diff options
author | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
---|---|---|
committer | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
commit | 6ffe9e53658409f212834330e13564e4952558f6 (patch) | |
tree | 85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm14/include/llvm/ADT/SparseSet.h | |
parent | 726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff) | |
download | ydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz |
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm14/include/llvm/ADT/SparseSet.h')
-rw-r--r-- | contrib/libs/llvm14/include/llvm/ADT/SparseSet.h | 330 |
1 files changed, 330 insertions, 0 deletions
diff --git a/contrib/libs/llvm14/include/llvm/ADT/SparseSet.h b/contrib/libs/llvm14/include/llvm/ADT/SparseSet.h new file mode 100644 index 0000000000..f0b94afda2 --- /dev/null +++ b/contrib/libs/llvm14/include/llvm/ADT/SparseSet.h @@ -0,0 +1,330 @@ +#pragma once + +#ifdef __GNUC__ +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wunused-parameter" +#endif + +//===- llvm/ADT/SparseSet.h - Sparse set ------------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// +/// \file +/// This file defines the SparseSet class derived from the version described in +/// Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters +/// on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993. +/// +/// A sparse set holds a small number of objects identified by integer keys from +/// a moderately sized universe. The sparse set uses more memory than other +/// containers in order to provide faster operations. +/// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ADT_SPARSESET_H +#define LLVM_ADT_SPARSESET_H + +#include "llvm/ADT/identity.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Support/AllocatorBase.h" +#include <cassert> +#include <cstdint> +#include <cstdlib> +#include <limits> +#include <utility> + +namespace llvm { + +/// SparseSetValTraits - Objects in a SparseSet are identified by keys that can +/// be uniquely converted to a small integer less than the set's universe. This +/// class allows the set to hold values that differ from the set's key type as +/// long as an index can still be derived from the value. SparseSet never +/// directly compares ValueT, only their indices, so it can map keys to +/// arbitrary values. SparseSetValTraits computes the index from the value +/// object. To compute the index from a key, SparseSet uses a separate +/// KeyFunctorT template argument. +/// +/// A simple type declaration, SparseSet<Type>, handles these cases: +/// - unsigned key, identity index, identity value +/// - unsigned key, identity index, fat value providing getSparseSetIndex() +/// +/// The type declaration SparseSet<Type, UnaryFunction> handles: +/// - unsigned key, remapped index, identity value (virtual registers) +/// - pointer key, pointer-derived index, identity value (node+ID) +/// - pointer key, pointer-derived index, fat value with getSparseSetIndex() +/// +/// Only other, unexpected cases require specializing SparseSetValTraits. +/// +/// For best results, ValueT should not require a destructor. +/// +template<typename ValueT> +struct SparseSetValTraits { + static unsigned getValIndex(const ValueT &Val) { + return Val.getSparseSetIndex(); + } +}; + +/// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The +/// generic implementation handles ValueT classes which either provide +/// getSparseSetIndex() or specialize SparseSetValTraits<>. +/// +template<typename KeyT, typename ValueT, typename KeyFunctorT> +struct SparseSetValFunctor { + unsigned operator()(const ValueT &Val) const { + return SparseSetValTraits<ValueT>::getValIndex(Val); + } +}; + +/// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of +/// identity key/value sets. +template<typename KeyT, typename KeyFunctorT> +struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> { + unsigned operator()(const KeyT &Key) const { + return KeyFunctorT()(Key); + } +}; + +/// SparseSet - Fast set implementation for objects that can be identified by +/// small unsigned keys. +/// +/// SparseSet allocates memory proportional to the size of the key universe, so +/// it is not recommended for building composite data structures. It is useful +/// for algorithms that require a single set with fast operations. +/// +/// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast +/// clear() and iteration as fast as a vector. The find(), insert(), and +/// erase() operations are all constant time, and typically faster than a hash +/// table. The iteration order doesn't depend on numerical key values, it only +/// depends on the order of insert() and erase() operations. When no elements +/// have been erased, the iteration order is the insertion order. +/// +/// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but +/// offers constant-time clear() and size() operations as well as fast +/// iteration independent on the size of the universe. +/// +/// SparseSet contains a dense vector holding all the objects and a sparse +/// array holding indexes into the dense vector. Most of the memory is used by +/// the sparse array which is the size of the key universe. The SparseT +/// template parameter provides a space/speed tradeoff for sets holding many +/// elements. +/// +/// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse +/// array uses 4 x Universe bytes. +/// +/// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache +/// lines, but the sparse array is 4x smaller. N is the number of elements in +/// the set. +/// +/// For sets that may grow to thousands of elements, SparseT should be set to +/// uint16_t or uint32_t. +/// +/// @tparam ValueT The type of objects in the set. +/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT. +/// @tparam SparseT An unsigned integer type. See above. +/// +template<typename ValueT, + typename KeyFunctorT = identity<unsigned>, + typename SparseT = uint8_t> +class SparseSet { + static_assert(std::numeric_limits<SparseT>::is_integer && + !std::numeric_limits<SparseT>::is_signed, + "SparseT must be an unsigned integer type"); + + using KeyT = typename KeyFunctorT::argument_type; + using DenseT = SmallVector<ValueT, 8>; + using size_type = unsigned; + DenseT Dense; + SparseT *Sparse = nullptr; + unsigned Universe = 0; + KeyFunctorT KeyIndexOf; + SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf; + +public: + using value_type = ValueT; + using reference = ValueT &; + using const_reference = const ValueT &; + using pointer = ValueT *; + using const_pointer = const ValueT *; + + SparseSet() = default; + SparseSet(const SparseSet &) = delete; + SparseSet &operator=(const SparseSet &) = delete; + ~SparseSet() { free(Sparse); } + + /// setUniverse - Set the universe size which determines the largest key the + /// set can hold. The universe must be sized before any elements can be + /// added. + /// + /// @param U Universe size. All object keys must be less than U. + /// + void setUniverse(unsigned U) { + // It's not hard to resize the universe on a non-empty set, but it doesn't + // seem like a likely use case, so we can add that code when we need it. + assert(empty() && "Can only resize universe on an empty map"); + // Hysteresis prevents needless reallocations. + if (U >= Universe/4 && U <= Universe) + return; + free(Sparse); + // The Sparse array doesn't actually need to be initialized, so malloc + // would be enough here, but that will cause tools like valgrind to + // complain about branching on uninitialized data. + Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT))); + Universe = U; + } + + // Import trivial vector stuff from DenseT. + using iterator = typename DenseT::iterator; + using const_iterator = typename DenseT::const_iterator; + + const_iterator begin() const { return Dense.begin(); } + const_iterator end() const { return Dense.end(); } + iterator begin() { return Dense.begin(); } + iterator end() { return Dense.end(); } + + /// empty - Returns true if the set is empty. + /// + /// This is not the same as BitVector::empty(). + /// + bool empty() const { return Dense.empty(); } + + /// size - Returns the number of elements in the set. + /// + /// This is not the same as BitVector::size() which returns the size of the + /// universe. + /// + size_type size() const { return Dense.size(); } + + /// clear - Clears the set. This is a very fast constant time operation. + /// + void clear() { + // Sparse does not need to be cleared, see find(). + Dense.clear(); + } + + /// findIndex - Find an element by its index. + /// + /// @param Idx A valid index to find. + /// @returns An iterator to the element identified by key, or end(). + /// + iterator findIndex(unsigned Idx) { + assert(Idx < Universe && "Key out of range"); + const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; + for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) { + const unsigned FoundIdx = ValIndexOf(Dense[i]); + assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?"); + if (Idx == FoundIdx) + return begin() + i; + // Stride is 0 when SparseT >= unsigned. We don't need to loop. + if (!Stride) + break; + } + return end(); + } + + /// find - Find an element by its key. + /// + /// @param Key A valid key to find. + /// @returns An iterator to the element identified by key, or end(). + /// + iterator find(const KeyT &Key) { + return findIndex(KeyIndexOf(Key)); + } + + const_iterator find(const KeyT &Key) const { + return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key)); + } + + /// Check if the set contains the given \c Key. + /// + /// @param Key A valid key to find. + bool contains(const KeyT &Key) const { return find(Key) == end() ? 0 : 1; } + + /// count - Returns 1 if this set contains an element identified by Key, + /// 0 otherwise. + /// + size_type count(const KeyT &Key) const { return contains(Key) ? 1 : 0; } + + /// insert - Attempts to insert a new element. + /// + /// If Val is successfully inserted, return (I, true), where I is an iterator + /// pointing to the newly inserted element. + /// + /// If the set already contains an element with the same key as Val, return + /// (I, false), where I is an iterator pointing to the existing element. + /// + /// Insertion invalidates all iterators. + /// + std::pair<iterator, bool> insert(const ValueT &Val) { + unsigned Idx = ValIndexOf(Val); + iterator I = findIndex(Idx); + if (I != end()) + return std::make_pair(I, false); + Sparse[Idx] = size(); + Dense.push_back(Val); + return std::make_pair(end() - 1, true); + } + + /// array subscript - If an element already exists with this key, return it. + /// Otherwise, automatically construct a new value from Key, insert it, + /// and return the newly inserted element. + ValueT &operator[](const KeyT &Key) { + return *insert(ValueT(Key)).first; + } + + ValueT pop_back_val() { + // Sparse does not need to be cleared, see find(). + return Dense.pop_back_val(); + } + + /// erase - Erases an existing element identified by a valid iterator. + /// + /// This invalidates all iterators, but erase() returns an iterator pointing + /// to the next element. This makes it possible to erase selected elements + /// while iterating over the set: + /// + /// for (SparseSet::iterator I = Set.begin(); I != Set.end();) + /// if (test(*I)) + /// I = Set.erase(I); + /// else + /// ++I; + /// + /// Note that end() changes when elements are erased, unlike std::list. + /// + iterator erase(iterator I) { + assert(unsigned(I - begin()) < size() && "Invalid iterator"); + if (I != end() - 1) { + *I = Dense.back(); + unsigned BackIdx = ValIndexOf(Dense.back()); + assert(BackIdx < Universe && "Invalid key in set. Did object mutate?"); + Sparse[BackIdx] = I - begin(); + } + // This depends on SmallVector::pop_back() not invalidating iterators. + // std::vector::pop_back() doesn't give that guarantee. + Dense.pop_back(); + return I; + } + + /// erase - Erases an element identified by Key, if it exists. + /// + /// @param Key The key identifying the element to erase. + /// @returns True when an element was erased, false if no element was found. + /// + bool erase(const KeyT &Key) { + iterator I = find(Key); + if (I == end()) + return false; + erase(I); + return true; + } +}; + +} // end namespace llvm + +#endif // LLVM_ADT_SPARSESET_H + +#ifdef __GNUC__ +#pragma GCC diagnostic pop +#endif |