>::value,
+ bool> = false>
+ operator ArrayRef<U>() const {
+ return operator ArrayRef<EltTy>();
+ }
+
+ bool empty() const {
+ // This vector can be empty if it contains no element, or if it
+ // contains a pointer to an empty vector.
+ if (Val.isNull()) return true;
+ if (VecTy *Vec = Val.template dyn_cast<VecTy*>())
+ return Vec->empty();
+ return false;
+ }
+
+ unsigned size() const {
+ if (empty())
+ return 0;
+ if (Val.template is<EltTy>())
+ return 1;
+ return Val.template get<VecTy*>()->size();
+ }
+
+ using iterator = EltTy *;
+ using const_iterator = const EltTy *;
+ using reverse_iterator = std::reverse_iterator<iterator>;
+ using const_reverse_iterator = std::reverse_iterator<const_iterator>;
+
+ iterator begin() {
+ if (Val.template is<EltTy>())
+ return Val.getAddrOfPtr1();
+
+ return Val.template get<VecTy *>()->begin();
+ }
+
+ iterator end() {
+ if (Val.template is<EltTy>())
+ return begin() + (Val.isNull() ? 0 : 1);
+
+ return Val.template get<VecTy *>()->end();
+ }
+
+ const_iterator begin() const {
+ return (const_iterator)const_cast<TinyPtrVector*>(this)->begin();
+ }
+
+ const_iterator end() const {
+ return (const_iterator)const_cast<TinyPtrVector*>(this)->end();
+ }
+
+ reverse_iterator rbegin() { return reverse_iterator(end()); }
+ reverse_iterator rend() { return reverse_iterator(begin()); }
+
+ const_reverse_iterator rbegin() const {
+ return const_reverse_iterator(end());
+ }
+
+ const_reverse_iterator rend() const {
+ return const_reverse_iterator(begin());
+ }
+
+ EltTy operator[](unsigned i) const {
+ assert(!Val.isNull() && "can't index into an empty vector");
+ if (Val.template is<EltTy>()) {
+ assert(i == 0 && "tinyvector index out of range");
+ return Val.template get<EltTy>();
+ }
+
+ assert(i < Val.template get<VecTy*>()->size() &&
+ "tinyvector index out of range");
+ return (*Val.template get<VecTy*>())[i];
+ }
+
+ EltTy front() const {
+ assert(!empty() && "vector empty");
+ if (Val.template is<EltTy>())
+ return Val.template get<EltTy>();
+ return Val.template get<VecTy*>()->front();
+ }
+
+ EltTy back() const {
+ assert(!empty() && "vector empty");
+ if (Val.template is<EltTy>())
+ return Val.template get<EltTy>();
+ return Val.template get<VecTy*>()->back();
+ }
+
+ void push_back(EltTy NewVal) {
+ // If we have nothing, add something.
+ if (Val.isNull()) {
+ Val = NewVal;
+ assert(!Val.isNull() && "Can't add a null value");
+ return;
+ }
+
+ // If we have a single value, convert to a vector.
+ if (Val.template is<EltTy>()) {
+ EltTy V = Val.template get<EltTy>();
+ Val = new VecTy();
+ Val.template get<VecTy*>()->push_back(V);
+ }
+
+ // Add the new value, we know we have a vector.
+ Val.template get<VecTy*>()->push_back(NewVal);
+ }
+
+ void pop_back() {
+ // If we have a single value, convert to empty.
+ if (Val.template is<EltTy>())
+ Val = (EltTy)nullptr;
+ else if (VecTy *Vec = Val.template get<VecTy*>())
+ Vec->pop_back();
+ }
+
+ void clear() {
+ // If we have a single value, convert to empty.
+ if (Val.template is<EltTy>()) {
+ Val = EltTy();
+ } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
+ // If we have a vector form, just clear it.
+ Vec->clear();
+ }
+ // Otherwise, we're already empty.
+ }
+
+ iterator erase(iterator I) {
+ assert(I >= begin() && "Iterator to erase is out of bounds.");
+ assert(I < end() && "Erasing at past-the-end iterator.");
+
+ // If we have a single value, convert to empty.
+ if (Val.template is<EltTy>()) {
+ if (I == begin())
+ Val = EltTy();
+ } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
+ // multiple items in a vector; just do the erase, there is no
+ // benefit to collapsing back to a pointer
+ return Vec->erase(I);
+ }
+ return end();
+ }
+
+ iterator erase(iterator S, iterator E) {
+ assert(S >= begin() && "Range to erase is out of bounds.");
+ assert(S <= E && "Trying to erase invalid range.");
+ assert(E <= end() && "Trying to erase past the end.");
+
+ if (Val.template is<EltTy>()) {
+ if (S == begin() && S != E)
+ Val = EltTy();
+ } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
+ return Vec->erase(S, E);
+ }
+ return end();
+ }
+
+ iterator insert(iterator I, const EltTy &Elt) {
+ assert(I >= this->begin() && "Insertion iterator is out of bounds.");
+ assert(I <= this->end() && "Inserting past the end of the vector.");
+ if (I == end()) {
+ push_back(Elt);
+ return std::prev(end());
+ }
+ assert(!Val.isNull() && "Null value with non-end insert iterator.");
+ if (Val.template is<EltTy>()) {
+ EltTy V = Val.template get<EltTy>();
+ assert(I == begin());
+ Val = Elt;
+ push_back(V);
+ return begin();
+ }
+
+ return Val.template get<VecTy*>()->insert(I, Elt);
+ }
+
+ template<typename ItTy>
+ iterator insert(iterator I, ItTy From, ItTy To) {
+ assert(I >= this->begin() && "Insertion iterator is out of bounds.");
+ assert(I <= this->end() && "Inserting past the end of the vector.");
+ if (From == To)
+ return I;
+
+ // If we have a single value, convert to a vector.
+ ptrdiff_t Offset = I - begin();
+ if (Val.isNull()) {
+ if (std::next(From) == To) {
+ Val = *From;
+ return begin();
+ }
+
+ Val = new VecTy();
+ } else if (Val.template is<EltTy>()) {
+ EltTy V = Val.template get<EltTy>();
+ Val = new VecTy();
+ Val.template get<VecTy*>()->push_back(V);
+ }
+ return Val.template get<VecTy*>()->insert(begin() + Offset, From, To);
+ }
+};
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_TINYPTRVECTOR_H
+
+#ifdef __GNUC__
+#pragma GCC diagnostic pop
+#endif