aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Transforms/Utils/IntegerDivision.cpp
diff options
context:
space:
mode:
authororivej <orivej@yandex-team.ru>2022-02-10 16:45:01 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:45:01 +0300
commit2d37894b1b037cf24231090eda8589bbb44fb6fc (patch)
treebe835aa92c6248212e705f25388ebafcf84bc7a1 /contrib/libs/llvm12/lib/Transforms/Utils/IntegerDivision.cpp
parent718c552901d703c502ccbefdfc3c9028d608b947 (diff)
downloadydb-2d37894b1b037cf24231090eda8589bbb44fb6fc.tar.gz
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/Transforms/Utils/IntegerDivision.cpp')
-rw-r--r--contrib/libs/llvm12/lib/Transforms/Utils/IntegerDivision.cpp1346
1 files changed, 673 insertions, 673 deletions
diff --git a/contrib/libs/llvm12/lib/Transforms/Utils/IntegerDivision.cpp b/contrib/libs/llvm12/lib/Transforms/Utils/IntegerDivision.cpp
index ffb56f2fbe..9082049c82 100644
--- a/contrib/libs/llvm12/lib/Transforms/Utils/IntegerDivision.cpp
+++ b/contrib/libs/llvm12/lib/Transforms/Utils/IntegerDivision.cpp
@@ -1,673 +1,673 @@
-//===-- IntegerDivision.cpp - Expand integer division ---------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains an implementation of 32bit and 64bit scalar integer
-// division for targets that don't have native support. It's largely derived
-// from compiler-rt's implementations of __udivsi3 and __udivmoddi4,
-// but hand-tuned for targets that prefer less control flow.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Utils/IntegerDivision.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Intrinsics.h"
-#include <utility>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "integer-division"
-
-/// Generate code to compute the remainder of two signed integers. Returns the
-/// remainder, which will have the sign of the dividend. Builder's insert point
-/// should be pointing where the caller wants code generated, e.g. at the srem
-/// instruction. This will generate a urem in the process, and Builder's insert
-/// point will be pointing at the uren (if present, i.e. not folded), ready to
-/// be expanded if the user wishes
-static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
- IRBuilder<> &Builder) {
- unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
- ConstantInt *Shift;
-
- if (BitWidth == 64) {
- Shift = Builder.getInt64(63);
- } else {
- assert(BitWidth == 32 && "Unexpected bit width");
- Shift = Builder.getInt32(31);
- }
-
- // Following instructions are generated for both i32 (shift 31) and
- // i64 (shift 63).
-
- // ; %dividend_sgn = ashr i32 %dividend, 31
- // ; %divisor_sgn = ashr i32 %divisor, 31
- // ; %dvd_xor = xor i32 %dividend, %dividend_sgn
- // ; %dvs_xor = xor i32 %divisor, %divisor_sgn
- // ; %u_dividend = sub i32 %dvd_xor, %dividend_sgn
- // ; %u_divisor = sub i32 %dvs_xor, %divisor_sgn
- // ; %urem = urem i32 %dividend, %divisor
- // ; %xored = xor i32 %urem, %dividend_sgn
- // ; %srem = sub i32 %xored, %dividend_sgn
- Value *DividendSign = Builder.CreateAShr(Dividend, Shift);
- Value *DivisorSign = Builder.CreateAShr(Divisor, Shift);
- Value *DvdXor = Builder.CreateXor(Dividend, DividendSign);
- Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign);
- Value *UDividend = Builder.CreateSub(DvdXor, DividendSign);
- Value *UDivisor = Builder.CreateSub(DvsXor, DivisorSign);
- Value *URem = Builder.CreateURem(UDividend, UDivisor);
- Value *Xored = Builder.CreateXor(URem, DividendSign);
- Value *SRem = Builder.CreateSub(Xored, DividendSign);
-
- if (Instruction *URemInst = dyn_cast<Instruction>(URem))
- Builder.SetInsertPoint(URemInst);
-
- return SRem;
-}
-
-
-/// Generate code to compute the remainder of two unsigned integers. Returns the
-/// remainder. Builder's insert point should be pointing where the caller wants
-/// code generated, e.g. at the urem instruction. This will generate a udiv in
-/// the process, and Builder's insert point will be pointing at the udiv (if
-/// present, i.e. not folded), ready to be expanded if the user wishes
-static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
- IRBuilder<> &Builder) {
- // Remainder = Dividend - Quotient*Divisor
-
- // Following instructions are generated for both i32 and i64
-
- // ; %quotient = udiv i32 %dividend, %divisor
- // ; %product = mul i32 %divisor, %quotient
- // ; %remainder = sub i32 %dividend, %product
- Value *Quotient = Builder.CreateUDiv(Dividend, Divisor);
- Value *Product = Builder.CreateMul(Divisor, Quotient);
- Value *Remainder = Builder.CreateSub(Dividend, Product);
-
- if (Instruction *UDiv = dyn_cast<Instruction>(Quotient))
- Builder.SetInsertPoint(UDiv);
-
- return Remainder;
-}
-
-/// Generate code to divide two signed integers. Returns the quotient, rounded
-/// towards 0. Builder's insert point should be pointing where the caller wants
-/// code generated, e.g. at the sdiv instruction. This will generate a udiv in
-/// the process, and Builder's insert point will be pointing at the udiv (if
-/// present, i.e. not folded), ready to be expanded if the user wishes.
-static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
- IRBuilder<> &Builder) {
- // Implementation taken from compiler-rt's __divsi3 and __divdi3
-
- unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
- ConstantInt *Shift;
-
- if (BitWidth == 64) {
- Shift = Builder.getInt64(63);
- } else {
- assert(BitWidth == 32 && "Unexpected bit width");
- Shift = Builder.getInt32(31);
- }
-
- // Following instructions are generated for both i32 (shift 31) and
- // i64 (shift 63).
-
- // ; %tmp = ashr i32 %dividend, 31
- // ; %tmp1 = ashr i32 %divisor, 31
- // ; %tmp2 = xor i32 %tmp, %dividend
- // ; %u_dvnd = sub nsw i32 %tmp2, %tmp
- // ; %tmp3 = xor i32 %tmp1, %divisor
- // ; %u_dvsr = sub nsw i32 %tmp3, %tmp1
- // ; %q_sgn = xor i32 %tmp1, %tmp
- // ; %q_mag = udiv i32 %u_dvnd, %u_dvsr
- // ; %tmp4 = xor i32 %q_mag, %q_sgn
- // ; %q = sub i32 %tmp4, %q_sgn
- Value *Tmp = Builder.CreateAShr(Dividend, Shift);
- Value *Tmp1 = Builder.CreateAShr(Divisor, Shift);
- Value *Tmp2 = Builder.CreateXor(Tmp, Dividend);
- Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
- Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor);
- Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1);
- Value *Q_Sgn = Builder.CreateXor(Tmp1, Tmp);
- Value *Q_Mag = Builder.CreateUDiv(U_Dvnd, U_Dvsr);
- Value *Tmp4 = Builder.CreateXor(Q_Mag, Q_Sgn);
- Value *Q = Builder.CreateSub(Tmp4, Q_Sgn);
-
- if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag))
- Builder.SetInsertPoint(UDiv);
-
- return Q;
-}
-
-/// Generates code to divide two unsigned scalar 32-bit or 64-bit integers.
-/// Returns the quotient, rounded towards 0. Builder's insert point should
-/// point where the caller wants code generated, e.g. at the udiv instruction.
-static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
- IRBuilder<> &Builder) {
- // The basic algorithm can be found in the compiler-rt project's
- // implementation of __udivsi3.c. Here, we do a lower-level IR based approach
- // that's been hand-tuned to lessen the amount of control flow involved.
-
- // Some helper values
- IntegerType *DivTy = cast<IntegerType>(Dividend->getType());
- unsigned BitWidth = DivTy->getBitWidth();
-
- ConstantInt *Zero;
- ConstantInt *One;
- ConstantInt *NegOne;
- ConstantInt *MSB;
-
- if (BitWidth == 64) {
- Zero = Builder.getInt64(0);
- One = Builder.getInt64(1);
- NegOne = ConstantInt::getSigned(DivTy, -1);
- MSB = Builder.getInt64(63);
- } else {
- assert(BitWidth == 32 && "Unexpected bit width");
- Zero = Builder.getInt32(0);
- One = Builder.getInt32(1);
- NegOne = ConstantInt::getSigned(DivTy, -1);
- MSB = Builder.getInt32(31);
- }
-
- ConstantInt *True = Builder.getTrue();
-
- BasicBlock *IBB = Builder.GetInsertBlock();
- Function *F = IBB->getParent();
- Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
- DivTy);
-
- // Our CFG is going to look like:
- // +---------------------+
- // | special-cases |
- // | ... |
- // +---------------------+
- // | |
- // | +----------+
- // | | bb1 |
- // | | ... |
- // | +----------+
- // | | |
- // | | +------------+
- // | | | preheader |
- // | | | ... |
- // | | +------------+
- // | | |
- // | | | +---+
- // | | | | |
- // | | +------------+ |
- // | | | do-while | |
- // | | | ... | |
- // | | +------------+ |
- // | | | | |
- // | +-----------+ +---+
- // | | loop-exit |
- // | | ... |
- // | +-----------+
- // | |
- // +-------+
- // | ... |
- // | end |
- // +-------+
- BasicBlock *SpecialCases = Builder.GetInsertBlock();
- SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases"));
- BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(),
- "udiv-end");
- BasicBlock *LoopExit = BasicBlock::Create(Builder.getContext(),
- "udiv-loop-exit", F, End);
- BasicBlock *DoWhile = BasicBlock::Create(Builder.getContext(),
- "udiv-do-while", F, End);
- BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(),
- "udiv-preheader", F, End);
- BasicBlock *BB1 = BasicBlock::Create(Builder.getContext(),
- "udiv-bb1", F, End);
-
- // We'll be overwriting the terminator to insert our extra blocks
- SpecialCases->getTerminator()->eraseFromParent();
-
- // Same instructions are generated for both i32 (msb 31) and i64 (msb 63).
-
- // First off, check for special cases: dividend or divisor is zero, divisor
- // is greater than dividend, and divisor is 1.
- // ; special-cases:
- // ; %ret0_1 = icmp eq i32 %divisor, 0
- // ; %ret0_2 = icmp eq i32 %dividend, 0
- // ; %ret0_3 = or i1 %ret0_1, %ret0_2
- // ; %tmp0 = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true)
- // ; %tmp1 = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true)
- // ; %sr = sub nsw i32 %tmp0, %tmp1
- // ; %ret0_4 = icmp ugt i32 %sr, 31
- // ; %ret0 = or i1 %ret0_3, %ret0_4
- // ; %retDividend = icmp eq i32 %sr, 31
- // ; %retVal = select i1 %ret0, i32 0, i32 %dividend
- // ; %earlyRet = or i1 %ret0, %retDividend
- // ; br i1 %earlyRet, label %end, label %bb1
- Builder.SetInsertPoint(SpecialCases);
- Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero);
- Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero);
- Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2);
- Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True});
- Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True});
- Value *SR = Builder.CreateSub(Tmp0, Tmp1);
- Value *Ret0_4 = Builder.CreateICmpUGT(SR, MSB);
- Value *Ret0 = Builder.CreateOr(Ret0_3, Ret0_4);
- Value *RetDividend = Builder.CreateICmpEQ(SR, MSB);
- Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend);
- Value *EarlyRet = Builder.CreateOr(Ret0, RetDividend);
- Builder.CreateCondBr(EarlyRet, End, BB1);
-
- // ; bb1: ; preds = %special-cases
- // ; %sr_1 = add i32 %sr, 1
- // ; %tmp2 = sub i32 31, %sr
- // ; %q = shl i32 %dividend, %tmp2
- // ; %skipLoop = icmp eq i32 %sr_1, 0
- // ; br i1 %skipLoop, label %loop-exit, label %preheader
- Builder.SetInsertPoint(BB1);
- Value *SR_1 = Builder.CreateAdd(SR, One);
- Value *Tmp2 = Builder.CreateSub(MSB, SR);
- Value *Q = Builder.CreateShl(Dividend, Tmp2);
- Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
- Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);
-
- // ; preheader: ; preds = %bb1
- // ; %tmp3 = lshr i32 %dividend, %sr_1
- // ; %tmp4 = add i32 %divisor, -1
- // ; br label %do-while
- Builder.SetInsertPoint(Preheader);
- Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1);
- Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne);
- Builder.CreateBr(DoWhile);
-
- // ; do-while: ; preds = %do-while, %preheader
- // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
- // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
- // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
- // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
- // ; %tmp5 = shl i32 %r_1, 1
- // ; %tmp6 = lshr i32 %q_2, 31
- // ; %tmp7 = or i32 %tmp5, %tmp6
- // ; %tmp8 = shl i32 %q_2, 1
- // ; %q_1 = or i32 %carry_1, %tmp8
- // ; %tmp9 = sub i32 %tmp4, %tmp7
- // ; %tmp10 = ashr i32 %tmp9, 31
- // ; %carry = and i32 %tmp10, 1
- // ; %tmp11 = and i32 %tmp10, %divisor
- // ; %r = sub i32 %tmp7, %tmp11
- // ; %sr_2 = add i32 %sr_3, -1
- // ; %tmp12 = icmp eq i32 %sr_2, 0
- // ; br i1 %tmp12, label %loop-exit, label %do-while
- Builder.SetInsertPoint(DoWhile);
- PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2);
- PHINode *SR_3 = Builder.CreatePHI(DivTy, 2);
- PHINode *R_1 = Builder.CreatePHI(DivTy, 2);
- PHINode *Q_2 = Builder.CreatePHI(DivTy, 2);
- Value *Tmp5 = Builder.CreateShl(R_1, One);
- Value *Tmp6 = Builder.CreateLShr(Q_2, MSB);
- Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6);
- Value *Tmp8 = Builder.CreateShl(Q_2, One);
- Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8);
- Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7);
- Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB);
- Value *Carry = Builder.CreateAnd(Tmp10, One);
- Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
- Value *R = Builder.CreateSub(Tmp7, Tmp11);
- Value *SR_2 = Builder.CreateAdd(SR_3, NegOne);
- Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero);
- Builder.CreateCondBr(Tmp12, LoopExit, DoWhile);
-
- // ; loop-exit: ; preds = %do-while, %bb1
- // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
- // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
- // ; %tmp13 = shl i32 %q_3, 1
- // ; %q_4 = or i32 %carry_2, %tmp13
- // ; br label %end
- Builder.SetInsertPoint(LoopExit);
- PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2);
- PHINode *Q_3 = Builder.CreatePHI(DivTy, 2);
- Value *Tmp13 = Builder.CreateShl(Q_3, One);
- Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13);
- Builder.CreateBr(End);
-
- // ; end: ; preds = %loop-exit, %special-cases
- // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
- // ; ret i32 %q_5
- Builder.SetInsertPoint(End, End->begin());
- PHINode *Q_5 = Builder.CreatePHI(DivTy, 2);
-
- // Populate the Phis, since all values have now been created. Our Phis were:
- // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
- Carry_1->addIncoming(Zero, Preheader);
- Carry_1->addIncoming(Carry, DoWhile);
- // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
- SR_3->addIncoming(SR_1, Preheader);
- SR_3->addIncoming(SR_2, DoWhile);
- // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
- R_1->addIncoming(Tmp3, Preheader);
- R_1->addIncoming(R, DoWhile);
- // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
- Q_2->addIncoming(Q, Preheader);
- Q_2->addIncoming(Q_1, DoWhile);
- // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
- Carry_2->addIncoming(Zero, BB1);
- Carry_2->addIncoming(Carry, DoWhile);
- // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
- Q_3->addIncoming(Q, BB1);
- Q_3->addIncoming(Q_1, DoWhile);
- // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
- Q_5->addIncoming(Q_4, LoopExit);
- Q_5->addIncoming(RetVal, SpecialCases);
-
- return Q_5;
-}
-
-/// Generate code to calculate the remainder of two integers, replacing Rem with
-/// the generated code. This currently generates code using the udiv expansion,
-/// but future work includes generating more specialized code, e.g. when more
-/// information about the operands are known. Implements both 32bit and 64bit
-/// scalar division.
-///
-/// Replace Rem with generated code.
-bool llvm::expandRemainder(BinaryOperator *Rem) {
- assert((Rem->getOpcode() == Instruction::SRem ||
- Rem->getOpcode() == Instruction::URem) &&
- "Trying to expand remainder from a non-remainder function");
-
- IRBuilder<> Builder(Rem);
-
- assert(!Rem->getType()->isVectorTy() && "Div over vectors not supported");
- assert((Rem->getType()->getIntegerBitWidth() == 32 ||
- Rem->getType()->getIntegerBitWidth() == 64) &&
- "Div of bitwidth other than 32 or 64 not supported");
-
- // First prepare the sign if it's a signed remainder
- if (Rem->getOpcode() == Instruction::SRem) {
- Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0),
- Rem->getOperand(1), Builder);
-
- // Check whether this is the insert point while Rem is still valid.
- bool IsInsertPoint = Rem->getIterator() == Builder.GetInsertPoint();
- Rem->replaceAllUsesWith(Remainder);
- Rem->dropAllReferences();
- Rem->eraseFromParent();
-
- // If we didn't actually generate an urem instruction, we're done
- // This happens for example if the input were constant. In this case the
- // Builder insertion point was unchanged
- if (IsInsertPoint)
- return true;
-
- BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
- Rem = BO;
- }
-
- Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0),
- Rem->getOperand(1),
- Builder);
-
- Rem->replaceAllUsesWith(Remainder);
- Rem->dropAllReferences();
- Rem->eraseFromParent();
-
- // Expand the udiv
- if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) {
- assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?");
- expandDivision(UDiv);
- }
-
- return true;
-}
-
-
-/// Generate code to divide two integers, replacing Div with the generated
-/// code. This currently generates code similarly to compiler-rt's
-/// implementations, but future work includes generating more specialized code
-/// when more information about the operands are known. Implements both
-/// 32bit and 64bit scalar division.
-///
-/// Replace Div with generated code.
-bool llvm::expandDivision(BinaryOperator *Div) {
- assert((Div->getOpcode() == Instruction::SDiv ||
- Div->getOpcode() == Instruction::UDiv) &&
- "Trying to expand division from a non-division function");
-
- IRBuilder<> Builder(Div);
-
- assert(!Div->getType()->isVectorTy() && "Div over vectors not supported");
- assert((Div->getType()->getIntegerBitWidth() == 32 ||
- Div->getType()->getIntegerBitWidth() == 64) &&
- "Div of bitwidth other than 32 or 64 not supported");
-
- // First prepare the sign if it's a signed division
- if (Div->getOpcode() == Instruction::SDiv) {
- // Lower the code to unsigned division, and reset Div to point to the udiv.
- Value *Quotient = generateSignedDivisionCode(Div->getOperand(0),
- Div->getOperand(1), Builder);
-
- // Check whether this is the insert point while Div is still valid.
- bool IsInsertPoint = Div->getIterator() == Builder.GetInsertPoint();
- Div->replaceAllUsesWith(Quotient);
- Div->dropAllReferences();
- Div->eraseFromParent();
-
- // If we didn't actually generate an udiv instruction, we're done
- // This happens for example if the input were constant. In this case the
- // Builder insertion point was unchanged
- if (IsInsertPoint)
- return true;
-
- BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
- Div = BO;
- }
-
- // Insert the unsigned division code
- Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0),
- Div->getOperand(1),
- Builder);
- Div->replaceAllUsesWith(Quotient);
- Div->dropAllReferences();
- Div->eraseFromParent();
-
- return true;
-}
-
-/// Generate code to compute the remainder of two integers of bitwidth up to
-/// 32 bits. Uses the above routines and extends the inputs/truncates the
-/// outputs to operate in 32 bits; that is, these routines are good for targets
-/// that have no or very little suppport for smaller than 32 bit integer
-/// arithmetic.
-///
-/// Replace Rem with emulation code.
-bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) {
- assert((Rem->getOpcode() == Instruction::SRem ||
- Rem->getOpcode() == Instruction::URem) &&
- "Trying to expand remainder from a non-remainder function");
-
- Type *RemTy = Rem->getType();
- assert(!RemTy->isVectorTy() && "Div over vectors not supported");
-
- unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
-
- assert(RemTyBitWidth <= 32 &&
- "Div of bitwidth greater than 32 not supported");
-
- if (RemTyBitWidth == 32)
- return expandRemainder(Rem);
-
- // If bitwidth smaller than 32 extend inputs, extend output and proceed
- // with 32 bit division.
- IRBuilder<> Builder(Rem);
-
- Value *ExtDividend;
- Value *ExtDivisor;
- Value *ExtRem;
- Value *Trunc;
- Type *Int32Ty = Builder.getInt32Ty();
-
- if (Rem->getOpcode() == Instruction::SRem) {
- ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty);
- ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty);
- ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
- } else {
- ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty);
- ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty);
- ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
- }
- Trunc = Builder.CreateTrunc(ExtRem, RemTy);
-
- Rem->replaceAllUsesWith(Trunc);
- Rem->dropAllReferences();
- Rem->eraseFromParent();
-
- return expandRemainder(cast<BinaryOperator>(ExtRem));
-}
-
-/// Generate code to compute the remainder of two integers of bitwidth up to
-/// 64 bits. Uses the above routines and extends the inputs/truncates the
-/// outputs to operate in 64 bits.
-///
-/// Replace Rem with emulation code.
-bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) {
- assert((Rem->getOpcode() == Instruction::SRem ||
- Rem->getOpcode() == Instruction::URem) &&
- "Trying to expand remainder from a non-remainder function");
-
- Type *RemTy = Rem->getType();
- assert(!RemTy->isVectorTy() && "Div over vectors not supported");
-
- unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
-
- assert(RemTyBitWidth <= 64 && "Div of bitwidth greater than 64 not supported");
-
- if (RemTyBitWidth == 64)
- return expandRemainder(Rem);
-
- // If bitwidth smaller than 64 extend inputs, extend output and proceed
- // with 64 bit division.
- IRBuilder<> Builder(Rem);
-
- Value *ExtDividend;
- Value *ExtDivisor;
- Value *ExtRem;
- Value *Trunc;
- Type *Int64Ty = Builder.getInt64Ty();
-
- if (Rem->getOpcode() == Instruction::SRem) {
- ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty);
- ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty);
- ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
- } else {
- ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty);
- ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty);
- ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
- }
- Trunc = Builder.CreateTrunc(ExtRem, RemTy);
-
- Rem->replaceAllUsesWith(Trunc);
- Rem->dropAllReferences();
- Rem->eraseFromParent();
-
- return expandRemainder(cast<BinaryOperator>(ExtRem));
-}
-
-/// Generate code to divide two integers of bitwidth up to 32 bits. Uses the
-/// above routines and extends the inputs/truncates the outputs to operate
-/// in 32 bits; that is, these routines are good for targets that have no
-/// or very little support for smaller than 32 bit integer arithmetic.
-///
-/// Replace Div with emulation code.
-bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) {
- assert((Div->getOpcode() == Instruction::SDiv ||
- Div->getOpcode() == Instruction::UDiv) &&
- "Trying to expand division from a non-division function");
-
- Type *DivTy = Div->getType();
- assert(!DivTy->isVectorTy() && "Div over vectors not supported");
-
- unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
-
- assert(DivTyBitWidth <= 32 && "Div of bitwidth greater than 32 not supported");
-
- if (DivTyBitWidth == 32)
- return expandDivision(Div);
-
- // If bitwidth smaller than 32 extend inputs, extend output and proceed
- // with 32 bit division.
- IRBuilder<> Builder(Div);
-
- Value *ExtDividend;
- Value *ExtDivisor;
- Value *ExtDiv;
- Value *Trunc;
- Type *Int32Ty = Builder.getInt32Ty();
-
- if (Div->getOpcode() == Instruction::SDiv) {
- ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty);
- ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty);
- ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
- } else {
- ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty);
- ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty);
- ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
- }
- Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
-
- Div->replaceAllUsesWith(Trunc);
- Div->dropAllReferences();
- Div->eraseFromParent();
-
- return expandDivision(cast<BinaryOperator>(ExtDiv));
-}
-
-/// Generate code to divide two integers of bitwidth up to 64 bits. Uses the
-/// above routines and extends the inputs/truncates the outputs to operate
-/// in 64 bits.
-///
-/// Replace Div with emulation code.
-bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) {
- assert((Div->getOpcode() == Instruction::SDiv ||
- Div->getOpcode() == Instruction::UDiv) &&
- "Trying to expand division from a non-division function");
-
- Type *DivTy = Div->getType();
- assert(!DivTy->isVectorTy() && "Div over vectors not supported");
-
- unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
-
- assert(DivTyBitWidth <= 64 &&
- "Div of bitwidth greater than 64 not supported");
-
- if (DivTyBitWidth == 64)
- return expandDivision(Div);
-
- // If bitwidth smaller than 64 extend inputs, extend output and proceed
- // with 64 bit division.
- IRBuilder<> Builder(Div);
-
- Value *ExtDividend;
- Value *ExtDivisor;
- Value *ExtDiv;
- Value *Trunc;
- Type *Int64Ty = Builder.getInt64Ty();
-
- if (Div->getOpcode() == Instruction::SDiv) {
- ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty);
- ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty);
- ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
- } else {
- ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty);
- ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty);
- ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
- }
- Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
-
- Div->replaceAllUsesWith(Trunc);
- Div->dropAllReferences();
- Div->eraseFromParent();
-
- return expandDivision(cast<BinaryOperator>(ExtDiv));
-}
+//===-- IntegerDivision.cpp - Expand integer division ---------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains an implementation of 32bit and 64bit scalar integer
+// division for targets that don't have native support. It's largely derived
+// from compiler-rt's implementations of __udivsi3 and __udivmoddi4,
+// but hand-tuned for targets that prefer less control flow.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/IntegerDivision.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "integer-division"
+
+/// Generate code to compute the remainder of two signed integers. Returns the
+/// remainder, which will have the sign of the dividend. Builder's insert point
+/// should be pointing where the caller wants code generated, e.g. at the srem
+/// instruction. This will generate a urem in the process, and Builder's insert
+/// point will be pointing at the uren (if present, i.e. not folded), ready to
+/// be expanded if the user wishes
+static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
+ IRBuilder<> &Builder) {
+ unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
+ ConstantInt *Shift;
+
+ if (BitWidth == 64) {
+ Shift = Builder.getInt64(63);
+ } else {
+ assert(BitWidth == 32 && "Unexpected bit width");
+ Shift = Builder.getInt32(31);
+ }
+
+ // Following instructions are generated for both i32 (shift 31) and
+ // i64 (shift 63).
+
+ // ; %dividend_sgn = ashr i32 %dividend, 31
+ // ; %divisor_sgn = ashr i32 %divisor, 31
+ // ; %dvd_xor = xor i32 %dividend, %dividend_sgn
+ // ; %dvs_xor = xor i32 %divisor, %divisor_sgn
+ // ; %u_dividend = sub i32 %dvd_xor, %dividend_sgn
+ // ; %u_divisor = sub i32 %dvs_xor, %divisor_sgn
+ // ; %urem = urem i32 %dividend, %divisor
+ // ; %xored = xor i32 %urem, %dividend_sgn
+ // ; %srem = sub i32 %xored, %dividend_sgn
+ Value *DividendSign = Builder.CreateAShr(Dividend, Shift);
+ Value *DivisorSign = Builder.CreateAShr(Divisor, Shift);
+ Value *DvdXor = Builder.CreateXor(Dividend, DividendSign);
+ Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign);
+ Value *UDividend = Builder.CreateSub(DvdXor, DividendSign);
+ Value *UDivisor = Builder.CreateSub(DvsXor, DivisorSign);
+ Value *URem = Builder.CreateURem(UDividend, UDivisor);
+ Value *Xored = Builder.CreateXor(URem, DividendSign);
+ Value *SRem = Builder.CreateSub(Xored, DividendSign);
+
+ if (Instruction *URemInst = dyn_cast<Instruction>(URem))
+ Builder.SetInsertPoint(URemInst);
+
+ return SRem;
+}
+
+
+/// Generate code to compute the remainder of two unsigned integers. Returns the
+/// remainder. Builder's insert point should be pointing where the caller wants
+/// code generated, e.g. at the urem instruction. This will generate a udiv in
+/// the process, and Builder's insert point will be pointing at the udiv (if
+/// present, i.e. not folded), ready to be expanded if the user wishes
+static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
+ IRBuilder<> &Builder) {
+ // Remainder = Dividend - Quotient*Divisor
+
+ // Following instructions are generated for both i32 and i64
+
+ // ; %quotient = udiv i32 %dividend, %divisor
+ // ; %product = mul i32 %divisor, %quotient
+ // ; %remainder = sub i32 %dividend, %product
+ Value *Quotient = Builder.CreateUDiv(Dividend, Divisor);
+ Value *Product = Builder.CreateMul(Divisor, Quotient);
+ Value *Remainder = Builder.CreateSub(Dividend, Product);
+
+ if (Instruction *UDiv = dyn_cast<Instruction>(Quotient))
+ Builder.SetInsertPoint(UDiv);
+
+ return Remainder;
+}
+
+/// Generate code to divide two signed integers. Returns the quotient, rounded
+/// towards 0. Builder's insert point should be pointing where the caller wants
+/// code generated, e.g. at the sdiv instruction. This will generate a udiv in
+/// the process, and Builder's insert point will be pointing at the udiv (if
+/// present, i.e. not folded), ready to be expanded if the user wishes.
+static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
+ IRBuilder<> &Builder) {
+ // Implementation taken from compiler-rt's __divsi3 and __divdi3
+
+ unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
+ ConstantInt *Shift;
+
+ if (BitWidth == 64) {
+ Shift = Builder.getInt64(63);
+ } else {
+ assert(BitWidth == 32 && "Unexpected bit width");
+ Shift = Builder.getInt32(31);
+ }
+
+ // Following instructions are generated for both i32 (shift 31) and
+ // i64 (shift 63).
+
+ // ; %tmp = ashr i32 %dividend, 31
+ // ; %tmp1 = ashr i32 %divisor, 31
+ // ; %tmp2 = xor i32 %tmp, %dividend
+ // ; %u_dvnd = sub nsw i32 %tmp2, %tmp
+ // ; %tmp3 = xor i32 %tmp1, %divisor
+ // ; %u_dvsr = sub nsw i32 %tmp3, %tmp1
+ // ; %q_sgn = xor i32 %tmp1, %tmp
+ // ; %q_mag = udiv i32 %u_dvnd, %u_dvsr
+ // ; %tmp4 = xor i32 %q_mag, %q_sgn
+ // ; %q = sub i32 %tmp4, %q_sgn
+ Value *Tmp = Builder.CreateAShr(Dividend, Shift);
+ Value *Tmp1 = Builder.CreateAShr(Divisor, Shift);
+ Value *Tmp2 = Builder.CreateXor(Tmp, Dividend);
+ Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
+ Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor);
+ Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1);
+ Value *Q_Sgn = Builder.CreateXor(Tmp1, Tmp);
+ Value *Q_Mag = Builder.CreateUDiv(U_Dvnd, U_Dvsr);
+ Value *Tmp4 = Builder.CreateXor(Q_Mag, Q_Sgn);
+ Value *Q = Builder.CreateSub(Tmp4, Q_Sgn);
+
+ if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag))
+ Builder.SetInsertPoint(UDiv);
+
+ return Q;
+}
+
+/// Generates code to divide two unsigned scalar 32-bit or 64-bit integers.
+/// Returns the quotient, rounded towards 0. Builder's insert point should
+/// point where the caller wants code generated, e.g. at the udiv instruction.
+static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
+ IRBuilder<> &Builder) {
+ // The basic algorithm can be found in the compiler-rt project's
+ // implementation of __udivsi3.c. Here, we do a lower-level IR based approach
+ // that's been hand-tuned to lessen the amount of control flow involved.
+
+ // Some helper values
+ IntegerType *DivTy = cast<IntegerType>(Dividend->getType());
+ unsigned BitWidth = DivTy->getBitWidth();
+
+ ConstantInt *Zero;
+ ConstantInt *One;
+ ConstantInt *NegOne;
+ ConstantInt *MSB;
+
+ if (BitWidth == 64) {
+ Zero = Builder.getInt64(0);
+ One = Builder.getInt64(1);
+ NegOne = ConstantInt::getSigned(DivTy, -1);
+ MSB = Builder.getInt64(63);
+ } else {
+ assert(BitWidth == 32 && "Unexpected bit width");
+ Zero = Builder.getInt32(0);
+ One = Builder.getInt32(1);
+ NegOne = ConstantInt::getSigned(DivTy, -1);
+ MSB = Builder.getInt32(31);
+ }
+
+ ConstantInt *True = Builder.getTrue();
+
+ BasicBlock *IBB = Builder.GetInsertBlock();
+ Function *F = IBB->getParent();
+ Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
+ DivTy);
+
+ // Our CFG is going to look like:
+ // +---------------------+
+ // | special-cases |
+ // | ... |
+ // +---------------------+
+ // | |
+ // | +----------+
+ // | | bb1 |
+ // | | ... |
+ // | +----------+
+ // | | |
+ // | | +------------+
+ // | | | preheader |
+ // | | | ... |
+ // | | +------------+
+ // | | |
+ // | | | +---+
+ // | | | | |
+ // | | +------------+ |
+ // | | | do-while | |
+ // | | | ... | |
+ // | | +------------+ |
+ // | | | | |
+ // | +-----------+ +---+
+ // | | loop-exit |
+ // | | ... |
+ // | +-----------+
+ // | |
+ // +-------+
+ // | ... |
+ // | end |
+ // +-------+
+ BasicBlock *SpecialCases = Builder.GetInsertBlock();
+ SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases"));
+ BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(),
+ "udiv-end");
+ BasicBlock *LoopExit = BasicBlock::Create(Builder.getContext(),
+ "udiv-loop-exit", F, End);
+ BasicBlock *DoWhile = BasicBlock::Create(Builder.getContext(),
+ "udiv-do-while", F, End);
+ BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(),
+ "udiv-preheader", F, End);
+ BasicBlock *BB1 = BasicBlock::Create(Builder.getContext(),
+ "udiv-bb1", F, End);
+
+ // We'll be overwriting the terminator to insert our extra blocks
+ SpecialCases->getTerminator()->eraseFromParent();
+
+ // Same instructions are generated for both i32 (msb 31) and i64 (msb 63).
+
+ // First off, check for special cases: dividend or divisor is zero, divisor
+ // is greater than dividend, and divisor is 1.
+ // ; special-cases:
+ // ; %ret0_1 = icmp eq i32 %divisor, 0
+ // ; %ret0_2 = icmp eq i32 %dividend, 0
+ // ; %ret0_3 = or i1 %ret0_1, %ret0_2
+ // ; %tmp0 = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true)
+ // ; %tmp1 = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true)
+ // ; %sr = sub nsw i32 %tmp0, %tmp1
+ // ; %ret0_4 = icmp ugt i32 %sr, 31
+ // ; %ret0 = or i1 %ret0_3, %ret0_4
+ // ; %retDividend = icmp eq i32 %sr, 31
+ // ; %retVal = select i1 %ret0, i32 0, i32 %dividend
+ // ; %earlyRet = or i1 %ret0, %retDividend
+ // ; br i1 %earlyRet, label %end, label %bb1
+ Builder.SetInsertPoint(SpecialCases);
+ Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero);
+ Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero);
+ Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2);
+ Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True});
+ Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True});
+ Value *SR = Builder.CreateSub(Tmp0, Tmp1);
+ Value *Ret0_4 = Builder.CreateICmpUGT(SR, MSB);
+ Value *Ret0 = Builder.CreateOr(Ret0_3, Ret0_4);
+ Value *RetDividend = Builder.CreateICmpEQ(SR, MSB);
+ Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend);
+ Value *EarlyRet = Builder.CreateOr(Ret0, RetDividend);
+ Builder.CreateCondBr(EarlyRet, End, BB1);
+
+ // ; bb1: ; preds = %special-cases
+ // ; %sr_1 = add i32 %sr, 1
+ // ; %tmp2 = sub i32 31, %sr
+ // ; %q = shl i32 %dividend, %tmp2
+ // ; %skipLoop = icmp eq i32 %sr_1, 0
+ // ; br i1 %skipLoop, label %loop-exit, label %preheader
+ Builder.SetInsertPoint(BB1);
+ Value *SR_1 = Builder.CreateAdd(SR, One);
+ Value *Tmp2 = Builder.CreateSub(MSB, SR);
+ Value *Q = Builder.CreateShl(Dividend, Tmp2);
+ Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
+ Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);
+
+ // ; preheader: ; preds = %bb1
+ // ; %tmp3 = lshr i32 %dividend, %sr_1
+ // ; %tmp4 = add i32 %divisor, -1
+ // ; br label %do-while
+ Builder.SetInsertPoint(Preheader);
+ Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1);
+ Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne);
+ Builder.CreateBr(DoWhile);
+
+ // ; do-while: ; preds = %do-while, %preheader
+ // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
+ // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
+ // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
+ // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
+ // ; %tmp5 = shl i32 %r_1, 1
+ // ; %tmp6 = lshr i32 %q_2, 31
+ // ; %tmp7 = or i32 %tmp5, %tmp6
+ // ; %tmp8 = shl i32 %q_2, 1
+ // ; %q_1 = or i32 %carry_1, %tmp8
+ // ; %tmp9 = sub i32 %tmp4, %tmp7
+ // ; %tmp10 = ashr i32 %tmp9, 31
+ // ; %carry = and i32 %tmp10, 1
+ // ; %tmp11 = and i32 %tmp10, %divisor
+ // ; %r = sub i32 %tmp7, %tmp11
+ // ; %sr_2 = add i32 %sr_3, -1
+ // ; %tmp12 = icmp eq i32 %sr_2, 0
+ // ; br i1 %tmp12, label %loop-exit, label %do-while
+ Builder.SetInsertPoint(DoWhile);
+ PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2);
+ PHINode *SR_3 = Builder.CreatePHI(DivTy, 2);
+ PHINode *R_1 = Builder.CreatePHI(DivTy, 2);
+ PHINode *Q_2 = Builder.CreatePHI(DivTy, 2);
+ Value *Tmp5 = Builder.CreateShl(R_1, One);
+ Value *Tmp6 = Builder.CreateLShr(Q_2, MSB);
+ Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6);
+ Value *Tmp8 = Builder.CreateShl(Q_2, One);
+ Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8);
+ Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7);
+ Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB);
+ Value *Carry = Builder.CreateAnd(Tmp10, One);
+ Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
+ Value *R = Builder.CreateSub(Tmp7, Tmp11);
+ Value *SR_2 = Builder.CreateAdd(SR_3, NegOne);
+ Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero);
+ Builder.CreateCondBr(Tmp12, LoopExit, DoWhile);
+
+ // ; loop-exit: ; preds = %do-while, %bb1
+ // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
+ // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
+ // ; %tmp13 = shl i32 %q_3, 1
+ // ; %q_4 = or i32 %carry_2, %tmp13
+ // ; br label %end
+ Builder.SetInsertPoint(LoopExit);
+ PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2);
+ PHINode *Q_3 = Builder.CreatePHI(DivTy, 2);
+ Value *Tmp13 = Builder.CreateShl(Q_3, One);
+ Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13);
+ Builder.CreateBr(End);
+
+ // ; end: ; preds = %loop-exit, %special-cases
+ // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
+ // ; ret i32 %q_5
+ Builder.SetInsertPoint(End, End->begin());
+ PHINode *Q_5 = Builder.CreatePHI(DivTy, 2);
+
+ // Populate the Phis, since all values have now been created. Our Phis were:
+ // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
+ Carry_1->addIncoming(Zero, Preheader);
+ Carry_1->addIncoming(Carry, DoWhile);
+ // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
+ SR_3->addIncoming(SR_1, Preheader);
+ SR_3->addIncoming(SR_2, DoWhile);
+ // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
+ R_1->addIncoming(Tmp3, Preheader);
+ R_1->addIncoming(R, DoWhile);
+ // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
+ Q_2->addIncoming(Q, Preheader);
+ Q_2->addIncoming(Q_1, DoWhile);
+ // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
+ Carry_2->addIncoming(Zero, BB1);
+ Carry_2->addIncoming(Carry, DoWhile);
+ // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
+ Q_3->addIncoming(Q, BB1);
+ Q_3->addIncoming(Q_1, DoWhile);
+ // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
+ Q_5->addIncoming(Q_4, LoopExit);
+ Q_5->addIncoming(RetVal, SpecialCases);
+
+ return Q_5;
+}
+
+/// Generate code to calculate the remainder of two integers, replacing Rem with
+/// the generated code. This currently generates code using the udiv expansion,
+/// but future work includes generating more specialized code, e.g. when more
+/// information about the operands are known. Implements both 32bit and 64bit
+/// scalar division.
+///
+/// Replace Rem with generated code.
+bool llvm::expandRemainder(BinaryOperator *Rem) {
+ assert((Rem->getOpcode() == Instruction::SRem ||
+ Rem->getOpcode() == Instruction::URem) &&
+ "Trying to expand remainder from a non-remainder function");
+
+ IRBuilder<> Builder(Rem);
+
+ assert(!Rem->getType()->isVectorTy() && "Div over vectors not supported");
+ assert((Rem->getType()->getIntegerBitWidth() == 32 ||
+ Rem->getType()->getIntegerBitWidth() == 64) &&
+ "Div of bitwidth other than 32 or 64 not supported");
+
+ // First prepare the sign if it's a signed remainder
+ if (Rem->getOpcode() == Instruction::SRem) {
+ Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0),
+ Rem->getOperand(1), Builder);
+
+ // Check whether this is the insert point while Rem is still valid.
+ bool IsInsertPoint = Rem->getIterator() == Builder.GetInsertPoint();
+ Rem->replaceAllUsesWith(Remainder);
+ Rem->dropAllReferences();
+ Rem->eraseFromParent();
+
+ // If we didn't actually generate an urem instruction, we're done
+ // This happens for example if the input were constant. In this case the
+ // Builder insertion point was unchanged
+ if (IsInsertPoint)
+ return true;
+
+ BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
+ Rem = BO;
+ }
+
+ Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0),
+ Rem->getOperand(1),
+ Builder);
+
+ Rem->replaceAllUsesWith(Remainder);
+ Rem->dropAllReferences();
+ Rem->eraseFromParent();
+
+ // Expand the udiv
+ if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) {
+ assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?");
+ expandDivision(UDiv);
+ }
+
+ return true;
+}
+
+
+/// Generate code to divide two integers, replacing Div with the generated
+/// code. This currently generates code similarly to compiler-rt's
+/// implementations, but future work includes generating more specialized code
+/// when more information about the operands are known. Implements both
+/// 32bit and 64bit scalar division.
+///
+/// Replace Div with generated code.
+bool llvm::expandDivision(BinaryOperator *Div) {
+ assert((Div->getOpcode() == Instruction::SDiv ||
+ Div->getOpcode() == Instruction::UDiv) &&
+ "Trying to expand division from a non-division function");
+
+ IRBuilder<> Builder(Div);
+
+ assert(!Div->getType()->isVectorTy() && "Div over vectors not supported");
+ assert((Div->getType()->getIntegerBitWidth() == 32 ||
+ Div->getType()->getIntegerBitWidth() == 64) &&
+ "Div of bitwidth other than 32 or 64 not supported");
+
+ // First prepare the sign if it's a signed division
+ if (Div->getOpcode() == Instruction::SDiv) {
+ // Lower the code to unsigned division, and reset Div to point to the udiv.
+ Value *Quotient = generateSignedDivisionCode(Div->getOperand(0),
+ Div->getOperand(1), Builder);
+
+ // Check whether this is the insert point while Div is still valid.
+ bool IsInsertPoint = Div->getIterator() == Builder.GetInsertPoint();
+ Div->replaceAllUsesWith(Quotient);
+ Div->dropAllReferences();
+ Div->eraseFromParent();
+
+ // If we didn't actually generate an udiv instruction, we're done
+ // This happens for example if the input were constant. In this case the
+ // Builder insertion point was unchanged
+ if (IsInsertPoint)
+ return true;
+
+ BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
+ Div = BO;
+ }
+
+ // Insert the unsigned division code
+ Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0),
+ Div->getOperand(1),
+ Builder);
+ Div->replaceAllUsesWith(Quotient);
+ Div->dropAllReferences();
+ Div->eraseFromParent();
+
+ return true;
+}
+
+/// Generate code to compute the remainder of two integers of bitwidth up to
+/// 32 bits. Uses the above routines and extends the inputs/truncates the
+/// outputs to operate in 32 bits; that is, these routines are good for targets
+/// that have no or very little suppport for smaller than 32 bit integer
+/// arithmetic.
+///
+/// Replace Rem with emulation code.
+bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) {
+ assert((Rem->getOpcode() == Instruction::SRem ||
+ Rem->getOpcode() == Instruction::URem) &&
+ "Trying to expand remainder from a non-remainder function");
+
+ Type *RemTy = Rem->getType();
+ assert(!RemTy->isVectorTy() && "Div over vectors not supported");
+
+ unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
+
+ assert(RemTyBitWidth <= 32 &&
+ "Div of bitwidth greater than 32 not supported");
+
+ if (RemTyBitWidth == 32)
+ return expandRemainder(Rem);
+
+ // If bitwidth smaller than 32 extend inputs, extend output and proceed
+ // with 32 bit division.
+ IRBuilder<> Builder(Rem);
+
+ Value *ExtDividend;
+ Value *ExtDivisor;
+ Value *ExtRem;
+ Value *Trunc;
+ Type *Int32Ty = Builder.getInt32Ty();
+
+ if (Rem->getOpcode() == Instruction::SRem) {
+ ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty);
+ ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty);
+ ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
+ } else {
+ ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty);
+ ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty);
+ ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
+ }
+ Trunc = Builder.CreateTrunc(ExtRem, RemTy);
+
+ Rem->replaceAllUsesWith(Trunc);
+ Rem->dropAllReferences();
+ Rem->eraseFromParent();
+
+ return expandRemainder(cast<BinaryOperator>(ExtRem));
+}
+
+/// Generate code to compute the remainder of two integers of bitwidth up to
+/// 64 bits. Uses the above routines and extends the inputs/truncates the
+/// outputs to operate in 64 bits.
+///
+/// Replace Rem with emulation code.
+bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) {
+ assert((Rem->getOpcode() == Instruction::SRem ||
+ Rem->getOpcode() == Instruction::URem) &&
+ "Trying to expand remainder from a non-remainder function");
+
+ Type *RemTy = Rem->getType();
+ assert(!RemTy->isVectorTy() && "Div over vectors not supported");
+
+ unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
+
+ assert(RemTyBitWidth <= 64 && "Div of bitwidth greater than 64 not supported");
+
+ if (RemTyBitWidth == 64)
+ return expandRemainder(Rem);
+
+ // If bitwidth smaller than 64 extend inputs, extend output and proceed
+ // with 64 bit division.
+ IRBuilder<> Builder(Rem);
+
+ Value *ExtDividend;
+ Value *ExtDivisor;
+ Value *ExtRem;
+ Value *Trunc;
+ Type *Int64Ty = Builder.getInt64Ty();
+
+ if (Rem->getOpcode() == Instruction::SRem) {
+ ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty);
+ ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty);
+ ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
+ } else {
+ ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty);
+ ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty);
+ ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
+ }
+ Trunc = Builder.CreateTrunc(ExtRem, RemTy);
+
+ Rem->replaceAllUsesWith(Trunc);
+ Rem->dropAllReferences();
+ Rem->eraseFromParent();
+
+ return expandRemainder(cast<BinaryOperator>(ExtRem));
+}
+
+/// Generate code to divide two integers of bitwidth up to 32 bits. Uses the
+/// above routines and extends the inputs/truncates the outputs to operate
+/// in 32 bits; that is, these routines are good for targets that have no
+/// or very little support for smaller than 32 bit integer arithmetic.
+///
+/// Replace Div with emulation code.
+bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) {
+ assert((Div->getOpcode() == Instruction::SDiv ||
+ Div->getOpcode() == Instruction::UDiv) &&
+ "Trying to expand division from a non-division function");
+
+ Type *DivTy = Div->getType();
+ assert(!DivTy->isVectorTy() && "Div over vectors not supported");
+
+ unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
+
+ assert(DivTyBitWidth <= 32 && "Div of bitwidth greater than 32 not supported");
+
+ if (DivTyBitWidth == 32)
+ return expandDivision(Div);
+
+ // If bitwidth smaller than 32 extend inputs, extend output and proceed
+ // with 32 bit division.
+ IRBuilder<> Builder(Div);
+
+ Value *ExtDividend;
+ Value *ExtDivisor;
+ Value *ExtDiv;
+ Value *Trunc;
+ Type *Int32Ty = Builder.getInt32Ty();
+
+ if (Div->getOpcode() == Instruction::SDiv) {
+ ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty);
+ ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty);
+ ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
+ } else {
+ ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty);
+ ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty);
+ ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
+ }
+ Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
+
+ Div->replaceAllUsesWith(Trunc);
+ Div->dropAllReferences();
+ Div->eraseFromParent();
+
+ return expandDivision(cast<BinaryOperator>(ExtDiv));
+}
+
+/// Generate code to divide two integers of bitwidth up to 64 bits. Uses the
+/// above routines and extends the inputs/truncates the outputs to operate
+/// in 64 bits.
+///
+/// Replace Div with emulation code.
+bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) {
+ assert((Div->getOpcode() == Instruction::SDiv ||
+ Div->getOpcode() == Instruction::UDiv) &&
+ "Trying to expand division from a non-division function");
+
+ Type *DivTy = Div->getType();
+ assert(!DivTy->isVectorTy() && "Div over vectors not supported");
+
+ unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
+
+ assert(DivTyBitWidth <= 64 &&
+ "Div of bitwidth greater than 64 not supported");
+
+ if (DivTyBitWidth == 64)
+ return expandDivision(Div);
+
+ // If bitwidth smaller than 64 extend inputs, extend output and proceed
+ // with 64 bit division.
+ IRBuilder<> Builder(Div);
+
+ Value *ExtDividend;
+ Value *ExtDivisor;
+ Value *ExtDiv;
+ Value *Trunc;
+ Type *Int64Ty = Builder.getInt64Ty();
+
+ if (Div->getOpcode() == Instruction::SDiv) {
+ ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty);
+ ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty);
+ ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
+ } else {
+ ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty);
+ ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty);
+ ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
+ }
+ Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
+
+ Div->replaceAllUsesWith(Trunc);
+ Div->dropAllReferences();
+ Div->eraseFromParent();
+
+ return expandDivision(cast<BinaryOperator>(ExtDiv));
+}