diff options
author | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
---|---|---|
committer | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
commit | 6ffe9e53658409f212834330e13564e4952558f6 (patch) | |
tree | 85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm14/include/llvm/ADT/BitVector.h | |
parent | 726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff) | |
download | ydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz |
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm14/include/llvm/ADT/BitVector.h')
-rw-r--r-- | contrib/libs/llvm14/include/llvm/ADT/BitVector.h | 867 |
1 files changed, 867 insertions, 0 deletions
diff --git a/contrib/libs/llvm14/include/llvm/ADT/BitVector.h b/contrib/libs/llvm14/include/llvm/ADT/BitVector.h new file mode 100644 index 0000000000..936a2b2073 --- /dev/null +++ b/contrib/libs/llvm14/include/llvm/ADT/BitVector.h @@ -0,0 +1,867 @@ +#pragma once + +#ifdef __GNUC__ +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wunused-parameter" +#endif + +//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// +/// \file +/// This file implements the BitVector class. +/// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ADT_BITVECTOR_H +#define LLVM_ADT_BITVECTOR_H + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMapInfo.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Support/MathExtras.h" +#include <algorithm> +#include <cassert> +#include <climits> +#include <cstdint> +#include <cstdlib> +#include <cstring> +#include <utility> + +namespace llvm { + +/// ForwardIterator for the bits that are set. +/// Iterators get invalidated when resize / reserve is called. +template <typename BitVectorT> class const_set_bits_iterator_impl { + const BitVectorT &Parent; + int Current = 0; + + void advance() { + assert(Current != -1 && "Trying to advance past end."); + Current = Parent.find_next(Current); + } + +public: + const_set_bits_iterator_impl(const BitVectorT &Parent, int Current) + : Parent(Parent), Current(Current) {} + explicit const_set_bits_iterator_impl(const BitVectorT &Parent) + : const_set_bits_iterator_impl(Parent, Parent.find_first()) {} + const_set_bits_iterator_impl(const const_set_bits_iterator_impl &) = default; + + const_set_bits_iterator_impl operator++(int) { + auto Prev = *this; + advance(); + return Prev; + } + + const_set_bits_iterator_impl &operator++() { + advance(); + return *this; + } + + unsigned operator*() const { return Current; } + + bool operator==(const const_set_bits_iterator_impl &Other) const { + assert(&Parent == &Other.Parent && + "Comparing iterators from different BitVectors"); + return Current == Other.Current; + } + + bool operator!=(const const_set_bits_iterator_impl &Other) const { + assert(&Parent == &Other.Parent && + "Comparing iterators from different BitVectors"); + return Current != Other.Current; + } +}; + +class BitVector { + typedef uintptr_t BitWord; + + enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; + + static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, + "Unsupported word size"); + + using Storage = SmallVector<BitWord>; + + Storage Bits; // Actual bits. + unsigned Size; // Size of bitvector in bits. + +public: + using size_type = unsigned; + + // Encapsulation of a single bit. + class reference { + + BitWord *WordRef; + unsigned BitPos; + + public: + reference(BitVector &b, unsigned Idx) { + WordRef = &b.Bits[Idx / BITWORD_SIZE]; + BitPos = Idx % BITWORD_SIZE; + } + + reference() = delete; + reference(const reference&) = default; + + reference &operator=(reference t) { + *this = bool(t); + return *this; + } + + reference& operator=(bool t) { + if (t) + *WordRef |= BitWord(1) << BitPos; + else + *WordRef &= ~(BitWord(1) << BitPos); + return *this; + } + + operator bool() const { + return ((*WordRef) & (BitWord(1) << BitPos)) != 0; + } + }; + + typedef const_set_bits_iterator_impl<BitVector> const_set_bits_iterator; + typedef const_set_bits_iterator set_iterator; + + const_set_bits_iterator set_bits_begin() const { + return const_set_bits_iterator(*this); + } + const_set_bits_iterator set_bits_end() const { + return const_set_bits_iterator(*this, -1); + } + iterator_range<const_set_bits_iterator> set_bits() const { + return make_range(set_bits_begin(), set_bits_end()); + } + + /// BitVector default ctor - Creates an empty bitvector. + BitVector() : Size(0) {} + + /// BitVector ctor - Creates a bitvector of specified number of bits. All + /// bits are initialized to the specified value. + explicit BitVector(unsigned s, bool t = false) + : Bits(NumBitWords(s), 0 - (BitWord)t), Size(s) { + if (t) + clear_unused_bits(); + } + + /// empty - Tests whether there are no bits in this bitvector. + bool empty() const { return Size == 0; } + + /// size - Returns the number of bits in this bitvector. + size_type size() const { return Size; } + + /// count - Returns the number of bits which are set. + size_type count() const { + unsigned NumBits = 0; + for (auto Bit : Bits) + NumBits += countPopulation(Bit); + return NumBits; + } + + /// any - Returns true if any bit is set. + bool any() const { + return any_of(Bits, [](BitWord Bit) { return Bit != 0; }); + } + + /// all - Returns true if all bits are set. + bool all() const { + for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i) + if (Bits[i] != ~BitWord(0)) + return false; + + // If bits remain check that they are ones. The unused bits are always zero. + if (unsigned Remainder = Size % BITWORD_SIZE) + return Bits[Size / BITWORD_SIZE] == (BitWord(1) << Remainder) - 1; + + return true; + } + + /// none - Returns true if none of the bits are set. + bool none() const { + return !any(); + } + + /// find_first_in - Returns the index of the first set / unset bit, + /// depending on \p Set, in the range [Begin, End). + /// Returns -1 if all bits in the range are unset / set. + int find_first_in(unsigned Begin, unsigned End, bool Set = true) const { + assert(Begin <= End && End <= Size); + if (Begin == End) + return -1; + + unsigned FirstWord = Begin / BITWORD_SIZE; + unsigned LastWord = (End - 1) / BITWORD_SIZE; + + // Check subsequent words. + // The code below is based on search for the first _set_ bit. If + // we're searching for the first _unset_, we just take the + // complement of each word before we use it and apply + // the same method. + for (unsigned i = FirstWord; i <= LastWord; ++i) { + BitWord Copy = Bits[i]; + if (!Set) + Copy = ~Copy; + + if (i == FirstWord) { + unsigned FirstBit = Begin % BITWORD_SIZE; + Copy &= maskTrailingZeros<BitWord>(FirstBit); + } + + if (i == LastWord) { + unsigned LastBit = (End - 1) % BITWORD_SIZE; + Copy &= maskTrailingOnes<BitWord>(LastBit + 1); + } + if (Copy != 0) + return i * BITWORD_SIZE + countTrailingZeros(Copy); + } + return -1; + } + + /// find_last_in - Returns the index of the last set bit in the range + /// [Begin, End). Returns -1 if all bits in the range are unset. + int find_last_in(unsigned Begin, unsigned End) const { + assert(Begin <= End && End <= Size); + if (Begin == End) + return -1; + + unsigned LastWord = (End - 1) / BITWORD_SIZE; + unsigned FirstWord = Begin / BITWORD_SIZE; + + for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) { + unsigned CurrentWord = i - 1; + + BitWord Copy = Bits[CurrentWord]; + if (CurrentWord == LastWord) { + unsigned LastBit = (End - 1) % BITWORD_SIZE; + Copy &= maskTrailingOnes<BitWord>(LastBit + 1); + } + + if (CurrentWord == FirstWord) { + unsigned FirstBit = Begin % BITWORD_SIZE; + Copy &= maskTrailingZeros<BitWord>(FirstBit); + } + + if (Copy != 0) + return (CurrentWord + 1) * BITWORD_SIZE - countLeadingZeros(Copy) - 1; + } + + return -1; + } + + /// find_first_unset_in - Returns the index of the first unset bit in the + /// range [Begin, End). Returns -1 if all bits in the range are set. + int find_first_unset_in(unsigned Begin, unsigned End) const { + return find_first_in(Begin, End, /* Set = */ false); + } + + /// find_last_unset_in - Returns the index of the last unset bit in the + /// range [Begin, End). Returns -1 if all bits in the range are set. + int find_last_unset_in(unsigned Begin, unsigned End) const { + assert(Begin <= End && End <= Size); + if (Begin == End) + return -1; + + unsigned LastWord = (End - 1) / BITWORD_SIZE; + unsigned FirstWord = Begin / BITWORD_SIZE; + + for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) { + unsigned CurrentWord = i - 1; + + BitWord Copy = Bits[CurrentWord]; + if (CurrentWord == LastWord) { + unsigned LastBit = (End - 1) % BITWORD_SIZE; + Copy |= maskTrailingZeros<BitWord>(LastBit + 1); + } + + if (CurrentWord == FirstWord) { + unsigned FirstBit = Begin % BITWORD_SIZE; + Copy |= maskTrailingOnes<BitWord>(FirstBit); + } + + if (Copy != ~BitWord(0)) { + unsigned Result = + (CurrentWord + 1) * BITWORD_SIZE - countLeadingOnes(Copy) - 1; + return Result < Size ? Result : -1; + } + } + return -1; + } + + /// find_first - Returns the index of the first set bit, -1 if none + /// of the bits are set. + int find_first() const { return find_first_in(0, Size); } + + /// find_last - Returns the index of the last set bit, -1 if none of the bits + /// are set. + int find_last() const { return find_last_in(0, Size); } + + /// find_next - Returns the index of the next set bit following the + /// "Prev" bit. Returns -1 if the next set bit is not found. + int find_next(unsigned Prev) const { return find_first_in(Prev + 1, Size); } + + /// find_prev - Returns the index of the first set bit that precedes the + /// the bit at \p PriorTo. Returns -1 if all previous bits are unset. + int find_prev(unsigned PriorTo) const { return find_last_in(0, PriorTo); } + + /// find_first_unset - Returns the index of the first unset bit, -1 if all + /// of the bits are set. + int find_first_unset() const { return find_first_unset_in(0, Size); } + + /// find_next_unset - Returns the index of the next unset bit following the + /// "Prev" bit. Returns -1 if all remaining bits are set. + int find_next_unset(unsigned Prev) const { + return find_first_unset_in(Prev + 1, Size); + } + + /// find_last_unset - Returns the index of the last unset bit, -1 if all of + /// the bits are set. + int find_last_unset() const { return find_last_unset_in(0, Size); } + + /// find_prev_unset - Returns the index of the first unset bit that precedes + /// the bit at \p PriorTo. Returns -1 if all previous bits are set. + int find_prev_unset(unsigned PriorTo) { + return find_last_unset_in(0, PriorTo); + } + + /// clear - Removes all bits from the bitvector. + void clear() { + Size = 0; + Bits.clear(); + } + + /// resize - Grow or shrink the bitvector. + void resize(unsigned N, bool t = false) { + set_unused_bits(t); + Size = N; + Bits.resize(NumBitWords(N), 0 - BitWord(t)); + clear_unused_bits(); + } + + void reserve(unsigned N) { Bits.reserve(NumBitWords(N)); } + + // Set, reset, flip + BitVector &set() { + init_words(true); + clear_unused_bits(); + return *this; + } + + BitVector &set(unsigned Idx) { + assert(Idx < Size && "access in bound"); + Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); + return *this; + } + + /// set - Efficiently set a range of bits in [I, E) + BitVector &set(unsigned I, unsigned E) { + assert(I <= E && "Attempted to set backwards range!"); + assert(E <= size() && "Attempted to set out-of-bounds range!"); + + if (I == E) return *this; + + if (I / BITWORD_SIZE == E / BITWORD_SIZE) { + BitWord EMask = BitWord(1) << (E % BITWORD_SIZE); + BitWord IMask = BitWord(1) << (I % BITWORD_SIZE); + BitWord Mask = EMask - IMask; + Bits[I / BITWORD_SIZE] |= Mask; + return *this; + } + + BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE); + Bits[I / BITWORD_SIZE] |= PrefixMask; + I = alignTo(I, BITWORD_SIZE); + + for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) + Bits[I / BITWORD_SIZE] = ~BitWord(0); + + BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1; + if (I < E) + Bits[I / BITWORD_SIZE] |= PostfixMask; + + return *this; + } + + BitVector &reset() { + init_words(false); + return *this; + } + + BitVector &reset(unsigned Idx) { + Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); + return *this; + } + + /// reset - Efficiently reset a range of bits in [I, E) + BitVector &reset(unsigned I, unsigned E) { + assert(I <= E && "Attempted to reset backwards range!"); + assert(E <= size() && "Attempted to reset out-of-bounds range!"); + + if (I == E) return *this; + + if (I / BITWORD_SIZE == E / BITWORD_SIZE) { + BitWord EMask = BitWord(1) << (E % BITWORD_SIZE); + BitWord IMask = BitWord(1) << (I % BITWORD_SIZE); + BitWord Mask = EMask - IMask; + Bits[I / BITWORD_SIZE] &= ~Mask; + return *this; + } + + BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE); + Bits[I / BITWORD_SIZE] &= ~PrefixMask; + I = alignTo(I, BITWORD_SIZE); + + for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) + Bits[I / BITWORD_SIZE] = BitWord(0); + + BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1; + if (I < E) + Bits[I / BITWORD_SIZE] &= ~PostfixMask; + + return *this; + } + + BitVector &flip() { + for (auto &Bit : Bits) + Bit = ~Bit; + clear_unused_bits(); + return *this; + } + + BitVector &flip(unsigned Idx) { + Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); + return *this; + } + + // Indexing. + reference operator[](unsigned Idx) { + assert (Idx < Size && "Out-of-bounds Bit access."); + return reference(*this, Idx); + } + + bool operator[](unsigned Idx) const { + assert (Idx < Size && "Out-of-bounds Bit access."); + BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); + return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; + } + + /// Return the last element in the vector. + bool back() const { + assert(!empty() && "Getting last element of empty vector."); + return (*this)[size() - 1]; + } + + bool test(unsigned Idx) const { + return (*this)[Idx]; + } + + // Push single bit to end of vector. + void push_back(bool Val) { + unsigned OldSize = Size; + unsigned NewSize = Size + 1; + + // Resize, which will insert zeros. + // If we already fit then the unused bits will be already zero. + if (NewSize > getBitCapacity()) + resize(NewSize, false); + else + Size = NewSize; + + // If true, set single bit. + if (Val) + set(OldSize); + } + + /// Pop one bit from the end of the vector. + void pop_back() { + assert(!empty() && "Empty vector has no element to pop."); + resize(size() - 1); + } + + /// Test if any common bits are set. + bool anyCommon(const BitVector &RHS) const { + unsigned ThisWords = Bits.size(); + unsigned RHSWords = RHS.Bits.size(); + for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) + if (Bits[i] & RHS.Bits[i]) + return true; + return false; + } + + // Comparison operators. + bool operator==(const BitVector &RHS) const { + if (size() != RHS.size()) + return false; + unsigned NumWords = Bits.size(); + return std::equal(Bits.begin(), Bits.begin() + NumWords, RHS.Bits.begin()); + } + + bool operator!=(const BitVector &RHS) const { return !(*this == RHS); } + + /// Intersection, union, disjoint union. + BitVector &operator&=(const BitVector &RHS) { + unsigned ThisWords = Bits.size(); + unsigned RHSWords = RHS.Bits.size(); + unsigned i; + for (i = 0; i != std::min(ThisWords, RHSWords); ++i) + Bits[i] &= RHS.Bits[i]; + + // Any bits that are just in this bitvector become zero, because they aren't + // in the RHS bit vector. Any words only in RHS are ignored because they + // are already zero in the LHS. + for (; i != ThisWords; ++i) + Bits[i] = 0; + + return *this; + } + + /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. + BitVector &reset(const BitVector &RHS) { + unsigned ThisWords = Bits.size(); + unsigned RHSWords = RHS.Bits.size(); + for (unsigned i = 0; i != std::min(ThisWords, RHSWords); ++i) + Bits[i] &= ~RHS.Bits[i]; + return *this; + } + + /// test - Check if (This - RHS) is zero. + /// This is the same as reset(RHS) and any(). + bool test(const BitVector &RHS) const { + unsigned ThisWords = Bits.size(); + unsigned RHSWords = RHS.Bits.size(); + unsigned i; + for (i = 0; i != std::min(ThisWords, RHSWords); ++i) + if ((Bits[i] & ~RHS.Bits[i]) != 0) + return true; + + for (; i != ThisWords ; ++i) + if (Bits[i] != 0) + return true; + + return false; + } + + template <class F, class... ArgTys> + static BitVector &apply(F &&f, BitVector &Out, BitVector const &Arg, + ArgTys const &...Args) { + assert(llvm::all_of( + std::initializer_list<unsigned>{Args.size()...}, + [&Arg](auto const &BV) { return Arg.size() == BV; }) && + "consistent sizes"); + Out.resize(Arg.size()); + for (size_type I = 0, E = Arg.Bits.size(); I != E; ++I) + Out.Bits[I] = f(Arg.Bits[I], Args.Bits[I]...); + Out.clear_unused_bits(); + return Out; + } + + BitVector &operator|=(const BitVector &RHS) { + if (size() < RHS.size()) + resize(RHS.size()); + for (size_type I = 0, E = RHS.Bits.size(); I != E; ++I) + Bits[I] |= RHS.Bits[I]; + return *this; + } + + BitVector &operator^=(const BitVector &RHS) { + if (size() < RHS.size()) + resize(RHS.size()); + for (size_type I = 0, E = RHS.Bits.size(); I != E; ++I) + Bits[I] ^= RHS.Bits[I]; + return *this; + } + + BitVector &operator>>=(unsigned N) { + assert(N <= Size); + if (LLVM_UNLIKELY(empty() || N == 0)) + return *this; + + unsigned NumWords = Bits.size(); + assert(NumWords >= 1); + + wordShr(N / BITWORD_SIZE); + + unsigned BitDistance = N % BITWORD_SIZE; + if (BitDistance == 0) + return *this; + + // When the shift size is not a multiple of the word size, then we have + // a tricky situation where each word in succession needs to extract some + // of the bits from the next word and or them into this word while + // shifting this word to make room for the new bits. This has to be done + // for every word in the array. + + // Since we're shifting each word right, some bits will fall off the end + // of each word to the right, and empty space will be created on the left. + // The final word in the array will lose bits permanently, so starting at + // the beginning, work forwards shifting each word to the right, and + // OR'ing in the bits from the end of the next word to the beginning of + // the current word. + + // Example: + // Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting right + // by 4 bits. + // Step 1: Word[0] >>= 4 ; 0x0ABBCCDD + // Step 2: Word[0] |= 0x10000000 ; 0x1ABBCCDD + // Step 3: Word[1] >>= 4 ; 0x0EEFF001 + // Step 4: Word[1] |= 0x50000000 ; 0x5EEFF001 + // Step 5: Word[2] >>= 4 ; 0x02334455 + // Result: { 0x1ABBCCDD, 0x5EEFF001, 0x02334455 } + const BitWord Mask = maskTrailingOnes<BitWord>(BitDistance); + const unsigned LSH = BITWORD_SIZE - BitDistance; + + for (unsigned I = 0; I < NumWords - 1; ++I) { + Bits[I] >>= BitDistance; + Bits[I] |= (Bits[I + 1] & Mask) << LSH; + } + + Bits[NumWords - 1] >>= BitDistance; + + return *this; + } + + BitVector &operator<<=(unsigned N) { + assert(N <= Size); + if (LLVM_UNLIKELY(empty() || N == 0)) + return *this; + + unsigned NumWords = Bits.size(); + assert(NumWords >= 1); + + wordShl(N / BITWORD_SIZE); + + unsigned BitDistance = N % BITWORD_SIZE; + if (BitDistance == 0) + return *this; + + // When the shift size is not a multiple of the word size, then we have + // a tricky situation where each word in succession needs to extract some + // of the bits from the previous word and or them into this word while + // shifting this word to make room for the new bits. This has to be done + // for every word in the array. This is similar to the algorithm outlined + // in operator>>=, but backwards. + + // Since we're shifting each word left, some bits will fall off the end + // of each word to the left, and empty space will be created on the right. + // The first word in the array will lose bits permanently, so starting at + // the end, work backwards shifting each word to the left, and OR'ing + // in the bits from the end of the next word to the beginning of the + // current word. + + // Example: + // Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting left + // by 4 bits. + // Step 1: Word[2] <<= 4 ; 0x23344550 + // Step 2: Word[2] |= 0x0000000E ; 0x2334455E + // Step 3: Word[1] <<= 4 ; 0xEFF00110 + // Step 4: Word[1] |= 0x0000000A ; 0xEFF0011A + // Step 5: Word[0] <<= 4 ; 0xABBCCDD0 + // Result: { 0xABBCCDD0, 0xEFF0011A, 0x2334455E } + const BitWord Mask = maskLeadingOnes<BitWord>(BitDistance); + const unsigned RSH = BITWORD_SIZE - BitDistance; + + for (int I = NumWords - 1; I > 0; --I) { + Bits[I] <<= BitDistance; + Bits[I] |= (Bits[I - 1] & Mask) >> RSH; + } + Bits[0] <<= BitDistance; + clear_unused_bits(); + + return *this; + } + + void swap(BitVector &RHS) { + std::swap(Bits, RHS.Bits); + std::swap(Size, RHS.Size); + } + + void invalid() { + assert(!Size && Bits.empty()); + Size = (unsigned)-1; + } + bool isInvalid() const { return Size == (unsigned)-1; } + + ArrayRef<BitWord> getData() const { return {&Bits[0], Bits.size()}; } + + //===--------------------------------------------------------------------===// + // Portable bit mask operations. + //===--------------------------------------------------------------------===// + // + // These methods all operate on arrays of uint32_t, each holding 32 bits. The + // fixed word size makes it easier to work with literal bit vector constants + // in portable code. + // + // The LSB in each word is the lowest numbered bit. The size of a portable + // bit mask is always a whole multiple of 32 bits. If no bit mask size is + // given, the bit mask is assumed to cover the entire BitVector. + + /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. + /// This computes "*this |= Mask". + void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { + applyMask<true, false>(Mask, MaskWords); + } + + /// clearBitsInMask - Clear any bits in this vector that are set in Mask. + /// Don't resize. This computes "*this &= ~Mask". + void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { + applyMask<false, false>(Mask, MaskWords); + } + + /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. + /// Don't resize. This computes "*this |= ~Mask". + void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { + applyMask<true, true>(Mask, MaskWords); + } + + /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. + /// Don't resize. This computes "*this &= Mask". + void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { + applyMask<false, true>(Mask, MaskWords); + } + +private: + /// Perform a logical left shift of \p Count words by moving everything + /// \p Count words to the right in memory. + /// + /// While confusing, words are stored from least significant at Bits[0] to + /// most significant at Bits[NumWords-1]. A logical shift left, however, + /// moves the current least significant bit to a higher logical index, and + /// fills the previous least significant bits with 0. Thus, we actually + /// need to move the bytes of the memory to the right, not to the left. + /// Example: + /// Words = [0xBBBBAAAA, 0xDDDDFFFF, 0x00000000, 0xDDDD0000] + /// represents a BitVector where 0xBBBBAAAA contain the least significant + /// bits. So if we want to shift the BitVector left by 2 words, we need + /// to turn this into 0x00000000 0x00000000 0xBBBBAAAA 0xDDDDFFFF by using a + /// memmove which moves right, not left. + void wordShl(uint32_t Count) { + if (Count == 0) + return; + + uint32_t NumWords = Bits.size(); + + // Since we always move Word-sized chunks of data with src and dest both + // aligned to a word-boundary, we don't need to worry about endianness + // here. + std::copy(Bits.begin(), Bits.begin() + NumWords - Count, + Bits.begin() + Count); + std::fill(Bits.begin(), Bits.begin() + Count, 0); + clear_unused_bits(); + } + + /// Perform a logical right shift of \p Count words by moving those + /// words to the left in memory. See wordShl for more information. + /// + void wordShr(uint32_t Count) { + if (Count == 0) + return; + + uint32_t NumWords = Bits.size(); + + std::copy(Bits.begin() + Count, Bits.begin() + NumWords, Bits.begin()); + std::fill(Bits.begin() + NumWords - Count, Bits.begin() + NumWords, 0); + } + + int next_unset_in_word(int WordIndex, BitWord Word) const { + unsigned Result = WordIndex * BITWORD_SIZE + countTrailingOnes(Word); + return Result < size() ? Result : -1; + } + + unsigned NumBitWords(unsigned S) const { + return (S + BITWORD_SIZE-1) / BITWORD_SIZE; + } + + // Set the unused bits in the high words. + void set_unused_bits(bool t = true) { + // Then set any stray high bits of the last used word. + if (unsigned ExtraBits = Size % BITWORD_SIZE) { + BitWord ExtraBitMask = ~BitWord(0) << ExtraBits; + if (t) + Bits.back() |= ExtraBitMask; + else + Bits.back() &= ~ExtraBitMask; + } + } + + // Clear the unused bits in the high words. + void clear_unused_bits() { + set_unused_bits(false); + } + + void init_words(bool t) { + std::fill(Bits.begin(), Bits.end(), 0 - (BitWord)t); + } + + template<bool AddBits, bool InvertMask> + void applyMask(const uint32_t *Mask, unsigned MaskWords) { + static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size."); + MaskWords = std::min(MaskWords, (size() + 31) / 32); + const unsigned Scale = BITWORD_SIZE / 32; + unsigned i; + for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { + BitWord BW = Bits[i]; + // This inner loop should unroll completely when BITWORD_SIZE > 32. + for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { + uint32_t M = *Mask++; + if (InvertMask) M = ~M; + if (AddBits) BW |= BitWord(M) << b; + else BW &= ~(BitWord(M) << b); + } + Bits[i] = BW; + } + for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { + uint32_t M = *Mask++; + if (InvertMask) M = ~M; + if (AddBits) Bits[i] |= BitWord(M) << b; + else Bits[i] &= ~(BitWord(M) << b); + } + if (AddBits) + clear_unused_bits(); + } + +public: + /// Return the size (in bytes) of the bit vector. + size_type getMemorySize() const { return Bits.size() * sizeof(BitWord); } + size_type getBitCapacity() const { return Bits.size() * BITWORD_SIZE; } +}; + +inline BitVector::size_type capacity_in_bytes(const BitVector &X) { + return X.getMemorySize(); +} + +template <> struct DenseMapInfo<BitVector> { + static inline BitVector getEmptyKey() { return {}; } + static inline BitVector getTombstoneKey() { + BitVector V; + V.invalid(); + return V; + } + static unsigned getHashValue(const BitVector &V) { + return DenseMapInfo<std::pair<BitVector::size_type, ArrayRef<uintptr_t>>>:: + getHashValue(std::make_pair(V.size(), V.getData())); + } + static bool isEqual(const BitVector &LHS, const BitVector &RHS) { + if (LHS.isInvalid() || RHS.isInvalid()) + return LHS.isInvalid() == RHS.isInvalid(); + return LHS == RHS; + } +}; +} // end namespace llvm + +namespace std { + /// Implement std::swap in terms of BitVector swap. +inline void swap(llvm::BitVector &LHS, llvm::BitVector &RHS) { LHS.swap(RHS); } +} // end namespace std + +#endif // LLVM_ADT_BITVECTOR_H + +#ifdef __GNUC__ +#pragma GCC diagnostic pop +#endif |