diff options
author | orivej <orivej@yandex-team.ru> | 2022-02-10 16:45:01 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:45:01 +0300 |
commit | 2d37894b1b037cf24231090eda8589bbb44fb6fc (patch) | |
tree | be835aa92c6248212e705f25388ebafcf84bc7a1 /contrib/libs/llvm12/lib/Transforms/Utils/IntegerDivision.cpp | |
parent | 718c552901d703c502ccbefdfc3c9028d608b947 (diff) | |
download | ydb-2d37894b1b037cf24231090eda8589bbb44fb6fc.tar.gz |
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/Transforms/Utils/IntegerDivision.cpp')
-rw-r--r-- | contrib/libs/llvm12/lib/Transforms/Utils/IntegerDivision.cpp | 1346 |
1 files changed, 673 insertions, 673 deletions
diff --git a/contrib/libs/llvm12/lib/Transforms/Utils/IntegerDivision.cpp b/contrib/libs/llvm12/lib/Transforms/Utils/IntegerDivision.cpp index ffb56f2fbe..9082049c82 100644 --- a/contrib/libs/llvm12/lib/Transforms/Utils/IntegerDivision.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Utils/IntegerDivision.cpp @@ -1,673 +1,673 @@ -//===-- IntegerDivision.cpp - Expand integer division ---------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file contains an implementation of 32bit and 64bit scalar integer -// division for targets that don't have native support. It's largely derived -// from compiler-rt's implementations of __udivsi3 and __udivmoddi4, -// but hand-tuned for targets that prefer less control flow. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Utils/IntegerDivision.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/Intrinsics.h" -#include <utility> - -using namespace llvm; - -#define DEBUG_TYPE "integer-division" - -/// Generate code to compute the remainder of two signed integers. Returns the -/// remainder, which will have the sign of the dividend. Builder's insert point -/// should be pointing where the caller wants code generated, e.g. at the srem -/// instruction. This will generate a urem in the process, and Builder's insert -/// point will be pointing at the uren (if present, i.e. not folded), ready to -/// be expanded if the user wishes -static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor, - IRBuilder<> &Builder) { - unsigned BitWidth = Dividend->getType()->getIntegerBitWidth(); - ConstantInt *Shift; - - if (BitWidth == 64) { - Shift = Builder.getInt64(63); - } else { - assert(BitWidth == 32 && "Unexpected bit width"); - Shift = Builder.getInt32(31); - } - - // Following instructions are generated for both i32 (shift 31) and - // i64 (shift 63). - - // ; %dividend_sgn = ashr i32 %dividend, 31 - // ; %divisor_sgn = ashr i32 %divisor, 31 - // ; %dvd_xor = xor i32 %dividend, %dividend_sgn - // ; %dvs_xor = xor i32 %divisor, %divisor_sgn - // ; %u_dividend = sub i32 %dvd_xor, %dividend_sgn - // ; %u_divisor = sub i32 %dvs_xor, %divisor_sgn - // ; %urem = urem i32 %dividend, %divisor - // ; %xored = xor i32 %urem, %dividend_sgn - // ; %srem = sub i32 %xored, %dividend_sgn - Value *DividendSign = Builder.CreateAShr(Dividend, Shift); - Value *DivisorSign = Builder.CreateAShr(Divisor, Shift); - Value *DvdXor = Builder.CreateXor(Dividend, DividendSign); - Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign); - Value *UDividend = Builder.CreateSub(DvdXor, DividendSign); - Value *UDivisor = Builder.CreateSub(DvsXor, DivisorSign); - Value *URem = Builder.CreateURem(UDividend, UDivisor); - Value *Xored = Builder.CreateXor(URem, DividendSign); - Value *SRem = Builder.CreateSub(Xored, DividendSign); - - if (Instruction *URemInst = dyn_cast<Instruction>(URem)) - Builder.SetInsertPoint(URemInst); - - return SRem; -} - - -/// Generate code to compute the remainder of two unsigned integers. Returns the -/// remainder. Builder's insert point should be pointing where the caller wants -/// code generated, e.g. at the urem instruction. This will generate a udiv in -/// the process, and Builder's insert point will be pointing at the udiv (if -/// present, i.e. not folded), ready to be expanded if the user wishes -static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor, - IRBuilder<> &Builder) { - // Remainder = Dividend - Quotient*Divisor - - // Following instructions are generated for both i32 and i64 - - // ; %quotient = udiv i32 %dividend, %divisor - // ; %product = mul i32 %divisor, %quotient - // ; %remainder = sub i32 %dividend, %product - Value *Quotient = Builder.CreateUDiv(Dividend, Divisor); - Value *Product = Builder.CreateMul(Divisor, Quotient); - Value *Remainder = Builder.CreateSub(Dividend, Product); - - if (Instruction *UDiv = dyn_cast<Instruction>(Quotient)) - Builder.SetInsertPoint(UDiv); - - return Remainder; -} - -/// Generate code to divide two signed integers. Returns the quotient, rounded -/// towards 0. Builder's insert point should be pointing where the caller wants -/// code generated, e.g. at the sdiv instruction. This will generate a udiv in -/// the process, and Builder's insert point will be pointing at the udiv (if -/// present, i.e. not folded), ready to be expanded if the user wishes. -static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor, - IRBuilder<> &Builder) { - // Implementation taken from compiler-rt's __divsi3 and __divdi3 - - unsigned BitWidth = Dividend->getType()->getIntegerBitWidth(); - ConstantInt *Shift; - - if (BitWidth == 64) { - Shift = Builder.getInt64(63); - } else { - assert(BitWidth == 32 && "Unexpected bit width"); - Shift = Builder.getInt32(31); - } - - // Following instructions are generated for both i32 (shift 31) and - // i64 (shift 63). - - // ; %tmp = ashr i32 %dividend, 31 - // ; %tmp1 = ashr i32 %divisor, 31 - // ; %tmp2 = xor i32 %tmp, %dividend - // ; %u_dvnd = sub nsw i32 %tmp2, %tmp - // ; %tmp3 = xor i32 %tmp1, %divisor - // ; %u_dvsr = sub nsw i32 %tmp3, %tmp1 - // ; %q_sgn = xor i32 %tmp1, %tmp - // ; %q_mag = udiv i32 %u_dvnd, %u_dvsr - // ; %tmp4 = xor i32 %q_mag, %q_sgn - // ; %q = sub i32 %tmp4, %q_sgn - Value *Tmp = Builder.CreateAShr(Dividend, Shift); - Value *Tmp1 = Builder.CreateAShr(Divisor, Shift); - Value *Tmp2 = Builder.CreateXor(Tmp, Dividend); - Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp); - Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor); - Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1); - Value *Q_Sgn = Builder.CreateXor(Tmp1, Tmp); - Value *Q_Mag = Builder.CreateUDiv(U_Dvnd, U_Dvsr); - Value *Tmp4 = Builder.CreateXor(Q_Mag, Q_Sgn); - Value *Q = Builder.CreateSub(Tmp4, Q_Sgn); - - if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag)) - Builder.SetInsertPoint(UDiv); - - return Q; -} - -/// Generates code to divide two unsigned scalar 32-bit or 64-bit integers. -/// Returns the quotient, rounded towards 0. Builder's insert point should -/// point where the caller wants code generated, e.g. at the udiv instruction. -static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor, - IRBuilder<> &Builder) { - // The basic algorithm can be found in the compiler-rt project's - // implementation of __udivsi3.c. Here, we do a lower-level IR based approach - // that's been hand-tuned to lessen the amount of control flow involved. - - // Some helper values - IntegerType *DivTy = cast<IntegerType>(Dividend->getType()); - unsigned BitWidth = DivTy->getBitWidth(); - - ConstantInt *Zero; - ConstantInt *One; - ConstantInt *NegOne; - ConstantInt *MSB; - - if (BitWidth == 64) { - Zero = Builder.getInt64(0); - One = Builder.getInt64(1); - NegOne = ConstantInt::getSigned(DivTy, -1); - MSB = Builder.getInt64(63); - } else { - assert(BitWidth == 32 && "Unexpected bit width"); - Zero = Builder.getInt32(0); - One = Builder.getInt32(1); - NegOne = ConstantInt::getSigned(DivTy, -1); - MSB = Builder.getInt32(31); - } - - ConstantInt *True = Builder.getTrue(); - - BasicBlock *IBB = Builder.GetInsertBlock(); - Function *F = IBB->getParent(); - Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz, - DivTy); - - // Our CFG is going to look like: - // +---------------------+ - // | special-cases | - // | ... | - // +---------------------+ - // | | - // | +----------+ - // | | bb1 | - // | | ... | - // | +----------+ - // | | | - // | | +------------+ - // | | | preheader | - // | | | ... | - // | | +------------+ - // | | | - // | | | +---+ - // | | | | | - // | | +------------+ | - // | | | do-while | | - // | | | ... | | - // | | +------------+ | - // | | | | | - // | +-----------+ +---+ - // | | loop-exit | - // | | ... | - // | +-----------+ - // | | - // +-------+ - // | ... | - // | end | - // +-------+ - BasicBlock *SpecialCases = Builder.GetInsertBlock(); - SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases")); - BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(), - "udiv-end"); - BasicBlock *LoopExit = BasicBlock::Create(Builder.getContext(), - "udiv-loop-exit", F, End); - BasicBlock *DoWhile = BasicBlock::Create(Builder.getContext(), - "udiv-do-while", F, End); - BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(), - "udiv-preheader", F, End); - BasicBlock *BB1 = BasicBlock::Create(Builder.getContext(), - "udiv-bb1", F, End); - - // We'll be overwriting the terminator to insert our extra blocks - SpecialCases->getTerminator()->eraseFromParent(); - - // Same instructions are generated for both i32 (msb 31) and i64 (msb 63). - - // First off, check for special cases: dividend or divisor is zero, divisor - // is greater than dividend, and divisor is 1. - // ; special-cases: - // ; %ret0_1 = icmp eq i32 %divisor, 0 - // ; %ret0_2 = icmp eq i32 %dividend, 0 - // ; %ret0_3 = or i1 %ret0_1, %ret0_2 - // ; %tmp0 = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true) - // ; %tmp1 = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true) - // ; %sr = sub nsw i32 %tmp0, %tmp1 - // ; %ret0_4 = icmp ugt i32 %sr, 31 - // ; %ret0 = or i1 %ret0_3, %ret0_4 - // ; %retDividend = icmp eq i32 %sr, 31 - // ; %retVal = select i1 %ret0, i32 0, i32 %dividend - // ; %earlyRet = or i1 %ret0, %retDividend - // ; br i1 %earlyRet, label %end, label %bb1 - Builder.SetInsertPoint(SpecialCases); - Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero); - Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero); - Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2); - Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True}); - Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True}); - Value *SR = Builder.CreateSub(Tmp0, Tmp1); - Value *Ret0_4 = Builder.CreateICmpUGT(SR, MSB); - Value *Ret0 = Builder.CreateOr(Ret0_3, Ret0_4); - Value *RetDividend = Builder.CreateICmpEQ(SR, MSB); - Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend); - Value *EarlyRet = Builder.CreateOr(Ret0, RetDividend); - Builder.CreateCondBr(EarlyRet, End, BB1); - - // ; bb1: ; preds = %special-cases - // ; %sr_1 = add i32 %sr, 1 - // ; %tmp2 = sub i32 31, %sr - // ; %q = shl i32 %dividend, %tmp2 - // ; %skipLoop = icmp eq i32 %sr_1, 0 - // ; br i1 %skipLoop, label %loop-exit, label %preheader - Builder.SetInsertPoint(BB1); - Value *SR_1 = Builder.CreateAdd(SR, One); - Value *Tmp2 = Builder.CreateSub(MSB, SR); - Value *Q = Builder.CreateShl(Dividend, Tmp2); - Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero); - Builder.CreateCondBr(SkipLoop, LoopExit, Preheader); - - // ; preheader: ; preds = %bb1 - // ; %tmp3 = lshr i32 %dividend, %sr_1 - // ; %tmp4 = add i32 %divisor, -1 - // ; br label %do-while - Builder.SetInsertPoint(Preheader); - Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1); - Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne); - Builder.CreateBr(DoWhile); - - // ; do-while: ; preds = %do-while, %preheader - // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ] - // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ] - // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ] - // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ] - // ; %tmp5 = shl i32 %r_1, 1 - // ; %tmp6 = lshr i32 %q_2, 31 - // ; %tmp7 = or i32 %tmp5, %tmp6 - // ; %tmp8 = shl i32 %q_2, 1 - // ; %q_1 = or i32 %carry_1, %tmp8 - // ; %tmp9 = sub i32 %tmp4, %tmp7 - // ; %tmp10 = ashr i32 %tmp9, 31 - // ; %carry = and i32 %tmp10, 1 - // ; %tmp11 = and i32 %tmp10, %divisor - // ; %r = sub i32 %tmp7, %tmp11 - // ; %sr_2 = add i32 %sr_3, -1 - // ; %tmp12 = icmp eq i32 %sr_2, 0 - // ; br i1 %tmp12, label %loop-exit, label %do-while - Builder.SetInsertPoint(DoWhile); - PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2); - PHINode *SR_3 = Builder.CreatePHI(DivTy, 2); - PHINode *R_1 = Builder.CreatePHI(DivTy, 2); - PHINode *Q_2 = Builder.CreatePHI(DivTy, 2); - Value *Tmp5 = Builder.CreateShl(R_1, One); - Value *Tmp6 = Builder.CreateLShr(Q_2, MSB); - Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6); - Value *Tmp8 = Builder.CreateShl(Q_2, One); - Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8); - Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7); - Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB); - Value *Carry = Builder.CreateAnd(Tmp10, One); - Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor); - Value *R = Builder.CreateSub(Tmp7, Tmp11); - Value *SR_2 = Builder.CreateAdd(SR_3, NegOne); - Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero); - Builder.CreateCondBr(Tmp12, LoopExit, DoWhile); - - // ; loop-exit: ; preds = %do-while, %bb1 - // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ] - // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ] - // ; %tmp13 = shl i32 %q_3, 1 - // ; %q_4 = or i32 %carry_2, %tmp13 - // ; br label %end - Builder.SetInsertPoint(LoopExit); - PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2); - PHINode *Q_3 = Builder.CreatePHI(DivTy, 2); - Value *Tmp13 = Builder.CreateShl(Q_3, One); - Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13); - Builder.CreateBr(End); - - // ; end: ; preds = %loop-exit, %special-cases - // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ] - // ; ret i32 %q_5 - Builder.SetInsertPoint(End, End->begin()); - PHINode *Q_5 = Builder.CreatePHI(DivTy, 2); - - // Populate the Phis, since all values have now been created. Our Phis were: - // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ] - Carry_1->addIncoming(Zero, Preheader); - Carry_1->addIncoming(Carry, DoWhile); - // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ] - SR_3->addIncoming(SR_1, Preheader); - SR_3->addIncoming(SR_2, DoWhile); - // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ] - R_1->addIncoming(Tmp3, Preheader); - R_1->addIncoming(R, DoWhile); - // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ] - Q_2->addIncoming(Q, Preheader); - Q_2->addIncoming(Q_1, DoWhile); - // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ] - Carry_2->addIncoming(Zero, BB1); - Carry_2->addIncoming(Carry, DoWhile); - // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ] - Q_3->addIncoming(Q, BB1); - Q_3->addIncoming(Q_1, DoWhile); - // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ] - Q_5->addIncoming(Q_4, LoopExit); - Q_5->addIncoming(RetVal, SpecialCases); - - return Q_5; -} - -/// Generate code to calculate the remainder of two integers, replacing Rem with -/// the generated code. This currently generates code using the udiv expansion, -/// but future work includes generating more specialized code, e.g. when more -/// information about the operands are known. Implements both 32bit and 64bit -/// scalar division. -/// -/// Replace Rem with generated code. -bool llvm::expandRemainder(BinaryOperator *Rem) { - assert((Rem->getOpcode() == Instruction::SRem || - Rem->getOpcode() == Instruction::URem) && - "Trying to expand remainder from a non-remainder function"); - - IRBuilder<> Builder(Rem); - - assert(!Rem->getType()->isVectorTy() && "Div over vectors not supported"); - assert((Rem->getType()->getIntegerBitWidth() == 32 || - Rem->getType()->getIntegerBitWidth() == 64) && - "Div of bitwidth other than 32 or 64 not supported"); - - // First prepare the sign if it's a signed remainder - if (Rem->getOpcode() == Instruction::SRem) { - Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0), - Rem->getOperand(1), Builder); - - // Check whether this is the insert point while Rem is still valid. - bool IsInsertPoint = Rem->getIterator() == Builder.GetInsertPoint(); - Rem->replaceAllUsesWith(Remainder); - Rem->dropAllReferences(); - Rem->eraseFromParent(); - - // If we didn't actually generate an urem instruction, we're done - // This happens for example if the input were constant. In this case the - // Builder insertion point was unchanged - if (IsInsertPoint) - return true; - - BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint()); - Rem = BO; - } - - Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0), - Rem->getOperand(1), - Builder); - - Rem->replaceAllUsesWith(Remainder); - Rem->dropAllReferences(); - Rem->eraseFromParent(); - - // Expand the udiv - if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) { - assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?"); - expandDivision(UDiv); - } - - return true; -} - - -/// Generate code to divide two integers, replacing Div with the generated -/// code. This currently generates code similarly to compiler-rt's -/// implementations, but future work includes generating more specialized code -/// when more information about the operands are known. Implements both -/// 32bit and 64bit scalar division. -/// -/// Replace Div with generated code. -bool llvm::expandDivision(BinaryOperator *Div) { - assert((Div->getOpcode() == Instruction::SDiv || - Div->getOpcode() == Instruction::UDiv) && - "Trying to expand division from a non-division function"); - - IRBuilder<> Builder(Div); - - assert(!Div->getType()->isVectorTy() && "Div over vectors not supported"); - assert((Div->getType()->getIntegerBitWidth() == 32 || - Div->getType()->getIntegerBitWidth() == 64) && - "Div of bitwidth other than 32 or 64 not supported"); - - // First prepare the sign if it's a signed division - if (Div->getOpcode() == Instruction::SDiv) { - // Lower the code to unsigned division, and reset Div to point to the udiv. - Value *Quotient = generateSignedDivisionCode(Div->getOperand(0), - Div->getOperand(1), Builder); - - // Check whether this is the insert point while Div is still valid. - bool IsInsertPoint = Div->getIterator() == Builder.GetInsertPoint(); - Div->replaceAllUsesWith(Quotient); - Div->dropAllReferences(); - Div->eraseFromParent(); - - // If we didn't actually generate an udiv instruction, we're done - // This happens for example if the input were constant. In this case the - // Builder insertion point was unchanged - if (IsInsertPoint) - return true; - - BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint()); - Div = BO; - } - - // Insert the unsigned division code - Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0), - Div->getOperand(1), - Builder); - Div->replaceAllUsesWith(Quotient); - Div->dropAllReferences(); - Div->eraseFromParent(); - - return true; -} - -/// Generate code to compute the remainder of two integers of bitwidth up to -/// 32 bits. Uses the above routines and extends the inputs/truncates the -/// outputs to operate in 32 bits; that is, these routines are good for targets -/// that have no or very little suppport for smaller than 32 bit integer -/// arithmetic. -/// -/// Replace Rem with emulation code. -bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) { - assert((Rem->getOpcode() == Instruction::SRem || - Rem->getOpcode() == Instruction::URem) && - "Trying to expand remainder from a non-remainder function"); - - Type *RemTy = Rem->getType(); - assert(!RemTy->isVectorTy() && "Div over vectors not supported"); - - unsigned RemTyBitWidth = RemTy->getIntegerBitWidth(); - - assert(RemTyBitWidth <= 32 && - "Div of bitwidth greater than 32 not supported"); - - if (RemTyBitWidth == 32) - return expandRemainder(Rem); - - // If bitwidth smaller than 32 extend inputs, extend output and proceed - // with 32 bit division. - IRBuilder<> Builder(Rem); - - Value *ExtDividend; - Value *ExtDivisor; - Value *ExtRem; - Value *Trunc; - Type *Int32Ty = Builder.getInt32Ty(); - - if (Rem->getOpcode() == Instruction::SRem) { - ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty); - ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty); - ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor); - } else { - ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty); - ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty); - ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor); - } - Trunc = Builder.CreateTrunc(ExtRem, RemTy); - - Rem->replaceAllUsesWith(Trunc); - Rem->dropAllReferences(); - Rem->eraseFromParent(); - - return expandRemainder(cast<BinaryOperator>(ExtRem)); -} - -/// Generate code to compute the remainder of two integers of bitwidth up to -/// 64 bits. Uses the above routines and extends the inputs/truncates the -/// outputs to operate in 64 bits. -/// -/// Replace Rem with emulation code. -bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) { - assert((Rem->getOpcode() == Instruction::SRem || - Rem->getOpcode() == Instruction::URem) && - "Trying to expand remainder from a non-remainder function"); - - Type *RemTy = Rem->getType(); - assert(!RemTy->isVectorTy() && "Div over vectors not supported"); - - unsigned RemTyBitWidth = RemTy->getIntegerBitWidth(); - - assert(RemTyBitWidth <= 64 && "Div of bitwidth greater than 64 not supported"); - - if (RemTyBitWidth == 64) - return expandRemainder(Rem); - - // If bitwidth smaller than 64 extend inputs, extend output and proceed - // with 64 bit division. - IRBuilder<> Builder(Rem); - - Value *ExtDividend; - Value *ExtDivisor; - Value *ExtRem; - Value *Trunc; - Type *Int64Ty = Builder.getInt64Ty(); - - if (Rem->getOpcode() == Instruction::SRem) { - ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty); - ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty); - ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor); - } else { - ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty); - ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty); - ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor); - } - Trunc = Builder.CreateTrunc(ExtRem, RemTy); - - Rem->replaceAllUsesWith(Trunc); - Rem->dropAllReferences(); - Rem->eraseFromParent(); - - return expandRemainder(cast<BinaryOperator>(ExtRem)); -} - -/// Generate code to divide two integers of bitwidth up to 32 bits. Uses the -/// above routines and extends the inputs/truncates the outputs to operate -/// in 32 bits; that is, these routines are good for targets that have no -/// or very little support for smaller than 32 bit integer arithmetic. -/// -/// Replace Div with emulation code. -bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) { - assert((Div->getOpcode() == Instruction::SDiv || - Div->getOpcode() == Instruction::UDiv) && - "Trying to expand division from a non-division function"); - - Type *DivTy = Div->getType(); - assert(!DivTy->isVectorTy() && "Div over vectors not supported"); - - unsigned DivTyBitWidth = DivTy->getIntegerBitWidth(); - - assert(DivTyBitWidth <= 32 && "Div of bitwidth greater than 32 not supported"); - - if (DivTyBitWidth == 32) - return expandDivision(Div); - - // If bitwidth smaller than 32 extend inputs, extend output and proceed - // with 32 bit division. - IRBuilder<> Builder(Div); - - Value *ExtDividend; - Value *ExtDivisor; - Value *ExtDiv; - Value *Trunc; - Type *Int32Ty = Builder.getInt32Ty(); - - if (Div->getOpcode() == Instruction::SDiv) { - ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty); - ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty); - ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor); - } else { - ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty); - ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty); - ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor); - } - Trunc = Builder.CreateTrunc(ExtDiv, DivTy); - - Div->replaceAllUsesWith(Trunc); - Div->dropAllReferences(); - Div->eraseFromParent(); - - return expandDivision(cast<BinaryOperator>(ExtDiv)); -} - -/// Generate code to divide two integers of bitwidth up to 64 bits. Uses the -/// above routines and extends the inputs/truncates the outputs to operate -/// in 64 bits. -/// -/// Replace Div with emulation code. -bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) { - assert((Div->getOpcode() == Instruction::SDiv || - Div->getOpcode() == Instruction::UDiv) && - "Trying to expand division from a non-division function"); - - Type *DivTy = Div->getType(); - assert(!DivTy->isVectorTy() && "Div over vectors not supported"); - - unsigned DivTyBitWidth = DivTy->getIntegerBitWidth(); - - assert(DivTyBitWidth <= 64 && - "Div of bitwidth greater than 64 not supported"); - - if (DivTyBitWidth == 64) - return expandDivision(Div); - - // If bitwidth smaller than 64 extend inputs, extend output and proceed - // with 64 bit division. - IRBuilder<> Builder(Div); - - Value *ExtDividend; - Value *ExtDivisor; - Value *ExtDiv; - Value *Trunc; - Type *Int64Ty = Builder.getInt64Ty(); - - if (Div->getOpcode() == Instruction::SDiv) { - ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty); - ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty); - ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor); - } else { - ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty); - ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty); - ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor); - } - Trunc = Builder.CreateTrunc(ExtDiv, DivTy); - - Div->replaceAllUsesWith(Trunc); - Div->dropAllReferences(); - Div->eraseFromParent(); - - return expandDivision(cast<BinaryOperator>(ExtDiv)); -} +//===-- IntegerDivision.cpp - Expand integer division ---------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains an implementation of 32bit and 64bit scalar integer +// division for targets that don't have native support. It's largely derived +// from compiler-rt's implementations of __udivsi3 and __udivmoddi4, +// but hand-tuned for targets that prefer less control flow. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/IntegerDivision.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Intrinsics.h" +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "integer-division" + +/// Generate code to compute the remainder of two signed integers. Returns the +/// remainder, which will have the sign of the dividend. Builder's insert point +/// should be pointing where the caller wants code generated, e.g. at the srem +/// instruction. This will generate a urem in the process, and Builder's insert +/// point will be pointing at the uren (if present, i.e. not folded), ready to +/// be expanded if the user wishes +static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor, + IRBuilder<> &Builder) { + unsigned BitWidth = Dividend->getType()->getIntegerBitWidth(); + ConstantInt *Shift; + + if (BitWidth == 64) { + Shift = Builder.getInt64(63); + } else { + assert(BitWidth == 32 && "Unexpected bit width"); + Shift = Builder.getInt32(31); + } + + // Following instructions are generated for both i32 (shift 31) and + // i64 (shift 63). + + // ; %dividend_sgn = ashr i32 %dividend, 31 + // ; %divisor_sgn = ashr i32 %divisor, 31 + // ; %dvd_xor = xor i32 %dividend, %dividend_sgn + // ; %dvs_xor = xor i32 %divisor, %divisor_sgn + // ; %u_dividend = sub i32 %dvd_xor, %dividend_sgn + // ; %u_divisor = sub i32 %dvs_xor, %divisor_sgn + // ; %urem = urem i32 %dividend, %divisor + // ; %xored = xor i32 %urem, %dividend_sgn + // ; %srem = sub i32 %xored, %dividend_sgn + Value *DividendSign = Builder.CreateAShr(Dividend, Shift); + Value *DivisorSign = Builder.CreateAShr(Divisor, Shift); + Value *DvdXor = Builder.CreateXor(Dividend, DividendSign); + Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign); + Value *UDividend = Builder.CreateSub(DvdXor, DividendSign); + Value *UDivisor = Builder.CreateSub(DvsXor, DivisorSign); + Value *URem = Builder.CreateURem(UDividend, UDivisor); + Value *Xored = Builder.CreateXor(URem, DividendSign); + Value *SRem = Builder.CreateSub(Xored, DividendSign); + + if (Instruction *URemInst = dyn_cast<Instruction>(URem)) + Builder.SetInsertPoint(URemInst); + + return SRem; +} + + +/// Generate code to compute the remainder of two unsigned integers. Returns the +/// remainder. Builder's insert point should be pointing where the caller wants +/// code generated, e.g. at the urem instruction. This will generate a udiv in +/// the process, and Builder's insert point will be pointing at the udiv (if +/// present, i.e. not folded), ready to be expanded if the user wishes +static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor, + IRBuilder<> &Builder) { + // Remainder = Dividend - Quotient*Divisor + + // Following instructions are generated for both i32 and i64 + + // ; %quotient = udiv i32 %dividend, %divisor + // ; %product = mul i32 %divisor, %quotient + // ; %remainder = sub i32 %dividend, %product + Value *Quotient = Builder.CreateUDiv(Dividend, Divisor); + Value *Product = Builder.CreateMul(Divisor, Quotient); + Value *Remainder = Builder.CreateSub(Dividend, Product); + + if (Instruction *UDiv = dyn_cast<Instruction>(Quotient)) + Builder.SetInsertPoint(UDiv); + + return Remainder; +} + +/// Generate code to divide two signed integers. Returns the quotient, rounded +/// towards 0. Builder's insert point should be pointing where the caller wants +/// code generated, e.g. at the sdiv instruction. This will generate a udiv in +/// the process, and Builder's insert point will be pointing at the udiv (if +/// present, i.e. not folded), ready to be expanded if the user wishes. +static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor, + IRBuilder<> &Builder) { + // Implementation taken from compiler-rt's __divsi3 and __divdi3 + + unsigned BitWidth = Dividend->getType()->getIntegerBitWidth(); + ConstantInt *Shift; + + if (BitWidth == 64) { + Shift = Builder.getInt64(63); + } else { + assert(BitWidth == 32 && "Unexpected bit width"); + Shift = Builder.getInt32(31); + } + + // Following instructions are generated for both i32 (shift 31) and + // i64 (shift 63). + + // ; %tmp = ashr i32 %dividend, 31 + // ; %tmp1 = ashr i32 %divisor, 31 + // ; %tmp2 = xor i32 %tmp, %dividend + // ; %u_dvnd = sub nsw i32 %tmp2, %tmp + // ; %tmp3 = xor i32 %tmp1, %divisor + // ; %u_dvsr = sub nsw i32 %tmp3, %tmp1 + // ; %q_sgn = xor i32 %tmp1, %tmp + // ; %q_mag = udiv i32 %u_dvnd, %u_dvsr + // ; %tmp4 = xor i32 %q_mag, %q_sgn + // ; %q = sub i32 %tmp4, %q_sgn + Value *Tmp = Builder.CreateAShr(Dividend, Shift); + Value *Tmp1 = Builder.CreateAShr(Divisor, Shift); + Value *Tmp2 = Builder.CreateXor(Tmp, Dividend); + Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp); + Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor); + Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1); + Value *Q_Sgn = Builder.CreateXor(Tmp1, Tmp); + Value *Q_Mag = Builder.CreateUDiv(U_Dvnd, U_Dvsr); + Value *Tmp4 = Builder.CreateXor(Q_Mag, Q_Sgn); + Value *Q = Builder.CreateSub(Tmp4, Q_Sgn); + + if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag)) + Builder.SetInsertPoint(UDiv); + + return Q; +} + +/// Generates code to divide two unsigned scalar 32-bit or 64-bit integers. +/// Returns the quotient, rounded towards 0. Builder's insert point should +/// point where the caller wants code generated, e.g. at the udiv instruction. +static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor, + IRBuilder<> &Builder) { + // The basic algorithm can be found in the compiler-rt project's + // implementation of __udivsi3.c. Here, we do a lower-level IR based approach + // that's been hand-tuned to lessen the amount of control flow involved. + + // Some helper values + IntegerType *DivTy = cast<IntegerType>(Dividend->getType()); + unsigned BitWidth = DivTy->getBitWidth(); + + ConstantInt *Zero; + ConstantInt *One; + ConstantInt *NegOne; + ConstantInt *MSB; + + if (BitWidth == 64) { + Zero = Builder.getInt64(0); + One = Builder.getInt64(1); + NegOne = ConstantInt::getSigned(DivTy, -1); + MSB = Builder.getInt64(63); + } else { + assert(BitWidth == 32 && "Unexpected bit width"); + Zero = Builder.getInt32(0); + One = Builder.getInt32(1); + NegOne = ConstantInt::getSigned(DivTy, -1); + MSB = Builder.getInt32(31); + } + + ConstantInt *True = Builder.getTrue(); + + BasicBlock *IBB = Builder.GetInsertBlock(); + Function *F = IBB->getParent(); + Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz, + DivTy); + + // Our CFG is going to look like: + // +---------------------+ + // | special-cases | + // | ... | + // +---------------------+ + // | | + // | +----------+ + // | | bb1 | + // | | ... | + // | +----------+ + // | | | + // | | +------------+ + // | | | preheader | + // | | | ... | + // | | +------------+ + // | | | + // | | | +---+ + // | | | | | + // | | +------------+ | + // | | | do-while | | + // | | | ... | | + // | | +------------+ | + // | | | | | + // | +-----------+ +---+ + // | | loop-exit | + // | | ... | + // | +-----------+ + // | | + // +-------+ + // | ... | + // | end | + // +-------+ + BasicBlock *SpecialCases = Builder.GetInsertBlock(); + SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases")); + BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(), + "udiv-end"); + BasicBlock *LoopExit = BasicBlock::Create(Builder.getContext(), + "udiv-loop-exit", F, End); + BasicBlock *DoWhile = BasicBlock::Create(Builder.getContext(), + "udiv-do-while", F, End); + BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(), + "udiv-preheader", F, End); + BasicBlock *BB1 = BasicBlock::Create(Builder.getContext(), + "udiv-bb1", F, End); + + // We'll be overwriting the terminator to insert our extra blocks + SpecialCases->getTerminator()->eraseFromParent(); + + // Same instructions are generated for both i32 (msb 31) and i64 (msb 63). + + // First off, check for special cases: dividend or divisor is zero, divisor + // is greater than dividend, and divisor is 1. + // ; special-cases: + // ; %ret0_1 = icmp eq i32 %divisor, 0 + // ; %ret0_2 = icmp eq i32 %dividend, 0 + // ; %ret0_3 = or i1 %ret0_1, %ret0_2 + // ; %tmp0 = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true) + // ; %tmp1 = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true) + // ; %sr = sub nsw i32 %tmp0, %tmp1 + // ; %ret0_4 = icmp ugt i32 %sr, 31 + // ; %ret0 = or i1 %ret0_3, %ret0_4 + // ; %retDividend = icmp eq i32 %sr, 31 + // ; %retVal = select i1 %ret0, i32 0, i32 %dividend + // ; %earlyRet = or i1 %ret0, %retDividend + // ; br i1 %earlyRet, label %end, label %bb1 + Builder.SetInsertPoint(SpecialCases); + Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero); + Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero); + Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2); + Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True}); + Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True}); + Value *SR = Builder.CreateSub(Tmp0, Tmp1); + Value *Ret0_4 = Builder.CreateICmpUGT(SR, MSB); + Value *Ret0 = Builder.CreateOr(Ret0_3, Ret0_4); + Value *RetDividend = Builder.CreateICmpEQ(SR, MSB); + Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend); + Value *EarlyRet = Builder.CreateOr(Ret0, RetDividend); + Builder.CreateCondBr(EarlyRet, End, BB1); + + // ; bb1: ; preds = %special-cases + // ; %sr_1 = add i32 %sr, 1 + // ; %tmp2 = sub i32 31, %sr + // ; %q = shl i32 %dividend, %tmp2 + // ; %skipLoop = icmp eq i32 %sr_1, 0 + // ; br i1 %skipLoop, label %loop-exit, label %preheader + Builder.SetInsertPoint(BB1); + Value *SR_1 = Builder.CreateAdd(SR, One); + Value *Tmp2 = Builder.CreateSub(MSB, SR); + Value *Q = Builder.CreateShl(Dividend, Tmp2); + Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero); + Builder.CreateCondBr(SkipLoop, LoopExit, Preheader); + + // ; preheader: ; preds = %bb1 + // ; %tmp3 = lshr i32 %dividend, %sr_1 + // ; %tmp4 = add i32 %divisor, -1 + // ; br label %do-while + Builder.SetInsertPoint(Preheader); + Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1); + Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne); + Builder.CreateBr(DoWhile); + + // ; do-while: ; preds = %do-while, %preheader + // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ] + // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ] + // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ] + // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ] + // ; %tmp5 = shl i32 %r_1, 1 + // ; %tmp6 = lshr i32 %q_2, 31 + // ; %tmp7 = or i32 %tmp5, %tmp6 + // ; %tmp8 = shl i32 %q_2, 1 + // ; %q_1 = or i32 %carry_1, %tmp8 + // ; %tmp9 = sub i32 %tmp4, %tmp7 + // ; %tmp10 = ashr i32 %tmp9, 31 + // ; %carry = and i32 %tmp10, 1 + // ; %tmp11 = and i32 %tmp10, %divisor + // ; %r = sub i32 %tmp7, %tmp11 + // ; %sr_2 = add i32 %sr_3, -1 + // ; %tmp12 = icmp eq i32 %sr_2, 0 + // ; br i1 %tmp12, label %loop-exit, label %do-while + Builder.SetInsertPoint(DoWhile); + PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2); + PHINode *SR_3 = Builder.CreatePHI(DivTy, 2); + PHINode *R_1 = Builder.CreatePHI(DivTy, 2); + PHINode *Q_2 = Builder.CreatePHI(DivTy, 2); + Value *Tmp5 = Builder.CreateShl(R_1, One); + Value *Tmp6 = Builder.CreateLShr(Q_2, MSB); + Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6); + Value *Tmp8 = Builder.CreateShl(Q_2, One); + Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8); + Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7); + Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB); + Value *Carry = Builder.CreateAnd(Tmp10, One); + Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor); + Value *R = Builder.CreateSub(Tmp7, Tmp11); + Value *SR_2 = Builder.CreateAdd(SR_3, NegOne); + Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero); + Builder.CreateCondBr(Tmp12, LoopExit, DoWhile); + + // ; loop-exit: ; preds = %do-while, %bb1 + // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ] + // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ] + // ; %tmp13 = shl i32 %q_3, 1 + // ; %q_4 = or i32 %carry_2, %tmp13 + // ; br label %end + Builder.SetInsertPoint(LoopExit); + PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2); + PHINode *Q_3 = Builder.CreatePHI(DivTy, 2); + Value *Tmp13 = Builder.CreateShl(Q_3, One); + Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13); + Builder.CreateBr(End); + + // ; end: ; preds = %loop-exit, %special-cases + // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ] + // ; ret i32 %q_5 + Builder.SetInsertPoint(End, End->begin()); + PHINode *Q_5 = Builder.CreatePHI(DivTy, 2); + + // Populate the Phis, since all values have now been created. Our Phis were: + // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ] + Carry_1->addIncoming(Zero, Preheader); + Carry_1->addIncoming(Carry, DoWhile); + // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ] + SR_3->addIncoming(SR_1, Preheader); + SR_3->addIncoming(SR_2, DoWhile); + // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ] + R_1->addIncoming(Tmp3, Preheader); + R_1->addIncoming(R, DoWhile); + // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ] + Q_2->addIncoming(Q, Preheader); + Q_2->addIncoming(Q_1, DoWhile); + // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ] + Carry_2->addIncoming(Zero, BB1); + Carry_2->addIncoming(Carry, DoWhile); + // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ] + Q_3->addIncoming(Q, BB1); + Q_3->addIncoming(Q_1, DoWhile); + // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ] + Q_5->addIncoming(Q_4, LoopExit); + Q_5->addIncoming(RetVal, SpecialCases); + + return Q_5; +} + +/// Generate code to calculate the remainder of two integers, replacing Rem with +/// the generated code. This currently generates code using the udiv expansion, +/// but future work includes generating more specialized code, e.g. when more +/// information about the operands are known. Implements both 32bit and 64bit +/// scalar division. +/// +/// Replace Rem with generated code. +bool llvm::expandRemainder(BinaryOperator *Rem) { + assert((Rem->getOpcode() == Instruction::SRem || + Rem->getOpcode() == Instruction::URem) && + "Trying to expand remainder from a non-remainder function"); + + IRBuilder<> Builder(Rem); + + assert(!Rem->getType()->isVectorTy() && "Div over vectors not supported"); + assert((Rem->getType()->getIntegerBitWidth() == 32 || + Rem->getType()->getIntegerBitWidth() == 64) && + "Div of bitwidth other than 32 or 64 not supported"); + + // First prepare the sign if it's a signed remainder + if (Rem->getOpcode() == Instruction::SRem) { + Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0), + Rem->getOperand(1), Builder); + + // Check whether this is the insert point while Rem is still valid. + bool IsInsertPoint = Rem->getIterator() == Builder.GetInsertPoint(); + Rem->replaceAllUsesWith(Remainder); + Rem->dropAllReferences(); + Rem->eraseFromParent(); + + // If we didn't actually generate an urem instruction, we're done + // This happens for example if the input were constant. In this case the + // Builder insertion point was unchanged + if (IsInsertPoint) + return true; + + BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint()); + Rem = BO; + } + + Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0), + Rem->getOperand(1), + Builder); + + Rem->replaceAllUsesWith(Remainder); + Rem->dropAllReferences(); + Rem->eraseFromParent(); + + // Expand the udiv + if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) { + assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?"); + expandDivision(UDiv); + } + + return true; +} + + +/// Generate code to divide two integers, replacing Div with the generated +/// code. This currently generates code similarly to compiler-rt's +/// implementations, but future work includes generating more specialized code +/// when more information about the operands are known. Implements both +/// 32bit and 64bit scalar division. +/// +/// Replace Div with generated code. +bool llvm::expandDivision(BinaryOperator *Div) { + assert((Div->getOpcode() == Instruction::SDiv || + Div->getOpcode() == Instruction::UDiv) && + "Trying to expand division from a non-division function"); + + IRBuilder<> Builder(Div); + + assert(!Div->getType()->isVectorTy() && "Div over vectors not supported"); + assert((Div->getType()->getIntegerBitWidth() == 32 || + Div->getType()->getIntegerBitWidth() == 64) && + "Div of bitwidth other than 32 or 64 not supported"); + + // First prepare the sign if it's a signed division + if (Div->getOpcode() == Instruction::SDiv) { + // Lower the code to unsigned division, and reset Div to point to the udiv. + Value *Quotient = generateSignedDivisionCode(Div->getOperand(0), + Div->getOperand(1), Builder); + + // Check whether this is the insert point while Div is still valid. + bool IsInsertPoint = Div->getIterator() == Builder.GetInsertPoint(); + Div->replaceAllUsesWith(Quotient); + Div->dropAllReferences(); + Div->eraseFromParent(); + + // If we didn't actually generate an udiv instruction, we're done + // This happens for example if the input were constant. In this case the + // Builder insertion point was unchanged + if (IsInsertPoint) + return true; + + BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint()); + Div = BO; + } + + // Insert the unsigned division code + Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0), + Div->getOperand(1), + Builder); + Div->replaceAllUsesWith(Quotient); + Div->dropAllReferences(); + Div->eraseFromParent(); + + return true; +} + +/// Generate code to compute the remainder of two integers of bitwidth up to +/// 32 bits. Uses the above routines and extends the inputs/truncates the +/// outputs to operate in 32 bits; that is, these routines are good for targets +/// that have no or very little suppport for smaller than 32 bit integer +/// arithmetic. +/// +/// Replace Rem with emulation code. +bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) { + assert((Rem->getOpcode() == Instruction::SRem || + Rem->getOpcode() == Instruction::URem) && + "Trying to expand remainder from a non-remainder function"); + + Type *RemTy = Rem->getType(); + assert(!RemTy->isVectorTy() && "Div over vectors not supported"); + + unsigned RemTyBitWidth = RemTy->getIntegerBitWidth(); + + assert(RemTyBitWidth <= 32 && + "Div of bitwidth greater than 32 not supported"); + + if (RemTyBitWidth == 32) + return expandRemainder(Rem); + + // If bitwidth smaller than 32 extend inputs, extend output and proceed + // with 32 bit division. + IRBuilder<> Builder(Rem); + + Value *ExtDividend; + Value *ExtDivisor; + Value *ExtRem; + Value *Trunc; + Type *Int32Ty = Builder.getInt32Ty(); + + if (Rem->getOpcode() == Instruction::SRem) { + ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty); + ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty); + ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor); + } else { + ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty); + ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty); + ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor); + } + Trunc = Builder.CreateTrunc(ExtRem, RemTy); + + Rem->replaceAllUsesWith(Trunc); + Rem->dropAllReferences(); + Rem->eraseFromParent(); + + return expandRemainder(cast<BinaryOperator>(ExtRem)); +} + +/// Generate code to compute the remainder of two integers of bitwidth up to +/// 64 bits. Uses the above routines and extends the inputs/truncates the +/// outputs to operate in 64 bits. +/// +/// Replace Rem with emulation code. +bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) { + assert((Rem->getOpcode() == Instruction::SRem || + Rem->getOpcode() == Instruction::URem) && + "Trying to expand remainder from a non-remainder function"); + + Type *RemTy = Rem->getType(); + assert(!RemTy->isVectorTy() && "Div over vectors not supported"); + + unsigned RemTyBitWidth = RemTy->getIntegerBitWidth(); + + assert(RemTyBitWidth <= 64 && "Div of bitwidth greater than 64 not supported"); + + if (RemTyBitWidth == 64) + return expandRemainder(Rem); + + // If bitwidth smaller than 64 extend inputs, extend output and proceed + // with 64 bit division. + IRBuilder<> Builder(Rem); + + Value *ExtDividend; + Value *ExtDivisor; + Value *ExtRem; + Value *Trunc; + Type *Int64Ty = Builder.getInt64Ty(); + + if (Rem->getOpcode() == Instruction::SRem) { + ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty); + ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty); + ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor); + } else { + ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty); + ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty); + ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor); + } + Trunc = Builder.CreateTrunc(ExtRem, RemTy); + + Rem->replaceAllUsesWith(Trunc); + Rem->dropAllReferences(); + Rem->eraseFromParent(); + + return expandRemainder(cast<BinaryOperator>(ExtRem)); +} + +/// Generate code to divide two integers of bitwidth up to 32 bits. Uses the +/// above routines and extends the inputs/truncates the outputs to operate +/// in 32 bits; that is, these routines are good for targets that have no +/// or very little support for smaller than 32 bit integer arithmetic. +/// +/// Replace Div with emulation code. +bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) { + assert((Div->getOpcode() == Instruction::SDiv || + Div->getOpcode() == Instruction::UDiv) && + "Trying to expand division from a non-division function"); + + Type *DivTy = Div->getType(); + assert(!DivTy->isVectorTy() && "Div over vectors not supported"); + + unsigned DivTyBitWidth = DivTy->getIntegerBitWidth(); + + assert(DivTyBitWidth <= 32 && "Div of bitwidth greater than 32 not supported"); + + if (DivTyBitWidth == 32) + return expandDivision(Div); + + // If bitwidth smaller than 32 extend inputs, extend output and proceed + // with 32 bit division. + IRBuilder<> Builder(Div); + + Value *ExtDividend; + Value *ExtDivisor; + Value *ExtDiv; + Value *Trunc; + Type *Int32Ty = Builder.getInt32Ty(); + + if (Div->getOpcode() == Instruction::SDiv) { + ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty); + ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty); + ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor); + } else { + ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty); + ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty); + ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor); + } + Trunc = Builder.CreateTrunc(ExtDiv, DivTy); + + Div->replaceAllUsesWith(Trunc); + Div->dropAllReferences(); + Div->eraseFromParent(); + + return expandDivision(cast<BinaryOperator>(ExtDiv)); +} + +/// Generate code to divide two integers of bitwidth up to 64 bits. Uses the +/// above routines and extends the inputs/truncates the outputs to operate +/// in 64 bits. +/// +/// Replace Div with emulation code. +bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) { + assert((Div->getOpcode() == Instruction::SDiv || + Div->getOpcode() == Instruction::UDiv) && + "Trying to expand division from a non-division function"); + + Type *DivTy = Div->getType(); + assert(!DivTy->isVectorTy() && "Div over vectors not supported"); + + unsigned DivTyBitWidth = DivTy->getIntegerBitWidth(); + + assert(DivTyBitWidth <= 64 && + "Div of bitwidth greater than 64 not supported"); + + if (DivTyBitWidth == 64) + return expandDivision(Div); + + // If bitwidth smaller than 64 extend inputs, extend output and proceed + // with 64 bit division. + IRBuilder<> Builder(Div); + + Value *ExtDividend; + Value *ExtDivisor; + Value *ExtDiv; + Value *Trunc; + Type *Int64Ty = Builder.getInt64Ty(); + + if (Div->getOpcode() == Instruction::SDiv) { + ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty); + ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty); + ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor); + } else { + ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty); + ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty); + ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor); + } + Trunc = Builder.CreateTrunc(ExtDiv, DivTy); + + Div->replaceAllUsesWith(Trunc); + Div->dropAllReferences(); + Div->eraseFromParent(); + + return expandDivision(cast<BinaryOperator>(ExtDiv)); +} |