diff options
author | orivej <orivej@yandex-team.ru> | 2022-02-10 16:45:01 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:45:01 +0300 |
commit | 2d37894b1b037cf24231090eda8589bbb44fb6fc (patch) | |
tree | be835aa92c6248212e705f25388ebafcf84bc7a1 /contrib/libs/llvm12/lib/Transforms/Utils/SSAUpdater.cpp | |
parent | 718c552901d703c502ccbefdfc3c9028d608b947 (diff) | |
download | ydb-2d37894b1b037cf24231090eda8589bbb44fb6fc.tar.gz |
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/Transforms/Utils/SSAUpdater.cpp')
-rw-r--r-- | contrib/libs/llvm12/lib/Transforms/Utils/SSAUpdater.cpp | 952 |
1 files changed, 476 insertions, 476 deletions
diff --git a/contrib/libs/llvm12/lib/Transforms/Utils/SSAUpdater.cpp b/contrib/libs/llvm12/lib/Transforms/Utils/SSAUpdater.cpp index 509027119c..c210d1c460 100644 --- a/contrib/libs/llvm12/lib/Transforms/Utils/SSAUpdater.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Utils/SSAUpdater.cpp @@ -1,481 +1,481 @@ -//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file implements the SSAUpdater class. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Utils/SSAUpdater.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/TinyPtrVector.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Use.h" -#include "llvm/IR/Value.h" -#include "llvm/IR/ValueHandle.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Utils/SSAUpdaterImpl.h" -#include <cassert> -#include <utility> - -using namespace llvm; - -#define DEBUG_TYPE "ssaupdater" - -using AvailableValsTy = DenseMap<BasicBlock *, Value *>; - -static AvailableValsTy &getAvailableVals(void *AV) { - return *static_cast<AvailableValsTy*>(AV); -} - -SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI) - : InsertedPHIs(NewPHI) {} - -SSAUpdater::~SSAUpdater() { - delete static_cast<AvailableValsTy*>(AV); -} - -void SSAUpdater::Initialize(Type *Ty, StringRef Name) { - if (!AV) - AV = new AvailableValsTy(); - else - getAvailableVals(AV).clear(); - ProtoType = Ty; - ProtoName = std::string(Name); -} - -bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const { - return getAvailableVals(AV).count(BB); -} - -Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const { +//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the SSAUpdater class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/SSAUpdater.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/TinyPtrVector.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/SSAUpdaterImpl.h" +#include <cassert> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "ssaupdater" + +using AvailableValsTy = DenseMap<BasicBlock *, Value *>; + +static AvailableValsTy &getAvailableVals(void *AV) { + return *static_cast<AvailableValsTy*>(AV); +} + +SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI) + : InsertedPHIs(NewPHI) {} + +SSAUpdater::~SSAUpdater() { + delete static_cast<AvailableValsTy*>(AV); +} + +void SSAUpdater::Initialize(Type *Ty, StringRef Name) { + if (!AV) + AV = new AvailableValsTy(); + else + getAvailableVals(AV).clear(); + ProtoType = Ty; + ProtoName = std::string(Name); +} + +bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const { + return getAvailableVals(AV).count(BB); +} + +Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const { return getAvailableVals(AV).lookup(BB); -} - -void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) { - assert(ProtoType && "Need to initialize SSAUpdater"); - assert(ProtoType == V->getType() && - "All rewritten values must have the same type"); - getAvailableVals(AV)[BB] = V; -} - -static bool IsEquivalentPHI(PHINode *PHI, - SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) { - unsigned PHINumValues = PHI->getNumIncomingValues(); - if (PHINumValues != ValueMapping.size()) - return false; - - // Scan the phi to see if it matches. - for (unsigned i = 0, e = PHINumValues; i != e; ++i) - if (ValueMapping[PHI->getIncomingBlock(i)] != - PHI->getIncomingValue(i)) { - return false; - } - - return true; -} - -Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) { - Value *Res = GetValueAtEndOfBlockInternal(BB); - return Res; -} - -Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) { - // If there is no definition of the renamed variable in this block, just use - // GetValueAtEndOfBlock to do our work. - if (!HasValueForBlock(BB)) - return GetValueAtEndOfBlock(BB); - - // Otherwise, we have the hard case. Get the live-in values for each - // predecessor. - SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues; - Value *SingularValue = nullptr; - - // We can get our predecessor info by walking the pred_iterator list, but it - // is relatively slow. If we already have PHI nodes in this block, walk one - // of them to get the predecessor list instead. - if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { - for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { - BasicBlock *PredBB = SomePhi->getIncomingBlock(i); - Value *PredVal = GetValueAtEndOfBlock(PredBB); - PredValues.push_back(std::make_pair(PredBB, PredVal)); - - // Compute SingularValue. - if (i == 0) - SingularValue = PredVal; - else if (PredVal != SingularValue) - SingularValue = nullptr; - } - } else { - bool isFirstPred = true; - for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { - BasicBlock *PredBB = *PI; - Value *PredVal = GetValueAtEndOfBlock(PredBB); - PredValues.push_back(std::make_pair(PredBB, PredVal)); - - // Compute SingularValue. - if (isFirstPred) { - SingularValue = PredVal; - isFirstPred = false; - } else if (PredVal != SingularValue) - SingularValue = nullptr; - } - } - - // If there are no predecessors, just return undef. - if (PredValues.empty()) - return UndefValue::get(ProtoType); - - // Otherwise, if all the merged values are the same, just use it. - if (SingularValue) - return SingularValue; - - // Otherwise, we do need a PHI: check to see if we already have one available - // in this block that produces the right value. - if (isa<PHINode>(BB->begin())) { - SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(), - PredValues.end()); - for (PHINode &SomePHI : BB->phis()) { - if (IsEquivalentPHI(&SomePHI, ValueMapping)) - return &SomePHI; - } - } - - // Ok, we have no way out, insert a new one now. - PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(), - ProtoName, &BB->front()); - - // Fill in all the predecessors of the PHI. - for (const auto &PredValue : PredValues) - InsertedPHI->addIncoming(PredValue.second, PredValue.first); - - // See if the PHI node can be merged to a single value. This can happen in - // loop cases when we get a PHI of itself and one other value. - if (Value *V = - SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) { - InsertedPHI->eraseFromParent(); - return V; - } - - // Set the DebugLoc of the inserted PHI, if available. - DebugLoc DL; - if (const Instruction *I = BB->getFirstNonPHI()) - DL = I->getDebugLoc(); - InsertedPHI->setDebugLoc(DL); - - // If the client wants to know about all new instructions, tell it. - if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); - - LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); - return InsertedPHI; -} - -void SSAUpdater::RewriteUse(Use &U) { - Instruction *User = cast<Instruction>(U.getUser()); - - Value *V; - if (PHINode *UserPN = dyn_cast<PHINode>(User)) - V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); - else - V = GetValueInMiddleOfBlock(User->getParent()); - - U.set(V); -} - -void SSAUpdater::RewriteUseAfterInsertions(Use &U) { - Instruction *User = cast<Instruction>(U.getUser()); - - Value *V; - if (PHINode *UserPN = dyn_cast<PHINode>(User)) - V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); - else - V = GetValueAtEndOfBlock(User->getParent()); - - U.set(V); -} - -namespace llvm { - -template<> -class SSAUpdaterTraits<SSAUpdater> { -public: - using BlkT = BasicBlock; - using ValT = Value *; - using PhiT = PHINode; - using BlkSucc_iterator = succ_iterator; - - static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); } - static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); } - - class PHI_iterator { - private: - PHINode *PHI; - unsigned idx; - - public: - explicit PHI_iterator(PHINode *P) // begin iterator - : PHI(P), idx(0) {} - PHI_iterator(PHINode *P, bool) // end iterator - : PHI(P), idx(PHI->getNumIncomingValues()) {} - - PHI_iterator &operator++() { ++idx; return *this; } - bool operator==(const PHI_iterator& x) const { return idx == x.idx; } - bool operator!=(const PHI_iterator& x) const { return !operator==(x); } - - Value *getIncomingValue() { return PHI->getIncomingValue(idx); } - BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); } - }; - - static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } - static PHI_iterator PHI_end(PhiT *PHI) { - return PHI_iterator(PHI, true); - } - - /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds - /// vector, set Info->NumPreds, and allocate space in Info->Preds. - static void FindPredecessorBlocks(BasicBlock *BB, - SmallVectorImpl<BasicBlock *> *Preds) { - // We can get our predecessor info by walking the pred_iterator list, - // but it is relatively slow. If we already have PHI nodes in this - // block, walk one of them to get the predecessor list instead. +} + +void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) { + assert(ProtoType && "Need to initialize SSAUpdater"); + assert(ProtoType == V->getType() && + "All rewritten values must have the same type"); + getAvailableVals(AV)[BB] = V; +} + +static bool IsEquivalentPHI(PHINode *PHI, + SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) { + unsigned PHINumValues = PHI->getNumIncomingValues(); + if (PHINumValues != ValueMapping.size()) + return false; + + // Scan the phi to see if it matches. + for (unsigned i = 0, e = PHINumValues; i != e; ++i) + if (ValueMapping[PHI->getIncomingBlock(i)] != + PHI->getIncomingValue(i)) { + return false; + } + + return true; +} + +Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) { + Value *Res = GetValueAtEndOfBlockInternal(BB); + return Res; +} + +Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) { + // If there is no definition of the renamed variable in this block, just use + // GetValueAtEndOfBlock to do our work. + if (!HasValueForBlock(BB)) + return GetValueAtEndOfBlock(BB); + + // Otherwise, we have the hard case. Get the live-in values for each + // predecessor. + SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues; + Value *SingularValue = nullptr; + + // We can get our predecessor info by walking the pred_iterator list, but it + // is relatively slow. If we already have PHI nodes in this block, walk one + // of them to get the predecessor list instead. + if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { + for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { + BasicBlock *PredBB = SomePhi->getIncomingBlock(i); + Value *PredVal = GetValueAtEndOfBlock(PredBB); + PredValues.push_back(std::make_pair(PredBB, PredVal)); + + // Compute SingularValue. + if (i == 0) + SingularValue = PredVal; + else if (PredVal != SingularValue) + SingularValue = nullptr; + } + } else { + bool isFirstPred = true; + for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { + BasicBlock *PredBB = *PI; + Value *PredVal = GetValueAtEndOfBlock(PredBB); + PredValues.push_back(std::make_pair(PredBB, PredVal)); + + // Compute SingularValue. + if (isFirstPred) { + SingularValue = PredVal; + isFirstPred = false; + } else if (PredVal != SingularValue) + SingularValue = nullptr; + } + } + + // If there are no predecessors, just return undef. + if (PredValues.empty()) + return UndefValue::get(ProtoType); + + // Otherwise, if all the merged values are the same, just use it. + if (SingularValue) + return SingularValue; + + // Otherwise, we do need a PHI: check to see if we already have one available + // in this block that produces the right value. + if (isa<PHINode>(BB->begin())) { + SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(), + PredValues.end()); + for (PHINode &SomePHI : BB->phis()) { + if (IsEquivalentPHI(&SomePHI, ValueMapping)) + return &SomePHI; + } + } + + // Ok, we have no way out, insert a new one now. + PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(), + ProtoName, &BB->front()); + + // Fill in all the predecessors of the PHI. + for (const auto &PredValue : PredValues) + InsertedPHI->addIncoming(PredValue.second, PredValue.first); + + // See if the PHI node can be merged to a single value. This can happen in + // loop cases when we get a PHI of itself and one other value. + if (Value *V = + SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) { + InsertedPHI->eraseFromParent(); + return V; + } + + // Set the DebugLoc of the inserted PHI, if available. + DebugLoc DL; + if (const Instruction *I = BB->getFirstNonPHI()) + DL = I->getDebugLoc(); + InsertedPHI->setDebugLoc(DL); + + // If the client wants to know about all new instructions, tell it. + if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); + + LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); + return InsertedPHI; +} + +void SSAUpdater::RewriteUse(Use &U) { + Instruction *User = cast<Instruction>(U.getUser()); + + Value *V; + if (PHINode *UserPN = dyn_cast<PHINode>(User)) + V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); + else + V = GetValueInMiddleOfBlock(User->getParent()); + + U.set(V); +} + +void SSAUpdater::RewriteUseAfterInsertions(Use &U) { + Instruction *User = cast<Instruction>(U.getUser()); + + Value *V; + if (PHINode *UserPN = dyn_cast<PHINode>(User)) + V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); + else + V = GetValueAtEndOfBlock(User->getParent()); + + U.set(V); +} + +namespace llvm { + +template<> +class SSAUpdaterTraits<SSAUpdater> { +public: + using BlkT = BasicBlock; + using ValT = Value *; + using PhiT = PHINode; + using BlkSucc_iterator = succ_iterator; + + static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); } + static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); } + + class PHI_iterator { + private: + PHINode *PHI; + unsigned idx; + + public: + explicit PHI_iterator(PHINode *P) // begin iterator + : PHI(P), idx(0) {} + PHI_iterator(PHINode *P, bool) // end iterator + : PHI(P), idx(PHI->getNumIncomingValues()) {} + + PHI_iterator &operator++() { ++idx; return *this; } + bool operator==(const PHI_iterator& x) const { return idx == x.idx; } + bool operator!=(const PHI_iterator& x) const { return !operator==(x); } + + Value *getIncomingValue() { return PHI->getIncomingValue(idx); } + BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); } + }; + + static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } + static PHI_iterator PHI_end(PhiT *PHI) { + return PHI_iterator(PHI, true); + } + + /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds + /// vector, set Info->NumPreds, and allocate space in Info->Preds. + static void FindPredecessorBlocks(BasicBlock *BB, + SmallVectorImpl<BasicBlock *> *Preds) { + // We can get our predecessor info by walking the pred_iterator list, + // but it is relatively slow. If we already have PHI nodes in this + // block, walk one of them to get the predecessor list instead. if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) append_range(*Preds, SomePhi->blocks()); else append_range(*Preds, predecessors(BB)); - } - - /// GetUndefVal - Get an undefined value of the same type as the value - /// being handled. - static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) { - return UndefValue::get(Updater->ProtoType); - } - - /// CreateEmptyPHI - Create a new PHI instruction in the specified block. - /// Reserve space for the operands but do not fill them in yet. - static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds, - SSAUpdater *Updater) { - PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds, - Updater->ProtoName, &BB->front()); - return PHI; - } - - /// AddPHIOperand - Add the specified value as an operand of the PHI for - /// the specified predecessor block. - static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) { - PHI->addIncoming(Val, Pred); - } - - /// ValueIsPHI - Check if a value is a PHI. - static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) { - return dyn_cast<PHINode>(Val); - } - - /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source - /// operands, i.e., it was just added. - static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) { - PHINode *PHI = ValueIsPHI(Val, Updater); - if (PHI && PHI->getNumIncomingValues() == 0) - return PHI; - return nullptr; - } - - /// GetPHIValue - For the specified PHI instruction, return the value - /// that it defines. - static Value *GetPHIValue(PHINode *PHI) { - return PHI; - } -}; - -} // end namespace llvm - -/// Check to see if AvailableVals has an entry for the specified BB and if so, -/// return it. If not, construct SSA form by first calculating the required -/// placement of PHIs and then inserting new PHIs where needed. -Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) { - AvailableValsTy &AvailableVals = getAvailableVals(AV); - if (Value *V = AvailableVals[BB]) - return V; - - SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs); - return Impl.GetValue(BB); -} - -//===----------------------------------------------------------------------===// -// LoadAndStorePromoter Implementation -//===----------------------------------------------------------------------===// - -LoadAndStorePromoter:: -LoadAndStorePromoter(ArrayRef<const Instruction *> Insts, - SSAUpdater &S, StringRef BaseName) : SSA(S) { - if (Insts.empty()) return; - - const Value *SomeVal; - if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0])) - SomeVal = LI; - else - SomeVal = cast<StoreInst>(Insts[0])->getOperand(0); - - if (BaseName.empty()) - BaseName = SomeVal->getName(); - SSA.Initialize(SomeVal->getType(), BaseName); -} - -void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) { - // First step: bucket up uses of the alloca by the block they occur in. - // This is important because we have to handle multiple defs/uses in a block - // ourselves: SSAUpdater is purely for cross-block references. - DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock; - - for (Instruction *User : Insts) - UsesByBlock[User->getParent()].push_back(User); - - // Okay, now we can iterate over all the blocks in the function with uses, - // processing them. Keep track of which loads are loading a live-in value. - // Walk the uses in the use-list order to be determinstic. - SmallVector<LoadInst *, 32> LiveInLoads; - DenseMap<Value *, Value *> ReplacedLoads; - - for (Instruction *User : Insts) { - BasicBlock *BB = User->getParent(); - TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB]; - - // If this block has already been processed, ignore this repeat use. - if (BlockUses.empty()) continue; - - // Okay, this is the first use in the block. If this block just has a - // single user in it, we can rewrite it trivially. - if (BlockUses.size() == 1) { - // If it is a store, it is a trivial def of the value in the block. - if (StoreInst *SI = dyn_cast<StoreInst>(User)) { - updateDebugInfo(SI); - SSA.AddAvailableValue(BB, SI->getOperand(0)); - } else - // Otherwise it is a load, queue it to rewrite as a live-in load. - LiveInLoads.push_back(cast<LoadInst>(User)); - BlockUses.clear(); - continue; - } - - // Otherwise, check to see if this block is all loads. - bool HasStore = false; - for (Instruction *I : BlockUses) { - if (isa<StoreInst>(I)) { - HasStore = true; - break; - } - } - - // If so, we can queue them all as live in loads. We don't have an - // efficient way to tell which on is first in the block and don't want to - // scan large blocks, so just add all loads as live ins. - if (!HasStore) { - for (Instruction *I : BlockUses) - LiveInLoads.push_back(cast<LoadInst>(I)); - BlockUses.clear(); - continue; - } - - // Otherwise, we have mixed loads and stores (or just a bunch of stores). - // Since SSAUpdater is purely for cross-block values, we need to determine - // the order of these instructions in the block. If the first use in the - // block is a load, then it uses the live in value. The last store defines - // the live out value. We handle this by doing a linear scan of the block. - Value *StoredValue = nullptr; - for (Instruction &I : *BB) { - if (LoadInst *L = dyn_cast<LoadInst>(&I)) { - // If this is a load from an unrelated pointer, ignore it. - if (!isInstInList(L, Insts)) continue; - - // If we haven't seen a store yet, this is a live in use, otherwise - // use the stored value. - if (StoredValue) { - replaceLoadWithValue(L, StoredValue); - L->replaceAllUsesWith(StoredValue); - ReplacedLoads[L] = StoredValue; - } else { - LiveInLoads.push_back(L); - } - continue; - } - - if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { - // If this is a store to an unrelated pointer, ignore it. - if (!isInstInList(SI, Insts)) continue; - updateDebugInfo(SI); - - // Remember that this is the active value in the block. - StoredValue = SI->getOperand(0); - } - } - - // The last stored value that happened is the live-out for the block. - assert(StoredValue && "Already checked that there is a store in block"); - SSA.AddAvailableValue(BB, StoredValue); - BlockUses.clear(); - } - - // Okay, now we rewrite all loads that use live-in values in the loop, - // inserting PHI nodes as necessary. - for (LoadInst *ALoad : LiveInLoads) { - Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); - replaceLoadWithValue(ALoad, NewVal); - - // Avoid assertions in unreachable code. - if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType()); - ALoad->replaceAllUsesWith(NewVal); - ReplacedLoads[ALoad] = NewVal; - } - - // Allow the client to do stuff before we start nuking things. - doExtraRewritesBeforeFinalDeletion(); - - // Now that everything is rewritten, delete the old instructions from the - // function. They should all be dead now. - for (Instruction *User : Insts) { - // If this is a load that still has uses, then the load must have been added - // as a live value in the SSAUpdate data structure for a block (e.g. because - // the loaded value was stored later). In this case, we need to recursively - // propagate the updates until we get to the real value. - if (!User->use_empty()) { - Value *NewVal = ReplacedLoads[User]; - assert(NewVal && "not a replaced load?"); - - // Propagate down to the ultimate replacee. The intermediately loads - // could theoretically already have been deleted, so we don't want to - // dereference the Value*'s. - DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal); - while (RLI != ReplacedLoads.end()) { - NewVal = RLI->second; - RLI = ReplacedLoads.find(NewVal); - } - - replaceLoadWithValue(cast<LoadInst>(User), NewVal); - User->replaceAllUsesWith(NewVal); - } - - instructionDeleted(User); - User->eraseFromParent(); - } -} - -bool -LoadAndStorePromoter::isInstInList(Instruction *I, - const SmallVectorImpl<Instruction *> &Insts) - const { - return is_contained(Insts, I); -} + } + + /// GetUndefVal - Get an undefined value of the same type as the value + /// being handled. + static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) { + return UndefValue::get(Updater->ProtoType); + } + + /// CreateEmptyPHI - Create a new PHI instruction in the specified block. + /// Reserve space for the operands but do not fill them in yet. + static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds, + SSAUpdater *Updater) { + PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds, + Updater->ProtoName, &BB->front()); + return PHI; + } + + /// AddPHIOperand - Add the specified value as an operand of the PHI for + /// the specified predecessor block. + static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) { + PHI->addIncoming(Val, Pred); + } + + /// ValueIsPHI - Check if a value is a PHI. + static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) { + return dyn_cast<PHINode>(Val); + } + + /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source + /// operands, i.e., it was just added. + static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) { + PHINode *PHI = ValueIsPHI(Val, Updater); + if (PHI && PHI->getNumIncomingValues() == 0) + return PHI; + return nullptr; + } + + /// GetPHIValue - For the specified PHI instruction, return the value + /// that it defines. + static Value *GetPHIValue(PHINode *PHI) { + return PHI; + } +}; + +} // end namespace llvm + +/// Check to see if AvailableVals has an entry for the specified BB and if so, +/// return it. If not, construct SSA form by first calculating the required +/// placement of PHIs and then inserting new PHIs where needed. +Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) { + AvailableValsTy &AvailableVals = getAvailableVals(AV); + if (Value *V = AvailableVals[BB]) + return V; + + SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs); + return Impl.GetValue(BB); +} + +//===----------------------------------------------------------------------===// +// LoadAndStorePromoter Implementation +//===----------------------------------------------------------------------===// + +LoadAndStorePromoter:: +LoadAndStorePromoter(ArrayRef<const Instruction *> Insts, + SSAUpdater &S, StringRef BaseName) : SSA(S) { + if (Insts.empty()) return; + + const Value *SomeVal; + if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0])) + SomeVal = LI; + else + SomeVal = cast<StoreInst>(Insts[0])->getOperand(0); + + if (BaseName.empty()) + BaseName = SomeVal->getName(); + SSA.Initialize(SomeVal->getType(), BaseName); +} + +void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) { + // First step: bucket up uses of the alloca by the block they occur in. + // This is important because we have to handle multiple defs/uses in a block + // ourselves: SSAUpdater is purely for cross-block references. + DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock; + + for (Instruction *User : Insts) + UsesByBlock[User->getParent()].push_back(User); + + // Okay, now we can iterate over all the blocks in the function with uses, + // processing them. Keep track of which loads are loading a live-in value. + // Walk the uses in the use-list order to be determinstic. + SmallVector<LoadInst *, 32> LiveInLoads; + DenseMap<Value *, Value *> ReplacedLoads; + + for (Instruction *User : Insts) { + BasicBlock *BB = User->getParent(); + TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB]; + + // If this block has already been processed, ignore this repeat use. + if (BlockUses.empty()) continue; + + // Okay, this is the first use in the block. If this block just has a + // single user in it, we can rewrite it trivially. + if (BlockUses.size() == 1) { + // If it is a store, it is a trivial def of the value in the block. + if (StoreInst *SI = dyn_cast<StoreInst>(User)) { + updateDebugInfo(SI); + SSA.AddAvailableValue(BB, SI->getOperand(0)); + } else + // Otherwise it is a load, queue it to rewrite as a live-in load. + LiveInLoads.push_back(cast<LoadInst>(User)); + BlockUses.clear(); + continue; + } + + // Otherwise, check to see if this block is all loads. + bool HasStore = false; + for (Instruction *I : BlockUses) { + if (isa<StoreInst>(I)) { + HasStore = true; + break; + } + } + + // If so, we can queue them all as live in loads. We don't have an + // efficient way to tell which on is first in the block and don't want to + // scan large blocks, so just add all loads as live ins. + if (!HasStore) { + for (Instruction *I : BlockUses) + LiveInLoads.push_back(cast<LoadInst>(I)); + BlockUses.clear(); + continue; + } + + // Otherwise, we have mixed loads and stores (or just a bunch of stores). + // Since SSAUpdater is purely for cross-block values, we need to determine + // the order of these instructions in the block. If the first use in the + // block is a load, then it uses the live in value. The last store defines + // the live out value. We handle this by doing a linear scan of the block. + Value *StoredValue = nullptr; + for (Instruction &I : *BB) { + if (LoadInst *L = dyn_cast<LoadInst>(&I)) { + // If this is a load from an unrelated pointer, ignore it. + if (!isInstInList(L, Insts)) continue; + + // If we haven't seen a store yet, this is a live in use, otherwise + // use the stored value. + if (StoredValue) { + replaceLoadWithValue(L, StoredValue); + L->replaceAllUsesWith(StoredValue); + ReplacedLoads[L] = StoredValue; + } else { + LiveInLoads.push_back(L); + } + continue; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { + // If this is a store to an unrelated pointer, ignore it. + if (!isInstInList(SI, Insts)) continue; + updateDebugInfo(SI); + + // Remember that this is the active value in the block. + StoredValue = SI->getOperand(0); + } + } + + // The last stored value that happened is the live-out for the block. + assert(StoredValue && "Already checked that there is a store in block"); + SSA.AddAvailableValue(BB, StoredValue); + BlockUses.clear(); + } + + // Okay, now we rewrite all loads that use live-in values in the loop, + // inserting PHI nodes as necessary. + for (LoadInst *ALoad : LiveInLoads) { + Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); + replaceLoadWithValue(ALoad, NewVal); + + // Avoid assertions in unreachable code. + if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType()); + ALoad->replaceAllUsesWith(NewVal); + ReplacedLoads[ALoad] = NewVal; + } + + // Allow the client to do stuff before we start nuking things. + doExtraRewritesBeforeFinalDeletion(); + + // Now that everything is rewritten, delete the old instructions from the + // function. They should all be dead now. + for (Instruction *User : Insts) { + // If this is a load that still has uses, then the load must have been added + // as a live value in the SSAUpdate data structure for a block (e.g. because + // the loaded value was stored later). In this case, we need to recursively + // propagate the updates until we get to the real value. + if (!User->use_empty()) { + Value *NewVal = ReplacedLoads[User]; + assert(NewVal && "not a replaced load?"); + + // Propagate down to the ultimate replacee. The intermediately loads + // could theoretically already have been deleted, so we don't want to + // dereference the Value*'s. + DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal); + while (RLI != ReplacedLoads.end()) { + NewVal = RLI->second; + RLI = ReplacedLoads.find(NewVal); + } + + replaceLoadWithValue(cast<LoadInst>(User), NewVal); + User->replaceAllUsesWith(NewVal); + } + + instructionDeleted(User); + User->eraseFromParent(); + } +} + +bool +LoadAndStorePromoter::isInstInList(Instruction *I, + const SmallVectorImpl<Instruction *> &Insts) + const { + return is_contained(Insts, I); +} |